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EXCERPTS FROM THE REVIEWS

A. Jannussis (Univ. of Patras, Greece): “Hadronic Mechanics supersedes
all theories to date.”

(opening address of the International Conference on the Frontiers of Physics. Olympia,
Greece, 1993)

- H. P. Leipholz (Univ. of Waterloo, Canada): “Santilli’s studies are truly
epoch making.”

J. V. Kadeisvili (Intern. Center of Phys., Kazakhstan): “Santilli's Lie-
isotopic and Lie-admissible generalizations of the algebraic, geometric and
analytic foundations of Lie’s theory are of clear historical proportions.”

A. U. Klimyk (Inst. for Theor. Phys., Ukraine): “The three books on
Hadronic Mechanics are the most authoritative for a study of the Lie-
isotopic and Lie-admissible generalizations of Lie’s theory and their many
applications.”

D. F. Lopez (Univ. of Campinas, Brasil); “Santilli succeeded, first, in
reaching a structural generalization of the available mathematics as a pre-
requisite for his generalization of current physical theories. These .
achievements are unprecedented in the history of physics.”

A. O. E. Animalu (Univ. of Nsukka, Nigeria): “Because of its beauty,
mathematical consistency and range of applicability vastly beyond quantum
mechanics, if we deny the historical character of Hadronic Mechanics we
exit the boundaries of science.”

T. L. Gill (Howard Univ., Washington, D. C.): “The three volumes on
Hadronic Mechanics represent the most important contribution to physics in
the last fifty years.”
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dedicated to the memory of
ENRICO FERMI

because of his inspiring doubts on the exact validity of
quantum mechanics for the nuclear structure.

See, e.g., E. Fermi, Nuclear Physics, Univ. of Chicago Press (1950),
the beginning of Chapter VI, page 111, when referring to the applicability
of quantum mechanics for the treatment of nuclear forces:

"..... there are some doubts as to whether the usual concepts
of geometry hold for such small region of space."
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FOREWORD

‘These three volumes are devoted to a structural generalization of contemporary
thecretical physics known under the name of Hadronic Mechanics (HM). Volume |
presents a generalization of contemporary mathematical structures, including the
theory of numbers, vector spaces, Lie algebras and groups, contemporary
geometries, functional analysis, etc.

Yolume II begins with a generalization of classical Lagrangian and Hamiltonian
mechanics and then, after a suitable lifting of conventional quantization procedures,
presents a step-by-step generalization of nonrelativistic and relativistic quantum
mechanics capable of representing the most general known systems, while admitting
of traditional mechanics and systems as particular cases.

Finally, Volume III presents a variety of novel and refreshing physical
applications and experimental verifications in nuclear physics, particle physics,
astrophysics, superconductivity and other unexpected fields such as conchology.

In short, Hadronic Mechanics concerns such a wide class of phenomena, that we
can use for brevity the word Nature.

The Author’s main idea consists of a generalization of the fundamental
constants of contemporary physics into variables of the most general possible
form representing their dependence on local physical conditions of the so-called
interior dynamical probiem. Mathematical and theoretical structures are then
reconstructed in such a way to treat consistently these generalized notions.

The motivations for the consideration of these variable “constants” is rather
natural. For instance, the speed of light in a physical medium is variable. Additional
considerations then lead to the variable character of other “constants” in interior
conditions, such as in the interior of a star. For instance, the coupling constant of
quantum electrodynamics depends on quantum corrections and changes with the
scale [1]. Contributions of integral character or the possible fractal structure of
space-time then lead to a locally variable Planck’s “constant”, [_l 1 .

The transition from contemporary theoretical physics to the covering theories
presented in these volumes can be expressed via a nice concept of M. P. Bronstein
(1906-1938) on the so-called three-dimensional Space of Physical Theories (SPT)
with axes characterized by Planck’s constant h, the gravitational constant G an the
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inverse of the speed of light 1/c (see ref. [3]. Conventional theories are characterized
by the following points in this SPT:

{t, 0, 0) = nonrelativistic quantum mechanics;

{0, G, 0) = Newtonian mechanics;

{0, 0, 1/¢) = special relativity;

{h, 0, 1/c) = relativistic quantum mechanics; and

{0, G, 1/c) = general relativity.

Because of the lecal dependence of the “constants” on density, temperature,
pressure, etc., Santilli's covering theories fill up Bronstein’s entire space.

Nugzar V. Makhaldiani

Joint Institute for Nuclear Research
Dubna, Russia

October, 1993

L. N. N. BOGOLIUBOY and D. V. SHIRKOYV, Introduction to the Theory of Quantized
Fields, Wiley and Sons, New York (1980)

2. N. V. MAKHALDIANI, Number field dynamics and compactification problem in
the theory of fields and strings, JINR Cornmunication No. P2-88-916 (1988)

3. G. YENEZIANO, Fundamental constants in field and string theory, CERN preprint
TH-6725/92 (1992)






-iX -

PREFACE

These volumes are the first books written on a nonlinear, nonlocal and
noncanonical, axiom-preserving generalization of quantum mechanics called
hadronic mechanics, proposed by the author back in 1978 when at Harvard
University under support from the U. S. Department of Energy, and subsequently
studied by a number of mathematicians, theoreticians and experimentalists.

The main objective is a systematic and quantitative study of the historical,
open legacy of the nonlocality of the strong interactions at large, and of the
structure of hadrons in particular, due to mutual overlapping of the
wavepackets/wavelength/charge-distributions of hadrons,

in such a way as to preserve causality, measurement theory, and other basic
features of guantum mechanics.

The scope of this first volume is the study of the mathematical
foundations of the new mechanics. The main working hypothesis is the
generalization of Planck’s constant into an integro—differential operator

h=1 - kh=nl
under the condition of verifying the needed smoothness, boundedness and
regularity properties. The lifting of the unit then requires the following
corresponding generalization of the associative product AB among generic
quantumn mechanical quantities A, B

AB »> AsB=ATB T=fixed 1= T}

in which case is the correct right and left generalized unit of the theory, 1+A =



Afl = A

The main idea is that the exchanges of energy are indeed discrete for
particles moving in vacuum under action-at-a-distance interactions, such as for
an electron in an atomic cloud. However, when the same particle is immersed
within a hyperdense medium, such as for an electron in the core of a collapsing
star, we expect integral contributions in the exchanges of energy due to the total
immersion of the wavepacket of the particle within those of the surrounding
particles.

The need for the generalization of the unit, and of the corresponding
associative product, originates from the fact that the nonlocal interactions due to
wave-overlappings, whether in electron pairing in superconductivity, or in deep
inelastic scattering, or in other events, are of “contact” type; that is, of a type
which does not admit a potential energy. Conventional Hamiltonians H=K + V
can therefore represent the kinetic energy K and all possible action—-at-a—distance
interactions with potential V. However, the contact interactions due to mutual
wave—penetration, by conception, cannot be represented with the Hamiltonian H
and, in this sense, they are called “nonhamiltonian”. The alternative studied in
these books is then their representation via the generalized unit of the theory for
certain algebraic, geometric and analytic reasons presented in the text.

These preliminary ideas are sufficient to indicate the ariomatic structure
of hadronic mechanics, and its connection with all existing generalizations of
quantum mechanics. In fact, in Ch. 7 of this volume we show that hadronic
mechanics is directly universal; that is, capable of representing all possible nonlinear,
nonlocal, nonhamiltonian, continuous or discrete, inhomogeneous and anisotropic
generalizations of quantum mechanics (universality), directly in the frame of the
experimenter (direct universality). In the appendix of Ch. 7 we then outline the connection
between hadronic mechanics and other generalized theories.

. Consider, the generalizations of quantum mechanics known under the
name of g-deformations, eg., of the type

AB-— A*B = qAB, g="fixed~0,

{where q is a number). As we shall see, hadronic mechanics can be interpreted as an
axiomatic reformuiation of g-deformations which is invariant under its own time
evolution and holds for arbitrary integro—differential deformations. This is
essentially achieved via the redefinition of the unit

l b d 1 = q
and consequential reformulation of the entire structure of the theory (numbers,

fields, metric spaces, Lie’s theory, etc.). By keeping in mind the mathematical
consistency of the current treatment of the q—deformations (that at a fixed time
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in which the basic unit is not generalized), the above reformulation also resolves
sorne of the physical problematic aspects emerging under time evolution, such
as lack of the basic unit, inapplicability of the measurement theory, general loss
of Hermiticity of the Hamiltonian, and others.

Similarly, numerous nonlinear generalizations of Schrodinger’s equation
(those with a nonlinearity in the wavefunctions ¢ have been proposed in the
literature. As it is the case for the q-deformations, they are mathematically
correct, but are afflicted by a number of problematic aspects of physical
consistency, such as the general lack of exponentiation of an algebra to the
corresponding group, the inequivalence of the Heisenberg-type and Schrodinger—
type equations (due to the so-called Okubos No Quantization Theorem), and
others. Hadronic mechanics can be interpreted as an axiomatic reformulation of
these studies into a form admitting nonlinearity in the wavefunctions ¢ and
their derivatives of arbitrary order &, 83y, ... This axiomatization also permits a
quantitative identification suitable for tests of the deviations from quantum
mechanical formalisms implied by the nonlinearity itself.

Also, nonlocal generalizations of quantum mechanics for the study of
wave-overlappings can be traced back to the very inception of that discipline.
They were also treated via conventional quantum mechanical methods, thus
leading to a number of problematic aspects still under study, such as causality.
Hadronic mechanics preserves the abstract axioms of quantum mechanics and
realizes them in a more general way, by therefore ensuring the preservation of
causality ab initio. Hadronic mechanics is therefore ideally suited for an
axiomatic reformulation of these studies into a causal description admitting all
possibie nonlocal-integral generalizations of quantum mechanics.

A number of discrete generalizations of guantumn mechanics, such as those
with a discrete structure in time, have been proposed in the literature although
the elaborations continue to be based on conventional units and methods. These
theories too are deeply linked to hadronic mechanics because the discreteness of
time implies the alteration of the basic unit of time, thus requiring generalized
methods for their treatment. Hadronic mechanics can be interpreted as providing
an axiomatization of these generalizations by embedding the discrete structure of
time in the generalized unit T of the theory. Intriguingly, hadronic mechanics
shows that such discrete structure is vitimately compatible with the abstract
axioms of quantum mechanics itself, when properly realized. Finally, discrete
theories emerge as being compatible with conventional experimental data
because (as shown in Vol. I1) the appropriate expectation value of a discrete unit
recovers the conventional unit, <1>=h=1.

Numerous additional generalizations of quantum mmechanics exist in the
literature, some of which will be studied in the appendix of Ch. 7, and others in
the subsequent Volumes 1l and I11. All these theories are independent from
hadronic mechanics, yet exhibit intriguing connections with the latter whose
study is beneficial to both theories.
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It is evident that, in a scientific horizon of this type, I could not provide a
comprehensive review of all existing generalizations without avoiding a
prohibitive length. In these volumes I shall therefore limit myself to a review and
re~elaboration of only some representative generalizations for each of the above
Classes. Nevertheless, I would be grateful to colleagues who care to bring to my
attention (at the address below) studies directly or indirectly related to hadronic
mechanics which | should quote in a possible future edition.

" Judging from discussions and correspondence with various colleagues over
the years, the primary difficulty for a first inspection of the field is of
mathematical nature. The nonlinear-nonlocal-noncanonical generalization of
the basic unit of quantum mechanics demands, for various technical reasons, a
suitable generalization of the totality of the mathemnatical structure of quantum
mechanics, beginning with a generalization of the contemporary notion of
number, such as h = |, into a structurally more generalized notion called
isonumbers, such as h = hl. In turn, generalized units, products and numbers
demand a suitable generalization of the notions of field, vector spaces,
transformation theory, enveloping algebras, Lie algebras, Lie groups, symmetries,
symplectic, affine and Riemannian geometries, Lagrange and Hamilton
mechanics, etc.

In short, the studies reported in these volumes indicate that, in the same
way as the full understanding of the structure of atoms required a revision of the
mathematical foundations of classical mechanics, further basic advances in the
structure of hadrons require a similar revision, this time, of the mathematical
foundations of quantum mechanics.

Difficulties in communicating with colleagues therefore emerge whenever
hadronic mechanics is approached (and appraised} via the use of old quantum
mechanical knowledge, without the awareness of numerous ensuing
inconsistencies which generally remain undetected.

The author has therefore no words to recommend that colleagues seriously
interested in inspecting the advances reported herein acquire a technical
knowledge of the novel mathematical methods prior to any judgment and, above
all, prior to setting up the mind along old lines. After ali, the new mathematical
methods are quite easy to understand, as one can see.

Technicaily, the topic of these books is in the field of the isotopies and
genotopies of contemporary mathernatical and physical theories proposed by
the Author back in 1978, which essentially are nonlinear, nonlocal-integral and
nonpotential-nonhamiltonian liftings of given mathematical or physical
structures capable of preserving the original axioms at the abstract, realization~
free level (isotopies), or induce new covering axioms (genotopies).

As we shall see, the study of the fundamental hypothesis on the integral
generalization of Planck’s unit requires suitable nonlinear-nonlocal-
nonhamiltonian isotopies and genotopies of the totality of mathematical methods
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used in quantum mechanics, including Hilbert spaces and all that.

The physical relevance of isotopic and genotopic methods is well
established and consists in permitting quantitative studies of the transition:

a) from the exterior dynamical problem, characterized by motion of

point-like particles within the homogeneous and isotropic va-
Cuummy;

b) to the interior dynamical problem, characterized by motion of
extended and therefore deformable particles within inhomo-
geneous and anisotropic physical media, resulting in the most
general known dynamical equations.

In particular, the isotopies preserve the original, abstract, algebraic, geometric
and analytic axioms, thus achieving a unity of physical and mathematical
thought in the treatment of both problems.

The isotopies are used when interior structural problems are studied as a
whole with conserved conventional total quantities under a generalized interior
structure. The genotopies are instead used to characterize one individual
constituent while considering the rest of the system as external, thus resulting in
the nonconservation of its physical quantities, of course, in a way compatible
with total conservation laws.

The ciassical isotopies and genotopies are the classical realizations of the
isotopies and genotopies of contemporary algebras, geometries, mechanics,
symmetries and relativities. They have been sufficiently well identified in
preceding monographs (quoted in the text), with a number of applications to
Newtonian, relativistic and gravitational systems of our interior classical reality.

These volumes are the first books on the corresponding operator isotopies
and genolopies, that is, the axiom-preserving isotopies and axiom-inducing
genotopies of quantum mechanics originally proposed under the name of
hadronic generalization of quantum mechanics, or hadronic mechanics for
short, and today also known as isotopic completion of quantum mechanics,
isofocal realisrn, and similar terms.

The operator isotopies and genotopies are far from being as developed as
the corresponding classical counterparts. Despite that, I decided to write these
first books for the following reasons:

1) the mathematical consistency of hadronic mechanic is now established,
thus allowing rigorous quantitative treatments of interior particle problems in a
form suitable for experimental tests;

2) we have today a number of experimental verifications which, even
though evidently preliminary, nevertheless confirm the predictions of the
covering mechanics quite clearly; and

3) hadronic mechanics suggests a number of novel experiments that is,
experiments on interna! nonlinear-nonlocal-nonhamiltonian effects simply
beyond the descriptive and predictive capacities of conventional theories, which
deserve a serious consideration by the experimental community owing to their
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seemingly fundamental character.

Above all, a primary reason for writing these books is to point out for
young minds of all ages that hadronic mechanics identifies the apparent existence
of a new technology I tentatively called hadronic technology, because emerging
from mechanisms in the structure of individual hadrons, while the current
technologies emerge from mechanisms in the structure of molecules, atoms and
nuclei. The societal implications of these possibilities, e.g., for possible new forms
of energy, new approaches to cold fusion, new computer modeling, new medical
applications, etc., have warranted this first identification of the state of the art in
the conceptual, mathematical, theoretical and experimental foundations of
hadronic mechanics.

Ruggero Maria Santilli
Dubna, Russia,

Kiev, Ukraine and

Palm Harbor, U.S.A.
Summer of 1993

Permanent address:

The Institute for Basic Research

P. O. Box 1577, Palm Harbor, FL 34682, U.S.A.
E-mai ibrrms@pinet.aip.org
Fax: 1-813-934 9275
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1: INTRODUCTION
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1.1: STATEMENT OF THE PROBLEM

\/

The discipline today known as quantum mechanics (see, e.g., ref. [1] for a
historical account and ref. [2] for a contemporary account) was originally
conceived for the structure of the atoms and the electromagnetic interactions at
large, for which it subsequently emerged as being exact according to an
overwhelming amount of experimental evidence.

Whether in its nonrelativistic, relativistic or field theoretical versions,
quantum mechanics was subsequently applied to the study of the nuclear
structure (see, €.g., ref.s [34]), to the strong interactions at large (see, e.g., refl 5],
as well as, more recently, to the unified gauge theories (see, e.g., ref. [6]), with
equally impressive results and experimental verifications (see the recent
experimental review [7]).

But physics is a discipline that will never admit final theories. No matter
how effective and fundamental a theory is, the construction of a more general
theory for a deeper understanding of physical reality is only a matter of time.

Despite its undeniable achievements and verifications, quantum mechanics
possesses well identifiable limitations essentially expressed by the characteristics
of its original conception and the point-like approximation of particles, as
inherent in its essential local-differential structure.

Thus, in all physical conditions in which particles, their wavepackets,
and/or their charge distributions can be well approximated as being point~like (as
in the case for the electrons in an atomic structure), we expect quantum
mechanics to be exactly valid. However, there exists an open issue in the
literature, at times known as the legacy of Fermi, ! Blochintsev and others (see
Efimov’s monographs on nonlocality [8] and historical references therein),
according to which wavepackets and/or charge distributions in conditions of

t See the dedication of this first volume
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deep mutual immersion and overlapping experience shorf range, internal,
nonlocai-integral interactions (see Fig. 1.L.1).

THE FUNDAMENTAL INTERACTIONS
OF HADRONIC MECHANICS.

FIGURE 1.1.1: Quantum mechanics wag conceived for the study of actionfat—a—
distance interactions among particlesfwhich, as such, are representable by & a
potential. The interactions are therefore local-differential; that is, repres¢ntable
with differential equations defined over a finite set of isolated points. Hgdronic
mechanics was conceived for the study of the additional nonlocal-iftegral
interactions due to mutual wave-overlapping as schematicaily depicted/in this
figure. We are here referring to interactions which, by central conceptjon, are
defined over an entire volume and, as such, cannot be eff tively
approximated via their abstraction into a finite number of isolated pointggAs we
shall see, quantitative studies of the latter interactions, which are not
possible with quantum mechanics, permit deeper insights into existing
knowledge {e.g., how can two seemingly noninteracting electrons obey Pauli’s
exclusion principle), and predict new knowledge {such as the apparent coiés
fusien of particles in conditions to total mutuat penetration).

After lingering in the literature for decades, this legacy has recently been
subjected to quantitative mathematical, theoretical and experimental studies with
rather encouraging results. In fact, recent studies have identified clear theoretical
and experimental information supporting the ultimate nonlocal structure of
matter, thus suggesting the need for a suitable covering of quantum mechanics
specifically conceived for the representation of the most general known
interactions which are:

) nonlinear in the coordinate x and wavefunctions ¢, 1 as well as

their derivatives of arbitrary order X, X, as, o, ..
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2) nonlocal~integral in all yariables;

3} nonpotential-nonhamiltonian , ie., violating the integrability condi-
tions for the existence of a Hamiltonian, the so-called conditions of
variational selfadjointness (9}

4) inhomogeneous (e.g., because of a local variation of physical quan-
tities such as density u, temperature T, index of refraction n, etc.);
and

5) anisotropic (e.g., because of the presence of an intrinsic angular
momentum which, as such, creates a preferred direction in the
interior physical medium, with the understanding that the
background space is and remains homogeneous and isctropic).

Since the above interactions cannot be represented with a Hamiltonian by
central assumption, the fundamental hypothesis studied in these volumes is to
represent them via a suitable, nonlinear, nonlocal and noncanonical generalization
of the fundamental unit of quantum mechanics, Planck’s constant h = |, into an
integro-differential operator 1 with the indicated most general possible
functional (_uapel‘lclerltze2

h=1 = h =+l xx %¢ a0 &t 0, nn., (1LL1)

verifying certain smoothness, boundedness and regularity conditions identified
later on. A oM, _

A primary objective of these beeks is to review the mathematical,
theoretical and experimental studies conducted on this historical legacy at this
writing (Spring 1993) and propose additional mathematical, theoretical and
experimental research.

This first volume is solely devoted to the mathematical foundations of
hadronic mechanics. Theoretical profiles are presented in Vol. II, while
applications and experimental verifications are studied in Vol. 1. -

1.2: LIMITATIONS OF QUANTUM MECHANICS

For the “young minds of all ages” indicated in the Preface, there is no need to
conduct experiments in order to identify the limitations of quantum mechanics,
but simply observe (and admit} physical evidence.

First, let us observe a classical event, such as a space-ship during re-entry

2The dependence on the accelerations is absent for exterior problems, but it is a
peculiarity of interior problems. As we shall see in Vol.s II and I11, hadronic bound states
clearly exhibit acceleration dependent forces which ewgriet® in part their novelty.

2l Ie
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Theorems [11,12] establish that such a
ying angular momentum cannot be
f ideal elementary particles verifying
etry, thus being all in stable orbits
ilar situation holds for the Lorentz

into our atmosphere. The No-Reduction
classical system with monotonically de
consistently reduced to a finite collection
the quantum mechanical rotational sym
with conserved angular momentum (a si
symmetry as we shall see in Volume I1).

Viceversa, an ensemble of quant
conserved angular momentumn simply ca
procedure, a macroscopic object whose
decaying angular momentum, .

Since the macroscopic object is a lconcrete, visual evidence, while the
reduction to elementary constituents is an academic abstraction, we must expect
insufficiencies in the quantum theory) In fact, at g deeper analysis the
macroscopic object has classical interactions precisely of fonlinear, nonlocal and
nonhamiltonian type® which are absent in guantum mechamcs

The studies presented in these volumes can therefore be first seen as
identifying a certain generalization of quantum mechanics which permits the
,Tecovering under a suitable limiting procedure of all possible Mewtorrian
systems, that is: e -

a) the conservativg systems of point-particles moving in the homo-
geneous and tsotroplc vacuum which are admitted by quantum
mechanics (the exterior dynamical problem of the Preface), as well

mechanical particles each with
ot yield, under any rigorous limiting
enter of mass has a continuously

as H P
b} all nonconservative systems representing motion of extended, and
.h therefore deformable bodies within inhomogeneous and anisotropic
:AIM physical media {the interior dynamical problem of the Preface).4
Alternatively and equivalently, the mechanics studied in these volumes is
constructed under the condition of being the operator-image, not of Hamiltonian
mechanics, but of a covering mechanics which achieves the “direct universality”
of the Preface, here referred to the entirety of iﬁ&ﬂan mechanics. We are here
referring to the the so—called Birkhoffian mechanics [10), where: “universality”is
the capability to represent all possible Newtonian systems (whether conservative
or not) verifying certain continuity and regularity conditions; and the “direct

3 Missiles in atmosphere have nowadays drag forces depending up to the tenth power
of the speed and more, thus being manifestly nonselfgdjoint [9] In addition, they have
forces characterized by integrals over their surfacelc because their shape directly
affects the trajectory. This provides a primitive cla3sical example of the type of
interactions studied in these volumes, intentionally selected to void any hope of “finding a
Lagrangian or a Hamiltonian” in favor of structurally more general theories (see later on
Fig. 1.4.1 for a first explicit example)

4 For historical accounts On the classical distinction between exterior and interior
problems beginning with Lagrange, Hamilton, Jacobi and other founders of analytic
dynamics, the reader may inspect ref.s[g,11].
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universality” is their representation directly in the frame of the experimenter,
without transforming the systems into more manageabie frames (see ref. [10], in
particular, Theoremn 4.5.1, p. 54, of “direct universality” of the Birkhoffian
mechanics).

The need for the latter jtign, is dictated by a number of rather
insidious physical aspects. In fact, the Lie-Koening theorem [loc. cit.] does indeed
ensure the possibility of constructing Hamiltonian representations for all systems
that are local-differential and verify certain regularity and continuity conditions.
However, the transformations are noncanonical because the original systems are
nonharniltonian by assumption. As a result, the transformed frames are not
generally realizable with experiments owing to their nonlinearity, besides
implying the loss of contemporary relativities owing to their noninertial
character.

The above occurrences illustrate the emphasis throughout these volumes of
studying methods which are “universal” (rather than representing only a subclass
of possible systems), and then “direct”, that is, first admitting of representations
in the frame of the experimenter (prior to any use of the transformation theory).

An inspection of the physical reality at the particle level without a preset
-mental attitude to preserve as much as possible current knowledge (which would
not be scientific anyhow) reveals the existence of clear insufficiencies of
quantum mechanics also at the particle level. This is due to the experimentally
established existence of particle systems which simply cannot be derived from
the strict implermnentation of first quantum mechanical axioms.

The first case that comes to mind is the Cooper pair in superconductivity
(see general presentation [13] and the most recent review [14)). Clear experimental
evidence establishes that ordinary electrons with negative elementary charge -e
can bound each other in a singlet state at small distances in high T,
superconductivity. Scientific objectivity demands the admission that an
attractive interaction among two identical electrons simply cannot be derived
from first quantum mechanical axioms, whether nonrelativistic, relativistic or
Tield theoretical, evidently because of the increase of the repulsive character of
the Coulomb interactions with the decrease of the mutual distance. Similar
insufficiencies can be seen in numerous other occurrences implying short range
superposition of electrons, all the way to the very notion of valence.

Numerous models have been evidently proposed to interpret the attractive
interaction of electron pairs in superconductivity {(see ref. [14], pp. 19-20 and
quoted literature) which, in the absence of more basic methods, have a clear
scientific value. Nevertheless, objectivity demands the admission that these
models do not resolve the basic inability of quantum mechanics to represent the
altractive interaction among the electrons of the same charge directly from first
axioms, rather than via semiphenomenological attempts.

At a deeper analysis we find a situation in electron pairing analytically
equivalent to that of the classical space-ship during re-entry. In fact,
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experimental evidence establishes that, in the above pairing, electrons are in
conditions of mutual penetration of their wavepackets, that is, in condition which
can only be quantitatively treated via integral representations (Fig. 1.1.1).
Moreover, these are contact interactions for which the notion of potential has no
physical or mathematical meaning, thus implying their nonhamiltonian
character. The “inapplicability” (and not the “violation”) of quantum mechanics®
for quantitative treatments of electron pairs in superconductivity is then beyond
reasonable doubts.

In reality, the insufficiencies of quantum mechanics are much deeper than
the above because they are of geomeiric nature much along Fermi’s vision.! In
Tact, a predominant experimental evidence in electron pairing is their anisotropy
{see, e.g., ref. [13,i4]). The derivation of the event from first axioms therefore
requires a theory which is structurally anisotropic. The insufficiencies of
quantum mechanics are then clear also from a geometric viewpoint owing to the
Tact that isotropy is a fundamental pillar of all its structures, from the Euclidean
and Minkowski spaces, to the Galilean and Poincare symmetries.

Thus, the studies presented in these volumes can be seen as efforts to
construct a generalization of quantum mechanics capable of a quantitative
derivation of the attractive interaction of electron pairs in superconductivity
from first axioms. Such a pairing will then be assumed as the origin of the cold
fusion in nature, that at the ultimate level of elementary particles, where the
term “cold” stands to indicate that the bound state is enhanced at low energy (low
temperatures).

Once the cold fusion of electrons of the same charge is truly understood,
one can readily predict the existence of similar cold fusions in particle physics,
beginning with the cold fusion at short distances of electron-positron of charges
—e and -+e for which, after all, the Coulomb interactions are attractive. Once this
second cold fusion is established, the extrapolation to the cold fusion of
elementary particles at large is then predictable. These possibilities are mentioned
here for quantitative studies later on, to indicate that the insistence on preserving
old knowledge as much as possible in face of an increasing complexity of
physical reality de facto implies the suppression of new knowledge.

Yet another particle event identifying the limitations of quantum
mechanics quite clearly is the so-called Bose-Einstein correlation (see, e.g.,
review [15] and references quoted therein), eg., as occurring for the proton-
antiproton annihilation at high energy, in which the particles coalesce into a state
called a fireball which then decays in a variety of modes whose final products
are correlated bosons (see later on in this section Fig. 1.2.1).

5 Quantum mechanics was strictly conceived for the exterior particle problem in
vacuum in which has resulied to be exact. Quantum mechanics is therefore “inapplicable”
for fundamentally different physical conditions and the use of the term “violation” would
be scientifically inappropriate.
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In the opinion of this author, the Bose-Einstein correlation has a
particularly fundamental value for the studies here considered inasmuch as it
constitutes the most representative, complex and diversified manifestation of the
strong interactions. As such, it touches the very foundation of the historical
legacy recalled earlier.

Again, scientific objectivity requires the admission that the Bose-Einstein
correlation is not exactly derivable from first quantum mechanical axioms,
whether nonrelativistic, relativistic or field theoretical. Needless to say, there are
numerous phenomenological models providing a sufficient representation of
experimental data via apparent quantum mechanical techniques [15]. The issue is
that, at a closer scrutiny, these models do imply a departure from one or the
other of quantumn mechanical axiorns.

This is due to a variety of conceptual and technical reasons studied in
details in Vol. Iil. At this point we merely indicate that the fireball of the PP
annihilation is composed of two hadrons in conditions of total mutual
penetration. But hadrons are not “ideal empty spheres” with “points” in them.
Instead, hadrons are the densest objects measured in the laboratory until now
with well defined and experimentally measured wavepackets/wavelengths/charge
distributions of the order of | fm. The total mutuai penetration of these particles,
one inside the other then demands, for scientific objectivity, the expectation that
in its interior we have the most general conceivable interactions of nonlinear,
nonlocal, nonhamiltonian, inhomogeneous and anisotropic type.

At any rate, there is a rather general consensus that, when the physical
conditions are strictly local-differential, there is no correlation. The insuff iciency
of quanturn mechanics and the crude character of all its possible representations
of the event is then beyond credible doubts.

Thus, the methods presented in this volume are aimed at constructivg a
covering of quanturn mechanics capable of a direct representation of the Bose—
Einstein correlation from nonlinear-nonlocal-noncanonical first axioms. This
will then provide similar representational capabilities for strong interactions at
large, and the structure of hadrons in particular, via their realization as the most
general conceivable interactions in Nature. |

Numerous additional limitations can be identified under the indicated open
mind. The best way to see them is to identify physical conditions as <different>
as possible from those of the original conception of quantum mechanics . As
another exampie, quantum mechanics was conceived for the characterization of
particles in stable orbits under generally long range interactions verifying
conventional conservation laws. To identify the limitations of the theory, one
should then consider particles under interactions which <maximize> the
instability of the orbit and/or the effects expected from their extended
character. If we consider instead physical conditions approaching as much as
possible those of the original conception of the theory, no deviation should be
expected, and, in fact, no deviation has been measured until now under these



premises [7].

A further class of phenomena in which the limitations of quantum
mechanics are also clear, is given by effects expected from the inhomogenuity
and anisotropy of physical media in which particles and/or electromagnetic
waves move . Consider an electron when a member of the atomic structure.
Then, the particle moves in the homogeneous and isotropic vacuum, in which
case quantum mechanics is exact.

Consider now the same electron when moving in the medium inside a
collapsing star, or, for that matter, the medium inside a hadron, called hadronic
medium {10]. Then, the particle moves within a medium which is manifestly
inhomogeneous and anisotropic .

Theoretical and experimental questions then arise as to whether such
inhomogenuity and anisotropy have any measurable effect in the dynamical
evolution of the particle considered. We are here referring to measurable effects
in the intrinsic characteristics of particles such as their rest energy, the
behaviour of their meanlife with speed, the behaviour of their Doppler
frequencies, etc.

Customarily, these quantities are treated by Minkowskian methods. But
their pagi¢ geometric pillars are the homogeneity and isotropy of space. The
insufficiency of Minkowskian methods for inhomogeneous and anisotropic
physical media must then be admitted in order not to exit the boundaries of
science. The open nature of the problem herein considered then follows.

It is recommendable to identify the origin of the limitations of guantum
mechanics in some detail so as to have a guideline during the subsequent analysis.

First, quantum mechanics is strictly local-differential in its topological | v
structure, which prevents a8 mathematically consistent treatment of nonlocal + '*
interactions, whether in electron pairing in superconductivity, or in the Bose-
Einstein correlation, or in the strong interactions at large.?

Second, quantum mechanics is structurally of potential-Hamiltonian type;
namely, it can only represent in an established way action-at~distance
interactions described by a potential. On the contrary, as indicated earlier,
nonlocal effects due to mutual penetration of wavepackets are well known to be
of contact type without any potential. As such, contact-nonlocal interactions are
conceptually, topologically and analytically outside the representational
capabilities of quantum mechanics.”

6 The reader should be warned against the {not unusual) simplistic attitude of adding a
<noniocat-integral potential> to the Hamiltonian because it can be proved to be
mathematically and physically inconsistent on various grounds. To begin, such an
addition is in violation of the local-differential topology of quantum mechanics and
carries rather serious consequences, such as the inapplicability of Mackey Imprimivitivy
theorem [16] with consequential loss of conventional relativities [17]. Additional
inconsistencies will be pointed out shortly.
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In order to understand better these insufficiencies, let us review the
essential structural lines of quantum mechanics [1,2]. The central notion of
quantum mechanics is Planck’s guantum of energy

h = h/2m = 1054589 x 10734 joule second (1.2.1)

The primary mathematical structure of the theory is given by:

A) The universal, en veloping, associative, operator algebra £ with
elements A, B, ... (say, matrices or local-differential operators) and
product given by the familiar multiplication of matrices or operators
AB, verifying the familiar associativity law

(AB)C=A(BC), (1.2.2)
under which Planck’s constant in the form
h =1 = diag (1, L, ..., I}, (1.2.3)
assumes the rneaning of the Jeft and right unit of the theory

§: AB=assoc, IA=Al=A VAcCEcE {1.2.4)
B} The fieid F of real numbers R or of complex numbers C.
C) The Hilbert space X with states | ¢ >, [ ¢ >,.., and inner product
x: <ulo> = farelt et e (1.2.5)
All familiar formulations of quantum mechanics can be derived from the
above primitive mathematical structures either in a direct or an an indirect way.

As an example, the fundamental Heisenbergs equation for the time evolution
of a quantity Q in terms of a (Hermitean) Hamiltonian H

iQ=I[Q,H =QH - HQ, (1.26)

T as discussed more technically in subsequent sections, the addition of a potential to a
given Hamiltonian implies the underlying tacit assumption of granting potential energy to
the interactions considered. For conventional action—at-a-distance interactions this is
evidently correct. However, the granting of a potential energy to contact interactions due
to the mutual penetration of wavepackets, has no physical sense, and results in a
dynamical evolution which has no connection with that in the physical reality. As we
shall see later, this is a mofivation for representing internal nonlocal effects of strong
interactions with the generalized unit of the theory; that is, with a quantity other than
the Hamiitonian.
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is characterized by the antisymmetric brackets | ..., "']E attached to the
enveloping algebra &.
Similarly, Schrodinger’s equation

0
i—le> = Hlg>=E]g>, {1.27)
ot

is a consequence of the original associativity of the envelope & which results in
the action H| ¢ > of the operator H on the state |4 > as being right, modular and
associative, i.e., such that

ABCld> = A(BC|y>) = (ABIC|y> =(ABC)|u>. (1.2.8)

Finally, we recall that the exponentiation of Eq.s (1.2.6) into a finite Lie
group is a power series expansion in the envelope £, namely, it is technically
permitted by the infinite-dimensional basis in £ with familiar expansion

iaX
S C1HieX/U+ (aXGaX)/2+ .a€F ¥ =xTer, (129

under which the infinitesimal form (1.2.6) can be expanentiated to the Lie group
of finite time-evolution

iHt
3
This means that the above group too is fundamemtally dependent on the
assumption of the unit h= 1.

The ultimate essence of quantum mechanics is embodied in the celebrated
Dirac’s 8-function |

~ith (12.10)

Qt) = e Qo) eIE

+oo .
8(r) = (2-rr)“f dze 127 (1.2.11)
-0 f&
verifying the familiar properties under sufficient srroothness conditions
—00
8r)=8l-r), &r-r = f dz 8lr~2) 8lz - 1), {1.2.12a)
—o =0
fir) = f & -r) flr) dr (1.2.12b)
=00

In fact, the 8-function characterizes the point-like structure of particles and
their inherent local-differential topology.

All other aspects of quantum mechanics, such as linear operations on I,
Heisenberg's uncertainty principle, Pauli exclusion principle, transformation
theory, etc., can be constructed via a judicious use of Tormulations derivable
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from or compatible with the above fundamental structures £ R {or C) and 3C.
We are now in a position to identify in more details the following
representative limitations of quantum mechanics.

Limitation 1: Lack of direct representation of extended nonspherical
charge distributions of individual hadrons. The above structural lines show
that the topological, geometrical and algebraic structures underlying quantum
mechanics are strictly local-differential. As a result, quantum mechanics
cannot effectively represent the actual charge distributions of hadrons which
are extended as well as nonspherical (e.g., oblate spheroidal)

Admittedly, the extended character of the hadrons can be represented via
the so—called second quantization [56]. However, such approach provides only the
remnants of the actual shape via the so~called form factors. The insufficiency
here considered then becomes evident by nothing that an effective theory must
represent the actual generally nonspherical shape of the charge distributions of
hadrons. In fact, assuming that form factors can represent the shape, consider
that shape must uecessmmily be perfectly spherical in order not to violate a pill
of the discipline: the rotational symmetry.

At any rate, the basic unit of the Euclidean space is the trivial unit matrix I
= diag. (1, 1, 1) which, as such, can only geometrize the perfect sphere {or the
homogeneous and isotropic vacuum).

As an example, there are indications that, as it is the case for all spinning
objects in nature, the shape of the charge distribution of a nucleon is not
perfectly spherical, but is instead an oblate spheroidal ellipsoid along, say, the z-
axis with values for the semiaxes for the proton [18]

b2, = b2

. =1, b2, = 060, (1.213)

Y
which provides one (not necessarily unique) explanation of the anomalous
magnetic moments of the nucleons based on the shape alone, that is, without any
consideration of any nature on the structure and its constituents.

In regard to the Bose-Einstein correlation, there is clear experimental
evidence that the fireball is not perfectly spherical, but a highly prolate
spheroidal eilipsoid oriented along the direction of the original p—p collision (see
Fig. 1.2.1). The above limitation then implies fhe inability of quantum
mechanics to represent the highly prolate shape of the correlation fireball ,with
evident limitations in the quantitative description of the phenomenon considered.

Limitation 2: Lack of representation of the deformation of extended
charge distributions. Once the need of representing the actual shape of a charge
distribution is understood, one can see that quantum mechanics is intrinsically
unabie to represent the possible vauErmsdor deformations of given charge
distributions, whether spherical or not, under sufficient external forces or
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collisions . This is again prohibited by the underlying rotational symmetry.

The meed-fewen actual and direct represen&go eflormations
of the charge distribution of hadrons is evident"Tor advancements @8=2.pre-
reqyisi ; i th . In fact, the admission of

the extended character of hadrons implies their deformability under sufficient
conditions, for perfectly rigid objects are admitted in academic abstractions, but
they do not exist in the physical reality. Thus, the only scientific issue is the
amount of deformation of the charge distribution of a given hadron under given
conditions, but its existence is beyond credible doubts,

As a well established example, it is known that the fireball of the Bose—
Einstein correlation expands immediately after its formati nd alters its shape
under sufficiently intense external fields. The above limitalion therefore implies
the inability of quantum mechanics to represent the evolution and deformations
of the cormedmmen fircball (see Fig. 1.2.1).

Equivalently, we can say that quantum mechanics can only represent
fireballs which, besides being perfectly spherical , are also perfectly rigid . The
ensuing limitations of the theory are then evident. In the final analysis, the
rotational symmetry is taught since undergraduate courses in physics te 've sofely
applicable to rigid bodies .

Limitation 3: Lack of representation of nonlocal nonpotential
interactions. Above all, a most basic limitation is the inherent inability of
quanturn mechanics to represent the nonlocal terms expected in the strong
interactions at large, as well as under appreciable overlappings of the
wavepackets of particles (inciuding Jeptons as in the Cooper pair In
superconductivity/

In regard to the Bose-Einstein correlation, this implies the inability of
quantum mechanics to reach a quantitative representation of the expected very
origin of the correlation, the nonlocal interactions. In fact, as recalled earlier,
‘interactions of particles which can be effectively approximated as being point-
like show no known correlation, while the boson correlation appears to be due
precisely to the nonlocality of the interactions in the interior of the fireball, as
we shall see in details in Vol. 11

The experimental data on the Bose~Einstein correlation therefore have
fundamental significance because, in the final analysis, they can result in being
the first experimental evidence on the historical legacy on the ultimate nonlocal
structure of matter.

Limitation 4: Lack of representation of a number of physical systems
from first principles. To illustrate the case for the Bose-Einstein correlation,
consider a system of n particles represented with the symbol k = 1, 2, .., n, each
one possessing correlated and uncorrelated components represented with the
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QUANTUM MECHANICAL APPROXIMATION OF THE BOSE-EINSTEIN
CORRELATION

N\ /e~

T Ne T

A MORE REALISTIC DESCRIFTION OF THE CORRELATION

B

FIGURE [.2.1: a schematic view of the quantum mechanigal approximation of the

- Bose-Einstein correfation (Diagrarn 1.1), and a more realistic description

suggested by available experimental information (Diagrams 1.2-1.5). In the
quantum mechanical case the original proton and antiproton are represented as ]
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points. The correlation and production of the emitted bosons B is then
reducible to virtual, action—-at~a-distance exchanges, resulting in Limitations 1-5
pointed out in the text. In the physical reality, the proton and antiproton are
extended charge distributions of radius ~ 1 fm (Diagram 1.2). Under very high
energy, they annihilate in conditions of total mutual penetration and
compression of thelr wavepackets (Diagram |.3), This creates the fireball which
is a highly prolate spheroidal ellipsoid oriented toward the original p~p direction
{Diagram 1.4). This fireball rapidly expands and decays into particles whose final
product is the set of correlated bosons B (Diagram 1.5). A satisfactory
representation of the Bose~Einstein correlation must therefore be in a position to
provide a quantitative representation of phases 1.2-1.5, as well as resclve
Limitations 1~5 of the text from basic axioms,

symbol a and b, respectively. Let the states be given by |k,a> x| kb>, k= L, 2,
- T. According to quantum mechanics the axiomatic characterization of the
correlation probability is that based on the conventional expectation values, i.e.

’ | La>
— e —— I 1,b>
C, = <lal<ib]...<nal<nb] =
— — I na>
| nb> J
= 2y (<kalka>+<kb|kb>), {1.2.14)

The point is that the above expression lacks exactly the cross terms <k, a |
k, b > representing the correlation. Admittedly, these cross terms are introduced
via a number of artificial expedients {see review [15). However, for scientific
objectivity we must admit that these semiphenomenological models are, strictly
speaking, beyond the capability of the axiom of expectation value, thus
confirming the inability of quantum mechanics to derive the event from first
principles.

A fully similar situation occurs for various other systems, as we shall see.

Limitation 5: Loss of basic space-time symmetries under nonlinear,
nonlocal and nonhamiltonian interactions. The historical open legacy of
Fermi, Blochintsev and others on the ultimate nonlocality of the strong
interactions has profound epistemnological, theoretical and mathematical
implications, because it implies the inapplicability of all conventional space-time
symmetries Tor a number of mdependent reasons studied in details in volumes
[9-12], such as:

al the homogeneous‘ and isotropic character of the basic medium of

conventional relativities, empty space, as compared to the generaily
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inhomogeneous and anisotropic character of all physical media of
interior problems, whether of classical or operator type;

b) the Lie-Hamiltonian character of the conventional relativities, as
compared to the nonhamiltonian structure of the interactions
considered;

c) the local-differential character of the underlying topology (e.g., the
Zeeman topology of the special relativity), as compared to the
nonlocal-integral nature of the events considered; and others.

Yet another objective of the studies presented in these volumes is to show
that, under appropriate generalizations of the methods, we do have a consistent
operator image of a property already established at the classical level [11,12],
narnely, that conventiona! linear, local and canonicai symmetry transformations
are manifestly inapplicable, but the basic space-time and internal symmetries
themselves remain exact at the isotopic level.

In conclusion, the viewpoint submitted in this volume is that:

I) Quantum mechanics does indeed provide an exact description of the
physical conditions for which it was conceived, that of particles admitting
an effective point-like approximation moving in the homogeneous and
isgtropic vacuum. This includes all electromagnetic interactions and a
large class of additional conditions, such as the approaching phase of the
p-p constituents of the Bose~Einstein correlation;

I1) Quantum mechanics provides a description of particles events in
condition of deep mutual overlapping (Fig. 1.1.1) such as the Boson
correlation after the creation of the fireball, which can only be valid in
first approximation, and

111} A more accurate, quantitative description of nonlinear, nonlocal,
nonhamiitonian, inhomogeneous and anisotropic interactions, as expected
in the Cooper pair, the Bose~Einstein fireball, the structure of hadrons, and
the strong interactions at large, requires a structural generalization of
quantum mechanics itself, perhaps similar to the generalization of
classical mechanics that resulted to be necessary for the final
understanding of the atomic structure [ 1],

1.3: CONCEPTUAL FOUNDATIONS OF HADRONIC
MECHANICS

In an attempt to resolve the limitations of quantum mechanics, this author
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submitted in a memoir [19] & of 1978 the proposal to construct the so—called
isotopies and genotopies of the conventional Lie’s theory, under the name of
Lie-isotopic and Lie-admissible theories g respectively. In the subsequent

memoir {20] of the same year, this author proposed the construction of the
isotopies and genotopies of quantum mechanics under the name of hadronic
mechanics.,

The term <isotopy> was suggested from the Greek “100{ Tomo{”, meaning
“preserving configuration” and interpreted as “axiom preserving”.

The basic isotopic equations proposed in ref. [20], p. 752 for the time
evolution of a physical quantity Q in terms of a {Hermitean) Hamiltonian Hon a
conventional Hilbert spacelare given by the following generalization of

Heisenberg's equszionz.%,e)

ic/= [Q.HI := QTH-HTQ = (1.3.1)
= QTit, x, %, %, ¢, ﬂ, o, aﬁ W, T. 0, JH - HT(, x, %, &, tp.yf,ad:, aj 1, T, n,.JQ,

.with exponentiated form -l
- -itTH .
Qv =e' Tt qoy e % (132)

which admit quantum mechanics as a particular case because
[ATBlT = E[A,B]=AB—BA0 {1.3.3)
ﬁBy assuming the generalized unit (1.1.1), to be
1T=T1"=1t, (1.3.4)

then the quantity 1, called isounit, results to be the correct left and right unit of

the new theory, as we shall see in detail in the next chapter. The above

formulations were called “Lie~isotopic” [19] because the brackets[A Bl = A TB

— B T A preserve the original Lie axioms and, i this sense, the lifting (A, B] = [A ,
"Bl is an isotopy.

The term <genotopy> was proposed by the avthor in ref. [19] from the
Greek "yevvoun TOmol” meaning “inducing configuration” and interpreted as
“axiom inducing”, that is, altering of the original axioms in favor of covering
axioms.

* The basic genotopic equations proposed in ref. [20], p. 746 are given by the
foilowing generalization of Eq.s (1.2.6) and (1.3.1)

& When at Harvard Univeréity under support from the U.S.Department of Energy.
contract numbers ER-78-8-02-4742, AS(2-7T8ER-4742, and DE-AC02-8-ER10651.
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iQ=(Q:H) := QRH - HSQ = (1.3.5)
= QRIL x, X, &, 4, ¥, 80, a1, w, T, 0, .JH - HS(L, x, %,. &, ¥, P1, o, 3T, 1L, T, 0,.0Q

with exponentiated form

~tRH
=

Q) = e HST ) ., Rt=8§, (1.36)

which aiso admit quantum mechanics as a particular case because
(A:B)R=S=15[A,B]=AB"BA. (1.37)

The most dominant aspect of the latter formulations # the existence of
two generalized units, called genounits, one for motion forward in time,
denoted with 17, and the second for motion backward in time, denoted <I which
can be identified with the inverse of two operators R and S of Eq. (1.3.5)

=gl <= gl (1.38)

The above more general theory was called “genotopic” because the
generalized brackets (A,B) = ARS-BSA violate this time the Lie algebra
axiorns in favor of covering algebras called Lie-admissible aleebras as proposed
by Albert [21] back in 1948 at the abstract level,

in fact, the brackets (A , B) characterize an explicit realization of the Lie-
admissible algebras because their attached antisymmetric algebras are Lie-
isotopic

(A,B)-(B,A)={ABl=ATB-BTA, T=R-S. (1.39)

The Lie-isotopic formulations were then studied by the author in
monographs {9-12], while the more general Lie—admissible formuiations were
studied in monographs [22,23]

From the completely unrestricted functional dependence of the generalized
unit, it is evident that the above formulations have a clear capability to represent
nonlinear, nonlocal, nonhamiltonian, inhomogeneous and anisotropic systems. In
effect, the equations were subsequently proved to be "directly universal” for the
systems considered, as we shall see in Ch. 7 of this volume.

The physical differences of the isotopies and genotopies were also
identified in the original proposal [20] In fact,

The isotopic formulations characterize closed-isolated systems with
conserved total Hamiltonian W and other total physical quantities under
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the most general possible nonlinear, nonlocal and nonhamiltonian internal
forces represented by the operator T because, from the totally
antisymmetric character of the brackets, we have

iH = [H;Hl = HTH - HTH = §. (1.3.10)
On the contrary:

The genotopic formulations characterize open-nonconservative systems,
such as one particle under the most general known nonlinear, noniocal
and nonhamiltonian external interactions represented by the operators R
and S because, from the lack of anticommutativity of the brackets, we
have

iQ = H,HB} = HIR-S)H = 0. {1.3.11)

The physical differences between the isotopic and genotopic formulations
can also be effectively seen from the viewpoint of tirne-reversal invariance. In
fact, one can see from the Hermiticity of the T operator T that isotopic
formulations are structurally reversible, that is, they are reversible for a time-
reversal invariant Hamiltonian .

On the contrary, it is equally easy to see from the lack of Hermiticity of
the R and S operators that genotopic formulations are structurally irreversible;
that is, they are irreversible even for all time-reversal invariant Hamiltonians .

The above occurrences suggested the characterization of the genotopic
formulations with the arrow of time, the operator R characterizing motion
Torward in time, while the operator S characterizes the motion backward in time.
Thus,

The basic conceptual structure of hadronic mechanics has essentially
remained that of the original proposai (19,20} the integral generalization
of Planck’s unit, Eq. {1.1.1}, of two primary types:

A) a first type of Hermitean-reversible character for motion in both
forward and backward direction in time, which characterizes axiom-
preserving generalizations of quantum mechanics, and

B) a second type requiring two different generalized units, one for
motion forward in time and another for the motion backward in time,
which characterize a generalization of the axiomatic structure of
quantum mechanics.

Proposal [20] concluded with the illustration of the <novel> capabilities of
hadronic mechanics; that is, applications beyond the technical capacities of
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quantum mechanics. In fact, in Sect. 5, it was shown that the above isotopic and
genotopic formulations provide a first quantitative representation precisely of
the cold fusion of two electrons indicated in Sect. 1.2.

As we shall see in details later on, the originally proposed mechanism of
achieving a bound state of electrons at short distances was based on the
absorption and consequential elimination of the Coulomb interactions by internal
nonlinear, nonlocal and nonhamiltonian effects because of mutual! wave-
overlappings. That mechanism subsequently resulted in being correct and in
agreement with experimental data in superconductivity.

THE TWO BRANCHES OF HADRONIC MECHANICS

LIE-ISOTOPIC
FORMULATIONS

LIE-ADMISSIBLE
FORMULATIONS

FIGURE 1.3.1: A schematic view of the main branches of hadronic mechanics, the
Lie-isotopic branch describing closed-isolated systems verif ying conventional {otal
conservation laws under nonlinear-nonlocal-nonhamiltonian internal forces, and
the more general Lie-admissible branch describing the most general possible open—
nonconservative systems or, more specifically, one component of a Lie-isotopic
system when considering the rest as external. It is generally believed that the
conservation of the total energy, H = 0, can only occur under conservative internal
forces or, more technically, for systems called closed variationally selfadjoint [11]
such as planetary or atomic systems. This belief was disproved in memoir [20] of
1978 by showing that the total energy can also be conserved uynder contact,
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nonhamiltonian internal forces. In the latter case we merely have internal
exchanges of energy and other physical quantities but always such to balance
cach-other and result in conserved total quantities. These studies identified a new
class of physical systems called closed variationally nonselfadjoint studied in
detail at the classical level in monograph [12] of 1983, and at the operator level in
memoirs [35] of 1989. A classical example is provided by Jupiter in which one can
visually see in telescopes its global stability in a way compatible with irreversible,
unstable interior processes, such as vortices with continuously varying angular
momenta. A particle example is given by a neutron star, which is also manifestly
stable at the global level, yet the orbits of the individual neutrons in its interior are
generally unstable precisely because of the interactions studied in these volumes
due to motion of the particie under penetration within the medium composed by
other particles. We can therefore say that

A) Quantum mechanics is an operator formulation of closed variationally
seifadjoint systems, Le, isolated systems with only local-differential-potential
internal forces, in which case one formulation only of Lie type is sufficient for
both the system as a whole as well as its individual constituents. Giobal stability is
achieved in this case via the stability of each constituent; while

B} Hadronic mechanics is an operator formulation of closed variationally
nonselfadjoint systems, ie, isolated systems with local-differential-potential, as
well as nonlocal-nonpotential internal effects, in which case two mutually
compatible formulations are generally needed, one for the description of the
stable system as a whole (in which case the isotopic brackets of the time evotution
must be totally antisymmetric) and one for the description of the individyal
constituents in unstable orbits (in which case the genotopic brackets of the time
evolytion cannot be antisymmetric). Global stability is generally achieved in this
latter case under the maximal possible instability of each constituents.

Intermediate cases have also been identified, i.e, systems which are closed—-isolated
and variationally nonselfadjoint because of contact internal forces, yet the orbits
of all constituents are stable. This is generally the case of strongly interacting
systems with a relatively small number of constituents, such as few-body nuclei
and the structure of hadrons. In this latter case the Lie-isotopic formulations are
sufficient for the representation of both, the system as a whole and each individual
constituent.

Moreover, the proposal was for the “hadronic bound state” (today called
“cold fusion”) of two electrons of arbitrary elementary charges +e. This implies
the existence of the electron—electron pairing as established in superconductivity
today, plus a <novel> bound state, that of electron-positron at short distances
which was capable of a. quantitative representation of the totality of the
characteristics of the m° particle in our space-time, that without unitary
symmetry and, thus, without any possibility of even defining quarks.
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Significantly, the latter model was and is generally dismissed by orthodox
scholars hecause it is "not predicted by quantum mechanics” or “not in line with
current quark theories”. However, if physical evidence has already established the
existence of the electron—electron pairing in superconductivity under a highly
repulsive Coulomb interactions {13,14], in order not to exit the boundary of
science we must expect the existence of the pair electron—positron at short
distances because much facilitated by highly attractive Coulomb interactions.
The identification of the latter with the 7° (again, in our space-time) is then the
only logical possibility, not only because of the numerical representation of its
characteristics, but also because the 7 produces spontaneously the electron-
positron constituents in one of its decay modes, which can therefore result to be
a tunnel effects of the constituents.

This brings us into the central physical purposes for which the entirety of the
classical and operator, Lie~isotopic and Lie-admissible studies were and continue
to be conducted, as clearly stated in the original proposal [20}

Attempt the identification, within the context of a covering of
quantum mechanics, of the hadronic (or quark) constituents with massive,
physical, ordinary particles which are freely produced in the spontaneous
decays.

As we shall see, nonlinear, nonlocal, nonhamittonian, inhomogeneous and
anisotropic internal effects which have permitted a quantitative formulation of
the electron-electron pair in superconductivity can be be readily extended not
only to the electron-positron pairing at short distance, but also to all massive
particies, thus permitting the cold fusion (also called “chemical synthesis’®) of
unstable hadrons, i.e., their reduction to hadronic bound states of lighter hadrons
suitable selected in the decay modes.

Such a “chemical synthesis” is demonstrably impossible with quantum
mechanics, as we shali see, precisely because of its abstraction of particles as
dirnensionless points, with consequential abstraction of hadrons as "ideal spheres
with points in them”.

However, if hadrons are represented as they actualily are in the physical
reality beginning from the very first level of discrete nonrelativistic treatment,
they emerge as being the densest, inhomogeneous and anisotropic media
measured in laboratory until now. Then, the hadronic structure emerges in a
fundamentally different light, because now the constituents move within a
hyperdense medium, rather than moving within ideal empty spheres.

In turn, these structural generalizations of the basic geometry produces
structural alterations of the particles under which the above objective becomes

9 .
The author would like to thank Prof. A. N. Sissakian, Deputy Director of the J. I. N. R,,
Dubna, Russia, for the suggestive terms “chemical synthesis™
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quantitatively possible in a form verifiable with experiments.

In the final analysis, this is precisely the reason for the construction {and
the name) of the covering “hadronic mechanics”.

As we shall see in Vol. 111, compatibility of the above “model of hadronic
structure in our space-time only” with the “unitary model! of hadronic
classification” {22] is readily achieved when our space-time in enlarged to include
unitary spaces. As a matier of fact, the new structure model offers genuine
possibilities of basic advances for the conventional quark models themselves,
such as:

1) the identification of quark constituents with ordinary massive par-

ticles;

2) the achievement of a “true confinement” with an identically null
transition probability for free quarks beginning at the discrete non-
relativistic level;

3) perturbation series which are convergent under isotopies or geno-
topies when conventionally divergent; and others.

The primary purpose for writing these first books in the field is to solicit
the participation of the scientific community at large for their confirmation or
dismissal, not in marginal conversations in academic corridors, but in the only
way physical knowledge progresses: via publications,

What is at stake here is the apparent existence or lack of existence of a new
technology, tentatively called by this author “hadronic technology” with far
reaching possibilities in all aspects of science, all depending on one central, basic
issue:

The capability, resuiting from a covering mechanics, to admit ordinary
massive particles as hadronic for quarks) constituents and, therefore,
produce them free either in spontaneous decays or in stimulated
Processes .

1.4: GUIDE TO THE LITERATURE

The above lines of inquiry of 1978 were subsequently subjected to syslematic
studies by numerous authors, as indicated by the following meetings:
1} Five Workshops on Lie-Admissible Formulations held in Cambridge,
MA, from 1978 to 1983;
2) Five Workshops on Hadronic Mechanics held from 1983 to 1989 in
various Countries;
3 The First International Conference on Nonpotential Interactions
and their Lie-Admissible Treatment held at the Universite
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d'Orleans, France, in 1982;
and other meetings (see Proceedings (24 and references therein).

In a situation of this type, in this introductory section I can only indicate
the most significant steps. Specialized advances will be reviewed and quoted in
the subsequent chapters. This presentation, however, is and will remain
incomplete in the review and quotation of all contributions to avoid a prohibitive
length. Also, contributions on other lines of inquiry cannot possibly be quoted (if
nothing else, because of their shear number} unless they study a structural
generalization of current theories, such as: the quantum groups (see, e.g., ref.
[25] and quoted papers), the so-called g-deformations (see, e.g, ref. [26] and
quoted paper) which are particular cases of the Lie-admissible formulations and,
thus, particular cases of hadronic mechanics; the studies on nonlocality by
Russian colleagues (see, e.g., monographs (8]} the discrete formulation of space-
time; and other true generalizations.

The most salient advances in the studies of isotopies and genotopies of
quantum mechanics can be summarized as follows. The original proposal [20] of
1978 suggested the formulation of Eq.s {1.3.1)-{1.3.5) on a conventional Hilbert
space, a formulation which subsequently proved to be correct, yet insufficiently
general.

In fact, in papers [27,28] of 1982 on the Lie-isotopic and Lie-admissible
formulations, Myung and Santilli achieved a first mathematically rigorous
formulation over the isotopies 3 of a Hilbert space 3¢ with inner product <y | T
|4 >, T > 0(defined over a generalized field reviewed in the next Chapter) where
the operator T is the same as that in Eq.s (1.3.1).

As we shall see, the liftings 3¢ — 30p have the fundamental implication of
preserving Hermiticity under isotopies, as a result of which the observable of
quantum mechanics remain observable in hadronic mechanics.

Subsequent studies [29] by Mignani, Myung and Santilli of 1983 showed that
the preceding formulation [27,28] even though correct, were themselves
insufTiciently general because Eq.s (1.3.1) and (1.3.5) can also be consistently
defined on an isotopic Hiibert space 3 with inner product < ¢ [G|d >.G > 0
(also over a generalized field), where the operator G can be independent of R and
SorT.

The primary results of these studies are clear and deal with the largest
possible “degrees of freedom” of isotopic and genotopic theories. As well known, a
system in quantum mechanics is characterized by only one operator H=K + V.
The corresponding system in the “isotopic branch” of hadronic mechanics is
characterized by three independent operators, the Hamiltonian H, characterizing
the potential forces, the isotopic operator T characterizing the nonpotential
forces, and the operator G characterizing additional degrees of freedom of the
underlying Hilbert space, while in the “genotopic branch” a system is
characterized by four operators, H and G as well as R and $ = R!.

Thus, the algebraic part of hadronic mechanics, that of Heisenberg-type
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based on generalized equations (1.3.1) and (1.3.5), had reached sufficient
mathematical maturity by 1983. The additional advances since that time have
been in the technical knowledge of Lie—isotopic algebras, Lie-admissible algebras,
isotopic Hilbert spaces, and their applications.

In fact, in 1983 we already had the isotopic generalization of Wigner's
theorem on unitary symmetries [30] and a structural generalization of the Lorentz
symmetry O(3.1} of isotopic type [31] which, while locally isomorphic to O(3.1) (for
all T > 0), produced a generalization of the conventional lnear—local~canonical
Lorentz transformations of the desired, most general possible nonlinear, nonlocal,
noncanonical, ithomogeneous and anisotropic type. The other developments and
applications were merely consequential.

The studies on the Scrédinger-type formulations equivalent to the
preceding Heisenberg-type ones resulted to be considerably more laborious than
the above, to such an extent to require a further generalization of the already
generalized classical studies, including an integral isotopic lifting of the local-
differential Birkhoffian generalization of Hamiltonian mechanics [10].

In essence, Myung and Santilli [27] identified the following isotopic
generalization of Schrodinger’s equation on the isotopic Hilbert space JCT

3
i—J#> = HT|¢>, {1.4.1)
at

which resulted to be equivalent to Eq.s {1.3.1) under the applicable unitary-
isotopic transformations {except for scalar factors subsequently resuited to be
important for an overall consistency of the theory). It should be mentioned that
Eq.s (1.4.1) had also been independently identified by Mignani [32), although
without Hilbert space treatment.

Also, Animalu and Santilli [33] identified the following isotopy of the naive
quantization called naive isoquantization

A- -illogle> = A~ -illogld> (1.4.2)

under which the Birkhoffian form of the Hamilton-Jacobi equations [10] was
uniquely and unambiguously mapped exactly into the hadrenic equation (1.4.1).
However, subsequent studies indicated that Eq. (1.4.1) was not compatible
with the relativistic isotopic formulations [31]. More specifically, the isotopic
generalization of the conventional field equations characterized by the Lorentz-
isotopic symmetry of ref. [31] admitted the following generalization of the plane-
waves (for the simple case here considered of generalized units not dependent on
coordinates and time, but dependent on the velocities and all other variables)

W)= Ne (PTTTETL) (1.43)
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which permitted a quantitative interpretation of the geometric alterations of
electromagnetic waves when propagating within inhomogeneous and anisotropic
media via the isotopies of the Minkowski space of ref. [31], exactly as desired.

On the contrary, Eq. (1.4.1) admitted the simpler “plane-wave”

rlv(t,r)=Nei(pTr~Et). (1.4.4)

without the generalized element Tt in the energy term, thus resulting not to be
compatible with relativistic form (1.4.3).

Als0, Eq. (1.4.4) prevented the achievement of a consistent expression for the
isotopic linear momentum operator, which in fact was completely lacking at that
time {mid 1980's). in turn, the lack of such consistent isotopic forms literally
precluded the construction of most applications, which had to be conducted
instead at the abstract level (as done for that reason in ref.s [30,31].

The resolution of these basic deficiencies required this author to conduct
again a laborious effort at the purely classical level because of the evident need
to reach the isotopic form of the linear momenturn operator via isoguantization
of corresponding well defined Hamilton-Jacobi equations, as a covering of
conventional quantum derivations.

Now, as recalled earlier, a step-by-step generalization of Hamiltonian
mechanics of Birkhoffian type has been proposed in memoir [19] of 1978 as a first
application of the Lie-isotopic theory, and then studied in monograph {10] of 1983,

The difficulties here mentioned are due to the fact that, while the
Heisenberg~type image of Birkhoff’s equations has been reached since the originai
proposal [20] of 1978, the achievement of a Schrodinger-type version of
Birkhoffian mechanics escaped all efforts for a number of technical problems,
including: an excessively general “wave functions” (t, r, p) with an essential
dependence also in the momenta p; lack of any practically usable expression for
the isotopic linear momentum; the nonlinear and noncanonical, yet strictly local-
differential character of Birkhoffian mechanics as compared to the general
nonlocal character of hadronic mechanics; and others,

These occurrences forced this author to reinspect the classical generalized
theories ab initio, and to conduct a second, step-by-step generalization of
Hamiltonian mechanics, this time, of the so-called Birkhoff-isotopic type
reviewed later on in Volume !t which admitted the most general possible
nonlinear and noncanonical, as well as nonlocai-integral systems. This novel
mechanics, was presented for the first time in memoirs [34) of 1988 jointly with
the corresponding, compatible isotopies of the symplectic, affine and Riemannian
geometries for interior problems (only). Memoirs [34] were then expanded in
monographs [11,12] for a detailed treatment of this classical profile,

The final form of the basic (nonrelativistic) equations of hadronic
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mechanics
iT,7'Q=I[Q’H =QTH-HTQ, (1.4.52)
3
iT ' —|¢> = HT|y>, (1.4.5b)
at
8
P Tlg> = —il} — |¢>, (1.4.5¢)
ax!

where Ty is the time isotopic element (different than the space isotopic element
T), including the final expression of the operator linear momentum so vital for
practical applications, was achieved in memoirs [35] of 1989 via the
isoquantization of generalized Hamilton—Jacobi equations, exactly as desired.
Relativistic equations were then achieved via isotopies of the conventional
relativistic equations, as we shall see in Vol. Ii, and they resulted to be fully
compatible with basic nonrelativistic equations {1.4.5).
_ Classical studies [34] also set the basis for the novel topology of hadronic
mechanics (see Fig. 1.4.1).
Two further aspects deserve a mention for advance guidance in the
following analysis. The construction of theories based on a generalized unit 1
permit the identification the antiautomorphic map

1 - 19 =-1, {1.46)

called by this author isoduality, with corresponding isodual isotopic
formulations which were identified in ref.s [31], and studied in more details in
memoirs [35].

The studies on isoduality essentially permitted a novel interpretation of
antiparticles based on theories with negative—definite generalized units.

In fact, antiparticles originate from the negative-energy solutions of
relativistic equations, although these solutions behave unphysically when
conventionally interpreted, that is, when the negative energies are interpreted as
having the conventional unit h = [ > 0, thus forcing the conjecture of an “infinite
sea” of virtual particles and other assumptions,

In the above indicated studies, this author essentially showed that the
negative-energy solutions behave in a fully physical way in empty space when
characterized as having a negative~definite unit 19 = -1, without any need of
conjecturing infinite seas of particles, or passing to second quantization. A fully
sirmilar situation emerged for antiparticles within physical media characterized
by the isodual isounit1% = -1.

The isotopic and isodual formulations then emerged as possessing
intriguing interconnections from the finite transition probabilities existing in
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conventional relativistic equations between positive- and negative—energy
solutions.

In these volumes we shall therefore study isotopic formulations for
positive~definite generalized units 1 > 0, and the other for negative-definite units
19 < 0. Other cases will be evidently studied too (see next section).

The last aspect deserving an advance mention regards gravitation. As we
shall see, isotopic and isodual formulations, including those of the Riemannian
geometries [11,12,34] permit truly remarkable and diversified advances in
gravitation, including the identification of a hitherto unknown "isodual universe”
for antimatter.

THE TOPOLOGY OF ISOTOPIC THEORIES

. ” - ’ ¢
LOCAL COORDINATES e, g
FOR THE CENTER-OF-MASS s L~
MOTION ’

INTEGRAL CONTRIBUTIONS
FOR THE EXTENDED
CHARACTER

FIGURE 1.4.1. A i:onceptual view of the topology of hadronic mechanics. Nonlocal
systemns are of notoriously difficuit treatment because they demand the so—called
integral topologies which are some of the most complex mathematical
constructions, particularly for physical applications. The solution proposed by this
author to by-pass these difficulties is so simple to appear trivial, yet it is effective
for physical applications, as we shall see,
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The main ideas are the following: 1} preserve the conventional local-differential
variables x for the description of the trajectory of the center—of—mass of the
particle in interior conditions; 2) consider all nonlocal-integral contributions as
corrections to the local-differential description; and 3) embed all noniocat terms in
the isounit of the theory. By recalling that topologies are insensitive to the
functional dependence of their own unit when positive~definite, cne can therefore
see that all classical and operator isotopic theories admit the conventional local-
differential topology everywhere except in the unit. Such a generalized topology,
hereon referred to as integro-differential topology, carries subtle but important
theoretical implications, such as the achievement of a fully causal description of
nonlocal interactions, as well as experimental implications; e.g., the capability to
test the nonlocal contribution as distinet from the conventional local ones.

An illustration is given by the space-ship during re-entry of this figure, whose
shape directly affects the trajectory x(t) of the center of mass, as well known,
Tesulting in two forces, a variationally setfadjoint (SA) force which is local-
differential and derivable from a potential V(x), and a variationally nonselfadjoint
{NSA} force which is generally nonlinear {in all variables), nontocal and
nonpotential. We therefore have classical equations of motion of the type

mx = FA) + F¥AG x x %), A=y 4 2 4o Fo)

where o is the shape of the satellite, with analytically equivalent operator
counterparts of Fig. 1.1.1 {where the surface integral is generally replaced by a
volume integral representing the overlapping of wavepackets),

In these volumes we shall by—-pass the notorious difficulties in the practical
apptication of integral topologies via the representation of the local-differential
part in terms of the conventional Hamiltonian H = K(x) + ¥{x) and the embedding of
all nonlocal-NSA forces in the isounit T of the theory.

Rigorous mathematical studies on this integro—differential topology have been
conducted by Tsagas and Sourlas [40] to whom we refer for all technical details.

The aspect warranting advance notice regards gravitational collapse. The
isotopies permit the factorization of all Riemannian metrics into the firm glx} =
T(x} n, where 7 is the Minkowski metric and the embedding of the isotopic part
T(x) truly representing gravitation in the generalized unit via the rule [34}

T = [T]7, gk = T 7. (1.47)

This permits an alternative formulation of curvature via the generalization of
the unit of the conventional Minkowski space, i.e, via the isotopies of the
Minkowski space originally proposed in ref. [31] as the structural foundations of
the isotopies of the special and general relativities for nonlocal interior
conditions. .

Among the various novel possibilities (such as the geometrically unified
treatment of the special and general relativities for the exterior problem in
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vacuum), we see in this way that the generalized unit has a very special meaning
when singular. In fact, the limit 1(x) - o, as we shall see, can represent a
gravitational singularity at x .

Thus, in addition to the two casesT > 0 and 1 < 0, the third case T = o also
has intriguing physical interest and should be Kept in mind during the analysis of
these volumes. Two additional significant cases of the isounit will be identified in
the next section.

Among the numerous researchers who have contributed to the
development application and test of hadronic mechanics at this writing (sSummer
of 1993), we mention

Animalu, Aringazin, Bartzis, Baskoutas, Borghi, Brodimas, Caldirola,
Cardone, Dall’Olio, Eder, Fronteau, Gasperini, Gill, Giori, Ioannidou,
Jannussis, Kadeisvili, Kalnay, Kamiya, Karayannis, Kliros, Klimyk,
Kobussen, Lin, Lopez, Mignani, Mijatovic, Myung, Nishioka,
Papadoupoules, Papaloukas, Papatheou, Rauch, Sourlas, Skaltzas, Streclas,
Tsilimigras, Veljanoski, Vlahos, Tellez Arenas, Tsagas, Weiss, Wolf,

‘and others we shall review in these volwmes. The understanding is that we are
referring to contributions specificalfy dealing with the generalization of the unit.
Generalizations of quantum mechanics based #n the conventional unit are
considered elsewhere (see Appendix 7.A and Yols 11, [11).

Independent reviews of the classical studies are available in monographs
[36,37], while comprehensive mathematical presentations of the isotopies of Lie's
theory is available in monographs [38,39].

As indicated in the Preface, all existing nomtinear, nonlocal, discrete and
other generalizations of quantum mechanics are directly or indirectly related to
hadronic mechanics. We regret the inability to quote them here because of their
large numbers, although we shall review in due course representative examples of
existing generalizations (see Appendix 7.A and Vols II, II1).

1.5: CLASSIFICATION OF HADRONIC MECHANICS

Hadronic mechanics is nowadays a rather diversified discipline with structurally
different mathernatical methods in different branches. In a situation of this type,
it is recommendable to assume a classification from the beginning of the studies,
because it can prove to be later on a valuable guide.

First, the hadronic mechanics is divided into the two main branches
identified in the preceding section:
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A - The Lie-isotopic branch for closed-isolated NSA systems,
which is characterized by Hermitean generalized units T = 11 for both
motions forward and backward in time, and

B - The Lie-admissible branch for open-nonconservative NSA
systems, which is characterized by two different generalized units 17
and <1, for motions forward and backward in time, respectively.

Next, each branch admits a classification depending on the main structural
characteristics of the generalized unit. In this volume we shall assume the
classification introduced by Kadeisvili [38] for the isotopies of functional analysis,
here called Kadeisvili’s classification, which divides the isotopic branch into the
foliowing five classes:

Class I: Isotopic formulations properly speaking, holding when the
generalized unit 1 is sufficiently smooth, bounded, nowhere degenerate,
Hermitean and positive-definite. This is the class of primary interest in these
volurnes for the study of particles in interior conditions.

Class I1: Isodual isotopic formulations, holding when the generalized
unit has the same characteristics of Class I, except that it is negative-definite.
This is the class of primary relevance for the study of antiparticles in interior
conditions.

Class III: Indefinite isotopic formulations, holding for generalized units
with the same characteristics of Class [ and II except that they have an indefinite
signature, with the possibility of being either positive-definite or negative-
definite. This class has primary mathematical relevance, e.g., for the unified
treatment of Class i and I1.

Class IV: Singular isotopic formulations, holding for generalized units
that are divergent. As we shall see, this class is useful for the study of
gravitational singularities.

Class V: General isotopic formulations, holding for generalized units of
arbitrary structure, thus inciluding discrete structures, distributions,
discontinuous functions, etc. This last class is useful for the study of
Tundamentally novel mathematical notions, such as a discrete group defined over
a continuously varying unit (and viceversa) and, except for isolated remarks, will
not be considered in these volumes for brevity.

Evidently a corresponding distinction into Classes 1-V holds for the Lie—
admissible/genotopic branch of hadronic mechanics with the understanding that
the condition of Hermiticity and positive- or negative-definiteness are referred
only to the Hermitean part of the nonhermitean operators R and S.

In conclusion, hadronic mechanics is a generalization—covering of quantum
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mechanics which possesses ten topologically different classes, and this begins to
illustrate the rather broad character of the new discipline from which its “direct
universality” follows (Ch. [-7).

Unless otherwise stated, the mathematical foundations studied in this
Volume [ specifically treats the isotopic formulations of Class [ (for particles) and
IT (for antiparticles), with comments on the construction of the remaining
isotopic formulations of Class IIl, IV and V. The genotopic formulations will be
reviewed in the appendices and in Ch. 7. '
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2: ISONUMBERS

2.1: STATEMENT OF THE PROBLEM

We indicated in the Preface that the primary difficultied in addressing {and
appraising) hadronic mechanics is the prior knowledge of it$ novel mathematical
structure, because even the conventional numbers and their operations are
inapplicable. The understanding is that, when inspected, such novel mathematical
structure soon emerges to be simple and intriguing.

The best way to illustrate this aspect is by noting that the traditional
statement “two multiplied by two equals four” is at best mathematically
incomplete, because it lacks th ntification of the underlying unit and of the
operation of multiplication, a Si generally inapplicable under isotopies.

In fact, we shall first show in this chapter that, by assuming, say, for
generalized unit1 = 371, “two multiplied by two equals twelve” apd, then we shz‘u,
show that t\@ the numbers themselves and their operations &3 in general, ol
integral character as necessary from basic assumption (1.1.1).

The use under isotopies of the conventional mathematical structure of
quantum mechanics therefore leads to a host of generally undetected
inconsistencies.

We shall thereiore study in this chapter the generalized numbers needed
for hadronic mechanics, and then study in subsequent chapters the Lac
generalized structures built on them.

As well Known, the theory of numbers received momentous advances in
the past century, thanks to the contributions of famed scholars such as Gauss [1],
Abet [2], Hamilton [3], Cayley [4], Galois 5] and others (see review [6] in the early
part of this century, and ref.s [7-9) for contemporary presentations).

Additional important advances in number theory were made during this
century, including the axiomatic formulation, the -theory of algebraic numbers,
etc. {see, e.g,, ref.s [10] and contributions quoted therein).
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The "numbers” significant for these volumes are the real numbers,
complex numbers, quaternions and octonions. The topic is therefore the
classification of all normed algebras with identity over the reals according to
the studies, e.g., by Hurwitz [11}, Albert [12] and (N.) Jacobson [13] (see also reviews
{7,8]). The main properties can be expressed via the following

Theorem 2.1.1 (ref. (8], p. 122): All possible normed algebras with
multiplicative um‘fg. ver the field of real numbers are given by algebras of
dimension 1 (real number), 2 (complex numbers), 4 (quaternions) and 8
(octonions).

The fundamental notions under stugdy in this chapter are therefore fields
and normed algebras with unit 4, &

buring a talk at the conference Differential Geometric Methods in
Mathematical Physics held in Clausthal, Germany, in 1980!%, this author
submitted an axiom-preserving generalization of numbers, today known as
isotopic numbers or isonumbers for short. The generalizations are induced by
the so—called isotopies of the conventional multiplication of numbers
introduced in ref.s [14,15], with consequential generalization of the basic
multiplicative unit.

The isonumbers received a formal treatment in ref. [16], and first
applications in ref. {17] for the isotopic lifting of unitary symmetries, in ref. [18]
for the lifting of the Lorentz symmetry, and in ref.s [19.20] for the general
isotopies of Lie symmetries. Subsequent studies were conducted in ref.s [21,22]. A
theorem on the unification of different isonumbers (studied in Sect. 2.7) was
preﬁgl;[;é]vn ref. [23]. The presentation of this chapter follows ref. [24] which is
thelcormprehensive mathematical study on the theory of isonumbers on record at
this time, with the understanding that the studies are still at the beginning, and so
much remains to be done.

The author also submitted in ref.s [19,20] a new conjugation, under the
name of isoduality which yields an additional class of numbers, today known
as isodual isonumbers. Recent presentations of isodual isonumbers can be found
in ref.s [22,24].

The isonumbers were motivated by the specific physical need of a
Quantitative representation of the transition from the exterior to the interior
dynamical problem, as discussed in Chapter 1. The isodual isonumbers were
constructed for a representation of antiparticles (see Vol. I{ and ref. [29].

The isonumbers and their isoduals are at the foundations of the Lie-
isotopic formulations but they are inapplicable for more general theories such as
the Lie~admissible formulations.

" Thanks to a kind invit‘ation by Prof. H.-D. Doebner which is here gratefully
acknowledged.
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For this reason the author identified in ref. [21] an additional class of
nurmbers under the name of genotopic numbers, or genonumbers for short. The
primary difference between isonumbers and genonumbers is that isonumbers
have a unique left and right generalized unit or, equivalently, the muitiplication
of the isonumbers applies to both left and right operations.

By comparison, genonumbers have two different generalized units, one for
the mulitiplication from the right and a different one for the multiplication from
the left, a<b = b<a, a>b = b>a, a<b # a>b, in which case they indeed result to be
at the foundation of the Lie—admissible formulations.

To avoid excessive initial complexities, we shall proceed in stages. In this
and in the following chapters we shall solely study the isonumbers, their isoduals
and their Lie-isotopic formulations. The primary objective of this chapter is
therefore the study of the isotopies and iscdualities of the notions of numbers,
fields and normed algebras with unit. '

The minimal mathematical knowledge needed for hadronic mechanics is
that of isoreal and isocomplex numbers and their isoduals studied in Sect.s 2.5
and 2.6. The isoquaternions, isooctonions and their isoduals of Sects 2.7 and 2.8
are needed for a more technical knowledge of the topic. The more general (and
complex) theory of genonumbers and related Lie-admissible formulations will be
studied in Ch. 7.

For a recent independent study of the field, including elements of isotopies,
we suggest the monograph by Lohmus, Paal and Sorgsepp [28. Applications of the
the generalized numbers of this chapter to classical mechanics can be found in
monograph (29].

The author would like to thank David Ring of Dunedin, FL, for bringing to

- his attenticb.the fact that the Egjptians have been the f iriéin recorded history to
- ‘change the value of their basic unit, called finger, in fThe transition from the
sides of a right triangle to the hypothenuse.

2.2: ISOUNITS AND THEIR ISODUALS

Studies [14-27) (and references quoted therein) have shown that the transition

A)  from the local-canonical exterior problem in vacuum,

B) to- the nonlocal-noncanonical interior problem within physical
media,

can be effectively represented via an axiom-preserving isotopic generalization
of the conventional multiplication of numbers a, b {or functions or operators).

We are here referring to the generalization of the current, simplest possible
multiplication “ab” (here often denoted axb for notational convenience), into the
isotopic multiplication, or isomultiplication for short, introduced in ref. {14}, p.
332,
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a*b :=aTb=axTxh, (22.1}

which wil besyn}bol alily XTx, where T is a fixed, invertible
quantity cg‘e_& isotopic element. The lifting x — »
is isotopic because {for nondegenerate elements T) it preserves all the original

operations among ordinary numbers as seen in more details in the next section.

The conventional, right and left multiplicative unit | of current theories,
1xa = ax] = g, is then lifted into the form

1]

1*a =a*l = a, T:=T7, (222
called the multiplicative isounit , or isounit for short.

Under the condition that 1 preserves all the axioms of | the lifting 1 = 1T is
an isotopy, that is, the conventional unit 1 and the isounit 1 (as well as the
conventional product axb and its isotopic form a*h) coincide at the abstract level
by conception.

The isonumbers can be first introduced as the generalization of
conventional numbers when characterized by isoproduct (2.2.1) with respect to
the generalized isounit 1= T\,

As one can see, the isounits have a completely unrestricted functional
dependence, thus admitting the most general possible integro-differential
structure of type {1.1.1},

= wT=T0x % % ¢ 01, &b 84, 7m,.), h=1. (2.2.3

A necessary condition for a quantity T to be an isounit, that is, a joint left
and right generalized unit, is that it is Hermitean. Then, isomultiplication (2.2.1) is
the same for both right and left operations.

As indicated in Sect. 1.5, in these volumes we shall use Kadeisvili’s
classification into;

Class I: Isounits properly speaking, whest they are sufficiently

smooth, bounded, nowhere degenerate, Hermitean and

positive-definite;

Class II:Isodual isounits , when they are as in Class I, except that

they are negative-definite,

Class II:Indefinite isounit, when they are as in Class ! except

that they have an indefinite signature with local values

which can be either positive-definite or negative-definite;

Class IV:Singular isounits , when they diverge at at least one

given value of their variables;
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Class V:General isounits, when they have an unrestricted
structure, e.g., given by discrete forms, distributions, step
functions, etc.

In this we shall study isounits of Classes I and II with a few comments on
those of Class II1. The theory of isonumbers for Classes Iv and V is vastly
unexplored at this writing.

We should note that the most important functional dependence of the
isounils is that of integral type. Thus, the isotopies | =1 characterize a new
form of integro—differential topology in which all integral terms are embedded
in the isounit, while the rest of the structure is conventionally local-differential
(see Fig. 1.4.1 and ref. [15]. As an example, in the isotopies of Minkowskian spaces,
this novel structure permits the preservation of conventional topologies (e.g., the
Zeeman topology) everywhere, except for the interior of the isounit itself.

The integral generalization of the unit is the conceptual, mathematical and
physical foundation of hadronic mechanics, because it permits a quantitative
treatment of the integral generalization of Planck’s constant ® — 1 discussed

- inCh. L

As we shall see better in applications presented in subsequent chapters, the
isounits of hadronic mechanics generally have a matrix representation with
considerable degrees of freedom in their elements. As such, they permit a
geometrization of inhomogeneous and arisotropic physical media, in such a way
to preserve the axioms of the ixzmogeneous and isotropic vacuum and admit the
latter as a particular case.

The isodual isounils are given by

#d=n19=-1,n=1 (2.2.4)

and are based on the following antiautomorphic conjugation of multiplication
221

a*b > avWp:=aTdp =-aTb=-a*sb,T¢ = -T, (2.25)

under which 19 {but not 1) is the correct left and right generalized unit of the
theory,

Mdady = 24819 = 4, (2.26)

The map characterized by liftings (2.2.4) and (2.2.6) was called isoduality
{20] and this terminology will be kept in these volumes. As we shall see, these
liftings are significant inasmuch as they can be applied to each aspect of the Lie—
isotopic formulations, yielding the isodual Lie-isotopic theory.

The isodual isonumbers were constructed via isodual multiplication (2.2.5)
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with respect to the the multiplicative isodual isounit 1.
Note that the notion of isoduality first applies to conventional numbers. In
fact, the expressions

M=o, 19=pd:=-, {227

characterize isodual numbers. This means that the conventional formulations,
such as Lies theory, Riemnannian geometry, etc., admit hitherto unknown images
given by the isodual Lie theory, the, isodual Riemannian geometry, etc., which
are constructed in such a way to admit everywhere the isodual unit 19=- .

One can now see the necessity of lifting the product x — * for the very
conception of isodual numbers, isodual isonumbers, and related formulations.
The restriction of the studies in number theory to the conventional
multiplication x may therefore be a reason why isocdual numbers, isodual Lie
formulations, isodual Riemannian geometry, etc. have escaped detection until
recently.

The author also studied the problem whether isomultiplication (2.2.1)
exhausts all isotopies of the conventional product of numbers. The issue is
important because any new isotopy of the associative product characterizes a
new realization of the theory of isonumbers and, therefore, a new mechanics,
with new Heisenberg-type equations and all that.

Only three isotopies of the multiplication ab were found [15)

A) The scalar isotopy ‘

a*b:=ach, T=c=number, {2.2.8)
B) The operator isotopy

a*b:=aThb, T = operator, (2.2.9)
C) The idempotent isotopy

a*b:= WaWbW, W2=W =operator, (2.2.10)

and any of their combinations.

The problern whether the above liftings exhaust all possible isotopies of the
multiplication is unknown at this writing.

These volumes are based on the fundamental condition that any
accepiable generalization of quantum mechanics must possess a well defined
unit, which is evidently needed, eg., to permit the formulation of a consistent
measurement theory, etc..

Along these lines, isotopies {2.2.8) and (2.2.9) are acceptable, while isotopies
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(2.2.10) are not because the product a*b = WaWbW does not admit a consistent,
left and right unit for all elements a, b.

2.3: ISOFIELDS, PSEUDOISOFIELDS AND THEIR ISODUALS
Let us intreduce the following definition of isofields:

Definition 2.3.1 24} Let F = Fla#+x) be a “field” as conventionally
understood (see, e.g., ref. 8] p. 101), here referred to a ring with elements
a, b, ¢, ..., which is commutative with respect to the operation of addition
+ and associative under both the addition + and multiplication *x
with corresponding additive unit 0 and multiplicative unit 1. Then, the
infinite family.of “isotopic images” of Fa,+x| called “isofields” and
denoted F=Ha, + X), are given by elements 3, b, ¢, ..... characterized by
all possible one-to-one and invertible maps a — & of the original
clements a € F equipped with two operations (+, X), the conventional
addition + of F and a new multiplication, called “isomultiplication’,
with corresponding converntional additive unit 0 and a generalized
multiplicative unit 1, called “multiplicative isounit”, which are such to
satisfy all axioms of the original field F, ie.
' 1) Axioms of addition:
1.A) The set F is closed under addition,

a+bef vab € F, (23.1)
1.B) The addition is commutative for all elementsa b e
a+b==06+3a; {2.32)
1.C) The addition is associative for all 3, b, ¢, € F,
a+({b+¢)={(a+b) +&; (2.3.3)

1.D} There is an element 0, the"additive unit”, such that for all elements
aef

a+0=0+12c=3,; (2.3.4)

LE) For each element 3 € F, there is an element — 3 € F, called the
“opposite of A", which is such that
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a+(-a)=0 {2.3.5)
2) Axioms of isomultiplication:
2A) The set F is closed under isomultiplication,
{2.3.6}

a%b e F, v 3beckf,

2B) The multiplication is generally non-isocommutive, ie,
axb = D53, but “isoassociative”, i.e, it satisfies the law for all elements 3, b,

efF
(2.37)

ax(bx¢) =(axp)x¢g;

2.C) There exists a quantity 1, the “mufltiplicative isounit’, which is

such that, for all elementsia e F,
axl =1%a=3, (2.38)

2.D) For each element & ¢ F, there Is an element 3~} € £, called the

“isoinverse®, which is such that

ax@h = @al)xz = 1. (2.39)

3) Properties ! of joint addition and isomultiplication:
3A) The set F is closed under joint isomultiplication and addition,
ax(b+C) e F, (a+b)%x¢ e F,vahtel (2.3.10)

3.B) All elements a, b, T € F verify the right and left “isodistributive

laws”
¢ (2.3.11)

axb+axg(a+bh)ke=akc+bxe,
The elements 3 of isofields F(a,+%) are called “isonumbers”.When there

exists a least positive integer p such that the equation
(2.3.12)

p%a =0,
admits solution for all elements 38 € F, then F is said to have

'! Property (2.3.10) is generally derived from axioms A and 2A. Nevertheless, we shall
encounter in Sect. 2 {see the comments after Proposition 2.3.3) a case in which Axioms 1A

and 2A are verified, but property (2.3.10} is not.




—42 -

“isocharacteristic p”. Otherwise, F is said to have “isocharacteristic zero”,

A few additional properties are needed before we can select the realization
of isonumbers used in these volumes. First, we should indicate that only isofields
of isocharacteristic zero will be used throughout the our studies . Nevertheless,
we thought that an exposure of physicists to isofields of isocharacteristic p is
warranted because of their potential physical relevance for a number of
applications, ranging from string theory vitational collapse, particularly
when inspected from an isotopic viewpoiniga

The dominant mathematical aspect here is the isotopy. In fact, the lifting
Flaq+x) — 13,+) preserves all original axioms by construction. The realizations of
the isonumbers must then be selected in such a way to preserve such basic
isotopic character.

In this respect, we note that the liftings a — &, and % *?'caﬂ ve used jointly
or individually. The following property is then important for our analysis.

Proposition 2.3.1 {24k Necessary and sufficient condition for the lifting
{where the multiplication is lifted but the elements are not)

A A
Fla, X} = Fla,+} X=xTx 1=T" (2.3.13)

to be an isotopy is that the lifting x - * js a scalar isotopy (22.8), ie, T
is a non—-null element of the original field F.

In fact, the laws of addition are unchanged under lifting {2.3.13), while the
multiplication and distributive laws can be readily verified to hold. The closure
of the original set under the addition is evident because that operation is not
changed. We then remain with the closure under the isomultiplication,

a*b = axTxb=2aTb €F, VabeF, {2.3.14)

which does indeed hold when T € F, by therefore establishing the sufficiency of
the condition. Its necessity follows from simple contrary arguments.

Proposition 2,3.2 [24} The lifting (in which both the multiplication and
the elements are lifted)

12 1t should be mentioned in this respect th¥ the classification of all possible simple Lie
algebras (Cartan’s classification) is known only Yver fi of characteristic zero, while the
classification over fields of characteristic p iAfg€f irom being complete at this writing.
As we shall see, isonumbers of isocharacterisip€¥gero will produce no new Lie algebras,
but only new, nonlinear~nonlocal-noncaggfhical\realizations of known abstract Lie
algebras. However, isonumbers of chara ay permit the identification of new
Lie algebras.
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Fla,+,%x) - Mg+, d=ax1=al, *=xTx, 1=7L (2315

constitutes an isotopy even when the multiplicative isounit 1 is not an
element of the original field F, eg., when the lifting x - * js an
operator isotopy (2.2.3)

In fact, one can readily verify for lifting (2.3.15) the validity of all axioms
of a field, and closure under addition. Closure under multiplication readily holds
because

axbh = (axb)x1 =cx1=¢eF, Vabc=axbeF, {2.3.16)

The above mathematically simple proposition expresses the physically
fundamental capability of generalizing Planck’s unit h = | of quantum mechanics
into an integro-differential operator 1 for a quantitative treatment of nonlocal
interactions.

In fact, basic assumption (1.1.1) requires, by conception, an isounit which is
outside the original field. The realization we shall adopt throughout these
volumes is therefore form (2.3.16) with the understanding that more complex
realizations are possible (see later on).

The implications of the above realization are evidently fundamental for
hadronic mechanics. One implication deserving advance mention is that the
‘numbers” predicted by hadronic mechanics for measurements are ordinary
numbers .

In fact, the above realization implies that the isomultiplication of an
isonumber a by any quantity Q coincides with the conventional multiplication

a*Q = aqQ. (2.3.17)

Thus, the isceigenvalues of hadronic mechanics can be made to coincide with
ordinary numbers

Hx|¢> = Ex|y> =E|y>, Eef, EeF (2.3.18)

The numerical predictions of the theory are then ordinary numbers E and not
isonumbers E.

It should be noted that the mathematically correct expression in hadronic
mechanics is the form H*i g>= E*i ¢ >. Nevertheless, since
Ex| ¢ > = ET & > = E| & >, ordinary eigenvalues E can be used in practical
calculations.'3

13 should be noted that the lifting of eigenvalues is far from being trivial. In fact, as
we shall see in more details Vol. 11, if an operator H has the conventional eigenvatue E°,
R|# > =E°|¢ >, it admits a different eigenvalue E under isotopy, H*|¢>=HT|J >
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Evidently, all conventional operations depending on the multiplication are
altered under lifting to isofields. Let us consider the isofields F(a,+») of
Proposition 2.3.1 under the condition that the isounit 1 commutes with all
elements of a. Then, the "square” a?=aa is lifted into the {sosquare a“=a*a~=
a T a, with n-th isopower

a' = aTaTa..Ta (ntimes) (2.3.19)
Recall that the conventicnal square root can be defined as the quantity a! such
that (a* }{ a' } = a. Then, the isosquare root is given by
at = a1, aleal=adTd = a. (2.3.20)
The isoinverse is given by
a?t i= 12711, avxal =1 {2.3.21)
The isoguotient can then be defined by
a7b:=(@/b)l=c¢ ¢cTb = a. (2.3.22)
The reader can then compute all other isooperations.
In the transition to the realization of Proposition 2.3.2 we have instead
A0 = axG* A% ...% 3= a"l. (2.3.23)

The reformulation of the remaining operations is then follows, as the reader is
encouraged to work out to acquire familiarity with the theory of isonumbers.

Recall that a primary objective of hadronic mechanics is the integro-
differential generalization of Planck’s constant h = | = k = il = 1. It is therefore
important to understand that the new unit 1 preserves all axiomatic properties of
the original unit 1. In fact, the isounit 1 is idempotent of arbitrary (finite) order
n as the original unit 1

™ =1+1+.21 = 1 (ntimes), (2.3.24)
the isosquare root of the isounit is the isounit jtself

o=, (2.3.25)

=E|§ >, E # E°. Thus, the isotopies of numbers imply an alteration of the eigenvalues
of conventional quantum mechanical operators . This mechanism, called mutation [i5],
is at the foundation of the capabilities of hadronic mechanics to represent the cold fusion
of particles and other novel applications.
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the isoquotient of the isounit by itself is the isounit ,

171 =1, (2.3.26)
the isoinverse of the isounit is the isounit itself,

17121, (23.27)

etc. This confirms the axiom-preserving character of the lif ting h =1 > h=1
when realized via the isotopies. Note that the above properties hold for the most
general possible integral representation of h=1.

Note the different between the two elements | and 1, because the element |
remains an element of an isofield, although now 1*a = a and [+3 # 4.

Note also that the set of purely imaginary numbers S = {in}, n real, is not a
field, evidently because it is not closed under multiplication, in)<im) = - nm ¢ §.
. However, the isotopy F(i,+*) of real numbers n equipped with the purely
imaginary isounit 1 = i, and isoproduct * = xTx, T = il=- f, do form indeed an
isofield, that is, they verify all axioms of a field. This illustrates the possibility
offered by the isotopies according to which, given a set S of numbers which do
not form a field, there may exist an isotopic lifting § under which § is indeed a
field.

Note that, according to Hamilton [3] original conception, the guaternions
constitute a field because their multiplication is noncommutative, but
associative. On the contrary, according to Cayley id4] original conception,
oclonions are not generally considered to constitute a field because their
multiplication is not associative, but verifies the weaker right and left
alternative faws

(abbb=1(ablb, (@aa)b = alab). (2.3.28)

This is the reason for assuming a more general definition of field in ref.’[24]
which is based on the above alternative laws and, as such, it includes as "fields”
the octonions. Also, in this way all “Tields” coincide with all “normed algebras
with unit” of Sect. 2.1.

In these volumes we shall follow for simplicity the conventional definition
of fields [8]. Nevertheless, for completeness, we shall consider the isotopy of
octonions with the understanding that, according to Definition 2.3.1, they form a
weaker form of fields based on the alternative law.

We now pass to the studies of a further new class of numbers, called
isodual isonumbers. Owing to their importance for these studies as well as for
clarity, it is best to present them according to the following separate definition.
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Definition 2.3.2 [24} Let Fla, +, X) be a conventional field as per Definition
2.31. Then, the “isodual field” F9a9, +, »d ) is constituted by elements
called "isodual numbers’

ad 0= axid = -g (2.3.29)

defined with respect to the “isodual multiplication” and related “isodual
unit”

xd0= x19x = -x, 19 = -1, {2.3.30)

Let F(a + %) be an Isofield as per Definition 2.3.1. Then, the “isodual
isofield” 93¢ +0 is given by “isodual isonumbers”

if)= 1% = -a°1, (2.3.31)

e.-wfKe
where a® is the conventional conjugation of F (e.g., complex coffjugation),
defined in terms of the "isodual isomultiplication”

'kd = xmix = -} o (2.3.32)

Again one can see that the isodual unit 19 is idempotent of arbitrary
degree n, that the isodual square root of 19 is 19 and the isodual quotient of 14 by
itself is 19, with similar occurrences for 1¢.

The reader has noted our insistence in leaving the conventional sum
unchanged, and lifting only of the multiplication. The underlying reason warrants
a Tew comments because, as indicated earlier, any generalization of conventional
operations implies a8 new mechanics. A possible generalization of the operation of
addition would therefore imply a further generalization of hadronic mechanics.

In essence, in addition to the lifting (2.2.1) of the multiplication, this author
also inspected in ref. [21] (see ref. {24] for more technical studies) the lifting of the
addition of the form

+ - 4+ =+RK+, K =Kx1, (2.3.33)
with consequential redefinition of the conventional additive unit
0 - 0 = -K. {2.3.33)

However, unlike the isotopy of the multiplication x — * the lifting of the
addition + — % has the following implication:
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Proposition 2,3.3 (21,24} The Jiftings
Ha + % — M3+ %), (2.3.35a)

a=ax|, ¥ =+R+,0 =R =-Kx1,%x=xTxT=T"}, (23.35b)

where K € F and T is invertible, is not an isotopy for ali nontrivial
values of the quantity K # 0, because it preserves all axioms of
Definition 2.3.1, except the distributive law (23.11} .

In fact, all axioms (2.3.1-2.3.11) can be readily verified to be preserved
under liftings (2.3.34). On the contrary, for the right distributive law we have

a%(b+e) = ax(b + K+ ¢)x1 =(axb + axK +axc)xl #

~

# axbh +akc=(axb + K+ axc)x], {2.3.36)

with similar lack of identities for the left isodistributive law. Note that the set F
in lifting (2.3.35) is closed under isoaddition for K € F {but not for K € F), ang,
separately, under isomultiplication for an arbitrary isounit 1 outside the original
set F. The same results hold for the lifting Fla, +, %) » Fa, +, %), ¥ =+ K+ K€ F, K
# 0. ‘

The implications of Proposition 2.3.3 are so deep to prevent its use in
physics. A central neotion of quantum mechanics is that of unitary
transformations UUT = uly = [, with the exponential representation in terms of a
Hermitean operator X and parameter w

. . . iwX
U=1+iwX/11+wX){iwX)/21+ .. = ¢ (2.3.37)
Now, as we shall see in Chapter 4, the isotopy of the multiplication implies a fully
consistent isotopic generalization of the above notion which is convergent into a

finite form

i X
IWTX (5 3.38)

O=T+iwX/1'+GwX)+{iwX)/2t+ .. =1Te
resulting in this way in the fundamental isotopies of these volumes, those of Lie's
transformation groups studies.

The point is that the isotopies of conventional unitary transformations
under the lifting of the addition are divergent,

U=1+iwX/ /I3 iwX)iwX)/21% .. = o0 {2.3.39)
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thus precluding the achievemnent of finite forms of the time evolution and other
fundamental physical laws.

A property expressed by Proposition 2.3.3 is that the Jif ting of the addition
is not an isotopy because one of the original axioms is not preserved. We shall
then use the following notion

Definition 2.3.3 (24} An “isotopy” is any lifting of a given mathematical
or physical structure preserving the original axioms. A “psevdoisotopies” is
a lifting which preserves only part of the original axioms .

As we shall see, the difficult task is in the identification of which property
is a true axiom of a given conventional formulation and which is not. As a matter
of facts, the isotopies can help precisely in the identification of true axioms and
their separatlon from other algorithms which do not have a truly essential
character.}4

It is important to classify the new numbers and the related new fields
identified until now as the foundation of the Lie—isotopic formulations. In this
section we have studied the lifting of the multiplication x — * and/or of the
addition + > % which do not require ordering, thal is, fibe action to the right is
the same as that to the left (see Ch. 2.7 for the imtroduction of ordering and a
further generalization of isonumbers for the Li—atmussible formulations). This
results in the following two groups of generalized fields. amd related numbers:

1) Isofields F(a,+X%), which are characterized by the lifting of the
multiplication X — % = x while keeping the conventionai addition to ensure the
preservation of the distributive law (2.3.11). They can $e classified in the same
way as the isounits resulting in:

Isofields properly speaking (Class ),
Isodual isofields (Class II),
Indefinite isofields (Class [!1),
Singular isofields (Class 1V} and
General isofields (Class V).

The isotopic branch of hadronic mechanics is based on the I ollowing four
fundamental types of numbers [24}

1.a) Ordinary numbers: real numbers Rin+x), complex numbers

14 45 an example, the isotopies of the Riemannian geometry show that all familiar
properties are indeed true geometnc axiomns because preserved under isotopies, except
FEinsteins tensorG Rw guvR, which emerges as being “geometrically incompiete”,
that is, lacking a certam lerm to be invariant under isotopies, with intriguing possibilities
of resolving at least some of the vexing open problems of gravitation [25]
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Cle,+X), quaternions Qlq,+*) and octonions Olo,+*);

1.b) Isodual numbers: isodual real numbers R%n%-+x9), isodual
complex numbers CHc%+x%) isodual quaternions QYq4+~"), and isodual
octonions 0%o4+xd),

1.c) Isonumbers: isoreal numbers R(h+¥), isocomplex numbers &¢+ ),
isoquaternions Qlg** and isooctonions O(0,+,);.

1.d) Isodual isonumbers: isodual isoreal numbers RUNHC+49), isodual
isocomplex numbers €99+, isodual isoquaternions (iG] d,+,*d) and isodual
isooctonions OPY+29),

2) Pseuadoisofields [a,* %), which are characterized by the further lifting of
the addition + — ¥ with consequential loss of distributive law (2.3.11), as a result
of which they do not possess a2 known physical significance at this time.
Nevertheless they are mathematically intriguing and also admit Kadeisvili’s five
Classes L, II, 11, IV and V with realizations of type l.a-1.d.

The above classification is sufficient to illustrate the rather broad and
diversified character of the theory of isonumbers and pseudoisonumbers, as well
as the broad character of the mechanics and other formulations build on
isonumbers, such as the Lie-isotopic theory.

Except for marginal comments, in the remaining parts of this chapter we
shall study the generalized numbers at the foundation of hadronic mechanics,
which are the isonumbers of types lL.a-1.d above.

2.4: ISONORMED ISOALGEBRAS

A further notion needed for the study of explicit realizations of isonumbers is the
applicable definition of algebra. In factconventional numbers constitute normed
algebras with unit, as recalled in Sect{2.1. It is then important to identify the
corresponding notion under isotopies.

Definition 2.4.1(8,14,24]: Let U be a conventional algebra (see, eg., ref. [8)
with elements A, B, C (say, matrices) and (abstract) product A©B (say, the
associative product AB or some nonassociative form) over a field Fla,+ x}
with elements a, b, .. operationsa + b and axb and related units 0 and
| satisfying the basic scalar and distributive laws

{axAloB = Ae{axB)=ax(A0B), {2.4.1a)

(Axa)oB = Ao{Bxa) = {A0B)xa, (24.1b)



- 50 -
©(B+C)=AGB +A0C,B+ C) 0A =BoA +C0A. (24.1C)

The algebra U is called a .r ion algebra” when the equation A%{z B
always admit a solution m, or A#{ Thealgebra U is said to admit
a unit when there is a quantity 1 such that

oA = A0l = A, {2.4.2)

=
for all A € \. Finally, the algebra U is “normed” when it admits a normll
A| satisfying the basic axiom

|AoBf =|a|x|B}. {2.4.3)

The infinitely possible “isotopic images” 0 of U, called “isoalgebras” for
short, are given by the original elements A, B, C, ... now equipped with the
isomultiplication AGB over an isofield Fla+*) of elements a, b, c,
(without lifting) with operations + and ¥ = XTx, and related units 0 nd
1="T"! under the condition of preserving the original axioms of U, ie, of
verifying the following left and right “isoscalar and isodistributive laws”

(a*A) 6B = A6(a*B) = a*(A8B), (2.4.4a)
(A*a)bB = AO(B*a) = {AOB)*a, (2.4.4b)
AG(B+C)=A8B +A8C, (B+C)OA=BOHA+CHA (2440

for ali elements A, B, Ce U and a, b, c € F. The isoalgebra O is
called an “isodivision algebra” when the equations A*x = B always admit
a solution for A # 0. An isoalgebra U is said to admit an isounit1 when

T6A =461 =4, (2.4.5)

for all A € 0. Finally, the isoalgebra U is said to be “isonormed”, when
it admits an isotopic image JA| of | A | which verifies the axiorns

TASBI = TAI«[B] €F, fn*Al =1nl=*l aAfel (24.6)

The JSodual algebra” U% s then the rmage of U under the isodual fieid
Fd(ad ,+,>< while the “isodual iscaigebra” 09 s the image of U under the

isodual isofield 19(ad ,+,*d)

Note the differentiation, in general, between the isomultiplication ASB of
the elements of the isoalgebras, which are, say, matrices, from the
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isomultiplication of the elements of the isofields a*b, which can be ordinary
numbers. However, one should keep in mind that, when the elements of 0 and
coincide, the two multiplications coincide too, & = ¥, as it is the case when
isonormed algebras are realized in terms of isonumbers (see subsequent sections).

A realization of the isonorm is the following. Let & be an “isobasis” of 0
over the isofield Fa+*) of Proposition 2.3.1, i.e, such that a generic element A € 0
can be written

A=2he mNk¥ 8, mek (2.4.7)

and ¥ =3, 8,6 & = 1. The isonorm of U in the isobasis considered is then
given by

TAT: = (ke m PV XT = (Sgep mmes m ¥ x1 € Bl 248)

The extension of the above notions to isofields F(3,+*) of Proposition 2.3.2 is
trivial and, as such, it will be ignored.

The iscalgebra U is said to be isoassociative when it satisfies the
isoassociative law

AG(BOC) = (ABB)®C, VABCeO:; {2.4.9)
and it is said to be isoalternative when it verifies the isoalternative laws
A26B = AG(AGB), AGB = AORGB. (2.4.10)

By recalling that ordinary numbers are associative and alternative only under the
inclusion of the octonions, in this chapter we are primarily interested in
isoassociative normed isoalgebras with isounit 1, with the extension to
isoalternative algebras when the inclusion of isooctonions is desired.

Note that in the conventional case the unit | of the algebra U and the unit
I of the field F are generally different. In fact, in the former case | is, in general,
the n—-dimensional unit matrix, while in the latter case | is the ordinary unit
number. According to Definition 2.4.1, the two units can be assumed to coincide
under isotopies, trivially, because the isounit of the isofield can now be a matrix.

As well known, the scalar and distributive laws (2.4.1) are basic axioms
for any structure to characterize an "algebra” as commonly understood [7-101,
The image of an algebra U under the lifting to an isofield Fla,+%) or PA+4) is
then a true algebra because it preserves axioms (2.4.1) by central assumption.
However, the image of U (and 0) under the pseudoisofield a,#%) of Proposition
2.3.3{in which the addition is also lifted) implies the loss of the distributive laws
and, for this reason, it is no longer an algebra as commonly understood. We shall
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then call it a pseudoisoalgebra (241

As we shall see, the isotopies of the operations with numbers require, for
mathematical consistency, corresponding compatible isotopies of all other
operations on algebras.

A case deserving advance mention because needed in the subsequent
sections is the notion of determinant of a matrix A which is applicable to an
isonormed isoalgebra. The conventional notion is inapplicable under isotopies and
must be replaced by the isodeterminant [16,21]

-~

DetA := [Detp(AxT)Ix1, (2.4.11)

where DetpA represents the conventional determinant computed in the
conventional field F.
In Tact, Det A violates the basic axioms under isotopies, e.g.,

(Det A) + ( Det B) = Det AB or = Det (A *B), Det A™l = (Det )7, (24.12)
_However, Det A does preserve the above axioms because
Det(4+B) = (DBt A)#(DétB), Dat{a™l) = Deta)?. (2413
The corresponding isodual isodeterminant is given by [21,24]
Detd A = [Detf AxT9}x19 (2.4.14)
which is now computed in Fa.

The isotopies of various operations (e.g., on a Hilbert space) will be studied
in details in Ch. 6.

2.5: ISOREAL NUMBERS AND THEIR ISODUALS

By following ref. [24], we shall now study in more details explicit realizations of
the isoreal numbers and their isoduals.

2.5.A: Realization of ordinary real numbers, Let us recall for
completeness and notational convenience (see, e.g., ref. (7)) that conventional real
numbers n € Rin,+x) are realized on the one-dimensional real Euclidean space
E,{x,8,R(n+X)}, which essentially represents a straight line with origin at 0, local
coordinates x, metric 8 = 1, additive unit 0 and multiplicative unit . In fact,
the dilations '
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y(’ =Nn4§=n x y n € R(n,+ ), ,, ) € E/(x8R} , {25.1)

characterize an isomorphism of the reals R(n,+x} into the commutative one-
dimensional group of dilations G(1).

The trivial basis is e = I, with norm given by the familiar positive~definite
expression

In| = mxm! >0, (25.2)

verifying axioms (2.@
[nxw| = [n|x]n]. (2.5.3

This shows that real numbers constitute a one-dimensional normed associative
and commutative aigebra U(1) [7].

2.5.B: Realization of isodual real numbers. Isodual real numbers n9 «

RIn9+x9) are conventional numbers n, although defined with respect to the
isodual unit 19 = - |, The isodual conjugation for real numbers can then be
written

n=nx] - qnf=px0=_-p (2.5.5)

Thus, all numerical values change sign under isoduality. One should however -

keep in mind that such a sign inversion occurs only when the {sodual real
numbers are projected in the field of conventional real numbers.

As a specific example, the negative integer number -3 referred to negative
unit -1 is fully equivalent to the positive integer +3 referred to the positive unit
+1.

The representation of R%n9+x9) constitutes the first occurrence in our

analysis requiring a generalized notion of space. In fact, the one-dimensional
Euclidean space is evidently inapplicable because the underlying field isfthe
ispdual field RYnd +xd).
S?i The identification of the generalized Space applicable under isotopies was
done in ref. [18], as reviewed in details in the next chapter. In the simpie case here
congglered, it is given by the one-dimensional, real, isodual, Euclidean space
Edb&ﬁ RIn%+x3) which is also a straight line, aithough with conventional
additive unit 0, isodual multiplicative unit 19 = -1, and isodual metric 84 = - 5= -
1. The isodual dilations are then given by

J' ) ndxayz % e & x'((?é‘s-)—)f-‘

Aol
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They estabhsh an isomorphism between Rd(nd+><d) and the isodual group of
dilations GY(1), i, the conventigpad group G(1) reformulated with respect to the
multiplicative unit 19 (see Chapt% or detalls

Note that E,(x,3,R) and E ; are anti-isomorphic and the same
property holds for G(l) and GH( I) Note at isodual dilations coincide with the,
conventional ones, and this could be a feason for the lack of detection of isedual ..
numbers unti! ref.s [19,20].

The isodual basis is

ed=19, (25.7)
and the isodual norm becomes now negative definite
Infd := (nxn)id = [n[x1% = ~fn| < 0, (2.5.8}
although preserving the basic axioms (2.4.6),
ndxpd 0 = |nd|d xd |pdjd, (2.5.9)

The above results show that isodual real numbers constitute a one-
dimensional isodual, associative and cornmutative normed algebra uX1) which
is anti-isomorphic to (1) [24]

2,5.C: Realization of isoreal numbers, We consider now the isoreal
numbers & = n % 1 as elements of an isofield of Class I, Rin+# with
isornultiplication * = xTx, and multiplicative isounit1 =T !'> ¢ generally outside
the original set R(n,+Xx), as requested for basic assumption (I.1). Their
representation requires the lifting of the original Euclidean space into a form
compatible with the basic isofield R;(i,+*), which is given by the ispeuclidean
spaces 18] of Class I, E |(x8R(,+X)), with metric 8 = T8 over R(fi,+%) (see next
chapter for details).

One should keep in mind that Ej;(x8,R) is a simple, yet bona—fide
nonlinear-nonlocal and noncanonical generalization of the original space, because
the original one dimensional metric § = | is now lifted into the expression

& = Tt x, % % ¢ ¢, 0, U1, ) 8 (2.5.10)

Thus, the one-dimensional isospace B] 1x8,R) represents a generalization of
the conventional straight line, here called an Isostraight line, because of its
intrinsically nonlinear, nonlocal and noncanonical metric 8(t, x, %, %, ...) with
multiplicative isounit 1 =t x, %, %, ..., yet it preserves the original axioms of the
straight line as ensured by the isotopies (see Ch. 5 for more details on this feature
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of isogeometries).
R;(A,+%) can then be realized via the isodilations on Ep 1 x3.R)

X =N*x =nx, {25.11)

which, again, coincide with the original dilations, as it is the case for the isodual
dilations, thus providing a reason for the lack of detection of the isoreal numbers
until recently.

Isodilations (2.5.11} characterize an tsomorphism of the isoreal numbers
with the one-dimensional group of isodilations G(1), i.e., the group G(i) realized
with respect to the isounit 1 (see Ch. 4 for details). The local isomorphism
E(x.8R(n+x)) ~ E1 (x8,R(fi,+») holds for all positive-definite isounits (see next
chapter) and readily implies G{1) =~ G(1),

The isobasis is now given by

e=1, (2.5.12)
while the isonorm can be defined by
faf := (nxn)!1 = |n|1, (25.13)
namely, by the conventional norm, only rescaled to the new unit 1, which is the
essence of the transition from real number n to their isotopes fi = nx1.
In particular, axioms (2.4.6) trivially hold,
fasif = fa] *fat, (2.5.14)
with the same product inside and out because referred to the same elements. One
can see that the isoreal numbers constitute a one-dimensional, isonormed,

isoassociative and isocommutative isoalgebra 0(1) ~ U(1) [24].

2.5.D: Realization of isodual isoreal numbers. We consider now the
iscdual isonnumbers of Class [I

il=n 19 = -7 e R, %A% +9). (2.5.15)

In this case we need the one-dimensional, isodual isoeuclidean space of Class 11,
Envld(x,Bd,Rd), and the isodual isodilations

X =i #8 x = nyx, {2.5.186)

which also coincide with the conventional dilations, by characterizing an
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isomorphism of the isodual isoreal numbers with the one—-dimensional isodual
group of isodilations GX1), i.e., the image of G{I) under the isodual isounit 19 = -1.
The evident underlying isormnorphism

Eqp dx89 R Undxd) ~ By Gx B9 R, 9 (945, (25.17)
' L1 11

then implies 6%1) ~ G9(1).
The isodual isobasis is now given by

gd = 19, (2.5.19)
with isodual Isonorm
Tadtd © = (nxn)x19 = -Tht, {2.5.20)
which is also negative—definite, yet verifying basic axiom (2.4.6),
[Ad«d 7018 = 14010 40 1710, (25.21)
Thus, the isodual isoreal numbers are a realization of the one-dimensional
[;'.zsglduaL isonormed, isvassociative and isocommutative isoalgebra 0%1) ~ Ud(1)

The extension of the above results to the case of pseudoisoreal numbers
and their isoduals is left to the interested reader.

2.6: ISOCOMPLEX NUMBERS AND THEIR ISODUALS

2.6.A: Realization of ordinary complex numbers. Let us recall for
compieteness (see, e.g., ref. [7)} that conventional complex numbers

¢ = ng+mi € Cle+X, ng,neRn+HX), {26.1)
where i is the imaginary unit and ni=n X |, are represented in a Gauss plane
[1], which is essentially a realization of the two-dimensional Euclidean space
E5(x,8,R(n,+X)} with basic separation

2 = xtsx = Xi8j%; = X2+ %% € Rn+x). (2.6.2)

Its group of isometries, the one-dimensional orthogonal group ©O(2), is the
invariance of the circle (2.6.2), as well known. For this reason, complex number
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can be represented via the fundamental representation of O(2) (see below).
The correspondence between complex numbers ¢ = ng + ny iand the Gauss
plane with points P =(x,, x5) is then made one-to-one by the dilative rotations

Z=K*txl) =coz=(y+ni)olx +xi), (26.3)
with multiplication rule
coz = (ng,n|)o(x1,x2) = (noxxl = M Xa,Ng%xp + nlxl) .(26.4)

which is Known to preserve all properties to characterize a ield, thus establishing
4 one-lo-one correspondence between complex numbers and points in the Gauss
Plane. Transformations (2.6.3) also form a two-dimensional group of dilations G(2)
in one to one correspondence with Clc,+,x),

Complex numbers also admit the matrix representation

Ny nlj
¢ :=mngly + ni = ( ) (2.6.5a)

1 0 0 i
10 = ( ) . i] = ( ) ) f (265b)
0 1 i 0

which are the identity and fundamental representation of O(2), respectively, as
expected.

The norm is then given by the familiar expression

lel = Ing + nyxi|:=(Detc) = (cxc) = (nO2 + nF)*. {2.6.6)
which readily verifies axioms (2.4.6}

[cocl = [c] x|¢| €R ¢ ecC. (2.6.7)

where now we have different products because referred to different elemnents.
Finally, the identification of the basis in terms of matrices (2.6.5b)

e] = IO’ q = i[ Y (268)

implies the well known result that complex numbers constitute a two-
dimensional, normed, associative and commutative algebra U2 [71

2.6.B: Realization of isodual complex numbers. We now consider the
isodual complex numbers from Definition 2.3.2 [24]
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CO={(c%+ )| x@=ux 0= ,cl=Cx{%9=-C CeT) (269

where C is the usual complex conjugation. Thus, given a complex number ¢ = ng
+ 1§, its isodual is given by

cd=-5=n0d + n]d_f = —no—ni—i=-n0+n1i € Cd. (2610)

In this case we need the two-dimensional isodual Euclidean space
E,9(x,59,R4nd + x4)) with basic invariant

x2d = ytgdy = "iﬁd;jxj = x12d+x225 -
= xpx8x + x8xy = -x2 - x? ¢ RInd+s9) (2.6.11)

whose group of isometries is the one-dimensional isodual orthogonal group o%2)
[20], i.e., the image of O(2) under the lifting | = diag. (1,1) > 19 = diag. (-1, -1) (see
Ch. 4 for details). We then expect isodual complex numbers to be characterized by
the representation of O(2),

We now introduce the isodual Gauss plane [21) as the image of the
conventional plane under isoduality. The correspondence between isodual
complex numbers and the isodual Gauss plane with points P = (x|, x,) is then made
one-to—one by the isodual dilative rotations

z = +xi) = cdelz = (mng+nitedix +xi), (2612
with multiplication rules
4oz = (ng,n Yedlx %) =
= (mgX;* NjXp,~NgXp + N %), (2.6.13)

which can be easily shown to preserve all properties to characterize a field. Also
isodual transformations {2.6.13) form an isodual group GX2) antiisomorphic to
G(2). We therefore see that, as expected, the one-to-one correspondence between
complex numbers and the Gauss plane persists under isoduality .

Isodual complex numbers also admit the matrix representation

‘TIO Uli )
& +ndiqd = ( ) (2.6.143)

m i —no

-1 0 0 i
1% = ( ) 10 = ( ) (2.6.14b)
0 - -0

Cd = fiodl
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which are the isodual unit and isodual representations of 0%(2), respectively.
The isodual norm is now given by

[} = [det (I x TP x 13 = (Tx 0@, (2.6.15)
can be written
[9]9= (cxTfx18 = (ng + n2Pxif. (2.6.16).
and also verifies axiom (2.4.6),
|cdodcd|d = |cd]d xd |rd|d ¢ pd d ded (2.6.17)

Finally, the identification of the isodual basis in terms of matrices (2.6.14)

e = 19, ed =i, (26.18)

implies that isodual complex numbers constitute a two—dimensional, isodual,
normed, associative and commutative algebra U%(9) which is anti-isomorphic to
U(2) [24]

2.6.B: Realization of isocomplex numbers. By following again ref. [24],
we consider now the isofield of isocomplex numbers from Definition 2.3.1

C={@AX|%=xTx1=T! 2=cx1, cecle+x), (26.19)

with generic element ¢ = iy + @) i. In this case we need the two-dimensional
isoeuclidean space of Class I, Ej 5(x,8,R(f,+ ). Their reatization most used in the
physical literature is that with diagonalized and positive—definite isotopic element
and isounit as discussed in more details in the next chapter

T = diag (b, 02) , 1= diag. (5;2,b,2), b>0, k=1,2 (2620
with basic isoseparation
X2= (XtSX)‘l = (xiSjj Xj )] = (X] b]2 Xl + X2b22)(2)7 € R(ﬁ,"',&). (262[)

whose group of isometries is the one-dimensional isoorthogonal group O(2) = O(2)
(see Ch. 4 for details), ie, the group O(2) constructed with respect to the
multiplicative isounit 1 = diag. (bl'z, bz_z), which provides the invariance of all
possible ellipses with semiaxes a = b['z, b = b2'2 as the infinitely possible
deformation of the circle [20). We then expect that isocomplex numbers are
characterizable via the fundamental isorepresentation of O(2).

We now study the isogauss plane, first introduced in ref. [21) which is the

set of points P = (x| , x)) on E; ,(x8,R(A,+%) for the characterization of isocomplex
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numbers ¢ = (i, fi).
The correspondence between the isocomplex numbers €{C,+%)} and the
isogauss plane can be made one—to-one by the isodilative isorotations

z = (x+xi) =82 {2.6.22)
with isomultiplication rule
chz=(Ny,n)0(x),x) =
={I{ngxg)T-a (n; %) 11, [{ng x0T+ (nyx;)11), (2.6.23a).
A =DetT = b2b2, (2.6.23b)

where the appearance of the A factor will be justified shortly, and confirmed
later on for the case of isoquaternions and isooctonions studied in Appendices 4.A
and 4.B.

It is easy to see that the isogauss plane preserves all axioms to characterize
an isofield. In particular, isotransformations (2.6.22) form a two-dimensional
isodilation isogroup G(2) ~ G(2). As expected, the one~to-one correspondence
between complex numbers and points in the Gauss plane is preserved under
isotopy.!®

The implications are however nontrivial, as illustrated by a number of
properties, such as the lack of existence of unitary transformations

c=Uoecol,UoU=uloUu=1=diag(, 1, (2.6.24)

mapping the matrix representation of complex numbers into their isotopic form.
The understanding is that a transformation does indeed exist, but it is of the
more general isotopic type

t=08co0, vé0=0M60=1 (2.6.25)

Another way to see the nontriviality of the isotopy is by noting that the
conventional trigonometry is inapplicable to the isogauss plane. In fact,
conventional functions such as cos a, sen ¢, etc. which are well defined in the
Gauss plane, have no mathematical meaning in our isogauss plane, as discussed in
Appendix 2.A.

The reader should be aware that, by no means, realization (2.6.23) is unique,
owing to the intriguing "degrees of freedom” of the isotopic formulations studies
later on.

!5 Note that the notion of .point in the isoeuclidean plane can be introduced despite its
nonlocal-integral character thanks to its integro—differential topology (Fig. 1.4.1). in fact,
the isogauss plane is everywhere iocal-differential except at the isounit.
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[socomplex numbers also admit the following two-by—two matrix
representation

. . . noxbl_z ixnlxbtzxA_%
c = HOX]O + oy x‘\Il = ( ) (2.6263)
ixnyxby2x A~ ng X by 2
b2 0 o O ixDb?
1=14 = ( ),'i,= i1 =47 ( ) (2.6.26D)
0  by? ixbh? 0
A = Det. T = b%by2, (2.6.26¢)

which verify rule (2.6.23) and characterize the isounit and the fundamental
isorepresentation of {2} respectively {see Ch. 4, and subsequent confirmation via
the fundamental isorepresentation of the isotopic SU0(2) group for the
isoguaternions and isooctonions).

Then, the set S(c,#%) of matrices (2.6.26a) is closed under addition and
isomuitiplication, each element possesses the isoinverse

A

el = gxy, (26.27)
where 7! is the conventional inverse. Thus, 8&,+%) is an isofield. The local
isomorphism 8(¢,+) ~ {{c,+*} is then consequential.

The isonorm is defined, from Eq.s (2.4.7) and (2.4.10) by
el = [Det(exTlx1y = (n2 + an2}x1y, (256.28)

and readily verifies axioms (2.4.6),

[eoel =jelxfefeR evel. (2.6.29)

Finally, the isobasis
é] = ]0, ’éz = AI. (2630)

show that isocomplex numbers constitute a two-dimensional, isonormed,
isoassociative and isocommutative isoalgebras over the isoreals 0(2) ~ U(2), a
result first achieved in ref. [24].

2.6.C: Realization of isodual isocomplex numbers. We consider now the
isodual isocomplex numbers
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EO={ @+ |e8=-2C1% L=xTIxTI=-T,19=T0"} ceCle+x ],
(26.31)
with generic element
W=nl+adid=-n,+A,i. (26.32)

In this case we need the two—dimensional isodual isoeuciidean space of Class I,
By 2889, R%n?+59)) with realization

Td = giag. (b2, -b2) , 19 = diag. (-b;2,-by2), by >0, k=1,2

(2.6.33)
and basic isodual isoseparation
x2 = (x189x)19 = (x; 89,01 =
= Fxb%x ~ xob2by) B e RIGY ), (2.6.35)

whose group of isometries is the isodual isoorthogonal group 6%2) ~ 09(2) [20].
The isodual isogauss piane (ldenttf ied for the first time in ref. [21]) is then
the set of points P = (x;, x,) on Ef 2 dix,59 RYAY+3)) for the characterization of
isodual isocomplex numbers ¢ ={ -fig, 1) ).
The correspondence between the isodual isocomplex numbers
Cd(éd,+,><d) and the isodual isogauss plane can be made one—to-one by the
isodual isodilative isorotations

7= (x+x i) = 24 5l (2.6.36)

with multiplication rule

&édz=(ﬁ0,fl1)€>d(x|,x2) =

"—'{[("no)fo) ‘}"'Ai (ﬂ] Xz)'i],{("n.ox Xz)‘l"'(ﬂl Xl) ]]}. (2.6.37a)
= Det T = b;%b,?, (2.6.37b)

It is easy to see that the isodual isogauss plane preserves all axioms to
characterize an isodual isofield. Also, isodual isotransformations (2.6.36) form an
isodual isodilation isogroup 6920 =~ GY2). As expected, the one-to-one
correspondence between complex numbers and Gauss plane is also preserved
under isodual isotopy.

Isodual isocomplex numbers also admit the two-by-two matrix
representation
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-ny b, 2 i np2a~t
ed = fgip? + ¢ e = ( . _é H ) (2.6.382)
imn b22A -ny b2_2
5,2 o 0 -ib?
18 = ( ) 14 =A'*( ) (2.6.38D)
0 -by2 ~ib? 0

which satisfies isomultiplication rule {2.6.37), which characterize the isodual
isounit and fundamental representation of 09(2), respectively.

Then, the set §% @9,+39) of matrices (2.6.38) is closed under addition and
isomultiplication, each element possesses the isodual isoinverse

1
&l = (pdyld (2.6.20)

Thus $%ed+x9) is an isofield. The local isomorphism $3(¢4+%9) ~ ¢diad 4 x9) s
then consequential,
The isodual isonorm  is defined by

a9 = [Det (@8719)Ex148 =(ng? +an 2 x10 (2.6.40)
and readily verifies axioms (2.4.6),

fedadedde 100 dpd cpd adad cpd (eg)

Finally, the isodual isobasis
éld = ‘lod, ézd = 'ild, (2642)

shows that isodual isocomplex numbers constitute a two-dimensional, iscdual,
isonormed, isoassociative and Isocomrmutative isoalgebras over the isodual
isoreals isoreals 0%2) ~ U%2) (a result first proved in ref. [24].

In conclusion, the "numbers” used in hadronic mechanics are characterized
by the lifting of conventional real numbers n or complex numbers ¢ into the
most general known integro-differential expressions n = nl and ¢ = cl,
respectively, with an integral dependence on all possible local quantities and
their derivatives

n = 0= At x %% Y080, & e, n, ), (2.6.43a)
c = CT=tx X XG0t 8 3 LT, L, (2.6.43b)

as a direct way to represent integro-differential generalizations of
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Planck’s unit, Eq. (1.1.1)

Moreover, the generalizations are nontrivial inasmuch as they are not
unitarily equivalent to the conventional numbers. We finally note that, even
under the condition

A=1b2b2 = |, (2.6.44)
realized for
by = byl =1, (2.6.45)

isocomplex numbers preserve their nontrivially generalized form

X ng % A2 ixnx A2
i ( ) (2.6.46)

¢ =1nyxly + nxi; =
ore s ixn xA2  pyxa2

because the "hidden quantity” A # has an unrestricted functional dependence, Alx,
X, &, ..). As we shall see in Vol.s Il and [II, a number of intriguing physical
applications originate precisely from the above “hidden degree of freedom” A.

27: ISOQUATERNIONS AND THEIR ISODUALS

2.7.A: Realization of quaternions. Recall (see, e.g., ref.s [7,8) and quoted
literatyre) that quaternions g € Qg,+x) admit a realization in the complex
Hermitean Euclidean plane E5z8,C) with separation

Ejz8Ck  ziz = 7,825 = 212, + 775, 81=8, {27.1}
whose basic (unimedular) invariant is SU(2). Thus, quaternions can be
characterizable via the fundamental (adjoint} representation of SU[2), i.e., by
Pauli’s matrices, as reviewed below.

Quaternions can be first realized via pairs of complex numbers, g = (c|, c5)
,q€Qand ¢, cp € C with multiplication © (see below). A Hermitean dilative
rotation on E,z,8,C), i.e, one leaving invariant ztz, is given by

Z'l = clozi .+.C2022 R 2'2 = —62021 + E,O 22. (272)

where the dilation is represented by the value Cj0c| + Gocy # 1. Again,
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transformations (27.2}) form a group G(4), this time associative but
noncommutative, which is in one-to-one correspondence with quaternions.

Rule (2.7.2) characterizes the following matrix representation of
quaternions Q{q,+x) over the field of complex numbers C(c+x)

€ G2
q = N _ (27.3)
L) C]

which is also one-to-one. By assuming
€ =ngtngi, Cy=mn +nyi (2.7.4)
matrix (2.7.3) admits the representation
q =ngly + npip + nyip + ngis, (2.7.5)

where the i's are the celebrated two-dimensional Pauli’s matrices plus the two-
dimensiconal identity,

1 0 0 i 0 1 i 0
(Y e () () s
0 1 i 0 -1 0 0 -i

with fundamental properties

ih im = “€pmkl . RFmM, nm=123, (27.7)
where €nmy is the conventional totally antisymmetric tensor of rank three. The
algebra A of Pauli’s matrices is clfosed under commutators, and characterize
the fundamental representation of the suf2) Lie algebra

lin,im] = inim = bpin = — 2 € Bk » (27.8)
with Casimir invariants 1, and i% = Y| 53 iy 2,

lg.iy] = [2,i) =0, k=123, (279)
and eigenvalues on a two-dimensional basis & with normalization dtxg = 1

k=123 %0 = Tympazi * i xo = - 3%, (27.10)
By noting that

al = ngly - npip - nyiy - ngig, 27.11)
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the norm of q can be written

I q I = ( qTq )‘k = { 2k=0,l.2,3 nkz )* ' (27.12)

and also satisfies axioms {2.4.6),

laeq| =lqlxlq] R, ¢ q,%x €Q. (2.7.13)

The basis
61=10, ek‘*’l = ik' k'—‘|,2,3, . (2.7.14)

then establishes that quaternions constitute a normed, associative,
noncomimutative algebra of dimensions 4 over the reals U(4) [7,8].

2.7.B: Realization of the isodual quaternions. We consider now the
isodual quaternions q9 € Q9 (q9+x9 ) [24] which can be represented via the isodual
complex Hermitean Euclidean space

E%z8%C0 <0 (7;8%;2) 1% = (-7 7~ Zyzp) PR, (27.15)

in which case they can be realized via pairs of isodual complex numbers (Sect.
26 g% = (c,% c,9),q% € Q4 <9 , %, e % An isodual Hermitean dilative
rotation on E%z59C%c%+x9) ie, one leaving invariant z{8%, is given by

Z'I = Cld Od Zl - EQdOd 22 s 2'2 = Czd Od Zl + Eldod 22 , (2716)
where the dilation is represented by the value ¢;%9%,% + €,%%,9 = -1. Again,
transformations (2.7.16) form an associative but noncommutative isodual group
GY4), which is in one-to-one correspondence with isodual quaternions
Qg% +4).

Rule (2.7.16) characterizes the following matrix representation of isodual
quaternions over the field of isodual complex numbers cd (cd,+.><d)

g (C‘d K ) (7.17)
q = 27.17
Czd Ed

B-assumin
! ; 9= —-ny+ns i cod = -n;+n, i {2.7.18)
1 ng+hng 1, 2 17Nz g A

and by recalling that - ¢ = ¢, we have the representation

a? = n? 4 n %+ nfid + mgig? =
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~ Ny 10 + n il + n2i2 + Ng i3, (2719)

where the i's are the Pauli's matrices reviewed above. We learn in this way that
the Pauli's matrices change sign under isoduality although their product with
isoduval numbers is isoselfdual.

By using the results of Sect. 2.4, the isodual norm is then def ined by

[q¢ = [Det (q%xT)1x 18 = (-Fyp oam2Fx 18, (27.20)
with property
1%09q?|9 = [q?|9 I |g9|0 erd, dgf e f (272D
The use of the isodual basis
e =19, ey =i k=123 (2.7.22)

then shows that isodual quaternions constitute an isodual four-dimensional,
normed, associative and noncommutative algebra over the isodual reals u%a),
which is antiisomorphic to U4} [24]

2.7.C: Realization of isoquaternions. To study the isoquaternions q €
QG +%) [24], we need the two-dimensional, complex Hermitean isoeuclidean
space of Class I, Ej5(z5,C) on the isofield C(¢,+%) with separation (see next
chapter for more details)

218z = 782 = 7, b2z, * 2,022, Bt=5>0, (2.7.23)

ij%
basic isotopic element and isounit

T = Diag.(b;%, ), 1 = Diag (b2, by2), (2.7.24)

whose (unimodular) invariance group is the Lie-isotopic group SO(2) (see Ch. 1.4
and 11.6). Isoquaternions can therefore be characterized via the Tfundamental
isorepresentation of the su(2} algebra.

A Hermftean isodilative isorotation on E;,(z8,0(@+%), ie., one leaving
invariant z18z, is given by

Z'l = &léZ] +&2€)ZZ . 2'2 = -62621 + 6[622, (2.7.05)

where the dilation is represented by the value € 6 & + ¢, 6 &, = 1.
The map of isoguatérnions into two-by-two matrices on 6,5 must now
be characterized by the isorepresentations of the Lie-isotopic algebra SO(2} first
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studied in ref.s {21] (see also ref.s [23,27), which can be expressed in terms of the

basic isounit 9
I
1=1, = ( ‘ ) (2.7.26)
0 by?

and the fundamental isorepresentation of sif2)

Coaf 0By 0 p?y L %o
ll=A ) 5 y 1o = A 9 s I3 =A 2
ibo® 0 -bo® 0 0 -ib

(27.27)

called regular isopauli matrices, which were first introduced in ref. [21] and then
studied in various articles (see ref.s [25-27], Sect. 1.4.7 and Ch. 1I-6). As expected,
the i-matrices verify the isotopic image of properties (2.7.7), i.e.,

Tn* i = —Ateumik, nEm, nm=1,23,4=b212 (2728

and are therefore closed under isocommutators (as a necessary condition to have
an isotopy), resulting the Lie-isotopic su(2) algebra

~

im iy = —2ATe iy, (27.29)

g% ] s = g0
with isocasimir invariants and generalized eigenvalues equations studied in Ch.
1L.6. For alternative realizations with A = 1 see Sect. 1.4.7.

Note the complete abstract identity of the isotopic si(2) with the
conventional su(2) algebra. Nevertheless, Pauli's matrices and their isotopic
covering are not unitarily equivalent.

Note aiso that the isoinvariance O(2) of the isocomplex numbers (Sect. 2.6)
is a subgroup of SO{2) characterizable by i}, thus confirms the matrix
isorepresentation of isocomplex numbers.

Isoquaternions can therefore be written in the form {apparently presented
in ref. [24] for the first time)

q =nglo + 0y + mply + nglig =
( (ngb;2+Aa ingby?) A7 (~ny+i ny)by2 )
(2.7.30)

A {np+in ) by? (ngbg—z-A_*insbf)

It is straightforward to show that the set 8(q,+,%) of all possible expression
{2.7.30) preserves the axioms of the original set Slg,+,%). In fact, the set 8(G+%) is a
four—-dimensional vector space over the isoreals R{fi,+X) which is closed under the
operation of conventional addition and isomultiplication, thus being an isofield.
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The isomorphism 5G,+%) ~ g,+%) then follows.
The isonorm of the isoquaternions is given by

1al =[Detr(g T, = (a6 §) 1, (27.31)
0 0
and can be written
fal = [n® + atn? + n2 + )11, (2732

which should be compared with expression (2.7.12) for the ordinary quaternions.
Isonorm (2.7.31) also verifies the basic rule

fa6q] =T1aqfélater, 4,46 c¢0. (2.7.33)
The isobasis
é1= Jlo, ék.g.l = ‘ik' k = 1,2,3, (2.7.34)

~ then establishes that isoquaternions constitute a four-dimensional, isonormed,
isoassociative, non—isocommutative isoalgebras over the isoreals 0(4) ~ Ul4) [24].

2.7.D: Realization of isodual isoquaternions, The isodual isoqua-
ternions §9 € %q9+,6% can be characterized via the two-dimensional isodual
complex Hermitean isoeuclidean space of Class il over the isodual isocomplex
Tield,

Ed“‘z(z,Sd.Cd(cd.ﬁ*d)): ZT Sd = El gd Zl + Ez Qd 22 = - El blzzl - E(‘% ?%25)22,

with basic isodual isotopic element and isodual isounit
T¢ = Diag. (-b;2,-b,2), 19 = Diag.{-b, "2, -b,2), (2.7.36)

whose (unimodular) invariance is now that of the isodual Lie-isotopic group sod
(see Ch. 1.4), An isodual Hermitean isodilative isorotation on
£9)) 5(2.88,0%cd+59), ie., leaving invariant z18z, is given by

~d

Z'I=C ™

I édzl -C 2éd Zy , Z'z = E:dz 6d21 + 'C—d] éd 23, (2737)
where the dilation is represented by the value ¢8,8%9, + §,6%0, »19,
Isoquaternions then admit a realization in terms of the isodual

isorepresentation of 519 (2) which can be written

ad = f‘od + ﬁld 'ild + ﬁ2d '}Zd + ﬁsd-isd =
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=-fl0+fll '\ll +f121\12+f73'13 =
( (-ngb; 2+ A4 ingby?) A~ (-n2+in1)b|2)
(2.7.38)

A (ng+in b2 (-ngby2-atingb?)

It is again easy to show that the set 3%({9,+x%) of all possible matrices
(2.7.38) is an isofield. The isomnorphism 8%g%,+x3) ~ 4G9+ x9) then foliows.
The isodual isonorm is now given by

md]‘dz [Det( )]J"'ld— quxd ~d {r'ld_
=[-ng - A(n12 +n? + ng?) 118 {2.7.39)
and also 'v;erif ied the basic rule .
140 68 ﬁ'dfd= Tadrd é& fﬁ’dfde ﬁd’ a9, 8% 0d . (4.A.40)
The isodual isobasis is now given by
89, =19, &% =%, k=123, (2.7.41)

and proves that isodual isoquaternions constitute a four-dimensional, isodual,
isonormed, Jsoassomatrve non-isocomimutative isoalgebra over the isodual
isoreals 094} = Ud(4) [24],

In summary. the isotopy of the conventional quaternions permits the
introduction of nontrivial degrees of freedom represented by the diagonal
elements of the isotopic element T = diag. (b 12, b22), owing to their unrestricted
functional dependence byft, x, %, ..} # 0. The “isotopic degrees of freedom” persist
even under condition (2.6.44), (2.6.45) under which the regular isopauli matrices
{(2.7.26)

ﬁ(onﬁ)ﬁ (0)\2) (n\‘zo)( )
1= _ v 1Ip = _ ,}3 = , 12.7.42
iA2 g 272 0 =il

called standard isopauli matrices [25-27] (see Ch. I1.6 for their detailed study).

It should be indicated for completeness that in this section we have
studied the isotopies and isodualities only of the fundamental form of
quaternions. For additional forms of quaternions for which no isotopies and
isodualities have been studied until now, such as the spit gqualernions,
antiquaternions and semiguaternions we refer the interested reader to
monograph [28].



—71-

2.8: ISOOCTONIONS AND THEIR ISODUALS

For completeness, we also present realizations of octonions, isodual octonions,
isooctonions and isodual isooctonions, which follow very closely the construction
of isoquaternions and their isoduals from isocomplex numbers and their isoduals.

2.8.A: Realization of octonions. Recall (see, e.g., ref. [7.8] and

contribytions quoted therein), that the octonions o € Olo,+x) can be realized via
two quaternions, o ={q; , g, ), with compositicn rules

000 =(q.q)0(q],95) = (q,0q,+q;003.-q 095+ 0 qp),

The antiautomorphic conjugation of an octomnion is given by 28y
o=1{q;, ~gp). (2.8.2}
It is then possible to introduce the norm
lol := (Boo) = |q] + |q,], (2.8.3)
which also verifies the basic axiom
loeo|=jolx|o]eR o0 ¢€0. (2.8.4)

We finally recall that the octonions form an eight dimensional normed,
nonassociative and noncommutative, alternative algebra U® over the field of
reals R(n,+,x) [7 8]

2.8.B: Realization of isodual octonions. The isafual octonions are
defined via the isoconjugation
o? = (q,9,q,9) (2.8.5)

this time, over the isodual reals Rd(nd.+,><d), and are therefore different than the
conventional conjugate octonions o, Eq. {.2.8.2). Their isodual multiplication is

B odod=(g% g8 0l (g, q,0) =
(q0%q-gl0qy, qlolql+qlolad), (86

the isodual antiautomorphism is then given by
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4

= (g9, - ¢0). (287
1t is then possible to introduce the isodual norm
lod]d := (c90dod 18 = |q,9]d + |94 (2.8.8)
which als6 verifies the basic axiom
o890 @] = |od8]d x8 [¢d]d ¢RI, od gd e b (2.8.9)

Thus the isodual octonions form an eight dimensional isodual, normed,
nonassociative, alternative and noncommutative algebra UY8) over the isodual
real numbers R%nY+xd) [24]

2.8.C: Realization of isooctonions. [sooctonions {24! & € O(5,+,%) can be
defined as the pair of isoquaternions , 0 = (q; , 4) over the isoreais R{f,+%) with
multiplication rules

060=1q;,0206(87,82) = (§,04,+3,0602.-§,64
(2.8.10)

It is then easy to see that the lifting 0 — & is an isotopy, thus preserving

all original axioms of o. In fact, we have the antiautomorphic conjugation

o =1(q, -qp), (2811
and the isonorm
[8T:= (500 x1 = 14,1 + 4! (2.8.12)
with property
fodof=ToT*%[oTeR 0,0 € O. {2.8.13)

It is then easy to see that isooctonions form an eight dimensional isonormed,
non-isoassociative, non-isocommutative, isoalternative isoalgebra 0(8) = U(8)
over the isoreals R(n,+%) [24].

2.8.D: Realization of isodual isooctonions. The notion of isoduality
applies also to the isooctonions yielding the isodual isooctonions 6% = (3,9, §,9)
with composition rule
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Bdéd6‘d=(ﬁld,(“12d)éd(ﬁ'ld.61'2‘[) =
(q96%9-g96% 9%, q¢69 g8 +,96% g.0), (28.14)
Then we have the isodual isoantiautomorphism
| 0% = (§, -4,9). (2.8.15)
the isodual isonorm 7
1691% = (596959 x 19 = 13,919+ 13,919 (2.8.16)
which also verifies the basic axiom
1od ad g df = 16979 54 15 d1d epd, 39,54 09, {2.8.17)

It is then possible to prove that isodual isooctonions form an eight
dimensional isodual, isonormed, non-isoassociative, non-isocommutative, but
isoalternative isoalgebra 048) ~ UY8) over the isodual isofield RO{HI+xd) [24]

We close this appendix by suggesting caution in the use of octonions and
their isotopies as fields because of the loss of associativity and, thus, the loss of
enveloping associative algebras of Lie algebras, in favor of alternative algebras. In
turn, such a loss has fundamental physical implications we shall see in Vol. II,
such as the loss of the equivalence between Heisenberg’s and Schrédinger's
representations.

In this section we have studied the isotopies and isodualities of the
conventional notion of octonions. For additional forms of octonions {e.g., the
sedenions) and the construction of their representations, we suggest the
consultation of ref. [28] and literature quoted therein.

2.9: ISOTOPIC UNIFICATION OF CONVENTIONAL
NUMBERS

One additional property of isonumbers is important for the subsequent analysis,
and it is given by their capability to unify different conventional numbers into
one single, abstract notion of isonumber.,

This property, called “isotopic unification” (first identified in ref. [23)) has
the following three important applications.

Number theory: According to contemporary formulations (see ref.s {7-12],
real numbers, complex numbers and quaternions are considered to be different
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mathematical entities, possessing different properties and structures. This
conception is surpassed by the isonumber theory because, as shown below in this
section, one single entity, the abstract notion of isoreals, can unify all above
indicated conventiona! numbers evidently because of the degree of freedom
offered by the isounit, with evident mathematical and physical advances (for
both cases of characteristic zero or p).

Lie’s theory: In the contemporary formulation of Lie's theory,
nonisomorphic simple Lie groups of Cartan’s classification of the same
dimension, such as O(3) and O(2.1}, or O{4), O(3.1} and O(2.2), etc. are generally
considered to be different entities possessing different structures and properties.
As shown for the first time in ref.[18], this approach too is surpassed by isotopic
theories which offer the possibility of unifying all simple Lie groups of the same
dimensions into one single, abstract Lie-isotopic group. An evident pre-requisite
Tor such unification is precisely the unification of all fields studied in this
section.

Quantum mechanics on quaternionic fields: Even though the most
dominant use of field in contemporary quantum mechanics is restricted to real
and comnplex fields,, the generalization of quantum mechanics over a quaternionic
field has been recently studied by various authors (see ref.s {7-9] and literature
quoted therein). In these volumes we shall show that this approach too is
superseded by isotopic techniques because quantum mechanics on a quaternionic
Tield is a particular case of hadronic mechanics on an isoreal field.

The existence of an isotopic unification of all numbers had been
conjectured by the author in various publications throughout the years, but it
was proved only recently by Kadeisvili, Kamiya and Santilli in ref. [21]. Their main
result is the following

Theorem 2.7.1 : Let R, C, Q be the fields of real numbers, complex
numbers and quaternions, respectively, RS, ¢4, QU the isodual fields, R, C,
O the isofields, and %9, €9, O the isodual isofields as defined in
preceding sections. Then all these fields can be constructed with the
same methods for the construction of R from R, under the relaxation
of the condition of positive—definiteness of the isounit, thus achieving a
unification of all fields, isofields and their isoduals into the single, abstract
isofield of Class 111, hereon denoted Ru

Proof: The field of real numbers R is a trivial particular case of # when
the isotopy is the identity, !h;l = R. The fact that the Tield of complex numbers
C is a subcase of ® can be proved as follows. Introduce the binary (Cayley-
Dickinson) realization [28] of the elements of #, 3 = (a}, a ), where (a| , 0) and {0, a,)
represent the real (Re) and imaginary (Im) parts, respectively, with the following
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isommultiplication
(a[,ag)ﬁ(b! ,bz) = (al xbl -b2><a2.a1 xb2+b2><a1). (2.9.1)

where x represents the conventional multiplication, and introduce the additional
multiplication for elements of Im C

(0,a)%(0,b) :=(0,a)%(0,-1) %{0,b). (2.7.2)
Then, & can be decomposed into the tensorial product of the f ollowing two parts
#f = ({(a,0)]aeR1=(1,0)}, (2.9.3
R, = {(0,a)]aeR,1=(0,1)}. (2.9.4)
The local isomorphism #) ~ Re C is trivial. The fact that i, ~

Im C follows from the expressions 1=(0,1!), T=1"={0, -1 ). Thus, the
multiplication in Ry is characterized by

a¥%b = ax(0 DX bx(O)=ax(0, %0, -D%bx(0,1). (2.9.5)
Moreover,

(0,1)%b = BX(0, 1) = b, (2.9.6a)

(0,a%(0,a7t) = (0, 1), 3 a=0 (2.9.6b)

and this proves that #®, = Im C. Thus, in the above binary realization and
multiplications (2.9.6a) and (2.7.6b}, # coincides with C.
The proof that the field of quaternions Q is a subcase of # can be done
via the quaternary realization # ~CXC with isomultiplication
{a;,ap)*(by,by) i= (ayby-Byay,a, B, +bya ), (29.7)

for all a, ay, by, by € C and a denoting conventional complex conjugation in C.
Then $ can be decomposed into the following parts

A, = {(a,0]aeC), Ay = {(0,D)]beC). (2.9.8)
The product for #, can be defined as

(0,2) %, (0, ) :={0,a) x{0,~1)*(0, 1) = (0, ba). (2.9.9
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By making use of these products we readily obtain that # 1 = C. To identify the
role of #, we note that

\

a*h = ax{0 1)«(0,-D*(0, 1) b =(0,ba) =abf0,1). (2.9.10)

This implies that, in the above quaternary realization of the elements with
multiplications (2.9.9), #® then coincides with Q.

The inclusion in  # of all isotopes R, € and Q readily follows from the
lifting of all trivial unit 1 into isotopic form 1 with corresponding lifting of the
related operations. The inclusion of isodual fields and isodual isofields follows
from the the assurnption of Class III which includes positive-definite, as well as
negative-definite isounits g.e.d.

The following property is also implicit in the above proof.

Corollary 2.7.1.A [23} If the isofield R issuch that R ={{0, x}|x € R,1
=(0, 1)}, then R ~ Im C with respect to product (2.7.9) and (2.9.10}

. For completeness we point out that the octonions O are locally isomorphic
to the realization # =Q * Q essentially along the lines for ## =C*C~ Q.
Consider again the binary realization of the elements, a ={a, , a,), although now a;
and a, represent quaternions, and introduce the isomultiplication in |

(al,az)*(bl,bz) = (&11)[‘52&2, 3251"'1323.1). (29“)

where ay, by € Q, k = L, 2, with the additional multiplication for the elements (o,
a)

(0,a)x (0,0} :=[(0,a}x(0,-1}] =(0,b}. (2.9.12)

Then, as it was the case for quaternions, R can be decomposed into the
tensorial product of the foliowing two parts

#, - ({a,0)]aeQ1=(1,0}}, Ry = {(0,a)|aeqQ,1=(0,1)].(29.13)

The local isomorphism #y ~ Q is trivial. To identify the role of %, note
that

anb:=a{0 b @d=la®D=0-D]*b0 1. {2.9.14)
Moreover, also as in the case of quaternions,

(0,1)%5 = 650,10 =b, 0,a4%(0.a')=0,1, 3a=0 (2915
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and
[0, a0, B 1%, 0,0) = 0,8) %[0, b)+(00) = (0.cba).  (29.16)

Thus, # in the above considered realization with isomultiplication {2.9.15) and
(2.7.16) is locally isomorphic to the octonions.

APPENDIX 2.A: “HIDDEN NUMBERS” OF DIMENSION 3,56,7

Historically, the conventional numbers were studied via the solution of the
following problem (see, e.g., ref. [8]

(a+af+.+a?)x(b2+ b2+ .+ 02) = A2+ a2+ . +A 2 (24Al1a)
Ag = 2 sCxrs r D (2.A.10)

where the a's, b's and c's are elements of a conventional field Fla,+x) with
familiar operations + and x. As well known, the only possible solutions of
problern (2.A.1) studied by Gauss [1], Abel [2], Hamilton [3], Cayley 4], Galois [5]
Albert [12], Jacobson [13) and others are of dimension 1, 2, 4, 8 (Theorem 2.1.1).

The isotopies and pseudoisotopies of the theory of numbers creates the
problem of the possible existence of "hidden numbers”, that is, new solutions of
dimension different than 1, 2, 4, 8 which are hidden in the operations * and/or +
. This problem, studied for the first time in ref. [24], essentially asks whether the
Classification of Theorem 2.1.1 persists under isotopies, pseudoisotopies and their
isodualities, or it is incomnplete.

It is easy to see that the reformulation of problem (2.A.1) under the
isotopies of the multiplication * = * = xTx,1 = 1 = T, does not lead to
new solutions. In fact, Problem (2.A.1) under lifting x = * s given by

( al? + 32? +,.,. + an2 ) b12+ DZQ +..t bn2 } = Al? + Az? + ... F Anz, {2.A.2a)
Ap = 2o Curs * 2 * bg, (2.A.2)
where the a's, b's and ¢'s now belong to an isofield of the type Fa,+*), in which
case 1 is an element of the original field F (Proposition 2.3.1). Problem {2.4.2) can

then be written in conventional operations

( a12 + 322 +, .+ an2 ) ( blz + b22 + ...+ bnz) = ‘T—2 ( A12+ A22+ e Anz), (2A.3&)
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Ay = T? ¢yps a; by, n=8 (2.A.3b)

The substitution of of the latter expression into the former, then recovers
Problemn (2.A.1 identically for liftings of Class I, II, and I11. The reformulation in
the isofield F{(a,+*) is also equivalent to the original one. We can therefore
summarize the studies of this section with the Tollowing generalization of
Theorem 2.1.1:

Theorem 2.A.1 (24} Al possible isonormed isoalgebras with multiplicative
isounit over the isoreals are the isoalgebras of dimension 1 (isoreals), 2
(isocomplex), 4 (isoquaternions) and 8 (isooctonions), and the classification
persists under iscduality.

Nevertheless, there exists a third formulation of pseudoisotopic type
{Proposition 2.3.3 and Definition 2.3.3) characterized by the further lifting of the
addition

+—>4%=+K 0-0=-K,R=Kx] 12.4.4)
under which problem (2. A.2} can be rewritten over the pseudoisofield F(a,F,#
(52958258 32)% (623627 .4 52) = A23 4,2+ .3 4.2, 2450
Ay = 2rsCrrs* b= gcpgar b1l = A x1, (2.A.5D)
and can be rewritten in conventional operations
[(a)%+ a2+ + a2 1+ (=D KTIT [(b% b2+ 45,211 +(n-1) K11 =
= (A2Z+ A2+ .+ A2 )T+ (n-1) K1, A = Al (2.A.6)

where we have the cancellation of the isotopic element as in the preceding cases,
but the preservation of the additive “degree of freedom” K.

The conjecture of the "hidden numbers” was therefore formulated in ref.
[24], specifically, under the pseudoisofield Ma,*X), that is, under the loss of a
sufficient number of properties of the original field, such as the loss of the
distributive laws {Proposition 2.3.3).

We here limit ourselves to the following example of hidden number of
dimension 3

(123 2 3 32)«(2+52+92) = 122 3 242 & 302, 2A7)
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Note that the combinations for the elements in the r. h. s. do exist in terms of
elements in the 1. h. s,

12 = 2x6, 24 = 2x5+2x7, 30 = 3x3 + 3x7T. (2.A.8)
Problem (2.A.7) can then be written
2+ 2+ 2)142K11TH(52+62+72) 1+ 2K1] =
= (122+ 242+ 302)1 + 2K1, (2.A.9)
which reduces to the following equation in K
4K2 + 246K - 80 = 0, (2.A.10)
with solution
K= 0.325..... ' (2.A.11)

However, the above solution is not an integer. This implies the loss of closure
under isoaddition (see the comments after Proposition 2.3.3). As a result, starting
with an original set of integers, one must complete them under isotopies into the
field of all real numbers. The issue left open in ref. [24] is therefore the problem
whether the above solutions do indeed constitute a pseudoisofield.

To understand the example one should recall that the solution considered
does not exist for ordinary numbers (because the dimension n = 3 is prohibited
by Theorem 2.1.1), ie,

(1P+2+2)(R+62+72) = 122 + 242 + 22 (2A.12

The reader can compute solutions of dimension 5, 6, 7.

Note that Problems (2.A.2) and (2.A.5) are restricted to dimensions n = 8. This
is due to the fact that algebras of dimensions higher than 8 are no longer
alternative (8], and such a property is expected to persist under isotopies and
pseudoisotopies.

Genonumbers will be studied in Ch. 7. It is possible to show that the results
of this section essentially persist in the restriction of the multiplication to be
one-sided, and the differentiation of the left and right multiplication.

For further generalizations of conventional numbers via termary
operations and other needs, we suggest ref. (28] and literature quoted therein.

Among endless novel problemns identified by the isofields which are still
open at this writing (Spring 1993), we suggest the study of:
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> The novel notion of "number with a singular unit”, i.e., the isofields of
Class 1V which are at the foundations of the isotopic studies of gravitational
collapse and are vastly unknown at this writing;

> The study of isofields of isocharacteristic p # 0, to see whether new
tTields, and therefore new Lie algebras, are permitted by the isotopies;

> The study of the integro-differential topology characterized by isofields
with local-differential structure integral isounits; and others.

APPENDIX 2,.B: INAPPLICABILITY OF TRIGONOMETRY

Trigonometry is a basic tool of quantum mechanics, e.g., because trigonometric
functions are fundamental for the characterization of spherical harmonics and,
thus, for the study of angular momentum in vacuum (e.g., that of electrons in
atomic orbits).

[t is important to see that conventional trigonometry is inapplicable in
hadronic mechanics, so as to prevent a host demonstrable, yet generally
undetected inconsistencies and misjudgments.

To state it differently, because of protracted use, noninitiated researchers
often approach the problem of the interior angular momentum {e.g., the angular
momentum of an electron when in the core of a collapsing star) via the use of
conventional trigonometry, related spherical harmonics, and corresponding
conventional local-differential formulations (say, in Euclidean space). In so doing,
however, they completely ignore the effect to be described caused by the
hyperdense medium in the orbital motion, thus de facto ignoring the presence
of the interior of the star, without any real departure from the original motion of
the atomic electron in empty space.

Let us consider the conventional Gauss plane [I] with x— and y-axis (the
conventional two-dimensional Cartesian plane). Its trigonometric quantities can
be defined via the distance D of a point P{x,, y;) from the origin

D= (Xlz + )’12)* N (281)
the related Pythagorean theorem
x 2 + y2 = D?, (2.B.2}

and the cosine of the angle a between two vectors leading from the origin {0
two points P(x;, ;) and Py, yo) '
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X{ X2 + ¥i Y2 :
Cos a = . . (2B.3
(xl2 + YIZ)&(X22 + y22)4: o

The above elementary and familiar notions are inapplicable under
isotopies.To begin, we have the loss of straight lines in favor of the most general
known curvature, that dependent also in velocities and acceleration. Second. the
notion of conventional distance is inapplicable, e.g., because the conventional
product "x y” now has no mathematical or physical meaning under isotopies.
Third, the conventional Pythagorean theorem has no mathematical or geometric
sense under isotopies. Thus, the very notion of “angle” between two intersecting
“straight lines” in the Gauss plane cannot be preserved for curved lines in our
isogauss plane.

The reconstruction of trigonometry under isotopy shall be studied in Ch. 5
after the study of the isogeometries.
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4 1SOSPACES B\ b ( J;‘ﬁ’

3.1: STATEMENT OF THE PROBLEM

The fundamental spaces of contemporary physics are the 3~dimensional
Euclidean space E, the (3+1)-dimensional Minkowski space M, the (3+I)-
dimnensional Riemannian spaces R, and others well known spaces.

All these spaces are dependent on the field in which they are defined, the
Tield of real numbers R = R(n,+x). The Euclidean space can then be written

E=EmsR:r=(xLx2x%), s=diag. (1,1, 1), (3.1.1a)
r2 = 8 x=xlxl+ x22 + x333 ¢ R=Rin+, (3.1.1.b}

where i, j= I, 2, 3and 8§ is the Euclidean metric, the Minkowski space can be
written

M=M&xnR), x=(r,x*), x*=ct, n=Diag.(11,1,-1), {3.1.2a}
2 = x4 Ty xV = xlxl+ x52 + 38 - xtx! ¢ Rin+), {3.1.2b)

where W, v = 1, 2, 3, 4, c, is the speed of light in vacuum a8 n is the
Minkowski metric; and the Riemannian spaces can be written

=fxgR), x =(r,x%), g= gx v Det.g# 0, (3.1.33)

x2 —x“grl(x)x € Rin+x), (3.1.30)

where gx) is the Riernannian metric.

By inspecting these structures, and as it already emerged from the study of
isonumbers of the preceding chapter, it is evident that the isotopic generalization
of numbers and related fields implies a corresponding, necessary generalization
of all conventional spaces of current use in mathematics and physics.



— 84—

EXTERIOR DYNAMICAL PROBLEMS IN VACUUM:
EUCLIDEAN, MINKOWSKIAN AND RIEMANNIAN SPACES

M

INTERIOR DYNAMICAL PROBLEMS WITHIN PHYSICAL MEDIA:
ISOEUCLIDEAN, ISOMINKOWSKIAN AND ISORIEMANNIAN SPACES

FIGURE 3.1.1.Aspwell known, the Euclidean {3.1.1), Minkowskian {3.1.2) and
Riemannian spaces (3.1.3) are the foundations of the Newtonian, relativistic and
gravitational,  exterior dynamical problems, respectively. As such, they provide
corresponding geometrizations of the homogeneity and isotropy of empty space
fracuum). In this chapter we shall study the isotopies of the above spaces under
the names of isoeuclidean, fsominkowskian and isoriemannian spaces which
were specifically conceived [1] for the descriptioni this time, of the respective
interior dynarnical problems. As such, they provide corresponding
geometrizations of the inhomogenuity and anisotropy of physical rmedia. In this
figure we illustrate a centrat objective of isospaces, a quantitative representation
of the deviations from motion of an electromagnetic wave in empty space
caused by motion within a physical mediurn such as our atmosphere {which is
mmanifestly inhomogeneous, because of the local variation of the density, and
anisotropic, because of the intrinsic angular momentum of Earth). A known
deviation is the replacement of the constant speed of light in vacuum Cy with a
locally varying speed ¢ = co/n where n is the local index of refraction. An
objective of isospaces is to provide quantitative predictions suitable for
experimental testspf additional deviations from motion in empty space expected
from the inhom«égéity and anisotropy of the medium itself. Primary emphasis
is put in achieving)“first, a purely ciassical description of the inhomog ty
and anisotropy WeTE Cumsidased, studied in this chapter and in Ch. 1.5, “ith
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operator descriptions to be considered only thereafter in Vol. 11.'® Another
important distinction is that between the isospaces themselyes, studied in this
chapter, and the isogeometries defined on them, which are studied in Ch. 1.5,

At a deeper study, it emerges that, for evident mathematical consistency,
the isotopies of ordinary numbers imply compatible liftings of all mathematical
Structures used in quantum mechanics. In fact, the isotopic generalization of
conventional spaces implies the necessary, corresponding generalization of the
transformations defined on them. In turn, the lifting of the transformations
implies that of algebras, groups, geometries, etc., according to the sequence:

isonumbers — isofields */ isospaces — isotransformations
= isoalgebras —+ isogrolips — isosymmetries —
— isorepresentations — isogeometries , etc.

In this chapter we shall study the isotopies of the convenfional spaces
proposed for the first time in ref. [I] of 1983, ynder the name of isotopic spaces
or isospaces for short, as the foundations of the isotopic generalization of the
Lorentz group O(3.1) and of Einstein’s special relativity for interior dynamical
problems. The isospaces were then applied in ref.s [2,3] for the construction of the
isotopies of the rotational symmetry O(3), as well as for the formulation of a
general theorem on symmetries under isotopies. [sospaces were then used in
monographs [4,5] for comprehensive applications in classical mechanics.

ﬁs"i\sodual spaces and isodual isospaces were identified for the first
timgyin ref.s {2,3], and then applied in classical mechanics in monographs [4,5]. The
first operator applications of isodual isospaces were done in ref. [6] while the
most recent advances can be found in ref. [7). A mathematical presentations is
available in memoirs [8,9].

A Tirst experimental verifications of isospaces can be found in ref. {10]
which computes a modification of the Minkowski metric in in the interior of
pions and kaons via conventional gauge theories in the Higgs secto @- itional

bn the

independent experimental verifications can be found in refs [
behaviour of the meanlives of unstable hadrons with speed. Numeroustditional
applications and experimental verifications will be studied in Vol. I1.

1% This is done to void the predictable attitude of attempting the interpretation of
interior conditions via conventional means, such as inelastic scatterings of photons on
atoms which, as such, reduce the interior problem to conventional exterior conditions.
This attitude is precluded in these volumes because it eliminates the central geometric
characteristics to be described, the 1nhomoge1@y and anisotropy of the medjum (recall
the “No reduction theorems” of Sect. 1.2). Needless to say, we shall indeed consider second
quantization and related photons, but only arter achieving a classical and direct
representation of the inhomoget@y and anisoiropy of the medium in which the
dynarnical evolution holds.
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The “direct universality” of isospaces was first proved by Aringazin in ref.
[13]. Additional studies on isospace were conducted by Lopez [14] in gravitation.
An independent mathernatical review of isospaces can be found in monograph
[15.

In this chapter we shalfstudy ?spaces at the purely classical level in
Kadeisvili's classification (Sect.$,1.5 and;2.3). The study of pseudoisospaces will be
left tgethe interested readers. Tl% isog€ormnetries built on isospaces will be studied
inC also at the classical level. Operator formulations of both isospaces and
their isogeometries are studied in Yol. I1.

3.2: ISOSPACES AND THEIR ISODUALS

Let Fa,+x} be a field (Def. 2.3.1) with elements q, 8, .., conventional sum @ + 8
@k muitiplication a*p = af and related additive and multiplicative units 0, and I,
respectively. A linear space V(aF) (see, e.g, ref.s [16-18] for mathematical studies)
.is a set of elements 4, b, c,... over a field Fla,+,%) such to verify the following laws
foralla, b,ceYanda,py €F

a+b=b+a at+(b+cl=(a+bl+g (3.2.1)
and
a(Ba)=(aBla ala+b) =aa+ab; (a+bla=aa+pa (322

and, for every a € V, there exists an elemnent —a such that

at+t(~a)= a-a =0 (3.2.2)

LY

aln . _
From the above structural lines one can € the following:

Definition 3.2.1 (1,3} Given a linear space V(aF} over a field Fla,+), the
Class I “isotopes” V(a,F) of V called *isolinear spaces”, are the same set of
elements a, b, ¢,.. € V although defined over the isofield of Class I
Fa,+*) (Def. 2.3.1) with elements @ = dl, B = l, conventional sum & + B
and isomuitiplication a* = aTB, additive unit 0, and multiplicative unit 1
=T, such to preserve all original axioms of V, ie.,

a*(B=*a)

]

(a*B)*a, a*{a+b)=d=*a+ a*h, (3.2.4a)
(a+Bl*xa = a=*a + B*a ax*(a+b) =a*a + a=b, {3.2.4b)

forall a,beVand a,B € F. The "isodual isolinear spaces” V%afd)
are Class 11 images of VaF) under the isoduality
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1/@16 =-1, (3.25)

and, as such, are defined over an isodual isofieid £4in9,+ %) of Class II.

Note the lifting of the field, but the elements of the vector space remain
unchanged. The interested reader can prove as an exercise a number of properties
of isolinear spaces and their isoduals via a simple isotopy of the corresponding
properties of linear spaces [16]. One which is particularly relevant for these
volumes follows from the invariance of the elements a, b, ¢, ... under isotopy as
well as under isoduality and can be expressed as follows.

Proposition 3.2.1 [4k The basis of a (finite~dimensional) linear space
remains unchanged under isotopy up to possible renormalization factors.

The above property essentially anticipates the fact that, when studying
later on the Lie-isotopic algebras and their isoduals, we shall expect no alteration
.of its basis because a Lie algebra is, Tirst of all, a linear space. In turn, this implies
that hadronic mechanics preserves the conventional total conservation laws
because, as well known, the generator of Lie symmetries are conserved quantities.

Linear spaces V are also calied vector spaces [16] in which case their
elements a, b, ¢, are called vectors. The isotopes V are then called isovector
spaces and ¢ are called isodual isovector spaces. Their elements a, b, c are
then called isovectors and isodual isovectors , respectively [4]. Note the
existence of the simpler isodual vector spaces vd with isodual vectors.

An important concept here is that, in all these spaces, the elements a, b, c,
-. do not change. This means that a given quantity a is a vector, or an isodual
vector, or an isovector or an isodual isovector depending on the space in which it
is defined.

Finally, note that the formulation of isospaces via Kadeisvili’s Class 11!
unifies: vector, isovector, isodual vector and isodual isovector spaces.

A metric space [16] hereon denoted S(x,g,F) is a (universal) set of elements
X, ¥, Z,.. over the fields F = Fn,+%) equipped with a nonsingular, and Hermitean
map (function) g: S x $ = F, such that:

glx, y) 20, (3.2.6a)
glx, y)=gly,x} VxyeS glx,y)l=0iffa=0orb=0or both. (3.2.61)
gx, )=glx, 2)+gly,z), Vx,yv,zeS. (3.26¢)

A pseudo-metric space, hereon also denoted by S(x,g,F), occurs when the
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first condition {(3.2.6a) is relaxed. Finally, recall that only metric or pseudo-metric
spaces over the reals F =R are used in contemporary physics to characterize our
physical space-time. Spaces over the complex numbers, such as the complex
Hermitean Euclidean spaces E(z,8,C) are used for unitary symmetries, such as
SU(2) or SU(3).

Suppose that the space Slx,gF) is n-dimensional, and introduce the
components x = (x'), y =(y!}, i = 1, 2, ... n. Then, the familiar way of realizing the
map glx, y) is that via a (Hermitean) metric g of the form

glxy) = x! 8j v Det.g # 0, g = gf. (3.27)

The axiom g(x, y) > 0 for metric spaces then implies the condition that g is
positive—definite, g > 0.

A celebrated physical example of metric spaces is the Euclidean space
(3.1.1). Pseudo—metric spaces of primary physical relevance are the Minkowski
space (3.1.2), and the Riemannian spaces (3.1.3).

The simplest possible way of constructing an infinite family of isotopes of
S(x,g,F} is by introducing n-dimensional isounits of Class I

1= (Tij) = (1), ijrns = L2..n (328)
with isotopic elements
T=11=(7)) = (i) (3.2.9)
Then, we can introduce the notion of the isomnap g: 8§ 8 = F with realization
glx, y) = (xf Qij vI)1eF (3.2.10)
where the quantity
§=Tg-= (Tikgkj). (321D

is the isometric [1].
The basis e ={e;, i= 1,2 .., n of an n~dimensional space S(x,gF) can be
defined via the rule

Then, the isobasis is characterized by
(&, éj ) = g (32.13)

The above isotopic generalizations can be expressed as follows.
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Definition 3.2.2 (1} The “isotopic liftings” of Class I of a given, n-
dimensional, metric or pseudometric space S{x.gF) over the field F =
Fla,+x), called “isospaces’, are given by the infinitely possible “isospaces”
8(x,g.F) characterized by: a) the same dimension n and the same local
coordinates x of the original space; b) the isotopies of the original metric
g into one of the infinitely possible nonsingular, Hermitean “isometric” g
=Tg with isotopic element T of Class I depending on the local variables
X, their derivatives %, &, ... with respect to an independent variable t, the
local density |, the local temperature T, the local index of refraction n,
as well as any needed additional quantity (such as wavefunctions  and
their derivative for operator formulations)

g = g=Tg, (3.2.14a)
T=Tx % %L Tn), dtT #0, TI=T>0, (3. 2.14b)
det.g =0, g= gT, (3.2.14¢)

and c) the lifting of the field Fla,+X) into an isotope of Class I Fa,+»
whose isounit 1 is the inverse of the #sotopic element T, i.e,

1=T11, (32.15)
with “isocomposition”
X y) = x,Ty)1 = (Tx, 91 =1 Ty =(x éij yvieF. (32.16)

The "fsodual isospaces” of Class It o &E,Fd ) are given by the image of
S(x,g,F) under isoduality and are defined by the map

g= g8=1dg 79 = -7, (32.17a)
1 o= W=l (3.2.17b)
with “isodual isocomposition” in gd
oy = x, T8y = (T9ey?? =

=191y =(xgd, y1)19 € 1€, (3.2.18)
1j

"A few comments are now in order. The first and geometrically most
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dominant aspect is that, because of the unrestricted functional dependence of the
isotopic element T, the isometrics g = Tg are generally of integral type.

Thus, the isotopic liftings Six,g,F} — S{x.g.f) imply a nonlocal-integral
generalization of the original local-differential space. In particular, isospaces
require a suitable integral topology for their rigorous treatment which is vastly
unexplored at this time at the pure mathematical level.

However, all integral terms are embedded, by construction, in the isounits
1. On the other hand, topologies are known to be insensitive to the functional
dependence of their own units, provided that they are positive-definite. This
implies the particular integro-differential topology of hadronic mechanics
whereby conventional topologies hold everywhere except at the unit (Fig. 1.4.1).

Moreover, again from the arbitrariness of the functional dependence of the
isotopic element T, one can readily see that the isotopies S(xgF) — $(xgF)
imply nonlinear and noncanonical generalizations of the original spaces where
the nonlinearity is in all variables and their derivatives.

Finally note from an abstract viewpoint that the distinction in the use of
different fields is meaningful in the conventional metric or pseudo-metric
~ spaces. However, at the isotopic level such a distinction cease to exists because of
the isotopic unification of ali fields and isofields of Theorem 2.9.1.

Isospaces can also be distinguished via Kadeisvili's classification depending
on the characteristics of the unit (Sect. 1.5) into:

Isospaces properly speaking (Class 1),
isodual isospaces (Class 1)
Indefinite isospaces (Class I11),
Singular isospaces {Class V], and
General isospaces (Class V).

In this section we shall solely study isospaces of Classes I, II and III, with few
comnments on isospaces of Class 1V,

An important property derived from Proposition 3.2.1 is that fhe basis of a
metric or pseudo—metric space remains unchanged under isotopies (except for
renormalization factors)

As indicated earlier, isospaces are bona-fide nonlinear, nonlocal and
noncanonical generalizations of the original spaces. Despite the above differences,
we have the following

Theorem 3.2.1 (1} Isospaces of Class I 8(x,8,F) (isodual spaces of Class I
89,5909 are locally isomorphic to the original spaces SixgF) (isodual
space S%(x,gF9)).

The above simple mathematical property has fundamental physical
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implications because, since a given space Six,g.F} and its isotope &x.g,F) are locally
isomorphic, 50 are expected to be the corresponding groups of isometries.

This implies that the isotopies of Class I of space-time symmetries such as
the rotation, Lorentz, Poincare and unitary symmetries will be locally isomorphic
to the original symmetries. Nevertheless, the explicit form of the transformations
will be generaily nonlinear, nonlocal and noncanonical, thus achieving the desired
structural generalization of conventional symmetry transformations to represent
interior problems, while achieving a geometric unity with the axiomatic structure
of the exterior problem.

Note the necessity for these isomorphisms of the Joint liftings

g = §=Tg and F = F, 1=T1 {3.2.19)

In fact, a lifting of the type S(xgF} = S(xgF), § = T g, without the joint lifting of
the base field is not an isotopy and the spaces Slx,g.®) and Sx,g®) are generally
non-isomorphic .

The same mechanism of joint lifting of the metric and of the field
characterizes the isoduality, e.g., for the Minkowski space M(x,n,R} = M3(x 9 R%)
and for the Riemannian spaces Rix,gR} = #%x,g¢R9), and it is the foundation of
our characterization of antimatter [6]

From property (3.2.18) we have the following

Proposition 3.2.2 [45} Compositions (x, y) on a given space Six.g,F) and
their isotopes (x,y) on isospaces 8(x,g,F) are isoselfdual, ie, invariant under
isoduality

() = (D gy = 9y 9 = (xi e yind. (3.220)

As we shall see, the above property implies the novel universal invariance
of physical laws under isoduality , which has been established at the classical
level in monograph [5] and studied at the particle level in these volumes.

Scalar functions f{x) on isospaces 3(x,§,F) are ordinary functions. An
isoscalar function 1(x) on 8(x,g,F} is a function with values on the isofield, i.c.,

4.
flx) = 1)1 € F. (3.21)

As it happens for isonumbers, conventional elements of a space can be preserved
(although their operations are lifted), or they can be themselves lifted. As we shall
see, this implies nontrivial consequences in functional analysis, e.g., the existence
of two, rather than one, isotopies of Dirac’s delta function.

It should be indicated that in Definition 3.2.1 the local coordinates x €
S(x,g.F) are assumed to be ordinary scalars and not isoscalars One can then build
an isospace 5(x,g,F) with isocoordinates

R
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x=x1. (3.2.22}

in which case the isocomposition is factorizable into the conventional one

2 _

% Xtk o= (xx)1. (3.2.23)

The interchange between the isotopic element and the isounit

T = 1 (3.2.24)

is called isoreciprocity map [6).
In summary, we have four different formulations of isospaces per each
individual Class, given in self-explanatory notations by

S gRn+x), SxZRMO+FH, SxER+H) SRERGEH . (3.2.25)

By recalling that the basic unit of hadronic mechanics, Eq. (1.1.1) is outside
conventional fields, and by recalling Proposition 2.3.1 and 2.3.2, the isospaces of
primary relevance for hadronic mechanics are given by the structures 3(x,g,F) of
Definition 3.2.1 specialized to the cases of isoreal and isocomplex fields £ = R, C,
plus their image under isoduality 8(x.3%,R% and under isoreciprocity 8(%,g,R).

3.3: ISOTOPIC UNIFICATION OF SPACES AND
ISOSPACES

[n Sect. 2.9 we initiated our presentation of the unifying power of isotopic
techniques, beginning with the unification of all conventional numbers into the
single abstract notion of isoreal numbers of Class 111.

We now illustrate this unifying power for spaces and isospaces. We shall
then show in Sect. 3.7 that this is not a sterile mathematical properties, because it
permits the geometric unification of the special and general relativities which in
turn, is at the foundation of their isotopies [5).

The capability of isospaces of unifying all conventional spaces was
identified by the author in their original proposal [1]. By using subsequent
advances the property can be expressed as follows:

Theorem 3.3.1 [loc. cit.k All possible metric and pseudometric spaces in
n-dimension S{r,g,F) plus all their possible isotopic images S(xgF), their
isodual images S%(x,g0,F% and their isodual isotopic images &9 (x,g%,Fd)
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can be unified into one, single notion, the abstract n-dimensional
isoeuciidean space Yx8%) of Class III over the abstract isoreals #.

In fact, the assumption of Class Il implies the relaxation of the positive-
or negative-definite character of the isounit. The property then follows from the
fact that al] p0551b1e metric g and isometrics g, as well as all their possible
isoduals g and g can be trivially derived via the isotopies of the Euclidean
metric & =diag. {1, I, .., D)

&8 = 85=7Ts T=g g gd 8¢ (33.1)

Thus, from a mathematical viewpoint, there is no need to study the
isotopies of individual spaces, because those of the fundamentai Euclidean space
are sufficient, and inclusive of all others.

Note that all possible distinctions between spaces over the real or complex
numbers are Iost under Proposition 3.3.1 because all fields and isofields are
particular case of the abstract isoreals % (Theorem 2.9.1).

3.4: ISOEUCLIDEAN SPACES AND THEIR ISODUALS

Isospaces are so fundamental for the study of hadronic mechanics to
warrant a brief individual study of the most important ones prior to the
study of their geometries. We therefore begin with the following:

Definition 3.4.1 l1l The liftings of the conventional n-dimensional
Euclidean spaces E(r,8R) over the reals R, Eq.s (31.1), into the
“isocuclidean spaces” of Class I are given by

ErsR) = B3R, (3.4.1a}

8 =[xy = & = Tlt, 1,1, 1, 1. T, 0,0 §, {34.10)
det5=1#0,6=581 = det.5=0, & = 5, (34.1¢)
R =R, 1=1!=g" (34.10)

= (r,r)=ri|‘5]-jrj sr2:=(r0) = (r,801 =

=(8r,N1'=1( 80 = [ Sij(r, £t € R (34.1¢)
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where the isofield R(D,+») is of Class I. The “isodual isoeuclidean spaces”
of Ciass II are given by the isodual image of the preceding ones

ErsR = tdrsdpd), (3.4.2a)
8=Ts = 30 = TIg = -5 Té=-T,  (34.2b)
R = RI~RYM, 19=-1 {3.4.2¢)

2=n= (et i) > 29 = (r7n%= (F8976)19 = 2 (3420)
The n-dimensional complex Euclidean spaces E(z,8,C) with separation
8z =78;7 , (3.4.3)
is lifted into the “complex isoeuclidean spaces” of Class I
Ez50 : (Z'82)1 =(?81-j )1, (3.4.4a)
§=Ts8,T=Tt,1=Tl>0. (3.4.4D)

where upper bar denoles complex conjugation. The “isodual complex
Hermitean isoeuclidean spaces” are instead given by

Bdzs909) . (Ztedz)1d =( 7 Sd]-j )4, (3.4.5a)
88 = 745, Td=-7,179 = -1. (3.4.5b)

We now outline a few mathernatical and physical aspects of isoeuclidean
spaces for subsequent more detailed treatment. The applications of isoeuclidean
spaces are of three primary types:

A) Geometric applications. Recall that the conventional Euclidean metric
8=diag. {1, I, I) is a geometrization of the perfect rigid sphere with unit radius.
From their topological characteristics, isometrics of Class I can always be
diagonalized. We can therefore always assume the realization of the isotopic
element in the diagonal form

T = diag. (02,02, b?), by =byft, 1,8, .)>0,k=1,23 (348

where the b's are called characteristics functions of the isospace.

The first geometrical application of isospaces is therefore that of
representing all infinitely possible deformations of the original perfect sphere &
= diag. {1, 1, 1) into the ellipsoids with semiaxes
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1 = diag. (b 2,172, b572), (34.7)

where the functional dependence expresses the physical origin of the
deformations as due to local pressures, densities, temperatures, etc. We therefore
have the:

Geometric meaning: the isounit permits a direct representation of the
actual nonspherical shape of a given body as well as the representation of
all its infinitely possibie deformations.

¢

As we shall see, this capability exists at the pure classical level [5] and then
simply persists under operator formulations prior to any second quantization or
use of form factors.

B) Analytic applications. As well known, nonrelativistic exterior
dynamical problems are representable via conventional analytic equations, such
as Lagrange equations, which are defined on the 3-dimensional Euclidean space
E(r3.R) (plus an additional one dimensional space representing time, see below). In
this case the trajectory in vacuum is solely characterized by one single quantity,
the Lagrangian L=K -V,

The main objective of the isotopies is the representation of interior
dynamical problems with conventional potential forces, plus contact, nonlinear—
nonlocal-nonlagrangian'’ forces due to the medium. In this latter case, the
system is represented by two independent quantities, the Lagrangian L= K - V
and the isounit 1. We therefore have the following

Analytic meaning: The isounit permits a direct representation of contact,
nonlinear—nonlocal-nonlagrangian forces for interior physical conditions.

The Lagrangian L must now be properly written in isoeuclidean space
E(r,8,R). This results in expression IL([ ﬂ =R - Vﬁ which is defined in terms of
the conventional coordinates x and velocitiés %though all their operations are
now of isotopic character.

In particular, the isokinetic energy is given by

o
R=Kg=+m¥ = tm~\ = PmY T, (3.4.8)

17 By “nonlagrangian” we mean hereon non—first-order Lagrangians, namely, equations of
motion which violate the integrability conditions for their representation via first~order
Lagrangians L = L{t, 1, t). Evidently, higher order Lagrangian may exist, eg., L = L{t, 1, f, 1).
The point is that, under these latter conditions, there is no (conventional) Hamtltonian. The
term "noncanonical” is then used as a synonym of “non-first-order-Lagrangian®.

®
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and the isopotential energy is given by the isotopic image of the function V{x)
{see Ch. 6), e.g., for the case of V{x) depending on the norm x

1’7( V('): - (1*4)*. (3.4.9)

The isotopies of the analytic equatiorls in which the above isofunctions are
defined with various examples are studied in Ch. 5 of this volume and in Vol. II.

Even though not claimed to be unique, the above isotopic representation
has already been established as being effective and "directly universal” in classical
mechanics [5]. Its effectiveness and “direct universality” in particle physics will be
studied in these volumes.

By adding the preceding geometric meaning of the isounit, one can see that
isospaces provide a direct geometrization of the inhomogenuity and anisotropy
of physical media (Fig. 3.1.1). In fact, the inhomogenuity can be represented in
isospaces, e.g., via a dependence of the isometric 8 on the locally varying density
1. The anisotropy, €.g., due to the presence of an intrinsic angular momentum
along the direction T, is then representable via a factorization of such a preferred
direction also in the isometric, much along the Finslerian geometry, for via the
differentiations b # by # bs,

Note that the representation is "direct” because occurring directly in the
isometric itself, without any need of operator formulations or any use of
artificial or indirect approaches.

Thus, the transition from exterior to interior conditions is done via a
generalization of the basic unit [ =1. A condition the reader should keep in mind
to avoid undetected inconsistencies is that in most (but not necessarily all'8)
physical applications the isounits 1 are constructed in such a way to recover the
conventional unit identically in the exterior problem.

This condition can be realized by assuming that the entire matter of the
medium considered is enclosed in a minimal surface $° with local radius R° and
density 1, in which case

Trzg =1 = diag.(1, 1,1}, or Limygl = 1. (34.10)

'¥ There are cases in which extended particles in vacyum can effectively use isotopic
theories, e.g., when they are extended and experience deformations due to externat fields,
such as a charged sphere in vacuum under the influence of an intense electric field. Even
though there are no nonhamiltonian interactions, the generalization of the unit is still
effective, as shown in details in ref. [5] because the physical event of deformation of
shape is conceptual, geometrically and analyticaily outside the representational
capabilities of the Hamiltonian. The not necessarily unique, yet simple, direct and
effective approach used in these studies is the representation of these nonhamniltonian
effects via a generalization of the unit.
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Note that the 3-dimensional Euclidean “space” is one. On the contrary, there
exist infinitely many 3-dimensional isoeuclidean “spaces”. This is evidently due to
the infinitely possible. isometrics 8 representing the infinitely possible physical
conditions of interior problems.

We finally remark that, when overall notions are needed, that is, the
quantities are referred to the physical medium as a whole, the characteristic b-
functions can be averaged into constants

bk = <, h,.)>, k=123 (34.11)

As we shall see, constant iSotopic elements T and characteristic b*~quantities will
have numerous applications. The point to keep in mind is that such constancy is
in actuality an average over a rather complex functional dependence.

C) Algebraic applications: Recall that the unit | = diag. (I, 1, 1) of the
. Euclidean space is the fundamental unit of the related Lie\ theory, e.g., the unit
of the group of isometries of the Euclidean space, the orthogonal group O{3). The
following property is then consequential

Algebraic meaning: ‘The isounit constitutes the basic generalized units
of the Lie—isotopic theory .

As we shall see in the next chapter, the isotopies of Lie's theory for the
achievement of nonlinear, nonlocal and noncanonical realizations of conventional
space-time and unitary symmetries is based precisely on the isotopies 1 = 1.

The following property is a consequence of Theorem 4.2.1.

Corollary 3.2.1A: Isoeuclidean spaces Elr.8R)} of Class I fisodual
isoeuclidean spaces of Class 11 EXr89R9) are locally isomorphic to the
conventional Euclidean spaces of the same dimension E{r,8,R) (isodual
Euclidean spaces of the same dimension E%r,89R%) .

We shall say that, from a geometrical viewpoint, Euclidean spaces and their
- isotopes are equivalent, as ensured by the preservation of the original axioms, as
well as the identity of the two spaces at the abstract level, and we shall write
E{r8R)~ E(r3R).
We close this section with the identification of the isoeuclidean spaces used
in nonrelativistic hadronic mechanics, inclusive of a time component.

Definition 3.4.2 [5l: The “nonrefativistic isotopic space-time” of hadronic
mechanics of Class I is'given by the Cartesian product of two isoeuclidean
spaces, one representing time and the other representing space with
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corresponding iso;unfts Tt and 1, isocomposition
BLROXECBR: 2= (1T, e Ry, 1, = Ty, (3412
2=(ATsr)l eR, 1 =171, (34.11)
and diagonal realization
T, = b, by =bdt,ntwTn ) >0, (34. 122)
T = diag. (0,2, b2, bg? ), by = bylt, 1, 1, 1, .) > 0 (3.4.12b)

The “isodual nonrelativistic isotopic space—time” of hadronic mechanics of
Class II is then given by

BYLRY ) x EYratRY: 129 = (¢79, 0018, € RY,, (3413
24 = (ft7d51)19 ¢R, (3.4.13b)

W= 8 rt==1, 1M=(rdrl=—qp, (3.4.13c)

T = -b2, by =btnfuTn ) >0, 54130
T = - diag. (0,2, b2, B2), by = bylt, T, £, F, .0 > 0. (3.4.13¢)

As it is the case for all other quantities, the above definition implies the
existence of four distinguishable nonrelativistic times in hadronic mechanics:

Time, as the usual element t of the field of real numbers Rit,+x)
Isotime, the element t=1t1, € RE+*};

Isodual time, the element t‘5 =t 14 e RYd+xd)

Isodual isotime, the element 1% = t19, € R%{td+9)

The following property is a consequence of the theory of isonumbers of
the preceding chapter.

Proposition 3.4.1: The direction of time (Eddington’s “time arrow”)
changes sign in the transition from our space-time to its isodual .

In fact, under isoduality, we have the map of our time t € R({t, Ry)

t>0 = t9=t19=-¢ <o, (3.4.14)
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and the same result occurs under isotopy.

The isotopies of time have been introduced here via the purely
mathematical use of the methods studied until now. Nevertheless, as we shall see
in the next section, the time isotopies emerge rather forcefully from the
nonrelativistic limit of relativistic isotopic theories.

3.5: ISOMINKOWSKI SPACES AND THEIR ISODUALS

We now study the central carrier spaces of the relativistic hadronic mechanics,
according to the following:

Definition 3.5.1 [Il  The isotopic liftings of the conventional (3+1)-
dimensional Minkowski space M(xnR) of Class I over the reals R(n+x)
are given by the isotopes called “isominkowski spaces”

MixnR) = NMDR), (35.1a)
n=diagll, , L,-1) = =T x,% % T, n.)1n, {3.5.1b}
det n=-1%0, T}=nT = detn#0, ;]T=ﬁ, (3.5.1¢c)

R =R, 1= T, (35.1d)

x2=(x,x)=x“npvxv > x2=&x = &TXT =

(Tx, V1=, Ty) =" f]m,(s, L5 53311, mv=1,234 (35.1e)

with diagonal realization of the isounit and isoseparation
T=diag. (525, 2520250, By=bsx% ...)>0 (3522
x2 = (x'b2xl + x2p2R@ + Bp2 8 - ¥ b2x*)1 e R. (35.2b)

invariant measure

o5 = (- dx f, ax¥ )1, (35.3)
and characteristic functions constants
By = <bhylsx%.)>,p=1234 (35.4)

derived via a given averaging procedure <..>. The “isodual isominkowski
spaces” of Class II are given by
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MIxAERY: 79 = THx, %, %1, T, 00 = - (3.5.5a)
T =-1  1¥=(795! = -1 (3.5.5b)
x20 = ('xF = xT901¢ = (TOx,y)1¢ =194, T9y) =
[xH f]dw( X% % )xVITE = 2 = [ Aupls X, %, %,.0 XV 11 (3.5.5¢)
with diagonal realization of the isodual ispunit and isodual isoseparation
19 =-diag. (b;2 b2 b2 b 2)> 0, by=Dyls,x....)> 0, (3.5.62)
x20:=(~x'b2x! - 2p22 - B2 + xipZx)19eR?. (356D)

invariant measure
¢ = (+axtnd, 6 N9 = as? (35.7)

and characteristic functions averaged into constants
by = <blsix %>, pu=1,234 (35.8)
which coincide with those of the isospace .

Again, we have four distinguishable types of spaces: the conventional
Minkowski space M(x,nR), the isominkowski spaces M(x,7R), the isodual
Minkowski space M3¥n%R9), and the isodual isominkowski spaces NO(x7%R9).

The conventional Minkowski space is and will remain the fundamental
space for the description of particles and electromagnetic waves in vacuum (Fig.
3.1.1). The primary function of isominkowskian spaces is to provide a relativistic
geometrization, first, of classical physical media (see also Fig. 3.1.1) and, then of
the interior of hadrons, upon suitable operator formulation. The primary
geometric task is therefore the representation of the departures from the
homogeneous and isotropic vacuum expected, classically, from physical media in
general, and the deep superposition of the wavepackets of the particles, for the
case of hadronic matter at large.

In the latter case we recall that all massive particles have an
experimentally established wavepacket/wavelength of the erder of | fm (10713
crm). But all hadrons have a charge distribution with a radsfus also of the order of
1 fm. The region of space in the interior of hadrons are then expecied to have a
nonlingar, nonlocal-intégral and noncanonical-nonhamiltonian structure for
which representation the isominkowskian spaces were built for [1].
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The isominkowskian characterization of the interior of hadrons has
received numerous direct and indirect experimental verifications which will be
studied in detail in Vol. [II. We here limit ourselves to recall that
phenomenological calculations conducted in ref. (10] via the conventional gauge
theory in the Higgs sector identify the following modification of the Minkowski
metric in the interior of pions and kaons

i = Diag. [{1-a/3), (1 -a/3), (1~ a/3), <1 +a)], (35.9)
with
a =-379%1073 for pions and a = +6.1x10™4 for kaons, (3.5.10}

It is evident that modified metric (3.5.9) is a particular case of the general
class {3.5.5.2b) for b*) = b’ =b°3=b°

| = diag. (b2 1°)2 %2 - b°2), (35.11a)
b2 =1+ 12%10%, p2= 1-379x10" for pions, (3.5.11b)
b2 =1 - 21074, b2 =1+ 607 for kaons, (35.11c)

Similarly, the phenomenological studies of ref.s [11] conducted also for the
kaons yield the numerical values

b2 = %2 =p%2=1"2 = 0.909080 & 0.0004, b",2= 1.002+ 0.007, (35.12)

which are remarkably close to value (3.5.1 i} for kaons.

Note the change of value {as well as of sign of the a-parameter) in the
transition from pions to kaons thus confirming the expectation that the
characteristic b*—quantities are different for different physical conditions. In
fact, the charge radius of hadrons is approximately the same for all particles,
thus implying different densities for different hadrons, which result in
different interior conditions for different particles and, therefore, different
hadrons necessarily have different values of the characteristic ql"—constants.

This point has been here illustrated to prevent the customary tendency of
looking for universal constant, which is inapplicable under isotopies because
quantities that are constants in quantum mechanics, such as Planck’s constant f,
the speed of light ¢, , etc, are replaced with locally varying values.

By now mean, one should therefore search for the “universal values” of the
characteristic bu°-constants because such constants provide an average of the
physical characteristics of the medium considered and, as such, vary from
medium to medium.

The primary physical application of the isodual Minkowski space
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Md(x,nd,Rd) is the representation of antiparticles in vacuum via the representation
of negative—energy solutions of conventional relativistic field equations {such as
Dirac’s equation). In fact, it is easy to see that the expression

gd = pd, = -E. (35.13)

The aspect we have to show later on in Volume II is that negative-energy
solutions behave in a fully physical way when interpreted via isodual spaces.

Recall that, by putting x2 =R? = const., the non-relativistic limit of the
Minkowski space is the familiar structure

Lim gye = o MixnR) = E{tLR,)xErsR). (3.5.14)

Along the same lines, by assuming x2 = R2 = cost,, it has been shown in ref. [5], Ch.
VI, that

Lim gre - o MAR) = B(LR)x BIAR), (35.15)

thus recovering the isoeuciidean space of nonrelativistic hadronic mechanics of
Definition 3.4.2.

Note that, jointly with the "decoupling” of space and time, we have a
corresponding “decoupling” of the space and time components of the isotopic
element T and isounit 1. Then the isorelativistic quantity b4‘2 hecomes the
nonrelativistic isounit of time.

A further geometric meaning of isormninkowski spaces is provided by the
realization

by = 1/n, B =1234. (3.5.16)

under which the isoseparation becomes

Py x2 52 4+ 58 3 - x4 — x4y, {3.5.17)

where we have ignored the factor 1.

Let us recall that the constant value n°4 represents the index of refraction
of light for transparent, homogeneous and isctropic media such as water. The
speed of light is then

c=cy/ng<cy. (3.5.18)

When the medium is transparent, but no longer homogeneous and isotropic, the
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index of refraction n, acquires a rather complex functional dependence on the
local density . the local temperature T etc., in which case we have the locally
varying speed of light as in Fig. 3.1.1

¢ =chT,.J = ¢/ ngdx T, ., (35.19)

as experimentally established, say, for light traveling in our atmosphere.

Thus, a geometric meaning of the characteristic quantity by = I/ng is that
of characterizing the inverse of the local index of refraction of light. Its average
b°4=1/n°4 then provides the "giobal” quantity, such as the average speed of light
throughout our entire almosphere ¢ = cgb°y = ¢,/n°,.

When the medium is no longer transparent to light, the quantity by persists
although it acquires a pure geometrical meaning much similar to the term 244
in gravitation, without representing any actual physical speed.

The remaining space quantities by are an isorelativistic extension of the by
term. To begin their illustration, consider first the case of the homogeneous and
isotropic water. Then simple considerations lead to the identities by =1/n%p=1,
2, 3, 4, with corresponding lifting of the separation

!

x4 5 X = ——x2, {3.5.20)
| empty space | water n"’f

This establishes that the transition from empty space to water is directly
representable via the simplest possible isofopy called “scalar isotopy”, that with
by = 1/ng, = 1, 2,3, 4 (see ref. [5], Ch. IV, for a detailed study).

If the medium is inhomogeneous and anisotropic, such as our atmosphere,
we have the inapplicability of the geometric foundations of the special relativity.
Nevertheless, its isotopies have shown that the isorelativistic transformation of
the locally varying index of refraction n, yields generally different space values
ngy , k=1 2 3 precisely because of the inbomogeneous and anisotropic
structure, thus resulting in isoseparation (3.5.2

The following property is a corollary of Theorern 3.2.1:

Corollary 3.2.1B: Isominkowskian spaces of Class I M(xn,R) (isodual
isominkowskian spaces of Class II MYx9RY) are Jocally isomorphic to
the conventional Minkowski space M{x,n\R) (isoduai isominkowski space
M%x,nd R9).

Despite the profound differences in functional dependence, conventional
and isotopic Minkowski spaces are "geometrically equivalent”. In fact, all the
original geometric axioms of the space are preserved as a central condition of
isotopy. ‘

This implies that certain operations are equivalently done in both spaces.
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As an example, one can introduce the contravariant isometric tensor T in
Mix,7,R(n,+%)} with elements'?
W x, %, ) = (gl x, %, LT, (35.21)

Then, the transition from covariant to contravariant indices, and viceversa, is
done as in the conventional case

X, = R, xt o= Wy, (35.22)

This implies that, by ignoring the multiplicative isounit, the isoseparation can
formally be written in a way identical to the conventional one,

= v T ¢ xV
Xy quM =xty, XY o= o, m - X A0 x, %, )XY (3.5.23)

In this sense, most of the relativistic isotopic formulations are “hidden” in the
conventional ones. To identil'y them, one must identify the basic units and related
assumptions. )

Despite this "isotopic equivalence”, the physical differences between the
isotopic and conventional formulations are considerable and experimentally
measurable, classically and operationally. In fact, isorelativistic theories can:

A) Directly represent the actual, generally nonspherical shape of the
considered hadrons, say, an oblate spheroidal ellipsoid;

B) Can directly represents all infinitely possible deformation of the above
original shape due to sufficiently intense external fields or collisions;

C) Directly represent the nonlinear, nonlocal and nonhamiltonian dynamics
of the interior particle problems (that is, particles moving inside other particles);

D) Directly geometrize the inhomogenuity and anisotropy of matter; and

E) All the above via a covering of conventional Minkowskian formulations,
which admit the latter at the limit1 = I.

We close this section with the following Corollary of Proposition 3.3.1

Corollary: 3.3.1A: The conventional Minkowski space M(xnR) in (3+1)
space-time dimensions is an isotope E(r8,R) of the 4-dimensional
Euclidean space Ex,8,R) of Class III characterized by the isotopy of the
metric

8= Igeq > 8 ="T8 =1 =diag {1, L, 1,-1), (3.5.24)

under the redefinition of the fields

19 The reader who has acquired a technical knowiedge of the prech;lng analysis can see
that the contravariant isometric tensor on Mlx, iR, +* isgivenby 1" = §{ ' 1
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Rak, 1=T!=ql=9q (3.5.25)

In fact, the way according to which the isominkowskian spaces were
derived the first time [1} is given by the “isotopies of isotopies”

Efr8R) = Eg x8R~MxnR) = Mx{R). (3.5.26)

The reader shouid remember that the isotopy of the field is a feature
needed for mathematical consistency, but it does not affect the practical
numbers of the theory. In fact, as pointed out in the preceding chapter, the
product of an isonumber © by a quantity Q in Minkowski space coincides with
the conventional product

n*Q = nQ. (35.27)

Also, as we shall see in the next chapter, the symmetries of Eg,;(x8,R) and those
. of Mi.R) coincide because characterized by the same metric § = 1,

This essentially means that at the isotopic level of Class i1, there is no
essential geometrical distinction between the 4~dimensional Euclidean space
E(r,8,R) and the (3+1)-dimensional Minkowski space M(x,n,R). These notions are
important pre-requisite for their isotopic liftings [1]

We finally close this section with the following important property proved
by Aringazin [i5)

Proposition 3.5.1 lloc. cit.}: fsominkowski spaces of Class I are “directly
universal” for all infinitely possible deformations of the Minkowski metric
preserving the signature (+, +, +, =), i.e, they are capable of representing all
possible modifications of the class considered, directly in the frame of the
experimenter. A similar occurrence holds for the remaining classes with
different signatures.

Aringazin [loc. cit.) illustrated the above property, as we shall review in
details in Vol. 11, by showing that al! generalizations of the Einsteinian expression
for the behaviour of the meanlife with speed existing in particle physics are
particular cases of the single, unified, geometric expression characterized by the
isominkowskKi space. The difference between one or the other of the existing
expressions is merely due to the assumption of different expansion with different
parameters, different truncations, etc.

The above property should be kept in mind because other approaches to
the interior problem are. indeed possible, and their study is indeed encouraged,
with the understanding that they are expected to be particular cases of isotopic
techniques.



- 106 —

This completes our preliminary presentation of isominkowski spaces. We
will have ample opportunities of additional studies during the course of our
analysis.

3.6: ISORIEMANNIAN SPACES AND THEIR ISODUALS

The additional spaces of particular relevance for isotopic studies can be presented
via the following:

Definition 3.6.1 [1,5k The liftings of a given n-dimensional Riemannian
or pseudoriemannian space WH(xgR) over the reals Rin+x) into the
infinitely possible isotopes R{x,gR) of Class I called “isoriemannian spaces”
are given by

#fixgR = RxgR), (36.1a)
g=glx) = g = T x %%, 70, .0 gk, ' (3.6.1b)
Det. g =0, g=gl = Det. §#0, §=4§, (36.10)
R >R 1=T170 (36.10)

&y =[xlg 1l = &]X) = & T = (Txx1
=1 Tx =[x gfs x5 2. 11 eR. (36.1e)
with “invariant isoseparation”
ds? = (= dx g,f5 % % &, .) dxV 11 (36.2)

The “isodual isoriemannian spaces” of Class If are given by

six gl 8% 38 = THs, x, % L T, ) gl =— B (3.6.38)
Re, 19 = (a5l = (3.6.3b)
kox8 = (x, T9x19 = (19%, 019 eRY. (3.6.3c)

with “isodual invariant isoseparation”

a2 = (+ a6 % %, ) ax 119, (36.4)



— 107 —
As now familiar, the above definition characterizes four important spaces:

Riemannian spaces #(x,gR);
Isoriemannian spaces Aix,gR);

Isodual Riemannian spaces #%xg%R9); and
Isodual isoriemannian spaces $%x5%R9).

The conventional Riemannian spaces are {and will remain) the basic spaces
for the representation of gravitation in vacuum because, as stressed in Ch. I, the
Riemannian geometry is exactly valid for the exterior gravitational problem .

The primary physical application of isoriemannian spaces for which they
were built in the first place [4,5], is a more adequate representations of the
interior gravitational problem , such as the study of the interior of a neutron
star and, more specifically, of gravitational collapse.

The interior of the systems considered is composed by a large number of
particles/wavepackets/charge distributions, not only in condition of total mutual
penetration, but also of compression in large numbers into a small region of
space. Under these conditions, the emergence of interior nonlinear, nonlocal and
nonlagrangian interactions is beyond credible doubts, and so is the lack of exact
applicability of the conventional Riemannian spaces in favor of structurally more
general spaces.

The understanding {stressed in Ch. 1) is that the Riemannian spaces are
indeed approximately valid for nonlocal-nonlagrangian conditions.

The isodual Riemannian spaces are the central tool for our characterization
of antimatter in vacuum, while the isodual isoriemannian spaces are used for the
characterization of antimatter in interior conditions.

The reader can now begin to see the “hidden universe” mentioned in Ch. 1.
In fact, Riemannian and isodual Riemannian spaces share the same separation by
construction . As such, it has not and cannot be identified with Riemannian
techniques, although it can be identified and distinguished from the conventional
universe via the isotopic techniques.

As one can see, the functional dependence of the isotopic element remains
again totally unrestricted under isotopies. Thus, isoriemannian spaces are bona-
fide nonlinear (in the velocities) nonlocal-integral and nonpotential-
noniagrangian generalizations of the conventional spaces.

Despite these physical differences, the two spaces are geometrically
equivalent, as expressible via the following particular case of Theorem 3.2.1:

Corollary 3.2.1C: A given (3+1)-dimensional Riemannian space R{xgR)
(isodual space R(x.gd RY) and all its infinitely possible isotopes of Class I
R(xgR) (isotopes of Class I #Oxg%RY) are locally isomorphic .

We should again recali that this is possible because of (and only under the)
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joint liftings
g~ Tg, ] - 1=T1", (3.6.5)

which ensures that all the deviations from the Riemannian spaces (velocity-
dependent, etc.) are embedded in the isounit of the theory. In particular, the
above mechanism permits the use of the integro—differential topology indicated
earlier, with considerable simplifications over the conventional, rather complex
integral topology.

As an example, a conventional integral generalization of the Riemannian
metric g — g without the joint lifting of the unit would require a full integral
geometry, without any local isomorphism, in general, between the oid and new
spaces. .

Corollary 3.2.1C implies that some of the operations in isorierannian spaces
can be conducted in a way geometrically equivalent to the conventional ones, as
it was the case for Minkowski and isominkowski spaces. Nevertheless, as we shall
see in Ch. 5, the isoriemannian geometry is structurally different than the
conventional Riemannian geometry, evidently because of the explicit dependence
in the velocities and accelerations.

Note that, we have the Euclidean “space” and Minkowski “space” because
their metric is unique, while we have Riemannian “spaces” because we have an
infinite number of different (but geometrically equivalent) metrics g. By the
same token, we now have an infinite number of isoriemannian spaces for each
given Riemannian space. This multiple variety is necessary to represent physical
reality. In fact, for each given total gravitational mass M, and, thus, exterior
metric g, there exist infinitely different interior conditions depending on size,
density, temperature, etc. Thus, each given exterior total gravitational mass M
admit an infinite number of interior isometrics g for the representation of all its
possible physical realizations.

This point is important to understand that, under no condition, one should
expect isotopic techniques to predict the numerical values of the isotopic element
T because this would be exactly the same as requiring Einstein’s gravitation to
predict the numerical value of the mass.

On the contrary, a beauty and effectiveness of Einstein’s gravitation is that
it applies for all infinitely possible masses M whose explicit value in a given case
must be obtained from experimental measures. By the same token, the physical
effectiveness of isotopic theories is that they apply for all infinitely possible
interior conditions whose characteristics must be identified via experiments.

In the final analysis, one should remember that no theory, whether
conventional or isotopic, can predict the numerical value of its own unit.

It is best to provide some explicit example of isoriemannian metrics which
can later on be of guidance in further studies.
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Recall that the Riemannian spaces are locally minkowskian. This property
is evidently preserved under isotopies, according to which isoriemannian spaces
are locally isominkowskian , as evident from the preservation of the signature
{(+, +, +, =),

As shown in ref. [7], the above property essentially implies that the isotopic
element T in gravitation is considerably similar to that in isominkowski space.
In fact, owing to their characteristics for Class I, isotopic elements can alway
(but, as we shall see, not necessarily) diagonalized into the form

T = diag. (b2 b2, %, b2), b, =bfs,x, % ) > 0, (3.6.6)

An isoriemnannian line element is then the following isoschwartzschild line
elemnent [7]

ds? = b2 (12 M AT ldr2- 5,212 662 - 1,2 12 sin? 8092+ b,2(1-2M /1) di? (3.67)

As one can see, the characteristic b~quantities essentially represent the
deformation of the conventional metric expected from nonlinear, nonlocal and
nonlagrangian internal effects. In fact, isoline element (3.6.7) can directly
represent the decrease of the speed of light within a physical medium while the
conventional element evidently cannot because conceived for exterior conditions
in. vacuum. The novel, experimentally testable and intriguing predictions of
isotopies of type (3.6.7) will be studied in Vol. Il and iII.

Moreover, the characteristic b-quantities can be effectively averaged for
all “global” treatments, such as the speed of light throughout our entire
atmosphere

T = <T> = diag. (b°20%2,b%2,0°2), b’ = const >0, (36.8)

thus setting the foundation for quantitative predictions of interior effects which
are verifiable with contemporary experiments (see Vol. I11).

3.7: ISOTOPIC UNIFICATION OF MINKOWSKI AND
RIEMANNIAN SPACES

As indicated in Ch. 1, isotopic techniques also have significant applications for
conventional theories in vacuum. The best way to illustrate this possibility is
by showing the new geometrical and physical insights permitted by the isotopies
in gravitation. In turn, this can set the foundations for novel possible, such as an
unambiguous operator form of conventional gravitation, or a novel approach to
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singularities.
Let us begin our study with the following now evident property:

Corollary 3.3.1B: The conventional, (3+1)-dimensional Riemannian spaces
Rix.gR) are isotope E{x8R) of the 4-dimensional Euclidean space E{x5%)
of Class [1I characterized by the lifting of the Euclidean metric 8 = diag.
(1, 1, 1, 1) into the Riemannian metric g

8=1lIpy » TS =g B7.1
and by the corresponding lifting of the field
R=R 1=T11=g1 (37.2)

By recalling Corollary 3.3.1A, we lose any distinction at the abstract isotopic
level between Euclidean,Minkowskian and Riemannian spaces of the same
dimension. The following additional property also holds

Corollary 3.2.1B: The conventional (3+1)-dimensional Riemannian spaces
R(x,g.R) can be reinterpreted as isotopes Mx,N,R) of the Minkowski space
M{x,nR) of Class I characterized by the lifting of the metric

n = diag. (1, 1, ,-1) = T&n = gi), {37.3
and of the field

R=R~Rl, 1=[{TxTL (3.7,4)

In fact, all possible Riemannian spaces must verify the isotopic
decomposition of the metric

glx) = Ty, T} > 0O, (37.9)

where the positive—definiteness is evidently due to the locally Minkowskian
character. The above reinterpretation of Riemannian spaces then follows.

A simple example is provided precisely by the Schwartzschild metric in
spherical polar coordinates

ds? = (12M /e dr2 -2 d? -2 sin? 0 do2 +(1-2M/r1) 62, (376

which exhibits a manifeét'isotopic structure with respect to the Minkowski space
with characteristic b—-functions
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T = diag. { 1-2M/r)7 ), 12, P2sin?¢ (1-2M/1)) (387D

The above properties imply that the transition from relativistic to
gravitational formulations is an isotopy [5]. This concept is at the foundations
of the study we shall conduct in Ch. 5 of the isosymmetries of conventional
gravitational theories, the isotopic formulation of gravitational singularities and
other aspects.
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4: LIE-ISOTOPIC THEORY

4.1: STATEMENT OF THE PROBLEM
Lie’s theory with the celebrated product
(A,Bl = AB - BA, (4.1.1)

where AB is the conventional associative product, is the true structural
fcﬁb@ation of quantum mechanics. In fact, most quantum mechanical laws, such
as unitary time evolutiong or Heisenberg’s equation, can be simply “read-off” Lie’s
theory via a mere interpretation of its generators as operators on a Hilbert space.
The isotopic generalization of Lie's theory under the name of Lie-isotopic
theory was submitted by the author in memsir [1] of 1978 with basic product

[AB] = A*B - B*A = ATB - BTA = (4.1.2)
= AT(, x, %, &, ¢, 91, 0, T, 1, T, 0, .JB = BTL, x, %, %, &, Ut, &, 8dt, 1, T, m, ..JA,

because it implies a step—by—-step generalization of quantum mechanics with new
dynamical equations, new interactions represented by the isotopic operator T, and
new notions of symmetries. The existence of the new mechanics was confirmed
in memoir [2] of the same year, and proposed for study under the name of
hadronic mechanics®

The isotopic content of memoir (1] was then developed in monographs [34]
and in the initial papers {5-9] 2. Additional structural advances in the Lie-
isotopic theory were made in memoir [16-18] of 1989, which were then presented
in the mathematical literature in ref.s {19-20] and developed in monographs
(21,22]. :

20 1t should be noted that the Lie-isotopic theory was subinitted as a particular case of
the yet more general Lie-admissible theory reviewed in C@

The more general Lie-admissible theory was develo in monographs (11,12} and
initial papers [13~15]
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FIGURE 4.1.1: Lie’s theory is today an articulated body of inter-related methods in
algebras, geornetries, functional analysis and other fields virtually encompassing
all branches of mathematics [31-33]. Its most fundamental structure is the
universal enveloping associative algebra E(L) of a Lie algebra L [31] with
conventional associative product AB among vector-fields A, B on a cotangent
bundie or operators on a Hilbert space. In fact, the knowledge of & permits the
construction of: the Lie algebra L as the attached antisymmetric aigebra £ ~ [E(L)];
the corresponding connected Lie group G via exponentiations in (L) the
representation theory; etc. In memoir [1] this author submitted the elements of the
Lie-isotopic theory conceived as a step-by-step isotopic generalization of the
above formulation of Lie theory, beginning with the isotopies of universal
enveloping algebras, and then passing to the isotopies of Lie's algebras and groups,
the isotopies of the representation theory, etc. The dominant motivation of the
proposal was of purely physical character and consist in: a) achieving methods for
the construction of nonlinear~noniccal-noncanonical symmetries for interior
dynamical problems; b) in such a way to preserve the abstract axioms of the
contemporary linear-locai-canonical symmetries of exterior dynamical problems,
c) 50 as to achieve a unity of mathemnatical and physical thought admitting of both,
exterior and interior problerns merely expressed in different realizations. °

Physical contributions on the Lie-isotopic theory by various authors are
numerous. An independent review of contributions up to 1990 of primarily
physical character is the monograph by Aringazin, Jannussis, Lopez, Nishioka and
Veljanoski [30). An update to include subsequent contributions is presented in
Vols IT and III. Besides the presentations at the meetings listed in Sect. 1.4, it
may be significant to indicate the following physical contributions at meetings
during the summer of 1993

> International Workshop on Symmetry Methods in Physics, JINR,
Dubna, Russia, July 1993, with a presentation of: nonlinear-nonlocal-
noncanonical isosymmetries [40); their application to the apparent possibility of
building unstable hadrons via chemical synthesis of lighter hadrons and therefore
controlling their artificial disintegration {41}; axiomatic isotopic reformulation of
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the so—called q-deformations of Lie symmetry {42} isotopic formulation of
creation—annihilation operators [43}; and others;

> International Workshop on Secrets of Quantumn Logic and Intuition,
JINR, Dubna, July 1993, with a systematic study of the isotopies of the Poincare
symmetry and their applications to interior dynamical problemns [44}

> Third International Wigner Symposium, Oxford University, England,
Septemnber 1993, with a presentation of isosymmetries and Klimyk's rule for their
isorepresentations (see Sect. 4.7); the isotopic reconstruction of the exact Lorentz’s
symmetry under Q-operator deformations; applications to reconstruction of the
exact isospin symmetry in nuclear physics and other topics [45}

> International Symposium Deuteron 1993, JINR, Dubna, Septemnber 1993,
with the presentation of the apparently first exact representation of the magnetic
moment of the deuteron and of other few—body nuclei via the isotopic
representation of nucleons as nonspherical-deformable charge distributions [46};

> XVI International Conference in High Energy Physics, IHEP, Protvino,
Russia, September 1993, with a presentation of the isotopies of quark theories to
achieve an exact confinement as well as convergent isoperturbative series {47],

and the isotopies of Riemann for interior gravitational problems [48};
' > VI Trilateral Seminar in High Temperature Superconductivity, JINR,
Dubna, September 1993, with the application of the isotopic techniques for a
quantitative representation of the attractive interactions among the electron
pairing in superconductivity [49};

> International Conference on the Frontiers of Physics, Olympia, Greece,
September 1993, with a quantitative representation of the anomalies in redshift
and blueshift of quasars via the isotopies of conventional geometries for interior
physical media [50], an axiomatic theory of complex time to represent open
systems [51); and other topics.

By comparison, pure mathematical studies on the Lie-isotopic theory (as
referred to in Fig. 4.1.1) have been conspicuously absent until recently??. [n fact,
to the author’s best knowledge, the first contribution in a mathematical Journal
mentioning the words “Lie—isotopic algebras” is the review by (the physicists)
Aringazin et al. [23) of 1990, some twelve years following their original proposal
[1] in a physics journal. The only additional studies on Lie—isotopic theory
appeared in the mathernatical literature prior to the summer of 1993 are memoirs
[19,20].

This situation is now changing rapidly. In fact, comprehensive
mathematical studies in the Lie-isotopic theory are today available by the
mathematicians Sourlas and Tsagas in monograph [24] and papers [25] Other
comprehensive studies, this time with emphasis on nonassociative algebras, are
presented by the mathematicians Lohmus, Paal and Sorgsepp in monograph [39].
Studies in the isorepresentation theory have been conducted by Lopez [26], as well

“2 This is not the case for mathematical studies on Lie-admissible algebras which, as we
shall see in Ch. 7, have been quite numerous.



~ 115~

as by the mathematician Klimyk and this author {52]. Important mathematical
advances have been reached by Kadeisvili in papers [27,28] on the structure of the
Lie-isotopic algebras and groups, and in monograph [29], the latter with emphasis
on the geometric profile. A study on isonumbers and isofields was presented by
Kamiya [53] at the International Workshop on Symmetry Methods in Physics,
JINR, Dubna, July 1993. Additional articles by pure mathematicians are
forthcoming.

The difficulties in a first inspection {and appraisal) of the Lie-isotopic
theory are, again, of mathematical nature. They are due to the understandable
expectation that the current formulation of Lies theory (see, e.g., ref.s [31-33] and
literature quoted therein} being abstract, encompasses all possible realizations,
thus including the isotopic Tormulation.

It is important to understand beginning with these introductory words
that the Lie and Lie-isotopic theories are structurally inequivalent for the
following reasons:

1} The map interconnecting Lie product (4.1.1) and its Lie-isotopic
generalization {4.1.2) is nonunitary,

vul =1 =1 (4.1.32)
UABIUT = UGAB -BA)UN = TR - BTA = [ATB]  (4.1.3b)
A=vaut, B =uBUl, (4.1.3¢)

with isotopic element T given precisely by the inverse of 1 as needed
for a correct isotopic formulation,

T=wult =1k (4.1.4)

2) Lie's theory is linear-local-canonical in its structure, while the Lie—
isotopic theory has a nonlinear-nonlocal-noncanonical structure
(when projected in the original carrier space, see Sect. 4.2) as a
necessary condition to be directly applicable to interior dynamical
problems. This implies a generalization under isotopies of basic
symmetries of contemporary physics, such as rotations, Lorentz
transformations, etc. into the most general possible nonlinear—
nonlocal-noncanonical forms;

3) The isotopies alter conventional weights and, in general, the spectra
of eigenvalues of the conventional Lie theory. Let X be a diagonal
generator of a Lie algebra with spectrum of eigenvalues S$° with
respect to a basis | b >. Then, under isotopies the same generator X
admits a different spectrum s, according to the lifting
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X|b>=8|b> = X+|b>=XT|{b>=8|6>,5»5; (415

4) The isotopies map Cartan's tensor and other structural elements of
Lie’s theory into suitable integral forms;

5) The topology of the current formulation of Lie's theory is
notoriously local-differential, while that of the covering Lie isotopic
theory is integro-differential (Fig. 1.1.4);

and other reasons.

In this chapter, which has been written for physicists, we outline only
those aspects of the Lie-isotopic theory that are essential for the physical
applications of Yolumes II and [1I. Unless otherwise indicated, the presentation is
specifically intended for the Lie-isotopic theory of Class I (that with isounits 1
which are sufficiently smooth, bounded, nowhere degenerate, Hermitean and
positive-definite, see Sect.s 1.4 and 2.3). An outline of the Lie-isotopic theory of
Class 11 (with negative-definite isounits) is also presented because it is important
for our subsequent study of antiparticles. We shall also study a few aspects of the
Lie—isotopic theory of Class IIf because it unifies those of Classes [ and II. The
Lie-isotopic theories of Classes IV (singular isounits) and V (generic, e.g.,
discrete, isounits) are vastly unknown at this writing and will be discussed only
briefly.

During the course of our analysis we shall assume that: all Lie algebras are
finite dimensional; all Lie algebras basis and corresponding parameters are
ordered; and all fields have characteristic zero (Def. 2.3.1). Mathematically inclined
readers are suggested to consult the above quoted mathematical literature, e.g.,
ref.s [24,27,39].

A clear understanding is that the Lie-isotopic theory is still at its first
infancy, particularly when compared to the current status of Lie’s theory with
vast mathematical and physical contributions by a large number of
mathematicians and physicists for over one century (see ref.s [31-33] and related
literature).

A technical knowledge of the conventional Lie theory is an evident pre-
requisite for the understanding of this chapter. A prior reading of Appendix 4.A
on basic notions of algebras and their isotopies is recommendable.

4.2: JISOTRANSFORMATIONS AND THEIR ISODUALS

An important notion reqﬁiring a clear understanding is that the Lie—isotopic
theory is nonlinear, nonlocal-integral and noncanonical-nonhamiitonian only
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when projected in the original carrier space because, when treated in its
appropriate isospace, it verifies the isotopic axioms of linearity, locality and
canonicity and, for this reason, it is called an isolinear, isolocal and isocanonical.

let 8(x,R) be a conventional, reat vector space with local coordinates x over
the reals R(n,+x), and let

X=Awlx, weF, xt=yx alw (4.2.1)

be a conventional right or left, linear, local and canonical transformation on
S(x,R), where t denotes transpose.

The isotopic lifting S(x,R} = S(x,R) studied in the preceding chapter requires
a corresponding necessary isotopy of the transformation theory. In fact, it is
instructive for the interested reader to verify that the application of
transformations (4.2.1) to the isospace 8(x,R) implies the loss of linearity,
transitivity and other basic properties.

For these and other reasons, the author submitted in the original proposals
[1,2] the isotopy of the transformation theory, today known as isotransformation
* theory 24,290,301 which is characterized by the isotransformations

X' = AWex = AWITx, xt = xt+Aw) = xPT AU, {4.2.2a)
T = Tl =fixed, xe8xR), Wwe RA+¥, 1=TL (4.2.2p)

where the isotopic element T is here assurmed to be of Kadeisvili's Class 1

We can say that conventional transformations {4.2.1) are characterized
by the right modular associative action Ax of A on S{x,R). The isotransformations
are then characterized by the right isomodular associative action action A*x of A
on S(x,R). In fact, the preservation of the associativity is established by the
properties

A*B*Cxx = Ax(Bx*xCx*x) = (A*B*C)*x,etc. {(4.2.3)

while the preservation of the modular character under isotopies is discussed in
Sect. 4.7.

The most dominant aspect in the transition from transformations (4.2.1) to
isotransformations (4.2.2) is that, while the former are linear, local and canonical,
the latter are the most general known transformations that are nonlinear in the
coordinates as well as other quantities and their derivatives of arbitrary order,
nonlocal-integral in all these quantities, and noncanonical . In fact, from the
unrestricted nature of the isotopic element T, the projection of isotransformation
(4.2.2) in the original space Slx, R) reads
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x' = AW Tl x, %, % 4, t, o, a4, g, T, M, .....) X . | (4.2.4)

In turn, the above features are crucial for the achievement of nonlinear, nonlocal
and noncanonical generalizations of conventional space-time symmetries as
necessary for the interior problem.

But transformations {4.2.1) and their covering (4.2.2) coincide at the abstract
level where we have no distinction between the modular action “Ax” and its
isotopic form "A*x". We therefore have the following

Proposition 4.2.1 [22]: Isotransformations (4.2.2) are “jsolinear” because
they verify the conditions of linearity in isospaces,

Ax(axx + bry) =a«(A*x) + br(A+y) {4.2.5a)
vxyeSxR), &beR. (4.2.5b)

while coinciding with linear transformations at the abstract level
Isotransformations (4.2.2) are also “isolocal” because they are defined at
the local point x in isospace thus coinciding with conventional local
transformations at the abstract level. Finally, isotransformations (4.2.2) are
“isocanonical”, in the sense that they are derivable from a first-order
principle in isospace (see Ch. 5 and Vol. II} thus coinciding with
conventional canonical theories at the abstract level.

The understanding of the above notions of isolinearity, isolocality and
isocanonicity is crucial for an understanding of the Lie—isotopic theory and,
thus, of hadronic mechanics.

In particular, the abstract identity of the conventional and isotopic
transformations as compared to their structural differences is the very essence
of isotopies.

The origin of these advances lies in the basic notion of isonumbers because
it is *hidden” in their multiplication. In fact, if one assumes the traditional
expression "two muitiplied by two equals four”, one implicitly assumes, for
mathematical consistence, that the multiplicative unit is the trivial value 1, and
the multiplication is the trivial expression '2x2”. Then, one must consequently
assume, also for mathematical consistency, that the operation of multiplication in
transformation {(4.2.1), i.e., the expression "Ax”, is the same multiplication as that
of the numbers, i.e,

Ax = Axx, X € Rin+x. (4.2.6)

because the carrier spacé Sx, R) and its inner automorphisms are defined on R.
We have shown in Ch. 2 that the assumption “2 x 2 = 4” is un—necessarily
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restrictive because the basic unit can be an integral quantity 1, and the product
of numbers can be consequently generalized into an axiom-preserving form. This
implies that the isotopic expression “A*x” is defined via the same multiplication of
the base isofield

A*x = ATx , * e Rp+3. (4.27)

The preservation of the abstract identity between transformations (4.2.6)
and their isotopic coverings (4.2.7) is due to the fact that abstract theories cannot
distinguish between different values of the unit when positive—definite. Thus,
any isounit 1T will automatically coincide with the number 1 at the abstract
level,

1abstrac:t level 428

The same occurrence then holds for the transformations

Axx = abstract level Arx. (429
To put it differently, conventional transformations on S(x,R) and isotopic
transformations S(xR) are geometrically equivalent. Their rather profound
physical differences occur only when the isotransformations on $(x,R) are
projected in the original space S(x, R).

The notion of isolocality is also expressed by the underlying integro—
differential topology of isotopic theory (Ch. 1), in which the quantity x of Eg.s
(4.2.2) represents the trajectory of the center of mass, thus remaining fully local.
The integral terms are corrective terms embedded in the unit to represent the
contribution to the trajectory due to the interior conditions {extended character
with motion within a physical medium).

Finally, the isocanonical character will be best understood in Vol. II when
studying the physical foundations. At this stage we can say that a situation fully
analogous to the linear and local profiles emerges also from the viewpoint of the
Hamiltonian theory. In fact, the systems considered are nonhamiltonian by
conception and, thus, nonderivable from a canonical variational principle in an
ordinary space. However, the same systems are indeed derivable from a first-
order variational principle in isospace.

Along these lines, the basic objectives of hadronic mechanics, that is, of the
“isotopies of quantum mechanics”, are a “nonlinear-nonlocal-noncanonical
treatment of the strong interactions” although in an “identical isolinear, isolocal
and isocanonical form”.

The following additional property is mathematically trivial, but it carriers
important physical implications.

Proposition 4.2.2 {12k Given a nonlinear, nonlocal and noncanonical
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transformation on a vector space SxR)
X=Xw,x.)x, x € SR, we Rn+x, (4.2.10)

on a vector space S(xR), there always exist an infinite variety of isotopies
of the base field, R(n+x) = R(f,+*), and corresponding isotopies of the
space S(x,R) = 8(x,R) under which the transformation can be “idéntically”
rewritten in an isclinear, isolocal and isocanonical form

X=Xx.)x = AWx, T= Aix.. (4.2.11)

The understanding of the above additional property is also important
for an understanding of hadronic mechanics. In fact, the first role of isotopic
techniques is that of generalizing conventional linear, local and canonical theories
into less trivial nonlinear, nonlocal and noncanonical generalizations. The
subsequent role is then that of turning conventionally nonlinear, nonlocal and
noncanonical theories into “identical” isclinear, isolocal and LSOC&DOHJC&I forms,
with evident simplification of their treatment.

Definition 4.2.2 [89]: The “isodual isotransformations” of Class II are given
by the image of isotransformations (4.2.2) under isoduality, i.e., are defined
on the isodual isospace 8(x, RY),

X =A00) 0 x = - R4 (Y xx, xebUxRY, WleRUA+Y (42122
xtr=x9 AtO (G = -y« A 19 (30 (4.2.12b)
where Al and A'S will be identified later on in this chapter.

Isodual isotransformations characterize the isodual Lie theory which, in
turn, characterizes the isodual symmetriés for our treatment of antiparticles, as
we shall see.

The formulation of the Lie-isotopic theory presented in this chapter is in
reality the Lie-isofopic transformation theory, namely, it is specifically
developed for isotransformations as needed in hadronic mechanics. At any rate,
the formulation of the theory via topological Lie-isotopic groups is still lacking at
this writing.

4.3: ISOENVELOPES.AND THEIR ISODUALS

As well known (see, e.g., ref.s [31-33), the contemporary Lie theory is constructed
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with respect to a conventional unit, e.g., the N-dimensional unit matrix I = diag.
{1, 1, .., 1). The central idea of the Lie-isotopic theory [1,2] is the construction of
the theory with respect to the most general possible isounit 1 with isolinear,
isolocal and isocanonical dependence in all possible local variables and quantities.
The lifting of the unit { =1 therefore implies a corresponding compatible lifting
of all branches of the conventional Lie theory (Sect. 1).

From the very outset one can therefore see the reachness of the Lie-
isotopic theory as compared to the conventional theory because, as it is the case
for isofields and isospaces, we have Kadeisvili’s classification (28]

Lie isotopic theory properly speaking (Class I}
Isodual Lie-isotopic theory (Class I1);
Indefinite Lie-isotopic theory (Class i1},
Singular Lie-isotopic theory (Class [V);
General Lie-isotopic theory (Class V).

which applies to each of the branches of the generalized theory, thus resulting in
isoenveloping algebras of Classes -V, Lie-isotopic algebras of Classes [-V, Lie-
isotopic groups of Classes |-V, isorepresentations of Classes I-V, etc.2®, each of
which can be of isocharacteristic zero or p (Sect. 2.3).

Moreover, the isotopies imply the possibility of introducing fundamentally
novel notions, such as “Lie’s theory on a singular unit’, or formulating the “Lie-
isotopic theory of discrete groups over continuously varying units”  or,
viceversa, studying the "Lie-isotopic theory of continuous groups over discrete
units”, etc.

The isotopies of enveloping algebras will be formulated in this section for
Class 111 over a field of characteristic zero to unify the formulations of Classes I
and I1. As we shall see, this permits the unification of compact and noncompact
groups of the same dimension of Cartan’s classification into one single isotope.

To begin, let & = £(L) be a universal enveloping associative algebra of an
N-dimensional Lie algebra L (see, e.g., ref. (3] and Fig. 4.3.1) with generic elements
A, B, C...., trivial associative product AB (say, of matrices) and unit matrix in N—-
dimension I. Their isotopes & where first introduced in the original proposal [1]
{see Fig. 4.3.1 for their definition) under the name of universal enveloping
Isoassociative envelopes, also calied isoenvelopes for short. They coincide with
§ as vector spaces but are equipped with the isoproduct A*B so as to admit 1 as
the correct {right and left) unit

¢ : A«B =ATB, T fixed, {4.3.1a)

[*A=A*l=4A vAaet 1=10 (4.3.1b)

“% The reader should keep in mind that, as originally presented in memoir [1] all these
formulations are still particular cases of the more general Lie-admissible theory {(Ch. 7).
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Let the (ordered) basis of L be given by {X;), k=1, 2, .., N, over a field
Fa,+x), and let the infinite-dimensional basis of &L) be given by the Poincaré-
Birkhoff-Witt theorem [31]

Lo X XX (=), X Xj% (52K, . (432

where one recognizes the familiar standard monomials.
A fundamental property from which most of the Lie-isotopic theory and
hadronic mechanics can be derived is the following

Theorem 4.3.1- Isotopic generalization of the Poincare’-Birkhoff-Witt
Theorem [I} The cosets of 1 and the standard, isotopically mapped
monomials form an infinite~dimensional basis of the universal enveloping
isoassociative algebra (L) of a Lie algebra L of Class IIf

1, X Xi*X; (=), Xi*Xj*Xg (i=2j=K), ... (4.3.3)

A detailed proof can be found in ref. [4], pp. 154-163, or ref. [24], pp. 74-93,
and it is not repeated here for brevity {(although its knowledge is assumed for
more advanced treatments).

Algebraically, the above theorem essentially expresses the property that the
isotopic character of the lifting of the basic product AB = A*B, i.e,

AB:(AB)C = A(BC)=> A*B:{A*B)*C = A*(B*C), (434

implies the existence of consistent isotopies of the basis (4.3.2).

In turn, the existence of such isobasis has fundamental mathematical and
physical implications. Recall that the conventional exponentiation is defined
precisely via a power series expansions in &

iwX
er =1+ (wX) /1 + (GwX) X WXV / 2+ o, W e Flatd (4.35)

The above exponentiation is then inapplicable under isotopies because the
quantity 1 is no longer the basic unit of the theory, the conventional product x
has no mathematical or physical meaning, etc.

In turn, this implies that all quantum mechanical quantities depending on
the conventional exponentiation, such as time evolution, unitary groups, Dirac’s
delta distributions, Fourier transforms, Gaussian, etc. have no mathematical or
physical meaning under isotopies and must be suitably lifted.

Isobasis {4.3.3) then permits the following

Corollary 4.3.1.A: The “isoexponentiation” of an element X in ¢ via
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Isobasis (4.3.3) over an isofield Wa+*) is given by

et " N e X o w0 K0+ Gwx) /2 =

iwTX

=Tle” 71 = ("N, W e fary. (4.36)

We see in this way the nontriviality of the isotopies of Lie's theory, which is
clearly expressed by the appearance of the nonlinear, nonlocal and noncanonical
isotopic element T directly in the exponent of isoexponentiations (4.3.6). This is
sufficient to see the emergence of the isotopic generalizations indicated earlier.

Note that isoexponentiation (4.3.6) is defined in terms of conventional
generators X, because of the preservation of the basis under isotopies, and
isotopic parameters w = wl because the acting field is the isotopic one Fw,++).
However, on practical grounds, we can express the isoexponentiation also with
respect to the conventional parameters w X because of the identities (Ch. 2)

wrX = wX. {4.3.7)

One should keep in mind the uniqueness of isoexponentiation (4.3.6). It
originates from a cruycial requirement of the Poincaré-Birkhoff-Witt theorem,
the existence of a well defined left and right unit [31] which, in turn, implies the
uniqueness of the isobasis (4.3.3). This property can then be compared with the
lack of uniqueness of the exponentiations in other theories. As an example we
shall study in Vol. II, the so-called q-deformations, which do not possess a unique
exponentiation because they do not possess a unit [442], -

By recalling the results of the preceding analysis on isodual fields and
isodual spaces {particularly Proposition 3.2.1), we can see that the Jisodual
isoenvelopes 9 [89) are characterized by: the isodual basis and the isodual
parameters

-

X=X, wi=wll = -y (4.3.8)

Corollary 4.3.1B: The “isodual isoexponentiation” is the isodual image
of isoexponentiation (4.3.6) on the isodual isofield FA(wd + )

i9d 0 x4 o IXTw

= - 1 (4.39)

Note that the preservation of the sign in the exponent is only apparent, ie.,
when projected in an isofield, because, when properly written in the isodual
isofield, one can use the expression
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—dd d _s d
T e I (43.10)

Isodual isoexponentiations play an important role for the construction of
the isodual isosymmetries for antiparticles.

It is easy to see that Theorem 4.3.! holds for envelopes of Class I, as
originally formulated [1], thus unifying isoenvelopes ¢ and their isoduals £9. In
fact, Theorem 4.3.1 was conceived to unify with one single Lie algebra basis Xy,
but arbitrary isotopies in the envelope &(L), nonisomorphic compact and
noncompact algebras of the same dimension N.

To clarify this aspect, recall [31] that a conventional envelope &(L)
represents only one algebra (up to local isomorphism),

L ~ [HUT. (4.3.11)

On the contrary, one iscenvelope (L) of Class Il represents a family of
generally nonisomorphic Lie algebras L as the attached antisymmetric algebras

L~ [HLI]™. {4.3.12)

Theorem 4.3.1 therefore permits a unified formulation of all Lie-isotopic algebras
L of the same dimensions. This implies, the reduction of compact and
noncompact structures of the same dimension to only one isotopic structure, and,
Tor each given structure, the reduction of all possible linear and nonlinear, local
and nonlocal, canonical and noncanonical realizations to one primitive algebraic
notion, the isoenvelope &(L) (see Fig. 4.3.1 below for more details).

The above unification was illustrated in the original proposal [1] with an
example that is still valid today. Consider the conventional Lie algebra so{3) of the
rotational group on the Euclidean space E(r,8,R) with unit | = diag. (1, 1, 1). The
adjoint representation of so(3) is given by the familiar expressions

000 00 -1 010
J1=(OOI), J2=(00 0). J3=(—100). (4.3.13)
0-10 10 0 000/,

The universal enveloping associative algebra &{sof3)) is then characterized by the
unique infinite-dimensional basis from the conventional Poincaré-Birkhoff-Witt
theorem [31]

Lood. HI5s), 33 (3=j=k),.. (43.14)

and characterizes only oné algebra as the attached antisymmetric algebra
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[E(s50(3)] ~ so0l3). (4.3.15)

The isotopies &(so(3)} of the envelope &{so(3)) of Class Il are characterized
by the the lifting of the basic carrier space E{r,8,R) into the isoeuclidean space
E(r.8,R) with isometric, isotopic element and isounit

8 = Ts, T= diag.{g)}. 820, 833, 1 = diag. (g); L gz Lggg™ ), (4316

where the characteristic quantities gy, are real-valued, non-null but arbitrary
functions of the local coordinates gy, (t, r,. t, 1, ..) which, as such, can be either
positive or negative. From Theorem 4.3.1, the isoenvelope &(so(3)) is then
characterized by the original generators (4.3.13), although expressed now in terms
of the isoassociative product Ji#J; = JiTJ; and isounit 1 with unique infinite-
dimensional basis from Theorem 4.3.1

=1L 5, JTHG=), JTYTI (=isk), .. @317

It is now easy to see that the algebra characterized by the attached
antisymmetric part of &(so(3)) is not unigue, evidently because it depends on the
explicit values of the characteristic quantities gk- It was shown in ref.s [1,9] that
the isoenvelope E(so(3)) unifies: all possible compact and noncompact three-
dimensional Lie algebra of Cartan classification, the algebras so{3) and so(2.1); all
their infinitely possible isotopes s6(3) and s6(2.1); the compact and noncompact
isodual algebras s0%(3) and s0%(3), as well as all their inf initely possible isodual
isotopes s6%3) and s6%(2.1), according to the classification

sol3) for T = diag. (1, 1, 1)
sol2.1) for T = diag. (1, -1, 1),
sof3) for sign. T = (+, +, +}
[E(so(3)F : s0(2.1) for sign. T = {+, -, +}; {4.3.18)
so%(3) for T = (-1, -1, -1);
s0%2.1) for T = diag. (1, +1, -1
$6%(3) for sign. T = (-, -, -\
s092.1) for sign. T = {-, +, -).

The explicit form of the Lie-isotopic algebras will be studied in the next section;
an illustration of the isoexponentiation will be provided in Sect. 4.5; and a Tirst
example of physical applications will be given in Sect. 4.7. The isotopes and
isoduals of so{3} will then be studied in detail in Vol. II their applications in Vol.
IT1. The unification of ali six-dimensional simple algebras is studied in Ch. 11.8.
Whenever needed for clarity, isoenvelopes will be denoted with the symbol
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1 identifying the selected isotopic element T.
As concluding remarks, note that the lifting £ = ¥ is necessary under the
isotopy of the unit because, in general, TA # A1 = A.

UNIVERSAL ISOASSOCIATIVE ENVELOPING ALGEBRAS

{a) {b)

FIGURE 4.3.1: The universal enveloping associative algebra E(L) of a Lie algebra L
[31] is the set (£, T) where £ is an associative algebra and T is a homomorphism of L
into the antisymmetric algebra & attached to & such that: If & is another
associative algebra and 7" is another homomorphism of L into & ~a unique
tsomorphism ¥ between £ and & exists in such a way that the diagram (a) above is
commutative. The above definition evidently expresses the unigueness of the Lie
algebra L {up to local isomorphisms} characterized by its universal envelopes E{L).

With reference to diagram (b) above, the universal enveloping isoassociative
algebra EL) of a Lie algebra L was introduced [1] as the set {& ), i, &, ¥ where: (&,
7) is a conventional envelope of L; i is an isotopic mapping L= il = [ » L; ¥ is an
associative algebra generally nonisomorphic to & ¥ is a homomorphism of L iato
¢ such that: If ¥ Is another associative algebra and T another homomorphism of L
into & 7, there exists a unique isomorphism ¥ of ¢ into & with ¥ = ¥7, and two
unigue isotopies i€ = and 1%’ = ¥

A primary objective of the isotopic deftnition i{s the achievement of the lack
of uniqueness of the Lie algebra characterized by the isoenvelope or, equivalently,
the characterization of a family of generally nonisomorphic Lie algebras via the
use of only one basis. The illustration of the above notions for the case of the
rotational algebra so(3) studied in the text is straighforward and can be expressed
via the diagrams {c) and {d) below
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g— Y E,_
- Y _ ~
'——-—bé i fr\ ~s /\,
‘\ / S0(2.1)
£ Y
S0G) . \i, /«5
§0(3)
(c) - {d)

where the isotopy is given by I = diag. {1, t, 1) =1 = diag. (1, =1, 1). The above
definition then provides all infinitely possible isotopes and isodual isotopes.

The above notion of isoenvelope represents the essential mathematical
structure of hadronic mechanics, namely, the preservatidn of the conventional
basts, l.e, the set of observables, and the generalization of the operations on them
via an infinite number of isotopies 50 as to admit a new class ‘of interactions
structurally beyond the possibilities of quantum mechanics.

The isoenvelopes are denoted ¥{L) and not ¢(L) to stress the preservation of
the original basis of L under isotopies (Proposition 3.2.1), as well as to emphasize
the existence of an infinite family of isoenvelopes for each original Lie algebra
L.

The isotopy &= ¥ is not a conventional map because the local coordinates
%, the Infinitesimal generators Xy and the parameters wy are not changed by
assumption and, thus, one is prohibited from using transformation theory under
isotopies.

When transformations are admitted, the connection between Lie and Lie-
isotopic theories is via nonunitary transformations (Sect. 4.1). We therefore have
the following

Proposition 4.3.1 2} A conventional envelope & and its isotopic image
¥ are not unitarily equivalent.

Despite the above lack of unitary equivalence, a given Lie algebra L and its
isotope L of Class I are indeed isomorphic as we shall see in the next section.
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4.4: LIE-ISOTOPIC ALGEBRAS AND THEIR ISODUALS

We are now equipped to introduce the fundamental notion of hadronic
mechanics according to the following

Definition 4.4.1 [I} A (finite-dimensional) isospace L over an isofield
F(a,+%) or isoreal numbers R(i+»), isocomplex numbers Q(C,+%) or
isoquaternions Q{q,+* with isotopic element T and isounit 1 = T is
called a "Lie-isotopic algebra” over F when there is a composition [A,"B)
in L, called “isocommutator’, which verifies the following “isolinear and
isodifferential rules” for all 4, befFand A,B,Cel

[a*A + B*BCl=ax[A]Cl + b+ [B.C) {4.4.12)
[A*B,C]l=A*[B;C]+[A.C]*B. (4.4.15)

and the “Lie-isolopic axioms’, given by the following antisymmetry and
Jacobi Iaw
[A;Bl = - [B]Al], (4.4.2a)

[ATIB;Cll+ [B;IC;All + [C[AB]] = 0. (4.4.2b)

Note that the use of isoreals, isccomplexes and isoquaternions preserves the
associative character of the underlying envelope. The use instead of iscoctonions
0{0,+,% (Sect. 2.8) would imply the loss of such an associative character and, for
this reason, iscoctonions have been excluded as possible isofields in Definition
2.3.1 in a way Tully parallel to conventional lines in number theory.

This point deserves an elaboration because important for the construction
of any generalization of quantum mechanics, whether of isotopic type or not.

On algebraic grounds we can say that the lack of associativity of the
octonions and isooctonions is not a reason, per se, for their exclusion, because
there are nonassociative algebras U such that the attached antisymmetric algebra
U™ is Lie. In fact, as we shall see in Ch. 7, this is precisely the definition of Lie-
admissible algebras. The reason for the exclusion at this time is that the notion
of universa! enveloping algebra has been essentially developed for associative
algebras [31-33]. For the case of nonassociative ones, the envelope is known only
for very restricted algebras of the so-called flexible Lie-admissible algebras (see
in this respect ref. [12).

The physical reasons for excluding isooctonions are however deeper then
the above. They are related to the fact that associative envelopes of the type
herein considered admit & consistent unit which is at the foundation of physical
applications such as the measurement theory. On ihe contrary, nonassociative
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envelopes generally do not admit a unit?*, thus prohibiting the very formulation
of the measurement theory.

Moreover, in Volume II we shall review “Obuko’s no-go theorem” which
prohibits the use of a nonassociative envelope for a consistent generalization of
quantum mechanics, e.g., because of the loss of equivalence between the
Heisenberg-type and the Schrodinger—type representations.

We reach in this way the following:

Fundamental cendition on Lie-isotopic theory 4.4.1 2} All studies on
the Lie-isotopic theory and hadronic mechanics will be restricted
throughout our analysis to formulations based on an isoassociative
character of the enveloping algebra with a well defined left and right
isounit %

In the original proposal [1] this author proved the existence of consistent
isotopic generalization of the celebrated Lie’s First, Second and Third Theorems.
For brevity, we refer the interested reader to ref. [4], pp. 163-184 or to the ref. [24],
. Ch. II. We here quote the Isotopic First and Second Theorems because useful in
applications for the speedy construction of one realizations of Lie—isotopic
algebras (see later on for more complex realizations).

Theorem 4.4.1 - Lie-isotopic Second Theorem [1} Let X = X}, k = I, 2,

- N, be the fordered set of) generators in adjoint representations of a Lie
algebra L with commutation rules

X NI XY -X .=k

L: [X,%1= XX - X %= ¢ X%, (4.4.3)
where Cijk are the “structure constants”. Then, one realization of the Lie-
isotopic images [ of L is characterized by the same generators X with

Isocommultation rules

[4 [XI:XJ] = Xitxj - Xj*Xj = XiTX] - XJTX]' =

= X]- T(X, X, ) X_] - X] T(X, 5(, ) Xi = C k(t, X, X, ) * Xk

ij

“4 Recall that the enveloping algebra £ is associative while the attached Lie algebra &
is nonassociative. Thus, the fundamental unit 1 of the conventicnal Lie’s theory is the
unit of the envelope and not of the attached Lie algebra. In fact, the product [A, B}, per se,
admits no consistent unit because it would require an element E such that [E, A =[A, E]l=
A, V A e L. Exactly the same situation occurs under isotopies.

25 As we shall see in Ch. 7, this fundamental condition will persist also for the more
general Lie-admissible formulations for which the underlying envelope must remain still
isoassociative, and the units must still exist, although they are differentiated for the right
and left multiplications.
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= &Kx % L)X, {4.4.4)

ij

where the Cuk are the “structure functions” in the isofield.

Theorem 4. 4 2 - Lie-isotopic Third Theorem [loc. cit}: The structure
functions C jj of a Lie-isotopic algebra L verify the conditions

- ¢k (4.4.5)

kK =
ek = - g,

1}

and the property (when commuting with the generators 2
Cijp * Cpkq + Cﬁ(P :ijq + CyiP tcqu =0, (4.4.6)

We learn in this way that the structure “constants” of Lie’s theory acquire a
dependence on local variables similar to that of the isotopic element T, thus
becoming structure "functions.

It is important to illustrate the above theorems with an example. Consider
the generators of the su(2) Lie algebra in their adjoint representation, which are
given by the celebrated Pauli’s matrices and related commutation rules

(O l) (0 ~i) (l 0) (4472)
oy = , O = , Oq = 47a
: 1 8 2 i 0 3 0 -1

log,0m] = o0 - 00, = 21 €qmk Ok » {4.4.70)

Theorem 4.4.1 states that the same generators oy can characterize one
realization of the Lie—isotopic su(2) algebra via the lifting of the structure
constants into suitable functions.

This property is readily verified by introducing a Class I1I isotopic element
assumed diagonal for simplicity, and then identifying the structure functions
under which the algebra is closed, with explicit solution

[on om! = oy Toy ~ 0, To, = 21 & T oy, (4.4.8a)
g 0
T = y gkk?f 0, A=detT = gll g22, (448b)
0 g»

-
g 0 g 0

1=( S ) = A'l( ) (4.4.80)
Y 2 ' 0 g5

4 1f not, more general properties are easily derivable from Jacobi's law.
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él'jk = Eijk( (448(1)

g20/81; 0 )
0 g,/8

The verification of Theorem 4.4.2 is trivial in this particular case hecause of the
factorization of the old structure constants €jj Which multiplies the same matrix
for ail elements.

Note that the original structure “constants” Cijk are elements of a field
Fla,+%) and, as such, are ordinary numbers. On the contrary, the structure
“functions” C,-jk are now elements of the isofield I(a,+% and, as such, are
matrices. As such, they should be called more properly structure isofunctions,
where the prefix "iso” stands precisely to represent their matrix character.
Nevertheless, the term “structure functions” is now widely used in the literature
in the field and it will be kept in these books for simplicity.

Note finally that Theorem 4.4.1 provide only one method for the speedy
construction of an isotope L of a given Lie algebra L.In fact, another way of
constructing Class I isotopes L of a given Lie algebra L is by generalizing the
generators Xy and keeping instead the old structure constants. This alternative
approach will be used in a number of applications because it evidently ensures
the local isororphism L =~ L ab initio, while lifting conventional symmetries into
the desired nonlinear-nonlocal-noncanonical form.

Theorems 4.4.1 and 4.4.2 were however conceived for specific physical
needs. Recall that the generators of a Lie algebra represent physical quantities,
such as linear momentum, angular momentum, energy, etc. As such, these
Quantities cannot be changed under isotopies, thus explaining the preservation of
the original basis in Theorem 4.4.1. An additional motivation is that, among all
possible realizations, the method of Theorem 4.4.1 results to be most effective in
the computation of the symmetries of nonlinear-nonlocal-noncanonical
systems, as we shall see in Sect. 4.6.

It is easy to prove the following:

Theorem 4.4.3 [2]: The isotopiesL = [. of an N-dimensional Lie algebra
L preserve the original dimensionality.

In fact, the basis ey , k = 1, 2, ..., N of a vector space and, thus, of a Lie algebra L
is not changed under isotopy, except for renormalization factors denoted gy Let
then the commutation rules of L be given by

[ €, ej I = Cijk €k- (4.4.9)

The isocommutation rules of the isotopes L are
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~ A

[ei , ej l = éi Téj - é_l T éi = Cijk(t, X, X, ) ék . {4.4.10)

One can then see in this way the necessity of lifting the structure “constants” into
structure “functions”, as correctly predicted by the Lie-isotopic Second Theorem.
A number of examples will be provided during the course of our analysis.

We now review a few basic notions of Lie~isotopic algebras L which can be
derived via an easy isotopy of the corresponding conventional notions (as
available, e.g., in ref.s [31-33]. Lie-isotopic algebras [, are said to be:

a) isoreal (isocomplex) when F=R{F =)

2) isoabelian when [A;Bl= 0,V A, Be [;

3) A subset L, of L is said to be an isosubaigebra of L when

(Lol © Ly; {4.4.1D
4) An isoideal occurs when
[L7L,] © Ly (4.4.12)

5) The isocenter of a Lie-isotopic algebra is the maximal isoideal L, which
verifies the property

[L7L,] = o {4.4.13)

Definition 4.4.2 [27]: The ‘general isolinear and isocomplex Lie-isotopic
algebras”, here denoted with GUINC), are the vector isospaces of all nxn
complex matrices over C({&,+%), and are evidently closed under
isocommutators. The “isocenter” of GL{nC) is then given by ¢+, vV ¢ €
€. The subset of all complex nxn matrices with null trace is also closed
under isocommutators, it is called the “special, isolinear, isocomplex, Lie~
isotopic algebra”, and denoted with SLnC). The subset of all
antisymmetric nxn real matrices X, X' = -X, is also closed under
isocommutators, is called the "isoorthogonal algebra”, and is denoted with

Oln).

By proceeding along similar lines, one can classify all classical, non-
exceptional, Lie-isotopic algebras into the isotopes of the conventional forms,
denoted with A, , B, €, and D,; according to the general rules [27]

ClaSSAn_l - Sﬁl’l.C);
Class B, = 0(n+1, &)
" ClassC, = SPn, ) and
Class D, = O(2n, Q).
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plus the isoexceptional algebras here ignored for brevity.

Each one of the above algebras then needs its own classification (evidently
absent in the conventional case), depending on whether 1 is positive—definite
(Class 1), negative definite (Class I1), indefinite (Class II1), singular {IV) and general
(Class V), as well as whether of isocharacteristic zero or p, thus illustrating the
richness of the isotopic theory indicated above.

The notions of homomorphism, automorphism and isomorphism of two
Lie-isotopic algebras L and L' are the conventional ones. Similarly, all properties
of Lie algebras based on the addition, such as the direct and semidirect sums s
carry over to the isotopic context unchanged (because of the preservation of the
conventional additive unit 0).

By following Kadeisvili [27] we now introduce an isoderivation P of a Lie~
isotopic algebra L. as an isolinear map of L into itseif satisfying the property

DKIATB]) = [DA) Bl + [ADB)] VABeL . {4.4.14)

If two maps Dy and D, are isoderivations, then 2«0+ b¥D, is also an isoderivation,
and the isocommutators of D) and D, is also an isoderivation. Thus, the set of all
isoderivations forms a Lie—isotopic algebra as in the conventional case.

The isolinear map ad(L) of L into itself defined by

ad AB) = [AB], V ABel, (4.4.15)

is called the isoadjoint map . It is an isoderivation, as one can prove via the
Jacobi identity (4.4.2b). The set of all ad(A) is therefore an isolinear Lie-isotopic
algebra, called isoadjoint algebra and denoted L, . It also results to be an isoideal
of the algebra of all isoderivations as in the conventional case.

Consider the algebras

pol=p, =gl p@opp) p) ere, (4.4.16)

which are also isoideals of L. L is then called isosolvable if, for some positive
integer n, L™ =g,
Consider also the sequence

Lo = L Ly =1 by 700, By = [ £ L1, et (44, 17

Then L is said to be isonilpotent if, for some positive integer n, Lin) = 0. One can
then see that, as in the conventional case, an isonilpotent algebra is also
isosolvable, but the converse is not necessarily true.

Let the isotrace of a matrix be given by the element of the isofield
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TrA =(TrAl eF, (4.4.18)
where TrA is the conventional trace. Then
TEA*B)=(TF A)* (TP B),  TFr(B+A+B1)=TFA. (4.4.19)

Thus, TT A preserves the axioms of Tr A, by therefore being a correct isotopy.
Then, the isoscalar product

{(A'B) = Tr((AdX)*(Ad B) ] {4.4.20)

is called the isokilling form as first studied by Kadeisvili [27]. It is easy to see
that { A [ B) is symmetric, bilinear, and verifies the property

(AdX{(Y);2) + (Y, AadX (@) = 0, {4.4.21)

thus being a correct, axiom-preserving isotopy of the conventienal Killing form.

' Letey , k=1, 2, .., N, be the basis of L with one-to-one invertible map e
— €y into the basis &y of L. Generic elements in L can then be written in terms
of local coordinates x, v, z,

A=x'g,B=ylg, C=2"% = [ATBl=x'yll% %] =

x) T gy . (4.4.22)
Thus,

[AQABIK = [ATBIF = ¢l X, (4.4.23)

By following again Kadeisvili [27}, we now introduce the isocartan tensor §ij of a
Lie~isotopic algebra L via the definition (A [B )} =g x! y! yielding

gift %, %, %, .0 = Cp* CyP. (4.4.24)

Note that the isocartan tensor has the general dependence of the isometric
tensor of the preceding chapter, thus confirming the inner consistency among the
various branches of the isotopic theory. In particular, the isocartan tensor is
generally nonlfinear, nonlocal and noncanonical in all variables x, %, %, ...

The isocartan tensor also clarifies another importait point of the preceding
analysis, that the isotopies naturally lead to an arbitrary dependence in the
velocities and acceierations, exactiy as needed for realistic models of interior
dynamnical problems, and that their restriction to the noniinear dependence on the
coordinates x only, as needed for the exterior gravitational problem, would be



—-135-

manifestly un—necessary.

The isotopies of the structure theory of Lie algebras then follow, including
the notion of simplicity, semisimplicity, etc. (see the monograph [24])) Here we
limit ourselves to recall the following

Definition 4.4.3 (27} A" Lie-isotopic algebra I. is called “compact”
("noncompact’} when the isocartan form Is positive~ (negative-) definite.

Numerous additional, more refined definitions of compactness and
noncompactness are possible via the isotopies of the corresponding conventional
definitions [31-33]. The above definition is however sufficient for our needs.

We now study a few implications of the isotopic lifting of Lie's theory.

Theorem 4.4.4{1} The isotopes of Class I1I L of a compact (noncompact)
Lie algebra L are not necessarily compact (noncompact).

The identification of the remaining properties which are not preserved
‘under liftings of Class Il is an instructive task for the reader interested in
becoming an expert in isotopic theories. For instance, if the original structure is
irreducible, its isotopic image is not necessarily so even for Class I, trivially,
because the isounit itself can be reducible, thus yielding a reducible isotopic
structyre.

Definition 4.4.4 [88): Let L be a Lie-isotopic algebra with generalors X
and isounit’ = T™! > 0. The “isodual Lie-isotopic algebras” (9 is the
isoalgebra with isodual generators Xy = -Xy conventional structure
functions over the isodual isofieid PY@9+29) with “isodual
isocommutators”

[xi :X_] ]d = - [ Xd]‘ :de ] == [ Xi :Xj ] = Cijk Xdk == Cl'jk Xk' (4425)

When the original algebra is a Lie algebra L the “isodual Lie algebra” is
given by the structure L% over the isodual field F3a%+x%) with “isodual
commutators”

(X X =X 0 X=X 10X == 1%, %) == 0 X Xy . (4.4.26)

L and L9 are then anti-isomorphic. Note that the isoalgebras of Class I11
contain all algebras L and all their isoduals L9, The above remarks therefore show
that the Lie-isotopic theory can be naturally formulated for Class III, as
impticitly done in ref. [1). °

Note the necessity of the isotopies for the very construction of the isodual
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of conventional Lie algebras. In fact, they require the nontrivial lift of the unit I
= 19 = (1), with consequential necessary generalization of the Lie product AB -
BA into the isotopic form ATB -~ BTA.

The following property is mathematically trivial, yet carries important
physical applications.

Theorem 4.4.5 1,5k A/l infinitely possible, isotopes [, of Class I of a
(finite-dimensional) Lie algebra L are locally jsomorphic to. L, and all
infinitely possible isodual isotopes 9 of Class Il are anti—isornorphic to
L. :

The simplest possible proof is via the redefinition of the basis X, = X} =
X1, under which isotopic algebras L acquire the same structure constants of L,

XioX;l = XyTxy) = 1%, %11 = cij"x'k. (4.4.27)

We should however indicate that, even though the above reduction is possible, in
general we have C;j¥ = €, 1, as it is the case of example (4.4.8), thus rendering
inapplicable the realization X’ = X 1. Also the realization X', = ka does not yield
the desired nonlinear-nonlocal-nonhamiltonian isosymmetries as we shall see in
Sect. 4.6.

Despite the local isomorphism L ~ [, the lifting L = L is not mathematically
trivial because these two algebras are not unitarily equivalent. The physical
relevance of the isotopies originates precisely from their local isomorphism,
because it permits the construction of nonlinear, nonlocal and nencanonical
isotopes of the rotational SO(3), Galilean G(3.1), Lorentz 0(3.1), Poincaré P(3.1),
SO(3) and other space-time and internal symmetries which are locally isomorphic
to the original algebras.

Theorem 4.4.5 therefore represents the property which has permitted the
achievement of methods for the nonlinear-nonlocal-noncanonical interior
problems by preserving the analytic, algebraic and geometric axioms of the
conventional, linear—local-canonical methods of the exterior problems [4]

For additional technical studies of the Lie-isotopic algebras we refer the
reader to the forthcoming book [24).

We now illustrate the results of this sections with the isotopies and
isodualities of the rotational algebra so{3) with generators in their adjoint form
(4.3.13). For this purpose, the isounit and isotopic element of Class I11, Eq. {4.3.16),
can be realized in the form

1= diag. (£b;22by;24b379, bylt,rfitf.) =0, (4428

8 =T = diag. (b2 2 b2 £ b2 (4.4.28b)
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The Isotopic Second Theorem 4.4.1 then yields
Dad = 3 Tdy - 95T g = Gftnnr, )T g (4.4.29)

where the J's are the conventional adjoint generators (4.3.13) and the &' are the structure
functions.

It is easy to see that all possible isoalgebras (4.4.8) are those of classification
(4.3.18), and are given by [1,9}
1) sof3) for 1 =1 = diag. (1, 1, 1) with commutation rules
[Jl .Jz] = J3, [J2,J3] = Jl’ [JS‘JI] = J2; (4430)
2) so{2.1) for T = diag. (1, -1, 1) with rules
3,70) = Jz. s :J3] =-J;, gl = dys {4.4.31)

3} An infinite family of isotopes so{3) isomorphic to sof3) for
T = diag. (b;2 by2 bg? with rules

0,702 =32 33, Wy dgd = b2, U3 3] = b2 Jo; (4.4.32)

4) Aninfinite family of isotopes s(2.1) isomorphic to so{2.1) for
T = diag. (b;2 -b,2 bs? and rules

i 7l =bg? 03, 10,7305 =-b,2 3, [Ug70)) = b)2Jy; (4.4.33)
5) The isodual 50%3) of sol3) for 1 = diag. (-1, -1, -1) and rules
Wpidel = =35, Upidl = =3y, gldy) = -0y, (4.4.34)
6) The isoduat so%(2.1) of so{2.1) for 1 = diag. {1, 1, ~1) and rules
Witdd = —J5. 03700 = 3y, Wgi3y] = -y, (4.4.35)

7) The infinite family of isotopes s6%(3) ~ s0%(3) for
T = diag. (-b,?, -b,2 -bs?) and rules

0, 78) =-b5203, U7 dgl ==bj24;, g7 = b2 J5; (4.4.36)

8) The infinite family of isotopes s6%2.1) ~ $09(2.1) for
T = diag. {-b;2 by2 -b;2 and rules

D179 =-bg?J5, Dp70) = 0,23, Wgid)) = -b2J,; (4.4.37)
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The reader can readily verify the above indicated local isormorphisms via
the redefinition of the basis

Jy=b7 b7ty Ty = bl Ny, J5 = b ln g, (4438)

in which case the b—terms in the r.h.s. of the commutation rules disappear and
one recovers conventional structure constants of so{3) and sol2.1) under isotopies
(see Ch. I1-6 for details).

[t is also significant that exactly the same classification exists for the
isotopies of sof3) in classical mechanics, in which case the isoproduct is given by
an isotopy of the conventional Poisson brackets (see ref. [22] for details). This
latter occurrence is important to understand that the conventional quantization
of the classical rotational symmetry carries over in its entirety to the isotopic
and isodual coverings (Vol. I1).

It is instructive for the interested reader to verify with the above examples
various other notions introduced in this section, such as the isocartan’s tensor, the
- isokilling form, etc. We shall have plenty of opportunities to study additional
examples of Lie—isotopic algebras in Yol.s II and I11.

As Tinal comments, we discourage the reader from applying conventional
notions of Lie’s theory to the covering Lie—isotopic theory without their specific
isotopic reformulation. This is due to the lack of general preservation of
structural properties of the original Lie algebras, such as compactness,
irreducibility, etc.

The reader should also be aware of the physical importance of preserving
under isotopies the original generators Xy (i.e, the original basis). In fact, the
generators represent physical quantities, such as total energy, linear momentum,
angular momenturm, etc. which, as such, cannot be changed by isotopies or other
technigues. Similarly, the parameters represent physics measurable quantities
such as angles of rotation, velocities, etc. This also illustrates the preservation
under isotopies of the conventional parameters w € F merely .lifted into the form
w=wlekF

The implications of these results for hadronic mechanics are clear. As we
shall see better in the next Volume, the conventional total conservation laws of
hadronic mechanics can be simply read-off the generators of the Lie-isotopic
symmetries.

4.5: LIE-ISOTOPIC GROUPS AND THEIR ISODUALS

As indicated earlier, the isotopies of a topological space are still lacking at this
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writing and so are the isotopies of topologicai Lie groups. Only the isotopies of
Lie's transformation groups are available at this writing as per the original

proposals [1,2],

Definition 4.5.1 (1} A “right Lie-isotopic transformation group” G, or
“isotransformation group” for short, on an isospace 8x,F) over an isofield
Ha,+%) lof isoreal numbers R or isocomplex numbers C or isoquaternions
Q Is a group which maps each element x € 8,8} into a new element x' €
8(x,F) via the isotransformations

X =0*x=0Tx T fixed, {4.5.1)

such that:

1) The map (0, x}— U *x or Gx8(x,F) onto 8x.F) is differentiable;

2 1*0=0+1=0,v0eG and

3 0p«(0pex)=(0,*0,)*x,VxeSxFand0,,0,¢0.

A "feft Lie-isotopic isotransformation group” is defined accordingly .

The notions of connected or simply connected transformation groups
(see, e.g., ref.s [31-33)) carry over to the Lie-isotopic groups in their entirety. We
consider hereon the connected Lie—isotopic transformation groups {see Sect. 4.6
for the discrete parts).

Right or left Lie-isotopic groups are characterized by the following
isogroup laws first introduced in ref, [1]

oo =1, (4.5.2a)
OW) * Ow) = 0&)* 068 = Olw + W), (4.5.2b)
O}« 0-w) =1, wekf, (4.5.2¢)

‘Their most direct realization is that via the isoexponentiation (4.3.6) under
which they can be reduced to ordinary transformations for computational
convenience, ie.,

x-=0*x={eei@*x}*x={ei”wn, (45.3)
where X represents the infinitesimal generators of G and w the parameters, with
the understanding that only the isotransformations are admitted on rigorous
mathematical grounds.

The fundamental Teature of the above transformations is their nonlinear,
nonlocal and noncanonical character, as implied by the isotopic element Tit, x, x,

%, ...) in the exponent.
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Evidently, Eq.s (4.5.3) hold for some open neighborhood N of the isoorigin
of L and which, in this way, characterizes some open neighborhood of the isounit
of G (see in this respect [27,28).

Still another important property permitting the isocomposition of Lie-
isotopic groups is given by the following

Theorem 4.5.1 - isotopic Baker-Campbell-Hausdorff theorem (1,4} The
conventional group composition laws admit a consistent isotopic lifting,
resulting in the following "isotopic composition law”

X1y, X2y _ . = o Xz
E}{eE ) = 04 €

Xz = X +Xp +1X X072+ (X -X) (X 7% 11/ 12+..  (45.4D)

0,0, = {e {4.5.4a)

By following Kadeisvili [27], we now study the connection between Lie-
isotopic groups and algebras. Let L. be a (finite-dimensional) Lie-isotopic algebra
with (ordered) basis Xy, k = 1, 2, ..., N. For a sufficiently small neighborhood N of
the isoorigin of L, a generic element of G can be written

0w = TT=1z..n€, DKW (4.56)

which characterizes some open neighborhood M of the isounit 1 of .
The map

3 (02 =0, «0,* 0,7, (45.7)

for a fixed U, € G, characterizes an inner isoautomorphism of G onto itself. The
corresponding isoautomorphism of the algebra L can be readily computed by
considering expression (4.5.7) in the neighborhood of the isounit 1, in which case
we have

0= 0, #0077 = 0y +wwy X, 0%, 1402, (458

By recalling the differentiability property of G, we also have the following
isctopy of the conventional expression in one dimension?’

d d iwX WX
(1/i) — =(1/i) —e " =X+ =X, (459)
i dw0|“7=o ( ldw e, =0 € w=0

2/ We should indicate that the conventional dertvative d/dw needs a suitable isotopic
formulation d/8w presented in Ch. 1.6. The results, however, will be the same as those of
Eq.s (45.9).
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Thus, to every inner isoautomorphism of G there corresponds an inner
isoautomorphism of L which can be expressed in the form [27]

( L )ij = ijj Wk . (45 10)

The Lie-isotopic group G, of ali inner isoautomorphism of G is called the
isoadjoint group. It is possible to prove that the Lie-isotopic algebra of Ga is the
isoadjoint algebra L, of L. o

We mentioned before that the direct sum of Lie-isotopic algebras is the
conventional operation because the addition is not lifted in our studies. The
corresponding operation for groups is the semidirect product which, as such,
demands care in its formulation.

Let G be a Lie-isotopic group and G, the group of all its inner
isoautomorphisms. Let G°, be a subgroup of G, and let A(§) be the image of g
€ G under G%. The semidirect isoproduct G % G°, of G and 6, is the Lie-
isotopic group of all ordered pairs (g, A) with group isomultiplication

(8. A)*(g A"} = (g«A(&), A=) (4.5.11)
with total isounit given by
Tt = (L13), (45.12)
and inverse
(g, A7 =(alg N, a7, (45.13)

As we shall see in Yol. I, the above notions play an important role in the isotopies
of the inhomogeneous space-time symmetries, such as Galilei’s and Poincaré’s
symmetries.

Let G; and Gy be two Lie-isotopic groups with respective isounits 1, and 1, .
The direct isoproduct G;6G, of G| and G; is the Lie-isotopic group of all ordered
pairs g =(g), 85), 8 € G}, 8> ¢ Gy, with isomultiplication

gxg = (B.8)%(87,8%) = (g *g",8r* 87), (4514
total isounit
Tiot = (11.15), (45.15)

and inverse

g = (g7 . (4.5.16)
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Definition 4.5.2 [89} Let G be an N~dimensional isotransformation group
of Class I with infinitesimal generators Xy, k = 1, 2, .., N. The “isodual
image” ¢4 of G is the N—a‘:mensronal isogroup w.rth infinitesimal
generators X% = =X , isodual isounft 18 = -1 and isodual parameters
wd = -w over the isodual isofield FO (& ,+,*d) with “isodual
isotransformation” in a suitable neighborhood of 19

sdvd,d.~d :
- X XT
x'= 0090 x = (eya’ *W}*dx=—{eel Yix. Ws1m)

In particular, the above antiautomorphic conjugation can also be defined
for conventional Lie groups, yielding the “isodual Lie group” G% which is

defined over the isodual field FHal+x9) with generic “isodual
transformations”
i x4 xd wd i X
x’=Ud(wd)xdx={eEd }xdx=-{eE] Y1x. 4518

In summary, any Lie group admits the following four realizations relevant
for our analysis:

Lie groups G of conventional type;
Lie-isotopic groups G;

Isodual Lie groups G% and
Isodual Lie-isotopic groups 69,

Realization G (G%) is useful for the characterization of particles (antiparticles) in
vacuum within the context of the exterior probiem, while realization ¢ (G9) is
useful for the characterization of particles (antiparticles) in physwal media within
the context of the interior dynamical problem.

It is hoped the reader can see from the above foundations that the entire
conventional Lie’s theory does indeed admit a consistent and nontrivial lifting
into the covering Lie-isotopic formulation.

We now illustrate the primary results of this section with the isotopies and
isodualities of the rotational group SO(3). Let SO{3) be the lifting of SO(3} of Class
111 on isoeuclidean space E(r,8,R) with isometric and isounit (4.3.16). Let 6 €
R(n,+x) be the conventional Eulers angles and & = &1 € R{fi,+% their isotopes.
Then, a generic isotransformation on E(r,8,R) can be written

= f@)er = Aedr, K = A1 (4.5.19)

We then have the realization of isoexponentials (4.5.6)
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#0) = (e /170 (92" ) u (%87 ) =

where the Js are the (skew-symmetric} generators (4.3.13) of the adjoint
representation of so(3), the &'s are the conventional Euler’s angles, and T is the
isotopic element {4.3.16) in realization (4.4.28b). I

It is an instructive exercise to verity for structure {4.5.20) the validity of
laws (4.5.2) ensuring its Lie-isotopic group structure; the validity of Theorem 4.5.1
ensuring its finite-dimensional (actually three-dimensional) character; Corollary
4.3.1A ensuring the correct isoexponentiation from the Lie-isotopic algebras to
the corresponding Lie-isotopic groups; rule {45.9) on the inverse transition from
isogroups (4.5.20) to the corresponding isoalgetmas; and others.

[t is finally instructive to verify the following classification of all possible
isogroups (4.5.20)

SO(3) for T = diag. (1, 1, 1}
SO(2.1} for T = diag. (1, -1, 1);
SO(3) Tor sign. T = (+,+, +}
f0) : SO(2.1) for sign. T = (+, -, +};.. (4.5.21)
So%3) for T = (-1, -1, -1}
so%2.1} for T = diag. (~1, +1, -1}
s0%3) for sign. T = (-, -, -
SO%2.1) for sign. T= (=, +, ).

thus illustrating the compatibility of the above classification with the
corresponding one at the isoalgebra level, Eq.s (4.4.30)-(4.4.37), and the original one
at the level of isoenvelope, Eq.s (4.3.18).

An example of isotopic rotation () will be presented in the next section.
We shall have ample opportunities to study in Vols I and III additional Lie—
isotopic groups and related isotransformations.

As we shall see better in Vol. I, the fundamental time evolution of
hadronic mechanics [2] was conceived as a one-parameter Lie-isotopic group of
inner isoautomorphisms, which can be written for an arbitrary operator Q in
terms of a Hermitean Hamiltonian H on a Hilbert space JC in the finite form

itH
3

with corresponding infinitesimal form derived via rule (4.5.8)

-itTH itTH

Q(t)={e;tH]*Q(0)*,{c b= (™) o (e"™™), H=Ht, (4523
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i—— =[QH = Q*H-H*Q=QTH - HTQ. (4.5.24)

This confirms that the isotopies of Lie’s theory are indeed at the structural
foundations of hadronic mechanics.

The singular Lie-isotopic theory of Class IV is unexplored. It is hoped that
experts in the field will indeed study its structure because it characterizes
degenerate space-time symmetries for gravitational singularities {Sect. 3.7). The
Lie-isotopic theory of Class V is equally unexplored at this writing.

4.6: THE FUNDAMENTAL THEOREM ON
ISOSYMMETRIES

In this section we shall apply the isotopic methods for the construction of the
isosyrnmetries, i.e., the symmetries of the isoseparation in an isospace 3(x,§,F)

(x=yP = (x-y PEuft x % % 6,91, &, 04t . 7,0, ) (x -y V', (46.1)

-~

detg=0, g=gl, (4.6.10)

The objective is the form-invariant characterization of the most general

known interior dynamical problems which are:

1} nonlinear in the coordinates x {as available, e.g., in conventional
gravitation) as well as nonlinear in the velocities {e.g., to represent
the drag forces of missiles in atmosphere which are nowadays
proportional to the tenth power of the velocity x!% and more), and
in the accelerations {(as requested by certain particular interior
dynamical motions studied in Vol. IT};

2) nonlocal-integral on some or all these variables to represent the
extended character of the particies moving within physical media;

3) noncanonical as a necessary condition for interior dynamics, i,
violation of the conditions of variational selfadjointness for the
existence of a Hamiltonian [3];

4) Inhomogeneous, to represent experimental evidence on interior
physical medium (e.g., local variation of the density p); and

5 Anisotropic, also to represent experimental evidence on interior
media {e.g., as occurring under an intrinsic angular momentum of
the media themselves).

The above invariance problem was solved by this author in ref.s [6-8] in
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1382-1983 via: paper [8] on a general theorem on isosymmetries reviewed below;
paper [9] on the first construction of the isotopies O(3) of the rotational symmetry
0O(3); and in paper [7] on the construction of the isotopies 0(3.1) of the Lorentz
symmetry O(3.1). The inclusion of the isotranslations to reach the isotopies P(3.1)
of the Poincaré symmetry P(3.1) was done in memoir {1628

The studies essentially permitted the formulation and proof of -the
following

Theorem 4.6.1 - Fundamental Theorem on isosymmetries [8} Let G be
an N-dimensional Lie symmetry group of an m-dimensional metric or
pseudo-metric space S(x.g,F) over a field Fla,+X) of characteristic zero,

G: x=AWx x1=xAfw), (4.6.2a)
{x=y)t Aflw) g AW} (x-y) = (x-y}f g {x-y), (4.6.2b)
ATgA = AgAt =g, DetA ==%1. (4.6.2c)

Then, the infinitely possible isotopies G of G characterized by the same
generators and paramelers of G and new isounits 1 (isotopic elements T) of
Class [II automatically leave invariant the isocomposition on the isospaces
SxgFhg=Tg =T

G: x = AW *x = AW x, xT = xt*AHW) = xt AW, (4.6.33)
(x= y)t « AtOW) g AW > (x-y ) ={x-yf Ag K (x -y) = (x-y)t g (x-y), (4.6.3D)

AtgA = AgAt =181, or (4.6.3c)

P o]
e,
rQr
-t
)
b 2]
{1, 1]
o]
—
1]

g, Det(AT) = DetA = £ 1. (4.6.3d)

As now familiar, the original symmetry G is generally linear-local-
canonical, while the isosymmetries G are generally nonlinear, nonlocal and
noncanonical when projected in the original space, owing to the arbitrary
functionai dependence of the isometric § = T{t, x, X, &, ..)g, although they are
isolinear, isolocal and isocanonical in their proper isospace (Sect. 4.2).

The objective of this section is reduced in this way to the explicit
construction of the isotopies of any given symmetry G via the original
generators, the original parameters and the generalized metric g. The invariance
of the isoseparation is then guaranteed by Theorem 4.6.1.

% 1t should be noted that papers [8,9] were written prior to paper [7], but they ended up to
be published in 1985, some two years after the appearance of the latter {1983) because of
unreasonable editorial processing by several journals reported in details in page 26 of ref.
i
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Note that the trivial isotopy Xy = Xy = Xyl is excluded in Theorem 4.6.1,
because it does not provide the invariance of the generalized metric. This is due
to the fact that the isotransformations characterized by the isoexponentiation of
X'y coincide with the conventional ones

x'=[eEixw]*x={eIX1Tw}x = [elxw}x, (4.6.4)
by losing in this way the crucial appearance of the isotopic element T in the
exponent. This occurrence indicates the needs of using the Lie-isotopic theory in
its entirety, and illustrates once more the reason for the preservation of the
original basis under isotopies.

Let us now illustrate Theorem 4.6.1 with an explicit example. Consider the
rotational symmetry G = SO(3) of the separation in Euclidean space E(r,8R)

= SOk r = ®E)r, REIAO) = AOAG) =1, Det. R = + 1, (465
2 = xiSijxj = =xlx! + %22 + 338 = inv, (46.5b)

Consider now the most general possible deformation of the above invariant
of Class III which, as such, can always be diagonalized into the form

2 = 2

re = xiSi-xj==ng“x1+x2g22x + x3gaa X3 =

= = x'b%x! & x®p2 ¢ t x¥bg28 = inv, (4.6.6a)
8= T8 =T = diag. (g, g5 .83) =diag. (£ b2 £ b2 £ b5?), (4.6.60)
by = blt,r it ) = 0. (4.6.6¢)

Ref. [9] computed via Theorem 4.6.1 the symmetries of all inf initely possible
deformations (4.6.6b). They are given by the isotopes (4.5.20) (see Ch. I1.6 for

details)
G =5803r=HB+*r {4.6.7a)

O+ KRB = A +R®) =1, Det(RT) = +1, (4.6.7b)
a0 = Lep ! 1* 8y ¢ J2“92 J3*331 =

_ [%JlTel}{eEJzTez}{eEJST%}”l. {46.7¢)

where all quantities are known: the generators J, are in their adjoint
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representation (4.3.13), the parameters 8, are the conventional Euler’s angles, and
the isotopic element T is that of deformation (4.6.6b).

The isosymmetry transforrnations can also be computed in the needed
explicit form, because the convergence of isoexponentials (4.6.7c} is ensured by
the original convergence plus the conditions for Class 111 (isotopic elements that
are sufficient smooth, bounded, nowhere degenerate and Hermitean).

As an example, ref. [9) computed the following isorotation around the
third axis:

cos 63z 1850 '] g20(g112507 sin [6fg 1850t ] 0
ﬂ(%) = -8 l(gl 1222)-% sin [Bs(gl 1822)!f 1 cos [63(g1 1822)* 1 0 31. (468
0 0 1

It is instructive to verify that isotransformations {4.6.7a) with realization
(4.6.8) do indeed leave invariant generalized separation (4.6.6a). The Tollowing
comments are now in order: :

1} The SO{3) invariance of generalized separation {4.6.6a) is ensured by
the original invariance SO{(3) of the sphere (4.6.5b} for all infinitely
possible deformations of the admitted Class 111 {Theorem 4.6.1)

2) The original SO(3) transformations (the ordinary rotations in
Euclidean space) are linear, local and canonical, as well known. On
the contrary, the covering SO(3) transformations (the isorotations
{4.6.8)) are nonlinear, nonlocal and noncanonical owing to the
arbitrary functional dependence of the gy —terms, although they are
isolinear, isolocal and isocanonical in the sense of Sect. 4.2;

3) Owing to the general character of invariant {4.6.6a), Riemannian
generalizations of the original Euclidean space are a particular
case of isosymmetry (4.6.8} for gyy = gxk(r), with the understanding
that isosymmetries {4.6.8) are considerably more general than
Riemann owing to their additional unrestricted dependence in the
velecities, accelerations, etc.;

4) Isotransformations are already computed in the needed explicit
form and there is no need of additional calculations. As an example,
consider the lifting of the Euclidean metric 8 into a Riemannian
three-dimensional metric g(r), e.g.,, the space component of the
Schwartzchild line element. Then the explicit symmetry of the
latter is merely provided by plotting the g, values in (4.6.8);

5) The classification of all possible isosymmetries (4.6.8) recovers again
classification (4.3.18) at the level of the isoenvelopes, classification
(4.4.30)-(4.4.37) at the level of Lie-isotopic algebras, and classification
(4.5.21) at the level of Lie-isotopic groups, according to the following
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invariances: 22

SO(3) xtxl + x2+2 + X338 = v,

S0(2.1) xlxl - %22 + x88 = jnv,

SO/3) x'p2xl + x2b22 + xB3bs? 8 = v,

so21:  x'b2x! - x®b22 + x3bs28 = inv, (4.6.9)
s0%3k -xlxl-x2x2 - ¥x8 = inv,

sode.nx  -xIx! + x2x2 - 333 = qnv,

SO%3): - x!'b2x! - 20,22 - ¥ b2 = inv,

so%2.1x - x!b2x! + @b - i3 bs® 3 = inv,

In summary, the application of Theorem 4.6.1 to the deformations of the
Euclidean space provides the invariance not only of all possible ellipsoidical
deformations of the sphere, but also of all possible hyperbolic deformations, thus
admitting as particular cases the conventional rotational and Lorentz symmetries,
all their infinitely possible isotopes, their isoduals and all the infinitely possible
isodual isotopes.

As we shall see in Ch. 1.8, one of the first applications of the Lie-isotopic
theory is the construction of the general invariant of conventional exterior
gravitation and the proof that it is locally isomorphic to the conventional
Poincaré symmetry of the special relativity.

In Ch. I1-8 we shall show that, starting from the familiar invariance of the
separation in Minkowski space

P{.1} * Ty xV = inv., 1 eMxnR) {4.6.10)

Theorem 4.6.1 permits the construction of the generai invariance for all possible
Riemannian separations

P31k x* gux) x¥ = inv, g € fixgR), (4.6.11)
via the decomnposition g{x) = T{x} and the construction of the isosymmetries P(3.1}

with respect to the generalized isounit 1 = [T(x)I"!. The invariance of the
Riemannian separation (4.6.11) is then ensured by Theorem 4.6.1%,

“J Note that for hyperbolic invariants the trigonometric functions of {4.6.8) become
hg'perbolic functions, exactly as they should be).

30 The attentive reader may have noted that isorotations (4.6.8) do already contain the
solution for {2+1) dimensional Riemannian spaces. We are therefore referring here to the
extension of the results to the full (3+1-dimensional Riemannian space.



- 149—

The isotopic unification of the Minkowski and Riemannian spaces of Sect.
3.3 will be carried over, in this way, to the unification of symmetries of the
special and general relativities as a foundation for their isotopies for interior
problerns.

The relevance of Theorem 4.6.1 is further illustrated by the fact that all
isosymmetries of hadronic mechanics studied in Vols I and III are particular
applications of Theorem 4.6.1.

The understanding is that signature changing deformations, e.g., (+, +, +) =
(+, -, +), cannot be reached in actual experiments and, therefore, they have a mere
mathematical significance. This is the reason that practical applications of the
isotopies are restricted to Class I which ensures the preservation of the original
signature.

In summary, Theorem 4.6.1 is "directly universal” for all infinitely possibie
isotopies g = § = Tg of Class II1. The “direct universality” of hadronic mechanics
for the treatment of nonlinear—nonjocal-nonhamiltonian systems is then
consequential, as we shall see.

4.7: ISOREPRESENTATION THEORY

Recall that the representation theory of Lie algebras has profound physical
implications because it characterizes the contemporary notion of particles for
the exterior problem in vacuum

A primary objective of the representation theory of the covering Lie-
isotopic algebras is that of characterizing a generalized notion of particle for
interior problems within physical media called isoparticies [22]. The still more
general representation theory of Lie-admissible algebras will then characterize a
yet more general notion of particles called genoparticles [loc. cit.] which are
studied in Ch. I.7. The corresponding antiparticles are characterized via the
corresponding isodual methods.

In this section we shall identify the mathematical difference between the
notions of particles and isoparticles via a study of the isorepresentations of Lie-
isotopic algebras of Class I or Il over an isofield Fd,+* of isocharacteristic zero.
The mathematical differences with the more general notion of genoparticles will
be studied in Ch. 1.7.

The physical differences between the notions of particles, isoparticles and
genoparticles will be studied in Vol. I1 after the identification of the isotopies and
genotopies of the Galilei and Poincare symmetries.

The representation theories of isoalgebras of Classes IV and V are unknown
at this writing. ’

Consider a vector space U with elements a, b, c, ... and abstract composition
{product) "ab” over a field Fa,+x). We shall say that U constitutes an algebra
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when it verifies the scalar and distributive laws (Definition 2.4.1). The algebra U
is said to be associative (nonassociative) when ab is associative (nonassociative).

The right and left multiplications in U (see, e.g,, ref. [34) are given by the
Tollowing linear transformations of U onto itself as a vector space

Ry: a-= ax, or aRy = a, (47.1a)
Ly: a = xa, or Lya = xa (4.7.1b)

for all a, x € U, and verify the following general properties

(aa)R, = (aa)x = alax), or aR, = Ry, (4.7.2a)
aR(X+y)=a(x+y)=aRx+aRy=a(Rx+Ry), |
or Ry + y) = Ry * Ry, (47.20)

with evident similar properties for the left multiplications Ly
) When the aigebra is associative, we have the additional properties

alxy) =(ax)y, ie, (4.7.32)
aRy, = aRyRy, or Ry, = RyR,, (4.7.30)
(xyla = x(ya), ie {4.7.3¢)
by = Lylya  or Ly, = Ll (4.7.30)

The above properties imply that the mapping a2 = Ry {a = L,) is a
homomorphism (antihoromorphism) of A into the associative algebra V(A) of all
linear transformations in A. Thus, they provide a right representationa = Rﬁ or a
left representation a = Ly, respectively, of A, also called left or right Homn F(Vp),
for p = Right or Left.

If the algebra A contains the identity I, we have a one—to—-one (or faithful)
representation because Ry = Ry implies IR, = IR, which can hold iff a = b. When
the space V is the algebra A itself, we have the so-called adjoint representation
also called rfundamental or regular representation.

In the case of nonassociative algebras, the mapping a = R, is no longer a
homomorphism, and this illustrates the reason for the study of the representation
theory of Lie algebras via that of the underlying universal enveloping associative
algebra, as done in the mathematical literature, e.g., ref. [31] (but generally not in
the physical literature).

Consider now an isoassociative algebra A over an isofield F(a,+* with
isounit 1 and isoassociative product a*b. Introduce the right and left
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Isornultiplications
Rya = a*x, or a*Ry = a=*x, (4.7.4a)
Ly:a = x*a, or axl, = xxa, {4.7.4D)

for all a € A. It is then easy to see that properties (4.7.2) and (4.7.3) are lifted into
the forms

a*szRa*x, R(x+y) = Rx""RY, (4.7.58)
Ryey=Ry*Ry, 1#Ry=1+Ry = a=b, (47.5b)

with similar properties for the left isomultiplications.

It is easy to see that the mapping a = R, characterizes a right, faithful,
isorepresentation of A in the isoassociative algebra V(i) of isolinear
transformations on A denoted HomAF(VR), with similar results holding for the
left isorepresentations.

The nontriviality of the isotopy is made clear by the following

Lemma 4.7.1 [4}: [sorepresentations of isoassociative algebras A over an
isofield Fla,+») are isolinear and isolocal in ¥ but generally nonlinear
and nonlocal when projected in V.

Thus, the transition from Lie algebras fo Lie—isotopic algebras generally
implies the transition from linear-local~canonical to nonlinear-nonlocal-
noncanonical representations . Recall that the contemporary notion of point-
like particle in vacuum is essentially a manifestation of the linear—local~
canonical character of the theory. The more general isoparticles will then result
to be a manifestation of the covering nonlinear-nonlocal-noncanonical character
of the isorepresentation theory.

A module of an algebra U over a field F, also called U-module [34] is a
linear vector space V over Fla,+*) together with a mapping UxY = V denoted
with the symbol (a, v) = av which verifies the distributive and scalar rules

alv+t)=av+at, @+bv=av+hy, {(4.7.6a)
afa,v) = laa v) = (aav), (4.7.6b)
as well as all the axioms of U, foralla,beU,v,teV,and acF,
The mappings a = Ry, = av and a = L,, = va show that the space V is a left

and right U-module.
The notion of one-sided, left or right isomodule of an isoalgebra O over
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an isofield F was introduced in ref. [35] and it is given by a straighforward isotopy
of the preceding structure. The more general notion of two-sided, left and right
isobimodule was also introduced in ref. [35] as reviewed in Ch. L.7.

The isornodules are sufficient for the representation theory of Lie-isotopic
algebras, but the more general isobimodules are necessary for the more general
Lie-admissible algebras. The above structures permit a first characterization of
the notion of particles of hadronic mechanics as follows:

1) Conventional particles, those characterized by linear-local~canonical
representations of Lie symmetries on a one sided module;

2) Isoparticles, those characterized by nonlinear-nonlocal-noncanonical
representations of Lie-isotopic symmetries on one-sided isomodules;

3) Genoparticles, those characterized by nonlinear-nonlocal-noncanonical
representations of Lie admissible algebras on two-sided isobimodules (CH. L.7).

As we shall see in Yol. II and IIl, the above characterizations yield notions
of particles for physical conditions of increasing complexities, such as for a
particle when members of an atomic structure (conventional particle), when
member of a hadronic structure {isoparticle) and when in the core of a collapsing
star (genoparticle).

By keeping in mind the results of preceding sections on isodual isoalgebras,
we are now equipped to study the isorepresentations of Lie-isotopic algebras via
an isotopy of the conventional representation theory in terms of enveloping
associative algebras.

Definition 4.7.1: Let 2 be the universal enveloping isoassociative algebra
of a Lie-isotopic algebra [~ of Class I. Then, the one-sided, right or
left, "isorepresentations” Homep(vp), p=R orL, of ¢ on a corresponding,
one sided isomodule ¥ over an isofield Ma,+*) are characterized by
Ryep = Ry* Ry, (4.7.7a)
Ry = 1. (4.7.7b)

The “isodual isorepresentations” of {3 on 9 over F9E9++9) are the
isodual images of HomEF(VP) characterized by

R(W), = RI(W, = -R(~%),. (47.82)
R =1 - RSy =19=-1, (4.7.8b)
e. c

Conditions (4.7.7b} and (4.7.8b) ensure the invertibility of the elements, in the
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sense that

Rivat =Ra*RpA =R =1, (4.7.9a)
R = (R, (4.7.92)

It should be indicated that isorepresentations (4.7.7) exhaust all isolinear and
isolocal cases, but they are not expected to be unique. In fact, an additional class
of nonlinear representations emerges in the conventional case [31-33) and a
similar occurrence is expected in the isotopic case.

The matrix form of lsorepresentatlons are also given by a simple isotopy of
conventional matrix forms [31-33]. Let &,k = 1, 2, .., N be an isobasis of A
which is fsoorthonormal, i.e.,

(él : é] = 8” = ]81] (4710)

where (., ) is the isoscalar product on the isomodule and 8 is called the
~ Iisokronecker delta. The desired matrix form of the lsorepresentatlon is then
given by

Ra * ék = Dik(a) * éi ) (4.7.1 la)
ie,
Difa) := (Ry* &7 &;). (4.7.11a)

Note that the matrix for of the product Ra «p IS given by

Dijlaxb) =25 s Dypla) Trs Dgf) (4.7.12)

From the above properties it is easy to see the following

Lemma 4.7.2: The dimension of the representation of a Lie algebra does
not change under isotopies.

We now study the “degrees of freedom” of isorepresentations. Let a — R4
be an isorepresentation of an algebra A over Fa,+* on an isomodule V. Let

8§ v - v, (4.7.13)
be a (bounded, sufficiently smooth and regular) isomap of ¥ into V. Then the

isomap
Fra = RYy=8«R*87T, (4.7.14)
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characterizes the image of the isorepresentation R, in V" because
Ravp = S*R*S+8T Ry s87 = Ry*Ry , Rz =1. (4715

Definition 4.7.2: Recall that a representation Ry on a module V and R',
on another module Y over Fla,+x) are said to be “equivalent” when there
is an invertible mapS: V = V' such that

Ry = SR, S, (4.7.22)
and they are said to be “unitarily equivalent” for the particular case
R, = SR, &, ssl=sls=1 si=d". (47.16)

A isorepresentations Ry on an isomodule ¥V and R’y on V' over an
isofield Fld,+x) are said to be “isoequivalent” when there exist an
sufficiently smooth invertible isomap & ¥ — V' such that for all elements
acl

R, = S+#Ry+87, (4.7.17)

and they are said to be "isounitarily equivalent” for the particular case
Ry = S*Re+8, 8+ =8lex=1,8§ =81 (47.18)
It is then easy to prove the following

Lemma 4.7.3 : Let D be a (finite-dimensional) representation of a Lie
algebra L and D the corresponding isorepresentation of the Class I
isotope L of L, in which case L is isomorphic to L, L ~ L, and the
dimensions of D and D are the same. Then D and D are not unitarily
equivalent or equivalent.

As in the conventional case (see, e.g., [33]), the notion of isoequivalence
of isorepresentations is reflexive, symmetric and transitive. In fact, every
isorepresentation is isoequivalent to itself; if an isorepresentation Ra is
isoequivalent to R’,, then R’ is isoequivalent to R,; etc. Thus, the set of all
isorepresentations can be divided into isoequivalence classes.

In the conventional Lie theory only one matrix representation per each
equivalence class is considered [33]. This is due to the fact that the matrices of
two equivalent representations can be made to coincide with a suitable selection
of the basis. In fact, the basis ¢; for ¥V and e} = Se; for V' yield the same matrix
representations,
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Dia) e = 21 Dy e; — Dfa) €k = 21 D e} = SzDik e, (4.7. 19)

Under isotopy we evidently have the correspondmg image, in the sense that
we can indeed select the isobasis & on ¥ and &; ~ &, on ¥, thus reaching the
similar results

D) x gy = Er,s Dy Trses —
— Dl &y = 2rs D Trs &5 = 8% 2r Dy T 6. (4.7. 20)

However, isoequivalent but different isorepresentations play an important role in
the Lie~isotopic theory, particularly for physical applications, as illustrated below
in this section.

Recall that Tor a conventlonal N-dimensional Lie algebra L with generators
Xj, the structure constants C‘J characterize the adjoint representation of X; with
matrix elements

(X§k = ~cif . (4.7. 21)

The repetition of the conventional proof via the use of the Isotopic Second and
Third Theorem (Sect. 4.4) then leads to the following

Lemma 4.7.4: Let L be a L:e—:sotopfc algebra with generators X; and
structure functions C;; Kit, x, % % .. cu'I Eq.s (4.4.7). Then, up to
Isoequivalence, one cIass of ”tsoad joint isorepresentations’ of [ is
characterized by the matrix elerments

(Xi )Jk == Cljk (t, X, J'(, X, ) . (47 22)

Additional types of adjoint representations will be identified shortly.

Note the constancy of the elements of the adjoint representation in the
conventional case, as compared to an arbitrary functional dependence of the
corresponding elements under isotopy.

Consider an isolinear space 3 equipped with an isoscalar product (x,"y). As
we shall see in Ch. L.6, an operator X of an isoenvelope ¢ is called isohermitean
when

(XT*xfy) (x;X+y). (4.7. 23)

Consider now an isobasis & e; which is isonormalized with respect to the product
{....), Le, satisfying Eq.s (4.7.15).
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Definition 4.7.3: Let D be an isorepresentation of a Lie-isotopic group G
with respect to basis (4.7.15) on an isolinear space . Then the
“isohermitean conjugate” Bl of D is given by

4

DijT(a) = D@ aeG. (4.7.24)

where the upper bar denotes complex con jugate. The isorepresentation is
called "isounitary” when it coincides with its isohermitean con jugate,

b = pl. (4.7, 25)

An inspection of the structure of the isorepresentations leads to the
Tollowing classification.

Definition 4.7.4 [54} Let Xy, k= 1, 2, ., n, represent a maximal commuting
set of a Lie algebra L (such as P and J3 for the sol3) algebra) and let 8¢
€ Rin,+x) be its spectrum of eigenvalues with respect to a given basis| b >,

Xglb>=8°|b>, (4.7.26)

(suchas L+ Dand M =L L~ 1, ., -L L= 0, 1, 2, ... for sof3))
Characterizing a set of representations D of L. Let [, Ry and | B > be the
corresponding isotopes of Class I, and let S (T) € R(A,+%) be the
corresponding new spectrum of eigenvalues,

Xg*|B> = Xy TIb> = §M+{b> = §(T|b>, (d.7.27)

Then, the isorepresentation D of [ is said to be
A) “regular” when the isotopic spectrum S(T) is entirely factorizable into
the form

S(T) = §% 1 (A nosum, A = detT;  (47.28)

where 1y (A) are smooth functions of A such that fy(l}= 1,k = 1, 2, .., n;

BJ “irregular” when the above factorization does not exist for at least one
element of the spectrum S, (T} and _

C) *standard” when the isotopic and conventional spectra coincide, Sy = & ko
k=1,2 ..,n, but the two representations 1 and D are not equivalent.

We learn in this way that the spectrum of eigenvalues of a Lie
representation can be preserved under a particular type of isotopy called
standard, but the structure of the representation is generalized. This property is
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manifestly relevant for physical applications because, as we shall illustrate below
and study in details in Vol. IT and IHI, isotopic techniques permit the preservation
of conventional quantum numbers under new functional degrees of freedom in
the representations.

In turn, the latter permit physical applications which are prohibited in
conventional theories, such as the exact representation of the still unknown total
magnetic moments for few-body nuclei via the representation of the
deformability of the charge distribution of protons and neutrons when members
of a nuclear structure with consequential alteration of their intrinsic magnetic
moments.

One explicit form of the regular and standard isoadjoint isorepresentations
can be easily constructed from the corresponding representations via a rule here
called Kiimyk's rule [52] (although the rule does not apply for irregular and other
isorepresentations). Let Dy denote the adjoint representation of a given Lie algebra
L, and introduce the matrix P such that

P=K1 PT =K1, Ke Fa+X, (4.7.29)
It is then easy 1o see that the expression
Dy =DyP, PT=KI, (4.7.30)
characterizes the regular isoadjoint isorepresentation of the isotope L (up to
isoequivalence). In fact, rule (4.7.35) reduces the isocommutator to the ordinary
one according to the rule
[D;0;) = D;TD; - By TD; = D;(PT)D;P - D;(PTID;P =
= K(D;D; - D;D;)P = KG¥ D P = ¢ f vy, (4.7.31a)
Gf = K1, (4.7.31b)

The isoeigenvalues of the diagonal elements, say Dy, are also reduced to
conventional eigenvalues multiplied by an isotopic factor,

Da*Ib> =D, (PT}H B> = KDg[B> = KS,° [, (4.7.32)

and the same holds for the isocasimir invariants, e.g.,

D2x[B> = 2y D (PTID (PTH B> =K2D?| B> = K2S|b>, (47.33)

thus confirming the “regular” character of the isorepresentation D.
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The “standard” adjoint isorepresentations are evidently the particular case
of the regular when

Dy =DyP, P=1, PT=], K= 1L (4.7.34)

Lemma 4.7.5 - Klimyk’s rule [52] : Let D be the adjoint representation of
a Lie algebra L and let L be a Class I isotope of L. Then, the regular
adjoint isorepresentation of L is given by rule {3.7.30) and the standard
adjoint isorepresentation of L is given by rule (4.7.34).

It should be stressed that rules (4.6.30) and (4.7.34) are not equivalence
transformations, i.e,, there exist no matrix U such that

Dy = DyP = UD, U}, (4.7.35)

forallk =1, 2, .., N. Thus, adjoint representations and isorepresentations are not
equivalent. Also, there exists no known ruie for the construction of the irregular
isorepresentations from conventional ones.

it is understood that the above differences between representations and
isorepresentations characterize the desired mathematical differences between
particles and isoparticles.

It is an instructive exercise for the interested reader to work out the
definitions of isoreducibility and isoirreducibility, isotensor product and
other known aspects of the conventional Lie’s theory. For additional
mathematical studies we refer the interested reader to ref. [24].

We now illustrate the results of this section with specific examples.
Consider the adjoint representation of the su(2) Lie algebra on the complex
Euclidean, two-dimensional, space E(z,8,C). It is given by the celebrated Pauli’s
matrices we encountered in the representation of quaternions, Eq.s (2.7.6), and in
the illustration of Theorem 4.4.1,

0 1 0 - i 0
0 =( ) , 0'2 = ( X ), 0'3 =( ), (4736)
1 0 i 0 ¢ -1

which satisTy the associative rules
On Om = 2i€umk Ok +8ym., BM=123, (4.7.37)

where €,y is the conventional totally antisymmetric tensor of rank three, and
the Lie ruies

[on,crr;]'] = 040y ~ O Op = 21€qmk Ok s (4.7.38)
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with Casimir invariant 62 = Y, » 5 0,2 maximal commuting set X = {oy, 02,
and eigenvalues on a two-dimensional orthogonal basis | b >

Yx=123%21b> = 3|b>, (4.7.39)

azlb> = £|b>,
The isotopies of-Pauli’s matrices were outlined at the 1993 International

Third Wigner Symposium at Oxford University [45] and then studied in detail in
ref. [54]. They are reviewed in detail in Ch. 11.6 where we also construct the
irreducible isorepresentations of the Lie~isotopic algebra si(2). in this section it is
sufficient to indicate that the isotopy here considered begins with the lifting of

E(z,5,R) into the complex isoeuclidean space
BzBR: & = TS T=diag (g, 80) 1 = diag. (g, Lgsn™"). (47.40

The Lie-isotopic group S0(2) is then the invariance of the generalized expression

82 =782+ Bgn, (4.7.412)
7 =0%2 0+07=0l+0=1 det@T = 1, (4.742D).
(4.7.43c)

0= e o % _(o1% %) g,

with Lie-isotopic algebra for the isoadjoint isorepresentation

[6476m] = 6, TGy ~ 6 TOy = 2ilymuit 22, . ) T O, (47.44)
where the C's are the structure functions of su(2) as identified below. The
following adjoint isorepresentations of sii{2) were then constructed in refs [45,54)

A) Regular isopauli matrices, they are given from rule (4.7.35) by

) 0 g . 0-igy\ | f 82 ©
5, =A‘*( ) , Gy =A™ ( , G = A7 (4.7.453)
0 -g)

8o2 0 1899 0
P=a"dig. (g g )= T, K = A, A=detQ (4.7.45b)

11822 > 0,

with the isoassociative rules
{4.7.46)

6, To;= 28 gy & + A% 18

and, consequential isocommutator rules
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[8,70m) = 6, T8y - 65 TOy = 28 i eqmy Ok (4.7.47)

- Note the identity in this case of the structure functions with the conventional

structure constants of su(2) up to the multiplicative term Af, thus confirming the
local isomorphism stif2) ~ su(2). The isoeigenvalues are generalized and are given
by

6’3 * | 612 >=% A* | biz >, (47483)
62¢|62>= Ty Gix G x| B>= 3a]BBi=1,2 (4.7.48b)

thus confirming the “regular” character of the isotopy here considered (i.e., the
factorizability of the isotopic contribution in the spectrum of eigenvalue). The
isonormalized isobasis is then given by a trivial extension of the conventional
basis, | B> =T |b>.

It is instructive to verify that isorepresentation (4.7.45a) is indeed derivable
from Klimyk's rule.

B) Irregular isopauli matrices, they must be constructed via the full use
of the isorepresentation theory resulting in expressions of the type

. 0 1 . 0 -i . g 0
o= =g, 0y = =gy, 03 = = ATGs, (4.7.49)
1 0 + 0 -gn

with isocommutation rules
(67 6)=2i83 [Gndsl=2ia8),16061=2ia5, 4750

which evidently do not aiter the local isomorphism SUq(2) ~ SU(2). The new
isoeigenvalue equations are given by

Gy b2>=1alb2> &%[62>=a(a+2|02> @75

which confirm the “irregular” character under consideration (ie., lack of
factorizability of the isotopic contributions in all elements of the spectrum). As
one can see, isorepresentations (4.7.52) are far from trivial because they imply the
lifting of the notion ¢f spin ¢ into a local quantity

s=4 — 5= 4Altzz 410, (4.7.52)

as expected for a particle in hyperdense interior conditions {e.g., a proton in the
core of a collapsing star).

It is instructive to .verify that isorepresentation (4.5.49) is not derivable
from Klimyk's rule.
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C) Standard isopauli matrices, which occur when K = [, resulting in the
expressions

A 0 gn '\ . 0 -ig !t ) gt 0
1T\ o 072 = - 03 = _ Jursd)
gn O igp 0 0 g2

possessing isocommutation rules with conventional structure constants,
[6,76"] = &aT6m - FmTén = 2i€mp k. (4.7.57)
and admitting conventional eigenvalues
Fae|b> = £|b, &%|6> =3|b>. (4.7.54)

Yet, isorepresentations (4.7.56) exhibit the "hidden variables” gy in their very
structure. Also, the above matrices are not unitarily equivalent to the
conventional Pauli’s matrices, thus establishing the “standard” character of the
isorepresentation.

It is instructive to verify that isorepresentations {4.7.53) is indeed derivable
from Klimyk’s rule.

This illustrates Definition 4.7.4. We now study the degrees of freedom of
the above isorepresentations. Those of the standard isorepresentations are
trivially expressed by the arbitrariness of the factor K. The degrees of freedom of
the other isorepresentations are less trivial.

D) Isoequivalent irregular isopauli matrices, which are illustrated by

. 0 g22_5 . 0" igZZ-J’ R g”M1 0
o = - » Op = ) — » 03 < 1 f
g“ 0 181y 0 0

-g
22 (4755

with isocommutation rules
67,851 =2 1 A3, [657631 = 216y, [8376) = 215, (47568
and isoeigenvalues

b9 |B2> =62, &% [62>=(1 + 24)|b2>, (4750)

where, as one can see, the eigenvalue of the third component is conventional, but
that of the magnitude is generalized with a nonfactorizable isotopic contribution,



- 162 -

thus confirming the “irregular” character of the isorepresentation. Again, the
above isorepresentation is not derivable from Klimyk’s rule.

E) Isoequivalent standard isopauli matrices, which are given by
particularizations of the standard and irregular isorepresentations for the case

A =g ep =1 (4.7.58)
which holds under the identification
g1 = g ! t= A¥0, (4.7.59)

where A is a real value and nowhere null but arbitrary functions of local
quantities, resulting in expressions of the type

. 0 A 0-ix oo
Ul = ), 6'2 = ( ), 63 = ( ), (47603)
Ao ivl oo 0 -
0 1 0 -i Ao
a‘l' = = 0‘1‘ 6‘2' = = 0'2 , 6‘3" = ( ),
1 0 +H 0 0 -

(4.7.600)

X 0 MYy 0 —ixt ) Ao
O'"l = N 0'”2 = N 0'”3 = . (4760(3)
AT 0 it oo 0 -

They also satisTy isocommutation rules with conventional structure constants
and possess conventional eigenvalues, yet remain inequivalent to the conventional
Pauli’s matrices as one can verify.,

The physical nontriviality of the isotopies of Pauli's matrices, as well as of
the isorepresentation theory at large, will be studied in the applications of Vol. 1.
[n essence, the appearance of the “hidden parameter” (actually the “hidden
function”) A under conventional values of spin 5 = %1 has numerous novel
applications, that is, applications not possible with qguantum mechanics, such as:
the reconstryction of the exact isospin symmetry in nuclear physics under weak
and e]ectromagnetlc interactions via equal proton and neutron masses in isospace
represented by A% the representation of total magnetic moments of few-body
nuclei via a deformation of that of the individual nucleons conjectured since the
early stages of nuclear physics but not treated via quantum mechanics; the
characterization of a generalized notion of quark called isoquark which is
indistinguishable with conventional quarks (because the quantum number are the
samel), yet possessing an exact confinement because of the incoherence between
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the interior and exterior Hilbert spaces; and others,

[n summary, the above example indicates that the SU(2-spin symmetry,
admits an isotopic image S0(2) which is isomorphic to the original symmetry,
S0(2) ~ SU(2), because of the axiom-preserving character of the isotopies. Yet the
isotopic S0(2) algebra and its isorepresentations are not unitarily equivalent to the
original ones, and the spectra of eigenvalues are generally altered, thus
illustrating the nontriviality of the isotopies.

APPENDIX 4.A: ABSTRACT ALGEBRAS AND ISOALGEBRAS

The hadronic generalization of quantum mechanics was born thanks, specifically,
to studies in abstract algebras [i,2l A few rudimentary notions in that field
appear therefore recommendable as an introduction to the content of this
chapter. In particular, the notions (essentially derived from Sect. IL.5, ref. [21]} are
important to understand later on in Ch. 7 and in Vol. [l the emergence, apparently
for the first time in physics, of Jordan algebras as attached algebras to the more
general Lie-admissible algebras (Ch. 7).

Let us recall from Sect. 2.4 that a (finite-dimensiona)) Jinear algebra U, or
algebra for short (see, e.g., ref. [34] is a linear vector space V over a field Fla,+x)
{hereon assumed to be of characteristics zero (Sect.’1.2.3) equipped with a
multiplication ab verifying the following axioms

al{ab) = (aad =alab) (ab)p = a{bp = (ag)b, (4Ala)
afb+c)l = ab +ac, {a+ bec=ac+ bg, (4.A.10)

called right and left scalar and distributive laws, respectively, which must hold
for ali elements 3, b,ce U,and a,B € F.

The reader should keep in mind that the above axioms must be verified by
all products to characterize an algebra as commonly understood [34]. In
particular, the distributive law is the basic axiom which prevented the lifting of
the operation of addition as shown in Sect. 1.2.3.

Among the existing large number of algebras {34}, an understanding of
hadronic mechanics requires a knowledge of the following primary algebras:

1) Associative algebras A, characterized by the additional axiom (besides
laws (4.A.1))

a{bc) ={ablc {4.A.2)

for alla, b, c € A, called tﬁe associative law. Algebras violating the above law are
called nonassociative. All the following algebras are nonassociative:
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2) Lie algebras L which are characterized by the additional axioms
ab+ba = 0, ' (4.A.3)
albe) + b{ca) + clab) = 0 (4.A.3b)
A familiar realization of the Lie product is given by
(a, b]A =ab-ba, (4.A.4)

with the classical counterpart being given by the familiar Poisson brackets
among functions A, B in cotangent bundle (phase space) T*Elr,5,%)

(AE] oA oB aB JA (
}\..B Pois = - . 4A5)
N ok ap ok ap,

3} Commutative Jordan algebras J, characterized by the additional
axioms

)

ab-ba 0, (4.A.6a)

(ab)a? = a(ba?), (4.A.6b)
A realization of the special commutative Jordan product is given by
fa,bl, =ab+ba (4.CAT)

where ab is associative.

The noncommutative Jordan algebras are algebras U which verify Jordan’s
axiom {4A.6b) but not (4.A.6a).

Intriguingly, no realization of the commutative Jordan product in classical
rmechanics is known at this writing. As an example, the brackets

oA OB 3B BA
(A\Bl= — — + — —— (4.A.8a)
ark  ap, ark  apy

evidently verify axiom (4.A.6a), but violate axiom {4.A.6b). ' .

4) General Lie-admissible algebras U {1,2,38] which are characterized by a
product ab verifying laws (4.A.1), which is such that the attached product [a, by =
ab-bais Lie. This implies, besides (4.A.1), the unique axiom
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a,b,cl+{b,cal+(c,ab ={cba +{bac)+(acb) (4.A.9)
'where
(a,b,c)=albc) ~{ablg, (4.A.10)

is calied the associator .

Note that Lie algebras are a particular case of the Lie-admissible algebras.
In fact, given an algebra L with product ab = [a, bl,, the attached algebra L has
the product

la, bly = 2[a by, (4.A.11)

and, thus, L is Lie-admissible.

Therefore, the classification of the Lie Lie-admissible algebras contains all
possible Lie algebras. Also, Lie algebras enter in the Lie-admissible algebras in a
two-fold way: first, in their classification and, second, as the attached
- antisymmetric algebras. Finally, associative algebras are trivially Lie-admissible.

The first realization of general Lie-admissible algebras U in classical
mechanics was identified by the author in memoir [1] and, in its simplest possible
form, it is given by the following product for functions Alr,p) and B(r,p) in
T*E(r 83}

3A OB
U: (AB)= — — |, (4.A4.12)
ark  apy

namely, the general, nonassociative Lie-admissible algebras are at the
foundations of the structure of the conventional Poisson brackets (4.A5) which
can be written

(A, Blpgisson = (A Bly ={A,B) ~ (B, A), (4.A.13)
The first operator realization of the general Lie-admissible algebras was
also given by the author in the subsequent memoir [2] Sect. 4.14, and can be
written
U: (@b =arb - bsa, {4.A.14)
rs fixede A, T# 5 T1,5#0
where ar, rb, etc., are associative. In fact, the antisymmetric preduct attached to

U isa particular form of a Lie algebra (see below)
5) Flexible Lie-admissible algebras U [1,2,38], which are characterized by
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the axioms in additi.o'n to (5.1)
(a,b,a) = o, (4.A.15a)
(@bc) + bca +{cab = o {4.A.15b)

where condition (4.C.14a), called the flexibility law [38l.is a simple generalization
of the anticommutative law, as well as a weaker form of associativity. A first
realization of the flexibie Lie-admissible product was identified by this author
back in 1967 [55]

(@ byy = Aab - pba, ApeF (4.A.16)

where the products Aa, ab, etc. are associative. It is instructive to verify that the
algebras characterized by the above product is a realization of the
noncommutative Jordan algebras.

As we shall see in App. 1.7.A, a certain class of the so~called g-
. deformations (561 are a particular case of product (4.A.16) and, as such, they are
flexible, Lie—admissible and Jordan-admissible, as well as noncommutative
Jordan algebras.

No classical realization of flexible Lie-admissible algebras has been
identified until now, 1o our best knowledge. As an example, the brackets on
T*Elr,5,3)

gA OB oB 0A
(AB = A — — - p — — (4.A.17)
ark apy ark  ap,

are Lie-admissible, but violate the flexibility law.

6) General Jordan-admissible algebras U [1,2,38], which are characterized
by a product ab verifying laws (4.C.1), such that the attached symmetric product
fa, bly; = a b + b a is Jordan, ie., verifies the axiom

(@2 b,a)+(ab,ad+(b a2 a+ (a2t = o (4.A.18)

Again, associative and Jordan algebras are trivially Jordan- admissible.
Also, Jordan algebras enter in the Jordan-admissible algebras in a two-fold way,
in the classification of the latter, as well as the attached symmetric algebras.

It is important for the operator formulation of the isotopies of Vol. II to
point out the following important

Proposition 4.A.1 {2} The general Lie-admissible product (4.A.14) is,
Jointly, Lie-admissible and Jordan-admissible .
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But Lie-admissible product (4.A.11) characterizes the brackets of the most
possible general time evolution of hadronic mechanics. The Jordan algebra
therefore enter as the attached form U of the Lie-admissible algebras U of
hadronic operators.

By comparison, there is no “Jordan content” in quantum mechanics,
because the algebra of its time evolution is a Lie algebra L, whose attached
symmetric part is identically null, L* = 0.

As we shall see in Yol. 11, the emergence of a nontrivial “Jordan content”
has far reaching physical implications, such as the capability of constructing a
quark theory with an “exact confinement”, i.e., with a transition probability for
free quarks which is explicitly computed and rigorously proved to be identically
null under any possible physical condition. '

Intriguingly, this emergence of a “Jordan content” at the operator level has
no known counterpart in classical mechanics. In fact, the classical Lie-admissible
product (4.A.12) is only Lie-admissible and not Jjointly Jordan-admissible.

7) Flexible Jordan-admissible algebras U [1,2,38), which, in addition to
axiomns (4.A.1), are characterized by the axioms

alba) = (ab)a, {4.A.19a)
a2{ba) + a%(ab) = {a2b)a + (a2a)b, (4.A.19b)

The flexible Lie-admissible product {4.A.16) is also.a flexible Jordan—
admissible product, but the classical product (4.C.17) is only Lie-admissible, and
not flexible Lie-admissible or Jordan-admissible.

8) Alternative algebras U, which are algebras characterized by the
additional axioms encountered in Sect 2.2,

(a,a,b) =0 and (abb) =0, Yabcel (4.A.20)

called right and left alternative laws. A realization of alternative algebras is given
by the octonions (Sect. [.2.8).
9) Power associative algebras U, characterized by the additional law

It

a m

a™ = a™M v 2 € U, n, m integers (4.A.21)
which constitutes the axiomatization of an important physical notion. In fact,
algebras currently used used in physics are power associative.

For additional algebras we refer the reader to ref.s [34,38] and quoted
literature.

We now pass to the study of the isotopies of the above notions.
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Definition 4.A.1 (it An “isoalgebra’, or simply an “isotope” U of an
algebra U with elements a,bg,.. and product ab over a field F, is the
same vector space U but defined over the isofield F, equipped with a new
product a*b, called “isotopic product”, which is such to verif y all original
axioms of U.

Thus, by definition, the isotopic lifting of an algebra does not alter the type
of algebra considered.

It is important for these studies to review the isotopies of the primary
algebras listed above.

Given an associative algebra A with product ab over a field F, its simplest
possible isotope A, called associative-isotopic or isoassociative algebra [1] is
given by

Aj: axb=aab, a €F, fixed and =, {4.4.22)

and called a scalar isotopy. The preservation of the original associativity is
trivial in this case. This is evidently the case of the q-deformations [56.

A second less trivial isotopy is the fundamental one of the Lie-isotopic
theory, and it is characterized by the basic product of this chapter (2]

Ay: axb=aTh, (4.A.23)

where T is an nonsingular (invertible) and Hermitean elements not necessarily
belonging to the original algebra A. ‘
The third known isotopy of A is given by [2]

Ag: a*b=wawbw, w2=ww = w #(, (4.A.24)
Additional isotopies are given by the combinations of the preceding ones, such as
Ay: asb=wawTwbw, w2=ww=w =0 (4.A.25a)

As: axb=awawTwbw, aeF, w2=w, awT#0 (4.A.25D)

it is believed that the above isotopies exhaust all possible isotopies of an
associative algebra over a field of characteristic zero, although this property has
not been rigorously proved to this writing.

We now pass to the study of the isotopes L of a Lie algebra L with
product ab over a field F, which are the same vector space L but equipped with a
Lie-isotopic product [1] aob over the isofield F which verifies the left and right
scalar and distributive laws (4.A.1), and the axioms
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aeb+boea = (4.A.26a)
ael{boc)+ boelcoa)+ colaob) = o (4.A.26b)
Namely, the abstract axioms of the Lie algebras remain the same by assumption.

The simplest possible realization of the Lie-isotopic product is that
attached to isotopes 4,

Ly [a,b]Al=aob - boa=alab - ba) = ala bly, aeF a=0,4A27
and it is also called a scalar isotopy. It is generally the first lifting of Lie algebras
one can encounter in the operator formulation of the theory.

The second independent realization of the Lie-isotopic algebras is that
characterized by the isotope Rz which is that of primary use in hadronic
mechanics(1,2]

Ly: [abl; =aeb-bea=aTb-bTa (4.4.28)
2

The third, independent isotopy is that attached to Ag (2]

La: [a.b]AS=wawbw-wbwaw. wZ=ww#0. (4.A.29)

A fourth isotope is that attached to A4, i.e.

Ly [a,bly =wawTwbw ~wbwTwaw, (4.A4.30)
wl=w, w,T#0.

A fifth and final (abstract) isotope is that characterized by As, ie.
: la,bly_= ala, blg . (4.A.31)
Ls: o, blg, 9

Again, it is believed that the above five isotopes exhaust all possible
abstract Lie algebra isotopies (over a field of characteristics zero), although this
property has not been proved to date on rigorous grounds.

Note that the Lie algebra attached to the general Lie-admissible product
{4.A.12) are not conventional, but isotopic. In fact, we can write

[a, bl = (a,b), - (ba), = arb-bsa-bra+asb= (4432

= aTb-bTa = a*b - b+g (4.A.32b)

r®s, Tr,5T#Q T=r+s#0
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As a matter of Tact, the author first encountered the Lie-isotopic algebras by
studying precisely the Lie content of the more general Lie-admissible aigebras [1]
The following property can be easily proved from properties of type (5. 30).

Lemma 4.A.1 (I} An-abstract Lie-isotopic algebra [. attached to a general,
nonassociative, Lie-admissible algebra U, L ~ U™, can always be isomorphically
rewritlen as the algebra attached to an isoassociative algebra &, £ ~ A, and
vice-verss, ie

L~U ~4&" (4.A.33)

The above property has the important consequence that the construction
of the abstract Lie—isotopic theory does not necessarily require a nonassocciative
enveloping algebra because it can always be done via the use of an isoassociative
envelope. In turn, this focuses again the importance of knowing all possible
isotopes of an associative algebra, e.g.,, from the viewpoint of the representation
theory.

The most general possible, classical, Jocal-differential 3! realization of
Lie-isotopic algebras via functions Afa} and B(a) in T*E{r,8,%) with local chart

a= @ =(@p =6Lp) i,= 1,20 1 =12..2n, (4.A.34)
in b

is provided by the Birkhoffian brackets [1,4] also called generalized Poisson
brackets

BA oB
A, BlRirknofr = (A, B, = — ¥ —, (4.A.35)
daH daV

where (MY, called the Lie-isotopic tensor , is the contravariant form of (the
exact, symplectic, BirkhofT’s tensor

o = (g, (4.A.362)
3R fa) aR, (a)

0 = R , (4.A.36b)
aatt ga¥

where the R's are the so—called Birkhoff’s functions. The symplectic character of
the covariant tensor ensures the Lie-isotopic character of brackets (see the
geometric treatment of the next chapter).

3 The nonlocal-integral realizations will be presented in the next chapter after studying
the underlying nonlocal-integral geomnetries.
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Recall that, unlike the conventional, abstract, Lie brackets (4.A.4), the
conventional Poisson brackets {4.4.5) characterize a Lie algebra attached to a
nonassociative Lie-admissible algebra U, Eq.s (4.A.13). It is then evident that the
covering Birkhoff's brackets (4.A.35) are also attached to a nonassociative Lie-
admissible algebra, aithough of a more general type (see ref. [4] for brevity).

For other classical Lie-isotopic brackets, such as Dirac’s generalized
brackets Tor systems with subsidiary constraints see the locally quoted
references.

Note the lack of identification of the underlying generalized unit in
Birkhoff’s brackets (4.A.35). This is precisely the aspect which has requested the
isotopies of conventional geometries of the next chapter.

Realizations of the abstract isotopes U of the Lie-admissible algebras can be
easily constructed via the above techniques. For instance, an isotope of the
general Lie-admissible product (4.A.14) is given by

U: a,b) =wawrwbw - wbwswaw, (4.A.37)
wl=w, w,rns#0 r#s.

An isotope of the classical realization (4.A.11) is then given by

AA aB
0: (A;B) = — stVta) —, {4.A.38)
9ak aaV

where the tensor S*Y, called the Lie-admissible tensor, is restricted by the
conditions of admitting Birkhoff’s tensor as the attached antisymmetric tensor,
ie,

sV - gk = WV {4.A.39)

Brackets (4.A.38] constitutes the basic product of the classical Lie~
admissible studies of ref.s [10-14].

Historical notes on the origin of the isotopies are provided in ref. [3]. The
broader genotopies will; be studied in Ch. 1.7.
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5: ISOGEOMETRIES

5.1: STATEMENT OF THE PROBLEM

Contemporary theoretical physics is an articulated body of deeply interrelated
and mutually compatible formulations including algebras, geometries, mechanics,
and other fields. The isotopic generalization of contemporary algebras, by no
means, can alone provide a new scientific horizon, unless complemented by
interrelated and mutually compatible formulations for all remaining aspects.

The additional mandatory studies considered in this chapter are therefore
the isotopies of contemporary geometries, such as the Euclidean, Minkowskian,
symplectic, affine, Riemannian and other geometries (for conventional
Tormulations see, e.g., ref.s [1-4] and literature quoted therein).32

As we shall see, these studies are intriguing indeed because they identify
the following three types of new geometries of primary interest for hadronic
mechanics:

A) Isotopies of flat geometries, such as the isoeuclidean and
isominkowskian geometries. As well known, the Euclidean and Minkowskian
geometries provide a geometrization of the homogeneity and isotropy of empty
space. As such, they are exactly valid for the nonrelativistic and relativistic
exterior problems in vacuum, respectively.

Our central probiem here is the identification of covering geomeiries
which permit a direct, classical geometrization of the inhomogenuity and
anisotropy of physical media for nonrelativistic and relativistic interior
dynamical probiems.

An important illustration, particularly for applications, is the identification
of the image of the light cone for interior conditions, in which case the speed of
light is locally varying thus implying the loss of the very “cone”.

32 In this chapter we shall mainly refer to the monograph by Lovelock and Rund
[4] of which we shall preserve the notations and symbol for clarity in the
comparison of the results.
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Even though evidently not unique, the isotopies of flat geometries are
particularly suited to achieve: 1) the desired, direct, interior geometrization; 2) the
representation of the most general possible nonlinear-nonlocal-nonhamiltonian
interjor systems; while 3) preserving the original axioms, and therefore admitting
the original geometries as#particular cases.

Moreover, the isotopies of the Euclidean and Minkowskian geometries
acquire the most general known dependence not only on local coordinates X, but
also on the velocities %, accelerations £, and other variables. Despite that, the
isotopies here considered preserve the original axioms of f latness, thus resulting
in fundamentally novel geometries in which, for instance, the notions of angles
and trigonometric functions can still be defined, although in a predictable
generalized way.

As we shall see in Vols Il and III, the applications and experimental
verifications of these new geometries are considerable, and include nuclear
physics, particle physics, astrophysics, superconductivity and unexpected other
fields, such as conchology.

B) Isotopies of the symplectic geometry, known as the isosymplectic
geometry. As well known, the symplectic geometry provides the geometrization
of Lie algebras and, as such, is strictly local-differential, thus being inapplicable
for the geometrization of nonlocal~integral systems.

Our primary objective here is therefore the identification of a covering of
the symplectic geometry which is the geometric counterpart of the Lie-isotopic
theory in its most general possible nonlinear-nonlocal-nonhamiltonian
formulation.

The technical problem we shall address was indicated in Sect. 1.4, and can
be treated now in more details. In essence, the Lie~isotopic algebras in their
abstract formulation as presented in the preceding chapter showed since the
original formuiation [5] their natural capability to admit the most general possible
nonlinear-nonlocal-nonhamiltonian systems owing to the arbitrariness of the
isotopic element T in the isoproduct

[ATBl = AT, x, %, % .JB - BT, x, %, & .)A. (5.1.1)

The geometry of the first studies [5] was the conventional symplectic
geometry, although realized in its most general possible exact version, with
noncanonical, symplectic, exact two-form on a 2n-dimensional manifold M(x,R)
over the reals Rin,+x) (see App. 5,A for an outline and monograph I6] for a detailed
treatment) '

8 =do = dlRdx'] = 0} ax! Adxl. (5.1.2)

The covariant symplectic tensor
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Q; = %Ry - 3Ry, 8;=8/ax,i,j=1,2..,2n. (5.1.3)
and corresponding contravariant form
= “y i
(lnpql JH, (5.1.4)

are manifestly noncanonical and therefore result to be a direct realization of the
Isotopic Lie’s Theorems (Sect. 4.5). In fact, the generalized brackets

i 84 @B
[ATBl = — alfy) —, (5.1.5)
ax! axl

are Lie-isotopic, as ensured by the Poincaré lemima (see Sect. 5.2 and App. 5.A)%3

=d(de) = 0 {5.1.6)

This permitted a step-by-step generalization of classical Hamiltonian
" mechanics into a new discipline submitted in ref. [5] under the name of
Birkhoffian mechanics, and subsequently elaborated in monograph [6].

However, brackets (5.1.5) are strictly local-differential, thus preventing a
treatment of noniocal-integral systems. In fact, the theorem of “direct
universality” of Birkhoffian mechanics and of the related conventional
symplectic geometry (ref. [6], p. 54 and ff., and Theorem 5.A.1 of App. 1.5.A) was
specifically formulated for all possible nonlinear and nonhamiltonian systems,
under the conditions that they are local-differential and verify the needed
regularity and smoothness conditions.

Comparison of brackets (5.1.1) and (5.1.5) clearly reveals important
structural differences. As well known l4], the symplectic tensor j - and,
consequently, the Lie-isotopic tensor U, can only have a dependence on the
local coordinates, Q'Xx), while the isotopic element T can have an arbitrary
functional dependence, Tit, x, X, %, ...).

The above disparity between algebras and geometries persisted for a
decade. Its solution required the author to conduct, again, a step-by-step
generalization, this time, of Birkhoffian mechanics into the so—called Birkhoff-
isotopic (or isobirkhoffian) mechanics and of underlying geometry into the so-
called symplectic~isotopic (isosymplectic) geometry, as a necessary condition to
achieve a complete equivalence between isoalgebras, isogeometries and
isomechanics.

As we shall see, the solution was provided by the full implementation of

33 The Lie-isotopic algebras were originally formulated precisely on these grounds, that
i, by showing that the transition from Lie's theorems to their isotopic coverings imply
the transition from the Poisson to generalized Lie brackets.
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the same methods that had originated the Lie-isotopic theory: the systematic
lifting of the entire structure of the symplectic geometry, including fields, vector
spaces, exterior calculus, and the like.

Note that, as indicated earlier, the isoeuclidean and isominkowskian
isogeometries are not unigue for the description of interior problems. However,
the isosymplectic geometry is the only geometric counterpart of the Lie-isotopic
theory.

C) Isotopies of curved geometries such as the isoriemannian geometry.
In the study of interior gravitational problems the need for a generalization of
the Riemannian geometry of nonlinear and nonlocal type in the velocities and
other variables becomes compelling.

This is due to the evidence that interior problems, such as a collapsing star,
are not an aggregate of ideal points, but are instead composed of extended
wavepackets/wavelengths/charge-distributions of hadrons in condition of total
mutual penetration as well as of compression in large numbers into a small
region of space. The emergence of the most general possible nonlinear and
" -nonlocal, thus nonlagrangian structure under these conditions must be admitted
in order not to exit the boundary of Science.

By looking at this occurrence in retrospect, we can say that the originators
of current gravitational theories were fully aware of the distinction between the
exterior and interior gravitational problem, the exact validity of the Riemannian
geometry for the former problem, and its approximate character for the latter
problem.

In fact, the geometry conceived by B. Riemann in 1868 [7] can be readily
proved to be exactly valid as well as “directly universal” for the arena of its
original conception, subsequently applied by Einstein [8] to dimensionless test
bodies moving in empty space, and identified as the exterior gravitational
problem,

Jointly, one should note the scientific honesty of authors of the early part
of this century on the limitations of the Riemannian geometry for the interior
problem. As an example, Schwartzschild wrote two articles [9) in which the
distinction between exterior and interior problems is stated beginning from the
title. In particular, Schwartzchild's first article is dedicated to the exterior
gravitational problem with emphasis on the exact character of his celebrated
solution, while the second (iittle known) article is dedicated to the interior
gravitational probiem with emphasis on the approximate character of the
solution).

The insufficiency of the Riemannian geometry for interior problems is at
times also called the Cartan legacy, because expressing Cartan’s indication of the
inability of the Riemannian geometry to recover under PPN and other limiting
procedures all generally nonconservative Newtonian systems of our physical
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reality (such as missiles in atmosphere with drag forces of the type —yx!0).

The distinction between the exterior and interior gravitational problems
was kept in the early treatises in gravitations (see, e.g., the title of Ch. VI of
treatise [10] ~ with Einstein's preface -, or the titles of Sect.s 11.6, p. 439 and 11.7,
P. 444, of treatise {11,

Unfortunately, the emphasis on this distinction was progressively lost with
the passing of time, up to the current trend of eliminating any distinction
between exterior and interior gravitation, This is done via the (often tacit)
abstraction of the interior problem as an ideal collection of dimensionless
elementary particles which, as such, recover the exterior conditions in vacuum.

The scientific reality is that the interior, nonconservative and irreversible
physical events, as majestically shown by the direct observation of Jupiter’s
structure, simply cannot be reduced to an ideal collection of dimensionless
elemnentary particles in stable orbits, because of the No-reductions Theorems
indicated in Ch. 1.

At any rate, we do not possess today an unambiguous operator formulation
of gravity which is an evident pre-requisite for the reduction. Thus, interior
gravitational problems must first be represented classically as they actually are
in the physical reality, that is, with nonconservative irreversible interior effects.
Their reduction to particle descriptions can only be studied thereafter, provided
that they are capabie of representing visual evidence of the interior problem,
such as Jupiter’s vortices with continuously varying angular momenta.

Also, the insistence on applying for the interior problem physical theories
so clearly conceived for the exterior problem {7-11] leads to excessive
approximations, such as the acceptance the “perpetual motion” within a physical
environment, as necessary from the locally Lorentz character of Einsteinian
theories with the consequential, necessary, local conservation of the angular
momenturm.

In conclusion, the generalization of the Riemannian geometry of nonlinear
and nonlocal type in the velocities and other variables is compelling because of
the Jack of exact applicability of the conventional geometry in the interior
problem on numerous independent grounds of analytic, geometric and
topological character.

It should be stressed that, by no means, the isoriemannian geometry is the
only geometry applicable for nonlocal interior problems, because numerous other
(e.g., integral) geometries are equalily conceivable and their study is encouraged
here.

The isotopies of Riemann have been preferred over other possible
geometries because they permit the achievement of the needed nonlinear-
nonlocal-nonlagrangian generalization for the interior problem while preserving
the geometric axioms of the exterior problem. In turn, this permits the
unification of exterior and interior problems achieved in these volumes this time
at the gravitational level on curved spaces.
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We reach in this ways one of most important geometric notions of our
analysis, that of isogeodesic, which represents trajectories within physical media
while preserving the original trajectory in vacuum when represented in isospace.
The notion of isogeodesic is also fundamental for an understanding of the Lie-
isotopic theory, e.g., the preservation of exact Space-time symmetries in interior
conditions, such as the rotational and Lorentz symmetries for deformed spheres
and Minkowski metrics, respectively.

Also, the isotopies of Riemann permit a clear separation between the
original local-differential exterior structure, and the nonlinear-noniocal interior
effects. In turn, this separation is essential from an experimental viewpoint to
scparate the interior contributions from the conventional gravitational
structures.

Needless to say, the Riemannian geometry does indeed remain
approximately valid for interior gravitational problems, with consequential
approximate validity of all interior studies, such as gravitational collapse, “black
holes”, "big bang”, etc. The issue addressed in this chapter is a quantitative
treatment suitable for experimental verifications of the (generally small)
corrections to these studies expected from nonlinear—nonlocal-nonlagrangian
interior effects.

One additional aspect requires a few introductory words. As studied in
preceding chapters, the isotopies naturally imply a new antiautomorphic
conjugation characterized by the now familiar isoduality

1 = 19=-1, (5.1.7)

with corresponding conjugation of the isoreal numbers into their isoduals (Sect.
2.2) and of all remaining aspects. The isoduality therefore applies also to all
conventional geometries, whether flat or curved.

Recall that our current description of the universe is based on a positive—
definite norm, and therefore has a positive energy with a motion forward in time,

E>0,t>0, [E|>0, |[t][>0, etc, E t € Rin+x. (5.1.8)

while the isodual spaces are characterized by negative-definite norm on isodual
isofields, thus having negative energies, evolving backward in time, etc.

E8< 0t8< 0 [E9f<o,|t98 <0, ES t9e RINI+xT).  (5.1.9)

The above occurrences have permitted the identification of an new universe,
calied isodual universe, constituted by antiparticles, which coexists with our
own universe and possesses rather intriguing features, €.g., an interconnection
with our own universe because of the fjnite transition probability between the
positive- and negative-energy solutions of conventional fieid equations.
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It should be recalled that the concepts of negative time and negative
energies for antiparticles are rather old, and actually date back to the early stages
of particle physics. What is new is their systematic treatment via a body of
formulations specifically conceived for that purpose, such as isodual numbers,
isodual algebras, isodual geometries, etc.

The concepts of negative energies and time were generally abandoned in
favor of rather artificial and still unsettled constructions because of their
unphysical implications, i.e., predictions contrary to evidence when treated with
conventional methods. A further novelty of our studies is that the quantitative
treatment of negative energies and times via isodual methods leads to a fully
physical behaviour.

As a further introductory aspect, the reader should be aware of the rather
broad character of the new geometries. It is sufficient to note that Kadeisvili's
classification of the isounits T into five classes carries over to all isogeometries
studied in this chapter thus resulting in isotopies of conventional gecmetries of
Classes [, I, II[, IV and V.

The reader should be aware that the isogeometries imply new perspectives,
with new gecmetric concepts, such as: light cone for the interior of physical
media; curvatures over singular units; connections over discrete units; geodesic
motion for structures with negative-definite norm; reformulation of exterior
gravitation in the isominkowski space; and others.

The isotopies of the Euclidean and Minkowskian geometries were first
proposed in papers [12-14] of 1983-1985. The isotopies of the symplectic geometry
first appeared in print in memoir [15] of 1988, while the isotopies of the affine and
Riemannian geometries first appeared in memoir [16] also of 1988. The
isogeometries were then further studied in papers {17,181 of 1990 and in
monographs [19,20] of 1991. The most recent contributions by this author on
isogeometries are papers [21-2341].

Contributions by independent authors are as follows. Aringazin [24] first
proved the "direct universality” of the isominkowskian geometry for ali possible
deformations of the Minkowski metric. Lopez [25] studied certain implications of
the interior isoriemannian geometry for the exterior problem. Kadeisvili [26]
wrote the first comprehensive review with emphasis on the isoriernannian
geometry. Sourlas and Tsagas have just completed monograph [27] with emphasis
on the isosymplectic geometry and papers [40] on the first formulation of
isomanifolds and related topology.

These are all contributions, specifically, on isogeometry available at this
writing, to our best knowledge.34 It is evident that the literature indirectly
related to the isogeometries is vast indeed. We are here referring to several forms

34 The paucity of contribytions in the field is also due to truly unreasonable editorial

obstructions for papers on isogeometries submitted by various authors to a number of
journals, which have prevented several papers in the field from seeing the light,
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of noneuclidean geometries and their possible relativistic extension which are
based on the conventional unit. We regret our inability to review these
geometries for brevity, except for marginal comments,

5.2: ISOEUCLIDEAN GEOMETRY

The isoeuclidean geometry [12-14,41] is the geometry of the isoeuclidean spaces
on the isoreal field expressible in the diagonal form

Br3R: 8 =Ts &= diag. (1,1, 1), =8, 1 =177 (5.2.1a)
T = T 11 .) = diag. (g gap 833) =T >0, (5.2.1.b)
r2 =(r181-jrj)’l ={xgx +ygny +zg32)1 eRln+®. (5.21¢)

or in nondiagonal realizations of the isounit. Its general form is of Class V (Sect.
3.4), although it will be studied here for the simpler Classes [, 1T and III.
The primary properties of the isoeuclidean geometry are the following:

Property I: Reconstruction of angles and trigonometric functions in a
space whose metrics depends on local coordinates and other quantities {see Fig.
5.2.1)

Property I1: Unification of ail ellipsoidical (for Class 1) and hyperbolic (for
class 11} deformations of the sphere (See Fig. 5.2.2)

Property III: Preservation of the original spherical shape in isospace,
called “isosphere”, for all ellipsoidical (Class I) and hyperbolic (Class III}
deformations of the sphere in our space (Fig. 5.2.3)

Let us begin with a study of Property I. Recall that in the transition from the
Euclidean space E(r,3,R) to the Riemannian space in the same dimension ®({r,g.R)
there is the loss of angles and trigonometric functions evidently because of the
loss of straight lines due to the curvature of the space, as expressed by the
Riemannian metric g = g(r}.

In the transition from the Euclidean space E(r,5,R) to the isoeuclidean space
E(r,5,R) we acquire the most general possible curvature, this time dependent also
in the velocities, accelerations and other quantities, as expressed by the isometric
8 =8(t, r, 1, 1, ...). Nevertheless, the lifting E(r,8R) = E{r8,R) is an isotopy, that is,
a generalization which preserves the original axioms.

Since the original space is flat, its isotopic image is then isofiat, that is, the
curvature emerges only when E(r8,R) is projected in E(f,R) because, within the
isospace itself, there is no curvature.
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The novel geometric property of isofiatness then permits the reconstruction
in E(r8,R) of anglesand trigonometric functions which is precluded in
Riemnannian spaces.

RECONSTRUCTION OF ANGLES AND TRIGONOMETRIC
FUNCTIONS IN ISOSPACE

(A) (B)

FIGURE 5.2.1. Diagram {A) depicts the origin of the notion of angle in the
conventional Euclidean plane from two straight intersecting lines, which can be
analytically expressed via the familiar expression

Xp X3 + Y1 Y2
cosh = n T - (1)
{xy%; + y1ya) *(xo %0 + yo¥5)

In the transition to the Isoeuclidean plane, the above expression is lifted into the
form

. X181 % * Y18 Y2
isocosa = (2)

(X121 %+ V12221 (%0811 %0 + yogaoy)?

which evidently does not characterize cos § any more, and it is assumed as the
definition of the isocos 8, with 8 = 6lg; 1822)* derived from the underlying Lie-
isotopic SO{2) symmetry. Note that in expression (2) we have no isounits because
they cancel out in the quotient. Thus, isocos ® is an ordinary scalar and not an
isoscalar. Note also that expression (2) holds for an arbitrary functional dependence
of the argument & = &t, r, f, 1, ..). The isotopic reconstruction of the other aspects
of trigonometry is done in Appendix 6.A. The geometric origin of the
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reconstruction of the angle and of trigonometric functions is the fact that straight
lines are lost in the isceuclidean plane, although they remain Isostraight, that is,
they preserve the original axioms. More explicitly, the loss of the straight character
is only apparent, when projected in the original plane as done in Fig. (B} above.
However, when considered in the isoeuclidean plane, the images of straight lines
remain perfectly straight (see also Fig. 5.2.3) and later on in this section the
representation of vectors.

Let us consider first the isoeuclidean geometry in two dimension with
isotopic elemnent and isounit

T = diag. (g, 800 ), 1 = diag. (g;; L gn!). (5.2.2)

Let & be the angle among two intersecting straight lines in E(r,5,R). Then the
corresponding angle & in E{r,5,R), called isoangle, is given by

B =0 (g gnk. (5.2.3)

This resull is established by the basic invariance of the space, the Lie- isotopic
O2) symmetry or from an inspection of the arguments isorotations (4.6.8), as we
shall have ample opportunity to verify later on.

A study of the interpretation of rule (5.2.3), particularly from the elaboration
of experimental data (see Vol. 11l), as indicated that the isoangle & can also be
interpreted as the original angle prior to the deformation. The angle 6 in rule
(5.2.3) is then the angle of deformation measured in our space. This has the
nontrivial implication that, say, when deforming a circie into an ellipsoid, the
directional angle of a point is evidently altered in the Euclidean plane into the
angie 6, but the isoeuclidean piane reconstructs the original directional angle 0.
This notion will appear clearer later on in this section (Fig. 5.2.3) when we show
that the original circle itself is preserved in its entirety in isospace.

The farniliar sin & and cos 6 are lifted into the isotrigonometric functions

sin®  — isosin® = gy tsiniol(g) gyt {5.2.4a)
cos6 — isocosd = gt cosl6(g) gyt ]. (5.2.4b)

In fact, the Tamiliar property sin% + cos%0 = | is now lifted into the isotopic
form

g1 50c0s?® + g, isosin?® = |. (5.2,5)

Note the association of the element g1) with the isocosin, rather than the isosins,
as necessary when g is the isotopic element of the x-axis. Note also the rather
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complex functional dependence on the isoangles & =#t, r, 1, t....).

This is sufficient to indicate the existence of a consistent and intriguing
isotopy of conventional trigonometry, which is studied in more detail in Appendix
6.A.

Property I can be enlarged to the unification of all possible quadrics (i.e.,
surfaces of the second order) in three-dimension via the formulation of the
isogeometry for Class [II. In fact, the symmetry of the isoeuclidean geometry, the
Lie-isotopic group SO(3) of Class I is the invariance of all possible quadrics, as
shown in Eq.s (4.6.9), and as inherent in the classification of the isometrics

8 = diag.(g),.805.833) = diag.(ﬂ:blz,:tbzz,%z). (5.2.6) )

As a result, the isoeuclidean geometry of Class 1l treats in a unified way all
the following quadrics and related Class I or 11 symmetriess5:

1) The sphere

S0(3): xbxl + x2+2 + %38 = inv, (5.2.7)
2) The elliptic parabeloids (paraboloids with one sheet)

Soi2.1) xlxl - x2x% + 5338 = v, (5.28)
3) All deformations of the sphere {prolate or oblate spheroidal eliipsoids)
S0(3} x!p2x! + x2 b2 ¥ + x3 b28 = inv, (529
4) All deformations of the elliptic paraboloids

SO(2.1) x'b2xl - b2 + B0 = inv,  (52.10)
5) The isodual sphere

so%3): ~xlxl-x2x2 - 3% = inv, (5.2.11)

6) The hyperbolic paraboloid (paraboloid with two sheets here
reinterpreted as the isodual of the elliptic paraboloid)

so%2.1): -xIxl + %22 - 38 = iy, (5.212)

35 Note that the classification also includes the real cones when the hyperbolic
invariants are equal to zero, the imaginary cones when the elliptic invariants are equal
to zero, and other structures. For a comprehensive list of all possible invariants one may
consult ref. [1] p. 221-222,
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7) All isodual ellipsoids _
SOY3) - xIp2x! - x2b22 - X¥bs2:8 = v, (5213
8) All deformations of the hyperbolic paraboloid
so%2.1) - xIb2x! + X202 - Bb2® = inv, (5214)

The unifying power of the isoeuclidean geometry of Class IV is then even
broader, beacuse of the inclusion of the various cones. Finally, the isogeometry of
Class Y introduces novel structures, such as the sphere defined with respect to a
distribution or a step function as the basic unit.

It should be indicated that all physical applications known at this time
are restricted to the isoeuclidean geometry of Class I, which unifies the sphere
and all its ellipsoidical deformations (5.2.9), and to the isodual isoeuclidean
geometry of Class II (see below), which unifies the isodual sphere (5.2.11) and all
its ellipsoidical deformations (5.2.13). This is due to the current lack on knowledge
of a physical deformations capable of altering, say, ellipsoids into hyperboloids, or
viceversa.

Nevertheless, it is intriguing to note that quatitative representations of
biological systems such as sea shells appear to require isoeuclidean geometries of
at least Class III (see later on Fig. 5.2.5).

Note that the isoeuclidean geometry imnplies a revision of the very notion of
distance, called isodistance, whose square is isoinvariant (5.2.1c), with remarkable
cosmological implications studied in Vol. II.

We should finally note that the full formulation of the isoeuclidean
geometry is that of Class V which incorporates all preceding classes, thus
including Class IV with singular isounits. In fact, at the level of Class III, the
isogeometry essentially contains all quadrics via four disjoint classes with
signatures (+, +, +), (+, +, =), (-, =, =), and (-, -, +). The point is that the
interconnection of these classes requires the transition from positive to negative
values of the elements of the isometrics, thus requiring the transition through the
null values of the elements gxx which characterizes precisely singular isounits
and, thus, an isogeometry of Class IV.

We now study Property Iil. It essentially deals with the fact that all
quadrics (A-{D) of Fig. 5.2.2 have the shape depicted only when projected in our
Euclidean space, because when properly represented in isoeuclidean space they
all are perfect circles.

This intriguing property should not be surprising for the reader now
familiar with isotopic liftings. In fact, as it was the case for straight lines, the
isotopies of a sphere must remain a sphere as a necessary condition for the
achievement of the isotopies themselves. The unification of the sphere with all
its infinitely possible ellipsoidical deformations then follows, with evidently
broader unifications for higher classes.

One can now understand why distances which are very large in our
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empirical perception of the universe in Euclidean space can become rather small
in isospace. 1n fact, very large distances, say, in a hyperboloid are turned into
relatively much shorter distances on the isosphere.

ISOTOPIC UNIFICATION OF QUADRICS

) (D)

FIGURE 5.2.2 A schematic view of the prolate ellipsotd (A), oblate ellipsoid (B), one
sheet hyperboloid (C) and two sheet hyperboloid (D), plus the related real and
imaginary cones here omitted for brevity (see ref. [28] for complete classification).
All these quadrics are unified into one single geometric notion in isospace of Class
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111, the isoinvariant (5.2.1c} in classification (5.2.6). Moreover, each of the above
quadrics admits in isoeuclidean geometry an isodual occurring when the isounits
and isonorm become negative-definite. These isoduals are also unified with all
preceding ones in one, single abstract, geometric entity in isospace.

The geometric origin for the unification of all quadrics into one single
geometric entity is quite simple. In conventional Euclidean geometry we
perform the transition from the sphere to the ellipsoids

8 =diag (1,1,) - &= diag (b2 0bs2), (5.2.15)

by preserving the conventional unit, thus implying the differentiation of the two
quadrics. In isospace we perform the transition from the sphere to the ellipsoids,
while jointly lifting the unit by exactly the inverse amwount of the deformation

I=diag(LLD - 1=dig(b 2020372, (5.2.16)

The preservation of the perfectly spherical shape in isospace is then intrinsic in
the very structure of the isotopy.

We consider now the representation ¢f vectors amd their operations in the
isoeuclidean geometry. Recall that the basis of a wector space is not changed
under isotopy (up to possible renormalization factors). Let €, k = 1, 2, 3, be the
unit vectors on E(r,8,R) directed along the x, y, z axes, and let éx be the
corresponding isobasis in £(r,8,R). Then, a vector V can be expressed in isospace as
in the conventional case

V=xg +yé +z8&. (5.2.17)
This is another way of expressing the fact that the vector V is straight in E(r,3R),
although its projection in E(r,3R) is curved. As usual under isotopies, the
operalions on vectors are changed. In fact, the scalar product V;+V, of two
vectors V) = {x}, yj,z;) and V, = [x,, y5, z,)is now lifted into the expression called
isoscalar product
YoV, = (Xl g1 X2 ¥ Y1 E82Y2 Z1 8 Zz)l] € R+ . {5.2.18)
Note that, as expected, the isoscalar product preserves the original axioms, i.e.

V10V2 = VZOVI’ VIO(VZ + V3) = VIOV2 + Vlovs, {5.2.19)

Moreover, the isonorm oh'E(r.S,R) is expressible in terms of the isoscalar product
via the rule



- 189 -

TVl = (Vo V)1 e R0, (5.2.20)
Thus, the isocosinus of the angle for two intersecting vectors (Fig. 5.2.1) can be

THE ISOSPHERE IN ISOEUCLIDEAN SPACE

XX+ ygpy=11=daglg, Lgn™" g0

FIGURE 5.2.3: While the Euclidean “space” is unique, there exist infinitely many
isoeuclidean “spaces”, evidently because of the infinitely many possible isounits 1.
This allows the unification of all infinitely possible quadrics into the isosphere
depicted in the figure. The mechanism is, again, so simpie to appear trivial
Consider the sphere with unit radius and, thus, with all identical semiaxes

a=b=c¢c=1 (1)
Consider now its deformation into ellipsoids with semiaxes in our Euclidean space
a=b2 b=0bf, c=b. (2)

But the basic unit in isospace is changed into form (5.2.16). This implies that the
semiaxes in isospace preserve the original numerical value 1,

a =020 2=1 b=bby2=1, t=nbfbge=1. (3)

This illustrates the preservation under isotopy of the original axioms (1) of
sphericity, and the unification of all possible quadrics and all their iseduals into the
isosphere of this figure. Equivalently, the preservation of perfectly spherical
character for isosurfaces of Class I can be derived via the isotrigonometric
functions under which we have
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XgI X+ ygpy = cos?d +sifd = 1, B =0(g,gyp).
A similar result can be derived for the isosurfaces of Class 1 via the use of the

isohyperbolic functions of the next section. The reader can now see the property
before on the deformation of the circle

E{r.5R} ' Er,8R) Elr3.R)

e ar
N, *

the angle  in rule (5.2.3) is the angle prior to the deformation; the angle 9 is the
angle of the deformation as measured in the Euclidean plane; and the isotopy, that
is, the values g1 and ggp, are such to reconstruct the originat angle 8 =
6l 1220)/2 in isospace.

(=) 3

written as the isotopy of the conventional case
VI Q Vz
isocos® = —— —, (5.2.21)

INARAPY

Also, one can introduce the directional isocosinuses of a vector
isocosa = V; /{V[, isocosB = V,/{V], isocos ¥ = V5/]v]. (5222

Then, we have again the correct lifting of the corresponding conventional
identity

(g isocos? & + gy is0COS2 B + gagisocos?y 1= 1. (5.2.23)

Consider now two points Py = (x}, y|, z;} and P, = {x, y5, z, ). Then the
isodistance among them is the quantity

—\

D = {{x xz)g“(xl 2) ( YZ)gzz(Yl Y2 +(Zl 22)g33( —22)“ (5.2.24)

it is evidently unique {for each given isounit) and permits a study of the isotopy
of the original Euclid axioms (Fig. 5.2.4}
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Similarly the vectorial product Y A V5 is lifted in the expression called
isovectorial product

V3 = Vlf\v‘?, V3k = ekij(gijix“)(gjj*x2j),i,j.k= 1,2 3. (5.2.25)

-—

which satisfies the basic axioms of a vector product :
VAV, erf‘\vl, Vi A(Vy + V3)= VAV, + VAV, (5.226)

ISOTOPY OF EUCLID’S FIFTH AXIOM

D = cost.

FIGURE 5.2.4. A schematic view of Euclid's celebrated Fifth Axiom on parallel lines,
which can be reformulated in isoeuclidean spaces, thus leading to the notion of
isoparallel lines.

It is instructive for the interested reader to verify the preservation of Lagrange’s
identity under isotopies among four vectors A, B, C, D in E(r 3R}

(AAB)o(CAD) =(AoC)*(BoD)-(BoC)*(A0D) (5.2.27)

Other properties can be easily derived by the interested reader via similar
procedures.

A few comments are now in order on other geometries, particularly the so-
called non-Euclidean geometries (see, e.g., ref. [28] and quoted literature). As well
known, Euclid's Fifth Axiom lead to a historical controversy that lasted for two
millennia, until soived by Lobacevskii in a rather unpredictable way, via the
introduction of a new, non-Euclidean geometry today appropriately called
Lobacevskii geometry (see [loc. cit.].

As well known, Lobacevskii geometry is also based on certain liftings of
Euclidean expressions, although defined on the conventional unit. Thus, the
Lobacevskii and isoeuclidean geometries are structurally different.

Nevertheless, it is-also important to understand that the Lobacevskii
geomelry Is a particular case of the projection of the isoeuclidean geometry in
the Euclidean plane. To see this point consider the following celebrated
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transformations
X+ a y(1-a2}
X = — y = ——  Jal<«1, (5.2.28)
1 + ax 1 + ax

which have the peculiar property of carrying straight lines into straight lines and
circles into circles (see ref. [28] for details) while keeping the unit the same. Now,
the isoeuclidean space E(r,8R) in two dimensions can be equivalently
reinterpreted as an ordinary Euclidean plane E{r,8,R) in the new coordinates

X = g“*x, y = 82253/. {5.2.29)
under which we have the identity
XX+ Yy =Xg X+ ygyny (5.2.30)

It is then evident that Lobacevskii transformations (5.2.28) are contained as a
particular case of the much larger class of isotransformations {5.2.29).

The connection between Lobacevskii and isoeuclidean geometries can
therefore be expressed by saying that:

A) the Lobacevskii geometry identifies “one” particular lifting of the
Euclidean geomelry preserving straight lines and circles under the conventional
value of the unit; while

B) the isoeuclidean geometry identifies "an infinite class” of liftings of the
Euclidean geometry which preserve straight lines and circles under a joint
lifting of the unit.

Note finally that the Lobacevskii geometry itself can be subjected to an
isotopic lifting which has not been studied here for brevity.36

Numerous other noneuclidean geometries exist in the literature (besides the
Minkowskian, symplectic, affine and Riemannian geometries studied later on in
this section). One particularly intriguing geometry is the so-called
nondesarguesian geometry studied by Shoeber {29], which has a significant
connection with the studies of these volumes because it is also capable of
representing variationally nonselfadjoint (that is, nonhamiltonian) systems.

This latter geometry too is different from the isoeuclidean one, again,
because it is based on the conventional unit. However, the underlying mapping
between the Euclidean and nondesarguesian geometry is also contained as a
particular case of the infinite transformations (5.2.29) of the isoeuclidean
geometry.

3% Note that the isolobacevkii geometry is no longer contained as a particular case of
the isoeuclidean geometry because the original axioms of the two geometries are
different.
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These comments are significant to focus the attention on an additional
reason for our selection of the isoeuclidean geometry over other possible choices,
its "direct universality” of incorporating “all” infinitely possible maps of the
Euclidean geometry (including singular maps for Class IV and discrete maps for
Class V).

In summary, the isoeuclidean geometry appears to be unique because
encompassing all possible neneuclidean geometries when projected in the
conventional space, yet remaining Euclidean in isospace.

Vols II and Il contain numerous physical applications of the isoeuclidean
geometry. [ts primary function is to provide a geometry directly applicable to
interior dynamical problems, that is, applicable to the most general possible
nonlinear-nonlocal-nonhamiltonian systems studied in these volumes.

This physical objective is achieved via the geometrization of physical
media, that is, via the characterization of the deviations in the geometric
axioms of empty space caused by the presence of a physical medium. The
geometrization is done via the restriction of the isogeometry to be of Class [, in
which case the isometric is restricted to the positive—definite form

8 = T8 = T = diag. (b2 b,% bs?), (5.2.31)

where the U's, called the characteristic functions of the medium considered, have
an unrestricted functional dependence of the type

by = bl nn bt ol g o0l L Ton, L) >0,k=1,23 (5232

including a dependence on basic physical characteristics of the medium to be
geometrize, such as local density p, local temperature T, locai index of refraction
n, etc.

The above characterization is evidently not unique and can be done via
other methods. However, to be consistent with physical reality, such a
characterization must be done with any appropriate methods “other than adding
a potential to a Lagrangian or a Hamiltonian”. The is due to the intrinsically
nonpotential character of the effects here considered. This basic condition is so
compelling that the possible treatment of interior effects via a potential would
imply trajectories not related to those of the physical reality.

The isoeuclidean geometry has been preferred over other possibilities
because it verifies the above nonlagrangian-nonharmiltonian representation of
interior effects, while preserving the same geometric axioms of empty space,
thus permitting the geometric unity in the treatment of both exterior and interior
problems achieved in these volumes.

The mechanism for the representation of interior problems is so simple to
appear trivial. It is based on the now familiar lifting of the product of the
conventional Euclidean geometry.
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Consider an extended free particle in empty space, which is evidently
represented via the Kinetic energy alone

L=4mt-t € Elr8 R} {5.2.33)

where r represents the trajectory of the center of mass.

Suppose now that the particle at a given value of time penetrates within a
physical medium, thus experiencing nonpotential forces. The transition from the
exterior to the interior problem is merely expressed by the transition from the
Euciidean geometry to its isoeuclidean covering of Class [.

In turn, the transition is represented by writing the original Lagrangian in
isospace, thus reaching the following isolagrangian

L=+tmrot e Er8R). (5.2.34)

The geometric aspect important for this section is that the two Lagrangians L. and
L. coincide at the abstract level for all Class I isospaces.

Numerous classical examples are now available (see ref.s [6,20]). the simplest
one is the particle with linear velocity-damping

$+yx=0 m=1 vy>0, (5.2.35)

which is merely represented via the particular realization of the isotopic element
and isounit

T=e¥!, 1=e" 7! y>o0. (5.2.36)

as the reader is encouraged to verify (see ref. [6], p. 101). The isorepresentation can
be enlarged into the form

T = diag. (b;2 b2 b e, (5.2. 37)

exhibiting a feature completely absent in Euclidean geometry, a direct
representation of the actual nonspherical shape of the particle considered here
assumed to be an ellipsoid with semiaxes bkz. The understanding is that the
isoeuclidean geometry can also be realized via nondiagonal isotopic elements, as
requested by the case at hand.

Note that the representation of shape is completely absent in Newton's
equation of motion (5.2.35) and it is a sole feature of the isoeuclidean geometry
we shall study and apply in detail in Yol.s IT and III. In fact, after computing the
equation of motion, the “shape factor” cancels out.

But perfectly rigid objects do not exist in the physical reality. The
isoeuclidean geometry then permits a direct representation of all infinitely
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possible deformations of the original shape, which can be easily achieved via a
dependence of the characteristics b-quantities in the local pressure, velocity, etc.

Note that T > 0 and T > 0 as verified for all known cases of particles in
interior conditions (while for antiparticles we have T = — e¥! < 0 resulting in the
same equation of motion). _

In summary, the isoeuclidean geometry has the following primary
applications in physics: A) geometrization of the physical medium considered; B)
representation of the resistive effects on the motion of extended particles; and C)
representation of the actual, extended, deformable shape of particles.

The nonrelativistic description of these volumes will be based on the
following Tour geometries

I} Euclidean g{t{:ometry, i.e,, the conventional geometry on the Euclidean
space over the reals

Efr,5R), & = diag.(I, 1,1}, R=Rin+x), [= §1= diag. (1, 1, 1}, (5.2.38a)
12 = 8y d=xx+yy+2zz=inv {5.2.38b)

which will be used for the description of plarticles in exterior nonrelativistic
conditions.

II) Isoeuclidean geometry, which, unless otherwise stated, will be referred
to Class 1, ie, the isogeometry defined on the following diagonal realization of
the isospace and related isofields

Br3R: 8 = T8, 8 = diag.(1,1,1), R=RG+#), n=n11=T", (5239%)
T = Tt rtt,.) = diag (b2 b2 b) >0, &> 0, (5.2.39.)
2= (r'8;;r)1 =(xb2x + ybly + zb22)T e A+, (5.2.39¢)

or to nondiagonal realizations which preserve the positive-definiteness of the
isounit. Such isogeometry will be solely used for the description of particles in
interior nonrelfativistic conditions.

III) Isodual euclidean geometry, the isodual of the conventional geometry
over the isodual space and isodual field

E4r89RY), 8¢ = -diag. (1, 1, 1}, R&=R%nd+d) nd = o9, (5.2.40a)

37 Note the difference between the unit | of the field R(n,+x} and the unit 1 = diag. (1, 1, 1)
of the geometry. Note also that the geometry and underlying field can be trivially
reformulated with respect to the unit 1.
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19=8%"=~diag. (1, 1, 1), (5.2.40a)
r2=(-risij )19 =(-xx - yy - zz)19eRd (5.2408b)

which will be used for the description of antiparticles in exterior nonrelativistic
conditions and

1V) Isodual isoeuclidean geometry, defined on an isodual isospace of
Class II over an isodual isofield of the same class in the diagonal realization

B9 8%RY: 8% = T95, & = diag. (1,1, 1, T9=-T,19=-1=-77., (5241a)
T = T, nk ) = ~diag (b2 b2 b2) = T, > 0, (5.24Lb)
P2d= (- 8 )19 =(-xb2x~-ybfy-2b2z)1 e RI[I+9) . (5241¢)

or in a nondiagonal realization preserving the negative—definite character of the
isounit. This isodual isogeometry will be solely used for the description of
antiparticles in nonrelativistic interior conditions.

The restriction to Class I for particles (or, separately, to Class 11 for
antiparticles) is necessary because the presence of matter cannot modify the
topology of empty space from a compact to a noncompact form and viceversa,
to our best knowledge at this time 38

In Vol. Il angd Il we study examples and applications of these isogeometries
in nuclear physics, high energy physics and other fields. One application in the
Tield of conchology is particuiarly significant to deserve an outline here, not only
because it is unexpected and thus intriguing, but also because it permit the
illustration of the fallacy of our geometric perception of Nature.

A mathematical representation of the growth of sea shells has been achieved
by Ittert (30]. The main result is that sea shells should crack if their growth
occurs via the strict application of the Euclidean geometry, as established by
computer visualizations. The issue addressed here is therefore the identification
of the appropriate geometry permitting a consistent representation of their
growth.

As well known, sea shells grow by discrete increments A£, thus requiring
discrete methods. Their analytic representation in E(r,8R) has a “kinetic term” K
= H{AE/At)-(AE/A) and a “"potential” term similar to that of the harmonic
oscillator, V = $Af+ A, The emerging Lagrangian in E(r,8R) is therefore of the type

L = +{AE/AL) - (AE/AL) + + AE - AE. (5.2.42)

38 The knowledge of physical events capable of changing the Euclidean signature {+, +, +)
into the hyperbolic form (¥, +, —) would imply the theoretical possibility mentioned earlier
of transforming very large distances in Euclidean space into very small distances in
isoeuclidean space of Ciass IH.
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Illert’s studies [loc. cit.] show that:

1) Euclidean models of type {5.2.42) are insufficient to represent the actual
growth of sea shells, as illustrated by the disparity between reality and computer
modelling.

2} The problem of growth of sea shells is analytically similar to the interior
dynamical problem, evidently because growth is a “nonconservative” process; and

3) The growth of sea shells can be quantitatively represented via
noneuclidean Lagrangians of the type

L = 4% (Ag/AD) « (A/AD + 4 XPAg. A (5.2.43)

where ({4} is a function, varying from shell to shell, of the characteristic angle ¢
of growth of each shell (see ref. [30] for details).

It is then evident from the above results that sea shells do not evolve in
Euclidean space, while they do admit a quantitative interpretation as evolving in
Isoeuclidean space with isorepresentation and fundamental isounit

L = +(AE/AD © (AE/AD + § AEOAE, T = e 8¢ (5.2.44)

Again, sea shells appear to evolve in our Euclidean space because of the peculiar
nature of the isogeometries of preserving the shapes of our space, but they evolve
in a more complex geometry which is representable via the isotopy of the
product AB — ATB and the joint isotopy of the unit 1 1 = T~L. Note that the
three—dimensional character of the geometry remains completely unaffected in
the transition to a higher geometry.

Sea shells also constitute an illustration of the need for the broadest possible
isoeuclidean geometry, that of Class V. In fact, the interpretation of their growth
at bifurcations clearly shows the need for an isogeometry of Class 111 (Fig. 5.2.5).
Moreover, their structure is discrete, thus requiring, in general, isounits of
Kadeisvili's Class V which include all other classes as particular cases.

This is per se intriguing inasmuch as we have just indicated the necessary
condition for physical events of restricting the isoeuclidean geometry,
separately, to Class I for particles and toc Class II for antiparticles. It therefore
appears that biological events have a structurally more general geometry of at
least Class III encompassing both motions forward and backward in time.

The application of the isoeuclidean geometry to the growth of sea shells,
even though evidently not unique, is instructive in suggesting an act of scientific
humility: expressing doubts prior to claiming final achievernent of knowledge via
a perception of Nature based on our manifestly limited three Eustachian tubes.

In fact, relatively “simple” biological entities such as sea shells, even though
appearing to our perception as belonging to a three—dimensional Euclidean world,
evolve in reality according to a structurally more general geometry.,
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This is an clear indication that, rather than having achieved “final”
geometrical knowledge, the complexity of the geometry of biological entities,

such as a DNA molecule, is simply beyond the grasp of human comprehension at
this time.

ISOEUCLIDEAN EVOLUTION OF SEA SHELLS

{A)

) i 1

(B)

FIGURE 5.2.5: The com]ﬁuter visualization of two relatively “simple” sea shells from
1llert [30] p. 64, the Phanerotinus Spiralis (A) and the Angaria Delphinius (B). The
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computer visualization clearly shows that the shells would crack during their
growth if the Euclidean geometry is strictly implemented. However, the same
computer modeling shows that growth is normal in isoeuclidean space with
isorepresentation (5.2.44). In the transition to more complex sea shells, e.g., those
with bifurcations, the need for noneuclidean geometries appear more compelling.
In fact, a quantitative interpretation of growth at the bifurcations in Euclidean
space would require a discontinuous inversion of time (see ref. [30} p. 98 and ff.).
As we shall see in Vol. 11, the isoeuclidean geometry of Class 111 permits instead a
direct representation of the bifurcations without discontinuities [42].

53: ISOMINKOWSKIAN GEOMETRY

The isominkowskian geometry [1221-2341] is the geometry of the isominkowski
spaces of Class V over isoreal fields of the same class (Sect. 3.5)

MxAR: m=diag. (L, L-0), A=Tsxx%..Jn 1=T (531a
x? = Al 0 6 60XV 1TeRAAR, x= WY = (), =g, (531D
ds? = (- d¢* fi, a1, (5.3.1¢)

where ¢, is the speed of light in vacuum and s is called the isotime (t being the
ordinary time), which, for Class I can be assumed in the diagonal realization

1=diag. (b2 by, 2 b5 2 b, 2)>0, (5.3.20)
x2 1= (xIp2xl + x2b22 + x¥b2 8 - x4 i), (5.3.2b)

or in a nondiagonal form preserving the positive-definiteness of the isounit (see
later on in this section for an example).
The isominkowski geometry is therefore characterized by four functions
which: A) are called relativistic characteristic functions of the medium
considered; B) have a generally nonlinear and nonlocal dependence on the
isotime s, coordinates x, wavefunctions ¢, 417 their derivatives of arbitrary order,
X, X, &b, aqﬁ...., as well as the physical characteristics of the medium considered,
such as the local density p, the local temperature T, the local index of refraction
n, etc.; and C) are assumed to be positive~definite for reason indicated below

by = bys % % 4, ¢h 8 80l Tn, ) > 0, p=1,234. (533

The above general Tunctional dependence is needed for the local study of
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interior dynamical problems; that is, the trajectory of an extended relativistic
particle within a physical medium at one given interior point x.
) If one studies global effects of physical media, such as the average speed of
light throughout the medium, the characteristic functions can be averaged into
the constants

b"l_1 =< l:|_l(s, X, %, %, . >, (5.3.4)

where < .... > represents an average appropriate for the problem at hand.

As we shall see in Ch. [1.8, the above average preserves a quantitative
representation of interior effects, while permitting the recovering of
conventional inertial systems for an outside observer.

Note that the space-component of the isominkowskian geomeltry is the
isoeuciidean geometry in its entirety.

The Tirst property to keep in mind is that the Minkowskian and
isominkowskian geometries coincide, by construction, at the abstract,
realization—free level. This is due to the positive-definiteness of the b—quantities
or, equivalently to the preservation under isotopies of the signature (+, +, +, -).

This is the fundamental property for which the isominkowskian geometry
was built in the first place [12]. The evident objective is the preservation of the
axioms of the special relativity in the transition from the exterior to the interior
problem, as studied in detail in Vols Il and IIL. The subtle implication is that
criticisms on the isominkowskian geometry may in the final analysis result to be
criticisms on Einstein’s axioms themselves.

The primary physical application of the isominkowskian geometry is the
relativistic geometrization of physical media (see Fig. 5.3.1 for comments).

A first point which should be stressed is that, by no means, is the
isominkowskian geometry the only possible one for the geometrization here
considered. In fact, the use of other geometries is conceivable, and their study is
encouraged, because one of the beauties of mathematical and physical inquiries is
their polyhedric character.

A second point stressed in Ch. 1.3 is that studies on the propagation of
classical electromagnetic waves via operator approaches in first and second
quantizations should be strictly precluded because they would suppress the very
characteristics to be represented.

[n essence, when first exposed to the propagation of light in our
inhornogeneous and anisotropic atmosphere, a very natural mental attitude is the
study of the propagation via old methods, e.g., via scattering of photons on the
atoms of our atmosphere.

This is the approach which should be avoided on both theoretical and
experimental grounds. Theoretically, the event depicted in Fig. 5.3.1 is purely
classical, thus requiring a purely classical description, rather than the use of
photons in second quantization. After the achievement of a geometric
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representation of the inhomogenuity and anisotropy of physical media at the
classical level, studies based on first and second quantization should be
considered.

ISOMINKOWSKIAN GEOMETRIZATION OF PHYSICAL MEDIA

Mix,n,R) Mix,n.R) M{x,n,R)

FIGURE 5.3.1. A schematic view of a primary physical application of the
isominkowskian geometry: the quantitative treatment in a form suitable for
experimental verifications of the dynamical effects caused by the inhomogenuity
and anisotropy of physical media in the propagation of electromagnetic waves
and particles. Recall that the Minkowskian geometry is a geometrization of the
homogeneity and isotropy of empty space. All predictions based on the
Minkowskian geometry, such as Doppler's effects, dilation of time, etc., are
therefore crucially dependent on the homogeneity and isotropy of empty space.,
Consider now an electromagnetic wave originating from a distant star which
travels, first, in empty space {in which case the Minkowskian representation is
exactly valid), then travels throughout our atmosphere, and finally returns to travel
in empty space. Now, our atmosphere is manifestly inhomogeneous, and
anisotropic, as discussed earlier in this volume. The physical issue requiring
experimental verifications (which is studied in detail in Vol. 111) is whether the
inhomogenuity and anisotropy imply measurable deviations from the conventional
Minkowskian predictions. Specifically, the experimental issue is whether Dopplers
effect, time dilation, etc. have the same numerical values for events within
inhomogeneous and anisotropic media or deviations are experimentally
measurable. As we shall see in Vol. 111 a rather considerable body of experimental
evidence supports the latter expectation, although in a predictable preliminary
way. The mathematical issue considered here is therefore the achievement of a
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geometric representation, specifically, of the inhomogenuity and anisotropy of our
atmosphere. The isominkowskian geometry appears to be particularly suited to: A)
provide a direct geometric treatment of physical media, B} in a form suitable for
experimental verifications, while C) preserving the basic Einsteinian axioms at the
abstract level

At any rate, the reduction of the event of Fig. 5.3.1 to photons scattering on
atoms guarantees the elimination of the inhomogenuity and anisotropy to be
represented.

But the strongest support against the preservation of old knowledge for the
novel physical conditions of Fig. 5.3.1 comes from experimental data. In fact, as
we shall see in Yol. III, physical media imply shifts toward both, the red or the
blue depending on their characteristics. Assuming that adequate manipulations
permit the interpretation of shift toward the red via scattering of photons on
atoms, the same theory cannot evidently represent the opposite shift, precisely
because lacking the characteristics to be represented.

A first intuitive understanding of the isominkowskian geometrization of
. physical media can be reached by writing the isoseparation in the equivalent
‘form

x2 = blzxi + x2b22x2 + x3b22)? - )(4b42x4 =
= xIn2x! + 3207252 + By 258 - x4 n2x4), (5.3.5)

(where we have ignored the multiplicative Tactor T for simplicity), namely, by
expressing the characteristic functions in the equivalent form b, = I/nu. Now, the
fourth term,

b4 =1/ l'l4 , (536)

is already known, and represents the local index of refraction within a given
medium, yielding the local speed of light

C=cyby=cy/ny =clx,pmt.). (5.37)

One can therefore see the above distinction between the characteristic
functions by, and the characteristic constants b%;. In fact, the quantity ny is the
local index of refraction at one given point in space-time (characterizing the
speed of light at one point of our atmosphere in Fig. 5.3.1), while n’°4 is the average
index of refraction (characterizing the average speed of light throughout our
entire atmosphere).

A first meaning of the isominkowskian geometry is therefore that of
providing a relativistic generalization of the familiar index of refraction ng to
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all space-time components ny. At any rate, such an extension is requested by
the very notion of space-time covariance, or it can be derived from the use of
the conventional Lorentz transformations.

At a deeper level, recall that only a small portion of physical media is
transparent to light. A second meaning of the isominkowskian geometrization is
therefore that of extending the index of refraction to all physical media,
whether transparent or not to Iight. In the latter case the quantity by = 1/n,
acquires a purely geometric meaning similar, say, to the component g4, the
Riemannian metric.

As we shall see in Vol. [iI, experimental evidence indicates quite clearly
that the space characteristic functions by, k = 1, 2, 3, have a velocity and other
dependence, while the fourth characteristic quantity by generally provides a
geomelrization of its density.

The isominkowskian representation of the inhomogenuity and anisotropy
of physical media is now evident. In fact, the former can be represented, e.g., via
a dependence of the characteristic functions on the local density, while the latter
can be represented, e.g, via a differentiation of the space-time quantities, by # b,

As a first example, a direct representation of water is given by the simplest
possible isotopy, called relativistic scalar isotopy (see Ch. [1.8 for details)

x2, N, =0, u=1234 (5.3.8)

where n° is a known numerical quantity and x2 is evidently the conventional
Minkowskian invariant. In fact, water is a homogeneous and isotropic medium
whose characteristics are then represented by isoinvariant (5.3.8),

A second example is our inhomogeneous and anisotropic atmosphere which
requires the full isoinvariant (5.3.5) for its representations. The numerical values
of the b°~constants will be computed in Vol. [1! from astrophysical data. Needless
to say, the deviations of the b™-quantities from the value 1 are very small for our
atmosphere, yet they produce measurable effects, as we shall see.

Intriguingly, isoinvariant (5.3.8) and related isospecial relativity permit a
direct representation of relativistic kinematics in water, such as: the decrease of
the speed of light according to law (5.3.7); the propagation of electrons faster than
the local speed of light (Cherenkov's effect); the correct relativistic addition of
speeds in water; and others (see Ch. I1.8).

The extension of the results to inhomogeneous and anisotropic media is
then consequential, and equally consequential are deviations from the
Minkowskian prediction in vacuum.

The main features of the isominkowskian geometry are intriguing because
they are contrary to our ordinary perception of geometric structures in the
physical reality. The space’ component has been studied in the preceding section
and it is hereon assumed. We can therefore restrict ourselves to a study of the
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particular case in the 3-4 dimension with isolight cone
=328 - x*blxt = 0,1 = diag.(bs2b2), (539

The above structure clearly represents a focally varying deformation of the
light cone. This feature is evidently necessary for physical consistency because
the constancy of the speed of light is a philosophical abstraction, while the speed
of light in the physical reality is indeed a locally varying quantity depending on
the characteristics of the medium at hand. A locally varying light cone as
represented by Eq.s (5.3.9) is therefore established by physical evidence beyond
credible doubts.

The intriguing point is that deformation (5.3.9) appears only in the projection
of the isominkowskian description in the original Minkowski space, because at
the level of the isospace itself there is no deformation.

Moreover, the preservation of the original perfect cone under isotopies is
such to include the preservation of its characteristic angle; that is, the
preservation of the speed of light c, at the abstract isotopic level.

The proof is trivial for the isolight cone in water. In fact, isoinvariant {5.3.9)
for infinitesimal values Ax and At reads

Ax b4
— = 2=, (5.3.10)

At b

(because b = b, in water). _

The understanding of the isominkowskian geometry requires the knowledge
that cone (5.3.10) is purely geometric because the speed of light in water is not ¢,
but c = co/n". The actual light cone is therefore that characterized by ¢ and not
Co.

It is easy to prove that the above results hold for arbitrary media, that is,
they also hold for a locally varying speed of light within inhomogenecus and
anisotropic media. In fact the general invariant for infinitesimal Ax and At is
given by

Ax b4
— = —c,. (5.3.11)

At b

but in the 3-4 isoplane we have
Ax = Dbysina, At = Dbjcosd, (5.3. 12)

where D is the isoipothenuse. This implies that, even in physical media, the
isolight cone remains a perfect cone and its angle remains solely characterized by
Co-
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A deeper knowledge of the (3-4)-isoplane can be gained via its Lie-isotopic
isosymmetry SO(1.1), and related isotopy of the hyperbolic functions. These
isotopies have already been studied in Ch. 3.6 as the realization of the isotope
SO(2) with signature (+, ~).

Also, the isominkowskian geometry in {i+1) dimension is a particular case of
the two-dimensional isoeuclidean geometry of Class 111, merely realized for the
values g > 0, gp9 < 0%°,

ISOLIGHT CONE

M(x,n,R) M{x,n,R)
€} t ¢
>
x
{A) (B) (0]

FIGURE 5.3.2. The three light cones of the isominkowskian geometry. Cone (A) is
the conventional one in Minkowski space with c,= 1 and @ = 45°. "Cone” {B) is the
physical one in our space-time for a locally varying speed of light propagating
within a generic medium. Cone (C) the isolight cone that is, an isotopy of the
original perfect cone. As such, it is also a perfect cone provided that it is computed
In isospace. We learn in this way that the isolight cone essentially maps the locally
varying “cone” {B) into the perfect cone (C). The axiom-preserving character of the
isotopy is so strict to preserve the original numerical value Cq 1€, the original
angle a = 45°. An understanding of these geometric occurrences is essential for the
understanding of the isotopies of the special relativity studied in Ch. 11.8. In fact, as
expected, the isospecial and the spectal relativities coincide at the abstract level to
such an extent, as to admit the same light cone with the same speed of light Cy Yet
the physical predictions of the two relativities are profoundly different, as
indicated by the inapplicability of the linear-local-canonical Lorentz
transformations in favor of suitable nonlinear-nonlocal-noncanonical coverings,

39 Evidently the (3+1)}-dimensional isorminkowskian geometry is a particular case of the
four-dimensional isoeuclidean geometry of Class ¥ with signature (+, + + -). This
illustrates once again that all distinctions are lost at the appropriate isotopic level
between Euclidean and Minkowskian formulations (Ch. 3). Equivalently, the occurrence is
a mere realization of the capability of the Lie-isotopic algebra to unify in one single
isotope O(2) and O{1.1) or {0(4) and O{3.1) (Sect. 4.5).
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of the need to abandon the locally varying speed of light as the “universal
invarfant” for a geometrically more appropriate notion. .

Consider a hyperbolic angle, i.e., a speed v. Then, Eq.s (4.6.8) Tor g5y < 0
provide the isohyperbolic angle

V= vigh, (5.3.13)

The isotopies of hyperbolic functions are then readily given by isotrigonometric
functions (5.2.4) for g 22 < 0, resulting in the isohyperbolic functions

isosinh ¥ = b, ! sinh (v bgby), isocosh¥ = by cosh(vbgb,), (53.14)
which do verify the expected property
bs? isocosh? ¥ - b,2 isosinh? ¥ = 1. (5.3.15)

Note again the association of bz with isocosh V, rather than with isosinh ¥

The isominkowskian geometry is studied in more detail in Vol. II after
constructing its isosymmetry, the isotopic Poincare symmetry. We shall then
study the axiom-preserving lifting of the basic postulates of the special relativity
which is inherent in the geometry, and review Aringazin’s proof of its “direct
universality” for ali possible deformations of the Minkowski metric. Experimental
verifications are studied in Vol. I11. The gravitational content of the geometry is
studied in App. 5.B. During these studies we shall use the foliowing four
isogeometries:

I) Minkowskian geometry, which is the conventional one for the
description of particles in exterior relativistic conditions;

IT) Isominkowskian geometry, as described above for the description of
particles in inferior relativistic conditions;

HI) Isodual Minkowskian geometry, which is the isodual image of the
conventional one over the isodual space and related isodual field

M3(x 7% R9) = -, 9= -, (5.3.16a)
x2d = [xH ndu,, XV 119 = [t ndw, XV = X2 (5.3.16b)
ds? 9 = (+axtn,, ax’ 119 = as? e RIS, +, x4, (5.3.16¢)

which is used for the description of antiparticles in exterior relativistic
conditions; and

IV) Isodual isominkowski geometry, which is the geometry of the
isodual isominkowski space of Class Il over an isodual isoreal field of the same
class (Sect. 3.5) :
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MAx0RY: 79 = THs, x, x, %, .0 n =-9, 19=(T9F!=-1, (5317a)
x29 = A0 6% %, 2. )V 110 = — (-G xV 1 = K2 (5.3.17b)
ds?9 = (+ax it d )10 = ds2e RIRG9), (5.3.17c)

which can be assumed in the'diagonal form
19 =-diag. (b, 2 by, 2 b3 2 b,72) > 0, (5.3.18a)
x20 = (-xp2x! - x2p22 - 323 + x4 bZ)1%eRrY.  (53.18D)

or in any nondiagonal realization preserving the negative-definite character of
the isodual isounit. This latter geometry will be used for the description of
antiparticles in relativistic interior conditions.

As one can see, the isodual invariant coincides with the original isoinvariant
(5.3.1b). However, the isominkowskian geometry and its isodual are physically

_different. In fact, the latter is defined on an isofield with negative-definite norm,
thus implying negative-definite energies, motion backward in time, etc.

Note that the characteristic b-quantities remain the same for both
geometries. The isolight cones also apply to the isodual geometries, although the
references axe and the local variables are inverted in sign. As we shall see in Vol.
II, the positive- and negative-energy solutions of conventional field equations
imply that they can be defined on the tensorial product M{xnRxMI(xn9RY). The
isotopies of field equations will then be defined on M(x,H,RxMS(x,79,R9),

We have considered until now isominkowskian geometries with a diagonal
isotopic element T. The reader should be aware of the existence of rather
intriguing applications for isogeometries with nondiagonal isotopic elements and
isounits, One of the most significant cases was proposed by Dirac [31] in two of
his last (and little known) papers dealing with a generalization of his own
equation. The ensuing “Dirac’s generalization of Dirac’s equation” recently resulted
to possess an essential isotopic structure, evidently without Dirac’s awareness,"0
as we shall study in detail in Yol. I

In this chapter we would like to identify only the rather intriguing
isominkowskian geometry of Dirac’s papers [31]. In essence, Dirac studied a
deformation of the Minkowski space characterized by the nondiagonal element

[ ]
-I—QOO
oo

; (5.3.19}

o L
co~—O

“% Dirac’s papers [31] are of 1971-1972, while the isotopies were formulated in 1978 [5].
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with properties
detT =14 1=1"=T (5.3.20)

where t denotes transposed, which therefore qualify it as a fully acceptable
isotopic element of Class I.

The isogeometry characterized by isotopic element (5.3.19) is intriguing
indeed. Its most salient property is that the isometric is nondegenerate, det ) = -
I, but the isoinvariant is degenerate,

1

00 10 X
x2=x“"r‘hvx”= x! x3 x8 x4 000-1 x2 =
-1000 x3
0-1 060 x4
= x'x3—x2x4-x3x1-x4x2=—2x2x4, {5.3.21)

namely, the isoseparation is contracted under Dirac’s isotopy from four to two
dimensions. In turn, this contraction has truly remarkable implications, such as
the lifting of the original spin s =t to spin s = 0, as originally derived by Dirac [31]
and as confirmed by isotopic methods (seee Vol. Ii).

It is instructive for the interested reader to see that the same dimensional
contraction occurs for other realizations, such as for i = {+1, -1, -1, 1) and
related ordering of the components x = {x*, x!, x2, x3). As a result, the dimensional
contraction (1, 2, 3, 4) = (2,4) is intrinsic in the isogeometry here considered, and
So are its rather peculiar properties, such as the contraction of the three-
dimensions (1, 2, 3) down to the line along the y-axis.

We shall have ample opportunities in Vols Il and Il to study the above
isogeometry, the related "Dirac’s generalization of Dirac’s equation”, and its novel
physical implications.

5.4: ISOSYMPLECTIC GEOMETRY

S5.4A: Statement of the problem. In this section we shall study a generalization
of the symplectic geometry*! which is nontinear (in all possible variables and
their derivatives of arbitrary order), nonlocal-integral (also in all variables and
their derivatives} and nonlagrangian-nonhamiltonian, yet preserving the original
symplectic axioms.

The new geometry was introduced in memoir [15] under the name of

41 An outline of the basic notions of the conventional symplectic geometry is presented
in App. 5.A. For technical presentations, one may consult ref.s [3,4l A comprehensive
bibtiography is contained in ref. [6]
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symplectic-isotopic geometry, or isosymplectic geometry for short, and plays
an important role in hadronic mechanics, e.g., for the isotopies of symplectic
quantization, for interior gravitational problems, and others.

In particular, the isosymplectic geometry is the geometric counterpart of
the Lie-isotopic theory of the preceding chapter. The identification of the
corresponding generalized analytic structures will be presented in Vol. II,
including explicit examples of “direct representations” of nonlinear-noniocal-
noncanonical systems.

In this section we shall merely review the main lines of the new geometry,
and refer the reader to ref.s [15-20,25,26) for more details.

All quantities considered are assumed to verify the needed continuity
conditions, e.g., of being of Class €%, which shall be hereon omitted for brevity.
Similarly, all neighborhoods of given points are assumed to be star-shaped, or
have a similar topology also ignored hereon for brevity.

Let M(R) be an n-dimensional manifold over the reals Rin.+,x) and let T*M(R}
be its cotangent bundle. We shall denote with T*M, (R) the manifold M(R) equipped
with the canonical one-form 6 [3,4]

6 : TMR) = T{T'MR), 6 € A(T"M;R). (5.4.1}
The fundamental (canonical) symplectic form is then given by
w = dg, (54.2)

which is nowhere degenerated, exact and closed (see App. 5.A). The manifold
M(R), when equipped with the symplectic two-form w becomes an (exact)
symplectic manifold T*MyR) in canonical realization. The symplectic geometry
is the geometry of symplectic manifolds as characterized by exterior forms, Lie's
derivative, etc.

The isotopies permit a dual nonlinear, noniocal and noncanonical
generalization of all that, one of isctopic type (Class [) and the other of isodyal
character (Class I1).

In the original presentations we used the notation by Lovelock and Rund [4)
in order to facilitate the identification of the differences between conventional
and isotopic geometries, and we shall adopt the same approach here. Latin indices
i, J. P, q, etc. will be used for a generic manifold, while Greek indices p, v, etc. will
be used for specific physical applications.

5.4B: Isodifferential calculus and its isadual. The first visible implication
of the isotopies for the symplectic geometry is that the basic differential calculus
becomes inapplicable. This implies that the very notion of one-form 6 or two-
form w are inapplicable and must be suitably generalized.

Consider an n—dimensional isomanifold M(R) {see ref. [26] for a technical
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definition) with local chart x over the isoreals R, and letT*M(R) be its
“isocotangent bundie’, that is, the bundle of isoforms as more appropriately
defined below. Introduce one of the infinitely possible, symmetric, nonsingular
and real-valued isounits of Class I of the same dimension of M(R),

T=1%5%%8.) = aij) =qh=ap=qh =71, 643

For mathemnatical consistency (e.g., to preserve isolinearity, see Sect. 4.2),
conventional linear transformations on T*"M(R), x’ = Ax, or xl= A‘j xJ, must be
generalized on T*M(R) into the isotransformations

X' = A*x, or X = Air T x5, (5.4.4)

In the conventional case, the differentials dx and dx’ of the two coordinate
systems are related by the familiar expression dx’ = Adx, or dx1 = Aldx] with
consequential known properties, e.g., for coordinates transformations [4,6],

However, the same differentials dx and dx’ are inapplicable in the
isocotangent bundle T*M(R). The author therefore introduced the generalized
notion of isodifferentials 8x and AX [15] which hold when interconnected by
the isotopic laws

dX = A*dx, or O% = Air TS x5, {5.4.5)
with the particular realization, say, for the case of the isotransformations x =
x(x)

o% %

*Jdx, or dxi =
ax ox¥

3% = T . (546

As we shall see in the next chapter, two possibilities are significant for the
characterization of the isodifferentials, 3x = ax or dx = Tdx. They are connected
with the corresponding isointegrals Jdx = X € R or Jax = x € R. In this chapter we
shall addume the former for simplicity and leave the latter to the reader.

Let ¢{x) be a scalar function on T*M(R). Then its isodifferential is given by

9 o
46 = —+3x,  or ) = — T A (54.7)
ax axt

where the partial derivative is the conventional one.
Similarly, a contravariant isovector—field X = (X" on T*MIR) is an ordinary
vector—field although defined on an isospace. Then its isodifferential is given by
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aX . axX!
X = —=dx, o W = — T &5, (548
ax ax’

Thus, an isovector-field on T*M($) transforms according to the isotopic
laws

aX _ axXi
Xx), or X = Trs(x) X5(x). (5.4.9)
ax axt

Xx) =

Note that, while for conventional transformations dx’ = Adx on T*M(x,R) we
have 9x7/3x = A, and thus we now have for isotransformations

ax! T
— = Al TfJ + A' = x5, (5.4.10)
axJ axJ

By using the above results and the usual chain rule for partial
differentiation, one easily gets
a)_(j xS axl xS aX'  ax) axS Tl

oxk axs axi axk T axl g%k xS axl axk xS

(5.4.11)
Thus, in addition to the isotopy of the conventional two terms of this
expression {see ref. [4], Eqs (3.5), p. 67), we obtain an additional third term. Note
that the quantity aXJ/ax is not a mixed tensor of rank (1.1), exactly as it happens

in the conventional case.
From the preceding results one can then compute the isodifferential of a

contravariant isovector-field

_axd
axl= — Tk -
ax
aTi, &l ax aXT  axi
= - T XT xS + — T — xS+ — Xrass. (5412
axS axt axl axs axl axs

A contravariant isotensor XU of rank two on M) is evidently
characterized by the transformation laws
_ ax . aii axJ
R - 2, Z 0y s - & TS XPU), (5413
ax  ax axf oxS
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Similar extensions to higher orders, as well as to contravariant isotensors of
rank (0.s) and to generic tensors of rank (r.s) are left as an exercise for the
interested reader.

All preceding expressions {5.4.4}-(5.4.13) have been written in both, the
abstract form and their realization in local coordinates, to illustrate that the
notion of isotransformations and isodifferentials do constitute isotopies, in the
sense that all distinctions between conventional and isotopic notions cease to
exist at the abstract, realization—free level.

For the identification of the isodual isodifferential calculus [15,19] recall
that, under isodualities we have

gxd = A940ayd = Ad.px. (5.4.14)

The rest of the isocalculus can then be easily derived.

To have a guide in the use and meaning of isoduality, the reader should
keep in mind that its primary classical function at this level is the
characterization of the map from positive to negative energies. But energies are
represented by the Hamiltonian H. A good guide for isodualities is therefore the
map

isoduality
=

Energy H > 0 Energy HY = ~H < 0. (54.15)

As it has been the case for all preceding aspects studied so far, we have
four distinguishable formulations:

A) the conventional differential calculus over the ordinary reals Rin,+x)
with basic transformation law dx’ = Axdx which is and will remain the
fundamental calculus for the exterior problem of ordinary matter in vacuurm;

B) the isodual differential calculus over the isodual reals R%n9+x9)
with law dx’ = Axddx = AY%x which is assumed the basic calculus for antimatter
also in vacuum;

C) the isodifferential calcubas over the isoreals R(f,+#) with law 8% =
A=* @x which is assumed as the basic caleukus for the interior dynamical problem
of matter; and

D) the isodual isodifferential calculus over the isodual isoreals
RYA9,+#9) which is assumed as the basic calculus for the interior problem of
antimatter.

The reader should keep in mind that all the above formulations can be
unified by the abstract isotopic treatment of Class I11, although in these volumes
we shall study the individual formulations for clarity.

5.4C: Isoforms and their isoduals. The isotopies of the symplectic
geometry of Class [ were constructed {15] via the use of the isodifferential
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calculus, which permits the introduction of the following one—-isoform
$) = Axdx = AT AN, (5.4.16)

and the study of the algebraic operations on them. The isocotangent bundle
T*M (R} is then the bundle of all possible one-isoforms. The sum of two one-
isoforms &) '= A3x and &2 = B+dx is the conventional expression

The isoproduct of one-isoform & = Axdx with an isonumber i € R is the
conventional product,

For the product of two or more one-isoforms <blk = ARy, k= 1,2 3, ..we
introduce the isoexterior, or isowedge product denoted with the symbol A,
- which verifies the same axioms of the conventional exterior product, that is, the
distributive laws

@)+ 82785=9'A 83+ 62283 (5.4.19)
$'A@2+ e =-8"282+81463 G4
and the antisymmetry law
| $lre2=-02r81 (5.4.20
although it is defined on an isomanifold.

The isoproduct of two one-isoforms &' = Axdx and &2 = B«dx is the
two-isoform

~ =& 1i82 = i I ayT A AxS
¢, = &' A = A; T By T 8x" A

=4 {a 7i j - i Iy axT A axs

=4(A T, B T~ A; TS B T axTAdx

= i _ i T A 4ys ‘

= s A BT T - T ThHaxT A S, (5.4.21)
which characterizes the isocotangent bundle T*M,(x,R). Note the clear deviations
from the conventional exterior calculus (compare with ref. {4] p. 132).

The isoexterior product of three one-isoforms yields the three-isoform

b= ¢! A8 2R83=
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= Al a2 .3 Llibis i, i,
A AT A 8T ok T T

where [4,6]

Tisjs A a2 A x%3,  (5.4.22)

sil- 'l 51, 811 ai’.

i)i h 12' i)iglg i I3

812 =det 812 o=det] 82 62 52, .
I TR Iiils Gridz i

with a consequential extension to p—isoforms (5.4.23)

o= A T T2 ourp atAB2ALAM, (5424
2= 12 P
characterizing the correspondmg 1socotangent bundle T‘MP(RJ.

Given n one-isoforms fbl AKs3x, k = 1, 2.. n, they are said to be
isolinearly dependent when &,' A .... A &, =0, Note that given n one-isoforms
" linearly dependent on M(x,R), they can be isolinearly independent, evidently
because of the functional dependence of the isotopic product.

In an n—dimensional isomanifold M(R) there exist a maximum of n lmearly
independent one—isoforms as in the conventional case, with isobasis Elx . ax™,
The isobasis of T*M,{R) are then given by the ordered set ax! A dxJ, i < j A&
similar situation occurs for p-isoforms and related isomanifolds T"Mp(R).

As an incidental note we point cut without treatment the Grassmann-
isotopic algebra G, or isograssmann algebra, which is given by the direct sum
[15]

G = T*M, (R). (5.4.25)
zk =012..n K
The necessary and sufficient conditions for a two—isoform to be identically
null are
s’z Al 42 TR TR
Il 1 2 | !

a1 42 ok ok kK ko
-AklAkz(Tl-Tz L T2 = 0

o 2 (5.d26)
A similar situation occurs for p-isoforms.

The reader should keep in mind the nontriviality of the above liftings. As
an example, the linear, local and canonicat one- and two-forms are lifted into the
respective structures

&) = A T %, %, 1. T, 0, .} 8xJ, (5.4.27a)
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$ = AT %%, T0, .. B Tjs(x, %, % W, T, 0, .0 ax" A QxS (5.4.270)

which are nonlinear (in the local coordinates x as well as their derivatives),
nonlocal-integral (in all variables) and noncanonical when projected in the
original manifold M(R). What is remarkable is that the above forms are isolinear,
isolocal and isocanonical {(Sect. 4.2) on M(R), that is, they coincide with the
corresponding conventional forms at the abstract level despite the indicated
differences. Perhaps, this abstract unity is the reason why the isosymplectic
geometry has been discovered only recently.

It is evident that all the above quantities admit a new image under
isoduality. To begin, the basic manifold M(R) is now mapped into the isodual
manifold MY(RY) with the isobasis dx'9, ..., dx" over RY. We therefore have the
isodual one—forms

g9 = adxdgxd, (5.4.28)
and the isodual operations in thermn. We then have th iscdual one-isoforms

8 = asdax = - B, (5.4.29)
and isodual isooperations on them.

5.4D: Isotopies and isodualities of the Poincare’ lemma. The Poincarée
lemma (see. e.g., ref.s [34,6) has a particular mathematical and physical meaning
inasmuch as it establishes that the symplectic geometry is the geometry
underlying Lie's theory. For the case of two-forms on a 2n—dimensional manifold

do = dlojdd Adx)) = dlde) =0, (5.4.30)
the Poincaré iemma provides the integrability conditions for the brackets
characterized by the contravariant tensor w') = | (71| U

dA dA

[A,B] = — @l ~ (5.4.31)
axt axJ

to be Lie. Thus, the rather complex integrability conditions for brackets (5.4.31) to
be Lie (see, e.g., the detailed study in ref. (6] are reduced to the simple and elegant
geometric property dw = d(de) = 0.

A central objective of memoir [15] was to show that a similar situation
occurs under isotopy, namely; thal the isosymplectic geometry is the correct
integro-differential geometry underlying the Lie-isotopic algebras. This property
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was established by showing that the Poincare lemma is a true geometric axiom
because it persists under isotopies.

To review this result, let us first study the isodifferential calculus of p-
isoforms. Let ; = Axdx be a one-isoform. The isoexterior derivative 8, of &,
(also called isoexterior differential) is the two-isoform [loc. cit.]

) alaj T
$ = 3% = — 72 adiAaxz- (5.4.32)
ax 2 2
i
BAL, i T C
ax2 1 2 1 axlz 2
- OAj aTil
iy i i i i .
=45 1% (—LT7h T2 +Ai——-,-—‘-'rlz.)akaaxkz
kiks ol ok I axip k2

from which one can see that d$| is no longer the curl of the vector field Ay . but
the more general isocur! encountered in Sect. 5.2,

The isoexterior derivative of a two-isoform {5.2.32) is given by the three-
isoform

i
OAj i i i oT 1 . .
$y= by = (—L27 T2 T8+ x  —dgh g
i T2, I s ke At
+ A . Tl — =2 T3 Yaxl Adx2 Adx'S, {5.4.33)

It is easy to see that the isoexterior derivative of the isoexterior product of
& pisoform <bp and a q-isoform éq is given by

~ = - _ p -~
af d:p A cbq} (ﬁép) A cf»q + =1 dap/\ (acﬁq). (5.4.34)
A p-isoform &, is then said to be isoexact when there exists a {p-1)-

isoform & such that &, = ey, and isociosed when dd, = 0. Weare
thus equipped to formulate the following important

Lemma 5.4.1 - Isotopic Poincare” lemma (15,19} The Poincaré Lemma
admits an infinite number of isotopic liftings of Class i, i.e, given an exact
p-form &, =ddp_,, there exists an infinite number of isotopies

oy > py, by =y ) > dp=a(d,) (543
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for each of which the isoexterior derivative of the isoexact p-isoforms are
identically null,

a(3d,) = 0. (5.4.36)

The proof is an instructive exercise for the reader interested in acquiring a
knowledge of the isotopic techniques. We merely note that dcbl =0, iff

i
aT !,

i OAi, i .
*Slzk K, T T A T2;) =0, (5.4.37)
"2 a2 i 2 L 2

namely, the isoclosure of a one-isoform does not imply that the conventional
curl of the vector A is null, but that the isocurl is null.
Similarly, given a exact two-isoform &, = 4, , the property d, = 0 holds

iff
i
o A i . 9A; oT !y o
8]'12]3“”(( e o I A | R " S
K253 axlzaxiy It 20 3 gy ads 2 s
YV I
t— T —2T8, =0 (5.4.38)
axl2 boaxls 13)

Thus, the abstract axioms dd, = (@) = 0, dbg = dldd,) = 0, etc,, admit
the conventional linear-local-canonical realization based on an ordinary
manifold, as weli as an infinite number of additional, nonlinear-nonlocal-
noncanonical realizations for each given original form, via covering isomanifolds.
The latter realizations are geometrically equivalent among themselves, but
physically inequivalent owing to the generally different isotopic elements or
isounits.

The isodualities of the Poincaré lemma can now be easily formulated. We
first have the isodual Poincaré lemma which is characterized by the isodual
calculus, and then the isodual isopoincaré lemma based on the isodual
isodifferential calculus. '

5.4E- Isosymplectic geometry and its isodual, Let us review the interplay
between exact symplectic two—forms and Lie-isotopic algebras. Recall (see ref. [6]
for details) that the most general possible, Jocai~differential and conventional
two-form on an even, 2n-dimensional manifold T*M,(R) with covariant
geometric tensor 01112

& = iy A gyl
&y = miliz(x) dx't Adx 2, (5.4.39)
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characterizes, in its corresponding contravariant version, the brackets arnong
functions A{x) and B{x) on T*M,(R)

- oA i, B ii 1yl
A7Bl = —ql2—— | orz = (. [yre (5.4.40)
axl ax'2 hlk

Now, the integrability conditions for two-form (5.4.39) to be an exact
symplectic two-form are given by [loc. cit)

aﬁi' )i

o8, |

1 141 iai

+ By =0, 12 23 + 31 = (5.4.41)
2'1 i i i
ax'3 ox'l ax'2

i1y

which general solution in terms of 2n functions R(x)

i BR aRj
= d{R{x)dx’], o - - —2 (5.4.42)
N2 axlz axh

characterizing the Birkhoffian generalization of Hamiitonian mechanics [5,6). The
above conditions are equivalent to the integrability conditions

gl + gl = o, (5.4.43a)
~ aabis el anii
0k + qlok — + ol =g (5.4.43b)
axk ax axk

for generalized brackets (5.4.40) to be Lie-isotopic, i.e., to verify the Lie algebra
axioms in their most general possible, classical, regular realization on T"My(R)

[ATBl + [BTAl =0, [[A,Bl;C} + [BICIJAl + [CTAI7B] = 0. (5.4.44)

Thus, the exact character of the general two-form ¢, = d&, implies its
closure d¢, = 0 {Poincare Lemma), which, in turn, guarantees that the underlying
brackets are Lie-isotopic, with the canonical case being a trivial particular case
(see the analytic, algebraic, and geometric proofs in ref. [6], Sect. 4.1.5).

Lemma 5.4.1 establishes that the above general but local-differential

-interplay between algebra and geometry persists under the most general possible
nonlocal-integral isotopies. We therefore have the following:

Definition 5.4.1 (15,19 “The “exact isosymplectic manifolds” of Class |
are 2n~dimensional isomanifolds T*Myx,R) over the isofieids R{f,+*) with
isounits 12 equ:ppea‘ with an isoexact and nowhere degenerate two-
isoform
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i B(AilTi!j) ; .
®p =40 Ik BN Ax2 = a8 = —d7l adi gk
hiz > i

. . i
(BAI i i T - o

i T[J' T2, + A —Th yaxd Adxl =

o2 Lok Doaxly 12

U

i1l i i i .
=45 12 { i le T2j +A,.—,’-lej)akaaxkz,=
kiky a2 L2 0 iy 2

dAi

(5.4.45)
which is such to admit the factorization

= k . i i
¢22 = Qilk(x)XT2 izts. X, xm, %, ...) dx'! 8x'2, T >0, {5.4.46)

where Ty is the isotopic element of the underlying isofield, i.e, it is such
that 12 = Tz_] and

0Aj aAi
—2 - (5.4.47)

2 axil  ax'2

Is Birkhoff's tensor [6] ie., the most general possible local, exact
symplectic tensor. The corresponding Lie-isotopic theory is then
characterized by the brackets

oA ; ki aB

AR = —1, x5 %00 20—, (5.4.48)
ax'l ox2

1, =1, (alli2) - (g I (5.4.48b)

where 15 = Tyl is the isounit of the universal enveloping isoassociative
algebra. The “isosymplectic geometry” is the geomeltry of the
isosymplectic manifolds.

The “exact isodual isosymplectic manifolds” are defined by the isodual
exact two-isoforms

t‘bd2 = Qilk(x) x szkiz(s, X % %, .. ax'l A axlz , ‘sz < 0, (5.4.49)

which are now defined on the “isodual isocotangent bundie” T*MYRY) over
the isodual isofield RO(hY+%) with isodual isounit 19, = (19,1 =-1,.

Note the complete lack of restriction in the functional dependence of the
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isotopic element T, which is at the foundation of the “direct universality” of the
isogeometry for all possible nonlinear, nonlocal and noncanonical systems (the
“direct universality” for the nonlinear and noncanonical but local systems was
proved in ref. [6]).

Note also that factorization (5.4.46) is possible for all two—isoforms (5.4.45).
In the above definition one can either pre-assign an isounit 1 o and then select the
two-isoforms {5.4.46) verifying the condition 1, = T,”L, or pre-assign the two-
isoform (5.4.46) and then select the isounit 1, accordingly. In this way, all two-
isoforms whose antisymmetric tensor Q| j /s symplectic can always be
interpreted as characterizing an isosymplectic manifold. As a matter of fact, this
is an illustration of the existence of the infinite variety of isotopies R(fi,+,* of the
field of real numbers R(n,+x).

The isosymplectic geometry focuses the attention on a subtle aspect which
is absent in the conventional formulation of the geometry 3,4k the relationship
between the two-forms and the underlying unit. For the conventional
Hamiltonian (or Birkhoffian) case, the underlying unit is the unit of the
enveloping associative algebra of the related Lie algebra. As such it is the 2n~
dimensional unit

I = (1) = (1) = Diag.(1, 1,.., ) (2ndim). (5.4.50)

which is trivially symmetric. The most general possible symplectic two-form is
then characterized in a local chart by two tensors, the totally antisymmetric
symplectic tensor Qij and the totally symmetric one 17} = diag. {1, I, ., I} =]

0 =do=0 (IX ddlAdx2, (5.4.51)
1 12

[n the transition to an arbitrary isounit T, the symplectic tensor {); jis
preserved, but the totally symmetric tensor [ = (') is lifted for mathematical
consistency into the isotopic form T = (T5') =1, or, equivalently, the totally
symmetric tensor in the factorization {5.4.46) must be interpreted as the isotopic
element of the related enveloping associative algebra.

The geometrical and physical implications of the above isotopies and
isodualities are intriguing, and it is hoped that they will received a much needed
attention by geometers. As an example, it has been assumed until now in
differential geometry that the only possible degeneracy is that in the symplectic
tensor, e.g.,

Det Olx) = 0. (5.4.52)

in which case one evidently lose the symplectic character of the geometry and
the possibility to characterize a corresponding Lie algebra owing to the
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impossibility to perform the transition to the contravariant tensor ol
The isotopies imply the existence of a second "hidden” degeneracy, that of
the isotopic element

Det Tolx) = 0. (5.4.53)

which the symplectic tensor is nondegenerate, det  # 0, which characterizes the
isosymplectic geometry of Class IV. This latter form of isogeometry represents
gravitational collapse into a singularity at x and, as such, need suitable study.

Note that the primitive notion here is that of isonumbers with a singular
unit. The degeneracy of the geometry is only consequential.

The generalized analytic equations characterized by the isosymplectic
geometry will be identified in Yol II, jointly with explicit examples.

@7: Isodual representation of negative energies. As well known in ,\'
partiCle physics, antiparticles are characterized by negative—energy solutions of
Tield equations. In this section (which is evidently purely classical), we can only
study the geomnetric characterization of the negative—energies via isodualities.

First, we simply note that a conventicnal Hamiltonian representing the
kinetic energy over R(n,+x), naturally becomes negative-definite when mapped
into the isodual field R%nd+xd)

Hp =txt 2m >0 = H =H =irxdt/2m = «rxr/2m = -H <0
(5.4.54)
and evidently the same holds for the isoduality of the Lagrangian

Le=34mixt>0 = W=t g=smrxdr=-ymixi =-L<0.

: (5.4.55)
Jointly, the equation of motion reads
mixdpd = - mr = | (5.4.56)
with a similar result for arbitrary equations of motion (see Ch. [1.1).
More generaily, the isodual Legendre transform is given by
L=pxt-H\ = 19=pxd;y-Hd=-pxr+H, (5.4.57)

The construction of the isodual isolegendre transform is an instructive exercise
for the interested reader.

All these features of antiparticles in vacuum are directly represented by
the iscdual symplectic geometry. In fact, the integrand of the conventional acticon
is precisely the one-form of the symplectic geometry
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A= Jratlitn ) = J{ ) Rt xdry = Jiie. (5.4.58)

The property identified earlier of the change of sign of a one-form under
isoduality then constitutes precisely the desired geometrization of the negative~
-energy solutions of field equations.

5.5: ISOAFFINE GEOMETRY

5.5A: Isoaffine spaces and their isoduals, As an intermediate step prior to the
isotopies of Riemann, we shall now review the isotopies of the affine geometry
introduced in in memoir [16] under the name of affine-isotopic geometry, or
ispaffine geometry for short, then studied in ref.s [17-21] and reviewed in ref.
[26]. This author is aware of no additional studies in the new geometry at this
writing.

The central technical objective is the achievement of a generalization of
basic notions such as connection, curvature, etc., which is of integral type, as
well as dependent on the velocities and accelerations in a nonlinear and nonlocal
way, while jointly preserving the original axioms of the geometry.

The literature in the conventional affine geometry is predictably vast,
although Scrixdinger’s presentation [2] remains valid to this day. In this section we
shall continue to follow the treatise by Lovelock and Rund [4] of which we
preserve the notation unchanged for clarity in the comparison of the results.

Let M(x,R) be an n-dimensional affine space here referred as a
differentiable manifold with local coordinates x = (x!), i = 1, 2, ..,n, over the reals
R(n,+X). We shall denote: the conventional scalars on Mx,R) with ¢lx);
contravariant and covariant vectors with X)(x) and X:(x), respectively; and mixed
tensors of rank {rs) with the notation X\ = Xl £ « (x). Unless otherwise
stated, all tensors considered on M(x,R) will be assumeli fo Be local-differential
and to verify all needed continuity conditions.

Definition 5.5.1 (16,19} The infinitely possible isotopic liftings M(xR) of
Class I of an n-dimensional affine space M{xR) over the reals Rin+x),
called “isoaffine spaces’, are characterized by the same local coordinates x
and the same local-differential tensors X 'S of M(xR) but now defined
over the isoreals Rin,+*} for all infinitely possible n-dimensional isounits
1 of Class I. "The "isoaffine geometry” of Ciass I is then the geometry of
vectorfields on M(xR). The “isodual isoaffine spaces” of Class II MYx, RY)
are the original spaces M{x,R) defined over the isodual isoreals RI(HI +49),
The ‘isodual isoaffine geometry” is then the geometry of isodual
vectorfields on MYx,R9).
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Recall in the conventional case that, given two contravariant vectors x; and
x3 on M(xR), their difference Ax = x)=x, is a contravariant vector iff the
transformation is linear (as well as local) [4]. Similarly, Ax is a contravariant
vector on M{x,R) iff the transformation is isolinear (as well as isolocal).

The first difference between affine and isoaffine spaces can be seen by
noting that coordinate differences which are not contravariant in the
conventional geometry can be turned into a contravariant form via a suitable
selection of the isotopic element.

The left and right modular isotransformations on M(x,R) are defined by

= xteat = xtTal T =Axx=aTx (5.5.1)

where t denotes conventional transpose. The inverse, right-modular
isotransformations are given by

X = A_1*§ = ATlT X, (5.5.2)

where A is the isoinverse, i.e., it verifies the isotopic rules Abea = ana™l =1
and T = T(x,X,..) = T, x..). Note the preservation of the isotopic element for
the ieft and inverse isotransformations which is ensured by the assumed
Hermiticity of the element T for Classes I and Il herein considered, and it is at
the very Toundations of the Lie-isotopic theory. Isoaffine spaces M(x,R) are then
isomodules for the isorepresentations of Lie-isotopic algebras, while the isodual
spaces v X, RY) are correct isodual isomodules for the isorepresentations of the
isodual algebras.

5.5B: Isocovariant differentials and their isoduals. Recall that the
conventional differentials dx’ and dx interconnected by the linear and local
transformations dx’ = Axdx cannot be defined under isotopies and must be lifted
into the isodifferentials dx and dx interconnected by the isotopic rules (5.5.5).

The isodifferential of a scalar ¢{x) on M(x,R) is then given by law (5.5.7);
the isodifferential of a contravariant isovector X = (X}{x)) on M(x,R) is given by
rule (5.5.8); the isofransformation Iaws of the contravariant isovector is rule
(5.5.9); and the isotransformations of a contravariant isotensor X1 of rank two on
M(x,R) is given by Eq.s (5.5.13).

By using these results, the isodifferential of a2 contravariant isovectorfield
on M(x,R) is given by

%)
av = X T* &% = (5.5.3)

oxk
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LI ax) X' & oL
= TEXT O + —7h — & + —

ax® axi ax axSs ax! axS

X" axs

By using the above quantities, one can introduce the isocovariant (or
isoabsolute) differential (10] )

DxJ = axi + P, X, ax), (5.5.4)

under the condition that it preserves the original axioms (see ref. [4], p. 68), ie.,
I D()_(j + Y!) = DXJ + DY, which can hold iff PJ is isolinear in X;
2)DX? is isolinear in @x5; and
3) DXJ transforms as a contravariant isovector. |
By again using Lovelock-Rund’s symbols with a “hat” to denote isotopy, we
can write

ox) = axi + rh]k ™ X T* @S, (5.5.5)

where the I''s are called the component of an isoaffine connection.
By lifting the conventional procedure, one can readily see that the
necessary and sufficient conditions for the n° quantities Fmsn to be the

coefficient of an isoaffine connection are given by

. ax" axd
P oM —1S X TR — TV, 8 =
mp st axW
Era m a2x]
=—T 05 T XD - - Ti' XTax5 +
axt ° P q oxS ax1
o o o' ot
F—T p— (TSt - 8 - — — X725, (5.5.)
ax! xS ax! x5

As in the conventional case, the I*s do not constitute a tensor of rank (1.2).
The extra terms in conditions (5.5.6), therefore, do not affect the consistency of
the isoaffine geometry, but constitute the desired generalization,

The extenston of the above notions to the isocontravariant derivatives is
evidently given by

L= AX. - S TIX T kP
f)X] axj I‘jnTs X T pax. (5.5.7)

As a result, the isocovariant derivative of scalar coincides with the
isodifferential, as in the conventional case, ie, D¢ = DX'X;) = d¢.
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The isoaffine connection is symmetric if Iy, = IS,. Also, the
isotopic image of a symmetric connection is symmetric in isospace. However, the
following property can be easily proved {but carries important consequences).

Proposition 5.5.1 [16,19} The isotopic image l“hjk of a symmetric affine
connection thk is not necessarily symmetry when projected in M{x,R).

The isotopic liftings of all remaining properties of covariant derivatives, as
well as the extension to the isocovariant differential of tensors, will be left for
brevity to the interested reader.

It is important to verify that the isocovariant (isoabsolute) differential
preserves the basic axioms of the conventional differential because this is a
necessary condition for consistency of the isotopies. In fact, we have the
following axioms which colncide at the abstract level with the conventional ones
{ref. [4], p. 74},

Axiom 1: The isocovariant differential of a constant is identically null;
that of a scalar coincides with the isodifferential: and that of a tensor of
rank (r.s) is a tensor of the same rank.

Axiom 2: The isocovariant differential of the sum of two tensors of the
same rank is the sum of the isoabsolute differentiais of the individual
tensors. And

Axiom 3: The isocovariant differential of the product of two tensors of
the sarne rank verifies the conventional chain rule of differentiation.

By following again the conventional formulation, and as a natural
generalization of the isocovariant differential, we introduced the isocovariant
derivative of a contravariant vector field XP [loc. cit.]

. axi j hr
Xlrk:= 'a?+rhkax' (5.5.8)

under which the isocovariant differential can be written

pX! = Xy ™ ae (5.5.9)
S

It is an instructive exercise for the interested reader to prove that the
isocovariant derivatives (5.5.9) constitute the components of a (t.1) isotensor. It is
also easy to verify that the isocovariant derivatives preserve the axioms of the
conventional covariant derivatives (ref. [4], p. 77):

Axiom 1°: The isocovariant derivative of a constant is identically null;
that of a scalar is equal to the conventional partial derivative; and that of
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an isotensor of rank Ir. s) is an isotensor of rank ir. s+1}

Axiom 2’: The isocovariant derivative of the sum of two tensors of the
same rank is the sum of the isocovariant derivatives of the individual
tensors. And

Axiom 3’: The isocovariant derivative of the product of two isotensors of
the same rank is that of the usual chain rule of partial derivatives.

It is easy to see that all the preceding notions admit a consistent and
significant image under isoduality. Intr:gumgly, the isodifferential of a
vectorfield does not change under isoduality d dxd - ax. Similarly, we have the
following isodual isocovariant differentials (see the 2-nd edition of Vol. I, ref. (47D

pdxdl = gdxdj 4 rdhjk rah der Tdksaxs = —ij, (5.5.10a}

dy . ady _ rds T dn P -
bex; = a%; - r jans X T9R, Ax ij. (5.5.100)
We therefore have the following important

Proposition 5.5.2 lloc. cit.l The isoaffine connection changes sign under
isoduality,

A

M
S - _1S
% = o (5.5.11)
The preservation of all basic axioms, although in their isodual form, is then
conseguential.

Axioms 1, 2, 3 and I', 2, 3 imply the most important result of this section,
which can be expressed via the following

Theorem 5.5.1 [16,19} All infinitely possible nonlinear, nonlocal and
noncanonical isoaffine geometries of Class I coincide with the
conventional affine geometry at the abstract, coordinate—free level, while
all the infinitely possible isodual isoaffine geometries of Class Il coincide
with the isodual affine geometry at the abstract level .

5.5C: Isocurvature, isotorsion and their isoduals. We now pass to the
study of a central notion of the isoaffine geometry, the generalized curvature,
cailed isocurvature, and generalized torsion, called isotorsion, which are
inherent in the isoaffine geometry prior to any introduction of an isometric (to
be done in the next section).

For this purpose, let us study the lack of commutativity of the isocovariant
derivatives on isoaffine spaces M{x,R) with respect to an arbitrary, not necessarily
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symmetric, isoconnection I 1. via a simple isotopy of the corresponding
equations (see ref. {4}, pp. 82-83), and by noting that

X =—a—0(1')+r~’-j"rp0{(})-r2p1‘q0(j) (5.5.12)
rhrk Bxk Th Pk ' q h hk'p TQ' -
one gets the expression
: ar2] ar2]
¥ -x - M 1K +
Infx  fkih axk axD

1 wm 2T _p2 1 —m Pys—o 2l 2l viTyj,
L R S RS S TR E TR U

_(]‘-2IJ — - M )X, (5.5.13)
hogk Tk b

Definition 5.5.2 [16,19} The “fsocurvature” of a vector field X* on an n-
dimensional iscaffine space M(x,R) is given by the isotensor of rank (1.3)

o) o} -
i Fh Ik j i m T
R) = - S0 PR LU R S A
Ik gk axP mk © r° Ih mh r Ik
.ot el
0 —=1 - i =1 (65.14)
axk rk b
while the “isotorsion” is given by the isotensor
=1 _ | S 1

The "isodual isocurvature” and “isodual isotorsion” are the opposite of the
corresponding isotopic quantities.

Expression (5.5.12) can then be written

i - i el Al 21 syl
X Ihik X tth R Ts X T T X s (5.5.16)

Comparison with the corresponding conventional expression (Eq.s (6.9), p.
83, ref. {4]) is instructive to understand the modification of the curvature as well
as of the torsion caused by the isotopic geometrization of interior physical
medfa. As we shall see, this modification is the desired feature to avoid
excessive approximations of physical reality, such as the admission of the
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perpetual motion within a physical environment which is inherent in all
rotationally invariant (torsionless) theories.

The extension of the results to a (0.2)-rank tensor is tedious but trivial,
yielding the expression

jl il i 1
X -X =R T X + Rl T X5 TS Xl {5.5.17)
Ihik fkfh rhk n'k Is

Similarly, for contravariant isovectors and isotensors one obtains the
expressions

- — Sy _a2 T m8§
Xitnrk ™ Xitkin = Ry T X~ Tnk T Xy (5.5.18a)
- = - 5 ~pT
called the isoricci identities.

The following first property is an easy derivation of definition (5.5.14).
Property 1

The second property requires some algebra, which can be derived via a
simple isotopy of the conventionat derivation (ref. [26] pp. 91-92).
Property 2:

. . _,.j . . i
Rk * R * Ridn =%ne * Fhan + Bdin*

+-;-j ™ -‘rs +:rherrs+kSI+

hk
s j aTr ja’rfS 5 Aja’rss
tRE TR 0 21 ) =1 e (5.5.20)

Th axk 1 rk ax h ri axh kK

where, again, the reader should note the isctopies of the conventional terms, plus
two new terms.

Note that, for a symmetric isoconnection, the isotorsion is null and the
above property reduces to the familiar form

Rink + Kol * K = © 5.5.21)

The third property identified in ref.s {16,19} also requires some tedious but
simple algebra given by an isotopy of the conventional derivation (ref. [4], pp. 92-
93), which results in

Property 3:
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1 1 1 =
(Rj h[p + K] kﬁh + K] phfk) Y]
= (Shrk TrS Kj]sp- * Skrp Trs Kjlsh M Skrh Trs l((j]sk) Y+
+ (Kjrhk TI' p + Kjrkp Tl'l“] + Kjrph T, l] ) Yl +

] T
called the isobianchi Jdentfty, and which can be written in a number of
equivalent forms here left to the interested reader (see an alternative expression
in the next section).

Again, as it was the case for property (5.5.20), the isobianchi identity for the
case of a symmetric isoconnection reduces to

Rl + k! + R} = 0 (5.5.23)
jhklp ~ Tyjkptk © Taphlk
The corresponding properties for isodual quantities can be easily derived.
This completes the identification of the primary properties of an isocurvature
tensor prior to the introduction of the isometric.

5.6: ISORIEMANNIAN GEOMETRY

5.6A: Statement of the problem. The isoriemannian geometry of Class V is the
most general possible geometry on a curved manifold possessing:

A) a nonlinear, nonlocal and nonlagrangian structure in the local
coordinates and their derivatives of arbitrary order;

B) “directly universality” for all possible interior gravitational problems; and

C) admitting the conventional Riemannian geometry and exterior
gravitation as a particular case when the isounits 1 recovers the conventional unit
I = diag. (1, 1, 1, 1} {physically, when motion returns to be in vacuum).

In this section we shall solely study some of the mathematical properties of
the new geometry for the specific case of Class I, with only basic elements for
the case of Class II. All physical applications are deferred to Ch. I1.8, while
experimental verifications are be studied in Vol. [{l.

The new geometry was proposed in memoir {16, developed in more details
in ref. [18,19] and applied to the generalization of Einstein's gravitation for the
interior problem in ref.s {20,21]. The only additional contributions on the new
geometry on record at this time (Spring 1993) are Lopez's [24] application to the
exterior problem and Kadeisvili's review [25],

Additional contributions in the field are those by Gasperini {32-34) who was
the first to study the isotopies of Einsteins gravitation and to introduce the
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notion of locally isopoincaré theory. However, Gasperini formulated his studies
on a conventional Riemannian geometry, while the primary emphasis of this
section is on the generalization of the Riemannian geometry. A review of
Gasperini studies is availabie in ref. [35].

EXTERIOR GRAVITATIONAL PROBLEM
RIEMANNIAN GEOMETRY

INTERIOR GRAVITATIONAL PROBLEM:
ISORIEMANNIAN GEOMETRY

FIGURE 5.6.1: A schemnatic view of the dual geometric treatment of gravitation
characterized by: A) the conventional Riemannian geometry on spaces ®{x,g,R)
assumed as exact for the exterior motion of dimensionless test body in vacuum; B)
the covering isoriemannian geometry on isospaces fA(x,g,R} for the interior
structural problem; C} under the general condition that the latter recovers the
former identically in vacuum, eg., for null density ﬂ("-é:miwo = Rix.g.R). As we
shall see in Ch. 1.7, despite the considerable enlargement of the scientific horizon,
the use of the isoriemannian geometry alone is still insufficient for the interior
problem because it is time-reversible, thus particularly suited for the "global”
treatment of the structure as a whole with conserved total quantities, The
complementary approach of Ch. 1.7 will then be the irreversible treatment of one
interior test body, while considering the rest of the system as external.

Also, Gasperini formulated his locally isopoincare studies everywhere in
~ space-time, thus reaching predictable restrictions from available exterior
experiments. On the contrary, in the studies herein considered, all generalized
geometrical and physical .theories are specifically formulated for the interior
problem only under Condition C} of recovering identically the conventional
formulations in the exterior problem.
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In this way all available experiments in gravitation have no bearing on the
interior isotopic treatment by construction. As we shall see in Yol. II, the test of
the isoriemannian geometry for the interior problem requires novel experiments,
that is, experiments which cannot be even formulated, let alone quantitatively
treated with the conventional Riemannian geometry.

The central technical objective [16] is the achievement of an axiom-
preserving generalization of the Riemannian geometry with an isometric g which,
besides being sufficiently smooth, bounded, real valued and symmetric, possesses
the most general possible dependence on ali needed quantities

ﬁij(s, X% %W T, ) = ﬁji(s, X %% LT, m ) (5.6.1)

as a prerrequisite to achieve the desired "direct universality” for the interior
gravitational problem.

5.6B: Isoriemannian spaces and their isoduals, To begin, let us perform
the transition from the n-dimensional isoaffine spaces M(x,R) of the preceding
.section, to the corresponding isospaces M(x,g,R} equipped with the symmetric
isotensor (5.6.1) on M{x,R), called isometric .

Similarly, we perform the transition from the isodual isoaffine spaces
M%x,RY) to the corresponding spaces MIxgIRY) equipped with the isodual
symmetric isotensor 9 = @),

Definition 5.6.1 {16,191 The “isotopic liftings” of Class I R(xgR) of a
conventional Riemannian space #(x,g,R) in n-dimension, called
“isoriemannian spaces”, are the isoaffine spaces M(x,R) in the same
dimension equipped with an isornetric

g =8s,x, % u 70,0 =T x%u 7ok, R geR (562

where T is the isotopic element of the underlying isofield R(f,+%), n= nl,
1 = T\, which characterizes a symmetric isoaffine connection, called
“isochrisoffell symbols of the first Kind”

A~

B, By Bk
al axk &l

as well as the "isochristoffel symbols of the second kind”
21 _ oaijel 2 g2

where the capability for an isometric of raising and lowering the indices is
understood (as in any affine space) and g = | §.J! 1 The
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“isoriemannian geometry” is the geometry of isospaces Hilx,g,R).
The “isodual isoriemannian isospaces” are then given by the isodual map
of isospaces H(x,g,R)

AXx g9RY), g9 =Tdg = -, RI~RYENY = (TU)I = -1, (565

with “isodual isochristoffe! symbols”

6§d &a 5
l‘d lhﬂ( = 5 ]l:] d :gklh - a:xd:]k 4) = = r‘lhlk (566&)
X X

21 ™ .0
\\{Q - 1‘*1hk = r2h (5.6.6b)

In essence, the above definition is centered on the requirement that the
alteration (also called “mutation” [loc. cit] glx) = Tis, x.%, &, |, T, n,..) glx) = g of
the original Riemannian metric g is characterized by the isotopic element T of
the base field and, thus of the base multiplication. The joint liftings g=g="Tg
and Rln,+x) = R{f,+¥, fi = nl, 1 = T°., leave the functional dependence of the
isometric totally unrestricted, thus verifying the fundamental pre-requisite for
"direct universality”.

The above new structures imply that the transformation theory of the
conventional Riemannian space must be lifted into the isotopic form of the
preceding sections. In turn, this ensures that the isoriernannian geometry is
isolinear, isolocal and isolagrangian (Sect. 4.2) on #(x,,R), although generally
nonlinear, nonlocal and nonlagrangian when projected on $t(x,gR).

On physical grounds, the isotopies #(x,g,R) = #(x,g,R) imply that we have
performed the transition from the exterior to the interior gravitational problem.
Throughout our analysis the reader should keep in mind that the isotopic
elements T {or isounit 1) assume their conventional unit vaiue I = diag. (1, 1, 1, 1)
everywhere in the exterior of the minimal surface S° encompassing all matter of
the interior problem, i.e., for null density y, in which case ﬂ(x,é,R)u=0 = RAx,g,R).

Note that each given Riemannian geometry can be subjected to an infinite
number of isotopic liftings which are expected to represent the. infinite number
of possible, different, interior physical media for each given total gravitational
mass. This is the reason for the use the plural in "isotopies”.

As indicated in Definition 5.6.1, the introduction of a metric on an affine
space implies the capability of raising and lowering the indices. The same
property evidently persists under isotopies. Given a contravariant isovector X! on
Alx,g,R), one can define its covariant form via the familiar rule

Xp =g;xl (5.6.7)
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Similar conventional rules apply for the lowering of the indices of all other
quantities.

It is easy to see that the inverse g’l is a bona-fide contravariant isotensor
of rank (2.0). Given a covariant isovector X; on f(x,gR), its contravariant form is
then defined by

X' = glUX; (5.6.8)

Rules (5.6.7) and (5.6.8) can then be used to raise or lower the indices of an
arbitrary isotensor of rank (r. s).

‘The first important property of the isoriemann geometry can be derived by
writing from Eq.s (5.6.3)

-~

9h
axk

Ogp) i

S I T AT | B IRPS S,
hik ™ Dbk Bppy T Ty nk  Ink

for which, hi
ghi rk = 0! g *k EO, (5-6.[0)

with similar results for the isodual isometrics. We reach in this way the following

Lemma 5.6.1 - Isoricci lemma (16,19} All isotopic liftings of Class I and
1T of the Riemannian geometry preserve the vanishing character of the
covariant derivative of the isomelrics.

In different terms, the familiar property of the Riemannian geometry
8ij| k= 0 is a true geometric axiom because it is invariant under all infinitely
possible isotopies. As shown below, this property-is not shared by all gravitational
quantities, such as Einstein’s tensor.

The isotransformation law of the isometric g is given by expression of type
(5.4.13). By repeating the conventional procedure (ref. [4], pp. 78-70) under isotopy,
one obtains the following expression for the isochristoffel symbol of the first
kind

r‘l = i( 4+
hlk axl ek ax!
2.1 S -~ ~T g m
. X ax ag. ox’ ox° ax
=§.p'rlr TP, — + P TJers(—h — 7
I axh ax ox ax™M ox axk ox
ax axS &M axT ax® ax™ aT’r ax’ ax° axs ax’
T TS T T T S S
axk ax] axh ax] axh axk ax ax” ax ax" ax
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aTJr axt 9k axS axl a'r]r axT 9% x® axT :
. (5.6.11)

— s ) -

s Ty
al axk axl  axk axl  axk axl axD ax axh

with a number of alternative formulations and simplifications, e.g., for diagonal
isotopic elements T, which are left to the interested reader for brevity.

5.6C: Basic identities. [n order to proceed with our review, we need the
following

Definition 5.6.2 lioc. cit.k Given an n-dimensional isoriemannian space
HxgR) of Class I, the “isocurvature tensor” is given by

are) ar2) - . Ié
; Ih I'k j i I r
R = - + P2 C M p2T - 2 ] o7 +
Th 5k axh mg - v Ih mh r 1k
.aT a1
S R A 12 i L (56.12)
axk Tk axh
and can be rewritten
ol oy B e, x| #m
‘ Ihk ax1< axl axh ax! axh axj axk ax]
s glP(r T 2% LRI qf el )
& o st in Tk T 1k
. aT AT,
ep2l —21% - 2] 1 (5.6.13)
axk Tk b
the “isoricci tensor” is given by
Ry = RI =glp (5.6.14)
= Py T B Ry

the “isoeinstein tensor” is given by
¢l = Ril' - 18lR; (5.6.15)
i i

and the “completed isoeinstein tensor” is given by

s) = Rij 1ok - 486, (5.6.16)
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where R is the “isocurvature isoscalar”
i i
R=R;= gJRi_, (5.6.17)
\;

and 8 is the “isotopic isoscalar”

__,.jh,‘]k 1 T 25 1 T 5 _
0=3"% (FrjkTsﬁr;lffrstlek)-
bk Dk
= M T e - g™, (556.18)

Isodual quantities are defined accordingly.

We are now equipped to review the isotopies of the various properties of

the Riemannian geometry [10,12] From definition (5.4.12) we readily obtain

Property 1: Antisymmetry of the last two indices of the isocurvature

tensor

The specialization of properties (3.22) to the case at hand easily implies the
following

Property 2: Vanishing of the totally antisymmetric part of the
isocurvature tensor

j j I

or, equivalently,

Rinnk * Pomi * R = © (56.21)

The use of property (5.6.19) and Lemma 5.6.1 then yields

Property 3: Aullﬁsymmetry in the first two indices of the
isocurvature tensor

or, equivalently,

Rine = Rovis (5.6.23)
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From Definition (5.6.12) and the use of Lemma 56.1, after tedious but
simple calculations, we obtain the following:

Property 3: Isobianchi Identity

j

i o ) _ el
Rinktp * R ph Tk plh Slhkp

3
j - ] s - ot
%& | S e ARG (7 AR
]
) (Tfs,hr,k— e P2+ o

' (5.6.24)

250+

23 _ qf 8

21 j J 0T T
ML Q1<1|‘p pIFk Fz (thrk klrh) € ll”h h455rag]
,- aT s 5.4.
Q'I( 1p = (TXI;-'[ I)TP' {5.6. 25b)

For isotopic liftings independent from the local coordinates (but dependent
on the velocities and other variables, as it is often the case for the characieristic
functions of interior physical media, isodifferential property (5.6.25) assumes the
simpler form

i +
R) hk [ p Rl ohik ¥ R/ (5.6.26)

The isobianchi identity can also be equivalently written in the general case

lkp[hg'

R (5.6.27)

. -+ R =
Runctp * Ripnte * Ruepin = Spup
where the $-termis that defined by Eq.s (5.6.26), with the reduced form for the
isotopies not dependent on the local coordinates (or constant)

R = . (5.6.28)

Rinktp * Ripntx * Rikptn

"We now consider the isotopic liftings of Freud identity which was
originally identified by Freud [36] in 1939, reviewed in details by Pauli (137, and
then forgotten for a long time by virtually all textbooks in gravitation. The
identity was “rediscovered” by Yilmaz [38] who brought it to the attention of this
author. The identity was then subjected to a mathematical study by Rund [39] (in
perhaps his last paper). In memoir [18] published jointly with Rund’s article [39],
this author followed Rund’s treatment, and reached the following property:
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Property 5: The isofreud identity

av.rkl'
ok 4ok = — 3, (5.6.29)
) i 1
ox
where Kl K 1 1 k
. _ A % ] -
V -**A‘&{g (ij‘zrs 8] r‘zrs)+
Al o2 -
(a‘ okr _ Sk ]r)r-z + gre jkr - gkr rzjlr ) (5.6.30a)
aG Im
K o .t 5 4. - 5K
0 4 3 3 ——& 1 5 JG), {5.6.30p)
. Tk
6=3g (12Pg 19,125, - 2P, T o 2%, (5.6.30¢)
G'kj = At ij' At = JE. (5.6.30d)

Rund's [39] reached the important result that the Freud identity holds for
all symmetric and nonsingular metrics on a (conventional) Riemannian space of
dimension higher than one. The same property evidently persist under isotopies.
Thus, Property 5 is automatically satisfied for ali symmetric and nonsingular
Isometrics on isoriemannian spaces of dimension higher than one. Despite this
inherent comnpatibility of the identity with the geometry, the Freud identity and
its isotopic image have important consequences in gravitation, e.g., for the vexing
problem of the source of the gravitational field in vacuum.

In fact, Yilmaz's [38] points out that the conventional Freud identity on a
Riemannian space raises the fundamental question, apparently still open to
debates at this writing, whether a sourceless gravitational theory in vacuum does
or does not verify all axioms of the Riemannian geometry.

We are now in a position to identify some of the first consequences of the
isoriemannian geometry. First, it is an instructive exercise for the reader
interested in acquiring a technical knowledge of the isotopies of the Riermannian
geometry to prove the following important property:

Lemma 5.6.2 [i9]: Einstein’s tensor GI R‘ - 48'.R does not preserve
under isotopies the vanishing value of IIS covanant ivergence (contracted
Bianchi identity)

i = ] P 1 . =
Gy|i = Rj[i — #84R}; =0, (5.6.31)

that is, the isoeinsteinian tensor (5.6.15) is such that
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i .
= 1. P I
Gty = Rypy &SJR“ ® 0, (5.6.32)
Therefore, Einstein’s tensor does not possess an axiomatically complete
structure.

This unexpected occurrence has rather deep connections with the Freud
identity, and implications for the identification of the correct theory of exterior
gravitation in vacuumn because it raises again the fundamental question, this tirne
from an independent viewpoint, of the geometric consistency of a sourceless
theory in vacuum.

It is interesting to note that the Freud identity is a true geometric axiom
of the Riemannian geometry in the sense that it persists under isotopies, while
the contracted Bianchi identity is not, evidently because not preserved by
isotopies.

These occurrences shift the emphasis, from the historically predominant
use of the contracted Bianchi identity, to the geometrically more rigorous Freud
identity with predictable important implications for the entire theory of
- -gravitation, both external and internal. ,

‘The following property can also be proved via tedious but simple
calculations from isodifferential property (5.6.25).

Lemma 5.6.3 (16,19} The completed isceinstein tensor does possess an
identically null isocovariant isodivergence, ie,

L (pl —usin s -
sj“—mj &sljR %8]-9)“ 0. (5.6.33)

called the “completed and contracted isobianchi identity”.

5.6.D: The fundamental theorem for interior isogravitation. As now
familiar, we have initially considered conventional gravitational theories on
Alx,g,R) which have null torsion, and have reached an infinite family of isotopies
all of which also have a nuli isotorsion on #(x,g,R) because of the axiom-
preserving character of the isotdpies. In fact, the original symmetric connection

hsk has been lifted into an infinite family of isoconnections which are also
symmetric

s, 123 _p28 _ S S _p2s o

However, the nuil value of torsion occurs at the level of isospace $i(x,3,R)
which is not the physical space of the experimenter, the latter remaining the
conventional space-time in vacuum (see for details ref. [20], Ch. V).

The physical issue whether or not the isotopies of Einstein's gravitation for
interior conditions have the non-null torsion required to avoid perpetual motion
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approximations, must therefore be inspected in the physical space and not in the
geometrical isospace. '

This can be done by projecting the isocovariant derivative of an isovector
on $i{xgR) in the ordinary space f{x.gR), i.e.,

XlTk = axk + rehik T r Xl' = " + r2r1k xr’ (56%6.)
2 l'ik = r2h mh (5.6.35b)

It is then evident that, starting with a symmetric isoconnection Fhik on
Alx,gR), the corresponding connection rrik on R(x,gR} is no longer necessarily
symmetric, and we have the following

Theorem 5.6.1 {18,195} The isotopic liftings I‘ghik = l“zh’k of a symmetric
connection r‘zhik on a Riemannian space Rx.gR) into an infinite family
of isotopic connections 2, on Isoriemannian spaces RxgR) of the
same dimension, imply that the isospace always possesses a null isotorsion,
but, when the isotopies are projected into the original space, a non—null
torsion generally occurs.

The above property was first reached by Gasperini in ref. [32-34] in the
language of conventional differential forms on a conventional Riemannian Space.
The geometrization of the property into a symmetric isotorsion was achieved by
the author in ref. [18].

Theorem 5.6.1 is physically fundamental inasmuch as it ensures the needed
structural differences for a realistic, quantitative representation of interior
trajectories. We are referring to a representation of the differences in the
trajectory of a test body frormn motion in vacuum with stable orbit (and thus null
torsion) to motion within a physical medium with an unstable trajectory (and,
therefore, non~null torsion, but null isotorsion).

Theorem 5.6.1 is also fundamental for our achievement of a geometric unit
between the exterior and interior problem which will be more evident later on in
this section. In fact, the instability of the interior trajectories is achieved via the
same geometric axiom (null torsion) of the exterior problem, although realized in
its most general possible isotopic form.

Finally, Theorem 5.6.1 necessarily requires two different, but compatible
theories: one for the exterior gravitational problem with null torsion, and one
for the interior gravitational problem with null isotorsion but non-null torsion .

The most important result of the analysis of this section can be expressed
via a repetition under isotopies of ref. [26] p. 313 and the Theorem of p. 321, with
the addition of the isofreud identity plus the completed Einstein's tensor (5.6.16),
lead to the following: :
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Theorem 5.6.2 ~Fundamental theorem for interior gravitation [18,19k
In a (3+1)-dimensional isoriemannian isospace of Ciass I, Rix§.R), the most

general possible isolagrangian equations

verifying the properties:
1) symmetric condition

gij = ¢t

2) the contracted isobianchi identity
il
E, =0
i

and 3) the isofreud identity

aV:k]

axl

are characterized by the isolagrangian principle 4

sh=sf L .5 .8 Tij.tjj)dx

ij " Cij, k" Tij, k1’

{5.6.36)

{5.6.37)

(5.6.38)

(5.6.39)

= 8fAHIA(R +6) + 24 +pF + Dldx = 0, (56.40)

where A, A, and p are constants,  is the isotopic generalization of
stress-energy tensor, T is an isotopic source tensor, R the isotopic
curvature scalar and © the isotopic scalar. For the case \ = p=1LA=0

and appropriate units, the isolagrange equations are given by

i is A.. A-- Ai. e
g¥ - RY - ig]]R - igué -3 -t¥ =

(5.6.41)

and can be written in terms of the compieted isoeinstein tensor

i j ii -~ i j .s.i i i-

$9 =" —ug’r+r =40 )

2 we are now in a position to clarify the meaning of “non-first-order-Lagrangians” in
interior gravitation. As now well known, the Lagrangians emerging under isotopies, when
projected in the original space, are of arbitrary order higher than the first, L= L{s, x, X, %

..). However, the isolagrange equations remain of the second-order, evidently because
they only depend on the second-order derivative of the isometric with respect to the local

coordinates.

(5.6.42)
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or, equivalently, in terms of the isoeinstein tensor
i ; ‘i' ii ij .. i
6= RY —4glR+ 3= T t” =40 - 40 5643l

The reformulation of the above theorem in terms of isointegrals (Sect. 6.7)
is an intriguing exercise for the interested reader.

The physical implications of the above theorem will be studied in Vol. I1.
Here were merely note the dual revision of conventional equations, one caused
by the isoscalar 6 and the other by the Freud identify which implies the
identifiocation

NiijE‘.instein = :rjj + . (5.6.44)

As we shall see in Yol. I, this turns the exterior "description” of the gravitational
field in vacuum into an interior theory on the origin of the gravitational field
wth numerous, rather intriguing and far reaching implications.

5.6E: Description of antimatter via the isodual isoriemannian
geomelry. We close this section with a brief study of the image of the
isoriemannian geometry under isodyality, including the isodual definition of
operations (such as fraction and derivatives) which can be expressed via the
following

Theorem 5.6.3 (20,21): The interior problem of antimatter verifies Theorem
5.6.2 under isoduality characterized by the following maps:

Basic unit 1 - 19= -7,

Isotopic element T - T=-T,

Isometric g=Tg - g9=-¢g,
Isoconnection coefficients Fan = MO0 = -y
Isocurvature tensor Rix = R = Ry
[soricci tensor Ry — Rdw, = -R,,,
[soricci scalar R - RS =R,
[soeinstein tensor G~ de, ~ Gy
[sotopic scalar 664 =9,

Compl. isoeinstein tensor S~ ?duv = =Sy
Electromagnetic potentials A, - A‘jlgi = -4,
Electromagnetic field w ™ = R,
Elm energy~mom. tensor T = T = =Ty,
Stress-energy tensor tw — ’wa = 1.

The proof of the above properties is simple but instructive. In particular, it
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can show the necessity of the use of the isodual spaces to reach negative energies.
In fact, in conventional Minkowski M(x,n,R) and Riemannian spaces #{x,g.R) the
electromagnetic potentials and fields do change sign for antiparticles, but the
energy-momentum tensor remains the same. The latter changes sign only when
computed in isodual Minkowski spaces Md(x,nd,Rd) and isodual Riemannian
spaces #%(x,g9 RY). These basic properties then persist when passing to the
covering isospaces Mix,7,R), ilx,3R) and their isoduals M3x,/4,RY) , /(xS RY).
The proof of Theorem 5.6.3 also shows that antimatter represented via the
isodual isoriemannian geometry evolves "backward in time”, as anticipated in
Sect. 5.1, with intriguing epistemnological conceptual and geometrical possibilities
for advances, eg., a theoretical conception of antigravity [43] studied in Yol. I1.

5.7: 1SOTOPIES OF PARALLEL TRANSPORT AND
GEODESIC MOTION

A geometrically consistent generalization of the Riemannian geometry and of
Einstein’s gravitation cannot be reached without consistent isotopic coverings of
conventional parallel transport and geodesic motion [4].

These generalized notions were introduced for the first time in memoir (18],
expanded in ref.s [18,19], applied to interior gravitation in ref. [20,21] under the
names of isoparallel transport and isogeodesic motion and reviewed in [25],

The new notions represent the maximal geometric achievements of the
isotopies. They can be stated in figurative terms by saying that “physical media
disappear under their isogeometrization”. In fact, as we shall see, the trajectories
of the iosoparallel transport and the isogeodesics coincide with the original
trajectories in vacuurmn when represented in isospaces.

Their knowledge is particularly important for hadronic mechanics. Recall
that the sections of the perfect sphere, i.e, the circles, are geodesics of the
rotational symmetry O(3). Isogeodesics are then important to understand that the
sections of the ellispoidically deformed charge distributions of hadrons, the
ellipses, are bona fide geodesics of the isorotational symmetry O(3) in isospace.

Since the times of Galileo Galilei and his experiments at the Pisa tower
(1609), we know that the free fall of a body in Earth’s gravitational field is
geodesic only in the absence of the resistive forces due to our atmosphere. It is
therefore well know that the trajectory of a test particle within a physical
medium is not geodesic, owing to the resistive forces. Qur isogeodesic then
permits an ultimate geometric unity of motion in vacuum and within physical
media which is the true foundation of the isorelativities of Vol. 1.

Moreover, it is also well known since Lagrange’s and Hamilton's times (see
the historical notes of ref. [20] that the forces between the body and the medium
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are of nonpotential type and, thus, of a type outside the representational
capabilities of the conventional, local-differential, Riemannian geometry. A fully
similar situation occurs for paraliel transport, thus implying the inapplicability of
the geometry itself for interior conditions.

Isoparallel transport and isogeodesic motions are crucial for a technical
understanding of the isctopic relativities and of their underlying form-invariant
description of physical laws via isosymmetries, because they complete the
abstract geometric unity between interior and exterior problems found at the
preceding levels in vector spaces, algebras, groups, etc.. In fact, parallel transport
and geodesic motion are reached in interior conditions via the same abstract
axioms of the cecrresponding quantities in vacuum, only realized in their most
general possible way.

To begin, let #(x,gR) be a conventional n-dimensional Riemannian space.
Under sufficient smoothness and regularity conditions hereon assumed, a vector
field X! on Rx.gR) is said to be parallel along a curve C if it satisfies the
differential equation along C (4]

C X' i
DX' = X1|de5=(—-—s— + r2r's XT}ax® = o, (5.7.1)
ax

where l“zrls is a symmetric connection. Then, by recalling the notions
isodifferential of Sect. 5.4, we have the following \’O

Definition 5.7.1 (16,19} An isovector field Xt o»’ an n-dimensional
isoriemannian space of Class I ${xgR) is said to be& soparallel’y a
curve C on Rx,g,R), iff it verified the isotopic equations along C

i . T Xi i T t. s
bX = X! " Tz af=[—+ fzr sT i %) XTT p(x, %.)1dxP=0(57.2
ax

i
where [ 2r 5 Is the symmetric isoconnection and T = (T'y) is the isotopic
element of the underlying isofield R0, +.%).

The identity of axioms (5.7.1) and (5.7.2] at the abstract level is evident,
again, because of the loss of all distinction hetween the right, modular,
associative product, say Xx, and its isotopic generalization X#x = XT(s, x, &, X, ...)x.

To understand the physical differences between the above two definitions,
let us consider the independent (invariant) parameter s, such that the isovector
field x = Qx/ds is tangent to C, and let X! = XXs). Consider the curve C at a
point P(l) for s =s; and let Xl(l) be the corresponding value of the isovector Tield
X! at P(1).

Consider now the transition from P{lI) to P(2), ie, from s to s; + ds. The

D
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corresponding transported value of the isovector field X/(2) = X¥(1) + aX! is said
to occur under an isoparallel displacement on R(x,3,R) in accordance with
Definition 5.7.1, iff

axd

: 5 i T S5
ax = — 1 a =—f‘2rsTpoTqaxq. - (573
ax

The iteration of the process up to a finite displacement is equivalent to the
solution of the integro-differential equation

i i 5 q
ax  aX ax i dx

- T — - ‘Fzrls Trp xP qu —_ (5.7.4)
ax ds ds

By integrating the above expression in the finite interval (s, $o), one reaches the
following property {expressed in terms of isointegrals of Sect. 6.7)

Lemma 5.7.1 [loc. cit} The isoparallel transport of an isovectorfieid Xi(s)
on an n-dimensional isoriemannian space R(x.gR) of Class I from the
point s, to a point Sy onacurve C verifies the isotopic laws

L m
X' = x’m—f{z M ) T ) X T 506038, 679

where

o ,
Rt - Rl = T axi= ) "—rh—as (576

The physical implications are pointed out by the fact that the
isotransported isovector does not start at the value XY 1), but at the modified
value X'(1) characterized by Eq.s (5.7.5), Additional evident modifications are
characterized by the isotopic connection 1"2!’5 and the two isotopic elements T of
the r.h.s. of Eq.s (57.5).

‘These departures from the conventional case can be better understood in a
flat isospace, via the following evident

Corollary 5.7.1A [Loc. cit.} In a fiat isospace, such as the isominkowski
space M(x,R) in (3.1}-space-time dimensions, or the isceuclidean space
E(r8R) in 3-dimension, the conventional notion of paralielism no longer
holds, in favor of the following flat isoparallelism

i - 2 X o ad .
1\ K- %) = f &= Tg—p"rp —a&  rl=0 G677
ax

9 as
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Consider, as an illustration, a straight line C in conventional Euclidean
space Rp¥E(r,8R), with only two space-components. Then a vector R(1) at s = 1) is
transported in a parallel way to R(2) at s = t, by keeping unchanged the
characteristic angles with the reference axis, i.e.,

) 2 5 aRKEM RN (r)
RKl) - Rk = [ &+ &2 (57.8)
I s ax2

Under isotopy, the situation is no longer that trivial. In fact, assurme the
simple diagonal isotopy

T = diag. (b, %), by2) > 0. (57.9)

Then Eq.s (5.7.5) yield into the form

k
~o R (D) aRK(r)
Rk@) - RN = [ A ——p 2 ar + b,20r) ar
L art or? (5.7.10)
ISOPARALLEL TRANSPORT

FIGURE 57.1: A schematic view of the isotopic representation of parallel transport
in isoriemannian space. Consider, say, a rocket under parallel transport in empty
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space, e.g., due to free fall toward Earth. When penetrating within physical media,
the same object is, first, twisted depending on its shape, and then moves along an
anomalous trajectory. The isoriemannian geometry permits the geometrization of
the latter motion via the isoparallel transport. Its understanding requires the
knowledge that the anomalous trajectory depicted in the figure occurs in our
space, while in isospace the object continues with exactly the same original
trajectory.

The irreducibility of the notion of isoparallel transport to the conventional
notion can be illustrated even in the case of null curvature, In fact, consider for
simplicity the isominkowski-space M{x,fi,R) with local coordinates x = Mg =1,
2, 3, 4, with constant diagonal isotopy

= Tn T = diag ()% b,2 bs% b2 > 0 (5.7.11)

and introduce the redefinitions 3 = buzx'l {no sum), XMx(x) = XHR).
Then Eq.s (5.7.5) become

2 aXM) %)
Il 1 [ —a ba26xa I 12 a‘“baz a" (5.7.12)
X X

in

namely, the isotopy persists even under the sirnplest possible constant isotopy
(5.7.11), thus conf irming the achievernent of a novel geoimetrical notion.

By submitting the conventional treatment {ref. [4] Sect. 3.7) to isotopies, one
can identify the integrability conditions for the existence of isoparallelism
result in the condition

i i
aX are -
= - —27 0 %Pt o2 4 XD
ax5 axt axt p q

]" y .
.20 oT 8% IR
s PxP - - 5 " F +
axt axt ax ax5
-

ir p.m ,n 1 PP
TR T T X w2 Py (5.7.13)
'Y " P " ms n rt ax
from which the following property holds.
Lemma 5.7.2 lloc. cit.t Necessary and sufficient conditions for the

existence of an isoparallel transport of an isovector X' on an n-
dimensional isoriemannian isospace R(x,g,R) are that all the following
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equations hold
i
) v5 o
Ring Ts X° =0, (5.7.14)
where Rripq is the isocurvature , Eq.5 (5.6.12)

The re~emergence of the isocurvature tensor as part of the integrability
conditions of isoparailel transport, can then be considered as a confirmation of
the achievernent of a novel geometrical notion.

We now pass to the isogeodesics motion . Let s be an invariant parameter
and consider the tangent x' = dx'/ds of the curve < on an n-dimensional
isoriemannian space R(x,g,R). its absolute isodifferential is given by

Dxf = axl + 12 Trp

In accordance with Definition 56.3, Dx! remains isoparallel along Ciff  Dxl
=0. We can therefore introduce the following

]
5F T qaxq. {5.7.15)

ISOGEODESIC MOTION

EUCLIDEAN, ISOEUCLIDEAN,
MINKOWSKIAN AND ’ ISOMINKOWSKIAN AND
REEMANNIAN ISORTEMANNIAN
GEODESIC , GEODESIC

FIGURE 5.7.1: The birth of the notion of geodesic motion can be seen in Galilei’s
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historicat conception of uniform motion in vacuum, i.e, via the celebrated Gatilei's
boosts

o=k ek Pk = Px + mvy, (1
which can be formulated in terms of the contemnporary modular action
Tk = ok 4 vk TVIpg = px + mv%. (2

As well known, Galilei established the above law by ignoring the friction due to the
air. Our studies essentially aim at the achievement of a geodesic characterization
of the motion of free objects within physical media in such a way as to preserve
the original axioms of the free motion in vacuum.

Stated in different terms, the understanding of the content of this chapter can
be reduced to the understanding that the irregular trajectory of this figure
describing the free fall of an objective under the resistive force due to the
atmosphere does indeed verify the same geodesic axioms of Galilei’s free fall in the
absence of the atmosphere. In fact, in isoeuclidean space it is a straight isoline
{Sect. 5.2), exactly as the trajectory in the absence of air, and a similar occurrence
holds for curved spaces.

The fundamental tool is provided by the isospaces. In fact, we represent the
transition from motion in vacuum to motion within a physical medium via the
transition from conventional Euclidean, Minkowskian or Riemannian space to the
corresponding isoeuclidean, isominkowskian and isoriemannian spaces,
respectively. By recalling that the conventional Spaces provide a geometrization of
the vacuum {empty space), one can then confirm the iscgecmetrization of interior
physical media of Sect.s 5.2 and 5.3. '

This yields the most general possible, nonlinear, nonlecal and noncanonical
generalization of laws (1} in £(r,3,%)

K=k 4 vk, P PR=Px + Mv° By AL T, p .0, {3)

and represented via the isotopic group action {(see ref. [20] for a detailed classical
treatment and Yol. II for the operator counterpart)

Tk = % & ok pk2 s pg = pgx + mvy By 2 (4)

where the B's are certain nonlinear-nonlocal functions computable from the
knowledge of the isounit.

The arbitrariness of the isounits, that is, of the B-function then illustrate the
“direct universality” of the isogalilean relativity for the form-invariant
description of interior trajectories. The preservation of the criginal Galilean axioms
can also be seen by nothing that isoboosts {4) form an isogroup (Sect. 4.5), eg., the
compasition of two successive Galilean boosts

TV TV = Thv® + v*), {5)
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is lifted into the isocomposition of two isoboosts
TV #Tv) = T + v, (6)

The abstract identity of the Galilean and isogalilean relativities then follows from
the manifest abstract identity of group {5) with its isotopic covering (6}, that is,
isogeodesics in isospace coincide with the original geodesics in vacuum. The same
result can be d:rectly reached via principle (5.7.17) which shows that, jointly with
the deformation bk a]ong the k-axis, the unit along the same axis is deformed of
the inverse amount bk

Definition 5.7.2 [loc. cit): The “isogeodesics” of an n-dimensional
isoriemannian manifold of Class I, f(x,g,R), are the solutions of the
differential equations

42 dxP dxd
___ +]"21(XXX)T (xxx)——'[‘s{x,)'(,.i.)—‘" =(.(57.16)
ds? ds d ds

Itisa simp]e but instructive exercise to prove the following

Lemma 5.7.2 [loc. citl The isogeodesics of an n-dimensional
isoriemannian space fx,g R} are the curves verifying the principle

5 f as - a]' g o ) adaxd1]t = o 57.17)

We discover in this way a new important role of the isometric essentially
similar to the corresponding role of conventional metric in geodesic motion. Also,
the appearance of the isometric in the variational principle characterizing
isogeodesic motion is a confirmation of the achievement of a novel geometry.

APPENDIX S.A: ELEMENTS OF THE SYMPLECTIC
GEOMETRY

In this appendix we shall outline the rudiments of the conventional symplectic
geometry from ref.s [3,4,6] in its local-differential, canonical as well as
BirkhofTian versions. The presentation wiil then result to be useful for reader not
familiar with the field, not only for the nonlocal-integral extension of this
chapter, but also for the isotopies of symplectic quantization of Vol. 11,

As done in Sect. 5.4, all quantities are assumed to verify the needed
continuity conditions, e.g., of being of Class ¢, and all neighborhoods of given
points are assumed to be star-shaped, or have a similar topology also ignored
hereon for brevity.
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Let M(R) be an n—dimensional manifold over the reals Rn,+x) . A tangent
vector X, at a point m € M(R) is a linear function defined in the neighborhood
of m with values in R satisfying the rules

Xmlaf +Bg) = aXpll) + X)), (5.A.1a)

Xmifg) = flm) X(g) + glm( X (1), {5.4.10)

for all f, g € C°(M), a, B, € R.

The fangent space T M at m is the vector space of all tangent vectors
at m. The tangent bundle is the 2n-dimensional space TM = Un TmM equipped
with a structure (see below). The cotangent bundle T*M is the dual of T™M given
by the space of all linear functional on TM also equipped with a structure,

Letx = {x!*") be a local chart in the neighborhood of m. Then it can
be shown that the ordered set dx forms a basis of T*M, while 8/0x forms a basis
of TM. An element 6 € T*M and x € TM can the be written in local coordinates

6 = gmax’, X = Xim)a/ax!, 542

6 is then called the canonical form. The cotangent bundle T*M equipped with 6
is at times denoted T*M,(R). The fundamental (canonicai) symplectic form s
then given by the two-form

w = dg, {5.4.3)

which is nowhere degenerated, exact and therefore closed; i.e., such that dw = 0.
The manifold T*M(R), when equipped with two-form w© becomes an (exact)
symplectic manifold T*M,(R} in canonical realization. The symplectic geometry
is the geometry of symplectic manifolds as characterized by exterior forms, Lie's
derivative, etc.

Let H be a function on T*M4{R) called the Hamiltonian. A vector-field X
on T*M(R) is called a Hamiltonian vector-field when it verifies the condition

XJw = -dH. (5.4.4)

The above equation provides a global, coordinate—free characterization of
the conventional Hamilton’s equations (those without external terms) for the case
of autonomous systems; ie., systems without an explicit dependent in the
independent variable (time t).

Finally, we recall that the Lie derivative of a vector-field Y with respect
to the vector field X on T*M(R) can be defined by
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LY = [XY] (5.A.5)
X

where [X, Y] is the canonical commutator. The case of nonautonomous systems
{those with an explicit dependence on time) requires the further extension to the
contact geometry (see, e.g, ref. [3]). However, the Lie content is contained in the
symplectic part of the geometry.

The Birkhoffian generalization of the above canonical geometry is
straightforward, and was worked out in ref.s [56). Introduce in the same
cotangent bundle T*M;(R) the most general possible one-form 8, called the
Birkhoffian or Pfaffian one-form . The Birkhoffian two-form is then given
by

{1 =de, (5.A6)

under the condition that it is nowhere degenerate. {1 is exact by construction and
therefore closed, that is, symplectic. The manifold T*M(R), when equipped with
the two-form (), becomes an exact, Birkhoffian, symplectic manifold T*M,(R).

Let B be another function on T*My(R) called the Birkhoffian. Then, a non—
Hamiltonian vector-field X on T*M,(R) is called a Birkhoffian vector—field when
it verifies the property

1o = -dB. ' (5.4.7)

which provides a global, coordinate—free charactenzatlon of Birkhoff’s equations
for autonomous systems.

Similarty, we recall that the Lie-isotopic derivative of a vector-field Y
with respect to a nonhamiltonian vector field X [5,6] can be written

Lg¥ = [X77] (5.A.8)

where the brackets are now Birkhoffian (see below for the explicit form).

The realization of the above global structures in local coordinates is
straightforward. Interpret the space M(R) as an Euclidean space E(r,8,R) with local
coordinates r = (rj), i= i, 2, .., n. Then, the cotangent bundle T*M becomes
T*E(r,8.R} with local coordinates (r,p} = (r;, p;), where p = dr/dt represents the
tangent vectors, and we ignore for simplicity of notation the distinction between
contravariant and covariant indices in Euclidean spaces (but not in the cotangent
bundle). The canonical one-form {5.A.2) then admits the local realization

6§ = pydr;. {5.A.9)

The Hamiltonian two—Torm (5.A.3) admits the realization
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w = d6 = dp; Adr;, (9.10)
from which one can easily verify that dw = 0. A vector-field can then be written
X = Ai(r,p) a/ary + B{rpla/op; (5.A.a)
Aydry + B;dp; = —dH, (5.A.h)

which can hold iff Hamilton'’s equations are verified, i.e.,

dr; oH dp; oH
—_——, —_— == — (5.A.12)
dt op; dt dr;
Finally, Lie’s derivative (5.A.4) admits the simple realization
ox oY oY X
LyY = [X)Y] = - : (5.A.13)

oy 9p;  er; p

where one recognizes in the commutator the familiar Poisson brackets.
The realization of the Birkhoffian generalization of the above structures
requires the introduction of the unified notation

a= (M ={ph={pp) p=12..2n, i=12.,n, (5.A.14)

where we preserve the distinction between contravariant and covariant indices.
The canonical one—form can then be rewritten

6 = R} da! = p;dr;, R = (p,0), (5.4.15)
and Hamiltonian two—form (5.A.10) becomes
w =40 = tq,, da Ada¥ = dp; Adry, (5.A.16)

where Wy is the covariant, canonical, symplectic tensor (5.A.15), i.e.,

oR® aR® 0 I
() = (—2- - —Fy . "ma o (5.A.17)
aat ] 8a¥ [nxn Oan

A vector-Tield can then be written
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X = Xu(a) o/ dat. (5.A.18)

The conditions for a Hamiltonian vector-field become

wpy XH daH = —dH, (5.A.19)
and can hold iff
3 8H o
X =X—= oY — (5.A.20)
aatt da¥ aat
where
V_ Ly pv
W = (logg T, (5.A.21)

namely, iff Hamilton's equations (5.A.12} hold, which in the unified notation can
be written

dH
a* = oV — (5.4.22)
oaV
Finally, Lie's derivative becomes
oX oY
LyY = XYl = — oV — (5.A.23)
aaM aa¥

The transition to the Birkhoffian realization [6] is now straight-forward
[5,6]. In fact, it merely requires the transition from the canonical quantities R%a)
= (p, 0} to arbitrary quantities Rla) on T*E{r,8,R) under which the Birkhoffian one-
Torm (5.A.5) assumes the realization
6 = R, da¥, (5.A.24)
while the Birkhoffian two~form (5.4.6) becomes

0 = de =10 @) da' Ada. (5.A.25)

where €}, is the (covariant) symplectic Birkhoff’s tensor
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3 oR
0, = T R (5.4.26)
datt oa¥

A Birkhoffian vector-field X can no longer be decomposed in the simple
form (5.A.11), but can be written

£ =xH 3/ day. (5.A.27)

The conditions for a vector—field X to be Birkhoff ian, Eq.s (5.A.7), then become

Rla=q, e = -, (5.4.28)
and they hold iff
3 B 2
X=H —=qgv . __ (5.A.29)
patt aa¥ agaM
where
Vo -
RV = (| agg-tyy, (5.A.30)

which can hold iff the autonomous Birkhoff’s equations hold, ie.,

aB(a)
=gt o oMYa) ——. {5.A.31)
aa¥

Stmilarly, the Lie-isotopic derivative (5.A.8) assumes the realization

% ot
Lef = R = — oV (5.4.32
gat aa¥

For additional aspects, the reader may consult reef. 6], the appendices of Ch. 4.
Note that an arbitrary vector-field X is not Hamiltonian in a given local
chart. A central result of ref. [6] can be reformulated as follows

Theorem 5.A.1 - Direct universality of the symplectic geometry for
local nonhamiltonian Newtonian systems [6: An arbitrary, local-
differential, nonhamilfonian, analytic and regular vector-field X on a
given chart on T*M,(r,R) always admits in a Star-shaped neighborhood of
the local variables a direct representation as a Birkhoffian vector-field,
ie, a representation via Birkhoff's equations directly in the chart
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considered.

The physical implications are as follows. When considering conservative—
potential systems of the exterior dynamical problem (Ch. 1.1), the vector—fields
are evidently Hamiltonian in the frame of the experimenter. However, when
considering the nonconservative systems of the interior dynamical problem, the
vector—fields are generally nonhamiltonian in the frame of the experimenter.

Now, under sufficient topological conditions, the Lie-Koening theorem
{see ref. [6} and quoted literature) ensures that a local-differential nonhamiltonian
vector-field can always be transformed into a Hamiltonian form under a suitable
change of coordinates.

However, since the original vector-field is nonhamiltonian by assumption,
the transformations must necessarily be noncanonical and nonlinear, thus
creating evident physical problems, e.g., conventional relativities become
inapplicable because turned into noninertial formulations.

This creates the need of the “direct representation” of the physical systems
considered; that is, their representation, first, in the frame of the experimenter, as
per Theorem 5.A.1. Once this basic task is achieved, then the judicious use of the
transformation theory may have some physical value.

Intriguingly, the identification of the Lie-Koening transformation a = a’
turning nonhamiltonian systems X{a) into Hamiltonian forms R{ala) = X(a),
implies the Birkhoffian representation of Theorem 5.A.1 in the a—frame of the
observer. In fact, Birkhoff’s equations (5.A.31} in the a-frame can be characterized
precisely via a noncanonical transformation a’ = a of Hamilton'’s equations
(5.A.22) in the a~frame, ie.,

aH(a’) o 3B(a)

w87 - = — o (- 1=0, (5.A.33a)
pat aal PO daP

Hiala)) = Bla), {5.4.33b)

(see ref. [6], p.130 for details). ‘

As an introduction to the covering isosymplectic geometry (Sect. 5.4), the
above canonical and Birkhoffian forms can be expressed in a yet more general
way. Consider again the original cotangent bundle T*M(R), and let

P = ([ = diag.{1,1,...0=T1"" (5.4.34)

be its unit. Then, the canonical one form (5.A.2) can be identically written in
terms of the factorization

6= =0xT : TN = TNI'M,"), (5.4.35
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8=08 =0xT : TM|° » TN, (5.A.35)

while the canonical two-form (5.A.3) becomes
=0 =d°={daxT +6dT° = wxT (5.A.36)

This implies that, in the realization T*E(r,8,R) of T*M(R) with local chart a =
{r, p), we can write

@y = Ty ogy, (5.A.37)

Then, its contravariant versionis exhibited in the Lie-tensor of the theory,

otV = gHar V. (5.A.38)

The transition to the isosymplectic geometry in Birkhoff-isotopic
realization is then performed by assuming that the isotopic element and unit are
no longer the trivial unit, but arbitrary integro—differential quantities.

In the latter generalization one central property persists: the transition
from the canonical to the Birkhoffian and Birkhoffian-isotopic formulations
requires noncanonical transformations. This is the geometric-analytic
counterpart of the corresponding algebraic property. In fact, the transition from
the classical (operator) formulation of Lie’s theory to its isotopic covering
necessarily requires noncanonical transformations (non unitary transformations)

the above results imply that quantum mechanics and its covering
hadronic mechanics are inequivalent because not interconnected by a unitary
transformations (see Vol. I for details). :

In closing we mention the so-called multisymplectic generalization of the
content of this appendix, as presented in the recent monograph by Sardanashvili
[42] and related jet manifolds which have intriguing possibilities for further
isotopic formulation and application to interior dynamical problems.

APPENDIX 5B: GRAVITATION IN ISOMINKOWSKIAN SPACE

Isotopic techniques permit novel approaches to gravitation, i.e., approaches not
permitted by conventional Riemannian methods. One of them is the equivalent
study of gravitation on a flat geometry.

This approach is not a mere mathematical curiosity, but resolves a rather
old problematic aspect of current gravitational theories: the absence of weight in
relativistic theories. Consider a test body experiencing a gravitational field at a
Space-time point x in a Riemannian space #(x,g,R). As well known [10,11,37],
gravitation is entirely represented by the curvature in current theories, i.e., by
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the metric g{x) (for null total charge). In passing at the tangent Minkowski space
M(x,n,R} at the same point x, all gravitational effects disappear (equivalence
principle), which is contrary to experimental evidence [21). Weight is preserved in
current theories in Tlat spaces, but only in the limit into the Euclidean space.

In the physical reality, weight is present irrespective of our treatment,
whether nonrelativistic, refativistic or gravitational. Any consistent treatment of
gravitation must therefore have a well defined Minkowskian counterpart.

The above problematic aspect of current theories is resclved by the
isotopies because of the geometric equivalence between the Riemannian and
isominkowskian spaces of Sect. 3.7,

AlxgR) ~ RAixgR = MxRR) ~ MxnR), (5.B.1a)

gy = Tn =% 1 =[TI". (5.b.1b)

where 1 (T) is called the gravitational isounit (isotopic element).

In fact, all gravitational theories admit the decomposition g = Tn with T >
0 as a necessary condition to be locally Minkowskian. Then 1 > 0 and the
equivalence chain (5.B.1a) follows.

Current gravitational theories are formulated in a curved space with
metric g{x} with respect to the conventional unit | = diag. (I, 1, 1, 1). Isotopic
theories permit the treatment of exactly the same metric glx) = 7i(x} although
referred to the gravitational isounit1 in the isominkowskian space M{x,i,R).

Note that curvature is entirely contained in the isotopic element T(x) of
decomposition glx) = T{xin. The isominkowskian treatment therefore implies the
study of the curvature via g = Tr at x, while assuming at the same point x an
isounit which is the “inverse of the curvature’, 1x) = [T(x)]"}. This is precisely the
mechanism that renders the treatment of gravitation locally flat or, more
technically in our terrninology, locally isoflat.

It is an instructive exercise for the interested reader to reconstruct in
M(x,7,R) all properties of the Riemannian geometry, including Ricci lemma,
Einstein’s tensor, field equations, etc. One can therefore see in this way that all
the results on Rix,g,R) equally hold on Mix,i,R).

Besides resolving the problematic aspect of the "disappearance of weight”
at the tangent Minkowski space, isotopic methods permit a novel approach to
gravitational singularities, which now become the singularities of the isounit,

TX) > 0, Hx) = o0, (5.8.2)
or the singularities of the isotopic elernent,

Ti) — oo, ) - 0. (5:b.3)
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As an example, the celebrated Schwartzchild’s line element in spherical
polar coordinates admits the isotopic factorization into

T = diag. ({1 - 2M/17L, 12 2 sin%, (1 - 2M/1) ) . (5.B.4)

where one should keep in mind our ordering (+, +, +, ). We then have the
following

Proposition 5.B.1 (21} The Schwartzchild's singularity at the horizon r =
2M is a zero of the isounit, while its singularity at the origin r = 0 is a zero
of the isotopic element.

The reader should be aware that the above novel perspectives on
gravitational collapse are studied merely as a basis for the intended studies, their
treatment via the interior nonlocal isoriemannian geometries. In fact, the
equivalence chain (5.B.1a) can also be formulated at the f ully isotopic level of
Class [

RIxgR} ~ MxHR), {5.B.5a)

It

g=TEex%%LTn.Jek = T %% w10, .00 (5.B.5b)

As a result, gravitational singularities on the horizon are the zeros of the general
isotopic element of the isoriemannian geometry

TS % %, %10, 7,0, ...) =0, (5.B.6)
while the singularities at the origin ate the zeros of the ispunit
s, x, %, &, 1, 7un, ...) = 0. (5B.7)

As a matter of fact, the latter reformulation is done precisely to study the
contributions to singularities expected from nonlinear-nonlocal-nonlagrangian
interior effects.

The broadening of the scientific horizon from Eg.s (5.B.2)-{5.B.3) to (5.B.6)-
{5.B.7) )is evident, as we illustrate in more detail in Vol. I] and I1I.
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6: FUNCTIONAL ISOANALYSIS
6.1: STATEMENT OF THE PROBLEM

The transition from Newtonian to quantum mechanics implies the preservation
of the basic mathematical notions such ash numbers, angles, metric spaces,
special functions, etc., and only the reformulation of observable on a Hilbert
T space.

The transition from quantum to hadronic mechanics is much deeper
because it requires a suitable generalization of all basic mathematical notions of
quantum mechanics, beginning with numbers, angles, metric spaces, special
functions, etc., and then passing to a generalization of Hilbert spaces themselves.

The above occurrence can be expressed by the fact that functional
analysis remained unchanged in the transition from classical to quantum
mechanics. On the contrary, the transition from quantum to hadronic
mechanics requires a structural generalization of functional analysis into a new
discipline called "functional iscanalysis”.

The need for an isotopic lifting of numbers, angles and trigonometric
functions has been indicated earlier in this volume, jointly with that for the
generalization of other ordinary functions, such as exponentiation, hyperbolic
functions, logarithm, etc. The need for a lifting of special functions is then
consequential, as studied in this chapter.

Let us identify here the need for lifting Hilbert spaces themselves. As
recalled earlier, hadronic mechanics was originally submitted [1] in 1978 as an
isoassociative enveloping algebra & (Sect. 4.3/*3 of operators A, B, ... with
isotopic product

Er = A*B:= ATB 1 =T 6.1.1)

on a conventional Hilbert space 3 with elements ¢, ¢ , ... with familiar inner

43 por clarity due to the subsequent analysis, in this chapter we shall identify with a
subscript the isotopic element of a given structure, such as in £ .
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product
X: <glo> = f & o0 o) € Cle+ . {6.1.2)

which is indeed a mathematically correct formulation.

However, this original formulation had the physical problematic aspect that
operators of the criginal envelope & which are Hermitean on IC did not remain
necessarily Hermitean under lif ting £ - ET- This is due to the fact that, as we
shall see in this chapter, the condition of Hermiticity of an operator H € Eron 3
is given by

H = 1 71, (6.1.3)

where HT is the conventional Hermiticity. Since the operators T and H do not
necessarily commute, we have in general that H = H.

This implied that observable of quantum mechanics, such as the total
energy H, the linear momentum p, etc., do not necessarily remain observable
under under isotopies £ ~ &1 over 3.

This clearly called for an appropriate generalization of the underlying
Hilbert space 3C in such a way to preserve observability under isotopies. These
studies were initiated by this author immediately after proposal [1], e.g., in ref. [2]
of 1979. The resolution of the problem received a first rigorous treatment by
Myung and Santilli in ref. [3] of 1983 via the introduction of the notion of
isotopic Hilbert space JCT or isohilbert space for short, which is essentially the
irnage of 3C under the lifting of the composition

Xr: <@lo> = <PIT[d>1 = <|*[d>1 =
=1 f & glo) Tt 1 1 1, L) M) e Qe+, (6.1.4)

where, as one can see, the assumption of the positive—definiteness of the isounit
(Class I) implies the preservation of the inner character of the composition and,
thus, of the Hilbert character of the space X.

Isohilbert space (6.1.4) did indeed achieve the desired objective because, as
we shall see better in this chapter, the condition of Hermiticity of an operator H €
& on X1 coincides with the conventional Hermiticity,

H = df, (6.1.5)
thus permitting the preservation of Hermiticity under isotopies.

The importance of this result should be indicated for readers not f amiliar
with isotopic techniques. A centra! objective of hadronic mechanics is to
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complement conventional gquantum mechanical descriptions of interacting
particles at large mutual distances ( » 1 fm), with additional internal, short range,
nonlinear-nonlocal-nonhamiltonian interactions when in conditions of mutual
penetration of their wavepackets at very short distances ( < 1 fm) (see Fig. 1.1.1.1)

This implies that the operators such as the energy H=K + ¥V of the
particle in exterior conditions does not change in the transition to the condition
OT total mutual immersion of the particles considered because the additional
interactions have no potential by conception. Still in turn, this implies that a
necessary condition for the physical consistency of the isotopies is the
preservation of the <observability> of the original energy H, ie, the
preservation of its Hermiticity.

Thus, ref. [3] identified the fundamental carrier space of (the Lie-isotopic
branch of) hadronic mechanics, the space 3 , which fulfills the fundamental
task of preserving the observability of conventional physical quantities. However,
the lifting 3C - 3Cp implies a structural revision of the conventional Hilbert space
theory into five classes, as we shall see.

The subsequent studies by Mignant, Myung and Santilli [4] of 1983 indicated
that formulation (6.1.4) is still restrictive because the enveloping isoassociative
algebra (6.1.1) could be consistently formulated also in the different isospace

Hg: <dlo> @ <§[Gld>1 = <P|o]dp>1 =
= 1 Srd@atnr n )60 € Gers), (6.1.6)

where G is an operator independent of T. The lifting 3CT = JCG implies again the
general loss of Hermiticity because, as we shall see in details in this chapter, the
condition of Hermiticity of an operator H € &1 on 2 is given by

H = g ltalgr!, 6.1.7)

which includes as particular case condition {6.1.3).

Subsequent studies indicated that, despite the general loss of the original
Hermiticity, the Tormulation of hadronic mechanics via isoenvelopes Er on the
isohilbert space JCG with T # G is important in certain specific cases in which the
formulation on JCT is not sufficient. In Tact, the introduction of an isotopic
element G in the Hilbert space different than T represents an additional “hidden
degree of freedom” of the theory.

The motivations are linked to the reconstruction of exact Lie syminetries
at the isotopic level of hadronic mechanics when believed to be broken at the
simpler quantum mechanical level. The use of only one isotopic element T for
both the envelope and the Hilbert space is sufficient for the reconstruction of the
€xact symmetry in a number of cases, such as the reconstruction of the exact
rotational symmetry when believed to be broken by eilipsoidical deformations of
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the sphere [5-7], the reconstruction of the exact Lorentz symmetry when believed
to be broken by signature-preserving deformations of the Minkowski metric (8},
the reconstruction of the exact isospin symmelry in nuclear physics with equal
proton and neutron masses in isospace, and others.

However, there exist cases in which one sole degree of freedom is
insufficient, and two different isotopic elements T and G are needed. This is the
case for the ongoing attempts (see the initial effort [9] studied in more detai] in
Vol. i1} to reconstruct parity at the isotopic level as an exact symmetry for
“weak” interactions via the embedding of all symmetry breaking terms in the
isotopic elements. . .

The technical issue is the identification of which isotopic element should
incorporate all symmetry violating terms. Recall from Sect. [.4.5 that in the
lifting of continuous symmetries we have the appearance of the isotopic element
T in the "isoexponentiation. Thus, the embedding of the symmetry breaking
terms in the isotopic element T of the isoenvelope &t and isofields Py is
generally sufficient for the reconstruction of exact “continuous” Symimetries.

The case for discrete transformation is different because they admit no
isoexponentiation, and actually admit the reduction to the corresponding
conventional transformations (Sect. 1.4.7), e.g.,

Teglr) = wyln) = ¢ -n), fo=uT!, (6.1.8)

The general insuffiency of the isotopic element T is then evident, As a result, the
reconstruction of exact “discrete” symmetries generaily requires the embedding
of the symmetry breaking terms in both the isotopic element T of the
isoenvelopes E¢ and of the isofield F1 as well as in the isotopic element G of
the isohilbert space X.

In summary, the part of functional isoanalysis dealing with isohilbert
spaces implies a rather broad lifting of conventional quantum mechanical
formulations consisting of a double generalization, the first via the same isotopic
element of the envelope and the second based on the differentiation between the
isotopy of the envelope and that of the Hilbert space.

We now pass to a few comments on the lifting of the remaining aspects of
functional analysis. Recall that the first step that lead to hadronic mechanics was
the isotopy of the Poincaré-Birkhoff-Witt theorem resulting in a generalized
notion of eponentiation (Sect. 1.4.3.I1t was then known since the original proposal
[i] that the isotopies of the enveloping operator algebra, £ » &5, imply a
generalization of all familiar structures of quantum mechanics such as Dirac’s 5-
function, the Fourier transforms, Gauss distributions, etc.

A first formulation of the isotopic §-function appeared in ref. (3] while its
systematic study was presented in memoirs [10,11], jointly with the first
formulations of the isotopies of Fourier series and transforms isotopies studied in
this chapter.



— 265 -

The full implications of these studies for conventional functional analysis
(see, e.g, ref.s [12-13] and quoted references) was however identified only recently
by Kadeisvilt [14] who understood that the isotopies of fields Fla,+x) — Frid,+x),
enveloping algebras & — ¥r and Hilbert spaces 3 — X1 imply a nontrivial,
nonlinear-nonlocal-noncanonical isotopic generalization of the totality of
functional analysis, that is, not only of square integral, Banach, Hilbert and other
spaces, but also of conventional special polynomials (such as the Legendre
polynomial), special functions (such as Bessel and Legendre functions),
transforms (such as Fourier and Laplace transform), etc. In fact, the terms
“functional isoanalysis” appeared for the first time in ref. [14].

The mathematical relevance of these isotopies will be evident during the
analysis of this chapter. Their physical relevance can be best illustrated with the
fact that, in the subsequent paper [15], Kadeisvili reinspected the isotopies of the
Fourier transforms of ref. [10] and discovered that they imply a necessary
generalization of Heisenberg's uncertainties precisely into the form submitted by
this author [16} back in 1981

Ax Ak 2 1<1>, (6.1.9)
where 1 is the isounit and < .... > is a certain form of the expectation value to be
studied in Vol. 1L

In fact, Kadeisvili [15] showed that the Fourier isotransform, when applied
to a Gaussian distribution, implies the map (in term of the isoexponentiation of
Sect. 1.4.3)

-x%/2a_  ~x2T 242
= =

-k2a272 -x2Ta%2
Plx) = e ex =

ok} = ex € {6.1.10)
as a result of which we have the isotopic behaviour
Ax ~a/TH, Ak =~ 1/7aTi, 6.1.11)

yielding precisely isouncertainties (6.1.9).

We reach in this way the first illustration of the fact that the isotopies
imply such a generalization of the mathematical structure of quantum
mechanics for the exterior problem in vacuum to result in fundamentally more
general physical laws for the interior problem.

-For future need in Ch. 1.7, note the uniqueness of the generalizations
originating from the uniqueness of the exponentiation (Sect. [.4.3).

It should be indicated that a number of other generalizations of functional
analysis have been initiated, most notably that of the so-called g-special
functions, as outlined in App. 6.B. These generalizations are different than those
needed for hadronic mechanics for numerous reasons, such as:

A} the g-special functions are deformations preserving the original unit
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while in hadronic mechanics, as now familiar, we have deformations under the
joint lifting of the unit;

B) q-deformations are g-number deformations, while hadronic mechanics
requires Q-operator deformations;

C) g-deformations are defined on an ordinary space, while the Q-operator
deformations are defined on an isospace;
and others. Despite these differences, the interconnection between g-number
special functions and the isotopic ones is intriguing and deserving attention. The
relationship between g-deformations and hadronic mechanics is studied in App.
[.7.A.

In this chapter we presenting the rudiments of functional isoanalysis with
the understanding that this discipline too is at its first infancy and so much
remains to be done. Also, a number of additional aspects, such as special
isofunctions needed for specific applications, will be worked out in Vol.s I and
IIL

6.2: ISOHILBERT SPACES AND THEIR ISODUALS

It is significant for this chapter to recall that functional analysis (see, e.g., ref.s
[12,13) was born and developed primarily because of specific physical
motivations, rather than abstract mathematical needs.

In fact, the French mathematician J. B. J. Fourier identified his celebrated
series and transforms during his study on heat conduction; Freedholm worked
on integral equations because of specific problems in classical electromagnetism;
von Neumann conducted most of his studies on operator algebras because of
specific physical needs; not to mention the fundamental physical role of Hilbert
studies in quanturmn mechanics.

It is intriguing to note that, much along the same lines, the new discipline
of functional isoanalysis , was also born out, specifically, of physicai problems,
given this time by the author’s studies of nonlinear, nonlocal and noncanonical
systems of the interior dynamical problem.

Conventional functional analysis can be seen as the discipline which is and
will remain fundamental for the exterior dynamical probiem of particles in
vacuum (see Sect. 1.1), while functional isoanalysis is a covering discipline
specifically conceived for the more general interior dynamical problem of
extended particies moving within physical media.

Despite its rather vast current dimension, contemporary functional analysis
remains based on conventional notions, such as conventional fields, conventional
vector spaces, conventional operations, etc. It is then inevitable that the isotopic
generalizations of these structural foundations imply the existence of a
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consequential, corresponding generalization of the entire theory.

It is also significant to note that functional isoanalysis was born and
completely developed in physical publications until very recently. In fact, -
Kadeisvili papers [14,15] are the first papers appeared very recently in a
mathematical Journal, to the author’s best knowledge.

The foundations of functional iscanalysis are those reviewed in the
preceding chapters, and consist of the isotopies of fields, vector spaces,
transformation theory, algebras, groups, geometries, etc. This section is solely
devoted to the isotopies of Hilbert spaces, while additional aspects will be studied
in the following sections.

The Tirst notion of isoanalysis is the isofield fa,+*) with isonumbers & =
al, conventional sum +, isoproduct * = xTx, and isounit 1 = T~L. For simplicity, we
shall restrict F to have isocharacteristic zero and to represent the isofields of real
isonumbers R(f,**) and of complex isonumbers C(¢,+*). More general
formulations of isoanalysis on isoquaternions are left to the interested reader.*4

The second fundamental notion is a generic, finite-dimensional vector
isospace 8(x,C) on the isofield C. The abstract identity of C{&+%) and Clc,+) and
that of 8(x,C) and S(x,C) should be kept in mind to anticipate that functional
isoanalysis coincides with the conventional formulation at the abstract ievel by
construction {although only for the case of isounits of Class I, see below).

Recall that conventional complex numbers ¢ can be reinterpreted as being
complex isonumbers under the isotopy of the multiplication. Along similar lines,
a conventional function f(x) on $(x,C} can be reinterpreted as being a function on
8(x,8). In fact, it is not the value of the function f{x) which identifies the
distinction between S{x,C) and $(x,0), but rather the operations on it.

Finally, the reader should recall that the isotopies automatically generalize
a linear, local and canonical theory into an axiom-preserving, nonlinear, nonlocal
and noncanonical form because of the arbitrary functional dependence of the
isounit 1 =11, x, %, %, ¥, ¢1, b, dt, ...

The first isotopic operation among functions on 8(x,C) is the isoscalar
product  (or isoproduct for short) of two functions f{x) and f,(x), which is
given by

It o= 1) Glx, ) k) e 8ix0), 6.21)

where the isotopic element G is fixed, and different than T.
The isoinner product of two functions fj(x) and f{x) on 8(x,C} is the
composition with elements in C introduced in ref. (3%

43 It should be recalled that, on strict mathematical grounds, even the formulation on
isocomplex numbers is inessential owing to the unification of all numbers and
isonumbers in the abstract f _ie!d of isoreals (Sect. 2.7).

45 1t should be indicated that, as shown in Sect. 6.7, the measure dx is lifted into the form
dx = dx). However, forl independent of x, we have [ax *T|(xkfox} = [dx T;{x),{x).
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0:0) o= J Pax6 = f LS xT0 0 k) € e, 622

where T denotes ordinary complex conjugation and Clc,+,*) is the isofield of
Proposition 2.3.1 (that without the lifting of the numbers in which case the isounit
must necessarily be an element of the original field).

The above foundations then imply the lifting of the conventional quantity
| £(x}{ into the isoabsolute value [(x)] characterized by

1012 = (TR G101 =( TWo )1, (6.2.3)
and given by
M = (Fari 1 = (Tor)ix1, (6.2.4)

where 1 is a conventional square root, The isonorm [TTx) ] of a function f(x) is
then defined by the elemnent of the isoreals

60712 = 0701 =1 [ "ax TG0 e R, (623

and given by
I 1= 071} = (1,10 %1 . (6.26)

It should be indicated from the outset that the above definitions are not
unique, owing to the degrees of freedom of the isotopies. In fact, one can
consider the maps

f = T=f1€e3&L, c—&=clell+y, (6.2.7)
in which case we have the map of the isoproduct
NG = TGl =11G611 =11, (6.2.8)
with corresponding definitions for isoabsolute value
[H0] = (T r1)%1, (6.2.9)
isoinner product
€00 o= 1 Cex T 01D € R, 6.2.10)

and isonorm
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ITre) ] == @71 = (1,104, 6.2.11)

The transition from the preceding formulation in terms of ordinary
numbers and functions to the latter one was introduced by the author in ref. [10]
for the particular case of T = G under the name of reciprocity transformation
because based on the replacement

T-1, 1-1h 6.2.12)

the case T # G being a simple generalization. The formulation on isocomplex
numbers C(C,+*} is that primarily used in physics because it implies that the
isotopic eigenvalues are the conventional ones (see below in this section), although
both formulations emerge rather naturally, e.g., in the lifting of Dirac delta-
function (see Sect. 6.4).

Needless to say, maps (6.2.7) are, by far, nonunique and a number of
additional maps implying nontrivial alterations of the isoproduct are possible.
Nevertheless the above two alternatives are sufficiently to identify the
foundations of isoanalysis.

From these rudimentary notions it is sufficient to see the need to use again
Kadeisvili classification:

Primary classification: based on the characteristics of the
isounit (Sect. 1.5

Class I: Functional isoanalysis properly speaking;

Class II: Isodual functional isoanalysis ;

Class I11: Indefinite functional isoanalysis ;

Class IV: Singular functional isoanalysis ;

Class V: General functional isoanalysis .

Secondary classification: based on the assumed realization of
isofields and isovector spaces
Subclass A: characterized by Fa,+#) and 8x.F), ie., isofields whose
elements are ordinary numbers and with ordinary functions f(x) on
8ix,F).
Subclass B: characterized by Fa,+*) and 3x,1), i.e, isofields with
elements elements a =al and with isofunctions T{x) = f{x)1 on $(x,£).

By no means the above classification is complete. In fact, a further
structural generalization is that suggested by the more general, one-sided, Lie-
admissible formulations of the next chapter. Nevertheless, the above
classification is sufficient to identify the new discipline and initiate its
systematic study.

A Tirst purpose of the above classification is to separate the axiom-
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preserving liftings from the more general ones. As an example, an “inner” product
remains inner for Classes I, but not necessarily for Class I11.

The mathematician can now see the novel concepts implied by isoanalysis,
such as [10} negative-definite composition {(Class I1) functional analysis based on
a singular isounit (Class 1V}, isohilbert space whose unit is a lattice, or a
distribution (Class V), etc.

Note that the isoinner product is invariant under isoduality,

(), fp =10 fab dx T)(x) 19 15fx) efab dx T1x) 1) . (6.2.13)

However, one should recall that positive numbers are negative when referred to
isodual fields, evidently because their unit is negative—definite. This point is
clarified below when studying the isodual isohilbert spaces.

From now on, unless otherwise stated, we shall study in this section only
the isoanalysis of Class 1A, and IB, and their isoduals 1A and IIB. The study of the
remaining classes must be deferred for brevity to the individual researcher.

Let us consider first Class [A. The problem of isocontinuity , that is,
-continuity on an isospace, was first studied by Kadeisvili in ref. [14] via the
Isocontinuity of a function f(x) at a point x € 8(x.F) , which occurs when | [1(x) [|
= 0 implies [ f{x + €) - £{x) [ 0.

Note that all conventionally continuous functions are also isocontinuous
for Class 1A, although the viceversa is not necessarily true under relaxed
properties of the isounits. As a matter of fact, functions that are conventionally
discontinuous can be turned into isocontinuous forms via suitable selection of
the isounit,

The isoschwartz inequality , introduced in ref. (3] for the case T = G, is
given by the simple isotopy of the conventional expression

TRt = Inleift, (6.2.14)

and its validity (again, for Class I) can be easily proved.
A function f(x} on 8(x.C) is said to be isosquare integrable [14] in the
interval [a, bl when the integral

f abdx 2 =1 ab dx ) G lx), (6.2.15)

exists and is finite. The set of all isosquare integrable functions in la, b} will be
denoted with .E(Z)la,b]. One can now begin to see some of the novel applications of
isoanalysis. In fact, a function which is not square integrable in a given interval,
can be turned into an isosquare integrable form via a suitable selection of the
isotopic element with evident computational advantages (see below for an
example).
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A sequence T, fy, ... is said to be strongly isoconvergent to f when
Lim oo [[ T -] = 0 (6.2.16)

with a similar definition holding for series. Again, for Class [A, strong
convergence implies the strong isoconvergence, which is a trivial occurrence.

A nontrivial property is that the opposite is not necessarily true, namely, a
sequence (or, more generally, a series) which is strongly iscconvergent Is not
necessarily conventionally convergent . This property has fundamental physical
relevance that motivated this authors and several independent researchers to
study hadronic mechanics,

In fact, as well known, electromagnetic interactions do have a convergent
perturbative theory due to the low value of the coupling constant, which permits
several numerical calculations suitable for experimental tests, On the contrary,
strong interactions do not have such a convergent perturbative theory in their
current forrmulation within the context of ordinary functional analysis, with
evident consequential limitations of the theory.

As we studied in detail in Vol. 1I, the fundamental physical point here is
that the covering functional isoanalysis offers real possibilities for the
construction of a convergent isoperturbation theory for strong interactions.

The isocauchy condition is the isotopic property verified by every strong
isoconvergence

(Ifm -1l < 8 6.2.17)

with 8 > 0 real arbitrary and for all m and n greater than a suitably chosen N(g).
[t is easy to see that, again for Class [A, when the isoinner product is
isocontinuous, the isonorm is isocontinuous. The extension of the preceding
results to Class IB is evident and will be tacitly implied hereon.
We now present the following notion introduced in ref.s [3.4,10]

Definition 6.2.1: An “isohilbert space” 35 ¢ of Class I.B and isotopic
element G is an isospace over the isofield C{&,+#) characterized by the
following axioms:

A.l: Xyp g is an isolinear and isolocal space (Sect. 4.2} ie, for given
elements &, , §; of g g, complex numbers &, , &, € & and operator 0
acting on X g, we have

Ox(& ) + &*dy) = & ¢ 0%+ &0+, (6218)
where the isotopic product is given by *=xT x, and the isounit is 1=T"
1,

A2: JCIB.G is equipped with an isoinner product defined for every pair of
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elements &,y € X1z by

@8 = 1 P ok W0 € RALD, (6210
(17 83) = Wy BT e O+, (6.2.19b)

© 2 &y D)= @ (dy ) 99) (98 2 By)=(§y.°8y) * &(6219D)
(§) +dp78) = (F) 78 + (§78), (6.2.19¢)

‘I’k GGEIB,G' c =cl EC(C,"',*), G =T,
A3 The isonorm || Tx} || is always positive definite, or null for T =0,
and verifies the isoschwarlz inequality (6.3.14), thus implying that both
isotopic elements are of Class [ (sufficiently smooth, bounded, nowhere
degenerate, Hermitean and positive definite) ,

T >0, G > 0; (6.2.20)

Ad JC,BG is countable, ie., there exists a countable set of elements g , &,
» -« € approximating every element & € Xipg

l'f} = 2](:1,..,11 ék* ék € JCIB,G , ¢ e C , (6.2.2!)
wilh arbitrary accuracy, ie,
U - 2kat nber&gl] < 8 (6.2.22)
for arbitrary 8 > 0 and sufficiently large n. The elements §, §, etc. of
an isohilbert space are calfed “isostates”
A.5: Ryg g Is conventionally complete [12,13].
The reason for the formulation of isohilbert spaces for Class IB is now

evident. [n fact, for Class 1A, we have in general G = Glt, x, %, ¢, §, ...}, as a result
of which, in general,

(exdy Ty # Tl JUpd,  (dylexdp) = (g T, )xc. {6.2.23)
As a result, we have the following

Proposition 6.2.1 (14} Isohilbert spaces of Class IB are Hilbert, but those
of Class IA are generally not.
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However, in most physical applications, we have the single isotopic element
T = G which can be assumed to be independent of x and . [n this latter case
isohilbert spaces of Class [A do verify all axioms of Definition 6.2.1, including the
axioms

(e [ = Tl Tod,  (Pyprerdn) = (g dy)xc. (6224
by therefore being Hilbert.

Definition 6.2.2 (10} Two elements §, and $» of an isohilbert space
EIB,G over the isofield T are said to be “isoorthogonal “when

(§)7d,) = 0; (6.2.25)

an element ¢ is said to be “isonormalized” when

($78)=1; (6.2.26)
and a basis €, , .., &, is said to be “isoorthonormal " when it verifies the
rufes

The corresponding expression for spaces of Class IA are given by

() 7y} = 0, (g7 ¢) =1, (ejrej) = &;. (6.2.28)
Definition 6.2.3 (14} An isobanach space By of class IB is an isospace
over an isofield 0@+ characterized by the following axioms :

A.1: Bjg is an isolinear space ;

A.2: Forevery element T € By there is an isonorm |I1]| with values in
R(D,+¥ verifying the properties

122l = [RIIITH. 17+ Tl s 100+ 117,]) 6229

|11 I} is positive~definite, or null for T = 0; and
A.3: Byg Is fconventionally) complete as for the isohilbert space.

Again, one can see that an isobanach space of Class IB is Banach, but
one of Class [A is not necessarily so, unless the isounit is independent from the
local coordinates .
The classification given above for functional isoanalysis evidently applies
also to square integrabie, Hilbert, Banach and other spaces, resulting in isospaces
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of Class IA, IB, I14, [IB, 114, [{IB, etc.

To study the isodual image of isohilbert spaces it is best to use Dirac’s
notation via bras and kets. Recall that the elements of a conventional Hilbert
space JC are the states | > with familiar inner product and normalization

<¢ld> =fd3r¢T(r)¢(r) € Oe+®, <¥le>=1. (6230

The dual Hifbert space X is then the space with dual states < s | equipped with
the same composition (6.2.30) over Clc,+%). As well known, 3¢ and 3T are not
independent, but interconnected with the conjugation

<] = (|g>N (6.3.31)

In the above formulation, the isohilbert space 3 is an isolinear space of
isostates | & > (with § genmerally different from ) equipped with the isoinner
product and isonormalization

<G> =1/ 0T o) € 06+, (6.3.322)
<{ld>=1. (6.3.32n)

The isodual isohilbert space 39 can then be defined As the isolinear space with
isodual isostates < & |9 equipped with the same composition (6.3.32a) but now
referred over the isodual isofield C%e8+%) with calls for an
isonormalizationnbwith respect to 19 = 1.

This implies that 3¢ and 39 are interconnected by the conjugation

<P = -([g> 0, (6.3.33)

which is the extension to Hilbert spaces of the isodual conjugation for complex
numbers ¢~ c8=-C.
The isodual isoinner product and isodual isonormalization can then be written

<B18>9 = (<30 g> =-19) il To%, a0 e Co+n, 63340
<§lPsd=1 = -1, (6.3.34b)

In summary, the following four spaces will have a primary relevance for
our analysis:

A) Conventional Hilbert spaces X, which are and will remain at the
foundation of particies in eterior conditions,

B) Isodual Hilbert spaces 38, occurring for 19 = ~1, which are assurned as
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the basic spaces to represent antiparticies in eterior conditions;

C) Isohilbert spaces 3 (generally assumed of Class 1), which are the basis
of the representation of particies in interior conditions; and

D) Isodual isohilbert spaces :}Cd(generally assued of Class II), which are
assumed at the basis of antiparticffles in interior conditions.

We leave to the interested reader for brevity the study of the isohilbert
spaces of Classes 11, IV and V, as well as the isodual square integrable spaces
£293, bl and the isodual isobanach spaces BS.

The fundamental character of the isotopy of the ynit | = 1 is evident from
the preceding structures. Note that the integral realizations of 1 mentioned above
characterizes the particular type of integral topology of Fig. I.1.4.1. In this sense,
functional isoanalysis constitutes an integral generalization of the conventional
analysis.

Numerous examples of integral isounits will be given in Vol.s II and III.
They essentially represent the overlapping of the wavepackets as a necessary
condition to have an interior dynamical system, in such a way that, when the
overlapping is null, the isounits T recover the conventional unit 1. In this way,
functional isoanalysis recovers the conventional functional analysis identically,
by construction at the limit1 — 1.

Whenever needed for clarity, isospaces will be denoted with symbols of the
type £, Ha, b}, a1+ ByaT . etc, identifying the class as well as the selected
isotopic element.

All conventional operations and properties of linear-local operators on
Hilbert and other spaces {such as determinant, trace, Hermiticity, unitarity, etc.)
admit a consistent isotopic generalization studied in the next section.

At this point we indicale that the conventional eigenvalue equation Hf = E
¢ on IC is lifted on ;g into the isoeigenvalues equations (1,2,3)

Hxd = Ex{

E{, E=E1elle+# E € Cle+x). {6.2.35)

This illustrates the reasons indicated earlier for the preference in physical
calculations of formulations of Class IB. In fact, the identity Ex§ = EJ implies
that the "numbers” of the theory are the conventional values E, rather than the
isovalues E = E1 even when 1 is an operator.

We can now indicate the nontriviality of the isotopies of Hilbert spaces. To
begin, the lifting 3¢ — X,g implies the alteration of the eigenvalues of an
operator, as clearly illustrated by Eq.s (6.2.35). Moreover, Hilbert and isohilbert
spaces are not unitarily equivalent, that is, there exist no (conventionally) unitary
transformation mapping 3C into 3{;p. However, 3t and ;g are indeed
interconnected by a conventionally nonunitary transformation [1]. In fact, the
maps :

[>=> [ >=Ule>, <] ><yl=<pltl,  uvU'=1x1, 6230

%
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implies the map of the inner product into the isotopic form
<$lg> - <¢|Tlg>, T=(uulyl =11, (6237

while, jointly, the unit is mapped into the isounit 1 =1 =T"! = yy',

The physical inequivalence of the Hilbert and isohilbert formulations is
then established. Note that the isotopic element T emerging from mapping (6.2.37)
is Hermnitean, as it should be for Class 1A or IB.

The remarkable properties of the isotopies is that, despite these physical
and structural differences, Hilbert and isohilbert spaces coincide at the abstract
level. In fact, for the particular case in which T = G = cost. or independent from
the intergration variables for Class IB, 6 the isoinner product has been
constructed in such a way to coincide with the conventional product,
<HE>=1<F[T]&>=1T<§|J > =< § | >. Nevertheless, eigenvalues and
isoeigenvalues remain different even for a constant isoynit = 1.

As a resuit, functional analysis and its isotopic covering also coincide at
the abstract level by construction.

An example of functions which are not square integrable but are isosquare
integrable is given by

fx)=1/¥, {6.2.38)

which is known not to be square integrable in the interval [0, 1) In fact, function
(6.2.38) becomes isoquare integrable in the same interval for the isotopic element
T =x 176, A significance of the isospaces is therefore given by the fact that if a
functional space does not constitute a conventional .C(Z) Hilbert or Banach space,
there may exist an isotopic element T such that the same sets does indeed form
an £2) » isohilbert or isobanach space.

In any case, functional isoanalysis establishes that statements such as “a
given function f(x) is or is not square integrable” need, for necessary
mathematical consistency, the joint identification of the unit of the underlying
space. .

A simple example of a set of functions isoorthonormal on X; AT is given by
£ = 2 ™ 2 g, 8142, (6.2.39)

for x € [-w/T, +n/T] and T independent of x {but dependent on % and other
variables). [n fact, we can write

- i ~inT imTx
(fyofm) = (72m ) axe " Te ™ =

“Note that for Class 14,1 is an element of the original field, that is, a constant.
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- +j
= omfaxe e ™ a5 (6.2.40)

It also important to have an idea of the physical applications of functional
isoanalysis in general, and of hadronic mechanics in particular. An example is the
representation of unstable hadrons as “cold fusion” of lither hadrons which
implies the inverse possibility of stimulating their decay artif icially, with an
apparent new technology. These possibilities are strictly precluded for the
conventional functional analysis, and require instead the covering isoanalysis for
their quantitative treatment.

A number of other imporiant applications of isoanalysis also exist with a
simpler structure which, as such, can be outlined here. We mention in this respect
the possibility indicated earlier of achieving a convergent perturbation theory of
the strong interactions. In fact, we have the following

Theorem 6.2.1 (10} Given a perturbative series which is conventionally
divergent on a Hilbert space 3C, there always exist an isotopy under which
the series becomes isoconvergent on isohilbert space Xr.

The proof is so simple to be trivial. Consider, e.g., a divergent canonical
expansion of an operator Alk), k € R(n,+,%), on 3C in terms of a Hermitean
Hamiltonian H = Hf for a large value of k

AK) = A0 + K[AHI/ 1+ K2[A HIHI2+ .. >0, k »1, (6241

where [A, H] = AH - HA is the Lie product. Theoremn 6.2.]1 then establishes that
there always exists an isotopy of the ynit {1 2 1=T"! and a reinterpretation of
Alk) and H on 301 under which the series becomes isoconvergent

Ak = AO) + KIATHIZ 1t + K2[ATHLH]I 2+ ... K< o, k » | (6242

where [ATH] = ATH - HTA is the Lie-isotopic product. In fact, a solution exists
even for a constant isotopic element T when sufficiently smaller than k, eg.,

T = k™1, (6.2.43)

with n a sufficiently large positive integer.

Yet another important application of functional isoanalysis in physics occurs
when the conventional Hilbert space 3 and its isotopic image JC]B are
incoherent, in the sense that the transition probability among states belong to 3¢
and 3C;p is identically nuil.

This mathematically simple property implies the possibility of resolving a
vexing problem of contemporary particle physics, the lack of exact confinement
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of quarks beginning at the discrete nonrelativistic level. In fact, as preliminarily
studied in ref. [11], and studied in detail in Vol. ITI, quarks possess an exact
confinement wheh treated via hadronic mechanics, le, when belonging to X5 ,
because they have an identically null probability of escaping to the exterior world
represented by the conventional space 3C even for collision with infinite energies
or in the absence of a potential barrier. In addition, as we shall see, the isotopy
3 — ;g preserves all axiomatic properties and quantum numbers (for the case
of standard isorepresentations) of SU(3), while permitting convergent isoseries,

Intriguingly, it appears that the lack of exact confinermnent is essentially due
to the insistence of current quark theories of using conventional, rather than
isotopic, functional analysis.

Further novel applications of isoanalysis (that is, applications which
cannot be Tormulated with the conventional analysis, let alone treated
quantitatively) are possible via isotopies of the remaining classes. For instance,
the singular isoanalysis of Class IV is given by the isotopic element characterizing
the space component in spherical coordinates {r, 8, ¢} of Schwartzschild’s metric
for the exterior gravitational problem (Sect. 5.4)

T =diag (r / (r - 2M), r2 2 sin 6) . (6.2.44)

The singular character of the isoanalysis at the limit when the astrophysical
bodies collapse into a singularity with T = Q is evident.

To close this section with a few comments of historical character, let us
recall that the appearance of the isotopic element G in composition (6.2.2) has
considerable connections with the known weight function of the conventional
functional analysis [12,13]. As a matter of fact, the techniques known for the
latter are extendable to the former.

The extension of Hilbert spaces 3C to the form 3 with a weight function T
and composition on ordinary fields C '

(171 = [ Pax oo no ec, 6.251)

is known since the first part of this century in both mathematical and physical
literature [12,13]

The novelty of the isotopies here studied is the introduction of the isotopic
function G jointly with the lifting of the underlying fields F - F. The
nontriviality of the latter as compared to the former is easily illustrated by the
fact that the basic unit remains unchanged for the former although it is
generalized for the latter, or by the fact that the latter has a generally nonlocal-
integral topology as compared to the local~differential topology of the former, or
by the fact that the isohilbert spaces Xip.g coincide with the conventional ones
JC at the abstract level, which is not generally the case for structures (6.2.51). In
turn this is an additional illustration of the remarkable implications of the
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isotopies of the unit.

6.3: OPERATIONS ON ISOHILBERT SPACES

A property of functional analysis with fundamental physical implications is the
linearity of the operations on a Hilbert space 3C, from which superposition
principle, causality, measurement theory, and other physical laws follow (see, eg.
ref.s {17,18] and literature quoted therein).

A property of functional isoanalysis of equally fundamental physical
character is the capability of representing the most general known nonlinear,
nonlocal and nonhamiltonian interactions via an operator theory on ischilbert
spaces which preserves the original axioms of linearity, thus permitting the
achievement of consistent generalizations of conventional physical laws.

To state it differently, the isotopic methods disprove the rather widespread
belief that a nonlinear and nonlocal formulation of the strong interactions
implies the loss of superposition principle, causality, measurement theory, and all
that.

These physical aspects will be studied in Vol. II. In this section we shall
study the elements of the isooperator theory , ie., the theory of operators on
isohilbert spaces.

The understanding of this section requires a knowledge of the preceding
parts, with particular reference to the notions of: isolinear and isolocal
transformations (Sect. 4.2); isomodules {.App. 4.A); isoexponentiations (Sect. 4.3);
etc,

Proposition 6.3.1 (10} Lei ¥ be an isoassociative enveloping
algebra of operators A, B, C, with isoproduct A*B = ATB and
isounit 1 = T™! acting on an isohilbert space X IBG Over an isofield
Fa,+# of isoreal or isocomplex numbers. ThenEr is isolinear and
isolocal on Ry g , i.e, it verifies the properties

Ax(axg + Fed) = ax(Axy) + BF(A¥0), {6.3.1a)
(G*A + BFB)*g = a*x(Asy) + BF(B*y), (6.3.1b)
(A*B)* = A*(Bxy), (6.3.1c)
T*g = ¢, ¥ ABely, ¢eRgg aBeh (6.3.1d)

and Xp g Is a one-sided, left or right isomodule of tr.

We now study of the isotopies of conventional operations of guantum
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mechanics. Let A be an isolinear and isolocal operator on 1 over F. Then the n-
th isopower A" of A is given by

-~

A" = Ax A+ A (ntimes). (6.32)

In particular, the isoquare of an operator A on JC,B'G is A2 = AxA. Thus,
conventional powers, such as that of the linear momentum p2 = pp, or of the
angular momentum “J = JJ, etc. have no mathematical or physical meaning for
hadronic mechanics and their use actually leads to a host of easily demonstrable
(but often undetected) inconsistencies.

The isoinverse A"l of A € &ron F@,+») is defined by the conditions

Arxal=aep =1, (6.3
and given by
ATl =140, (6.3.4)
where A™! is the conventional quantum mechanical inverse.
By ignoring hereon the isolinearity and isolocality for simplicity, we then
have the following
Deflnition 6.3.1 (34,101 Let ;g be an isohilbert space with isoinner

product (6.2.19) over an isofield Fr. Then, the “isohermitean conjugate”
At of an operator A € &1 on X is defined by '

((xAT1g) = WilAsy)] (6.3.5)

Proposition 6.3.2 [4,10:: Necessary and sufficient condition for an
operator A € Ep on3 g to be isohermitean is that 47

A =glralegt! | (6.3.6)

The following properties can also be readily proved

(d+A + FsBf = Gal + §+pl (6.3.7a)
(AR = Bl af (6.3.7b)
(ATl =a, vaBef ac & (6.3.7c)

47 Note that the isotopic elements T and G are inverted in ref. [4) as compared to their
use in this presentatior, which is the notation now widely adopted in the literature.
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where the upper bar denotes complex conjugation.
An example of ischermitean operator on SCG is given by

A=GHy><y]T! = AT (6.3.8)

Definition 6.3.2 (34,10 Let R,gq, Fyand %y be as in Definition 6.3.1.
Then, an operator U € ¥r on .’E;B’G is called "fsounitary” if it verifies the
condition

(o 0 0 g) = (4, (6.3.9)
ie,

0« 0=00=1, or O =097, (6.3.10)

Proposition 6.3.3 lloc. cit.l Let O be a isounitary operator and A an
isohermitean operator on X|g. Then, the transformation

A =Q0rAasp"] (6.3.11)
is isohermitean.

It is an instructive exercise for the interested reader to prove the f cllowing
property (see ref. [3] for a detailed treatment)

Proposition 6.2.4 [loc. cit.} Isounitary operators 0 € &1 on RX1p,g over
Fr always admit the following realization via the isoexponentiation of an
isohermitean operator X = X! € ty, W Fr,

Olw) = €1 WX = ¢ IWX 7 (gWTX) o (XTW)]
3 3
As we shall seee in Vol. II, the above property has fundamental character
for the Lie-isotopic theory of Ch. 4 because it permits the realization of
continuous Lie-isotopic transformation groups via isounitary operator on a
isohilbert space with isocomposition rules (Sect. 4.5)

(6.3.12)

00) = Olwl* 0-w) =1, {6.3.13a)
Ow) = Olw) = Olw)* O0W) = O (w + w), (6.3.13b)

In particular, the time evolution in hadronic mechanics is characterized precisely
by a isounitary transformation admitting of the above isoéxponentiation and,
thus, forming a Lie-isotopic group.

A further important property is given by (see ref. [3], p. 1304 for proof)
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Proposition 6.3.5 : Any isolinear, isolocal and isohermitean operator A =
At is bounded.

We now pass to a study of the isotopies of eigenvalues equations.

Definition 6.3.3 {loc. cit]l Let H be a (not necessarily isohermitean)
operator on an isohilbert space :}C]B,G‘Then a generally isocomplex
number ¢ € Cy is called an “isocigenvalue” of H  if there exist an
isostate ¢ € Xg such that

H*p = Cxy = c . (6.3.14)

We therefore confirm that the isoeigenvalues ¢ of an operator H on
X, coincide with the conventional eigenvalues ¢ of the operator i = HT.
Thus, the "numbers” predicted by hadronic mechanics for measurements are
conventional numbers.

The Tollowing property is important for the applications of hadronic
" mechanics.

Proposition 6.3.6 [3}: A set of isocomplex numbers & = ¢ 1 are the

isoeigenvalues of an operator He &y on JCIB,G Iff they are the solution
of the so-called "isocharacteristic equation” of H

Det {HT~c) = 0. {6.3.15)

A number of conventional properties of the eigenvalue theory (see, eg.,
ref.s (17,18) persist under isotopies, thus implying that they are indeed genuine
axioms of quantum mechanics. This is the case for the following important
property {(see ref. (3], p. 1310, or ref. [4], p. 1922).

Proposition 6.3.7 loc. cit.} All isoeigenvalues of isohermitean operators H
€ & onXpg are real.

The above property establishes that the reality (observability) of the
eigenvalues of Hermitean operators is a true axiom of quantum mechanics
because it persists under isotopies. Another important property which also
persists under isotopy is expressed by the following

Proposition 6.3.8 [loc. citl: The isoeigenvalues of isohermitean operators
are invariant under isounitary transformations.

However, there are a number of properties of quantum mechanics which
are not invariant ynder isotopy and, as such, they cannot be considered as true
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axioms of the thecry. The Tirst is the rather popular belief that Hermitean
operators admit a unique set of eigenvalues which is disproved by the following :

Proposition 6.3.9 [10: A Hermitean operator does not admit a
unique set of real eigenvalues, but admits instead an infinite number
of different sets of eigenvalues, each of which is real, depending on
the assumed basic unit.

Let H be conventionally Hermitean and consider for this purpose the
conventional eigenvalues Hy = E ¢ . Consider now an isotopy of the preceding
equations under which H remains Hermitean {(as anticipated in Sect. 6.1, this is
always the case when T = G). Then, we have different isoeigenvalues for the
same operator H, ie., the isotopies imply for the eigenvalues equations the
lifting

Hy = E > H=*§ =Epd, Er#E,, (6.3.16)
which is inherent in the basic isotopy of these volumes, Eq.s (1.1.1), ie.
[ - 1. (6.3.17)

But an infinite number of different isotopic elements T are possible. This
proves that a Hermitean operator H can have an infinite number of different sets
of eigenvalues E1 depending on the selected isounit 1 or isotopic element T.

As we shall see in Yol. II, expression (6.3 16) permits an explicit realization
and operator generalization of the so-called "hidden variables”. We shall also see
that Bell’s inequality, von Neumann’s theorem and other properties are not
preserved under isotopies and, as such, they are not true axioms of quantum
mechanics. As we shall see, these and other intriguing occurrences permit an
isotopic completion of quantum mechanics into hadronic mechanics which is
intriguingly close to the histcrical argument of Einstein, Rosen, Podolsky and
others.

Definition 6.3.4 (34,100 Let A be an operator on a finite-dimensional
isohilbert space X1g, and fet ¢, Cy, .., Ty, be its isoeigenvalues. Then
the “isotrace” TTA of A is given by

TFTA =& + & + ot Oy (6.3.18)

The “isodeterminant” Dt A of a matrix A is the isoscalar defined by

Det A = [Det{AT)]1 € Cp. (6.3.19)
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A further instructive exercise for the interested reader is to prove the
following properties:

Proposition 6.3.10 (loc. cit.} Isolinear and isolocal operators A, B, C € ¢
on a finite-dimensional isohilbert space verify the following properties

Tr A = (Tr AM, (6.3.20a)
Tr{AxB} = (TTA) * (TTB), (6.3.20b}
TE(B*A *B™)) = TFa, (6.3.20c)

Det (A*B) = (D2t A) * (D&t B), (6.3.20d)
Dot (a7 = et o), (6.3.20¢)
Det (g,A) = eET“. (6.3.201)

Definition 6.3.5 [3]: Let A be an isolinear and isolocal operator on
3CIB,G- Then the “isospectrum” SPA of A is defined as the set of
isocomplex numbers ¢ =c 1 which are such that the quantity (A ~ &) is
not invertible in ¥r, and admits the realization in term of the
conventional spectrum SpA of A

SPA = (SpAT)1eCr. (6.3.21)

We now pass to the study of the isotopies of another important notion of
conventional quantum mechanics, that of projection operators.

Definition 6.3.6 4} Two “isosubspaces” R!|p ; and JCZJB'G of Xigg
are said to be “isoorthogonal” when all their isostates are isoorthogonal
(Definition 6.2.2). For any given subspace R B,g of ¥Xygg the
isoorthogonal complemnent :}CCIB,G is the isoorthogonal subset for which
we have the direct sum decomposition

Xipe = XOpg + Rpg- (6.3.22)

One can then study the isotopies of similar properties of conventional
quantum mechanics [17,18],

Definition 6.3.7 [4,10: An operator P on X is called “isoidernpotent”
when it verifies the property
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P2=pxp=p, (6.3.23)

An isoidempotent operator P is an “isoprojection” of Xyp,g onto
ROgq when it verifies the properties

Pry =y, (6.3.24)
forally € Rgg, with &, € Ryp c°.

The following property is important for the applications of hadronic
mechanics (see ref. [3,4] for its proof).

Proposition 6.3.11: An isolinear and isolocal operator P € &t acting on
a finite-dimensional isohilbert space JCIB,G is an isoprojection operator
iff it is isohermitean and isoidempotent.

The explicit realization of isoprojection operators is given by the following

Proposition 6.3.12 (34,10} Let 3| % be a closed subspace of a (finite-
dimensional) isohilbert space Rygg . and let q;ok be the isoorthogonal
basis of RIB,GO. Then, an operator P is an isoprojection operator of
Xypg onto IO\ if it has the explicit realization

P=2%luf><ufaT, (6.3.25)

Corollary 6.3.12A: Under realization (6.3.25) the isoprojection operator of
3O g onto the complement XC\gg is given by

PP=1-p. (6.3.26)

This completes the notions of ispoperator algebras on isohilbert spaces that
are minimally sufficient for the initiation of physical applications of Vol. II.
Additional, more detailed aspects will be studied when needed. The reader
interested in acquiring a technical knowledge of isotopic methods is however
suggested to work out a systematic study of the isotopies of conventional
operator algebras [17,18].

We consider now the isodual isohilbert spaces of Class !l B first studied in
ref. [10]. For this purpose let us recall the isodual image 3¢9 of the conventional
Hilbert space JC, called isodual Hilbert space, which must be defined for
consistency over the isodual field C%(c9+x9) and with isodual states given by
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i = Pl 19 = -¢l | (6.3.27)

Its most salient property is that the isodual norm, ie., the image under duality of
quantity {6.2.6) is now negative—definite

ITed 114 < 0. (6.3.28)
The isodual inner product is then given by
309 Wl = 19 ¥ g9 x0 yfr) = - (W, ). (6.3.29)
As now familiar, this properly is important for a study of antiparticles via
isoduality.
The isodual isohifbert spaces are then isosraces defined over FYG0+44 ) =

R% or €9 with isodual isostates 39 = P119 = -

Definition 6.3.8 (10} An operator H is said to be “isodual isohermitean”
on 3@‘1”3‘0 when it verifies the condition

HY = 7lgal g, (6.3.30)
The isodual isoprojection operators on X9 11B,G are then given by
P = TG K ggks < g k). (6.3.31)
By comparing the above definition with Proposition 6.3.3, we have the
following intriguing property of hadronic mechanics in its general formulation

under consideration here with T ¥ G.

Proposition 6.3.13 [10:An operator H which is isohermitean on Xipg is
not necessarily isohermitean in its isodual %95 . 48

In summary we have four primary mathematical structures at the
foundation of the Lie-isotopic branch of hadronic mechanics:

A) Linear operator theory for the representation of particles in exterior
conditions;

4 This property, however, is dependent on the assumed notion of duality, that based on a
conventional conjugation. It is evident that a more general notion of duality is possible
in such a way to preserve the operation of isohermiticity, but this approach has other
undesirable implications {e.g., for normalizations) and it has not been adopted until now in
the applications of hadroni¢c mechanics.
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B) Isodual operator theory for the representation of antiparticles in
exterior conditions;

C) Isolinear operator theory for the representation of particies in
interior conditions; and

D) Isodual isolinear operator theory for the representation of
antiparticles in interior conditions.

As we shall see in Vols [T and 11, each of the above parts of functional
iscanalysis will have significant applications.

6.4: ISODELTA FUNCTIONS

As indicated in Sect. 6.1, the isotopies imply a generalization not only of main
structural foundations of functional isoanalysis, as outlined in Sect.s 6.2 and 6.3,
but also of all conventional distributions, special functions and transforms.

This is a topic of such a dimension to require a separate volume for its
detailed treatment. In this section we shall merely illustrate these generalizations
for the case of Dirac’s delta function. In the remaining sections we shall then
provide examples of isotopic generalizations of special series and transforms.

As well known (see, e.g., ref. [19] and quoted bibliography), the conventional
Dirac delta function is not a function, but a distribution representing a rather
delicate limit procedure in a conventional functional space, such as the Hilbert
space JC, with a mathematically well defined meaning only when it appears
under an integral.

When the singularity is at the point x = 0, the §-function can be defined in
terms of a well behaved function f(x) on a one-dimensional space S(x,R) over the
reals R by [loc. cit]

J.7 s ax = f0), S sax = 1 (6.4.1)

This essentially means that &(x) = 0 everywhere except at x = 0 where it is
singular. Nevertheless, what is mathematically and physically significant is the
behaviour near that point, which permits explicit realizations, such as the
familiar integral form

+00

s =(i/amf | e™ay. (6.4.2

—0C

If the singularity is at a point x # 0, then we can write [loc. cit.]

+o0
0 = [ tx)sk-xdx . (643)
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Finally, the 8—function verifies the basic properties
+00
8x) = 8l~x) , 8lx-x) = f dz 8(x - 2z} 8(z - x) . . (6.4.4)
=00

The delta function is evidently inapplicable when dealing with functional
isospaces, such as the isohilbert spaces 3C. In particular, exponentials of the type
appearing in the integrand of Eq. (6.4.2) are no longer defined in isospaces, and
must be replaced by the isoexponentials.

These occurrences rendered mandatory the studies of the isotopies of the
delta function. Their origin can therefore be traced back to the isotopies by this
author of the Poincare-Birkhoff-Witt theorem reviewed in Sect. 4.3. The
existence of a consistent isotopic generalization of Dirac’s delta function was
indicated-in ref. [1], first studied in detail in ref. [3}, subjected to systematic
studies and classification in ref. [10), and finally applied to a number of cases
reviewed in Yol.s 11 and I1!. Inspection of the recent treatment by Kadeisvili [15}
is also recommended.

In particular, six mathematically and physically distinguishable isotopies of
the Dirac delta function are identified in ref. [10] under the name of isodelia
functions. Their outline is recommendable as an application of functional
isoanalysis, and as a pre-requisite for the isotopies of the Fourier transforms
studied in the subsequent sections.

Consider a one-dimensional isospace of Class I, denoted $;(x,R) with
(conventional) real coordinates x over the isofield of real numbers R(n.+ % with
conventional elements n and sum +, but isotopic multiplication npi*ny :=nTny,
where T is the isotopic element and 1= T~ ! is the multiplicative isounit of Class I.

Let f(x) be an ordinary function defined on 8;,(x,R) which verifies the
conditions of strong isocontinuity of Sect. 6.2 in all possible subintervals of [,
+oo], Recall that the isotopic element T of Class [ is a strongly isocontinuous,
bounded, real valued, and positive-definite function of the coordinate x as well as
its derivatives with respect to an independent variable of arbitrary order and any
other needed quantity, T = Tix, %, %, ...) .

Then, the isodelta function of the first kind, denoted 8, can be defined
in terms of the expression '

f +00
oo fix) * §,(x) dx = £{0), (6.4.5)
from which we obtain for f = |
f oo Lo
o TXX K LB dx = 1. (6.4.6)

The isotopic image of (6.4.3) is then given by
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fitd)= ) fTx) %8,k = x) dx. (6.4.7)

namely, it is not possible any longer to map the dependence on x to the
dependence at x', but rather the dependence on Tx to Tx". This confirms the very
peculiar nonlocality of the topology underlying the isotopies discussed earlier.

In fact, the isotopic element T can have an integral dependence on the
interval x € [a, bl centered at x. In this case the singularity of the Dirac 8 at x
can be spread over the interval [a, bl by the isodelta function for a suitable
selection of T.

In several cases of physical interest, T can be assumed as having an explicit
dependence only on the derivatives T = T(x, &, ..), with consequential identity Tdx
=d(Tx). In this case, the projection of the §;-function into the original functional
space S(x,R) implies the equivalence

8)(x) =~ B(Tx). (6.4.8)

It is easy to see that, under the assumption of T being independent from x
(which is the case for Class 1A), the §;—~function admits the integral representation

+ +00 T
eIX ydy’

8,(x) =(l/2ﬁ)f—oo cx)Teei"y ay =(i/em [ (6.4.9)

=00

{(where we have used the fundamental Theorem 6.3.1 on isoexponentiation), and
verifies the properties

+0a
Bl = B L Bk-x) = [ dazbli-2*bz-x. (6410
For the case of an isospace of Class IB, §g(k,R), with isofunctions T{x) = f{x)
1, a different isotopic expression emerged in ref. [10], called isodelta function of
the second kind, and denoted 8, , which is characterized by the property

+c0 +00
J o tesiax = [T tasmax = 10 = 1o, (6.4.12

In this case the 8y-Tunction must necessarily be an isofunction, i.e, admitting a
structure of the type 8(x) = §,(x)1x, %, &, ..). Then, for T =1, we have

400 +00
J o ax = [T Bl dax =1 (6.4.13
and the isotopic image of (6.4.3) is given by
+00
10 = [ T e sl - xax. (6.4.14)

One can see that the projection of the 8&,~function in the original
functional space S(x,R) implies the equivalence (again for isounits independent of
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the integration variable)
Bolx) ~ 8x)1x, %, ..). (6.4.15)

It is easy to see that, under the same assumptions, the 8,-function admits
the integral representation [6]

ixTz

: d(Tz) (6.4.16)

B(x) =1 /21Tf_m+m’l“e€ ixy dy =1 /21rf_°°+me

and verifies the properties

+00
Balx) = By-x) | Bx-x) = [ dz bix-2dxbyz-x).  (6417)

It is an intriguing exercise for the reader interested in learning the isotopic
techniques to prove that the first and second kind isodelta functions can be
interconnected by the reciprocity transformation T = 1.

To present the isodefta function of the third kind 83, let us recall [10] that
~ the separation on a generic, n—dimensional isospace 8(x3R), §= Tg, R~R1,1 = T~
I (see Sect. 3.2 for details), can be formally written as that of a fictitious
conventional space in the same dimension S(xg;R), according to the simple rule

x2=xt§x =¥%x=5%2, %=1, (6.4.18)
This implies that a number of problems in isospaces can be worked out in this
fictitious conventional space in the X-variables, and the results then re-expressed
in the x-variables.

The 83—function emerged precisely from reduction of this type. It can be
defined via the conditions [10]

J. U msmax =f_ "Tar g smho a0 = 0, T = T s, )

{6.4.19)
from which we obtain for f = |
" sy = 1 (6.4.20)
—0 3 . i
with realization in terms of the conventional &~function
Bax} = &%) = 8(TH). (6.4.21)

It should be stressed that, while the isodelta functions of the first and
second kind are bona-Tide isotopies of the conventional expression, this is not the
case for 83 which is merely a pragmatic tool for simplifying calculations, rather
than a mathematically rigorous structure.
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The above expressions have been presented for the case of one-dimensional
coordinates x. The extension to three-dimensions is trivial, and given by isotopic
products of the type

By = B(x)+5,ly) * 5,2 (6.4.22)

Consider now the isodual isospace 8j;,%x%R9} over the isodual isoreals R,
with isotopic element T9 = - T and isounit 1¢ = - 1. The isodelta functions on
isodual isospaces can then be defined accordingly, by reaching three additional
quantities 8%, , 8%, and 8Y5 called isodual isodeita functions. The following
property then holds.

Proposition 6.4.1 {10k The isodual isodeita functions of the first and
second kind change their overall sign under isoduality .

In fact, by recalling that xd = -X, yd = -y, id = -i, we have the isodual
isodelta function of the first kind

+00 d.d +00 ;
89,9 =(/om [ 1de,, T Yddyd=—(l/217) I Te, ™Y 4y, (6.4.23

3
with a similar expression for the second kind. Note that 83 has no isoselfdual
structure, evidently because it is not an isotopic structure. .

The properties of the isodelta functions for all the remaining Classes III, [V
and V are vastly unknown at this writing. Additional generalizations of -the delta
functions are expected in the one-sided Lie-admissible formulations of the next
chapter. :

Note that, while the Dirac delta function is unique, there exist infinitely
possible isodelta functions for each of the above six kinds, evidently because of
the infinitely possible isounits or isotopic elernents. The reader may have noted
the intriguing character of the general case of isodelta functions (6.4.5) and (6,4,12)
for T = Tix,..}, which are hoped to receive an attention in the literature much
needed for physical advances. .

As well known, the locality of quantum mechanics is precisely expressible
via the Dirac delta function. The nonlocality of the isotopies of quantum
mechanics is then expressed by the isodelta functions. In turn, such nonlocality is
necessary for a quantitative treatment of the extended character of hadrons with
consequential nonlocal components in the strong interactions due to mutual
overlapping of the wavepackets and charge distributions of the particles.

While the Dirac delta is a bona fide distribution, the isodelta functions are
not necessarily so because the original singularity at x can be spread over an
interval of which x is the center. Nevertheless, in specific cases, such as when T =
cost., the isotopic 3—functions are distributions similar to 8(x),
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6.5: ISOSERIES

We indicate in Sect. 6.1 that all conventional series of functional analysis admit
significant isotopic generalizations. In this section we shall illustrate this
occurrence via the isotopies of the Fourier series (see, e.g., ref. [20,21]). The
interested reader can then compute the isotopies of other series.

As well known a sufficiently smooth function (6) on a conventional one-
dimensional space S(B,R) over the reals R, which is periodic in [0, 2], admits the
representation in term of the Fourier series [loc. cit.]

in6
f(e) = 2n=—.m'+w ak e v (6.5.1)
where om .
~ind
a = wemf " e ™ ttago. (65.2

If the function is periodic in the interval [0,L] we have instead

i2mnx/L

fx) = Pp=—co+00 by € (6.5.3)

in which case ~i2mnx/L

%=1mf flx) dx . (6.5.4)

When the underlying functional space is lifted into a functional isospace of
Class [A, the above Fourier series are no longer applicable, again, because of the
loss of basic definitions, such as that of exponential. For this reason this author
[10} studied the isotopies of the Fourier series, resulting in a generalization called
isofourier serfes [10] which can be defined for a function (8} also periodic in [0,
27} on an isospace of Class 1A, $8,R) over the isoreals Ry (n,+#), via the expression

ind inTe
©) = Zn=—co 400 Apte = 2 n=—o0400 Ap € : (6.5.5)

where we have again used the properties of isoexponentiation of Sect. 4.3. Then,
for T independent of 6, by using the isoorthogonality of the isoexponentials, Eq.s
(6.2.34), we have

27 s
= (em [ o (Te, M), fe)as. 6.56)
IT the function is periodic in the interval [0, L], we have instead
i /L
En——oo oo Bn* 121mx/L i2mnxT. : (6.5.7)

En:—m‘wo B,e

in which case
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When one deals with functional isospaces of Class IB, the preceding results
are essentially multiplied by the isounit 1. The extension of the results to the
isodual isospaces of Classes IIA and I1iB is equally simple, and will be implied
hereon. '

An important application of the above isoseries occurs in the transition
from Cartesian to polar coordinates in isospaces. This transition is linked to a
central property of isorelativities, their capability to represent particles with their
actual, generally nonspherical shape, jointly with all their infinitely possible
deformations. In turn, this formulation originates from the isotopies of the
rotational symmetry [19,20] (see also review {21].

Consider a two-dimensional Euclidean space

By= L) (Te * flx) dx . (6.5.8)

Elrd®):r=(x,y) 8 = diag. (I, 1), r=xx + yy €R. (6.5.9)
The transition to potar coordinates is provided by the familiar expressions
X=rcos®, y=rsing, (6.5.10)

A sufficiently smooth function gx,y) on E(r,8,R) can then be represented in the
unit circle r = | via the expansion

glxy) = LiMyooo Zn,m=0,...,N apm X1 y™ =

= glcos6,sin ) = l6) = 3 .00 apy, cos™0 sin™d (6.5.11)

The use of the expressions
i0 - i —-ig i6 -i0
e! = cos 8 +1isin 6, cose=(e16+e ! )/ 2 sing = e - e )/2
6.5.12)

then implies the well known Fourier series [20,21]
ing .
f0) = 2h=w+0an€ = Cu/2 + Dpajoolcycosnd + dsinne),
+r
cu=(/mf __ déflelcosnd, n=0,12..
+1r
dp =(/mf  dof@)sinne, n=1,2 .. (6.5.13)

i

On physical grounds, the central geometric object is the perfect and rigid
circle, as requested by the fact that the rotational symmeltry is a symmetry for
rigid bodies . '
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Conceptual, mathematical and physical advances are permitted by the
transition to the covering isoeuclidean space of Class 1A (Sect. 3.3)

Br8R:r=(x,y) 8=Ts=diag (02, b52), 1 = T}, (6.5.14)
whose separation
r2 = xb2x + yb2y = inv. (6.5.15)
represents all possible signature preserving deformations of the circle, i.e, an
infinite family of possible ellipses with semiaxes a = bl"z and b= b2'2. In this
case, the invariance is provided by the isotopic covering O{2) of the rotational
symmetry O{2) [6,7] we shall study in detail in Vol. II.
What is important for this section is that the conventional transformations
1o polar coordinates, Eq.s (6.5.10), is no longer applicable in isoeuclidean space
(6.5.14) and must be generalized into the isopolar coordinates of App. 6.4 (10
x =1 b, ! isocos a? 8 = rb, ! isosin A? { )
1 , Y =r1by "isosin A® 6. 6.5.16
where isocos G and isosin a are the isotrigonometric functions and A = det T =

b;%by2 .
We can therefore study the isotopy of expansion (6.5.11) for the unit case

2 = xb2x + yb22y =1, {6.5.17)
in the form

glxy) = Limyeo Zn,m=0....N Ap *x* y™ =
= glb;" lisocos (a? @) bz_lisosin (ate) = flo) =
= Ym0 Anm * (b lisocos (42 601 (by™! isosin (4 )™ . (65.18)

A physical significance of isoseries is in the expansion of an intensity in
isospace, i.€., in expressions of the type -

L L
o) 1] 2ax = (/D[ T 1) dx =
0 0
L S 9T/
- (YL fo ax Engn e i2mnxT/L i2mmxT/L

J# (2B e } =
= En=-0;3,;+00 By*B, = Zn=—ool+oo l By |‘2 . {6.5.19)
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In the simple case here considered, the original intensity is reduced to the
sum of the individual isocontributions B *B,, without interference terms BB, .

However, a rather complex interference pattern occurs for the case of T
explicitly dependence on the integration variable, or merely when T is a
nondiagonal matrix [10] This is a representation of the nonlocal character of the
isotopic wave-theory, namely, the representation of wavepackets of particles in
conditions of mutual penetration.

Note that additional generalizations of isoseries are possible for liftings of
the addition, but their would imply the loss of the distributive law (Sect. 2.3).

Note also that the same function f(6) can be expanded in Fourier series
(6.5.1), when dealing with ordinary functional spaces, as well as in the isoseries
(6.5.18), when dealing with isospaces. The selection of which series holds is
therefore relinquished again to the basic multiplicative unit.

6.6: ISOTRANSFORMS

We also indicated in Sect. 6.1 that conventional transforms of functional analysis
admit nontrivial isotopic generalizations. In this section we shall illustrate this
occurrence via the isotopies of the Fourier and Laplace transforms (see, eg, refs
[20,21] for their conventional forms). The reader can then work out any needed
additional isotransform with the same techniques.

Six different isotopies of the Fourier transforms were identified by this
author in ref. [10] in correspondence with the six different types of isodelta
function of Sect. 6.4. They apply for correospondently different mathematical
and physical conditions, and can be presented as follows.

Consider a one-dimensional functional isospace $; 5 1x,R) over the isoreals
R, with the isotopic element T and isounits1 = T~!, and the Fourier isoseries in
the interval [-L, L] for strongly isocontinuous functions f(x) on §; A TR with 2L,
periodicity

inmX/L

fx) = (2L oo 400 RN (6.6.1a)

gn = ([ _L+L fx) * e{"‘""/ b ox. (6.6.1b)

As in the conventional case [20.21], set (/L) x = y and (nmL)} = k,, , so that
(nm/L) x = Ky, Akp =kp,) - ky, = (@/L}, and (2L = Ak (2™, Then Eq.s (6.6.1)
become

— . ik
fly) = @m7™ By - 100 gkn*eg " Ak, . (6.6.22)
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By = BT g

At the limit L = oo, we have the Fourier isotransforms of the first kind [10]

Dy . (6.6.2b)

£, = (rem | _m+°° g1(k) * g% gk

- wamf_ g0 e* ™ ak, (6.6.3a)
g0 = (2m S o T0xe ax =
= tem [ e ™ ax. (6.6.3b)

The reason why the above isotransforms are called of the first kind is that
they are linked to the isodelta function of the same kind, Eq.s (6,4,9), as illustrated
by the following

Theorem 6.6.1 [10l: The isotopic Fourier integral theorem reads
.k -k ’
fx0 = (emf_ak e, ([ _ " e & ax) =
+00 + ; /
= L ax 160+ (em "7 eplix-xVk g =
+00
= ‘L—oo dx’ f!()(') ¥ 81()( -x) (6.6.4)

[n particular, it is easy to prove the following isotopy of the corresponding
conventional property

J:_o:oo dx | f,{x}| 2 = J:_mm’ dx T T ) =

I}

L Palgwo2= [ " agioTew. (66.5)

The entire theory of Fourier transforms can therefore be subjected to step—by-
step isotopic liftings. Studies along these general lines have been initiated by
Kadeisvili [15] and their continuation is left to the interested reader.

The Fourier isotransforms of the second kind are defined on isospaces
818 TR, that is, for isofunctions Tix) = f(x}, are given by

10 = (1/2m [ alk v X gk (6.6.62)
k) = t/om [ e, ox (6.6.6b)

and can be written for isounits independent on the integration variable
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Tox) = (1/2m) f _wm golk) eg KT gk, (6.6.7a)

=ikTx
€ dx . (6.6.70)

Note that, again, the isotransforms of first and second kind are interconnected by
the reciprocity transforms T — 1.

The Fourier isotransforms of the third kind are defined on an ordinary
space S(x,C) with local coordinates X = T x, and can be written [10]

+00
golk) = a/2m | 10

o) = (/2m [ _ " o) e KT alrhi) | (6.6.82)

-ikTHx

galk) = (1/2m) f _mm f3x) e, d(Th) . {6.6.8b)

The remaining three cases are of isodual character. The isodual
isotransform of the first kind on isospaces Sj;, 7(.R) are given by [10]

19,6 = (/2m [ 7% g8 ) o k9T qyd

= (em f - “ g e KT gk (6.6.9a)
—idd7d,d
g% = wam [T ede 7T gt
= aom [ _mm e T dx (6.6.9b)

from which we have the following simply but significant

Proposition 6.6.1 (10} The Fourier isotransforms of the first and second
kind are isoselfdual.

The isotransforms of the third kind are not isoselfdual, as it is the case for
the corresponding isodelta function, because they are not genuine isotopies. As a
matter of fact, isoduality turns the structure of 83 into a Laplace isotransform
of the next section.

The reader has noted the simplicity of the isotransforms for isounits
independent from the local coordinates, 1 = 1(x, %, ...} which will be used in the
great majority of physical applications of Vols II and I1I. However, their general
expression, e.g., for isounits of gravitational type 1 = 1{x, ...}, is nontrivial and
substantially unexplored at this writing.

The extension of the above analysis to more than one dimension is trivial
and shall be tacitly implied. The formulation and properties of the Fourier
isotransforms for Classes III, IV and V are also unknown at this writing.



— 298 ~

Note that despite their abstract equivalence, isotransforms and
conventional transforms are inequivalent, as directly shown by the appearance
of the isotopic element T in the exponent of the isotransforms or by the fact that
ordinary transforms are linear and local, while the isotransforms are isolinear
and isolocal.

Note that the Fourier transform is unique for a given function f(x). On the
contrary, the same function can be subjected to an infinite variety of Fourier
isotransforms, evidently depending on the infinitely possible isounits. This degree
of freedom is necessary for physical consistency. In fact, empty space (the
vacuum) is unique, and represented by the trivial unit I = diag. (I, I, 1). A unique
transform is then fylly consistent. On the contrary, there exist inf initely possible
physical media due to infinitely possible densities, pressures, temperatures, etc.,
which are represented by the infinitely possible isounits. A corresponding infinite
class of isotransforms is then necessary.

The Fourier isotransforms can evidently be applied to a large variety of
nonlinear, nonlocal and nonhamiltonian problems. Their relevance was elegantly
established by Kadeisvili [15] by proving that the isotopies of the Fourier
transform imply a necessary generalization of Heisenberg's uncertainty relations
for particle in vacuum (exterior dynamical problem of Sect. 1.1)

Ax Ak = 1, (6.6.10)

into the isouncertainties for particles moving within physical media (interior
problem)

Ax Ak = <15, (6.6.11)

first proposed by this author in ref. [16] and then re—examined in ref.s [10,11] (see
Vol. II for detailed studies).

The proof of conventional uncertainties via Fourier transforms within the
context of functional analysis is well known (see, e.g., ref. [18], p. 47-49), although
it is worth reviewing for comparative purposes. Consider an ordinary Hilbert
space JC with states ¢{x) depending on a variable x belonging to an ordinary
one-dimensional space Sx,C), which are normalized to one.

Gauss distribution within the above context can be written

- 2/ 2
Wx) = ne 2a , n=all2gl4 cq {6.6.13)

The conventional Fourier transform of the above expression is given by

- _12.2
o) = (r2mt [ " ute M ax = e K E /2

L3

n=an=a/2g4cq. (6.6.13)
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Now, the width of distribution (6.6.13) is of the order of Ax = a, while the width
of transform (6.6.14) is of the order of Ak ~ 1/a. The conventional Heisenberg's
uncertainties then follow,

Ax=~a, Ak=~l/a, AxAk =~ 1. (6.6.14)

We now reinspect the above formulation under isotopies within the context
of functional isoanalysis. Consider an isohilbert space 3y,  with states w(x),
where x is the local coordinates on an isospace 8, 1{x,C) on the isofield Clc,+%)
with isounit 1 and isotopic element T which are then independent of x, and
suppose that ¥ is isonormalized (Definition 6.2.2)

(W ¥) :~1f ax W)+ Wlx) = 1, (6.6.15)

The conventional Gauss distribution cannot any longer be consistently
defined under isotopies, e.g., because of the lack of meaning of the conventional
exponentiation (Sect. 4.3). Its image in 3|, 1 is instead given by the Gauss
isodistribution [10]

2 2 — 2
W) = Nwe, X2 Ly T 28 (6.6.16)
where :

N =T 12712 5-1/4 : (6.6.17)

The conventional Fourier transform has no mathematical or physical
meaning in isohilbert spaces, and must be replaced by the Fourier isotransform
of the first kind which yields after simple algebra

oK) = (1/2m) f _O:m Wix) * € ikx dx =

_12 2
= ne K T2 /2, N = aN = T V212 -1/4 (6.6.18)

Now, the width of isodistribution (6.6.16) is glven by Ax = a/T!, while the
width of its isotransforms (6.6.18) is Ak = 1/(aTh , and this establishes
isouncertainties (6.6.11),

Ax~a/T', Ak ~ 1/@@T}, Axak ~ 1. (6.6.19)

The implications of the above findings are manifestly far reaching. In fact,
they confirm the existence and consistency of a step-by-step isotopic
generalization of quantum mechanics into hadronic mechanics, which has been
conceived and worked out for physical conditions of particles (those of the
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interior dynamical problem) fundamentaily different than those of conception,
applicability and experimental verification of quantum mechanics (those of the
exterior dynamical problem).

Heisenberg's uncertainties are mathematically and physically valid in the
arena of their conception and experimental verification, e.g., for an electron
moving in an atomic orbit in vacuum. The isouncertainties have instead been
conceived for the same eleciron when moving within hyperdense physical media,
such as the core of a collapsing star. In this latter case, the isotopy 1 =1 is
expected to provide a quantitative treatment suitable for experimentai
verifications of integral corrections to Heisenberg’s uncertainties due to: the
total immersion of the wavepacket of the electron within those of the
surrounding particles; the inhomogenuity and anisotropy of the medium; and
other physical differences with respect to motion in vacuum (see Vol. I for
details).

Note that isouncertainties {(6.6.11) depend on the preservation of the
isogaussian character under Fourier isotransforms. In turn, this is dependent on
the basic isoexponentiation of the Lie-isotopic theory. In fact, starting from the
isoexponential

_ 2/ 2 - 2
a®/2a® g mrT/2d (6.6.20)
we also end up with the isoexponential
—k242/ -k2T32/
Khati2 g mKTa2 (6.6.21)

€ ,
t
In turn, the preservation of this isoexponential character is precisely the
mechanism that alters Heisenberg's uncertainties via the isotopy 1 =1.
The isotopic techniques used in this section for the Fourier transforms are
easily extendable to other transforms. We mentjon as an example, the Laplace

isotransform also stugdigg, apparentiy for the first time, in ref. [10}
Hz) = o & Th)=ep” ™, 2z = cost. +iy, (6.6.22)

The same techniques are then applicable to the isptopies of Hankel Mellin,
Hilbert and other transforms [see ref s [20,21] for their conventional forms).

6.7: ISOFUNCTIONS AND THEIR OPERATIONS

We shall now study the isotopies of a few representative elementary functions
and the primary operations on them.
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Definition 6.7.1: Let f(x) be an ordinary function verifying the needed
regularity and continuity conditions on a given closed interval of the real
variable x € Rin,+x). Then the “isotopic image"t%) of f(x), is a function
of the corresponding closed isointerval of the isoreal number % = x] ¢
R(n,+*) generally given by the rule

) =11, 6.7.1)

We have already encountered severai elementary isofunctions during our
analysis, such as the isopower

TR) = %N = X« & *...+% (n-times) = 1(x"). (6.7.2)

A most fundamental isofunction is the isoexponentiation of Sect. 1.4.3.
When written in terms of an isonumber %, it also follows rule (6.7.1),

¥ ime¥ = (e 1 TIH) 2 qex, 6.7.3)

where e* is the ordinary exponentiation.
The Isologarithm of an isonumber 3 € M3,+* on isobasis & = el can be then
defined as the quantity IE)g;3 a such that

L. 10g. -
e %e? _ a, {6.7.4)

with evident{and unigue) solution
log,a =1 log, a. {6.7.5)

where log.a is the ordinary logarithm on basis e of the ordinary number a.

It is easy to se that the above definition of the isologarithm characterizes a
correct isotopy because it preserves all the conventional properties of log a, such
as (we ignore in the following the subscripts & and e for simplicity}

oge =1, Iogl = 0, (6.7.5a)

loga=+b =16ga + 1ogb, 10ga7b = Ioga - 16g b, (6.7.6D)

1= -lbga,  brldgd = Togad, etc. (6.7.6¢)

1og &

A similar situation occurs for the isotopy of most, but not all functions. In

fact, two exceptions are given by the isotopy of the trigonometric and hyperbolic
functions, which were preliminarily identified in Ch. 1.5, and are studied in more
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detail in App. L b

The isotopies of derivatives and integrals are intriguing because of the
variety of the emerging novel notions. In fact, by again assumning T independent
of x for simplicity, we can introduce the three different isodifferentials d;x =
dx, 8% = d(Tx) = Tdx and 33 = d([x) = 1dx. We then have the isoderivatives of the
first, second and third kind

a d, d dg d
— IR = =1 = T —1lx), —I%) = — 1) (6.7.7)
dox dox dx dax dx

as the reader can derive via more rigorously via isolimts here omitted for
brevity.Similarly, we have the three indefinite isointegrals of the first, second
and third kind J; = f, 7, =1f and J5 = T/ which verif y the axions Jy 3y x = x, k = |,
2, 3. Definite isointegrals can be defined accordingly, e.g, for ¢ = {g, bl being a
closed isointerval of x,

Jo, t0eaex = f e, k=123 67.8)

A virtually endless number of isotopic liftings of conventional treatments
(see, e.g., ref. [22)) can be introduced, but its study is here left to the interested
mathematician. We finally mention that the isospecial functions, such as the
isot'opies of Legendre, Bessel and other special T unctions, will be studied in Vol. I}
as needed Tor specific applications.

AFPENDIX 6.A: ISOTRIGONOMETRIC » ISOHYPERBOLIC
FUNCTIONS AND ISOGAUSS PLANE

In Sect. 2.5 we pointed out the inapplicability of the conventional trigonometry
and related Gauss plane for the characterization of the isocomplex numbers. In
Sect. 5.2 we then showed the inapplicability of trigonometry. In this appendic we
study its isotopic generalization, called isotrigonometry first studied in [10].

Consider a conventional two-dimensional Euclidean space E(r8R), § = diag.
(1, 1) over the reals R(n,+X). The fundamental notion of this space, the familiar
distance among two points

D? = (xp =% (%) = %) + (y; = yo )y, ~y,) € Rt {6.4.1)

then represents the celebrated Pythagorean theorem expressing the hypothenuse
D of a right triangle with sides A and B, D2 = A2+ B2

A property of the space E(r,8,R) permitting its reinterpretation as the Gauss
plane and other applications is the trigonometric notion of “cosa” where a is
the angle between two intersecting straight vectors which, for the case when they
originate from the origin and go to two points P;(x, y 1) and Poky, yo) is given by
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XpXo + ¥y ¥
cosa = 172 172 . (6.A.2)
(xlxl + Y|Y2#(X2X2+ YZYZ?

From the above definition one can derive the entire conventional trigonometry.
For instance, by assuming that the points are on a circle of unit radius D? = 1, we
have for Plx;, y} and Pyfl, 0) cosa = x|, for P, 0, 1) we have sina = y;, with
consequential familiar property of the Gauss plane sinfa + cos?a = I, etc

All the above properties lose mathematical and physical significance under
isotopy for numerous independent reasons, such as the loss of the central notion,
that of distance, Eq. (6.A.1), the generally curved character of the lines, etc. The
use of conventional geometries, those defined over ordinary fields, is also
Inapplicable because they are based on the conventional unit 1, while under
isotopies we must necessarily redefine the unit.

These and other reasons have rendered mandatory the generalization of
conventional trigonometry under isotopy. Besides numerous predictable
applications, the problem has central relevance for the generalization of the
eigenfunction of the rotational symmetry, the Legendre functions and spherical
harmonics (see Vol. [1).

Consider the isotopic lifting E(r,8,R) into the now familiar two-dimensional
ispeuclidean space over the isoreals Rin,+*) (Sect. 3.3) here assumed for simplicity
in the diagonalized form

ErBR):r=(x y),8=T6=diag. (b2, 52), R =R+¥,  (6.A32)
1 =71 = diag. (72,0,72), be=blt,r,t1,..)>0k=12. (6A.30)

Consider now two points Pi(x;, y;) , Paxs, yo) € E(r,8,R). Then the
conventional distance (6.A.1) is necessarily (and uniquely) generalized into the
isodistance

D2 = (X"Xz)blz(xl‘x‘?) + (Yt")f'p_)bzz(yl‘)@) €R. {6.A.4)

It evidently characterizes an infinite family of isotopies of the Pythagorean
theorem, called isopythagorean theorem, according to which the image of
expression (6.A.2) under isotopies is given by

D= (AbAtrr.JA + BbALLL. )BT, (6.4.5)

Suppose now that the two points P, and P, also represent isovectors
originating from the origin of E(r8R). Let us denote with 4 the isoangle
between these two isovectors to be identified below. We can then introduce the
notion of isocosinus of the isoangle a via the definition4?

4 The attentive reader may have noted the conventional square in the denominator.
However, the isofactor in the denominator cancels out with that of the numerator,
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. . xb%xp + y b2y,
isocos a = P > > > {6.4.6)
(xp by%xp + yu by Fixgb2xy + yp 0.2y,

We now assume again the two points to be on the ellipse
D2 = xb2x + ybly = I, (6.A.7)
and for the values P {x, y;), P, (b;”}, 0, the isocosinus becomes
x;=b; 'cosd = isocos & . (6.A.8)

We can then define the isosin G by assuming P, (0, by 2) for which

yo = by 'sind =isosind . (6.4.9)
The Tollowing property then holds
. b
)( bo¥isocos? d + isosin?d = | (6.A.10)

where we have ordinary squares rather than isosquares.

The introduction of the isotopies of conventional polar coordinates can help
in understanding better the above formalism, as well as in identif ying the explicit
form of the isoangle & from the theory of isorotations in a plane [7],

@ = bybya = &lt,r,t,.). ' (6.A.11)

By recalling Eq.s (6.A.8) and (6.A.9), the isopolar coordinates in the isogauss plane
with value {6.A.11} are then given by

x = isocosd = b, cos (b bya), (6.A. 12)
y = isosind = byl sin(b;bya). (G.A%)
whose verification of property (6.A,11) is evidin;l
\C\/ xb2x + yb2y =Ai:;osir|2& + isocos? i = 1 : (6.A.13)
We reach in this way the isotopy of the trigonometric functions
cosa — isocos (b} bya), (6.A.14a)
sina — isosin{b; bya). (6.A.14b)

The construction of the isotrigonometry in all the necessary details can be
conducted accordingly. .

resulting in expression {6.A.6).
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ISOTOPY O OF THE PYTHAGOREAN THEOREM

A
5 D D
~ A
A—
(ﬁ (B)

FIGURE 6.A.1: A schematic view of the isotopic image of the Pythagorean
Theorem. Its understanding requires the knowledge that a right triangie
(A) remains a right triangle in isceuclidean space, called “right isotriangie”.
Diagram (B) is only the projection of the right isotriangle in the
conventional Euclidean space (see Sect. 5.2) for more details. The
considerations below are for the latter. To begin, the conventional sides are
lifted into curves. Then, the original angle a between two generic sides is
lifted into the isoangle @ = bbya. Despite these generalizations, a
relationship between the isohypothenuse and the isosides still exists, and
it is given by

&

D’ = Ab%A + Bb2B. (1)

As a matter of fact, this is precisely the centra! geometric meaning of
isoeuclidean spaces. It may be intriguing and instructive for the interested
reader to note that all conventional trigonometry on a plane then admits a
consistent and nontrivial isotopy. As an example, the isoside A is given by

A =Db'cosd =Disocos a, )
while the isoside B is given by
B = Dby ' sind =D isosin &, (3)

which are again consistent with basic theorem {1), and can independently be
derived via the use of the isotopy of trigonometric functions (6.A.18). Note
that the trigonometric functions are deformed both in intensity and in
their angle as shown below, which properties render them particularly
intriguing, e.g., for the study of deformation of potential wells in nuclear
physics.

" The rest of the p rti?of rj fﬁg‘lé are lifted accordingly. As an
example, the original @, g, v, ¥+ ﬁ ? = 180°, are deformed under isotopies
into the new values a, 8, ¥ such that a + B + y # 180°. However, the
peculiarity of the isceuclidean geometry is such that the deformations a —
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a, etc. are compensated in such a way that bybya = @. The sum of the angle
of {any) isotriangle is then
bibz(“"ﬁ""}') =4 + B + ';’ = 180"

All other properties can then be derived accordingly. To understand the
novelty one should note that the above generalization of the Pythagorean
theorem does not exist in conventional geometries, those constructed with
respect to conventional units, such as the Riemannian geometry. As we
shall see in Vol. I, the applications of these novel ideas are novel and
intriguing indeed.

We here limit ourself to mention only a few properties. For instance, the
isotrigonometric functions are also periodic of period 2w,

isocos (@ + 27) = isocos &, isosin {(@+2mw) = isosin a. (6.A.I5)
The following symmetry properties then follow as in the conventional case
isocos -G = isocos @, isosin —& = - isosind . (6.A.16)
Similarly, the theorems of isoaddition become
isosin (@ +B) = b;~! { isosin & isocos B + isocos & isosin B ), {6.A.17a)
isocos(a+B)= blz { b2'2 isocos a isocos B bl'z isosin @ isosin B) (6.A.18b)
isosin a + isosinf = 2 bl'] isosin ¢ {(a +B)isocos+{(a-8), (6.A.19c)
isocos & + isocos B = 2b, ! isocos 4 (& + B )isocos 4 (G -B), {6.A.19d)

etc.
The connection between isotrigonometric functions and isoexponentiation
calls for the preferred iscunit

1 =10 "0l = (det1®, 1=b, b, =( det T} (6.A.20)

under which we have the alternative definition of isotrigonometric functions

id_ 1eiD1D2a

e = by lisocos @ + ib,”! isosin &, (6.4.21)

where the isoenvelope is now defined for product a*b = atb and isounit 1. We can
then also introduce the isohyperbolic functions
isocosh & = b;™!cosh (b, bya), isosinh & = by} sinh (b, bya), (6.4.22

with basic property
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b2 isocosh? & - b,? isosinh? & = |, (6.A.23)

and their derivation via the isoeponentiation

écrL=Teb|b2c1

= by 'isocosh & + by} isosinh & . (6.4.24)
It may be intriguing and instructive for the interested reader to work out
additional properties of isotrigonometric and isohyperbolic functions.
We close this appendix with the following introguing propeerty of the
isogauss theory

Lemma 6.B.1: A!l possible algebraic or transcendental functions flx, y) =0 in
the Gauss plane can be unified into the isocircle in the isogauss plane of Class 1]

In fact, for any f(x,y) = 0 there always exist elements 8ij such that flx,y) = riSijrj -
I = 0. The above property can be illustrated via a certain geometric
complementarity between tyebcircle xx + yy = 1 and the tractrix

(o2
ye UYL Dy =y (6.A.25)

recently studied by Hecht [27] with intriguing gravitational implications studied in

Vol. II (see Fig. 6.B.1) It is evident that tractrix (6.B.1) is unified into the isocircle

B%/J[the diagonal isometric with elements &), =yx'2exp {1-{1- yz)* L, 855 = yl1 -
.

APPENDIX 6.B: OTHER GENERALIZATIONS OF FUNCTIONAL
ANALYSIS

A considerable number of generalizations of functional analysis of non-isotopic
type exist inthe literature, some of which dating back to the past century. They
are all independent from the isotopic generalization because derived from
different assumptions. As such, they ali have their own value. Regrettably, we
cannot review them here for brevity, and must limit ourselves to indicate those
most significant for our studies.

The generalization of functional analysis based on the so-calied g-
deformations (see, e.g., ref.s [23]} is particularly relevant for hadronic mechanics,
and includes g—number-generalizations of ordinary and special functions, the
operations defined on them, etc.

The differences between the isotopic and gq-functional analysis are
numerous, such as the central dependence of the former is on th lifting of th unit
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and the preservation of the conventional unit for the latter, the validity of the
former for arbitrary integro—differential operators T, and that of the latter for
g-numbers, etc. (see App. 1.7.A). Nevertheless, a knowledge of the g—functional
analysis is unquestionably useful for the construction of the isospecial functions,
as we shall see in Vol, II.

GEOMETRIC COMPLEMENTARITY BETWEEN
CIRCLE AND TRACTRIX

FIGURE 6.A.2: A reproduction of of one of the figures in Hecht [27] showing a
geometric complementiarity between the circle and the tractrix (which is the
Jower curve, the upper one being the catenary of which the tractrix is the
mvolute) By recalling that the circle is the curve with constant positive curvature,
K = +1/r2= cost,, Hecht [loc. cit.] has shown that the tractrix is the curve with the
constant negative curvature, K = - 1/r2 , where r is now the length of the
equitangent. The tractix is therefore significant for theoretical studies on
antigravity {see Yol. 11). The interpretation o thef y axis as bei g purely imaginary,
has then permitted Hecht to reach a complementary formulation of
transcendental functions via the trigonometric ones, eg.,

sin% - cos® = 1, |- tag?® = sec®, cotg® - 1 = cosec? (a)
which is an lntrigui‘hg realization of the isogauss plane.

Among the great variety of g~number theories, a significant realization was
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conceived by Dirac (see the review [24], p. 320 fr.) whose study is also
recommended here. Unfortunately, the differences between Dirac’s g-numbers
and the others g-numbers are so great to be misleading.?® For this reason we
shall refer to them via the alternative name of queer numbers suggested by
Dirac himnself.

Yet another generalization, this time, of the conventional differential
calculus is the so—called Helmholtzs calculus (see, ref. [25). This generalization
too is significant for these volumes because it leads to an inevitable
generalization of conventional relativities aithough different and independent
from the isotopic one.

Additional special forms of differential calculus exist in the literature,
depending on the needs at hand. We indicate, for instance, the small derivative
calculus developed by Gonzalez-Diaz and Jannussis [26], which is specifically
conceived for small distances and exhibits rather intriguing properties.

By no means the above indications exhaust all existing generalizations of
conventional functional analysis. Additional novel possibilities can be found in
the monograph by Lohmus, Paal and Sorgsepp [28]. A further approach is

- presented in the monograph by Vougiouklis [29] via the algebraic hyperstructures
{also called multivalued algebras) and the so-called Hy—structures, in which
associativity, distributivity and commutativity are replaced by their weak forms.
The latter approach also implies the chain of generalized hyperfieids,
hyperspaces, hyperalgebras, hypergroups, etc. with intriguing possibilities for
isotopic reformulation and application to interior dynamical problems.

Nevertheless, none of these generalizations require a lifting of the basic unit,
thus illustrating the uniqueness as well as independence of the isoanalysis of this
secticn.
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7: LIE-ADMISSIBLE THEORY

7.1: STATEMENT OF THE PROBLEM

A central assumption of hadronic mechanics is that one operator zlone, the
Lagrangian or the Hamiltonian, is insufficient to represent physical reality,
which needs instead (3N + 1}-quantities, the Lagrangian or Hamiltonian, plus the
3N diagonal elements of the isounit 1. ‘

By no means is the above assumption new, because its origins go back to
Lagrange [1], Hamnilton (2}, Jacobi [3] and other founders of analytic dynamics. The
novelty is merely in the realization of the 3N additional quantities via the
elements of the isounit.

The equations originally conceived by Lagrange and Hamilton are not
those available in the contemporary mathematical and physical literature, but
equations with external terms. In fact, the true Lagrange’s equations for a
system of N particles in three-dimensional Euclidean space are given by [1]

d aLutrit aLt, 1) S 7 Lia)
at arks arka kath BT e

L =K -Vvi,ri), k=123Exy2, a=1L2.,N, (7.1.1b)

the true Hamilton'’s equations are [2]

oH(t, 1, p) 8H{t, r, p}
K= o, = ———— + Rt p), (7.1.2a)
8Pxa arka
H = Kp) + Vi, r,p), (7.1.2b)

and the true Jacobi theoremn{3] is also that with external terms.

As one can see, Eq.s (7.1.1) and (7.1.2) require precisely (3N + I)-quantities
for the representation of physical reality, a Lagrangian or a Hamiltonian, plus the
3N external forces Fy,.
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By comparison, the analytic equations of the contemporary literature are
the so—called “truncated Lagrange’s and Hamilton's equations” i.e., those without
external terms. As a result of a scientific process still ignored by contemporary
historians, the external terms were progressively removed from the analytic
equations sometime by the end of the past century, to acquire the form almost
universally used nowadays.

The origin of this "truncation” appears to be the birth of Lie’s theory [4] in
the second part of the past century. In fact, the brackets of the true Hamilton's
equations, not only violate the Lie algebras axioms, but actually violate all
conditions to constitute an algebra, whether Lie or not (see below). The
achievement of a classical realization of Lie algebras therefore required the
elimination of the external terms. The historical successes of the truncated
Hamilton’s equations in the description, first, of planetary systems (see, e.g. ref.
[5) and then of the atomic structure (see, e.g, ref. [6]) provided a major drive
toward the current elimination of the external terms.

However, by no means, has this scientific process suppressed the vision of
Lagrange and Hamilton. In fact, the “truncated analytic equations” can directly
1"epresent51 only conservative systems and a restricted class of other systems. By
comparison, the “true analytic equations” are directly universal for all possible
systems of the physical reality, whether conservative or not. In fact, the
Lagrangian and Hamiltonian represent all conservative forces, while all remaining
forces are directly represented with the external terms.

The primary difference is that, while the truncated equations represent
closed-isolated systems with conserved total energy, ihe true equations
represent instead open-nonconservative systems with the following time rate of
variation of the energy 52

dH/dt = 2}:3 Vka Fkaifo, . (7.1.3)

due to interactions with systems interpreted as external.

This author conducted his graduate studied at the Universita di Torino,
Italy, where Lagrange did most of his work, thus having the opportunity of
studying Lagrange's original papers and and comparing them with contemporary‘
literature. The latter is essentially based or the trend to reduce all physical
systemns, whether classical or quantum mechanical, to a form representable by
the truncated analytic equations. By contract, Lagrange and Hamilton were fully
aware that the quantities today called "Lagrangian” and "Hamiltonian” cannot

5! We are here referring to a representation with a direct physical meaning of all
algorithms at hand, whereby r represents the actual frame of the observer, H represents
the actual total energy K + Y, p represents the actual linear momentum mt, etc.

52 We here adopt the definition of nonconservation of ref.s [8,9] in which the energy
can monotonically increase or decrease in time, while dissipation is referred to
the case when the energy solely decreases in time.
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represent the totality of the physical reality, but only a very small part of it and,
for this reason, they introduced the external terms to their equations.

Subsequent rigorous studies on the integrability conditions for the
existence of a Lagrangian or a Hamiltonian, Helmhoitz's conditions of variational
seifadjointness [7,8], proved Lagrange’s and Hamilton's vision in its entirety. In
fact, the broadest possible class of Newtonian systems (those of the interior
dynamical problem} result in being nonrepresentable with a Lagrangian or a
Hamiltonian in the coordinates of the observer (These are the so-called
essentially nonselfadjoint systems [8)).

We mentioned earlier the contemporary trend of using the Lie-Koening
theorem (see ref. [9] and quoted literature) to turn nonlagrangian-nonhamiltonian
systems into equivalent forms which are representable with the truncated
analytic equations. Yet, Lagrange and Hamilton’s vision remains broader then the
contemporary one in this respect too for the reasons indicated earlier (lack of
general applicability of the Lie-Koening theorem, e.g., for integral or
discontinuous systems, lack of realization of the transformed frame in the
laboratory, loss of conventional relativities because of the highly noninertial
character of the transformed frame, etc.).

But even ignoring all this, and assuming that some artificial construction
permits the construction of a Lagrangian or a Hamiltonian for the truncated
equations, the physical significance of these quantities is unclear, controversial
and manifestly misleading, particularly in the operator treatment of
nonconservative forces.3

Because of the above occurrences, this author spent his research life
studying the true, historical, Lagrange and Hamilton equations with external
terms, according to the following two main lines:

Isotopies [7] These are the methods outlined in the preceding chapters
possessing a Lie-isotopic structure, which can now be reinspected from a
different viewpoint. In fact, these methods were conceived to preserve the basic

%3 The literature in particle physics is full of models in which the physical structure of
the Hamiltonian

H= K+ V = Kin Energy + Pot. Energy. {1

is generalized into canonical expressions of the type

H=p%2m + Vo), p=aeP’, a8¢R. (2

Yet H is continued to be interpreted as “the total energy” while in reality H is a pure
mathernatical quantity (a first integral). The real total energy E =K + V is nonconserved
because of interactions not. properly identified as being external, i.e. {E, Hl # 0. The
“physical conclusions” of these models are unsettled at best. This is another illustration of
the paramount importance of solely using “direct representations” (as identified in the
preceding footnote) whenever studying nonpotential forces.
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axioms of the truncated analytic equations, yet requiring (3N+1)}-quantities for the
representation of physical reality and permitting the same direct representation
of the true analytic equations with external terms.

Genotopies [7]. These are the more general methods outlined in this
chapter with the covering Lie-admissible structure.

A central property represented by Eq.s (7.1.1) and {7.1.2) is that conventional
closed—-conservative systems are a particular case of the more generai open—
nonconservative ones. In fact, the conventional conservation law of the energy is
a particular case of the more general laws (7.1.3) on the time-rate-of-variation
of the energy. As a result, we expect the existence of covering methods for the
treatment of open nonconservative systems which admit the conventional Lie
and Lie-isotopic methods as particular cases.

A central problem for a quantitative study of open nonconservative
systems is therefore the identification of a covering of both, Lie and Lie-
isotopic theories which permils a direct representation of the time-rate-of-
" variation of physical quantities; that is, a representation in which all quantities H,
T, P, TAp, elc, have a direct physical meaning, change their value in time and
admit conservation laws as particular cases.

Recall that the conservation of the energy for Lie and Lie-isotopic
formulations,

dH/dt=[H,Hl = HH-HH=0, {7.1. 3a)
dH/dt = [H'Hl = HTH-HTH = 0, (7.1.3b)

are a consequence of the anticommutativity of the products [A, Bl and B, Al
Thus, the above requirements can be expressed by the following conditions,
originally submitted in ref.s [12-14] and then studied in detail in ref.s [7,10,11}:

Condition 7.1.1: The brackets, say A®B, of the analytic equations
characterizing interactions under external forces must not be anticommutative,
AGB # - BoA, as a necessary condition to represent the time-rate-of—variation of
the energy and of other physical quantities

idH/dt = HeH = f{t) = 0 {7.1.4)

Condition 7.1.2: The new brackets A©GB must recover the isotopic fA,H] or
conventional Lie product [A, H] when all external forces are null

Li AO0B =[A Blorla, Bl; (7.1.5)

m
Ext. Forces =0
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Condition 7.1.3: The new brackets AOB must, first, define a consistent
algebra, and, second, that algebra must be a covering of the Lie and Lie-isotopic
algebras, therefore admitting the latter in their classification.

As originally identified in ref.s [12-14], and confirmed in the subsequent
studies [7,10,11], the algebras which verif y all the above conditions are the Lie-
admissible algebras preliminarily presented in App. L.4.A.

When joint with studies on the isotopic formuiations, this occurrence
permits the identification of the following chain of covering formulations:

LIE 7 - LIE-ISOTOPIC ] LIE-ADMISSIBLE
FORMULATIONS: FORMULATIONS: FORMULATIONS:
Closed-isolated . Closed-isolated Open—nonconserv.
local—giff. C nonlocal-integral C nonlocal-integral
Hamiltonian nonhamiltonian nonhamiltonian
systems - N systems - systems

In fact, the Lie-isotopic formulations were introduced in ref. [7] precisely
as a particular form of the more general Lie—admissible structures because the
antisymmetric algebras generally attached to the Lie-admissible ones are not
Lie, but Lie—-tsotopic.

In this chapter we shall outline the rudiments of the Lie—admissible
formulations with the understanding that they are considerably less developed
than the corresponding Lie-isotopic methods, and so much remains to be done.

The mathematical relevance of the Lie-admissible theory is self-evident
from their covering character over the conventional Lie and Lie-isotopic theories.
Their physical relevance can be understood only after a knowledge of the
problematic aspects of current formulations of nonconservative systems outlined
in Sect. 7.2 below. The Lie—admissible formulations result to be as rather unique
for a number of applications, including nonconservative systems, q-
deformations, nonlinear and nonlocal theories, and others.

However, the primary mathernatical and physical relevance of the Lie—
admissible theory for which it was conceived [7-11] rests in the capability of
providing an axiomatic formulation on the origin of irreversibility.

The scientific scene prior to the advent of hadronic mechanics is well
known. On one side, experimental evidence establishes that macroscopic
structures generally are irreversible at the Newtonian, statistical,
thermodynamical and other levels. On the other side, only one theory for the
macroscopic world, the reversible quantum mechanics, was then available. All
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past efforts in irreversibility have therefore been centered in attempting a
reconciliation of the macroscopic evidence of irreversibility with the only
available microscopic theory (see, e.g., the recent account [15] and quoted
literature). .

The advent of hadronic mechanics has altered this scientific scenario
because of the structural irreversibility of its Lie-admissible branch. In fact,
quantum mechanics emerges as being exact for the exterior particle problem in
vacuum {such as the atomic structure) which is reversible also at the classical
level {such as the planetary structure). Hadronic mechanics then emerges as the
applicable theory for the interior particle problem which is irreversible at the
particle level (such as the structure of a neutron star} and remains irreversible at
its classical counterpart (such as the structure of Jupiter).

At any rate, the current studies on irreversibility cannot resolve the
paradox caused by the No-Reduction Theorems of Ch. 1.1, according to which an
irreversible interior system, such as a satellite during re-entry in a monotonically
decaying orbit, simply cannot be decomposed in any consistent way into a
collection of elementary particles all in stable-reversible orbits, while such
paradox is indeed resolved by hadronic mechanics (see Fig. 7.1.1).

The epistemological origins are the limitations of quantum mechanics
{Sect. [.1.2) caused by its local-differential structure which does not permit an
exact description of the nonlocal-integral conditions of interior problems. The
advent of a structurally irreversible mechanics specifically built for interior
problemns evidently alter the scenario.

ORIGIN OF IRREVERSIBILITY

REVERSIBLE FORMULATIONS

CLASSICAL EXTERIOR PROBLEM: PARTICLE EXTERIOR PROBLEM:
PLANETARY STRUCTURE 1 ATOMICS STRUCTURE
HAMILTONIAN MECHANICS QUANTUM MECHANICS

\
IRREVERSIBLE FORMULATIONS

CLASSICAL INTERIOR PROBLEM: PARTICLE INTERIOCR PROBLEM:
STRUCTURE OF JUPITER =—e——=3n STRUCTURE OF NEUTRON STARS
BIRKHOFF-ADM. MECHANICS - HADRONIC MECHANICS

FIGURE 7.1.1. A schematic view of the scenario on irreversibility after the advent of
hadronic mechanics. As well known, exterior dynamical problems of point particles in
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vacuum are reversible at both the ciassical and particle levels, and so are the
corresponding mechanics, the Hamiltonian and quantum mechanics. Irreversibility
emerges in nature for interior dynamical problems. Once this fundamental distinction
is understood, the scenario in irreversibility is completely altered. One begins
with the need of a covering mechanics at the purely classical level because
Hamiltonian mechanics cannot represent all interior Newtonian systems in the
frame of the experimenter [89]. These studies have resulted in the construction of
a generalization of Hamiitonian mechanics submitted in ref.s [10,11] under the
name of Birkhoff-admissible mechanics which is structurally irreversible and
therefore directly compatible with irreversibility at the subsequent statistical and
thermodynamical levels. In these volumes we shali study the Lie-admissible
branch of hadronic mechanics as the particle counterpart of the Birkhoff-
admissible mechanics. Irreversibility then emerges as originating at the ultimate
elementary level of interior particle problems, and then merely persists at the
macrescopic level.

7.2; PROBLEMATIC ASPECTS OF CONTEMPORARY
FORMULATIONS OF OPEN SYSTEMS

The best to way initiate the study of the Lie-admissible formulations is to see
{and admit) rather serious problemnatic aspects in the contemporary formulation
of open—nonconservative systems beginning at the purely classical level, which
then persist at different levels.

They c¢an be identified by inspecting the brackets of the time evolution at
the various levels of f description, such as in:

Classical mechanics, where nonconservative systems of N particles
(labeled with a = 1, 2, .., N) in Euclidean space with local coordinates xX (k = 1, 2,
3)represented via external forces Fy,, result in the following dynamical evolution
of a quantity Alr,p)

da/dat % Axm = [a,H -+ Fia (7.2.1)
: 9Pka
with
oA 8B aB 9 A
(A H = - (7.2.2)
6rk apk al‘k apk

being the conventional Poisson brackets;
Quantum mechanics, where nonconservative systems are generally
represented by nonhermitean Hamiltonians of the type

H=H,+iV » Hf, (7.2:3)
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as rather popular in nuclear physics, resuiting in the dynamical equations
idA/dt = AxH = AH - Hl A (7.2.4)
Statistical mechanics, where collisions and other effects are expressed
also with external terms, classically and quantum mechanically, resulting in the
following dynamical evolution of the density matrix p
idp/dt = pxH =[p,H + C {7.2.5)
with
fp,Hl = pH - Hp - {7.2.6)

being the classical or quantum, canonical brackets.

Note that all the above formulations correctly describe the time-rate—of-
variation of the energy,

igH/dt = HxH = 1{t) =0 (7.2.7)

Therefore, the brackets AxH do indeed describe an open nonconservative
system, by verifying Condition 7.1.1. The admission of the conventional Lie
brackets as a particular case is trivial, and brackets AxH also verify Condition
7.1.2. The central point is that the above formulations violate the crucial
Conditicn 7.1.3.

Proposition 7.2,1 [7,10,11} The brackets of conventional formulations of
open nonconservative systems, Eq.s (7.2.1), (7.2.4) and (7.2.5) do not
constitute an "algebra” as commonly understood in mathematics {see Sect,
2.4 and App. 4.A) because they verify the right scalar and distributive laws,
ax{AxB)=(axA)xB = Ax(axB), (7.2.8a)
(A+B)xC = AXB + BxC, (7.2.8b)

but violate the left distributive and scalar laws, ie, for any scalar a¥ 0, a
€ F, and elements A, B, C, we have

(A¥B)xa » Ax(Bxa) # (Axa)xB, {7.2.9a)

AX(B+C) # AXB + AxC, (7.2.91)
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In different terms, in the transition from the conventional Lie
formulations characterized by brackets (A, Hl to the above classical, quantum or
statistical brackets AxH, we have not only the loss of all Lie algebras, but in
actuality we have the loss of all possible consistent algebraic structures.

Additional mathematical properties are the following.

Proposition 7.2.2 [loc. cit}k Eq.s (7.2.1), (7.2.4) and {(7.25} do not admit a
consistent enveloping algebra.

This can be seen in a number of ways, the most effective one being the
fact that Eq.s (7.2.5) cannot be exponentiated as for conventional Lie equations,
because they do not admit a consistent infinite basis (no Poincaré-Birkhoff~Witt
theorem-see Sect. 1.4.3).

Propesition 7.2.3 lloc. cit.l Eq.s (7.2.1) (7.24) and (7.2.5) do not admit a
consistent unit.

This can also be seen in a number of ways, e.g., from the lack of a
consistent envelope needed to define the unit of the theory.

Rather than being mere mathematical curiosities, the physical implications
of the above occurrences are rather serious, and can be summarized as follows
(for a detailed study see ref. [11,16]:

Problematic aspect 7.2.1: Eq.s (7.2.1) (7.24) and (7.2.5) do not admit a
consistent measurement theory. The fundamental notion of all measurements
theories, whether classical, or quantum mechanical or statistical, is the unit with
respect to which the measurements are referred to®?, No formulation without a
unit can therefore have a measurement theory usable for contemporary
experiments. Note that one may indeed conduct measures. However, the insidious
aspect is that they have no rigorous relationship to the theory at hand. The lack
of existence of the unit for the equations considered can be established on
numerous independent counts, e.g., from the lack of the envelope itself in which
the unit is defined. The physical implications for plasma physics and other fields
are self-evident.

Problematic aspect 7.2.2; The angular momentum, spin, and other

54 The issue is technically deeper. In fact, a Hilbert space can certainly be defined over a
field which, as such, possesses the unit 1, even for nonconservative systermns. The point is
that the enveloping operator algebra of the theory here considered has no unit, which
implies that no operator can be “measured” in a consistent way. To understand the
occurrence one should think at a quantum mechanical measurement in which Planck’s
constant cannot be defined.
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physical quantities characterized by Lie)s theory cannot be consistently defined
under the generalized brackets AxH of the equations considered. As well known,
the angular momentum and spin are centrally dependent on the exact O(3) and
SuU(2) theory, respectively. Then, the same quantities are manifestly meaningless,
mathematically and physically, for Eq.s (7.2.1), (7.2.4) and (7.2.5), trivially, because
they have lost not only the entire Lies theory, but the very notion of algebra. This
is another occurrence which should not be taken lightly. As an example, the use
of the terms “"protons and neutrons with spin 4” has no mathematical or physical
meaning when referred to Eq.s (7.2.4) in nuclear physics or Eq.s (7.2.5) in plasma
physics.

Problematic aspect 7.2.3: Loss of the conventional notion of particle.
Eq.s (7.2.4) have been generally used in nuclear physics over the past decades to
describe nonconservative processes of nucleons. However, the quantum
mechanical notion of protons and neutrons can be rigorously proved to be
inapplicable to these equations and, if applied, to imply a host of inconsistencies.
They are technically due to the loss of all means to characterize the conventional
notion of particle.

Problematic aspect 7.2.4: Loss of the rotational, Lorentz and other
fundamental space-time symmetries. This is evidently due to the lack of a
consistent exponentiation and other technical reasons. Stated explicitly, the
open-nonconservative systems generally represented in the contemporary
literature imply the inapplicability of Galilei’s, FEinstein’s special and Einstein’s
general relativities.

Problematic aspect 7.2.5: Eq.s (7.2.1) (7.2.4) and (7.2.5) cannot consistently
represent irreversibility. As well known, Lie's theories for Hermitean
Hamiltonians verify the Theorem of Detailed Balancing (se, e.g., ref. [17)) and, as
such, they do consistently represent reversibility from first principles (Fig. 7.1.1).
Such a theorem becomes manifestly inapplicable under nonunitary
transformations as those underlying Eq.s {7.2.4), but no consistent generaiization
of the theorem of detailed balancing exists for brackets AxH, to our best
knowledge. Thus, the equations considered cannot consistently represent
irreversibility (see Vol. II for a Lie-admissible, irreversible generalization of the
Theoremn of Detailed Balancing [17).

For additional problematic aspects the interested reader may consult ref.s
[10,11,16].

It is hoped the reader can see the need for a fundamental structural
revision in the treatment of open nonconservative systems in their classical,
particle and statistical formulation, because any attempt at reconciling these
systems with old knowledge will inevitably lead to inconsistencies.
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7.3: HISTORICAL NOTES

The notion of Lie-admissible algebra was introduced by A. A. Albert in paper
[18] of 1948. A generally nonassociative algebra U with elements a, b, ¢, ... and
{abstract) product ab over a field Fla,+x°° is called Lie-admissible when the
attached algebra U™, which is the same vector space as U {that is, the elements of
U and U~ coincide) but equipped with the product [a, bl = ab - ba, is Lie.

Since the attached product [a, bl is antisymmetric, the sole condition for a
product ab to be Lie-admissible is that the attached product [a,blyy verifies the
Jacobi identity, i.e., the following axiom, called axiom of general Lie-
admissibility , is identically verified

a,b,c)+(b,ca+(cab-(cba-(bac-(ch =0, (7.3.1)

where
{a,b,ct = (ablc - albe) (7.32)

is called the associator (see also App. 4.A), and represents the departure of the
algebra from an associative one.

Albert [18] identified only one nontrivial subcase of Lie-admissible algebras
called flexible Lie-adrnissible algebras and characterized by the axiomns

{a,b,a = 0, (7.3.3a)
(a,b,c) + (b,cal + (c,a,b = 0 (7.3.30)

where condition (7.3.3), called the flexibility law, is a simple generalization of
the anticommutative law. No additional study, e.g., of the structure theory, was
conducted by Albert in his original paper [18].

In the subsequent two decades, only two additional brief notes appeared by
mathematicians in Lie-admissible algebras, one in 1957 and one in 1962 (see the
general bibtiography [19]), but without any detailed mathematical study.

The Lie-admissible algebras made their first appearance in classical
mechanics in paper [12-14] 1967-68 via their identification in the fundamental
brackets of the time evolution of Hamilton's equations with external terms, when
properly written (see bellow). The algebras were then studied in more details in
ref.s [7,10,11]

By introducing the unified notationa=(@") = (rg,, pg) B = 1, 2 .., 6N,
the main result of ref.s [7,13-15] can express via the re-formulation of brackets

3% Assumed throughout this presentation as of characteristic zero.
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AGB of Eq.s (7.1.5)

0A 0A oB
Fya = WH := — sV (7342
8pka pal aaV

SV = @hV + v = o> v MV o giag (0, FACaH 7 0p)), (7.3.4)

dA/dt = [AH] +

= 1Y+ s, (7.3.4¢)

where wH is Lie’s tensor characterizing the Poisson brackets, and 17 is a quantity
to be identified shortly. It is then easy to verify the existence of: the consistent
exponentiation of Eq.s (7.3.4a) into the finite form

t SHV (o H) (3y,) A

Alt) = e 0; (7.3.5)

the direct representation of the time-rate—of-variation of the energy

ot St @ H) ) H

H=H- = v VoA (7.3.6)

and underlying equations of motion in explicit form

oH
Pka
oH oH
Pea = - + Ska = A, + PSAL (7.37b)
OTka 9Pka

where SA stands for the conditions of variational seifadjointness and NSA stands
for their violation [7,8].

The verification of the right and left scalar and distributive laws by
brackets (A, B) is evident.56 Equally evident is their Lie-admissibility because
their attached antisymmetric brackets are Lie,

(A,B) - (B,A} = 2[A,B]. (7.3.8)
Thus, Lie-admissible equations (7.3.7) resolve all problematic aspects of Eq.s

(7.1.2).
Very few additional papers appeared in the decade following ref.s [12-14]

3 Note that the addition of a second term in the equation for fy, would imply the loss,
in general, of the physical meaning of the linear momentum py, = myfia.
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(see the “genealogical tree” on Lie-admissible algebras, ref. (7] p. 304 and quoted
literature in pp. 414-415). However, following paper [7] of 1978, the study of Lie-
admissible algebras increased considerably, also as a result of a series of
Workshops on Lie-admissible Formulations organized by this author (see the
general bibliography [19)).

The Lie—admissible algebras made their first appearance in operator
mechanics ref. [20], p. 746, of 1978 as the central structural algebras of hadronic
mechanics via the basic dynamical equations

idA/dt = (AB) = ARB - BSA, {7.3.9a)
R,SSR+S #0, R= s (7.39b)

with exponentiated form {ref. [20} Sect. 4.18, p. 779 ff.}

A = e TIHSE 4 o TItRHE 7.3.10
and time-rate—-of-variation of the energy operator
idH/dt = (H'H) = HR-SH. {7.3.11)

It is evident that the product (A, B} characterizes a general Lie-admissible
algebra because the attached algebra is Lie-isotopic (rather than Lie)

(A/B) - (BA) = [A/Bl = ATB - BTA, T=R+S. {7.3.12)
The algebra characterized by the following brackets
(A, B)=p AB - q BA, (7.3.13)

with p and g non-null scalars (or functions, was introduced by the author [12]
back in 196797 as a realization of flexible Lie-admissible and Jordan-admissible
algebras (App. 1.4.A).

Subsequently, the Lie-admissible algebras made their first appearance in
statistical mechanics in paper {21] of 1979 via the master- equation for the density
matrix

idp/dt =[p,HI+C ={p,H) = pRH - HSp, {7.3.14)

T The sole realization of the Lie-admissible product introduced by Albert 118} is (a, b} =
Aab - (I = Aba which does not include the so-called g-deformations {App. 1.7.A) as a
particular case, while the latter are indeed a particular case of the Lie~admissible
algebras with product (7.3.13).
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which admits conventional equations of type (7.25) as a particular case with the
identifications

pH - Hp +C=pRH - HSp R=1, s=1+H gl (215

although Eq. (7.3.15) are transparentiy more general than (7.2.5).

Since that time (1979), Lie-admissible algebras have been submitted to
considerable, mathematical and physical studies by numerous authors. A
comprehensive bibliography until 1984 can be found in ref. [19). More recent
accounts can be found in Vols II and [II.

Monograph [11] presents the Lie-admissible theory in classical realization.
In this chapter we shall outline the foundations of the Lie-admissible theory in
its operator realization. Applications will be studied in the subsequent volumes.

This is a line of study conducted by this author [7,10,11] which is
considerably different than the studies generally listed in bibliography [19]. In
fact, the latter were conducted within the context of abstract nonassociative
algebras, while the former refer, specifically, to a step-by-step generalization of
enveloping algebras, Lie algebras, Lie groups, representation theory, etc. The
understanding is that all studies in Lie-admissibility, whether explicitly or
implicitly oriented for the generalization of Lie's theory, are relevant for these
volumes because they deal with the mathematical structure of hadronic
rmechanics.

The inspection of classical studies (11} is recommended for the reader
interested in acquiring a technical knowledge of the field, because all the basic
concepts of the the Lie-admissible formulations already exist at the classical
level, where they find theirs clearest realization.58

7.4: GENONUMBERS

The technical understanding of the Lie-admissible formulations requires the
knowledge that they are based on a generalized theory of numbers beyond that of
isonumbers.

Let Fla,+x) be a conventional field (Sect. 2.3) with multiplication af : =
a>@. In Ch. [.2 we have reviewed a generalization of this basic operation into the
isotopic form a*3 = aTB. Both products af and a*B are based on the assumption
that they apply irrespective of whether a multiplies p from the left, or B

o8 Particularly important is the classical realization of the Lie-admissible symmelries
which provide a structural generalization of Noether’s theorem whereby the Lie-
admissible symmetries characterize the time-rate-of-variation of physical quantities,
thus admitting as a particular case Lie symmetries and conservation laws. Rather oddly,
these covering notions have remained virtually ignored in the physical literature.
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multiplies a from the right. We can therefore introduce the following:

Definition 7.4.1 - Ordering of the multiplication {22} The multiplication
of two numbers a and B is ordered to the right, and denoted u>f, when a
muitiplies B to the right, while it is ordered to the left, and denoted a<@ when B
multiplies a from the left.

Note that the above ordering is compatible with other properties and
axioms of number theory. As an example, if the original field F is commutative, it
rernains commutative after the above ordering, that is, if af = Ba, then a>p = p>a
and a<B = B<a. The same occurrence holds for other properties, such as
associativity while the verification of the left and right distributive laws is
evident. Thus, the entire Definition 2.3.1 can therefore be reformulated under
ordering by characterizing fully acceptable fieids.

The point at the foundations of the Lie-admissible theory is that the
multiplications of the same numbers in different orderings are generally
different, a>p # B<a. In turn, this implies the possibility of introducing two
- ordered isounits, called genounits, one per each ordering

17 'I>>a

a>T =a, {74.1a)

T Y<a=a<Xl

a, (7.4.10)

The above features permit a dual generalization of Definition 2.3.1, one for
ordering to the right, yielding the right genofield -

F>(6”,+97), a” = al”, (7.4.2)

whose elements @~ are called right genonumbers, and one to the left, yielding
the Jeft genofield

e+, <a = a, (7.4.3)

whose elements <a are called Jeft genonumbers. The above two different
genofields are often denoted with the unified symbol <F*{<a”+,<+>), with the
understanding that the orderings can solely be used individually and not jointly.

The realization of the genoproducts used in these volumes is given by the
following two different isotopic multiplications, one to the right and one to the
left, |

a>p:=aRB, (7.4.4a)

a<p:=aS@, {7.4.4D)



-326 -

where R = §, with realization of the genounits
1> = R Y>a=a, -(7.4.5a)
<1 =51, a<< = q. (7.4.5b)

The entire theory of isonumbers of Ch. 2, including isoreal, isocomplex,
isoquaternions and isooctonions numbers, then admits a generalization into the
theory of genonumbers first introduced in ref. [22].

Note the need for a prior isotopy aB — aTB in order to construct genotopies
{7.4.4). In fact, no ordering is evidently meaningful for the conventional
multiplication ap = aip. :

3o far we have presented in this section the right and left
genomultiplications and related isounits as disjoint, in which case the isounits
can indeed be Hermitean and real-valued, thus admitting of Kadeisvili
classification into Classes I, II, 111, IV, V.

Nevertheless, the realizations used in physics are those when the right and
left genounits are inter-related by a conjugation, such as the Hermitean
conjugation

P = (<), (7.46)

In this case Kadeisvili’s classification still holds, but must be referred to the
Hermitean parts of the genounits. More specifically, we shall decompose the
genounits into the products

1> =1p, <4 =q1L 1=1 pl=q, (7.4.7)

where 1 is the maximal Hermitean part. We can then classify the theory of
genonumbers into Kadeisvili's Classes I, 11, I[i, IV and V now referred to the
maximal Hermitean part of the genounits.

As it will be soon evident, under the above interconnection, the product
ordered to the right can be interpreted as characterizing motion forward in time,
while that ordered to the left can represent motion backward in time. In

different term, the ordering of Definition 7.4.1 can represent Eddington’s "arrows
of time”, and we have the following:

Lemma 7.4.1 [22} An axiomatization of irreversibility in number theory is
given by: A) the ordering of the multiplications to the right and to the left,
representing motion forward and backward in time, respectively; B} the
difierentiation of these two muitiplications; and C} the assumption of an
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interconnecting map representing time-reversal fTormsnes X

As we shall see iri the rest of this chapter and in Vols II and III, the theory
of genonumbers that with interconnecting map is the true foundation of the Lie~
admissible branch of hadronic mechanics,

Note that the simpler theory of isonumbers is a subcase of that of
genonumbers under the simple condition

R=5=R (7.4.8)

This illustrates that the origin of the reversibility of the Lie and Lie-isotopic
theories can be seen in their respective theories of numbers and isonumbers and,
more specifically, from the fact that their multiplications to the right and to the
left are identical, a >B=a <p. '

We close this section with a few mathematical comments. Realization (7.4.4)
is evidently not unique. In fact, other realizations of ordered multiplications are
given by

a>B=WaWRWEW, W2=w, (7.4.9a)
a<P=ZaZSZBZ, Z°=1, (7.4.9b)

where R # § and W # Z. The latter realizations are not used in physics to our best
knowiledge at this writing, because they do not verify the Fundamental Condition
4.4.1 of admitting unique, left and right units,

Conjugation (7.4.8) is used in physics, but in mathematics one can introduce
any other conjugation, such as that characterized by isoduality

17 =(1)8 = -, (7.4.10)

or have no conjugation at all.

Finally, note that the notion of isoduality applies also to genofields, yielding
the isodual genofields <t~ 4<g> 4 + <> 0),

In the preceding chapters we have indicated the truly remarkable, novel
mathematical developments permitted by the theory of isonumbers. The yet
broader theory of genonumbers permit additional mathernatical developments
that are simply inconceivable with conventional theories.

As an illustration, the Lie product AB -BA originates from two envelopes,
one for the multiplication to the right with product BA, and one to the left with
product AB, as we shall see, even though these two multiplications are evidently
identical. Then, the theory of genonumbers permits the reinterpretation of Lie
algebras as commutative Jordan algebras defined on two genofields
interconnected by isoduality, i.e.
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AB-BA = AtB +B194A, (7.4.11)

The remark is important to indicate that Jordan legacy (e, a possible quantum
mechanical content of Jordan algebras) is still open.

We finally note that the ordering of the multiplication can also be extended
to the addition, although it must necessarily be lifted to be nontrivial. This
further generalization is not used in physics because it violates the distributive
law as studied in Sect. [.2.3. Nevertheless, the extension is significant to point out
that the most general notion of “numbers” introduced by this author [22], the
theory of genonumbers and their isoduals. 1t can be expressed by the unified
symbol <F>(<g>, <¥” <%>), representing: three separate generalizations of the
numbers a = & — &~ — <& characterized by three separate generalizations of
the operations + ~» ¥+ —+ > - <% and x = % - %> — <% with three separate
generalizations of the additive units 0 = ) — 0~ - <0, and multiplicative units 1
—1 =17 > <1, plus the image of all these structures under isoduality.

Such genonumbers can be not only of dimension 1 (genoreals) 2
(eenocomplex), 4 (genoquaternions) and 8 (genooctonions), but also have

‘dimension 3, 5, 6, 7 (called “hidden numbers” because they hidden in the
operations as for the case of isonumbers (see App. 1.2.A and ref. [22] for brevity).

7.5: GENOSPACES

The entire theory of isospaces of Ch. 1.3 admits a consistent and significant
genotopic covering. Let S{x,g,R) be a conventional metric or pseudo-metric space
and 8(x,§R) its family of isotopes. Then, the following left and right genospaces
hold

S>(x,§>,R>)/ P = gR,P=Px 1V =R, 7.5.18)
<8x <3 <R) l<o -sg, 2 =xgx, A=51.  @sib)
17 = (<%, {(75.1c

A most visible difference between genospaces and isospaces is therefore
that the invariant in the former is unique, while in the laiter we have two
different invariants, one for the multiplication to the right and one to the left.

When the two multiplications are interconnected by conjugation (7.5.1c),
we have two different genospaces one for motion forward in time, and one for
motion backward in time.
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The most significant genospaces, denoted with a unified notation
<& (x,<g”,<R”), are given by:

I) genoeuclidean spaces <E>(x,“8”,“R>) and their isoduals;

IT) genominkowskian spaces “M”{(x,7}”,“R”} and their isoduals;

III) genoriemannian spaces <#”(x,g”,“R”} and their isoduals,
where 8, 0, g are the isometric of the corresponding isospaces of Ch. 1.3.

It should be noted that conventional spaces, such as the Euclidean space
E(r,8,R), admit a nontrivial isodual images E(r,89R%). However, their gencimages
<E>(r,6”,“R”) without a joint isotopy are trivial, evidently because <&~ = &. This
occurrence is similar to that of the preceding section whereby ordinary fields
Fla,+*) admit nontrivial isoduals F4ad xd) without isotopies, but trivial genotopes,
<F” = F, because a>b = b<a for ordinary fields.

The lack of a significant "arrow of time” in the conventional numbers and
spaces is the axiomatic origin of their reversibility. By comparison, the presence
of a structural “arrow of time” in the theory of genonumbers and genospaces
renders them particularly suited to represent irreversibility.

The use of conventional transformation theory for genospaces also violates
linearity, transitivity and other basic laws. For this reason it must be lifted into
the right and left genotrasformations

x = 0> >x/= 0®Rx, (7.5.2a)
X = X <<U/=x S<0. (7.4.20)

The above transformations are one-sided isolinear, isolocal and isocanonical as it
occurs for the isotransformations. This illustrates again that the ordering of the
multiplication does indeed preserve all basic axioms. The remaining aspects of
isospaces (Ch. 1.3) and their transformation theory therefore admit a consistent
and intriguing generalization into left and right theories.

7.6: LIE-ADMISSIBLE THEORY

Recall that the conventional unit 1 is at the foundation of Lie’s theory, and the
same occurrence holds for the Lie—isotopic theory.

The distinction of the rhultiplication to the right from that to the left with
corresponding different genounits implies an evident generalization of the entire
Lie and Lie-isotopic theories whose study has only been initiated at this writing
[11]. We here indicate the existence of two genoassociative enveloping algebras &~
and <% with the same elements A, B, C, ... denoted with the joint symbol <¢”, buy
different genoproducts and genounits
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¥ : A>B:=ARB, 1 =R, {7.6.1a)
<t:A<B:=ASB, <1=gl. (7.6.1b)

defined over corresponding genofields <F>(<g> +,<«>),

It is easy to see that the isotopic Poincaré-Birkhoff-Witt theorem (Sect. 4.3)
can be consistently generalized for each direction of the multiplication, yielding
an infinite-dimensional base for each genoassociative envelope.59

This allows the introduction of the unique, fundamental notions of
genoexponentiation

iXw _ [e‘XRw}‘P, (7.6.2a)
iwX iwsSX

0” =¢

2>

<0 = e % = <t{e b, (7.6.2b)

_ which, in turn, permit the formulation of the Lie-admissible group Tfirst
introduced in refg. {7] (see also refs (10,11]}, which is given by the left and right

genotransformations of a generic quantity Q € <¢~

s Xy Qo <t e<Ein] =

iwSX

Qw) = 0°>Q0<<0 = {e
iXRw
e

13

= { 1Qo e I (7.6.2h)
Its most fundamental feature is of admitting a non-Lie/non-Lie~isotopic

but Lie-admissible algebra in the neighborhood of the genoidenties

aQ
i = QX =Q<X ~X>Q, (76.3)
dw

thus confirming the existence of a Lie~admissible generalization of Lie’s theory at
all various levels (enveloping algebras, Lie algebras, Lie groups, etc). Structure
(7.6.3) also confirms that the Lh.s. of the product ¢Q."X) is characterized by the
backward genoenvelope, while the r.hs. is characterized by the forward
genoenvelope, as anticipated eartier.

An important point for the correct interpretation and use of the theory is
that the envelopes underlying the Lie-admissible formulations remain -
associative, thus verifying Fundamental Condition 1.4.4.1. In different terms,
structure (7.6.3) is a generalization of the corresponding Lie and Lie-isotopic

% This is possible because, again, the genoaigebras admit well defined right and left
units. By comparison, g-deformation have no such unit and, therefore, do not admit a
unique basis for their exponentiation (App. 1.7.A).
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structures
aQ
i =[{QH = QH - HQ, (7.6.4a)
dw
4Q
i = [QH =QTH -HTQ, (7.6.4b)
dw

where, as now familiar, the brackets[ , | and [ ;" ] are nonassociative, but their
envelopes with respective product QX and QTX are indeed associative.

Exactly the same occurrence holds for the more general Lie-admissible
formulations. In fact, the brackets ( " ) are evidently nonassociative, but the
underlying envelopes with products Q>H and H<Q are isoassociative.

In Vol. II we shall study the basic laws of the Lie-admissible representation
of interior systems. In particular, we shall identify the Lie-admissibie
symmetries and show that they characterize time-rate-of-variation of physical
quantijties, by providing in this way an operator counterpart of the
corresponding classical notions [11}, and by reaching an intriguing covering of the
corresponding notions for Lie and Lie-isotopic theories.

The most important application of the Lie-admissible theory is the
characterization of the most general known notion of particle, called
genopartick, as studied in more details in Vols I1 and HI. At this moment we
simply list the notions of particles used in hadronic mechanics:

Conventional particles, which is characterized by Lie symmetries in a
stable—reversible orbit, such as an electron of an atomic structure;

Isoparticles which is characterized by the Lie-isotopic symmetries also on
stable orbits, such as the constituents of few—body nuclei and hadrons; and

Genoparticles, which is characterized by Lie-admissible symmetries on
the most general known nonconservative, unstable and irreversible orbit, such as
an electron in the core of a star undergoing gravitational collapse

plus all their iseduals.

The best way to understand the conceptual, mathematical and physical
advances permitted by the Lie-admissible theory is by inspecting the underlying
representations called genorepresentations.

In Sect. [.4.7. we have studied the isorepresentation theory which is based
on the notion of module implying only one action, e.g., that to the right. By
comparison genorepresentations of Lie-admissible algebras require a two-sided
isobimodule called genomodule.

Consider an algebra U over a field Fla,+x). Let V be a vector space over
F and introduce the direct sum



-332-

S=UeV {7.6.5)

in such a way that S is an algebra verifying the same axioms of U while V is a
two sided ideal of S.

This can be done as follows [23):

1) retain the product of U

2) introduce a left and a right composition av and va, for all elements a ¢

Uand veV which verify all axioms of U (including the right and left
scalar and distributive laws}); and

3} to complete the requirement that V is an ideal of S, assume vt =

tv =0 for all elements of V.

When all the above properties are verified, V is called a two-sided, left and
right module, or a bimodule of U, and the algebra S is called a split null
extension of U [loc. citl.

Bimodules clearly provide a generalized, left and right representation
theory of all algebras, whether associative or nonassociative. It is important to
understand why bimodules are not needed for the representation theory of
conventional Lie algebras (i.e., for the conventional notion of particle) as well as
of Lie~isotopic algebras (i.e, for the generalized notion of isoparticle), but they
become essential Tor the covering Lie-admissible algebras (i.e., for the most
general possible notion of genoparticle),

A bimodule V of a Lie algebra L or Lie~bimodule [24) is characterized
by left and right compositions av and va,a € L, v € V, verif ying the properties

av=-va, (7.6.5a)
viab)=(valb-(vb)a, {7.6.5b)

which can be identically expressed via the left and right multiplications
La= -Ry {7.6.7a)
Rab =Rz Rp = Rp Ry, {7.6.7b}

The mappings a = Ry and a = L, then provide a left and right
representation, or a birepresentation, of the Lie algebra L over the bimodule V
as a Hombp(VR,V}).

However, owing to property (7.6.6a), the left representation is trivially
equivalent to the right representation, Ry = - L,50 This is the reason why only
one-sided representations of Lie algebras are significant in quantum mechanics.

The notions of isomodules and isobimodules were introduced for the first

60 Note again the intriguing possibility of reinterpreting the left representation as an
isodual of the right here left to the interested reader.
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time in ref. [24] of 1979, although they do not appear to have been studied
thereafter in the mathematical or physical literature. In essence, a Lie-
isobimodule is an isovector space V over an isofield Ma,+» with left and right
isocompositions a * v and v * a verifying the distributive and scalar laws, and the
rules

a*v =-vsa, (7.6.8a)
v¥{a*b) = (v*a)sb - (v*b)=a, {7.6.8b)
or, equivalently in terms of isomultiplications
Ra=-1L,, (7.6.9a)
Rasb=Ra*Rp - Rp*R,, (7.6.9b)

An isobirepresentation of a Lie-isotopic algebra L[ is then given by
HOTDL‘F(?R,VL).

However, the left and right isorepresentations are again equivalent because
of the property R, = ~ L. Thus, only one-sided isomodules and one-sided
isorepresentations are needed for the Lie-isotopic branch of hadronic
mechanics, and this explains the reason fro our silence on them in Ch. [.4.

Note also that the above equivalence between the right and left isomodular
actions is an axiomatic representation of reversibility. This implies that
isoparticles as characterized by one-sided isorepresentations are on stable-
reversible orbits.

The two-sided isorepresentations, or genorepresentations, become
necessary when studying Lie-admissible algebras evidently because of the loss of
the antisymmetric (or symmetric) character of the product. As a result, the
representation theory of the Lie-admissible algebras is much richer than those of
the Lie and Lie-isotopic algebras.

A Lie-admissible bimodule ¥, or genomodule for short, is a vector
isospace over a genofield <F> equipped with two, inequivalent, right and left
compositions a>v and v<a such that the attached composition aov = a<v - v>a
verifies the axioms

aov=-voa, (7.6.10a)
velaoeb) =(vealeb -(viblea. {7.6.10b)
Thus, genomodules are characterized by their attached composition a>b ~ v<a,

rather then each individual actions a>v and v<a. They can be equivalently
expressed via the right and left isomultiplications
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RM_\{;+ b-ba = (Ta=L) (Ry=Ly)].  (6.11)

A genorepresentation of a L:e—adm:ss:b!e algebras U over the genofields <F> is
therefore given by the HomY<>(<¥g, ).

The physical meaning of the Lle—admissible theory is identified by the
following: :

Lemma 7.6.1 [11}: An axiomatization of irreversibility at the algebraic—
group theoretical level is provided by the differentiation of enveloping
associative algebras of Lie’s theory into two genotopic forms of the Lie-
admissible theory £ and <E and related genorepresentations
characterizing motion forward and backward in time, respectively, with a
corresponding mterconnectmg conjugation, and related forward and
backward genounits1”, <1, for corresponding right and left actions.

The axiomatic nature of the above characterization is expressed by the fact
that irreversibility is intrinsic in the theory, i.e., it holds also for time-reversible
Hamiltonians, as we shall see better in Vol. [I. By comparison, both Lie and Lie-
isotopic theories are structurally reversible.

The implications of the above axiomatization of irreversibility are far
reaching. [n fact, as we shall study in detail in Vol.s 11 and 111, the lifting of the
Poincaré symmetry into its Lie-admissible covering (first proposed at the
classical level in ref. {11} characterizes the most complex known notion of
particle with locally varying intrinsic characteristics, as expected to represent the
most complex known physical conditions in Nature, such as for a neutron in the
core of a neutron star.

7.7: GENOGEOMETRIES

As stressed throughout our studies, physical theories in general, and relativities in
particular, are a symbiotic expression of deeply interconnected and mutually
compatible analytic, algebraic and geometric formulations.

In the preceding sections we have presented the analytic and algebraic
structures of the Lie-admissible theory. It is therefore important to show that,
exactly as it occurs for the Lie and Lie-isotopic theories, the Lie-admissible
theory also admits a fully defined geometric counterpart.

This problem was studied in ref.s [7,11] and resulted in the submission of
new geometries, more general than the isogeometries of Ch. 1.5, called
genogeometries, according to the following main lines,
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- 7.7.A: Genoeuclidean and genominkowskian geometries. They are the
geometries of the genospaces “E”(r,8”,<R”) and <N”(r,<8>,<R>), respectively,
and are essentially given by the isoeuclidean and isominkowskian geometries of
Sect. [.5.2 and 1.5.3, in different realizations for each "arrow of time”.

The most important difference between the iso— and genogeometries is
therefore that the metric of the former is unique for both directions of time,
while the metric of the latter is differentiated depending on the assumed
direction of time, & = <§ and }” = <A,

However, the base unit is lifted in correspondence to each of these
generalized metrics according to the rules

g=3g =gT>, [ =271 = (P} (7.7.1a)
g = <g=<Tg, I = <1 = (<71, (7.7.1b)

as a result of which all the peculiar properties of the isogeometries are preserved
for forward and, separately, backward genogeometries.

This implies the existence of two different deformations of the sphere, the
light cong, etc,, for interior dynamical problems, one per each direction of time,
each of which is mapped into the perfect sphere and the perfect cone® in
genospace.

The extension of the remaining properties of isogeometries into the
genotopic form is an instructive exercise for the interested reader, and it will be
assumed hereon.

7.7.B: Genosymplectic geometry. Recall that the symplectic geometry is
the geometry underlying Lie’s theory, while the isosymplectic geometry (Sect.
1.5.5) is that underlying the Lie-isotopic theory. In ref.s [7,11] this author showed
that the yet more general Lie-admissible theory also admits a fully defined
underlying geometry, evidently of a generalized nature submitted under the name
of symplectic-admissible geometry, or genogeometry for short,

Recall from App. 1.5.A Birkhoff’s brackets in T*E(r,5, %) and related exact
symplectic two—form in the now familiar unified notation a = (@!) = (r, p), p = 1,
2., 2n,

dA aB

(A, B] = Ha) , {7.7.2a)
daht aa¥

0= 3+0, (adat A daY, {7.7.2b)

Y

where the a]gebraic—cbntravariant and geometric-covariant tensors are
interconnected by the farniliar rule
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v o= ( haJ—l)”v. (7.7.3)

In the transition to the Birkhoff-isotopic brackets on isospaces T*£,r,8R)
with isounit 1, (Sct. 1.5.4),

3A 9B
[A7Bl = — H%a)1y, "ML, 2,8, ..) —, (7.7.4)
ot aa”

we have the transition to the isosymplectic geometry characterized by the
isoexact two-isoform

0 =1 Tua(t, 2,4,.)Q,, () dat A da¥ | (7.7.5)

where, again, the algebraic and geomnetric tensors are interconnected by the rule
809" = [ (TygP Qe TP, (7.7.6)

The problem of the geometry underlying the Birkhoff-admissible brackets
(7,11]

(ATB) = <SH(ta) —aE— , (7.7.7a)
aa¥ da¥

S = gHd <>V {7.7.70)

o = - oW {7.7.7¢)

7Y = A28 (7.A.70)

was resolved via the introduction of a geomeiry more general than the
symplectic and the isosymplectic ones.

The first point to realize is that the symplectic geometry and related
exterior calculus, whether in their conventional or isotopic formulations, are
intrinsically unable to characterize the Lie-admissible algebras.

This is due to the fact that the calculus of exterior forms is essentially
antisymmelric in the indices, and so remains under isotopies by assumption,
while the Lie-admissible tensors <3”H¥ are not antisymmetric, and the same
occurs for the covariant counterpart

uta = (<l = a<sr (7.7.8)

In fact, the construction of a conventional exterior two—form with the
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above tensor implies the reduction

< &> vV = v
Sy da Ada¥ = 10, dd' A da, (7.7.9)
namely, the symplectic geometry automatically eliminates the symmetric
component of the S-tensor, thus characterizing only its Lie content.

The main idea of the symplectic-admissible geometry is that of
generalizing the conventional exterior calculus, say, of two differentials

da* A da¥ = - daV¥ adaM, (7.7.10)

into a more general calculus, called exterior-admissible calculus, or
genoexterior calculus, which is defined over the genofield of real numbers
<R>(fi”,+,<+”) based on a product, say ©, which is neither totally symmetric nor
totally antisymmetric, but such that its antisymmetric component is the
conventional exterior one [7,11],

dat o da¥ = dat Ada¥ + da¥xda", (7.7.11a)
dat A da¥ = - @ga¥ A daM, {7.7.11b)
datx da¥ = da¥ x dal, (7.7.11¢)

The isocotangent bundle is then further generalized into the
genocotangent bundie T*£(r,“6>,“R>)upon selection of one given ordering in
the multiplication. '

This allows the introduction of the exterior-admissible forms or
genoforms, via the sequence

o = <¢7la), (7.7.12a)
87 = 8 e, (7.7.12b)
<8 =<8 da* oda¥, (7.7.12¢)

2 HY

The exact exterior-admissible forms or exact genoforms, are then given by

3<¢i>

€ = 0¥, = dat, (7.7.13a)
dakH
. a<A>

@2 = 4<% = Y dat o daV, (7.7.13b)

aaH



—-338-

The calculus of exterior-admissible forms can indeed characterize the Lie—
admissible algebras, because it characterizes not only the antisymmetric
component of the Lie-admissible brackets, but also their symmetric part, via the
two-forms

&y = Spitaldat o da¥ =
= Qm,(a) dal A daV + <l""m,(t. a) daM x da", (7.7.14)

Structures (7.7.14) are symplectic-admissible two-forms because their
antisymmetric component is symplectic, in a way fully parallef to the property
whereby the antisymmetric part of the Lie-admissible algebras is Lie. Structure
(7.7.14) are also called genosymplectic two-forms, when emphasis is needed on
the loss of the original antisymmetric axiom. The spaces T*<E>{r,<8>,<R>), again
selected either for the multiplication to the right or to the left, when equipped
with two—form (7.7.14) are called symplectic-admissible manifolds or
genosymplectic manifolds, and the related geometry is called symplectic—
admissible geometry or genosymplectic geometry.

As incidental comnments, note that the dependence on time appears only in
the symmetric part, as needed for consistency in the symplectic component. Also,
under inversion (7.7.8), we generaily have

() = (@B, (97,,) = (8L (7.7.15)

which is a rather intriguing feature of the generalized geometry here considered,
whereby the symplectic content of a contravariant tensor is more general than
the symplectic counterpart of the covariant tensor. (see ref. [11] for details)

The most salient departure from the exterior calculus in its conventional or
isotopic formulation is that the Poincare’ Lemma no longer holds for the
genosymplectic geometry, i.e, for exact symplectic-admissible two—forms we
have

%, =a%, (7.7.16a)
d<§, = dld<%”|) = 0. (7.7.16b)

In actuality, within the contest of the exterier-admissible calculus, the
Poincare’ Lemma is generalized into a rather intriguing geometric structure
which evidently admits the conventional Lemma as a particular case when all
symmetric components are null.
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The geometric understanding of the Lie-isotopic algebras requires the
understanding that the validity of the Poincaré Lemma within the context of the
isosymplectic geometry is a necessary condition for the representation of the
conservation of the total energy under nonhamiltonian internal forces, as
studied in the main sections of this volume.

By the same token, the geometric understanding of the more general Lie-
admissible formulations requires the understanding that the Jack of validity of
the Poincare Lemma within the context of the symplectic-admissible geometry
is a necessary condition for the representation of the nonconservation of the
energy of an interior dynamical system.

7.7.C: Genoriemannian geometry. Despite impressive and historical
advances in gravitation during this century, gravitation is still at its first infancy,
particularly when compared to the problems yet to be addressed, let alone solved.

In Ch. 1.5 we identified the need of an integral generalization of the
Riemannian geometry for a more adequate representation of interior
gravitational problems, such as gravitational collapse, “black holes”, “big bang”,
etc, and submitted a generalization of the Riemannian geometry of the desired
integral type called isoriemannian geometry.

The point to be stressed here is that physics is a discipline that will never
admit final theories. No matter how advanced the isoriemannian geometry is over
the Riemannian one, it is not expected to be “the” final geometry. Instead, the
isoriemannian geometry is “one” geometry specifically conceived for one purpose,
the treatment of closed-isolated interior systems with total conservation laws
under a generalized interior structure,

Another Tundamental physical problem in gravitation which has not even
been addressed so far, let alone solved, is the dichotomy expressed by
experimental evidence in the observation, say, of Jupiter, according to which the
center-of-mass of the celestial body is time-reversal invariant, while its interior
dynamics is manifestly irreversible. It is evident that the conventional
Riemannian geometry is insufficient to represent the interior irreversibility in the
needed axiomatic form.

It is at this point that the dual Lie-isotopic and Lie-admissible formulations
become useful. In fact, as indicated earlier, the Lie-isotopic formulations are
structurally reversible while the Lie-admissible formulations are intrinsically
irreversible. The dual representation of reversible center—of-mass~trajectories
versus irreversible interior dynamics, is then permitted by the complementarity
of the Lie-isotopic and Lie-admissible formulations because of their inter-
relation discussed in this chapter (see also Fig. 7.1.1).

Note the necessity of the Lie-isotopic formulations for this
complementarity. In fact, reversible, conventionally Lie formulations for the
global-exterior description are not compatible with irreversible, Lie-admissible,
interior descriptions because their attached Lie algebra is not Lie but Lie-isotopic.
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It may therefore be of some value to indicate a conceivable generalization
of the Riemannian geometry, under the name of Riemannian-admissible
geomelry or genoriemannian geometry , originally submitted in ref. [11] which
provides an irreversible description of interior gravitation in a way compatible
with and complementary to the reversible description of the isoriemannian
geometry of Sect. 1.5.6. The understanding is that, unlike the iscriemannian
geometry, the genoriemannian extension is vastly unexplored at this writing.

THE DUAL ISORIEMANNIAN AND GENORIEMANNIAN
REPRESENTATION OF INTERIOR GRAVITATION

RIEMANNIAN
GEOMETRY

RIEMANNIAN-ISOTOPIC RIEMANNIAN-ADMISSIBLE
GEOMETRY GEOMETRY

FIGURE 7.7.1: A schematic view of the geometric treatment of gravitation studied
in these volumes. The Riemannian geometry is local-differential, thus being exact
for the exterior problem of point-like test bodies in vacuum, but only approximate
for the interior one. Moreover, a fundamental condition of the geometry is the
symmetric character of the metric, g = gt, thus implying its reversible character,
with consequential inability to represent the experimental evidence of the interior
irreversibility, say, of Jupiter. The Riemannian-isotopic geometry does solve the
first problem, by permitting a direct representation of internal nonlocal-
nonlagrangian effects in a way conform with total conservation laws. However, the
isometric g = Tg of this latter geometry is also symmetricT = Tt, thus being also
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structurally reversible. A necessary condition for the construction of an interior
geometry for the direct representation of irreversibility is the use of a
nonsyrmmetric metric. The construction of a generalization of the Riemannian
geometry with a nonsymmetric metric via the use of conventional methods (those
over a conventional field) presents simply unsurmontable difficulties for current
mathematical knowledge, which explains its absence at this writing. However, the
same objective can be achieved via isotopic techniques in such a simple way to
appear elementary. The main idea is based on two different nonsymmetric Hftings
of the isometric, one for motion forward in time § = §~ = §T and one backward
in time § = Tg, with T> and <T being different nonsymmetric real-valued
tensors {evidently of the same dimension of & interconnected by the conjugation
T> = (ST, The definition of the forward isometric §” over the genofield
R+, and of the backward isometric ¢ over R(<h+,<% for the conjugation
<T = (T} or over its isodual for <T = (T>) then removes all technical
difficulties indicated earlier because it implies the deformation g= T>g while
]ointly deforming the unit of the amount inverse of the deformation, I 217 = (T}
» and the same occurs for motion backward in time. Recall that deformed spheres,
cones etc. are perfect spheres, cones, etc. at the level of the isogeometry {Ch. 1.5).
Along similar lines, the understanding of the genogeometry requires the knowledge
that its nonsymmetric character appears only when the genogeometry is projected
in the conventional Riemannian space because at the abstract level conventional,
isotopic and genotopic geometries coincide.

The notion of genospace of Sect. 1.7.3 can be specialized to that of
genoaffiine manifolds as the manifolds <M™{x,R”) which possess the same
dimension, local coordinates and continuity properties of a conventional affine
manifold M(x,R), but are defined over an isofield <R> with two different isounits
1> and <1 for the modular-isotopic action to the right and to the lefl,
respectively,

x> = A>x = AT?x, 1° = (7L (7.7.17a)
Xo= x<A = x<TA, 4 = (<Pl (7.A.17.1D)
1> = () (7.7.17.1¢)

A “Riemannian-admissible manifold” or genoriemannian manifold can then be
thought as an isoriemannian manifold (Definition 1.5.6.1) with inequivalent
isomodular actions to the right (forward in time) and to the left (backward in
time), here denoted <R>(x,<g> <R™); namely, a manifold characterized by the
“genometrics for motions forward and backward in time”

25 = T, X, %, %) gx), (7.7.182)
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g = <TG, x, %, %) glx), (7.7.18b)

where the two motions (multiplications) are interconnected by a suitable
conjugation, e.g.,

T = (<7 or (<T)4 (7.7.19)

and equipped with two nonequivalent isoaffine connections, one for the
modular-isotopic action to the right and the other to the left, the Christoffel-
admissible symbols of the first kind

> > >
%k, ®mn _®hk
axh axK axl

Pl = 16 ) = 2L (7.7.20a)

with corresponding Christoffei-admissible symbols of the second kind

>2 1 >ij >l o2
r A, g7l r nik = %'n {7.7.21a)

k J

<p2 1 i o<pl o i
Prg = g =<3 (7.7.210)

The capability of a genometric to raise and lower the indices is understood (as
in any affine space), and :

el = (g o (7.7.22a)

<l = (g 1 (7.7.220)

The Riemannian-admissible geometry or genoriemannian geometry for short,
is the geometry of genospaces <R>(x,<g>,<R>).

Its explicit construction can be done via the appropriate generalization of
the isoriemannian geometry, with particular reference to the isoconnections
which, besides being different for the right and left modular-isotopic action, can
now be nonsymmetric. depending on the assumed characteristics of the
genotopic elements T~ and <T.

What is important is the mechanism of the lifting, which consists of a
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deformation of the original metric while jointly lifting the unit by the inverse of
the deformation, Eq.s (7.7.1). The consistency of the new geometry is then
consequential (see Fig. 7.7.1).

The above results permits the following

Lemma 7.7.1 (11} An axiomatization of irreversibility in interior
gravitation is provided by inequivalent deformations of modular actions,
metrics and connections to the right (forward in time) and to the left
(backward in time) under a joint lifting of the unit per each direction of
Lime characterized by the inverses of the deformations.

As we shall see in Vol.s II and I, the above geometrization does indeed
permit the representation of open-nonconservative-irreversible interior
trajectories in Jupiter, such as a representation of interior vortices with
monotonically varying angular momenta, although in a way compatible with the
reversibility of the closed-isolated systems.

The interconnection of Lemmas 7.5.1, 7.6.1 and 7.7.1 should be kept in mind.

It is hoped that geometers in the field will be intrigued by the Riemannian-
admissible geometry and develop it in the necessary technical details needed for
quantitative studies of irreversible interior gravitation:

7.8: FUNCTIONAL GENOANALYSIS

In Sect. 1.7.2 we have pointed out a number of problernatic aspects of the current
representation of nonconservative systems, such as their representation via the
addition of a Tictitious “imaginary potential” to the Hamiltonian, H = K + iV. This
evidently implies a trajectory different from the physical one because the forces
originating the nonconservation are generally of nonpotential type.

This approach to open nonconservative systems has yet another
fundamental problematic aspects, and it is given, on one side, by the evident lack
of Hermiticity of the Hamiltonian with consequential loss of observability, while,
on the other side, the loss of energy is indeed observed and physically measured.

Hadronic mechanics has been conceived and constructed to resolve these
evident problematic aspects. In fact, the nonpotential forces responsible for the
nonconservation are not represented with a potential but with other means.
Moreover and most importantly, the nonconserved Hamiltonian remains ully
Hermitean and, thus observable, during the nonconservative process.

As we shall see in VYol. I, these are not mere mathematical curiosities,
because they have direct experimental consequence. As an example, the
achievement of the Hermiticity of the Hamiltonian during its time-rate-of-
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variation requires a suitable, corresponding revision of the data elaboration (such
as a structural alteration of the expectation values) resulting in different
numerical predictions and interpretations for the same event, as we shall see.

The preservation of the Hermiticity/observability of a Hamiltonian when
nonconserved is achieved by a further generalization of the functional isoanalysis
of the preceding chapter, this time, of genotopic character.

Recall that the Lie-isotopic theory admits a formulation via operators on a
conventional Hilbert space JC, as originally proposed in ref. [20]. However, in so
doing the observability is lost even for conservative processes. The observability
can however be preserved if one lifts the Hilbert space via the same isotopic
element T of the enveloping algebra.

A fully similar situation occurs for the more general Lie-admissible theory.
In fact, it can be well defined on both a conventional Hilbert space JC and its
isotope 3. However, a Hamiltonian is generally nonhermitean in both.

We reach in this way the Jeft and right genohilbert spaces

X (e = 1 [ Bl s ol € B, (7.8.1a)
< <) = <1 dér o< oln) € <R, (7.8.1b)

It is easy to prove that a Hamiitonian which is conventionally Hermitean,
remains Hermitean under the above genotopies, thus being observable, even
though it is nonconserved,

idH/dt = H(R-SJH = 0. {7.8.2)

A simple example can be instructive here. Consider the free quantum
mechanical particle with Hamiltonian Hy = {rpoz, m = 1, which is evidently
Hermitean over 3C. Suppose now that this particle at a given instant of time Ly
enters within a resistive medium, thus losing energy to the medium itself.
Assume the simplest possible decay, the linearly damped one

H=eH, = eyp2. (7.8.3)

As we shall see in Vol. I, the Lie—admissible branch of hadronic mechanics
permits an axiornatic representation of the above system; that is, a formulation
derivable from first principles which is invariant under its own time evolution.

At this point we are merely interested in illustrating the basic dynamical
equations, the underlying genohilbert spaces, and the Hermiticity-observability of
the Hamiltonian.

It is easy to see that the desired Lie-admissible representation of system
{7.8.3) is characterized by the realizations of the R-S quantities
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R=-4iyH, ™, s=+isyH,", R=§, {7.8.4)

The Lie~admissible group of the time evolution of a quantity Q is then given by

Qb = {ee>iH(t0-t}}>Q(t0)<{e<ti(t-t0H] =
_ eiHOS(to—t)Q(to)e—i(to—t)RI-I. (7.8.5)
with infinitesimal Lie-admissible equation
idQ/dt = Q<Hy-H,>Q (7.86)
which becomes for the energy
idH, /dt = -iyH, (7.87)

thus verifying law (7.8.4),
The underlying genohilbert spaces are then given by

R>: (e =1 [dhyfn > o e R, 1> =12yl H,  (7.88a)
R W = f g% o <dl) € <R, A =-i2y! H,. (7.88b)

The Hermiticity/observability of the Hamiltonian during the decaying process can
be easily verified.
Note the formal identities for the case considered

W or = <@ = @, = f el e, (7.89)

namely, the compositions of the genohilbert spaces coincide with the
conventional one. The Hermiticity/observability under decay emerges from the
definition of the same composition in an invariant form on a genofield, that is,
the decay is represented by the operations on H, and not by the Hamiltonian. In
turn, this simple example illustrates the truly fundamental character of the
theory of isonumbers and genonumbers for hadronic mechanics. More complex
nonconservative systems will be studied Vol. I and [I1 along structurally the
same lines.

All isotopic generalizations of trigonometry, Dirac’s 8-function, Fourier
series, Fourier transforms, etc. then admit a significant and intriguing genotopic
extension which is hereon assumed.
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7.9: FUNDAMENTAL EQUATIONS OF HADRONIC MECHANICS
AND THEIR DIRECT UNIVERSALITY

We are finally in a position to identify the fundamental equations of the two
branches of hadronic mechanics indicated in Sect. 1.5

7.9.A: Lie-isotopic branch of hadronic mechanics. This branch
describes closed-isolated, composite systems with conserved total energy and
other physical quantities and nonlinear-nonlocal-nonpotential internal forces.

The nonrelativistic characterization of systems via this branch requires
two operators, the Hamiltonian H and one isotopic operator T . The mathematical
structure of the branch is characterized by one single isotopic product for both
the right and the left with one single space isounit

C -
1:1 -t & (7.9.1

and it is based on the following main structures:
-1} Isofields of isoreal or isocomplex numbers Fla,+*),
A-2) Enveloping isoassociative operator algebras tr,
A-3} Isohilbert spaces X,G=GI>0,G#T,
which characterize the fundamental dynamical equations in the infinitesimal
form

dqQ
ily— =1QHl := Q*H - H¥*Q =QTH - HTQ, (79.2)
dt

where 1, = T,"! #1 is the time isounit and [Q HJ are the Lie-isotopic brackets,
with finite form

QU = 0+ Q=0T = (e, HE)rqonte TitH

: T
= (T e 1ETHY (7.9.3)

yielding a Lie~isotopic group of isounitary transformations on g,
The corresponding, isoequivalent Schrédinger-type representation in
isospaces E(t,R*Er,3,R) 6! are given by

d .
ily —dt, ) = H=Jt, 1) = HT &L, 1) ‘ (7.9.4a)
at ) '

81 We introduce here and in the following isounits not dependent explicitly in the local
coordinates to avoid gravitational considerations at this time.
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o
—i gl "5?1‘ =t nH = D, (7.9.4b)

and fundamental isocommutation rules

[rt]d] {rifpj] 0 i
(e i) = ( | )( ) 939
[pi:r-‘] {pl.p_]] =il ¢

The above Lie-isotopic branch is structurally reversible, can be therefore
used for either direction of time, and is divided into Kadeisvili's Classes I, [I, I1I,
IV and V depending on the characteristics of the basic isounit 1 (see Vol. [1 for
details and relativistic extensions).

7.9.B: Lie-admissible branch of hadronic mechanics, which
Characterizes open—nonconservative systems with nonconserved energy and
other physical quantities under the most general possible nonlinear-nonlocal-

nonpotential external interactions.
) Physical systems are represented nonrelativistically in this branch by
three operators, the Hamiltonian H and the genotopic elements R and $ which are
however interconnected by the conjugation Rl = S. This second branch is
characterized by two different space genocunits, one for motion forward, and one
for motion backward in time interconnected by Hermitean conjugation

17=R7!, A>B: =ARB, <1=57!, A<B:=ASB, 1” = (<D!,(796

and it is based on the following main structures:
B-1) Genofields of genoreal or genocomplex numbers <F{<a”> +,<+>),
B-2) Enveloping genoassociative operator algebras <t |
A-3) Genohilbert spaces <>,
which characterize the fundamental dynamical equations in the infinitesimal
form

o,
dQ
i <17, —~ = “H) := - -
i<l td<t> {Q;H := Q<H H>QAQRH HSQ (79.7)

where t> (<t) represents forward (backward) time with corresponding genounits
17, (<1,} and (Q] H) are the Lie-admissible brackets, with finite form

-0 <t = iHt “itH,
Qv =0 >Q(Q)< 0 {eE> J>Q(O)<{e<E }

iHRt —-itSH
e

= {. Qo) (e }, (7.9.8)

yielding a Lie-admissible group of genounitary transformations on <3t~,
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The corresponding genoequivalent Schrédinger-type representation in
genospaces <E”(t,“R”)*x<E>(r,<6,<R™) is characterized by the equations

3
17, ?P'P{t' ) = H>¢r) = HRI(L, 1) (7.9.9a)
5 .
- i <Y, r)7<lt= <Ut,r)<H = <YL, nSH. (7.9.9b)
o<t

with fundamental genocommutation rules

: (rird) (r*,“pj)
(aH7a¥) = ( _ )= i <§HY (7.9.10)
(pifrJ) (p,,p_l)

where <8§”MV is the operator image of the corresponding classical Lie-admissible
tensor also originating from the fundamental genocommutation rules.

The Lie-admissible branch is intrinsically irreversible, must be used for
each given direction of time, and is also divided into Kadeisvili’s Classes [, II, III,
IV and V referred to the maximal Hermitean part of the genounits <1 and <1>,

The crucial Lie-isotopic and Lie-admissible equations for the linear
momentum will be presented in Yol. 1i.

It is evident that the Lie-isotopic branch is a particular case of the Lie-
admissible branch, and this illustrates the reason why hadronic mechanics was
originally submitted [20] in terms of the fundamental Lie-admissible equations
(7.9.7) and (7.9.8). A detailed study of the derivation, properties and basic axiorns of
the above equations is presented in Vol. IL.

7.7.C: Direct Universality of Hadronic Mechanics. We shall now outline
the “direct universality” of hadronic mechanics, that is, its capability to represent
all possible linear and nonlinear, local and nonlocal, Hamiltonian and
nonhamiitonian, continuous or discrete, and other systems (universality), directly
in the frame of the observer (direct universality).

[t should be stressed from the outset that this does not means that
hadronic mechanics is the only applicable mechanics, because numerous other
approaches are indeed possible for the elaboration of the same systermn (see the
appendix).

The direct universality however implies the remarkable occurrence that,
while other theories generally treat only one class of systems, hadronic
mechanics can treat them all. The selection of one theory versus another does not
evidently depend on personal taste, but rather on the intrinsic consistency of the
theory at hand, as well as the experimental verification.
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The identification whether a given theory is a particular case of hadronic
mechanics implies:

1) The identification of possible departures from conventional quantum
mechanical laws which are inherent in the theory considered;

2) The identification of corresponding generalized physical laws, as well as
the physical conditions for their applicability, as a basis for experimental
resolution; and

3) The availability of rigorous axiomatic methods for the quantitative
treatment of the theory considered in a way demonstrably consistent with the
basic assumption. As we shall see, this basic condition is lacking for a number of
theories which, while possessing a generalized structure, elaborate data with
conventional quantum mechanical assumptions, thus leading to insidious
problematic aspects in their physical interpretation and applications.

In this final section, it may be recommendable to provide the primary
guidelines for detailed study later on, as expressed by the following two
theorems.

Theorem 7.9.1 - Direct universality for systems with conserved energy:
All possible linear or nonlinear, local-differential or nonlocal-integral,
continuous or discrete operator, nonrelativistic or relativistic, equations
representing a system with conserved total energy admit a direct
representation via the Lie-isotopic branch of hadronic mechanics in the
frame of the experimenter in one of the Classes I, II, I1I,. IV and V.

The above theorem is transparently proved, e.g. by Eq.s {7.9.4) when
written explicitly

3

T4t 1, p, &, 01, 8, 0, ) —F= HTL F, p, O, O, 3, 84, .. .0 &,(7.9.11a)
at

idH/dt = 0. (7.9.11b}

which provide a direct representation of any given operator equations with
conserved total energy. A similar situation occurs at the relativistic level (Vol. I1).

Note that the Lie-isotopic equations permit an infinite number of
different representations of the same system evidently due to the availability of
two operators H and T for the same equation. However, such an infinity is
reduced to only one, up to isoequivalence, when H is restricted to represent the
total energy of the system considered.

Theorem 7.9.2 - Direct universality for systems with nonconserved
energy: All possible linear or nonlinear, local-differential or nonlocal-
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integral, continuous or discrete, nonrelativistic or relativistic, operator
equations representing a system with nonconserved energy admit a direct
representation via the Lie-admissible branch of hadronic mechanics in
the frame of the experimenter in one of the Classes I, {1, I1],. IV and V.

Again, the property is transparently exhibited by Eq.s (7.9.9) in their
explicit form :

d

It 1, p, b F, 8, 31,0 — & = HR( T, p, &, &, 3, &1, ), (7.9.122)
ot

idH/dt = 0. (7.9.12b)

As an illustration, one, among the infinitely possible reformulation of
Eq.s (7.2.4) in terms of Lie-admissible equations submitted since the original
proposal of the hadronic mechanics (20] is given by

(A H) = ARH - HSA = AH - Hf A = A xH, (7.9.13a)

R =1, s = H 14t (7.9.13b)

We now close this section with the necessary conditions for the existence
of a bona-fide generalized mechanics. When inspecting any generalized theory,
the fundamental issue is whether conventional quantum mechanical laws and
axioms are preserved or generalized. In turn, this issue sets the stage for the
elaboration via conventional or generalized methods, thus resulting in different
numbers predicted by the theories for the same system.

The above issue can be answered via the following:

Basic criterion 7.9.1 - Identification of conventional vs generalized
theories: Any theory whose fundamental commutation rule coincide with
or are unitarily equivalent to the canonical commutation rules

[, d] [rj.pjl 0 il
[at, a¥] = _ = , {7.9.14)
[p,-,rJ] {pl,pj] =il 0

is structurally equivalent to quantum mechanics, with corresponding
cases occurring for relativistic and field theoretical theories. A necessary
condition for the existence of a generalization of quantum mechanics is
therefore the presence of generalized fundamental commutation rules
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which are not unitarily equivalent to those of quantum mechanics.

As one can see, the situation is clear—cut, without possibilities of using
generalized theories while preserving old physical laws: generalized fundamental
canonical commutation rules demand the use of generalized physical laws and
methods. A good example is given by generalized commutation rules of the type

[r,pl =rp - pr = iflr,p} (7.9.15)

where f(r,p) is a function or even a number different than f = 1 (see also App.
1.7.A.). Then the theory is noncanonical and must be reformulated via the re-
definition of the unit and of the commutators themselves into the isotopic form

[pl=rTp-pTr=il =iflp, T=Ifpl, 7910

which is now axiomatic, that is, derivable from first principles and invariant
under its own time evolution. On the contrary, it is easy to prove that the
“noncanonical” brackets (7.9.15} expressed in terms of the “conventional” Lie
product rp - pr, do not preserve their form, and are in actuality mapped precisely
into the isotopic form (7.9.16), as shown in Eq.s (4.1.3).

This is due to the fact that the only possible transformations capable of
reducing the noncanonical value f(r, p) to 1 are nonunitary, even when the
function 1 reduces to a constant.

Equivalently, we can say that noncanonical brackets (7.9.15) are based on a
generalization of the unit precisely of the fundamental form (1.1.1). The
reconstruction of the entire structure of quantum mechanics into that of the
covering hadronic mechanics is then necessary for consistency of the formalism,
as well as for its axiomatic, form—invariant character.

The physically relevant issue here is that the quanturn mechanical data
elaboration of the theory based on isccommutation rules (7.9.15) are different
from those based on rule (7.9.16) The formulation of rule {7.9.15) via the
conventional Lie product therefore gives only a misleading impression of having
preserved quantum mechanics.

i We should insist in this important point and indicate some of the
problematic aspects of formulation {7.9.15), such as: the belief that conventional
quantum mechanical energy, linear momentum, etc., remain Hermitean and thus
observable under generalized commutation rules (7.9.15) at all times. It is easily
proved that, under the nonunitary time evolution, the enveloping algebra
becomes isotopic, while the Hilbert space remains unchanged, and this implies the
general 1oss of Herrniticity, as familiar from Ch. 1.6.

In short, the “fundamental canonical commutation rules” are truly
“fundamental”. Any structural deviation from them implies a necessary,
consequential and compatible generalization of the structure of quantum
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mechanics. This is the case of the large variety of models of type (7.9.15) and
other models (App. 1.7.A).

After having understood (and, most importantly, admitted) the generalized
character of a given theory, the next basic issue is the determination whether the
total energy is conserved or not, so as to determine which methods to use as per
Theoremn 7.9.1 and 7.9.2.

Basic criterion 7.9.2 - Conservation of the energy in generalized
theories: A necessary condition for the total energy H of a generalized
theory (as per Criterion 7.9.1) to be conserved is that the generaiized
fundamental commutation rules are isounitarily equivalent to the Lie—
isotopic rules (7.9.5).

Note that the above condition is necessary but not sufficient. In fact, the
establishing that the total energy is conserved requires the additional conditions
that: I) B is the generator of the time evolution; 2) the canonical algorithm "
represents the physical linear momentum, p = mi; 3) H consists of the sum of
-two terms, H =K + V, the physical kinetic energy K and the physical potential
energy Y, etc. (for a detailed study of this aspect one may consult ref. [8,3].

Note also the necessary use of isounitary transformation. In fact, the use of
uniiary transformations would be futile, inasmuch as fully within conventional
quanturn mechanical settings.

Basic criterion 7.9.3 - Nonconservation of the energy in generalized
theories: A necessary condition for the operator W of a generalized
theory (as per Criterion 7.9.1) to represent the nonconserved energy of the
System is that the generalized fundamental commutation rules are
isounitarily equivalent to the Lie-admissible rules (7.9.10).

Stated in different terms, the identification of an essential Lie-admissible
structure guarantees the nonconservation of the energy. It is evident that, by no
means does this implies any violation of any basic law of physics. The Lie-
admissible formuiations merely identify the external character . of the
interactions represented via the R and S operators. The understanding is that
when the nonconservative system is completed with these external interactions,
one regains the conservation of the total energy in full.

The above outline should be sufficient for the identification, first, whether
a given theory is a generalization of quantum mechanics or not and, second,
whether a generalized theory has a Lie-isotopic or Lie-admissible structure
according to Theorem 7.9.1 or 7.9.2. Once these basic identifications have been
made, then the methods of Yol. I are applicable for an axiomatic, form-invariant
characterization of the theory, the identification of their physical laws, and the
correct elaboration of data for experirmental verifications,
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APPENDIX 7.A: CONNECTION BETWEEN HADRONIC MECHANICS
AND OTHER GENERALIZED THEORIES

As indicated since the Preface of this volume, hadronic mechanics has a direct
connection with all generalizations of quantum mechanics attempted until now,
with no exception known to this author. This is due to the universality theorems
7.9.1 and 7.9.2 which imply the inclusion of generalizations of nonlinear, nonlocal,
discrete, algebraic, geometric, or any other type.

All existing generalized theories have been conceived and developed in a
way independent from hadronic mechanics. Such independence is here
confirmed as well as supported because of the polyhedric nature of mathematical
and physical inquiries indicated earlier.

At the same time, another aspect of scientific inquiries is the peed to study
inter-relationship among different theories, because of the evidemt scientific
gains reached in the comparison,

Along the latter lines, the primary contribution expected by the
reformulation of a given generalized theory in terms of hadronic mechanics is of
primary physical character, and deals with the identification of the axiomatic
form invariant under time evolution, the applicable physical laws, and the
applicable formalism for the data elaboration, 50 as to reach predictions with the
necessary consistency needed for experimental consideration.52

The axiomatic formulation, the applicable basic laws and the methods for
the data elaboration are studied in Vol. II, jointly with primary applications such
as to the origin of irreversibility, gauge theories, and the iike. In this appendix we
merely illustrate the connection between hadronic mechanics and a few
representative generalized theories.

7.A.1: Hadronic mechanics and q-deformations. Albert's paper [18) of
1948 studied the generalized product

axb=pab-(l-plba, (7.A.1

where ab can be assumed for simplicity to be associative and p is an element of
the Tield, as a realization of the noncommutative Jordan algebra.sss which were

52 The reader should always keep in mind the numerous papers existing in the literature
with noncanonical commutation rules, yet the elaboration of data via conventional
guantum mechanics, whose predictions have no credibility warranting a
consideration for experiments.

%% Those are algebras with product axb » bxa verifying Jordan's axiom (axb)x(axa) =
(ax(bx{axa)) [18].
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of particular interest in the mathematics of the time.

Besides being a realization of noncommutative Jordan algebras, the above
product is Lie-admissible, Jordan-admissible and admits the commmutative Jordan
algebras as a particular case for p =4, but it does not admit Lie algebras for any
(finite) value of p. For this reason, this author introduced [12] back in 1967 as part
of his graduate studies in physics at the University of Torino, Italy, and
apparently for the first time in both mathematical and physical literature, the
generalized product

{a,b) = pab-gba, (7.A.2)

where p and q are elements of the base field or functions, under the name of
(p.g)-mutations of associative algebras. As one can see, product (7.A.2) is Lie-
admissible, Jordan-admissible, admits both Lie algebras and commutative Jordan
algebras as particular cases for finite values of p and q, and constitutes a
realization of the noncommutative Jordan algebras (see ref. {12] for details).

The above initial studies were then expanded by the author [20] in 1978 into

.. the Lie—admissible time evolution (7.9.7), ie,

idA/dt = APH - HQA, (7.4.3)

where P and Q are now unrestricted integro-differential operators, and in the
fundamental Lie—admissible commutation rules {(7.9.10), i.e. ,

(rl7dd) (rl7pp)
(a4 7a") = ( , )= i <§7HV (7.A.4)
(piird) (py,py)

Subsequent studies along Albert’s notion of Lie-admissibility have been reported
in this chapter.

[ndependently from the above, various authors studied in the early 80's a
generalization of canonical commutation rules of the type

{r,p)=r1p-qpr, (7.A.5)

under the name g-deformation®®, and more recently referred in a highly
improper way as quantum groupsﬁ5 {see the recent ref.s [25] and literature

%4 In his original proposal of 1967 [12), this author had intentionally used a term other
than “deformation” (and suggested the term “mutation” because most of the so-called g-
deformations are not “deformations” as conventionally understood in mathematics.
Nevertheless, the terms "q-deformations” are now widely used, and they will be
kept in this volume to avoid confusion.
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contained therein). As one can see, product (7.A.5) is the particular case (0, g} of
the {p, g--mutations (7.A.2), but it is not a particular case of product (7.A.1). As
such, product (7.A.5) is also Lie-admissible, Jordan-admissible, admits Lie and
commutative Jordan algebras as particular case, and it is a realization of the
noncommutative Jordan algebras.

The studies in the field have recently multiplied and extended to various
parts of quantum mechanics, including the q—deformation of the Poincaré
algebra (see, e.g., ref.s [26]). %

The “q—deformations” are an ideal example to illustrate the relationship
between generalized theories and hadronic mechanics. In fact, their
mathematical consistency is impeccable, their independence from hadronic
mechanics is established, e.g., by comparing q-special functions and isospecial
functions (Ch. I.6), and their beauty is undeniable as shown by the number of
researchers attracted to the field.

However, the g-deformations are afflicted by a number of problematic
aspects of a physical nature which cannot be ignored. To identify them, let us
recall that the terms “q-deformations” are now refereed to a variety of
generalized theories ali generally defined at a fixed value of time, such as:

I) Deformation of the enveloping associative algebra Let £(L) be the
universal enveloping associative algebra of a Lie algebra L {(Sect.
1.4.3) with elements A, B, ... and conventional associative product AB
over a field Fla,+x). This first type is characterized by the following
generalization of the associative product ABS7

AB = A*B =qAB, (7.A.8)

where g is an element of the base field {or a function), without the
joint lifting of the basic field as adopted by isotopic theories (Ch.s

55 The use of the terms “quantum groups” is discouraged, and will not be adopted in
these volumes because excessively misleading. In fact, the terms were historically
referred, first, to a structure forming a conventional Lie group and, second, to the
realization of such group in quantum mechanics. The use of the same terms for the g~
deformation is therefore misleading on at least two counts, first, because the g~
deformations do not yield a group as conventionally understood, and, second, because
their structure is incompatible with the very notion of quanturmn of energy.

86 It should be noted that the first Lie-admissible, P-Q-operator deformation of the
Poincare symmetry was introduced by the author in ref. [11] via the notion of Lie-
admissible isobimodules or genomodules,

57 The reader should be aware that the form “qAB” of the product is correct only for g-
numbers or functions and not for q-operators, in which case the product must be
written “AqB”, as done throughout this volume. In fact, if AB is an associative
algebra, the product A%B = qAB with q a fixed operator violates the left scalar and
distributive laws and, as such, it does not constitute any algebra of any kind.
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1.1, and 1.2)

II) Deformation of the Lie product. Let L be a Lie algebra in quantum
mechanical realization on a Hilbert space 3C over a field Fa,+x) with
generators A, B, ..and fundamental commutation rules rp - pr =
i (h = 1). This second type of q-deformation is based on the
generalization of the canonical commutators

Tp-pr = rp -qpr=iflg.) (7.A.7)

which is evidently of type (7.4.5).

III) Deformation of the structure constants.iet L be an n-
dimensional Lie algebra with ordered basis X;, envelope E(L) and
commutation rules [X;, X;l = Cijk X over a field Fla,+x). This third
type of deformations is based on the preservation of the original
product X;X; of §(L} and of the original Lie product XjX; - X;Xjof L,
while deforming this time the structure constants

Xi Xj - X'Xi =C= Cijk Xk = Xi X] - Xj Xi = F‘ijk(q, “)Xk' {7.A.8)

]

where the quantities Fijk are similar to the “structure functions” of
the Lie-isotopic theory (this type includes deformations
characterized by the Hopf aigebras and numerous others)

plus additional deformations, such as those characterized by the combination of
deformed commutators (7.A.7) and conventional Heisenberg equations for the
time evolution,®® the deformation of creation—annihilation operators of the
above Types [, II, 11, etc. (see ref.s [25,26] or brevity).

Again, all the above g-deformations have an impeccable mathematical
consistency and un undeniable beauty. However, when considered for physical
applications they require the necessary use of the dynamical time evolution, in
which case a number of problematic aspects emerge as recently studied by Lopez
[27], such as:

1) General loss of the Hermiticity/observability of the Hamiltonian. As now
familiar from the studies presented in this volume, deformations of the Types I,
t, I1I above generally imply a nonunitary time evolution, as necessary from the
lack of canonicity of the commutation rules, and demonstrable, e.g., via
quantization of the corresponding, classical, noncanonical theories. In turn,
nonunitary time evolutions imply the lifting of the envelope into the isotopic

® This latter class evidently requires two different envelopes, a generalized one for
the characterization of the generalized commutation rules, and a conventional
one Tor the characterization of the conventional time evolution. Even though
mathematically correct, this class multiplies, rather than reduces the physical
problematic aspects discussed below.
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form for all Types I, II, {11,
EAB > . A%B' = ATB, A =UAU,B=UBU', (7.A9)
vul =1=1, T=(uulr!, 1="171, (7.A.9b)

Still in turn, this implies the loss of the Hermiticity/observability of the
Hamiltonian and of other physical quantities because g-deformations are defined
on a conventional Hilbert space ), while the preservation of Hermiticity under
lifting (7.A.4) demands the 6ioz'nt lifting of the base field F = Fp and of the Hilbert
space 3¢ = R (Sect. 1.6.3).5°

2) General loss of the measurement theory. Most g-deformations are
deformations of the basic associative product AB and/or of Planck’s constant h =,
and/or of the structure constants without a corresponding redefinition of the
unit as done in the isotopic theories. Therefore, g-deformations are theories
without a left and right unit which remains invariant under the time evolution.

This occurrence is transparent in lifting (7.A.6) which deforms the product AB
= A*B = qAB = ATB without jointly deforming the unit as done in the foundations
of hadronic mechanics

I = 1=T!=g71. (7.4.10)

The lack of basic unit can also be established for deformations of Types II and
{11, e.g,, under time evolution with ensuing nonunitary structure, and unification
of all envelopes into isotopic form (7.A.4). The loss of the unit then implies the
evident loss of the measurement theory, owing to the necessary condition of the
existence of a well defined, left and right unit for the very concept of
measurement.’?

89 1t should be indicated for clarity that, when nonunitary time evolutions are admitted
also for the Hilbert space, Hermiticity can be preserved. In fact, in this case the
conventional inner product is lifted into the form

<¢le>= [aZroler) = [&dre Ty, o=Vo.¢r=Uy, T = (VU

which is precisely of the isotopic type. However, the correct preservation of
Hermiticity requires the joint lifting of the base field into the isofield with isounit

1="T7L, in which case the correct form of the isoinner product is given by

<ofo>=1/doT Ty,

(and coincides with the original product for T independent of the integration
variables), thus imnplying the entire structure of hadronic mechanics,
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3) General lack of uniqueness of Gaussian distributions and related physical
laws. One of the strengths of quanturn mechanics is the unigueness of its
various formulations {such as the Gaussian) which evidently implies the known
uniqueness of its physical predictions (such as the uniqueness of Heisenberg's
uncertainties, see Sect. 1.6.1). This uniqueness can be mathematically traced to the
uniqueness of the basic unit of the theory, Planck's constant, as well as to the
existence of a right and left unit of the universal enveloping operator algebra E(L).
The general lack of the basic unit then implies that g-deformations do not
possess a consistent formulation of the Poincaré-Birkhoff-Witt theorem which
is applicable at all times. In fact, a necessary condition for the very formulation
of the theorem is the existence and uniqueness of a left and right unit.

This means the lack of existence of a unique, infinite-dimensional basis for
the envelopes of g-deformations and, therefore, the lack of existence of a
unique form of exponentiation. In fact, g-deformations are known for their
variety of "exponentiations” .

The above occurrences add to the mathematical beauty of the theory, but
have rather serious physical consequences, such as the lack of uniqueness of a
Gaussian distribution with consequential lack of uniqueness of the generalized
uncertainties. A similar situation occurs for other physical laws.

It should be stressed that the above occurrences are not referred to different
physical laws for different g-deformations, which would be physically
acceptable, but to different physical laws which can be introduced in each g-
deformation.

4) General loss of special functions under time evolution. As recalled earlier,
g-deformations are formulated at a fixed value of time, and so are their special
functions (Ch. 1.6). But under time evolution the q-number is replaced by the
isotopic operator T. The inapplicability of the g-special functions under time
evolution is then consequential.

From a mathematical viewpoint, this occurrence may be irrelevant. The
physical implications are however rather serious, such as the impossibility of
performing a partial wave-analysis and the like.

5) General loss of Einstein’s axioms. As well known (but not fully identified
in the literature), all g-deformations imply a structural departure from a/ basic
axioms of the special {and general) relativity, as established by the noncanonicity
of the commutation rules, or the nonunitary character of the time evolution, or
the deformation of the structure constants of the Poincare symmetry, etc.

Again, this occurrence can be mathematically intriguing, but it carrier rather

70 We are here intentionali‘,'r silent, as a test of technical knowledge of isotopic techniques
studied earlier, on the need for an axiomatic, form=invariant theory to unify the unit of
the base field with that of the envelope.
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serious physical problems in the compliance with physical reality which must be
addressed prior to any physical application.

Hadronic mechanics offers realistic possibilities of resolving all the above
probiematic aspects while leaving the results of g—deformations fundamentally
unaffected, and this illustrates the relationship between hadronic mechanics and
generalized theories.

In fact, hadronic mechanics does not require any change of the assumed
structural lines of q-deformations (such as the explicit form of g, f{g,..) or Fijk(q.
..} but only their reformulation in the axiomatically correct form which is
invariant under the time evolution of the theory.

The hadronic reformulation of q-deformations is so simple as to appear
trivial. For Type 1 it merely requires the joint lifting of the associative product
and of the basic unit

AB = AsB = AqB, I = 1=q, (7.A.11)

. with consequential reformulation of the theory with respect to isofield, isospaces,
isotransformations, etc.

The reformulation for Type Il was first studied by Jannussis and his
collaborators [28] on conventional fields. That on genofields requires the selection
of one "time arrow” and then the interpretation of the function f(g,..) in rules
(7.A.6) as the genounits for that direction. Jointly, the g-deformation of the
second term in the Lh.s. is not axiomatic and must be lifted into the inverse of
the selected genounit, resulting in the reformulation

r<p - p>£= tRp - pSr =17,

17 =1lg,.)/q, S=q/flg .) R=1g,..)
rp -q pr = iflg.) = or
r<p-p>fg=rRp-pSr=<

91 =flg.)/q S=flg.) R=q/flg,.)

. (7.A.12)
The entire theory must then be reformulated on genofields, genospaces,
genotransformations, etc. of the selected direction of time.

The hadronic reformulation of g-deformations of Type IIl is more complex
owing to their general character. The procedures has however been studied in
detail in this volume and it is applicable to each case considered. The end-result
is that, to achieve an axiomatic formulation for given deformed structure
constants Fijk(q, ..}, one must identify an isotopic element T{(g, ...} such that the
original Lie-deformation is turned into a Lie-isotopic algebra with Fjjk as
structure functions
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The axiomatic reformulation of other q~deformations can be done with one or
the other methods studied in this volume.

The researcher in g~deformations is urged 1o prove the form-invariance of
the above isotopic reformulations under the time evolution of the theory.
Equivalently, to understand the relationship between g-deformations and
hadronic mechanics, one should study the image of all commutators under
nonunitary time evolutions, e.g.,

rp-gqpr =iflg.}  rRp - plgRr=1i1, {7.A.14a)
1 = flg,.JUuUl, R= 1L (7.A.14b)

As a result, starting from the (0,g)-number deformation (7.A.6) at a Tixed value
of timer, one reaches at arbitrary times the general (P,Ql-deformations, that is,
the Lie~admissible equations at the foundations of hadronic mechanics. This
shows the inevitability of the hadronic reformulation even when not desired.

It is equally instructive for the researcher in q-deformation to see that the
above isotopic reformulations resolve aif the problematic aspects indicated
earlier. To begin, hadronic mechanics has been built from the beginning (Sect.
L.1.1) under the condition of possessing a generalized, but well defined left and
right unit 1. As now familiar, this implies a corresponding compatible isotopy of
the base fields and Hilbert space, thus ensuring the Hermiticity/observability of
the Hamiltonian and other operators at all times (Sect. .6.3).

The basic assumptions of hadronic mechanics are centered in fundamental
condition .44.1 that the enveloping algebra (of both the Lie-isotopic and Lie-
admissible branches) must have a well defined left and right unit. This implies
the existence of a generalized Poincare-Birkhoff-Witt theorem (Sect. 1.4.3). The
applicability of the measurement theory is proved in Vol. It by showing that the
correct isoexpectation values of the isounit 1 turns out to be the conventional
Planck value,

<1> = h = L (7.A.15)

As a result, the measurement theory of hadronic mechanics is the conventional
one, as necessary for physical consistency and applicability to actual experiments,
evidently because measures are conducted in our classical frame and, as such,
cannot be modified by theoretical deformations introduced in the microworld.
The Lie-isotopic theory is aiso based on the existence of a unique infinite-
dimensional basis which jmplies the uniqueness of the exponentiation in hadronic
mechanics with consequential uniqueness of the physical laws defined on them.
The applicability of the isospecial functions at all times is evident from the
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studies of Ch. 1.6, because they are constructed for an arbitrary
integrodifferential operator T admitting of T~} as the correct unit, rather than
with respect to a g—number without a unit.

Finally, the most important objective of all the isotopic techniques is the
preservation of Einstein’s axioms under T-integral-operator-deformations and
only their realizations in a nonlinear-nonlocal-noncanonical form as needed for
interior problems. The important point stressed throughout our analysis is that
both the exterior and interior problems are characterized by a unique set of
algebraic—geometric—dynamical axioms.

This is stressed by the local isomorphism between Minkowski and
isorninkowski spaces, or the Poincaré and isopoincaré symmetries

MxnR) =~ NgixdR), P31} ~ Pyal), (7.A.16)

which shouid be compared the corresponding lack of isomorphisms for
conventional q-deformations

MxnR0 #= Mq(x,n,R(, P3.1) Pq(3.l). (7.A.17)

As a final note we shouid indicate that, even after reaching a fully axiomatic
formulation of the Lie-admissible type (7.A.12), there is one additional
problematic aspect requiring consideration. It deals with the relationship between
the R- and S-operators which should be be restricted to verify the conjugation

R =§, ' (5.A.18)

in which case one has a direct applicability to all possible nonconservative
systems. Physical applications for R # R, even though evidently possabie, are
unknown at this writing, to our best knowledge.

Perhaps the best way to see the relationship between q-deformations and
hadronic mechanics is to inspect Vol. Il on the applications to specific physical
problems and Vol. [l on the experimental verification. It is at that stage where
the researchers in gq-deformation can see the inevitability of an axiomatic
reformuiation in order to reach a form acceptable for experimental verifications.

7.A.2: Hadronic mechanics and nonlinear theories. As well known,
nonlinear generalizations of Schrodinger’s equations, here referred to those
nonlinear in the wavefunctions (only), have been proposed since the early stages
of quanturt mechanics, such as the nonlinear equation proposed by E. Fermi [29]
back in 1927

3 1
f—dy =[- — A + Vi) + VTl (7.A.19)
at 2m
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Since that time, the generalizations have been studied by a considerable
number of authors and constitute today a new segment of theoretical physics.
These studies are evidently valuable because they focus the attention on one of
the expected limitations of quantum mechanics for interior dynamical problems
{Sect. 1.1.2), which is precisely the linearity in the wavefunctions.

The issue addressed by hadronic mechanics in Vol. [l is the identification of
methods appropriate for the elaboration of nonlinear equations that is, methods
verifying all the necessary principles, including the superposition principle and
the conventional measurement theory.

More recently, a method for the study of the above type of nonlinear
equations was proposed by S. Weinberg [30] in 1989 which is essentially
characterized by an enveloping algebra U with product

A oA OB
U: AXB = — — , (7.A.20)
oy oy
"Heisenberg-type” equation for a physical quantity Q
idQ/dt = QXH - H%A, (7.A.21)
and “schrodinger’s type” equation
) l oH
j—y = —— Ay ¥ — (7.A.22)
ot 2m

where H is certain functional of s, and ¢y, alt equations being defined over a
conventional Hilbert space 3¢ on a conventional field Fa,+x).

Weinberg's nonlinear theory provides another illustration of the relationship
between hadronic mechanics and generalized theories, this time, from a
viewpoint different than that of the g—deformations.

In fact, the elegance of the theory and its independence from other methods
are evident. Yet the theory is afflicted by a number of problematic aspects which
are, again, of physical nature, as studied in detail by Jannussis, Mignani and
Santilli [31].

The most dominant characteristic of Weinberg’s nonlinear theory is that its
envelope U is a general, nonassociative, Lie-admissible algebra (App. 1.4.A and
Sect. 1.7.3). In fact, product (7.A.20) is nonassociative because

U AX(BX)C) # (AXB)XC; (7.A.23)

it is Lie-admissible because the attached antisymmetric product is Lie
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Q%H - HXQ =Lie, {7.4.24)

and it {s a general Lie-admissible algebra in the sense that it is characterized by
the general law (7.3.1) without verifying simpler versions of the same, such as
that of flexibility.

The immediate consequence is that Weinbergs noniinear theory does not
admit a unit {unless reduced to the trivial case of only one dimension). As a
result, the theory suffers of a number of probiematic aspects somewhat similar
to those of q-deformations, such as [31}

1} 1ack of existence of the measurement theory evidently because of the lack
of existence of the unit

2) lack of weli defined Casimir invariants, evidently because of the lack of
the center of the envelope;

3) lack o the Poincaré-Birkhoff-Witt theorem for the basis of U’

4) lack of a consistent exponentiation, because of the lack of the needed
infinite-dimensional basis;

5) lack of a consistent formulation of space-time symmetries in their finite
(exponentiated) form uniquely derivable fro their Lie algebra;

6) lack of the general equivalence between the “Heisenberg-type” and the
"Schrédinger-type” equations; 3

1 As recalled in Sect. 1.43, the largest nonassociative envelope admitting ordered
monomials and a formulation of the Poincare-Birkhoff-Witt theorem is given by the
flexible Lie-admissible algebras while extreme technical problems exist in the
formulation of the theorem for general Lie-admissible algebras.

72 Note that, by comparison, exponentiations do exist for g-deformations, although they
are not unique.

73 This is a typical area of study of Vol. Il. We here mention the origin of the
problematic aspect which is due, on one side, to the nonassociative character of the
envelope of the "Heisenberg-type” equations (i€, the nonassociativity of the
product AXB,), and the associative character of the modular structure of of the
“Schrodinger-type” equations (i.e,, the associativity of the action Ay, under

which no equivalence is evidently possible. At the same time, a nonassociative
reformulation of the modular action of the “Schrédinger’s type” equation such as
HX{y, to achieve structural equivalence with the envelope of the the "Heisenberg-

type” equation is confronted with large technical problems, because it would
require a nonassociative generalization of Schrodinger’s theory, ie., one for which

AX(BXyy) * (AXB)I%y;.

In summary, the mathematical structures of the Heisenberg-type and
Schrodinger-type equations are inequivalent in Weinberg's nonlinear theory, and
the attempts at rendering them structurally equivalent are confronted with
considerable technical problems which, at any rate, would leave the other
problematic aspects completely unaffected. The above occurrence is rather
synthetically expressed by the so—-called Okubos No-Quantization Theorem [32]
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7) lack of a well defined notion of particles because of the lack of well
defined physical characteristics, such as spin, which evidently require a well
defined Lie algebra, with an envelope possessing a well defined center, with a
unique exponentiation to a well defined group, etc.

Again, the above occurrences do not prevent the theory from being
mathematically definabie. In fact, the occurrences have been called “intrinsic
features” of the theory. The point is that they simply cannct be ignored for
physical applications, '

As it was the case for the q-deformations, hadronic mechanics permit an
axiomatic reformulation of Weinberg's nonlinear theory which, while leaving the
physical content completely unchanged, avoids problematic aspects 1}-7) above.

To understand the occurrence one must distinguish between the nontinear
“equations”represented by the theory, and Weinberg’s nonlinear “theory” per se.
Then, all possible Weinberg’s nonlinear “equations” are an evident particular case
of the isoschrodinger’s equation of hadronic mechanics owing to its direct
universality (Theorem 7.9.1)

3
i—dy = Hit,r, p) T(t, 1, p, o &, &, 0, B, .....) Uy . (7.A.25)
at

As a matter of fact, while Weinberg’s “theory” admits only one particular
class of "equations” nonlinear in the wavefunctions, isoschrédinger’s equations are
much broader because they admit: 1) ali possible nonlinear equations in the
wavefunctions; 2) all possible equations nonlinear in the derivative of the
wavefunctions; as well as 3) all possible equations which are noniocal in the
wavefunctions and their derivatives of arbitrary order.

The resolution of the problematic aspects in the treatment of the same
“equations” then follows from their isotopic representation (7.A.25).

As an incidentai note, one should be aware of the differences in the intended
physical applicability of Weinberg’s nonlinear theory and hadronic mechanics. In
fact, the former has been formulated for what we essentially refer to as the
exterior dynamical problem in vacuum; while the latter has been formulated for
the interjor dynamical problem within physical media.

This point is important to stress that the limitations emerged from
experiments on Weinberg's theory (33] (essentially dealing with atomic structures),
have no bearing of any nature for hadronic mechanics, evidently because they
are not applicable, say, to a proton in the core of a collapsing star. In fact, a
primary nonlinearity of interior conditions is expected to be in the derivative of
the wavefunctions which is absent in Weinberg's theory.

The different origins of the problematic aspects in q—deformations and in
Weinberg's theory should be identified because instructive. All g-deformations
possess a fully associative algebra, with consequential full capability to identify

studied in Vol. I1.
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its correct left and right unit. By comparison, Weinberg’s nonlinear theory is
based on a nonassociative envelope with consequential :mpossrb;hty to define
the right and left unit.

Additional critical inspection of Weinberg’s nonlinear theory can be found in
ref.s [34]. An intriguing reformulation of Weinberg’s theory which avoid some of
the problematic aspects of the original formulation has been proposed by Jordan
[35]. The identification of the algebraic origin of these resolutions is useful to cast
additional light on the issues here considered.

Jordan [loc. cit.] introduces the following generalization of envelope (7.A.20)

0A oB
u*: A*B = — Wi —— (7A26)
awk anj

The commutator (A, Bl ., = A*B - B*A is Lie and, therefore U* remains a general
nonassociative Lie-admissible algebra as in Weinberg's case.

Jordan’s reformulation does however allow the treatment of spin and other
conventional quantum mechanical quantities. This is due to the fact that the
space of functions A, B,... is restricted to those with the structure

A= ij akj ., B = ij bjk' (7)\27}

where the terms in the r.h.s. are interpreted as matrix elements. The commutator
(A, B]U‘ computed in the nonassociative envelope U* is then turned into an
equivalent cornmutator turned into an associative envelope,

[A’B]U‘ = akj Wik bj] - bkj Wik aj| = [A,Bl., {7.A.28)

the correct formulation of the Poincaré-Birkhoff~Witt theorem, space-time
symmetries, exponentiation, Gaussian distribution, etc. is then consequential.

In fact, structure (7.A.28) is a realization of the Lie-isotopic product with an
isoassociative envelope and isotopic element T = (wl ) precisely of the type at the
foundation of hadronic mechanics. More specifi lca]l] , Jordan's transformation of
Weinberg’s nonassociative envelope into an equivaient isoassociative form is
precisely a realization of Lemma 1.4.A.1.

Jordan’s reforrnulation itself is not immune of problematic aspects which are
this time similar to those of the q-deformations (lack of joint isotopy of fields
and Hilbert spaces, etc.).

The important information originating from these occurrences is that
{Fundamental Condition 1.4.4.1), according to current knowledge, physically
meaningful theories should be formulated with respect to an associative
envelope with a well defined left and right unit, as it is the case for quantum
mechanics and its hadronic covering.

There is little doubt that a next generation of theories will likely be based on
nonassociative envelopes, precisely along Weinberg’'s lines [30]. The researchers
interested in these latter lines should however be aware of the rather serious
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technical problems involved, both mathematical {e.g., the Poincaré—Birkhoff-
Witt theorem) and physical (e.g., the equivalence of Heisenberg-type and
Schrodinger-type equations for nonassociative moduli).

7.A.3: Hadronic mechanics and nonlocal theories. Deformations of
quantum mechanics (Sect. 7.A.2) focus the attention on the relevance of
noncanonical theories, while Weinberg's theory of the preceding section focuses
the attention on the relevance of nonlinear theories. The next logical step along
the lines of these volumes is to focus the attention on nonfocal theories.

We assume the reader is familiar with the variety of notions of nonlocality
existing in the literature. Those particularly relevant for these volumes are the
studies initiated by Russian physicists, such as Blochintsev {36] which have
subsequently seen the most comprehensive development by Efimov and his
associates (see monographs [37] and quoted literature).

Most significant for these volumes is the original motivation which
stimulated the studies of nonlocal theories: remove the divergencies which are
inherent in the local in the local character of quantum field theories.

Note that studies [36,37] deal with nonlocal formulations of quantum field
- theory while the studies of these volumes deal with nonlocal formulations of
quantum mechanics. Despite that, the rather intriguing connections and
possibilities for further advances are already identifiable.

Hadronic mechanics can be conceived as a generalization of quantum
mechanics which can remove the singularity of Dirac’s delta function ab initio
precisely via a nonlocal formulation (Sect. [.6.6.4).

The Tield theoretical extension of the isodirac delta function has been
preliminarily studied by Nishioka [38] and, as we shall see in Vol. 11, it does indeed
contains the necessary elements for the possible, future construction of a
nonlocal-isotopic field theory which is also free of singularities ab initio.

Again, all results achieved in ref.s [36,27] remain unchanged in their possible
isctopic reformulation, which essentially provides mere alternative methods for
their treatment.

One point appears to be certain: the conventional local-differential field
theories have reached and surpassed the limits of their applicability. Irrespective
of which theory will eventually result to be more viable, the need for nonlocal-
integral theories is simply beyond credible doubts. We are not referring to ideal
point-like particles moving in vacuum (exterior problem) in which the exact
validity of local field theories is incontrovertible, but to extended wavepackets
moving within those of other particles (interior problem).

At any rate, there exist physical systems simply beyond the descriptive
capacities of local field theories, such as the attractive interaction of the same
electrons of the Cooper pair in superconductivity, which can be quantitatively
interpreted via a suitable nonlocal representation of the overlapping of the
wavepackets of the electrons (Vol. I11). Similar needs for nonlocat theories exist in
nuclear, particle and statistical physics, theoretical biophysics and other
disciplines.



- 367 -

7.A.4: Hadronic mechanics and and discrete theories. Another field of
research that is currently gaining momentum is at times known under the name
of discrete theories. This area too is quite vast, by encompassing the use of
discrete groups, lattices, discrete calculus, etc. We here focus the attention on
only one aspect, the discrete-time theories which is sufficient to illustrate ail
other discrete theories,

Discrete time theories can be traced back to Caldirola’s studies (39] of 1956.
More recent studies have been conducted by Woif [40] and others {see Vol. I1).

These studies focus the attention on the possibility that time has a discrete

“structure at a sufficiently small scale, a possibility clearly deserving the proper
attention in the mathematical, theoretical and experimental communities.

It was shown by Jannussis and his collaborators {41] that Caldirola’s equations
do have a structure precisely of the Lie-admissible type

plt) - plt—T)

ih——————= HRoplt) - plt) SH, (7.A.29)
T

where T, called Caldirola’s chronon, is a measure the duration the interaction
among particles. The full applicability of hadronic mechanics along universality
Theorem 1.7.9.2 is then completed by noting that the difference in the Lh.s. is a
realization of the isoderivative with discrete isounits {Sect. 1.6.7).

Thus, discrete time theories constitute an intriguing particular case of
hadronic mechanics of Class V. Note that this interpretation permits an intriguing
connection with q~deformations which does not appear to have been sufficiently
- identified in the literature.

By recalling that the basic axioms of quantum mechanics are preserved
under isotopies, and only realizes in a more general way, the above hadronic
reformulation is intriguing indeed because it shows that discrete—time theories
are admitted by the abstract axioms of quantum mechanics itselr,

The above unexpected property will be proved in Vol. Il via the the
isoexpectation value of the isounit <1 > = 1, which applies also for discrete
isounits 1. To put it differently, a discrete structure of time emerges as admitted
by the quantum mechanical axioms, evidently in a more general realization, when
dealing with the microcosm. Nevertheless, when the theory is reduced to
numbers suitable for macroscopic experiments via the isoexpectation values,
such discreteness disappears. In fact, the future resolution of the possible discrete
structure of time requires experiments specifically conceived for that purpose,
whose study has been initiated by Wolf [40].

The current formulation of the discrete-time theories is also afflicted by
problematic aspects of physical character due to the fact that, on one side, they
generalize the structure of quantum mechanics while, on the other side, they
preserve conventional quantum mechanical formulations (conventional
expectation values, conventional physical laws and principles, etc.) in the
elaboration of the theories.
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In effect, the transition from the continuous time of quantum mechanics to
a time with a discrete structure implies a necessary generalization of the
underlying unit of time, from the trivial unit 1 to a generalized unit of
Kadeisvili’s discrete Class V. In turn, this demands, for evident need of
consistency, a step—-by-step generalization of the entire quantum mechanics,
including expectation values, physical laws and data elaboration needed for
experiments.

7.A.5: Hadronic mechanics and other approaches. By no mean the
preceding examples exhaust all possible connections between hadronic mechanics
and ongoing research.

Among a number of additional aspects we shall study in Vol. II, it may be
recommendable to indicate the following ones. Kadyshevsky and his associates
{42] have constructed a generalized quantum field theory with a fundamental
length at small distances which exhibits numerous intriguing connections to q-
deformations, nonlocal field theories, etc. The re-inspection of the above theory
with isotopic methods is significant because it can indicate that a fundamental
length can be reconciled with the very axioms of quantum mechanics, evidently
when realized in a sufficiently general way.

Another intriguing topic is the Lie—admissible re—interpretation of
conventional external electromagnetic interactions, such as the studies by
Studenikin, and others [43]. Even though these studies deal with purely quantum
mechanical settings, their Lie-admissible reinterpretation may be intriguing and
instructive for various reasons. After all, interactions with external fields imply
the nonconservation of the energy or of some other physical quantity of the
particle considered, thus implying the direct applicability of the Lie—admissible
formulations.

Note that the reinterpretation identifies another hitherto unknown
application of the g-deformations (the treatment of open systems due to external
electromagnetic and other fields), when also treated with Lie-admissible
techniques.

The implications of the reinterpretation are nontrivial. Recall that the
electromagnetic interactions verify the Poincare symmetry. Their
reinterpretation as open systems and treatment via the Lie-admissible theory
then permits the construction of the equivalent Poincaré-admissible symmetry
(Sect. 1.7.6). Once such genosymmetry has been established in the known grounds
of electromagnetic interactions, its extension to more complex systems is then
expected, such as to the characterization of a neutron in the core of a neutron
star.

The Bogoliubov method of group variables [44] is yet another field, as
studied, e.g., by Khrustalev and his associates [45}, which is particularly intriguing
for hadronic mechanics. As well known, the method essentially consists of using
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collective group variables which greatly simplify complicated models in field
theory and gravitation. But the method also has a nonlocal structure, and exhibits
a clear connection with the Lie-isotopic branch of hadronic mechanics.

While the independent studies of Bogoliubov methods are evidently
encouraged, their reinterpretation in terms of hadronic mechanics is also
recommendable because of the predictable additional knowledge one can gain in
the process for both approaches.

New bound states of hadrons are recently emerging such as the so—called di—
baryons (see ref.s [46] and quoted literature). Such systems have a particular’
importance for hadronic mechanics because one of its primary objective is the
study of the apparent cold fusion of massive particles into heavier particles (see
ref.s [47} and Yol. 111).

The entire field of hidden variables{(see, e.g., ref. [48) has a direct connection
with hadronic mechanics. In fact, the isoeigenvaiue equations

Hxg = HT{ = Ep*¢ =Epy {7.4.30)

is an explicit and concrete realization of the theory of hidden variables, which are
actually turned into "hidden operators”. This occurrence has rather deep
implications studied in Vol. [I, which lead to the reinterpretation of hadronic
mechanics as a completion of quantum mechanics along the celebrated
Einstein-Podolsky-Rosen argument [49].

Additional related studies of particular interest for hadronic mechanics are
the novel studies on hidden symmetries initiated by Smorcdinsky and Winternitz
[50] and continued by Sissakian, Pogosyan and their associates {51). These studies
too are particularly significant for hadronic mechanics because they permit the
identification of generalized bound states deeply linked to the hadronic bound
states. In fact, the isosymmetries of hadronic mechanics are hidden symmetries.

Yet another topic of particular relevance is the variational method to regain
convergence in perturbative treatments by Sissakian and his collaborators [52). In
fact, as indicated in Sect. 1.6.2, one of the ofxjectives of the isotopies of Hilbert
spaces is precisely that of turning conventionally divergent series into
isotopically convergent ones under the mere selection of isotopic elements such
that | T | < 1. The above variational method can therefore be particularly useful
for the isotopic achievement of convergent series.

The interested reader can find along similar lines the connection between
hadronic mechanics and other topics, such as Berry’s phase, squeezed states, and
others.



-370-
REFERENCES

. J. L. LAGRANGE, Meéchanique Analytique , (1788), reprinted by Gauthier—

Villars, Paris (1888)

W. R. HAMILTON, Hamilton’s Collected Papers, Cambridge Univ. Press (1940)

C. G. JACOBI, Zur Theorie der Variationensrechnung under der Differen-

tialgleichungen {1837)

S. LIE, Theorie der Transformationengruppen (1893), Teubner, Lipsia.

Y. HAGIHARA, Celestial Mechanics, MIT Press, Cambridge, MA (1970)

D. BOBM, Quantum Theory, Dover Public,, New York (1979}

R. M. SANTILLI, Hadronic J. 1, 223 and 1279 (1978)

R. M. SANTILLI, Foundations of Theoretical Mechanics, Vol. I; The Inverse

Problem in Newtonian Mechanics, Springer-Verlag, Heidelberg (1978)

R. M. SANTILLI, Foundations of Theoretical Mechanics, Vol. 11: Birkhoffian

Generalization of Hamiltonian Mechanics , Springer-Verlag, Heidelberg (1983)

10. R. M. SANTILLI, Lie-Admissible Approach to the Hadronic Structure,
Yol. I. Nonapplicability of the Galilei and Einstein Relativities 2 Hadronic
Press, Tarpon Springs, FL (1978)

1l. R. M. SANTILLI, Lie-Admissible Approach to the Hadronic Structure,
Yol. II: Coverings of the Galilei and Einstein Relativities 7, Hadronic Press,
Tarpon Springs, FL (1982); Vol. HI: Identification of Hadronic Constityuents

with Physical Padrticles 7, in preparation.

12. R. M. SANTILLI, Lettere-Nuovo Cimento 51, 570 (1967)

13. R. M. SANTILLI, Meccanica 1, 1 (1968)

14. R. M. SANTILLI, Suppl. Nuovo Cimento 6, 1225 (1968)

15. 8. W. HAWKING, R. LAFRAMME and G. W. LYONS, Phys. Rev. D47, 5342 (1993);
J. L. LEBOWITZ, Physics Today 46, no. 9, p. 32 {1993

16. A. JANNUSSIS and D. SKALTSAS, Ann. Fond. de Broglie 18, 137 (1993)

17. R. J. SLOBODRIAN, C. RIOUX, R. ROY, H. E. CONZETT, P. von ROSSEN and F.
HINTERBERGER, Phys. Rev. Lett. 47, 1803 (1981} R. M. SANTILLI, Lett. Nuovo
Cimento 37, 337 (1983

18. A. A. ALBERT, Transaction of the Amer. Math. Soc. 64, 552 (1948)

19. H. C. BALTZER, H. CORYHELL, J. ORDWAY, M. REYNOLDS, T. TERRY, M. L.
TOMBER and K. TREBILCOTT, "Bibliography in Nonassociative Algebras”,
Hadronic Pres, Tarpon Springs (1984)

20. R. M. SANTILLI, Hadronic J. 1, 574 (1978)

2l. J. FRONTEAU, A. TELLEZ-ARENAS and R. M. SANTILLI, Hadronic J. 3,
130 (1979) |

22. R. M. SANTILLI, Algebras, Groups and Geometries 10, 273 (1993)

23. R. D. SCHAFER, An Introduction to Nonassociative Algebras, Academic Press,
New York (1966}

24. R. M. SANTILLI, Hadronic J. 3, 440 {1979)

25. YU. F. SMIRNOY and R. M. ASHEROVA, Editors, Proceedings of the 1392

w o

fo N Do

d



26.

27,

28.

30.
3L

32
33,

34
35.

36.
37.

38.
39.

40.

41.

42,

-371 -

Workshop on Symmetry Methods in Physics , JINR, Dubna, Russia); T. L.
CURTRIGHT, D. B. FAIRLIE and Z. K. ZAACHOS Editors, Quantum Groups,
World Scientific (1991} MO-LIN GE and BAO-HENG ZHAOQ, Editors,
Introduction to Quantum Groups and Integrable Massive Models of Quantum
Field Theory, World Scientific (1991)

J. LUKIERSKI, A. NOWICKI and H. RUEGG, Phys. Letters B23, 344 {1992}, and
Univ. of Geneva preprint DPT 1993/3-812

D. F. LOPEZ, in Proceedings of the 1993 Workshop on Symmetry Methods in
Physics (dedicated to Ya. A. Smorodinsky), G. POGOSYAN et. al. Editors, JINR,
Dubna, Russia, in press

A. JANNUSSIS, D. BRODIMAS, D. SOURLAS, A. STRECLAS, P. SIAFARICAS, L.
PAPALOUCAS and N. TSANGAS, Hadronic J. 5, 1923 (1982); A. JANNUSSIS, G.
BRODIMAS and R. MIGNANI, J. Phys. A24, L775 (1991)

E. FERMI, Rend. Lincei §, 795 (1927}

S. WEINBERG, Ann. Phys. 184, 336 (1989)

A. JANNUSSIS, R. MIGNANI and R. M. SANTILLI, Some problematic aspects of
Weinberg’s nonlinear theory, Ann. Fond. de Broglie, in press

S. OKUROQ, Hadronic J. 5, 1667 (1982)

J. J. BOLLINGER, D. J. HEINZEN, WM. ITANO, 8. L. GILBERT and D. J.
WINEKLAND, Phys. Rev. Lett. 63, 1031 (1989); T. E. CHUPP and R. J. HOARE,
Phys. Rev. Lett. 64, 2261 {1990); R. L. WALSWORTH, I. F. SILVERA, E. M.
MATTISON, and R. F. VESSOT, Phys. Rev. Lett. 64, 2599 {12990} P. K.
MAJUMDER, B. J. VYENEMA, S. K. LAMOREAUX, B. R. HECKEL and E. N.
FORTSON, Phys. Rev. Lett. 65, 2931 (1990)

A. PERES, Phys. Rev. Lett. 63, 1114 (1989} N. GISIN, Phys. Lett. A143, 1 {1990} J.
POLCHINSKI, Phys. Rev. Lett. 66, 357 (1991)

T..F. JORDAN, Ann. Phys. 225, 83 (1993)

D. [. BLOKHINTSEY, Usp. Fiz. Nauk. 61, 137 (10957)

G. V. EFIMOY, Nonlocal Interactions of Quantized fields, Nauka, Moscow
(1977); and Problems of Quantum Theory of Nonlocal Interactions, Nauka,
Moscow (1985); G. V. EFIMOV and M. A. IVANOV, The Quark Confinement
Model of Hadrons, 1PP, Bristol, England (1993)

M. NISHIOK A, Lett. Nuovo Cimento 39, 369 (1984)

P. CALDIROLA, Suppl. Nuovo Cimento 8 297 (1956) and Rivista Nuovo Cimento
2, 1 {1979}, P. CALDIROLA and E. MONTALDI Nuovo Cimento 53, 291 (1979)

C. WOLF, Hadronic J. 18, 22 {i990); Ann. Fond. de Broglie, in press; and
Hadronic J., in press

A. JANNUSSIS, A. LEODARIS and Y. PAPATHEQU, Lett. Nuovo Cimento 28, 259
(1980); A. JANNUSSIS, A. LEODARIS, G. BRODIMAS, V. PAPATHEOU and K.
VLAKOS, Lett. Nuovo Cimento 30, 432 {1981} G. BRODIMAS, A. JANNUSSIS and
R. MIGNANI J. Phys. A25, 1329 (1992)

V. G. KADYSHEVSKY, Nucl. Phys. B141, 477 (1978} V. G. KADYSHEVSKY and M.
MATEEY, Phys. lett. B106, 139 (1981);



43

44
45.

46.

47.

48.
49.
50.

Sl

-372-

- A. STUDENIKIN, Phys. Lett. B267, 117 (1991); A. STUDENIKIN, Nuclear Phys. B,
Suppl. 234, 133(1991) '

N. N. BOGOLIUBOY, Ukr. Math, Zh. 2 3(1950)

A. O. KHRUSTALEY et al., Teor. Mat. Fiz. 10, 162 (1972); 289, 300 (1976} Nucl.

Phys. B.172, 44 (1980)

B. A. SHAHBAZIAN, V. A, SASHIN, A. 0. KECHECHYAN and A. S. MARTYNOY,

Phys. Lett. B235, 208 (1950)

R. M. SANTILL], in Proceedings of the 1993 Workshop on Symmetry

Methods in Physics (dedicated to Ya. A, Smorodinsky), G. POGOSYAN et. al

Editors, JINR, Dubna, Russia, in press, and JINR Communication E4-93-352

(1993)

D. HOME and F. SELLERI, Rivista Nuovo Cimento 14, 1(1991)

A. EINSTEIN, B. PODOLSKY and N. ROSEN, Phys. Rev. 47, 777 (1935)

P. WINTERNITZ, Ya. A. SMORODINSKY, M. Uhlir and . Fris, Sov. J. Nuct,

Phys. 4, 444 (1966)

ANTONYAN, J. Phys. Al8, 455 {1985); L. s. DAVTYAN, L. G. MARDONYAN, G. S.
POGOSYAN, A. N. SISSAKIAN and V. M, TER-ANTONYAN, J. Phys. A0, 6121

(1987); M. P. AVAKIAN, G. 5. POGOSYAN, A. N. SISSAKIAN and V. M. TER-

ANTONYAN, Phys, Lett. Al24 233 (1987) 8. 1. VINITSKY, L. G. MARDONY AN, G.
S. POGOSYAN, A. N. SISSAKIAN and T. A. STRIZH, JINR P3~92-302, Sov, J.
Nucl. Phys. 56 (1993), in press

52. A.N. SISSAKIAN and I. L. SOLOVTSOYV, Phys. Lett. AI57, 261 (1991)

3\ -Sovar rckx

L. G. MARDONYAN, G. S. POGOSYAN, A. N. SISSAKIAN and V. M. TER-



H_e/be: 3‘731::2 .

INDEX Pr‘;{" ;u

Additive unit, 40

algebra, 49

alternative law, 45

alternative algebra, 167
antiparticles, 180
antisymmetry, jo€ (45
associative law, 946 N, L
associative algebra, 192 | 79
ey 35“9"1 é.' ’O‘,

Baker—Campbell-Hausdorff
theorem, 140
Berry phase, 369
Birkhoffian
mechanics, 4 7
one-forms, 9% 2.9 %
two—forms, 252
vectorfields, 3% 253
Birkhoffian-admissible
mechanics, 327
p—-forms, 336
hirepresentation, 331
Bogoliubov method, 368
Bose-Einstein correlation, 6-13" 5 J7

Caldirola's equationy, 367. 2 93

canonical’t-\%?)gfg?nfhﬁ‘zyg

characteristic quantities of
Physical media:
nonrelativistic, 193
relativistic, 199

charge distribution, 1!

chernical synthesis of hadrons, 21

Christoffel-admissible
symbols, 342

Christoffel-isotopic
symbois, 231 g

cold fusion of particles, 6 / !

7

K ;_},‘cj'”a iﬁ Lo

"Fu-w/)_‘a\ W‘l}‘\g l('

st fe &2
A ‘

C"- 4 ' ’ 90
complex nurmbers, 35, 561T
conchology, 196
conservative systems, 352
Cooper pair, 5

Dirac delta, 10
Dirac isotopy, 20

Dirac queer numbers, 309 L26c
dlreca %rggr?a 1%, <
sympleCtic’geometry,
296

hadronic mechanics, 3488,

Lie=isgtopiom-Ida.,
discrete theories, 3¢ 4-6¢

Dvs tr. Law z\g

LwhoN o %L - 52

Euclidean
fifth axiom, 191 Loefnn rSo‘J
geometry, 195 o~ AT
metric, 83 {0¢
Space, 83

electron pairing, 5
exact isosymplectic
manifold, 218
exterior dynamical
problems, 4,—%‘9-—1 7, 13 Z
exterior-admissible
two—forms, 337

Faithful representation, 150

Flexible law, 166

flexible Lie-admissible
algebra, 321

Freud identity, 237

G (& -"4,62'0*6 ’

Galilei boosts, 248
genoanalysis, '.!8%_0 M Sé:
genoforms, 337 -
genogeometries
genoeuclidean, 36& ¢ Y5~
genominkowskian, 308 £¢ 3 SX

i

4 q?g;‘cpx j‘e_mdﬂv 494,

11 %4



-374-

oSY R - &3¢
g T
genoriemannian, pf algebra, 356

genchilbert spaces, 344 }{-7 P\ PRNPTR VY 7 ’ 5/

genometrics, 341 e
genomodules, 333 Index of refraction, 193-262
genonumbers, 3335 U4 fnhomog;nei;yéa.-s-é—, (0§
enoreals, 326 inner product,
genocomplex, 326 interior dynamical problemn, XvA1, ljé
genoquaternions, 326 interior- grawtatgalzgc;)lem
genooctonions, 326 If‘mtlmatter, _
genorepresentations, 332 : Ey s
matter, 330 <& 2 .
enospaces, s «
: gfnoeuclidean, e S irreversible systers, 3‘3’445}'*2‘/
genominkowskian, 82& f;ég .isoagt_;qlutt'e I;g‘l_u? ;6} Y
genoriemannian, 338 £ isoadjoin .
genounits, 17, 326 ?soa?fjgint isorepresentation, 155
forward, 322 isoaffine
backward, 322 _ geometry, 29 263
genotopies, 344~ A/ | zgicr:;scﬁii e 247
genotopies of .
Heisenberg’s equation, 16, 347 " 9. o8 fsoalgebr:.ﬁ, iy 333
Schrodinger equation, 348 t, . Tsoanaiysm, 261 2
gravitational collapse, 28, 257 © . ¥soang eg, 39#— .
gravitational horizon, 258 5 soassociative law, 41, 32]
gravitational singularity, 258 . 'L“:, 4 %sobjanach. §pace§, % 97
U 1e@ {- isobianchi identity, 3% o) o7
\'sa‘:&"o isobimodule, 331 ¢ Fobox
Hadronic mechanics, 37 _ u" ?socantcmic:lﬁslozlf) ¢ ”tj
classification, 36 &/ isocartan 3
direct universality, 3e6¢ Mzg b }soctaluchyt :fgg?lgn; 227[
i isocharac \
fun'damental e ons 35 r?' % isochristoffel symbols, 231
hadronic structure, 21 ha 7 ‘ _ os 2!
Hamnilton’s equations, 3l &-f 2 o Tsocommutatlon rule % 53
Hamiltonian vectorficld, 2 292 1socomglex _numbers,%
Helmholtz calculus, 309 , ' realization, 59ff 33/
hidden numbers, #T° ‘{ o : goconyerge;e, ﬂ'a
hidden symmetries, 369 isocosinus,
hidden \«:'?ables. 369 p\ﬂ#j isocovariant derivative, 224 265
i i i i ial, 20
Hilbert spaces, walV isocovariant differential,
l convlt):ntional, 9 il {1@ """/i;*ocurvature tensor, a¥Eay M/
conventional isodual, 274 ?socurvature i§oscalar, 235
isotopic, 275 : isodelta functions, 20866 % 4 /

isodyal isotopic, 275 first kind, 289




- 375 -

T2

! isorepresentations, 152
isoriemannian spaces, 284 i ¢ 17'
a3, 9(

second kind, 289

third kind, 290
isodegenerate 2-forms, 221
isoderivation, 133
isoderivative, 301
isodeterminant, 52
isodifferential, 301
isodifferential calculus, 208 247

isodifferential rule, 128
'
: v XY Aeo

54,337

\c,o$gmt&

isodistance, 98208
isodistributive law, 4 5L
isodual

isocomplex numbers, 56
realization, 57
covariant differ, 223
differential calculus, 21
electromagnetic field, 2412
Euclidean geometry, 195
isoaffine geometry, 23 2.4 2
isocanonical, 120
isochristoffel symbols, 241 i 0"-’”1“& ”'&
isocovariant differ., 2 26¢
isocurvature tensor, 241
isodeterminant, 52
isodifferential calculus, 28 9'67 ~
isoeinstein tensor, 241 "

« isoenvelope, 126§ 135.
isceuclidean geometry, 185 29/
isoeuclidean spaces, 98ff 100 1,

U”'lsoexponentlatton, 2 137

1soh11bert spa 3727
13# isoinner prod W_@ ,45. cove , 24T
7 233

tﬂ isometric, 241
isominkowskian geom., %86 ¢

isominkowski spaces, 9% (€ 7 canberr
isooctonions, # 25 ; 5
realization, 72

isoquaternions, 64ff
realization, 69ff

iscreal numbers, 52ff
realization, B4ff

isoricei tensor, 241,

‘Sovf. (69

X qb»/mnme. 98

e 2F
groen 27

isospaces, 8§ /
isotopic scalar, 241
isotorsion, 241
Lie groups, 142
Lie-isotopic groups, 137, 142
map, 26
Minkowskian geometr, 206
numbers, 35" S |
octonions, 71
reahzatlon 71 17 H/;%Q;_
quatermons, 6411
realization, 66f
real numbers, 52
realization, 53f
stress—energy tensor, 241
time, 98
Riemannian geometry, 231
Riemannian spaces, 231
ual Lie-isotopic
theory, 122
lsoelgenvalues 4sesases 9% [
isoeinstein tensor, 234
isoenvelopes, | ! g’f/
isoequivalence, - | 7o
isceuclidean
spaces, 898 o0

geometry, 1F5mig9— 20[36
isoexponentiﬁm .
isofields, 48tf g 2 (Qtwy

general, 48 272
indefinite, 48
isodual, 48

isoforms, 2mesf 257/

isofreud identity, 237

isofourier series, 292

isofourier transforms, 2&1‘1‘390
first kind, 296
second kmd, 296

isof unctlons

isod

,So

'&‘ﬂ( 2:’)'



L) 2 C— ey

‘50”: geometry, H5=i9 2 27 . iSoM

1_9_0«'“

‘/“‘fgmner product, 28¥ 315 %

‘.9‘"), soinverse, 44

»Asohyperbolic functions, 3 5"7
integral, 301

isolight cone, 26% - *

isolinearity, 14&42&-219.93 IZY

1soloci1ty. I‘?—BZS—- 128

OWS 1

spaces, 8488~ (o7

b isomultiplication, 37, 40
isonilpotent, 133* I‘ti’
isonorm, 50
isonormed a]gebrE, - 5%
isonumbers, 35

* isooctonions, MTT %
realization, 721f
isporthogonal algebras, 132
isoorthogonality, 273
isooperations on functions
isodifferentiais, 302
isoderivatives, 302
isointegrals, 302
isologarithm, 301
isoexponentiation, 301
isooperations on operators
isocharacteristic, 282
isodeterminant, 283
isohermiticity, 280, 2864
isoidempotent, 285
isoinverse, 280
isopower, 280
isoprojection, 285
isospectrum, 284
isotrace, 284
isounitarity, 281 -

isoparaliel transport, 24217 > 0

isopauli matrices, (% 179
irregular, 66 17
isoequivalent, ¥ 77

b
2%¢

Tlesty <f,82

. N
O oyt 37613 g
we oy |
291} LYo
isogeodesics, 2‘&12 Ssaba ot WF 2
isohilbert space, 226 %7 0 ( sfandard, 6o 176
isobasis, 272 ~regular, 5% §7 9

isoplane waves, 24
isopythagorean theorem, 385 360
isoquantization, 24 6 7
isoquaternions, @7t
realization, 67ff
isoquotient, 44 9;
isoreal numbers, S
realization, 54ff
isoricci identity, 228 , 69
isorepresentations,
irregular, I§& j4'Se lu.'@u 17
isoadjoint, 155 Jb.‘,uf 7
regular, 1§2
standard, 1
isoricci teneoaﬁ eb"«""*“ 25
isoriemannian
spaces, 10625+ 11.6 , 2’73
geometry,tZ5 2?/

. isorotations, 147
A1yl C’l%'&'sc;%t product, 188

{ Soﬂ’vu

3§chwartz inequality, 272

‘ !-‘-’ke@"eﬂ' iosenes 266 345

%
558 !.a!
D

jﬁsosolvable 133° /4

isosinus, M “3OD
isosquare root, 44 -
isoriemannian geometry, 229ff

isospaces, 83, 85

isospectrum of eigenv., 28 3;#

isosphere, 182, 189

isosymmetries, | 442087t
fundamental theorem, 145

isosymplectic
geometry, FE-2086F Z&©
manifolds, 218

isotime, 98

isotopic Baker-Campbell-
Hausdorff theorem, J4¢r

isotopic element, 37

isotopic generalization of
Heisenberg's equation, 16, 346

159




-377-

- 4 297
e LY.
Lie ol - il tn 410

unit, 3, 16 Lagrange’s equations, 3&p

Schridinger’s equation, 24, 346 Lagrange’s identity, 191 w@
isotopic lifting, 89 Lie—admissible algebra, 18] 1%
isotopic numbers, 35 general, L+ l'X o
isotopic Poincaré lemma, 2% 2 3% flexible, 16618
isotopic Poincaré~Birkhoff-Witt theory, 329ff

theorem, 122

isotopic unification of
algebraic functions, 307
numbers, 731

Lie-admissible formulations,

Lie-isotopic algebra, 6 1127
compactness, 135
dimension, 131

simple Lie algebras, 125 lgeélefr‘alt 1212l
spaces, 92, 109 indefinite, |
q?;aadrfc,s, 185, 187 2 ,’t;l. isobasis, 131
24, 5C &.J,L ’ isocommutation rules, 129
e’ 2 . -4 .
isotopi, 45, 313 ‘959’* isodual, 122
scalar, 39 isorepresentations, 132
operator, 39 25 noncompactness, 135
idermnpotent, 39 S o’f\ f ‘c"}-" pfoduct. 112
isotrace, /2% Y4 singular

isotransformations, 3&sf 3 & )
isotrigonometry, |1Sumboumgazss 4 Q4

isouncertainties, 265, 298

Lie-isotopic formulations, 19, 30
Lie—isotopic groups, 138ff
Lie—isotopic theorems, 129

- ) . . 1
isounit., lf?-f' 28LL Lre Cx LM’:'E}I:;%%'% heorem, 5
genera - ' ’
ndefinite, 37 _ Asotiesy) 2% Lobacevskit geometry, 191, 192
isodual, 37 . M‘n’ local-differential theory, 8
BT Sl iy o3
soveetos , 26 -—_ py""{" ckey imprimitivity theorem, 8
oL k3 maximal isocommuting set, 156
— $Cls Ko Minkowski space, 83
— Hast &K %4 Minkowski metric, 83

Jacobi law, 128

Jordan algebra
cornrﬁutative. et {§0 —*
noncornmutative, 164

Jordan-admissible algebra
general, 4@ 1 ¥ 2
flexible, K% 1& Y

KlimyK rule, 58 7>

.‘_.o.d‘,.g-

Ay
; MYy 44
e CY

multiplicative unit, 4~ 4 Z-
mutation, 44

14

Negative energies, 31 Z <l
No Reductign Theorems, 4

Lo Com gttt 2 ve systems, 352 6,
nondesarguesian geometry, 192
non-first~order-Lagrangians, 240
nonhamiltonian interactions, # &

Elocrts m&lo,‘rzf



s Mea ([, -378-
selsl, 158, 152,158

nonlinear interactions, 2’ ¢ Sea shells, 198 23¢ 16 >
nonlinear theories, 36 46 & sedenions, 7 g!
nonlocal interactions, 3° -, 9 ; 25 scalar law, 49
nonlocal theories, 3 source tensor, 240
nonlocal potentials, Y , squeezed states, 369
nonpotential mteractlons ¥4 4 symplectic geometry, 240
numbers, 341f symplectic-admissible
ordinary, 48 geometry, 338
ordinary iscdual, 49 two-forms, 338
isotopic, 49 symplectic-isotopic geometry, 208

isodual isotopic, 49 7‘
Mow .':J- ) y? 8 {s\ \%\ \%5
@(zm.t-tic‘) O (2&‘" < 3 Tirmne af¥ow, 98
Octonions, 35, 7H{f 1e7 topology of isotopi
one-forms, 25 0 (24 & ’I “ pology oples, 27
ﬁrdermg of myltiplication, 325 g",‘ (. b3 , e

0\, e D) U t6 Unit, 9
Particles Unive]rsa:)l enveloping isloassociat.
) - algebra, HS126~

conventional, 384 l67 e j ?‘ 7 %,
isotopic, 38+ (6 & birect 7
genotopic, 81—~ 1 6 & Variational

Planck’s constant, 3, 8 selfadjointnesess, 4

Poincare-Birkhoff~Witt theor,, 122 nonselfadjointness, 4

power-associative algebra, 167 185

pseudoisotopy, 48" 5@ Weinberg nonlinear theory, 384T

Pythagorean theorem, 305 4‘ L2
isotopies of 305

‘ps.oa So 1y [nele, 9/
8u£2«l R £
aternions, 35, 6411 w5 ¢

X
q-deformations, 3053536 &5 ¢ 4 A Sony IRMT 9—
g-special functions, 3¢ 1,4 7

Real numbers, 35, 5321
Riernannian

metric, 83

space, 83
rotation algebra, 124



S00-1)
5o (~)
so (%)
\sﬁd(mL

/35, '?2,‘9?,/6}

N~

Sav) ¢¢

s lqg, 175, 26/
(4, ~ A -

St “l, Scfx. </, (&

7 ‘/\J\-'V- A‘Sa afl €., " /4_0






ABOUT THE AUTHOR

Ruggero Maria Santilli was born and educated in [taiy where he received his
Ph. D. in theoretical physics in 1967 from the University of Torino. In 1967 he
moved with his family to the USA where he held academic positions in various
institutions including the Center for Theoretical Physics of the University of
Miami in Florida, the Department of Physics of Boston University, the Center for
Theoretical Physics of the Massachusetts Institute of Technology, the Lyman
Laboratory of Physics and the Department of Mathematics of Harvard University.
He is currently President and Professor of Theoretical Physics at The Institute for
Basic Research, which operated in Cambridge from 1983 to 1991 and then moved
to Florida. Santilli has visited numerous academic institutions in various
Countries. He is currently a Honorary Professor of Physics at the Academy of
Sciences of the Ukraine, Kiev, and a Visiting Scientist at the Joint Institute for
Nuclear Research in Dubna, Russia. Besides being a referee for various journals,
Santilli is the founder and editor in chief of the Hadronic Journal (sixteen years
of regular publication), the Hadronic Journal Supplement (nine years of regular
publication) and Algebras, Groups and Geometries (eleven vears of regular
publication). Santilli has been the organizer of the five International Workshops
on Lie-admissible Formulations (held at Harvard), the co-organizer of five
International Workshops on Hadronic Mechanics (held in the USA, Italy and
Greece) and of the First International Conference on Nonpotential Interactions
and their Lie-Admissible Treatment (held at the Universite d‘Orleans, France). He
is the author of over one hundred and fifty articles published. in numerous
physics and mathematics journals; he has writien nine research monographs
published by Springer-Verlag {in the prestigious series of “Texts and Monographs
in Physics”), the Academy of Sciences of Ukraine and other publishers; he has
been the editor of over twenty conference proceedings; he is the originator of
new branches in mathematics and physics, some of which are studied in these
books; he has received research support from the U. S. Air Force, NASA and the
Department of Energy; and he has been the recipient of various honors, including
the Gold Medals for Scientific Merits from the Molise Province in Italy and the
City of Orleans, France. Santilli has been nominated for the Nobel Prize in Physics
by various senior scholars since 1983.




ABOUT THE BOOKS

These are the first books written on the Hadronic Mechanics, which is an axiom-
preserving generalization of quantum mechanics for the study of strong interactions
with nonliniear, nonlocal, and nonpotential contributions due to the overlapping of

| wavepackets and. charge dlStl"lbUthﬂS of hadrons. After being proposed by Santitli at

Harvard Umver51ty in 1978 under D.O.E. support, the new mechanics has been deveioped

~by numerous scholars discussed at eleven international meetings and studied in

NUMErous papers in various journals. The new mechanics is based on a generalization
of the mathematical structure of quantum mechanics, called of isotopic type (in the
sense of. being axiom-preservingl. All basic quantum mechanical laws are then
reformulated in an isotopic form admitting of nonlinear-nonlocal-nonpotential
interatcions -in an axiornatic way which is invariant under time evolution. The
unrestricted functional character of the isotopies renders the new mechanics “directly

"universal” for all interactions considered.

VOLUME I contains the nonlinear-nonlocal-nonpotential isotopies of numbers,
fields, spaces, algebras, groups, symmetries, geometries and functional analysis.

VOLUME 11 presents a step—by-step isotopic generalization of gquantum
mechanical phiysical laws, Heisenberg’s and Schrédinger’s representations, Galilei’s
and Einstein’s relativities, including the isotopies of perturbation theory with
convergent expansions, and of the scattering theory for inelastic collisions with
nonlozal-nonhamiltonian internal effects due to mutual penetrations.

~ YOLUME 1] presents comprehensive applications and experimental verification

in muclear physics, partlcle physics statistical physics, superconductw1ty and other
fields such as theoretical biology and conchology

NAUKOVAxDUMKA PUBLISHERS
3 Tereshcﬁ;n%v ka.St.; “Kle{ "4, 252601, Ukraine

i
R ‘l:

DIS BU IED BY
s -Déu"l&w .
' HADRONIC PRESSINC.

35246 US 19 North # 115 PalrmgHather, FL 34684, USA




