supplemento ai rendiconti del Circolo Matematico di Palermo - serie II - numero 42 - 1996

F

5

|
?

'Isotopies of contemporary mathematical structures

serie Il - numero 42 - anno 1996

sede della societa: Palermo - Via Archirafi, 34




| - SUPPLEMENTO

Al

RENDICONTI DEL CIRCOLO
MATEMATICO
DIPALERMO

DIREZIONE E REDAZIONE
Via Archirafi, 34 - Tel. (091)6040266 - 90123 Palermo (Italia)

DIRETTORE: B, PETTINEQO
VICEDIRETTORE: P, VETRO

ISOTOPIES OF CONTEMPORARY MATHEMATICAL STRUCTURES

SERIE II - NUMERO 42 - ANNO 1996

. PALERMO
Tipografia «A.C.» s.n.c. - Via Filippo Marini, 15 - Tel. e Fax 091/422758 - 90128 Palermo SEDE DELLA SOCIETA
VIA ARCHIRAFL, 34




SOMMARIO

Nonlocal-integral isotopies of differential calculus, mechanics
and geometry (by R. M. Santilli)

— 1. Background notions on isotopies

— 2. Isotapic liftings of Newtonian, analytic and quantum
mechanics

— 3. Isotopic liftings of local-differential geometries

Foundations of the Lie-Santilli isotheory (by J.V. Kadeisvili)
— 1. Introduction
— 2. Elements of Isotopies and isodualities
~ 3. Isotopies and Isodualities of Lie'’s Theory

pag.

»

27
58

83
83
91
98

RENDICONTE DEL CT: "OLO MATEMATICO DI PALERMO
Bexie I, Suppl. 42 (1995), pp. 7-82

NONLOCAL-INTEGRAL ISOTOPIES OF DIFFERENTIAL
CALCULUS, MECHANICS AND GEOMETRIES

. RUGGERO MARIA SANTILLI
1991 Mathematical Subject Classification: 11, 131, 51, 53, 70

We present a simple, axlom-preserving, isotopic genérallzatton of the ordinary
differential calculus, here called isodifferentisl calculus, which is based on the
generalization of the basic unit with compatible generalizations of fields, vector spaces and
manifolds. The new calculys i3 appiled to the isotopic lifting of Newton's equations with 8
number of novel possibilities, such as the representation of the actual nonspherical and
deformable shape of partictes (which is absent in Newtonian mechanicsk, the admission of
nonlocal-Integral forces (which is not possible for the topology of Newton's equations), and
the capabliity to turn Newtonian systems which are non-Hamiltonlan In the frame of the
observer Into a form In the same frame which Is Hamiltonian in Isospaces: We then show
that the isodifferential calculus implies corresponding liftings of analytic and quantum
mechanics, as well as thelr Interconnecting map, with the same capabilities of the Isotople -
Newton's equations, e.g,, representation of extended, nonspherical and, deformable particles
8t the level of first quantization without any need of form factors, We finally apply the
isodifferential calculus to the construction of novel fsotoples of the symplectic and
Riemannian geometries which result to be nonlinear In {coordinates and) velocities, integro~
differential and non-first~order-Lagrangians, thus being significant for interior dynamical
problems, such as the geometrization of locally varying speeds of light. We also indicate the
existence of further generalizations, called genotopic and hyperstructural methods, and an
antiautornorphic map for all of them called isoduality, which i3 particulatly sulted to
represent antimatter. The paper Is written by a physicist to stimulate mathematical studies
on nonlinear, nonlocal and noncanonical systems which have recently emerged in particle
physics, astrophysics, superconductivity and other disciplines.
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1. Background notions on isotopies

L1 Introduction. The basic notion of this paper, that of isotopies, is
rather old. As Bruck [7] recalls, the notion can be traced back to the early stages of
set theory where two Latin squares were said to be Isotopically related when they
can be made to coincide via permutations. Since Latin square can be interpreted as
the multiplication table of quasigroups, the isotopies propagated to quasigroups,
then to algebras and more recently to most of mathematics. As an illustration, the
isotopies of Jordan algebras were studied by McCrimmon [21], those of Lie algebras

by Santiili [28], and subsequently extended to filelds, vector spaces, manifolds,.

groups, functional analysis, etc, A comprehensive literatyre on isotopies up to 1984
can be found in Tomber’s bibliography (4] while subsequent references can be
_found in the recent monograph by Lohmus, Paal and Sorgsepp [19]

In this paper we present the isotopies of differential calculus, here called
fsedifferential calculus, and identify the consequential isotopies of mechanics and
geometries. The {socalculus is presented here for the first time, although it is
implicit in other studies by this author [37,38], as we shall indicated later on. In this
section we recall only those aspects of the isotoples which are essential for the
understanding of this paper. Dynamicat applications are indicated in Sect. 2 while
geometric applications are presented in Sect. 3. Due to the emphasis on applications,
our treatment is local, while abstract, realization-free profiles are left to the
interested mathematicians.

It should be indicated that the isotoples studied in this paper are a particular
case of the broader genofopfes first introduced by Santilli in memoir [28. In turn,
the genotopies are a particular case of the still broader hyperstructures with a
-multivalued ynit first introduced in the recent memoir [40] (see also [39] for the
first study of hyperstructures with single-valued units and [46] for a general
presentation on hyperstructures). All results of this paper can be extended to the
broader genotopic and hyperstructural forms, although these extensions are merely
Indicated without treatment. '

This paper is specifically devoted to the broadening of mathematical
methods via the generalization of the unit and we cannot study for brevity
numerous other generalizations existing In the literature. The author would be
grateful for the indication of contributions directly or indirectly connected with
the above problem for proper quotation in future works.
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1.2. Isotoples of the unit. The fundamental isotopies from which all others
can be uniquely derived are those of the unit [28], Le., the liftings of the n-—
dimensional unit I = diag. {1, I, I, ..} of conventional vector or metric spaces into
real-valued and symmetric nxn matrices 1 = ﬂ’} =1t whose elements 'I‘j have an
unrestricted functional dependence in the coordinates x, velocities v = dx/dt,
accelerations a = dv/dt, local density yt, local temperature T, and any needed other
characteristics of the problem considered,

I - 1=l vamLt.)=1 {11

The above liftings were classified by Kadeisviti [15] into: Class I {generalized
units that are nondegenerate, Hermitean and positive—definite, characterizing the
isotopies properly speakingl Class I (the same as Class ! although 1 is negative~
definite, characterizing the so-called isodualities; Class IXI {the union of Class [
and [1); Class IV {Class [1! plus the zeros of the generalized unit, 1 = 0} and Class V
{Class IV plus unrestricted generalized units, e.g., realized via discontinuous
functions, distributions, lattices, etc.).

All isotopic structures identified below also admit the same classification
which will be omitted for brevity. In this paper we shall study Isotopies of Classes I
and II, at times treated in a unified way via those of Class [Il whenever no
ambiguity arises. The isotopies of Classes IV and V are vastly unexplored at this
writing,

The genotopies [28] occur when the generalized unit Is no longer
symmetric, 1 =1%, thus resulting in two different quantities derioted as follows

AU, xv,an ), Plhxvapn.), =1, 1> =1, I9=(Pr. (12

The hyperstructures (of the class here considered [40]} occur when each of
the preceding structure {s given by a finite and ordered set denoted as follows

() = (9,9, 9, .0, (V1= (P11 .), (2=(P) 03
where the last operation is referred to each element of the ordered sets.
L.3. Isotopies of fields. The first significant application of the Isotopies of

the unit is that for the liftings of conventional numbers and fields, which was
presented by Santilli at the meeting on Differential Geometric Methods in
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Mathematical Physics held at the University of Clausthal, Germany, in 1980 {see the
fatest mathematical study [34] and the physical presentation in [37].

Let F = Fa+x) be a field (hereon assumned to have characteristic zero} with
elements a, b, ..., sum a + b, multiplication ab = axb, additive unit 0, multiplicative -
unit 1, and familiar propertiesa +0=0+a=3a axl=[xa=a, ¥ a € F, etc. We have
in particular the field Rin+X) of real numbers 1, the field Cle,+X) of complex
numbersc, and the field Qlg,+*) of quaternions q.

Definition 1.1 [34k An "isofiéld” F = Fa+%) is a ring with elements 3 = ax],
called "isonumbers”, where a € F, and1_is a Class [l quantity generally outside F,
equipped with two operations (+, X), where ¥ = + s the conventional sum of F
with conventional additive unit 0= 0, and % Is a new multiplication [28]

axb = axTxb, {(1.4)

called "isomultiplication”, where T is nowhere singular such that 1= T71 s the
left and right unit of F,

1%3 =3a%1 =3, viaekl {1.5)

in which case fonly) 1 is called the “isounit” and T is called the “isotopic

elemnent”. Under these assumptions F is a rield, Le, it satisfies all properties of F

in their Isotopic form:

The set F is closed under addition,a +beF,v 3, bef.

The addition is commutative, 3 +b=b+3,vabef,

The addition is associative,d + b+ =G+ +& Vb ¢ eF,

There is an element 0 = 0, the “additive unit”, such thata+0=0+3=3, vaeF

For each element 3 € B, there is an element - 3 € F, called the "opposite of @',

which is such thata +{-3) = 0, ’

6 The set F is closed under isomuitiplication, 3%b ¢ F,va,beF,

7. The muitiplication is generally non-isocommutive, 3%b = b3, but
isoassociative’, 3BT} = GXORE, v &, B, ce F

8 The quantity 1 in the factorization 3 = @4 fs the "multiplicative isounit” of ¥
as per Eq.s (2.3

9. For each element & € F, tbere is an element a e F, called the "isoinverse”,
which Is such that 8%@ ‘l) =3k =1 ’

10.The set F is closed under joint isorultiplication and addition,

oA o N
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ax(b+¢)le £, (3+B)%e e f, Viabheel; (1.6)
11. All elements 3, b, ¢ € F verify the right and left “isodistributive laws”
ax{p+c) = axh+axe (a+bh)xe=3%g+b%e, {17

When there exists a least positive isointeger P such that the equation p*a = 0
admits solution for all elements 3 € F, then ¥ is said to have “isocharacteristic p”.
Otherwise, F Is said to have "isocharacteristic zero”. Uniess otherwise stated, all
Isofields considered hereon shall be Class 111 isofields of isocharacteristic zero.

We then have the isofield R(f,+5) of isoreal numbers fy; the isofield &@E,+%)
of Isocomplex Isonumbers €; and the isofield Q(@,+%) of isoquaternions § (see (34]
for the ispoctonions). Since all infinitely possible F preserves by construction all
axioms of F, they are called isotopes of F and the. liftings F = F are called
Isotopies.

All conventional operations dependent on the multiplication on F are
generalized on F ifl a simple yet unique way, ylelding Isopowers, Isosquare roots,
isoquotients, etc. .

2% = a%a=(axa)x1, &= a1, §/M = (n/m)x1, etc. (18

it is then easy to sece that the isounit verifies all axiomatlc properties of the
conventional unit, e.g.,

M a1%1%. %1 =1, T=l, 1M =1, ec - (1.9}

Despite its simplicity, the liftings F = F have significant implications in
number theory itself. For instance, real numbers which are conventicnally prime
(under the tacit assumption of the unit 1) are not necessarily prime with respect to
a different unit [34}. This illustrates that most of the properties and theorems of the
contemnporary number theory are dependent on the assumed unit and, as such,
admit simple, yet intriguing and significant isotopies (for more detatls, see [37], App.
2B),

It is fmportant to understand that an isofteld of Class I, Fy,(3,+), is the
union of two disjoint isoftelds, one of Class I, F|{3,+%), in which the isounit is
positive—definite, and one of class II, F|a,+X), in which the isounit i5 negative-
definite,
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Fa+d = (BE+XA1>0)URa+91<0), (1.10)
with interconnecting map called isoduality [35]

1>0 -~ 1%=-1<0, {L1D)

The Class 11 isofields are also written in the Hterature £%39,+5% and called isodval -

jsofields with isodual isonumbers 3% = ax19 = 4, isodual isoproduct 3 = xT% = -
%, etc. The reader should keep in mind that decompositions of the type {2.10) also

apply to all subsequent isotoples of Class [If, such as isospaces, isotopologies, -

isogeometries, etc. Whenever no ambiguity arises, we shall omit the subscript I, I

or III.

The isoduality also applies to ordinary numbers, yielding the isodual fields
F4nd + % with Isodual unit 18 = -1, isodual numbers n® = -n, ¢d = ¢, and q9 = -qf
{where the upper-bar — and upper-symbol ! represents complex and Hermitean
conjugation, respectively), and isodual multiplication n®%m¢ = n x (-1} x m¥, etc.
One should keep in mind the difference between the ordinary negative numbers,
which are referred to a positive unit +1, and the isodual negative numbers, which
are referred to a negative unit ~1. As such, the latter are novel numbers.

Note that the imaginary quantity i is Isoselfdual, i.e, invariant under
isoduality (because i = =1 = i). Note that the set of imaginary numbers is not a
field, but the isoreal isofield with T = i is indeed a field. Note finally that the sum is
not fifted under isotopies otherwise there is the loss of the axioms of a field. For

these and other aspects, one can inspect ref.s [34,371
The fsonorm of an isofield of Class I11 is defined by [34]

4] = [a|*1, (L.12)

where | a| Is the conventional norm. It is therefore easy to see that the isonorm of
isofields of Class ! Is positive—definite, while that of Class Il Is negative definite.

A most significant aspect of isoduality is that it is an antiautomorphic map
As such, it has permitted a novel representation of antimatter which begins at the
classical level and then persists at the operator level where it resulls to be
equivalent to charge conjugation [38. in particular, alt characteristics which are
conventionally positive for matter, becomes negative-definite for antimatter, thus
including energy, time, curvature, etc.

To understand the latter occurrence, one should keep in mind the
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equivalence of positive characteristics referred a positive unit and negative
characteristics referred to a negative unit. This mathematically elementary
property has rather intriguing applications, such as the prediction of antigravity
for elementary antiparticles in the field of matter, and others [38].

All isotoples of class [ are hereon restricted to represent matfer, and those
of Class II to represent ant/matter. For certain reasons related to bifurcations, the
isotopies of Class [1I appear to be significant in theoretical biology 140l

Examples of isounits are presented in Sect.s 2 and 3. Note that all isounits
considered in this paper are outside the original set F (for the simpler case when 1 ¢
F see [34]. Note also that all isounits (isodual isounit) used in this paper are
restricted by the condition of admitting the conventional unit +1 (isodual unit —1} as
a particular case. .

The reader should be aware that the Isonumbers are a particular case of the
broader genonumbers .[34] which occur when the isounit remains nowhere
singular, but it is no longer symmetric {or, more generally, Hermitean). This
requires two different generalized units <t and 1, <1 = (1>}, as in Eq. (1.2). By
introducing the genonumbers “a4 = <Ixa and 3> = ax1> with corresponding
genoproducts ordered to the left and to the right,

9<h = GxMx<h, P> = PxPxp, (L13)

where <T and T> are nonsingular, it is easy to see that the quantities <1 = (<1)"! and
1> = ()" are the correct left and right units of the corresponding ordered
products :

U< =A< =23, P>5 =8>V =5, (L14)

in which case (only) < and 1~ are called Jeft and right genounits and <T, T are
called feft and right genotopic elements,

The important property is that all axioms of a field are satisfied under each
ordered product, resulting in two new genofields, one to the left <F{<4,+,<) and the
other to the right F>(@”+>) [34] Note that, when the original field is commutative,
axb = bxa, each of the two genofields is also commutative, <a4<<6 = <b<<a and
a>>b> = b°>a". However, 8°>b> # <4<<b. Note the necessity of the prior isotopy
axb = @xTxb for a meaningful genotopy. In fact, the ordering of the product can
also be introduced in ordinary fields resulting in two separate fields, F(a”+,>) and
<F{<a,+,<), one per each ordering, each of which satisfies a!l axioms of a field.
However, In the latter case & = axl = <a = ax[, Then, a<b & a>b and the ordering is
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inessential, as tacitly assumed in the conventional number theory. Note that, unless
the genounit is complex, genotopies and isotopies with one-dimensional {scalar} unit

coincide,
The genonumbers are, in turn, particular cases of the hypernumbers as

defined in [40]. In this case, each genounit is a finite and ordered set as in Eq.s (1.3),
the genotopic elements become the hyperelements to the left and to the right

{ <’T‘ } = {<Tl1 <T3 <T3 }, {T>] = [T>|, T>2T>3. ] . “E5)

with interconnecting relattons {1} = (1>} and (1) = (! interpreted term by
term. By defining the hypernumbers to the left and to the right the quantities {<&)
= {Aa and (3> = ax{(1>}, with corresponding hypermultiplications ordered to the
left and to the right

(<3} <D} = (A <TI= (B,
(# U =R )=x)x{F], {L.16)

it is easy to see that the quantities 17) and (1) are correct left and right units for
each ordered product

(A<}R) = (SH<HA) = (4[],
I)F) = (R HP) = (@), {117

in which case fonly) they are called hyperunits to the left and to the right. It is
then possible to prove that the sets [<EN(<al+{<) and (FPHE™() individually verify
all axioms for a field and are catled hyperfields to the left and to the right,
respectively (again, in the sense of ref. [40D.

The isotopies establish that the abstract axioms of a field do not require that
the basic unit must necessarily be the trivial number +1. The genotopies establish
that the same abstract axioms do not require that the basic unit is necessarily
symmetric. The hyperstructures finally establish that the same axioms admit a
myltivalued nonsymmelric unit.

In regard to applications, the sonumbers are used as in this paper as the
basic numbers for the representation of reversible nonhamiltonian vector fields,
i.e., vector fietd which do not admit a Hamiltontan in the coordinates considered
and verify the time-reversal invariance, in which case no ordering of the product i3
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needed. The genonumbers are used for the characterization of irreversible
nonhamiitonian vector fields, i.e, nonhamiltonian vector fields which violate the
time-~reversal invariance. The hypernumbers are used for the characterization of
complex biological structures {40],

The reader is suggested to meditate an instant on the fact that the entire
contemporary mathematical knowledge is based on the stmplest possible unit +1
which has essentially remained unchanged for thousands of years since its
inception during biblical times. One can therefore see the horizon of new
possibilities permitted by the generalization of such a fundamental notion.

1.4: Isospaces. The second significant application of the isotopies is the
lifting of the conventlonal vector and metric spaces, first presented in paper [31] of
1983 {see monographs [37] for detailed treatment). In this section we shall review the
main lines of the isotopies of the Euclidean space.

Let E(x,gR) be an n-dimensional Euclidean space, with local chart x = ¥}, k
= 1, 2 .., n, n-dimensional metric 8 = (8} = diag. (1, L, .., 1), and interval between
two points x, y € E,

(x-yP=(xl-y)5;(¥-yl) € Rin+¥, {1.18)
where the convention on the sum of repeated indices is assumed hereon. it is
evident that the isotopic liftings of the field require, for consistency, corresponding
liftings of the spaces, and we have the following:

Definition 1.2 {31,37k The “isocuclidean spaces” E{x,8R) of Class Il are n-
dimensional metric spaces defined over an isoreal Isofield R(fn+%) with an nxn-

dimensional real-valued and symmetric isounit1 = 1! of the same class equipped

with the_ “fsometric”
8t %, v, a1, T} = () = Mtx viapn . )xs=8, 1= =1, (L9
local chart in contravariant and covan'apt forms |

k={xK)=(xkx1}, ¥ =8, %=T78,xIx1, xKx, e E; (1.20)

and “Isoseparation” among two points %, ¥ € £ also called (the square of the
"isoeuclidean distance” :
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(x-9P = [(x-§)xByx(¥-31xT e R. (121

The “isceuclidean geometry” is the geometry of the isoeuclidean spaces. The same
apply for the definition of isominkowskian, isoriemannian, Isofinslerian and other

isospaces and of related geometries.

The primary property of the liftings E(x.3.R) ~ E& SR} is the preservation of
the original geometric axioms, as necessary for isotopies. In actuality, Ex,8R} and
£68.R) coincide at the abstract level for Class 1 isotopies by conception [311. This is
due to the construction of the isospaces via the deformation of the metric 5 into
the isometric 3 = Tx8 while jointly the original unit | is deformed in the amount
which is the inverse of the deformation of 8,1= 1™, This mechanism then ensures
the preservation of all original geometric properties, as we shall see in Sect. 3.

Note that the isoeuclidean spaces of Class [l are antiautomorphic to the
original spaces, and this renders them particularly suited to represent antimatter
(381

Note also that in the conventional space E(x,8,R) the unit of the fleld is the
number +1, while the unit of the space is the matrix 1 = diag. (I, L, 1, ... For
£(%3,R) the isounits of the isofield and that of the isospaces coincide and are given

by 1.
Note also that the isoseparation ':22, for consistency, must be an element of

the isofield, that s, must have the structure of a number n multiplied by the isounit
1. This isoscalar character is expressed by the isomultiplication

2= Ry = (xKx1)xTx{xx1) = (Fxx)xl =nx1. (122)

Rut the contraction over the repeated index k is in isospace. We recover in this way
isoseparation (1.20), as one can see.

Because of the above occurrences, whenever no confusion arises isospaces
can be practically treated via the conventional coordinates x* rather than the
isotopic ones XX = x1, The symbols x, v, a, ... will be used for conventional spaces,
while the symbols X, ¥, 3, ... will be used for isospaces. When writing 8 v, a . we
refer to the projection of the isometric § in the original space.

Despite their simplicity, the liftings E(x.8R) - £(x,5,R) have significant
implications. In fact, the fynctional dependence of the isounit 1 remalns
unrestricted under isotoples. Besides being well behaved, real valued and
symmetric, the isometrics $ therefore have the unrestricted functional dependence
indicated earlier 8 = 8(x, v, a, j1, T, ..). As a consequence, the isoeuclidean metric
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contains as particular cases all possible metrics of the same dimension and
signature. Therefore, the isoeuclidean geometry of Class I permits a unified
treatment of all conventional geometries of the same dimension and signature,
plus all their infinitely possible isotopies. The isogeometry of Class I permits the
unified treatment of all the latter geometries irrespective of their signature. The
isogeometries of Classes IV and ¥ are basically novel and unexplored at this writing
(see [37] for details}.

A most salient characteristics of the isoeuclidean spaces is that of altering
the units of the conventional space. Recall that the units of the three-dimensional
space Elx,5,R) are equal for all axes and are given by the number +1, i.e., g =+L Kk
= 1, 2, 3 (= x, v, z). Consider now the corresponding three-dimensional isotope of
Class I E(%5.R). Since 1 is positive-definite, it can always be diagonalized into the
form

1= diag nin2n?), Y =n"2 k=123(=xy,z), n,#0. (123

This means that, not only the original units are now lifted into arbitrary (non-null)
values, but the units of different axes generally have different values. But the
component of the metric are however lifted by the inverse amounts, 8, = n.2
This permits the preservation of the Euclidean character in fsospace over isofields.

The above features permit a number of novel applications. We here mention
the unification of all possible ellipsoids x? = x,2/n? + x,2/n,% + x,2/n 2 = 12 ¢
Rin,+%) in E(x,5,R) into the so-called isosphere

3= (x2/ 02 + x2/n? + x2ing)xl=REx1e AR,  (1.24)

which Is the perfect sphere in isospace over isofields. In fact, the deformation of
the semiaxes of the sphere I, = +I - nkz when the corresponding units are
deformed of the inverse amounts, 1y = +1 - nk2 preserve the original perfect
sphericity. The use of Class [l permits the unified treatment of all compact and
noncompact contcs, while the use of Class IV permits the inclusion of all cones.
Similarly, the main mechanism of the isotopy E(x8R} — B&3.R) leaves
invariant the product (length)x(unit), this permits the conception of a new
mathematical propulsion, catled geometric propulsion [37], in which a massive
point-particle is moved from one point to another without any application of a
force, but via the afteration of the underlying geometry. In particular,
conventionally very large {very small) distances can be mathematically made as
small {large) as desired. In fact, for Aver.ny) sufficiently large (small) the distance R
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in (1.24) can be made as small (large) as desired with respect to the original
euclidean distance {see [37] for details and other applications}).

We should also mention the existence of the genocuciidean spaces to the
left and to the right (37}

PERBR, BPERPR): =%, P =xd
B=g, =T, A=(<r, P=(PY =@Qr, (125

respectively, which emerge when the isounit is no longer Hermitean, thus requiring
the selection of an ordering in the product. Note that both genospaces coincide
with the conventional spaces at the abstract level, because the deformation of the
metric 15 "compensated” by an inverse deformation of the original units.

Note that, unless the genounit is complex, forward and backward genospaces
with one~dimensional, real~valued genounits coincide among themselves and with
isospaces. In fact, for reai~values scalar units we have > = < =T = 1%, Genospaces
are therefore recommended for use only when there is the need of generalized
units of more than one dimension.

In turn, genospaces are expected to be particular cases of the much broader
hyperspaces to the left and to the right[40] .

(CEXSOLBURY), (NG BLIRPD: (<) = (I, (7] = xxll™),
(<8) = [<1Ix6, (57} = &x(1), {1} = (<ML, ) = [P, (1.26)

respectively, which occur for muitivalued hypercoordinates, hypermetrics and
hyperunits and are defined over hyperfields (Sect. 1.3). Note that, again, both
hyperspaces colncide with the conventional space at the abstract level for the
same reasons as occurring for genospaces and isospaces.

We should finally indicate that all the above Isospaces, genospaces and
hyperspaces admit an antiautomorphic image under isoduality 1 =14 = -1, whose
explicit study is left to the interested reader for brevity. ‘

In essence, the isotopies establish that the abstract axioms of the Euclidean
geometry do not require that the metric is necessarily restricted to the quantity 8 =
diag. (1, 1, L, .. } = &', but can be given by a matrix with the same dimenston and
topological properties, yet with unrestricted functional dependence, §="Tx8 = 8it, x,
v, 8, ..) = 8% thus rendering the Riemannian spaces particular cases of the
{sceuclidean spaces. The genotopies establish that the same abstract axioms of the

NONLOCAL-INTEGRAL [SOTOPIES OF DIFFERENTIAL CALCULUS, MECHANICS AND GEOMETRIES 19

Euclidean geometry do not require that the metric must necessarily be symmetric,
8 =15 # 8!, provided that the nonsymmetric component T is entirely embedded in
the genounit, 1 = 7! #1', The hyperstructure establish that, in addition, the metric
need not necessarily to be single valued, (8) = [T)x8, provided that the multivalued
nonsymnetric component {T} is entirely embedded in the hyperunit, (1) = (19! = Q)

The above features permit a number of intriguing applications. Isospaces

have no ordering in product and are therefore irreversible (for isounits not
explicitly dependent on time). As such, they are particularly suited to represent
reversible nonhamiltonian systems, as we shall see shortly. Genospaces do instead
require an ordering of the product which is associated with motion in a given
direction of time. As such, they are structurally irreversible, that is, irreverstble
irrespective of the reversibility of the Lagrangian and isounit. Genospaces (with the
genounits of more than one dimension) are therefore particularly suited to permit a
novel geometrization of irreversibility which is reduced to primitive geometric
axioms. Hyperspaces have the additional multivalued character, resulting to be
particular suited for the representation of biological systems which are notoriousty
irreversible, .
In turn, these characteristics have intriguing implications, such as the
reduction of macroscopic irreversibility to that at the ultimate level of nature, that
of elementary particles in interlor conditions, e.g,, for a proton In irreversible
conditions in the core of a star [37,38]

Also, the abstract identity of generalized and conventional spaces permits
the compatibiity of the broader geometries expected in biological structures with
our empirical Euclidean perceptton of the same, which compatibility would be
otherwise prohibited.

L1.5: Isodifferential calculus. We are finally equipped to introduce the
isotoples of the ordinary differential calculus, or isodifferential calcuiug for
short, hereon referred to the image of the conventional calcylus under the isotopies
of the unit of Class I. The new calculus was presented for the first time at the
International Workshop on Differential Geometry arid Lie algebras held at the
Department of Mathematics of Aristotle University, Thessaloniki, Greece, in
December 1894, but appears in print in this paper apparently for the first time.

The isodifferentiat calculus is here introduced on flat isospaces. Topological
aspects are considered in Sect.s 1.6 and 1.7, The formulation in curved fsospaces in
considered in Sect. 3.

Let E{x,8R) be the ordinary n-dimenstonal Euclidean space with local
coordinates x = {xX), k = I, 2, ... n, and metric § = diag. {1, I, L, ..) over the reals
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Rin+%). Let £(% 5.8 denote the isotopic images with local coordinates X = {xk},
isomnetric B =8 over the {soreals R(f+X} with real-valued and symmetric isounit
of Class I11,1= () = 771 = (T} = 1* whose elements have a smooth but otherwise
arbitrary dependence on the local coordinates, their derivatives with respect to an
independent variable and any needed additional quantity, 1 = 1%, ¥, &, .). For
simpticity we shall ignore the isounit in the definition X = x¥1 because it cancels out
ij the isomuitiplication with any quantity Q, ¥%Q = xxT™xTxQ = xxQ.

Deflnition 1.3 The “first-order isodifferentials” of Class [ of the contravariant
and covariant coordinates XX and %,, on an isoeuclidean space £ of the same
class are given by : .

A%k = 1 daxl, 3% = T .) dx;, {L27)

where the expressions XX and A%, are defined on £ while the corresponding
expressions X,0x! and Ty, are the projections on the conventional Euclidean
space E. Let T(X} be a sufficiently smooth Isofunction on a closed domaln DXK)
of contravariant coordinates & on £. Then the “isoderivative” at a point § €
DEK) &5 given by 7

AR a k) TGk + 3% - TGk

s 12Ky . - H -
righ= 33K i?ck=ﬁk Tk axt [§k=ﬁ “masgbak axk

{1.28)
where ST(X/3%% is computed on B and TyartxV/ax' is the projection in E. The
“isoderivative” of a smooth isofunction () of the covariant variable x, at the
point Gy € DX, ) Is given by

31 g 2 . G, + dx) - G
"q.) = = . . = Lim,.
iy Dy =g ! o, =g By

dx
* 129)
The above definition and the axiom-preserving character of the isotopies
then permit the lifting of the various properties of the conventional differential
calculus. We here mention for brevity only the following isotopic properties. The
isodifferentials of an fsofunctfon of contravariant {covariant} coordinates %* (%) on
E&3R) are defined according to the respective rules

af

T axd,
axt

~ o o e
a'?&)contrav. = azk - 3%k = 'T'kl o 'Ik]- dx) = " dx
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afl "_'aT ax, ‘“]k _ar f }dx x d o ‘lt { )
X - - T o— Ny, = —— dx Lm
hcovar. Eﬁk K i t kWY axk k | B 4

where the last expression originate from the fact that the contraction is in sospace,
thus with respect to the isometric. An iteration of the notion of isoderivative leads
to the second-order isoderivatives

3216 ’jﬁm' 21 kk&m)
T =t AT = 1K1

= t ] = i + (1.31)
ax' ax’ axkz ) 6x|8x,

(where there is no sum on k)and similarly for isoderivatives of higher order. The
isolaplacian on BE{x 8,R) is given by

A o= 3 k=08 d= T kg9, B = WK 8, =afaxk, (132

and results to be different than the corresponding expression on a Riemannian
space R(xgR) with metric ge) = 8, A = §71/2 5 §¥/2 gl 3, even though the
isoeuclidean metric Blx, v, 3, ..) Is more general than the Riemannian metric gfx).
The following properties then follow,

33(‘/33\(} = Stj. 33&/3?(1 = 8[", 3&,/3§1=T|j, 33(‘/3?(1 = 1‘]. “33)

For completeness we mention the {indefinite) lsointegration which is the
inverse of the isodifferential, eg,

Sox = 1ax=fax =x, (130

namety, [~ = f T. Definite isointegrals are formulated accordingly. Due to its
simplicity we shall tacitly assume the isotopies of integration hereon.

The above basic notions are sufficient for our limited needs in this paper.
The isotopies of additional properties and theorerns of the differential calculus {see,
e.g. [47) is left to the interested mathematician. The class of isodifferentiable
isofunctions of order m will be indicated C™,

An important property of the above calculus s that the {sodifferentials and
isoderivatives preserve the basic isounit 1. Mathematically, this condition is
necessary to prevent that a set of isofunctions (%), §(%), .., on £&BR) over the
isofield R{fi.+.%) with isounit 1 are mapped via isoderivatives into a set of
isofunctions T(X), £1%), ..., defined over a different isofield because of the alteration
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of the isountt. Physically, the condition is also necessary because the unit is a pre-
requisite for measurements. The lack of conservation of the unit therefore implies

the lack of consistent physical applications.
As an example, the following alternative definition of the isodifferential

B = a1k x) =13 1% )« + 11 dx' = WK, ax!, (1.35)

would {mply the alteration of the isounit, 1 = W =1, thus being mathematically and
physically unacceptable.

Nevertheless, when using isoderivatives of independent variables, say,
isoderivatives on coordinates and time, the above rule does not apply and we have

A58 = 313 D] = {Tdex Ml (1%

Additional properties of the isodifferential calculus will be identified during the

course of our analysis,
Note that the ordinary differential calculus is local-differential on E. The

isodifferential calculus Is instead local-differential on E but, when projected on E,
it becomes integro—differential becayse it incorporates integral terms in the

isounit,
The isodifferential calculus admit a simple extension to the

genodifferential calculus, here introduced apparently for the first time, which can
be constructed in terms of the following genodifferentials and genoderivatives to
the left and to the right

A% = 9K d%, D/d%KF = o,
Pk = 1>“-, dx>, ¥/wk = 1‘>k‘a/ai>' . {137
{n turn, the genodifferential calculus is itself a particular case of the
hyperdifferential calculus, also introduced here apparently for the first time,

which can be constructed via the following hyperdifferentials and
hyperderivatives to the right

(K] = 1% d6>Y), 175K, a6, 1%, aY, .. ),

(3 /72)05K) = =T, a7/l Ty 8/ ok, > lasa), ), (1.39)
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with corresponding conjugate expressions for the hypercalculus to the left, where
one should note the multiplicity of the multivaluedness.

The preceding iso-, geno— and hyper-differential calculi admit
antiautomorphic images via the isodual map which reverses the sign of all
generalized units. For instance, the isodual isodifferential calculus is characterized
by the following isodual differentials and isodual Isoderivatives

Ak = RE g = kAR TMa/akd = Tlasa, (139)

namely (by keep ignoring the multiplicative isounit), the isodifferential calculus is
isoselfdual because invariant under isoduality. This elementary mathematical
property is important to establish that the physical laws applying for matter also
apply for antimatter (see next section).

1.7: Kadelsvili’s isocontinuity. The notion of isocontinuity on an isospace
was first studied by Kadeisvili [15] and resulted to be easily reducible to that of
conventional continuity for Class [1I isotoples because the isomodufus | 1x) ["of a
function T(x) on the isospace E(X,8,R) over the isofield R{R,+¥) is given by the
conventional modulus | (k) | multiplied by the a well behaved isounit 1,

T10 T = |1 |*1. {1.40)

Definition 1.4 [15]: An infinite sequence of Isofunctions of Class I T}, Ty, ... Is
said to be “strongly Isoconvergent” to the isofunctiont of the same class, when

Limg ool T =11 =0, (141)
while the “isocauchy condition” can then be expressed by
I T = Ta ] < 8=8x1, (142}
where 5 is real and m and n are greater than a suitably chosen N(B).
The isotopies of other notions of continuity, limits, series, etc. can be easily
constructed [15,37].
Note that functions which are conventlonally continuous are also .

isocontinuous. Similarly, a series which is strongly convergent is also strongly
isoconvergent. However, a series which Is strongly isoconvergent is not necessarily
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strongly convergent. As a result, a serfes which is conventionally divergent can be
turned into a convergent form under a suitable isotopy {37}, Sect. 6.5). This

mathematically trivial property. has rather important applications, e.g, for the

reconstruction of convergent perturbative series for strong interactions, which

are conventionally divergent,
Similarly, the reader may be interested in knowing that, given a function

which is not square—integrable in a given interval, there always exists an isotopy
which turns the function into a square-integrable form [37]. The novelty Is due to
the fact that the underlylng mechanism /s not that of a weight function, but that

of altering the underlying field. .
The sodual isocontinuity is the image of the preceding continuity under

isoduality. No study on continuity for genotopic and hyperstructural methods has
been conducted until know, to our best knowledge.

1.7. Tsagas-Sourlas isotopology. The notion of n-dimensional
isomanifold was first studied by Tsagas and Sourlas [44,45). The main lines can be
summarized as follows. All isounits of Class I can always be diagonalized into the
form

1 = diag. (B}, By .. By) , Blx,.0#0,k=12.,n, (1.43)

Consider then n isoreal isofields Ry (A,+%) each characterized by the isounit 1, = By
with (ordered} Cartesian product

RN = R xRyx.. xR, . (1.44)

Since Ry ~ R, it is evident that R" ~ R", where R" is the Cartesian product of n
conventional fields R{n,+x). But the total unit of R is expression (F.43). Therefore,
one can introduce a topology on R" via the simple isotopy of the conventional

topology on R®,
¥ =1(9, R" R}, {1.45)
where K, represents the subset of R” defined by .
Ry = {P=(3y,3p ... 8, )7 fiy <&, By . B < 1Yy By, m;,a eR). (1.46)

As one can see, the ahbove topology coincides everywhere with the
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conventional topology t of R" except at the isounit 1. In particular, T is
everywhere local-differential, except at 1 which can incorporate integral terms.
The above structure is called the Tsagas-Sourias isotopology or an integro-
differential topology.

Definition 1.5 44,45k A "topological isospace” HR™) of Class I is the isospace R
of the same class equipped with the isotopology % of Eq. (1.43). An “fsocartesian
isomanifold” M(R™) of Class I is the topological isospace TR of the same class
equipped with a vector structure, an affine structure and the mapping

T:R"~> A", T:3 - Ma)=3 v aek. (1.47)

An “isoeuclidean isomanifold” of Class I M{E(X8,R) occurs when the n-
dimensional isospace E of the same class Is realized as the Cartesian product

BRSR) ~ Ry xRyx .. xR, (148)

and equipped with the isotopology T with jsounit (1.43) of the same class. The
“isodual topological isospaces”, “isodual isocartesian isomanifolds” and “isodual
isoeuclidean isomanifolds” are the images of their corresponding structures under
isoduality.

For all additional aspects of isomanifolds and related topological properties
we refer the interested reader to Tsagas and Sourlas [44,45]. 1t should be noted that
their study is referred to M{R), and that the structure MIR") is introduced here for
the first time,

1.8. Isotopies of functional analysis. The isotopies imply simple, yet
nontrivial generalizations of all conventional mathematical structures of
functional analysis, with no exception known to this author. This study was
initiated by Kadeisvili in ref. (15] under the name of functional iscanalysis. The
latter discipline begins with the isotopies of continuity outlined in Sect. 1.6, and
includes the isotopies of: conventional square-integrable, Banach and other spaces;
conventional and special functions and transforms; ete. (see [37] for brevity).

The reader should be alerted that the use of conventional functions, such as
the trigonometric or hyperbolic functions, within the context of isotopic spaces
leads to a number of inconsistencies which may remain undetected by non-experts
in the field.
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1.9. Isotopies of Lie’s theory. The conventional formulation of Lie's theory
can only characterize classical and operator systems which are linear, local-
differential and potentiai-Hamiltonian, as it is well known, thus possessing clear.
limitations.

The isotopies outlined in this section were introduced by Santilii [28] for the
specific purpose of constructing a broader, yet axiom-preserving formulation of
the various branches of Lie's theory, which are capable of characterizing nonlinear,
nonlocal-integral and honpotential—nonhammoman systems. The latter
formulation was originally introduced as Lie-isotopic theory, studied by the
author in various works (see [37] for a review up to 1995), and it is today known as
the Lie-Santilli isotheory [3,14,19,43]. The latter is characterized by nonlinear,
nonlocal and noncanonical isotopies of alf aspects of Lie’s theory (universal
enveloping associative algebras, Lie algebras, Lie groups, representation theory. etc.),
which are however such to reconstruct linearity, focality and canonicity on
Isospaces over isofields {loc. cit.)

We here limit ourselves to recall from [37] that a {finite-dimensional)
isospace L over an isofield $a,+%) of isoreal numbers R(fi,+ %], isocomplex
numbers Qe+ %) or isoguaternions Qlg,+%) with fsotopic element T and isounit
1 =1 of Class I is called a "Lie-Santilli isoalgebra” over F when there is a
composition [A," B8] in [, called "isocommutator; which satisfies the following
“Isolinear and isodifferential rules™for all a3, beFand A B Cel

[3%K + 6%B7C) = 3%[A7C] + 6% [B]C],
[AXB;C) = AX[B;C] + [A]C]% 8. (1.49)
and the "Lie-Santilll iscaxioms’,
[A78]1=-[BIA),
(R2087C1T + (871C;A)] + (¢:(AB] = 0. (1500

In this paper we shall identify novel realizations of the Lie-Santilli
isotheory which are permitted by the isodifferential calculus of this section. The
formulation of the isotheory itself via the isodifferential calculus is presented in
the adjoint paper by Kadeisvili [16]. Its knowledge is hereon assumed as an integral
part of this paper, because all subsequent analytic and geometric studies are aimed
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at achieving compatibility with the Lie-Santilli isotheory. The ultimate objective is
that of lifting conventional space-time and internal symmetries for linear, local
and canonical systems into the corresponding isosymmetries for more general
Systems.

The isodual Lie~Santiili isotheory is the image of the isotheory under
isoduality [37,16]. The Lie-Santifli genotheory and hypertheory and their isoduals
have been preliminarily addressed in {37,40] as a step-by-step liftings of the various
aspects of Lie's theory {rather than within the context of nonassociative algebras),
but they remain vastly unexplored at this writing.

2. Isotopic liftings of Newtonian, analytic and quantum
mechanics.

2.1, Introduction. The contemporary formulations of Newtonian, analytic
and quantum mechanics have been constructed for the characterization of systems
which are local-differential and canonical-Hamiltonian. These systems were
originally introeduced by Lagrange [17] Hamilton [12] and other founders of analytic
dynamics as characterizing the so~called exterior dynamical problem, namely, a
finite number of isolated particles which can be well approximated as point-~like
when moving in vacuum under action-at-a-distance, potential interactions.

This class of systems is characterized by equations of motion which are
local-differential and variationally selfadjoint (SA), as studied in details in
monograph [29]. A typical classical examples is given by the planetary system, while
operator examples are given by the atomic systems, as well as the electromagnetic
and weak interactions ar large for which conventional formulations are exactly
vatid.

The founders of analytic dynamics also introduced the broader interior
dynamical problem, namely, a finite number of extended, nonspherical and
deformable particles moving within a physical medium, thus experiencing
conventional potential interactions, plus resistive interactions due to the medium
which are not derivable from a potential or, more generally, from a Hamiltonian,

Contrary to a rather popular belief, an inspection of the original
contributions [17,12] reveals that Lagrange and Hamilton were fully aware that the
functions today catlled “Lagrangian” or "Hamiltonian” cannot representing the
entire physical reality in the coordinates of the observer. For this reason, they
Introduced their celebrated equations with external terms.
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The contemporary literature on analytic dynamics ts almost entirely
restricted to Lagrange’s and Hamilton's equations without external terms (also
called the "truncated” analytic equations), thus representing the inertial coordinates
of the observer only a rather limited class of systems, essentially the exterior
systermns in vacuurm. '

On the contrary, the original formulation by Lagrange and Hamiiton [1oc.
cit.] permitted the representation of all posstble systems in the coordinates of the
observer, by representing potentiat forces with their celebrated functions and
nonpotential forces with the external terms.

The latter systems are today characterized by equations of motion which
are arbitrarily nonlinear in coordinates and velocities, integro-differential and
variationally nonselfadjoint (NSA). Thus the equations include ordinary
differential terms for the center—of-mass trajectory x{t) plus integral terms of
surface or volume type representing the correction to the preceding
characterization due to the size and shape of the bodies. Moreover, the equations
are variationally nonselfadjoint in the sense of violating the integrability
conditions for the existence of a Lagrangian or a Hamiltonian {20l

In the transition from analytic equations without external terms to those
with external terms the following major methodological problem soon emerges.
The brackets of Hamilton's equation without external terms characterize a Lie
algebra, as well known. On the contrary, the brackets of Hamilton's equations with
external terms violate the conditions to characterize any algebra {the scalar and
distributive laws), let alone those of a Lie algebra [28].

Therefore, external systems can be treated with the large variety of
methodological tools of contemporary physics, while none of them is applicable to
the interfor systems when represented with analytic equations with external terms.

In this section we shall study the above problem from an analytic profile,
while the corresponding geometric profile is studied in Sect. 3.

The isotopies have permitted a first resolution of the problem herein
considered, because they permit the applicability of the conventional methods of
linear, local and Hamiltonian systems alse to the more general nonlinear, nonlocal
and nonhamiltontian systems, when properly expressed in isospaces over isofields

(37,381,

- The main idea Is that the isounits introduced on mathernatical grounds in
the preceding section assume the physical role of replacing the external terms of
Lagrange and Hamilton. In different terms, all conventional potential forces are
represented as usual via the conventional Lagrangian or Hamiltonian while the
nonlocal-nonpotential forces are represented via the isounit. This approach first
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permits the characterization of an algebra by the brackets of the time evolution
and, second, the algebra results to be a Lie-Santilli isoalgebra. The connection
between the isounit and the external terms is so deep that both requires the same
number of independent functions.

The above analytic isotopies were constructed via the use of the isotopic
degrees of freedom of the product [28,32,33,37,38L. In this paper we present,
apparently for the first time, the same isotopies although constructed with the
isodifferential calculus of the preceding section. A comparison of the two
formulations scon reveals that the latter approach is preferable over the former
because it permits a much more impressive tdentity of conventional and isotopic
methods at the abstract level, thus permitting a unified treatment of exterior and
interior problem in which both, the conventional and the isotopic methods, are
mere realizations of the same axioms.

Studies of this type can be best initiated with the isotopies of the
fundamental equations of all contemporary physical theories, Newton's equattions,
and then pass to their analytic and operator counterparts.

However, as indicated in Sect. 1, the isotopies are structurally reversible, that
Is, they are reversible for reversible Lagrangtans and isounits, while interior systems
are structurally Irreversible.

The representation of irreversibility can be best done via the genotopies of
Newtonian analytic and quanturn mechanics, which also permit the regaining of
the conditions for the brackets of the time evolution to characterize an algebra,
although that algebra results to be of the broader Lie-admissible algebra (see [28]
Tor detalils). The latter genotopies and the still broader hyperformulations are
merely indicated without treatment for brevity,

Recall from Sect. 1.3 that just the change of the sign of the charge is
basically insufficient for the representation of antimatter, because the transition
from matter to antimatter requires an antiautomorphic map as it is the case for
charge conjugation. A great asymmetry then emerges in contemporary
mathematical and physical treatment of matter and antimatter, in the sense that
matter Is treated in a prioritarian way with a large body of methods, only some of
which are applicable to antimatter, those on a Hilbert spaces.

This unbalance is resolved by the isotoples because we can introduce,
apparently for the first time in this paper, antiautomorphic images under tsoduality
(change of sign of the unit) of all basic equations of Newtonian, analytic and
quantum mechanics. The emerging new equations then permit the representation
of antimatter beginning at the Newtonian level for the first time in an
antiautomorphic way. The extension of the isodual methods at the subsequent
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levels then permits the achievement of a complete methodological equivalence in
the treatment of matter and antimatter at all levels of study.

2.2, Isotopies of Newtonian mechanics, Newton’s equations have remained
essentially unchanged since thetr inception in 1687 {24] In this section we
introduce, apparently for the first time, the isotopies of Newton’s equations, or
Isonewton’s equations for short, characterized by the isodifferential calculus of
the preceding section for the purpose of broadening their original conception. The
isotoples have been selected over a variety of other possibilities because of their

axiom-preserving character as well as of the consequential broadening of classical

and quantum mechanics outlined in subsequent sections.

The contemporary formulation of Newton’s equations requires the tensorial
space Sitx,v) = E{tR,&E(x8R*E(v.5R) where E(tR,) is the one-dimensional space
representing time t, E(x,3,R) is the conventional three-dimenstonal Euclidean space
with local trajectories x = x{t) = [xX) = (x, y, z} and E{v,R) is the tangent space TE
(see Sect. 3.2) which, at this Newtonian level, can be considered as an independent
space representing the contravariant velocities v = {vK) = dx¥/dt. Newton's
equations for a test body of rnass m = const. & 0} moving within a resistive
medium (e.g., our atmosphere) can then be written

mdvg/dt ~ FAL x,v) - F¥A0 v =0, k=123(=xv2, @1

where SA (NSA} stands for variational selfadjointness (variational non-self-
adjointness), l.e.. the verification {violation) of the necessary and sufficient
conditions for the existence of a potential Ult, x, v) originally due to Helmholtz [13]
{see monograph [29] for historical notes and systematic studies). It should be
recalled that in Newtonian mechanics the potential Uly, x, v) must be linear in the
velocities (to avold a redefinition of the mass),

Ult,x, v) = Udt,x) v + U,ft, x). (22)
Eq.s (2.I) can then be written
dv d  auUltx v ault, x, v} NSA
{m —_— - + - FNSAL, x, v)} =
dt avk axk

NSA
- FYSA L %, v)} =0, (23

M —— = ————— e

{ Codvg AUt %}  av® Ut x)
dat ax® dt axk
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namely, they are not in general derivable from the conventiona! Lagranges [17] or
Hamilton’s [12] equations in the local chart {t, x, v}, those without external terms, as
well known [29,30] (see later on for coordinate transforms). The extension to
systems of n particles with masses my, (# 0} is straighforward and will be ignored
for brevity.

The representation spacé of the desired isotopic image of Newton's
equations is given by the Kronecker product of isospaces S5(i,%,¥) =
EfRy=E(GBRIXEWV,B,R) characterized by the one-dimenstonal time fsounit 1, = (T,
and the three-dimensional space isounit 1 = 1¥) = (T\\"). Since the velocities are
independent from x, they carry in general a different jsounit. Such further degree
of freedom is however un-necessary and we shall assume the total isounit of
isospace S(tx,V) be given by the several dimensional quantity T, =141,

The isotime Y, isocoordinates X*@t} and Isovelocities V(1) are related to the
original respective quantities t, x* and v¥, by the following relations

'tzt, Gk = Vk, ‘\:’ Skj V}— Tk 8” V‘I Tk Yi . Vk &(l (2.4)
The desired isotoplc lfting of Newton's equations {2.3) in isospace 8(4,%,%),
here called isonewton equations and submitted here apparently for the first time,

are given by

@ A RV 20%% 9

%Y = m— = — + =
Kb RS T R 33k
Ay WED & WhR
s - ——— —+ — 2 =g,
a @ 3K
0t &, @) =0, 0+ 0 9, 25)

where we have used properties (2.2) and it = ml, (= 0} is the isotopic mass, that s,
the image of the Newtonian mass in isospace with isounit 1, which will be
identified shortly.

Theorem 2.1: All possible sufficiently smooth, regular and variationally nonself—~
adjoint Newton’s equations (2.3) always admit in a neighborhood of a point {t, x, v)
the representation in terms of the isotopic equations (2.5)
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v, a4 WLHV kXY

L Ve . -
P S 3 ik
}
=T!{m._d_v_i - Mixi + _.?&!t_'_:_ - FNS"‘,(t.x,v)} =0. (2.6)
k dt s dt ax!

Proof. When projected in the original space S, x, v} Eqs (35) can be written
diTv) " d a0k, %, v) . a0k, %, V)

sy vt o @ LRV ;80w Y
Ty Ta k8 K
dv, a0t x} a0t x) o dfd
ST T — - T B VS B+ 1l v,=0.
dt axs axt dt
' 27
Sufficient conditions for identities (2.6) are then then given by
mTydv,/dt = mdv;/dt, (2.8a)
E auft, x)
t 0kt 0 v = i v, (2.8b)
axt axs
a0, ft, %) au ft, »
AL , (2.8¢)
ER ax!
at it x, .} .
= =T PSAL V) (2.80)

dt

which, under the assumed continuity and regularity conditions (see [29] for details)
always admits a solution in the unknown quantities i, Ty, Ty, Oy and U, for given
equations (2.3). In fact, system (2.8} is overdetermined and a solution exists for
diagonal space isounit and constant time isounit,

1 =8l R 1, = constant>0, 29)

for which
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-~

mT, = m, m=mx1, Olx=1Ulx, 0fx =Ujx,
ftxv) =-m’! f 0’ dt AL, x, v}/ vy, (2.10)

where there are no repeated indices m Is constant and the functions f, are
computed from Eq.s (2.10b). g.e.d.

The primary motivations for the submission of the isonewton's equations
are expressed by the following properties with self-evident proofs which will be
only iltustrated.

Corollary 2.1.A: The isonewton equations permit 2 representation of the actual,
extended and nonspherical shape of the body considered and of its possible
deformations via the generalized unit for isotopic element) of the theory.

Recall that Newton's equations can only approximate the body considered as
a massive point, as “‘well known since Newton'’s time [25]. The point-like
representation of particles then persists under analytic representations via
Hamilton's equations as well as under symplectic map to quantumn mechanical
formulations. A representation of the extended character of particles is reached in
second quantization via the form factors. However, this representation is restricted
to spherical shapes from the fundamental symmetry of quantum mechanics, the
rotational symmetry. The latter symmetry is known to be a symmetry of rigid
bodies. Form factors cannot therefore represent the deformations of particles
under sufficiently intense external interactions which is studied via other rather
complicated procedures.

A first motivation Tor the studies presented in this paper is to introduce a
representation of actual extended, nonspherical and deformable shapes of particles
at the primitive NMewtonfan level, which then persists under classical analytic
representations and maps to first quantization. The isonewton equations do indeed
achieve these objectives by setting the foundations for possible new advances in
classical and quantum physics. The objective is achieved via the generalized unit of
the theory which is evidently absent in the conventlonal Newtonian, classical and
quantum formulations. N

As a simple case, suppose that the bedy considered Is a rigid spheroidal
ellipsold with semiaxes n,% n,% ng2 = constants. Such a shape is directly
represented by the isotopic elernent of the theory in the stmple diagonal form



34 RUGGERO MARIA SANTILLI
T = diag. (n, 2, ny % ng?), my = comst>0, k=123 Ty=1 (211

The representation of the shape in isospace $(t%,v) is then embedded in the
Isoderivatives of the isotopic Newton equaticns and, when projected in the
conventionat space Sit, x, v) can be written

d auft, %) au{t,
m Tkl Vl - Tkt "—i—'Vs + Tkl g = { . (2[2}
dt axs ax!

namely, the shape terms T, ! are admitted as factors.

Note that the representation of shape occurs only in isospace because, when
projected in the conventional Euclidean space, the shape terms cancel out by
recovering the conventional point-like character of Newtonks equations. This
illustrates the effectiveness of the isotopy for the representation of shape.
Moreover, the nonspherical character of the shape emerges only in the projection
in ordinary spaces, because all deformed spheres in ordinary spaces are mapped
into the perfect sphere in isospace, the isosphere of Sect. |,

2= {xIn2x! + 20y 20 + g 23 ) %1 e REY). (2.13)

The representation of shapes more complex than the spheroidal ellipsoids is
possible with non—diagonal isounits. The representation of the deformations of the
original shape due to motion within resistive media or other effects, can be
achieved via a suitable functional dependence of the T,! terms in velocities,
pressure, ete. [37,38].

A simple application discussed in detail in [38] is given by a charged,
spinning and spherical metallic shell which is subjected to a sufficiently intense
external electromagnetic field represented by the known Loreniz force with
potential U = eAkv" + ed, where e is the charge and {A,, ¢} are the familiar
electromagnetic potentials. It is evident that the original spherical shape is
deformed by the Lorentz force, with consequential alteration of its magnetic
moment. Such a deformation is not representable by Newton’s equations as well as
by its analytic and quantum representations, but it is easily representable via our
isotopic equations (2.5},

The operator image of this classical setting illustrates the relevance of the
theory herein submitted, In first quantization, the constituents of a nuclear
structure (protons and neutrons) are represented as point-like particles. As such,
they maintain in the nuclear structure their intrinsic magnetic moments when in
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vacuum. However, this approach has not permitted an exact representation of the
total magnetic moments of few-body nuclei (such as deuteron, tritium, ete). The
isotopic representation of protons and neutrons as they are in the physical reality
{extended and therefore elastic, spinning, charge distributions) has instead
permitted the achievement of an exact representation of said total magnetic
moments because each particle experiences a (generally small) deformation of its
shape when under the short-range strong forces of a nuclear structure, resulting in
an alteration of the intrinsic magnetic moment In vacuum which is missing in
conventional quantum treatments. In turn, such alteratlon permits the exact
representation of the total magnetic moments of few-body nuclei as well as other
intriguing implications and novel predictions [38L

Corollary 2.1.B: The ifsonewton equations permit a novel representation of
variationally nonselfadjoint forces via the isometric of the underlying geometry,
according to the rules

mdvg/dt ~ FoA vl = Ty md Ty /de, @14

while leaving unchanged the representation of conventional self-adjoint forces
lexcept for the constant factor Ty of Uy}

In fact, the nonselfadjoint forces are embedded in the covariant coordinates
in isospace ¥, = T,ij, where the vjs are the covarfant coordinates in conventional
space. The novelty therefore Hes on the fact that nonselfadjoint forces are
represented by the isogeometry itself, thus providing another motivation for the
isotoptes,

The simplicity of representation (2.14) should be kept in mind and compared
to the complexity of the conventional solution of the inverse problem of
Newtonian mechanics (29], i.e., the representation of non-self-adjoint systems via a
Lagrangian or a Hamiltonian. Moreover, under the assumed conditions, the latter
exists in the fixed coordinates (t, x, v} of the observer only for a restricted class -
called nonessentially nonseffadjoint floc. cit], while isorepresentation (2.6) always
exists in the given coordinates {t, x, v) under the same conditions.

' When coordinate transformations are admitted, an indirect analytic
representation (i.e., a representation in transformed coordinates (t, ¥, v') always
exists for all local-differential, analytic and regular, nonselfadjoint Newtonian
systems in a star-shaped region of the variables (this i the Lie-Koening theorem
[30] as the analytic counterpart of the geometric Darboux’s theorem of Sect. 3.2).
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However, the latter representation has a number of physical drawbacks. First, the
transformations (t, x, v) -+ {t’, X', v) are nonlinear and, as such, the new coordinates
are not realizable in laboratory. Also, their nonlinearity implies the loss of the
original inertial character of the reference frame with consequential loss of
conventional relativities (in fact, the Gatilei and Einstein relativities are solely
applicable to inertial systems as well known).

These are the reasons why, after completing the studies of ref.s {29,30], this
author continued the search for a representation of nonseifadjoint systems which
occurs in the given inertial reference frame of the observer, and it is universal, i,

" applicable to all systems occurring in the physical reality.
The following examples illustrate isorepresentation {2.6). The equation of the

linearly damped particle in one dimension
mdv/dt + yv = 0, yeRin+x), ¥>0, 2.15)
admits isorepresentation (3.6} with values
T=§eWm T, =1  U=U,=0, (2.16)
where §,, i3 a shape factor, eg., of the spheroidal type (2.11) which is prolate in the
direction of motion. In this way, the isotopic Newton equations represent: 1) the
nonseifadjoint 1 force FSA = - yy experienced by an object moving within a physical
mediom; 2) its gextended character {which is necessary for the existence of the
resistive force)- and 3) the deformation of the original shape {in the case considered
a perfect sphere} caused by the medium.
'I'he equation for the linearly damped harmonic oscillator in one dimension
mg +yx +kx=0, ke Rin+x}, k>0, 2.7
* admits isorepresentation {2.6} with the values
T=8 e Yy =-4kx®, U =0 T,=1, Q1)
where 8, represents the shape of the body oscillating within a resistive medium.

The interested reader can construct a virtually endless varlety of isorepresentations
of non-self-adjoint forces. A systematic study will be conducted elsewhere,

Corollary 2.1.C: T?lg'isonewton equations permit the representation of nonlocal-
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integral forces when completely embedded in the isounit of the theory.

The above occurrence is permitted by the integro-differential topology of
the Tsagas-Sourlas isornanifolds recalled in Sect. |. Constder as an example the
integro—differential equation

m dv/dt + y v? f ,doFo,.) =0, y>0, (219

representing an extended object (such as a space-ship during re-entry in our
atrnosphere) with local-differential center-of-mass trajectory x(t) and corrective
terms of integral type due to the shape (surface} o of the body moving within a
resistive medium, where ¥ is a suitable kernel depending on ¢ as well as on other
variables such as pressure, temperature, density, etc. The above equation admits
isorepresentation {2.6) with the values -
-1
T=S,e x‘r"doﬂc"").’r‘t =1, U =U,=0, (2.20

where 8, is the shape factor, which is adrmitted by the integro-differential topology
of the isomanifold M(E) because all integral terms are embedded in the isounit.
Similar isorepresentations can be easily constructed by the interested reader.

it should be recalled that the representation of nonlocal-integral terms is
prohibited in Hamiltonian mechanics because the underlying geometry and
topology are local-differential. In fact, the Lie~Koening Theorem requires a focal-
differential approximation of systems and it is inapplicable to integral systems of
type (2,19},

In the author’s opinion, the generalization of Newton's equations into a form
admitting nonltocal-integral forces has the most important epistemological,
mathematical and physical implications. Recall that contemporary mathematical
and physical knowledge is generally restricted to point-like/local formulations. The
isotopies therefore permit the study of more general nonlocal-integral systems
beginning at the primitive Newtonian level. Mathematically, the representation of .
nonlocal-integral forces requires the study of new methods, such as new topologies,
geometries and mechanics. Physically, the implications are equally important and
they deal with the historical legacy due to Blockint'sev, Fermi, and others that the
strong interactions have a nonlocal-integral component. In fact, ali strongly
interacting particles {hadrons) have a charge radius which is of the same order of
the range of the strong interactions (about 1072 ¢m). A necessary condition to
activate the strong interactions is therefore that hadrons enter into mutual
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penetration of their charge distributions. But hadrons are some of the densest
objects measured in laboratory until now. The historical legacy on the nonlocality
of the strong interactions then follows (see (39] for details).

A quantitative treatment of the historical legacy of the nonlocality of strong
interactions has been the primary motivation for this author to conduct his studies
on the Isotopies, with evident need to initiate the studies at the primitive Newtonian
level, then passing to classical analytic representations and finally to operator
treatment.

The Isonewton equation on a curved space are submitted in Sect, 3.3. We
introduce here, apparently for the first time, the forward genonewton’s equations,
i.e., the equations based on the genodifferential calculus of Sect, 1.5 defined on the
forward genospace S°>%”¥) = E>(t>,R:t>)><B>(?c>,8>,R>)xB>ﬁ>,8”,R>). which can be
written

%>
.59 Y

m’ ——
at>

¥ 0%V POt %, V) 221)
-— + = {, 2.

o> Ve x>
with corresponding backward genonewton equations here omitted for brevity. The
preceding equations coincide with the isonewton’s equations for motion in one
dimension, but are particularly suited to represent irreversible trajectories in more
than one dimension.

We also introduce the forward hypernewton equations, ie., the equations

based on the hyperdifferential calculus of Sect. 1.5 on the related hyperspace, which
can be written .

ia>1 R @ o, W) & 0], %, vF)
> - — + — =, {222)

(@) @) B! (8 &%}

-

with corresponding backward hypernewton equations, where the brackets {..}
represent a {inite and ordered set. The latter equations are particularly suited to
represent a system of particles in irreversible conditions, as one can verify with
explicit examples. '

The isoduality of the ordinary Newton's equations for potential systems,
called isodual Newton equations, and introduced in this paper apparently for the
first time, are defined on the fsodual fsospace SKtéxdv® = EXtdREIEYxd 89 RO
EYvASERY with sodual unit 19,4, = 19, % 16 x 19, 1,4 = -1, 1 = diag. &1, =1, -1}, and
can be written
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a8 d® FUNE GV U X% VY

4 = - +
ddd did advkd aykd

0. (2.23

It is an instructive exercise for the interested reader to prove that the
isodual Newton equations change sign under isoduality (this requires the isoduality
not only of all multiplications, but also of all quotients, see Sect. 1.3). However, such
a negative value is referred to a negative unit, thus establishing their full
equivalence to the positive value of the conventional equation referred to positive
units, Note that under the above representation, antimatter possesses negative
masses, and moves backward in time.

. We can also introduce, apparently for the first time in this paper, the
isodual isonewton equations which are defined don the isodual fsospace
SR04 = BRIRYEYRIBIRIEATISERY with isodual ssounit 1, =19, x %
1918 = -1, 1% = -1, and can be written

a% g ad Foid Y . ¢ 0%l &9, v
aqd  aRd % 3%ke

~d

= 0. (2.24}

with corresponding isodual backward isonewton’s equations. Similarly, we have the
isodual forward and backward hypernewton’s equations which are ornitted for
brevity.

2.3. Variational Isoselfadjointness. The fundamental methods of the
Inverse Newtonlan Problem: are the conditions of variational self-adjointness in
ElE(x,5,RHE(v,8,R) [13,29]. In this section we shall Identify, apparently for the first
time, their image in isospace here called conditions of variational isoself—
adjointness.

Theorem 2.2: A necessary and sufficient condition for a system of ordinary
second-order isodifferential equations in BtXxE(% S REWER) '

Pk %8 = 0,k=1,2.,0 ¥=3%& 3 = /&% (2.25)
which are tsodifferentiable at kzast up to the third order and regular in a region #

of points (, %, ¥, 3, Qa/Q) (ie, det B, / 33! X9 = 0 to be variationally isoself-
adjoint (ISOSA} in# Is that all the following conditions
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afy __ark
agk 24 '
of af d ol afl ol
i + < - 22— ,.’ = -E_( ik * : )
R v gt 2k dt Ty 23
af't 3f’k _ a a ( ar'k ) _ 3f'k ] -
3%k ax di dt v av
d any afy
= ‘5‘T( — - — ) , {2.26)
atT v A o8

are identically verified in® .

Proof. The proof is provided by an elementary isotopy of the conventional
case, ref. [28], Theorem 2.1.2, p. 60, and consists in computing the isovariational
forms of system (2.25), proving their uniqueness and showing that conditions (2.26)
are necessary and sufficlent for the isovariational forms to coincide with their
adjoint. q.e.d.

The novelty of conditions (2.26) is illustrated by the following

Corollary 2.2.A: Systems of ordinary isodifferential equations which are

variationally isoselfadjoint in isospace are generally variational nonselfadjoint
when projected In ordinary spaces.

Proof. Conditions (2.26) imply no restriction on the isotopic terms Ty! in
isospace while the same terms are restricted by the ordinary conditions of self-
adjointness in ordinary spaces g.e.d. :

Theorem 2.3: The Isotopic Newlon equaﬁons {2.5) are variationally Iso-
self-adjoint. .

Proof, The verification of the Tirst set of conditions (2.25a) reads

of, ofF aF aF .
_! - _j = ij ‘—t — T]m «-:—‘1 = T]m T[m - Tim A }n‘ = 0 1] (2-27)
2™ aam

B

and the same identities hold for all remaining conditions. q.ed.
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It is an instructive exercise for the interested reader to work out the
isotoples of the remalining theorems for second-order ordinary differential
equations {see (29}, Sections 2.2 and 2.3).

We now introduce the conditions of variational isoselfadjointness for n—
dimensional systems (2.25) in an equivalent 2n-dimensional first-order form. Let
TB(5,R} be the isocotangent space {see Sect. 3.2 for a geometric treatment) which
in this section can be characterized via the independent space E(p,5,R) with new,
independent, covariant coordinates P, and let the total representation space be
TGS RHE(DBR) with local chart b= (") = &K, plp=1,2 .., 20, k=1, 2 ., 0.
Assign sufficiently smooth and invertible prescriptions for the characterization of
the new variables py

B = BRI ' (2.28)

with unique system of implicit functions vk = rK(, %, ) {see [29] Sect. 2.4, for the
conventionial case). By using the latter implicit functions, system (2.25) can be
written in the equivalent 2n—dimenstonal form

RABE = €00 &+ D& =0, & =at/dt. (220

Theorem 2.4: A necessary and sufficient condition for system (2.29) which is at
least twice isodifferentiable and regular det. (G, X # 0} in a (6n+1)-dimensfonal
region R of points(t, b, €, d¢/AY) to be isoselfadfoint in R is that ali the following
conditions

Qo + Gy =0,
Lo + 3G, + 3Gy -
EY Y Y 4 '
i + D 2% . (2.30)
ay o Bt

are identically satisfying in A,

Proof. The proof is also a simple isotopy of the proof of Theorem 2.7.2 p.
87, ref. [20]. Also, conditions {2.30) are uniquely derivable from conditions (2.26) when
systerns (2.25) are assumed to be 2n~dimensional and of first-order. q.e.d.
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The following property is self-evident,
Corollary 2.4.A: When systems (2.29) assume the “isocanonfcal form”
L6 = o, - £t0) =0, (2.31)

where @, I the conventional canonical symplectic tensor

(o) =( Do~ o ) . s
Jenw e

the conditions of variational isoselfadjointness (2.30) reduce to
o 3
e S Y (2.33)
L] e

Note that a conventional canonical system which is selfadjoint is also iso—
seifadjoint. Additional and this illustrates the reason why a potential represen.tation
of a selfadjoint forces persists at the isotopic level. Additional properties of

variational isoselfadjointness will be identified Jater on.
Let us recall the following meanings of the conditions of variational seif-

adjointness for 2n—dimensional systems of ordinary first-order differential
equations

bc = Cultb) ¢+ Dbl =0, b=tk plc” = db/dt, (234
on a conventionat space (see [29,30] for detailed studiesk |

1) Apalytic meaning. The conditions imply the direct derivability (Le.,
derivability without change of local variables or use of integrating factors) of the

equations from a first-order variational principle
8A ﬁsftltzdt[Ru(t,b)db”-vﬂ(t.,b)] =0,
€y = 3Ry - Ry, Dy =9 H-3%R, § = a/ath o =a/at; (239
2} Geometric meaning. The two form

C = CudtAdt”, (2.36)
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characterized by the covariant tensor Cu,,(b) is an exact symplectic form; and
3) Algebralc meaning. The brackets among two smooth functions Alb] and
B(b)
[A,B] = (3, A)C™b) (3, B), (2.37)

characterized by the contravariant version of C,,,
o = {{Cu ', (2.38)

are Lie.

In the next sections we show that the above properties persist in their
entirety when formulated under isotopies in isospaces.

The above conditions of isoselfadjointness admit genotopic and
hyperstructural, extensions as well as isodual images which are not studied here for
brevity. : '

2.4. Isolagrangian ard isohamiltonian mechanics, We now show the
derivabtlity of the isonewton equations from a first-order isovariational principle
and then study the isotopies of Lagrange’s {17] and Hamilton’s [12] mechanics.

Proposition 2.1: Al Newtonian action functionals of second or higher order in
Euclidean space Stx,v} =E(LRIEX5,RE{v.5,R) whose integrand Is sufficiently
smooth and regular In a reglon R of their variables can always be identically
rewritten as first-order action Isofunctionals in isospace B3(txV)

=E{xE5,RIxE(V.5R) which are bilinear In the velocities,

t 1
k= Cagtxva. = T Famso,

L= 4 ¥8, ¥~ 00 RI8, V- UM R = 4§, % - 0,8, 0 v - 0,4 0, (239)

In fact, identities (2.392) are overdetermined because, for each given £, there
exist infinitely many choices of m, Ty, T, Oy and 0, We shall assume that integral
terms are admitted in the integrand provided that they are ail embedded in the
isometric,

The isovariational calculus is a simple extension of the isodifferential
calculus. In fact, we can write the following isovariation along an admissible
isodifferentiable path P
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B ® 1, 8 Ay,
= — +5 JEP) = {—----— )
sap) = T, Carss — Ji e R

(2.40)

where we have used fsointegration by parts. The isotopy of the celebrated Euler [10]
necessary condition can be formulated as follows.

Theorem 2.5 (Isoeuler Necessary Condition): A necessary condition for an

isodifferentiable path P, in isospace $t%¥) = ERR)ERBRENBR) fo be an .

extremal of the action isofunctional A is that all the following isotopic equations

[_a aLax® AR }(Po}=0' (2.41)
& A 3%

[Py =
are identically verified along P,

It is an instructive exercise for the interested reader to prove the following:
Corollary 2.5.A: Isoequations (2.41) are variationally isoself-adjoint.

The isotopies of the remaining aspects of the calculus of variations (see, eg.,
Bliss [6] with consequential isotoples of the optimal control theory are intriguing
and significant, but they cannot be studied here for brevity. Eq.s {2.41), which are
introduced in this paper apparently for the first time, are hereon called isoculer
equations when dealing with the calculus of isovariations, and fsolagrange
equations when deating with analytic mechanics.

We shal] say that the isonewton equations {2.5) admit a direct isoanalytic
representation, when there exists one isolagrangian L@, % ¥) under which all the

following tdentities occur
{ a LV Al x W }1sosa _

at LR 3Rk
20,% ax EL AR } 1SOA
- {a SCAT UL L -
& %! at %
_ 1 { mdv, Ut x) ix_’_ 3 UL, x) F"S At % V) }NSA
K s dt ax!
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L% = 4% - 0, 0L Y =0ER0F+0 4D, (42

Theorem 2.6 (Universality of isolagrangian mechanics), A/l possible
sufficiently smooth and regular dynamical systems in a star-shaped neighborhood
of a point of their variables always admit a direct isorepresentation via the
isolagrange equations in isospace.

Proof, The universality of the isorepresentation follows from the fact that
conditions (2.8) always admit solution {2.10} in the unknown functions. g.e.d.

Note that Newtonian systems are usually referred to systems with local~
differential forces depending ut most on velecities. Theorem 2.6 includes also non—
Newtonian forces, e.g., when they are of integral type or acceleration-dependent.
Discontinuous Newtonian forces, such as those of impulsive type, have been
removed from the theorem because of lack of current knowledge on the topology
of isospaces with discontinuous isounits (isospaces of Kadeisvili's Class ¥ [15]),
although such an extension is expected to exist, and its study is left to interested
readers. -

Note the simplicity of the construction of an isolagrangian representation as
compared to the complexity of the construction of a conventional Lagrangian
representation [29,30], when it exists.

We now introduce, apparently for the first time, the isotopies of the
Legendre transform based on the isodifferential calculus (ref. [39] presents a
different isotopies based on the isotopic degrees of freedom of the multiplication).
For this purpose, we Introduce the following isodifferentials in isospace 8@, %, p) =
BEG B AEDSR)

at = Lo, A% =1Kad, 3/3% = 8, etc.,
W = Bldp, @K =T4dpL %/ =8, et (243

The total isounits and isotopic elements of the isospace S(.%p) =
ERRIER 8 RIE(P,SR) are therefore given by

12 = sz'lx'f'. Ta = Tthx1 ) . (2.44)
It should be indicated that, in view of the independence of the variables p,

from %X, we can introduce a new Isounit W = 2! for the isospace E(S.R) which is
different than the unit 1 = 17! of isospace E&SR), in which case the total unit is 1,
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= 1pAxW. Selection {2.44) is based on the simplest possible case W =1 which is
recommendable from the geometric isotopies studied in the next section. Other
alternatives belong the the problem of the degrees of freedom of the isotopic

theories which is not studied in this paper for brevity.
We now introduce the isocanonical momentum via the following

prescriptions
. L %V
T
g{lder the condition of being regular in a {2n+1)-dimensional region # of points (¢, X,

= lfl C’k - Gkﬂ" i) N (245)

P %W

) M = 0. ' (2.46})
aviav

et

thus admitting a unique set of implicit isofunctions ¥& = tX(t, %, p). The isolegendre
transform can then be defined by

(L% WL D = LR D - 1wyt XD ez p o+
+ 0 (L0 L% D) 0K = by ph/om + TR0 P, + TR = AlLX D).
, (247
We are now equipped to study the isotopies of Hamilton's principle [12], By

using the unified variables 6 = (8} ={ % f ), & = a® /at, and by
introducing the notation

= (R,) = (hd), p=L2.20, k=L2..n @4

the isocanonical principle assumes the form along an actual path P,
1 1,
bR =8]y, dp, at - A) 0 = 5]y, @, - A) B -

1 i ° 3 ’
< T Cmsh— ¢ B ) (p k- RIR) =
T
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T I I TP o
=Jy, &l — —I8 - [—{p—) + )BRL ] (P} =
&% op & o !
Y d o
“Ll at (8" FE@— (R, A" ~ AP =

apH xH

t oy ore ap¥ A
= T‘tl ’ { - - a ) -

apH g a a

Joge st =0, (a0

Theorem 2.7 (Isohamilton Necessary Condition): A nece#afy condition for an
isofunctional in Isocanonical form whose integrand Is sufficiently smooth and
regular in a region R of points , b, <) to have an extremum along a path P, Is
that all the following isoequations in disjoint notation

axk - oA, %, p) apy _ - A, X, D)
Py Y ' _fﬁ porY . {2.50)

or in unified notation

M, R,y aBY  ARH 4
( - - _'L) =0, {2.51)

3B w ! @ o

hold along an actuval path P,
It is also instryctive for the interested reader to prove the following:
Corollary 2.7.A: Isotopic equations (251) are variationally isoseif-adjoint.

Eq.s (2.50) or (251), which are introduced in this paper apparently for the
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first time, are called isohamiiton equations. They can be more simply written in
the following respective covariant and contravariant forms

ap 2 A, b
Wom T e
L L (2.52)
dat Elig
where the quantities
(o) = ( Ry Ry ) _ (O ey
O W hoat Oroay
0 o _ 0 " I "
(m“B)=(-ak"aR”)l= YL es
W ey O

are the conventional covariant and contravartant canontcal tensors, respectively,
which hold In view of the identities originating from properties (1.33} and values

{2.48)

3R%, /361 = oR’, / b™. (250

The equivalence of the.isolagrangian and isohamiltonian equations under the
assurned regularity and invertibility of the isolegendre transform can be proved as

in the conventional case (see, eg., (29}, Sect. 3.8} -
We now study the following additional property -of isohamiltonian

mechanics which is important for operator maps. The isotopic Hamflro?-Jacobi
problem (see, eg., [29], p. 201 and ff. for the conventional case) is the identification
of an isocanonical transform under which the Hamtltonian becomes null. The
generating function of such a transform is the isocalmonicai action itself, resulting

in the end-point contribytions
t
an=af G - na) = |pat -AR) @
g o

with Isotopic Hamiiton—Jacobi equations

ETY
oA + AL% D =0, — — Py = 0. (256)
K
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plus initial conditions 34/3%™ = f,°, where X° and ° are constants,

Note the abstract identity between the conventional and Isotopic
mechanics. Since the isounits are positive—definite, at the abstract level there is no
distinction between dt and &t or dx and dX, etc. The isolagrange and isohamilton
equations therefore coincide at the abstract level with the conventional equations.
This illustrates the axiom~preserving character of the isotopies.

Note the direct universality of the isohamiltonian mechanics in the fixed
inertial Trame of the observer should be compared with the corresponding lack of
universality of the conventional Hamiltonlan mechanics, A first direct universality
was achieved by this author [30] via a step-by-step generalization of Hamiltonian
mechanics called (for certain historical reasons) Birkhoffian mechanics. The latter
mechanics is based on the most general possible first-ordei- Pfaffian variational
principle (4.11) in the unified variables b = {b"} = (x¥, p,) in a conventional space St,
% p) e, t,
8 [42R,b)db” - H b at] = 0, (257)

ylelding Birkhoffs équat!ons [5,30] in covariant form

av’  aH(t b 3R, R,
{Om,(b — - }SA =0, Q)= - {2.58)
dt a b o ab¥
with contravariant version
dp* 3 Hit, b
— = ") .o = el (2.59)
dt ay

The connection between the Birkhoffian and the ischamiltonian mechanics
Is intriguing. In fact, the Pfaffian action can always be identically rewritten as the
isotopic action

t2 W
f UL LY =], (006" - At Bal,
=t A=H B=d, , (2.60)
and the general, totally antisymmetric Lie tensor # (see later on) always admits

the factorization into the canonical Lie tensor oY and a regular symmetric matrix
T v
%
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v = BTy, (261)

under which Birkhoff’s equations (2.59) coincide with the ischamiiton's equations
252 forl, = L

Despite these similarities, it should be indicated that the isohamiltonian
mechanics is considerably broader than the Birkhoffian mechanics. In fact, the
former is based on an action of arbitrary order, while the latter necessarily requires
a first-order action. Also, the former can represent Integrai forces, while the latter

cannot {because the underlying geometry (the symplectic geometry in its most

. general possible exact realization) only admits local~differential systems. Finally,
the former is based on a broader mathematics, the isodifferential calculys, while
the latter is based on conventional mathemnatics.

An important application of the isohamiltonian mechanics is to provide a
novel classical realization of the Lie-Santilli isotheory [3,14,16,19,43]. Recall that the
conventional classical realization of the Lie product is given by the familar Poisson
brackets among two functions A{b) and B(b) in the cotangent bundle (phase space)

- oA B B 3A A B
= - = . 8
R L o ap, apH a¥

From the selfadjointness of Birkhoff's equations {30] and the algebraic
mmeaning of the conditions of selfadjointness recalled in Sect. 2.3, the most general
possible (regular, unconstrained} brackets in cotangent bundle verifying the Lie
algebra axioms are given by the Birkhoffian brackets f{also called generalized
Poisson brackets) [30]

A, Bl By 2 (263)
» DABirkhoff — ﬁb” va . -

The novel brackets introduced in this paper are given by the following
brackets among isofunctions Alb), B(b) on isocotangent bundle

A 38 B A
[Rv B]Isotopic = a;(k ai)k aik 3‘[.);{ -
dA 8B B 9\

= - . (2 6 4)
ak ap anr apy
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and they formally coincide with the conventional brackets (2.62). This illustrates
Bruck’s [7] statement to the effect that "the isotopies are so natural to creep in
unnoticed”,

However, one should remember that the underlying geometry is genera!ized
In fact, the isotopic brackets can be written

a8
(A, B]lsotopic -_'Ti(trp- )Bkj — "a";'"’r (LTP..)Bk] "
) ! ’(z 65)

and, in,the latter form, they do not verify the Lie axfoms, thus showing their
differences with the conventional brackets. This illustrates that the isotopic
theory of this paper verifies the Lie axioms only iIn isospace but not when
projected in conventional spaces. This occurrence should be compared to other
realizations studied in ref.s [37,38] in which the Lie axioms are verified in isospace
as well as in their projection in conventional spaces.

Moreover, ¢ne should keep in mind that we have selected the simplest
posstble isotoples for which the isounits of the independent variables ¥ and x are
the same. The use of different isounits for p¥ and xkK evidently implies further
differences between the isotopic and conventional brackets.

Note finally that the Lie-Santilli character of brackets (2.64) is assured by

- the iso-selfadjointness of the isohamilton equations.

Brackets (2,64} can be written in unified notation

wEl MWL, B Tagogs B A B
. = w = —_—=
fsotople — en a we M oo ape 2%2?

where the last identity occurs in view of the properties for diagonal isounits
T2 NP = w® (2.67)

It is also possible to show that {schamiltonian mechanics provides a classical
realization of the Lie-Santilli isogroups [3,14,16,19.43], as shown by Kadelsvill in the
adjoining paper [16].

We now introduce, apparently for the first time, the isodual Hamiiton
equation

dpvd  adadtd b9

oty P e _ (2568)
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which represent the isodual Newton equations for antiparticles with potential
forces only, Eq.s (2.23).

It is an instructive exercise to prove that the Hamiltonian changes sign
under isoduality, as necessary for compatibility, because all physicat
characteristics of antimatter in isodual representation must change sign, thus
including the energy, HY = p&dpdrizd + v4xd) = ~ H. It is also instructive to prove
that the isodual Hamilton equations change sign under isoduality, as it is the case
for Eq.s (2.23),

The Isodual isohamnilton equations can be constructed via a simple .

isoduality of Eq.s (351) here left to the interested reader for brevity. Note that the
isohamilton equations have the same properties under iscduality of the
conventional equations.

The isodual Lagrange and Isolagrange equations can also be constructed via
the same Isoduality and their study Is also omitted for brevity. In short, all aspects
of conventional and isotopic analytic mechanics admit a simple, yet significant
antiautomorphic image for the characterization of antimatter which therefore
acquires a full methodofogical equivalence with the treatment of matter.

The isolagrange and isohamiltonian mechanics of this section admit
genotopic and hyperstructural formulations, each of which with an
antiautomorphic image via isoduality. These latter formulations then provide a
direct isoanalytic representation of the corresponding iso-, geno~ and hyper-
newton equations of Sect. 2.2 and of . their isoduals. The latter analytic
representations can be constructed via the methods of this paper and their explicit
forms is not presented for brevity (see [38] for detailed study of the genoanalytic
equations}.

2.5, Isotopies of quantum mechanics. A significance of isoharniltonian
mechanics is that its map under the conventional {or symplectic) quantization is
not quantum mechanics, but instead a broader theory originally submitted by the
author under the name of hadronic mechanics because intended for the study of
hadrons and their strong interactions, but also known as isoguantum theory. It is
important for this paper to see that the isotopic operator theory preserves all the
main features of the isotopic Newton equations, such as the representation of
extended, nonspherical and deformable shapes, nonselfadjoint forces and nonlocal~
integral/nonhamiltonian interactions. By comparison, conventional quantum
mechanics can only represent in first quantization point-particles with local and
potenttal interactions and can represent in second quantization via form factors
only perfectly spherical and rigid shapes. The broadening of quantum mechanics
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under isotoples Is then evident. For a comprehensive presentation see monographs
[37,38]. A summary of hadronic mechanics with application to superconductivity is
available in paper [2].

The simplest posstble map of Hamiltonian into quantum mechanics, called
naive quantization, is characterized by the map of the canonical action f unctional
A — ~ ihLaydt, x), which maps the conventional Hamilton-Jacobi equations into the
Schridinger equations.

But the isoaction of the isohamiltonian mechanics is of arbitrary order in
conventional space and the preceding map is not therefore applicable. Animalu and
santilli (see (38} for details and references) have therefore introduced the map
{called naive isoquantization

ALY~ -il0 P Lndd ¥, 69

"which Is essentially based on the lifting of the basic unit of quantum mechanics f =
I into the isounltlof the isonewtonian and isoanalytic mechanics, here assumed to
be independence from X for simplicity (see ref. [38] for the general case).
The application of map (2.69) to iso-Hamilton/Jacobi equations (2.56) yields
the isotopic Schradinger equations

13/R = ATd = A«d, P TI=Peed=~10/5F. 2.70)

which are defined on a isohilbert space 3 with isostates ¢. &, .., and isoinner
product < § ['% > = 1Jax%T$ over the isocomplex field C(€,+5%) originally
submitted by Myung and Santilli in 1982 [23] (see [38] for a detailed study and all
related references).

The equivalent isoheisenberg equation for an observable 0 are given by

ja0 /7t = [O)A]l = OxA - AXO = OxTxA - AxTXO, (2.11)
and results to be defined on an enveloping algebra ¥ of operators 4, B, ..., and
isounit 1 = 771 on 3¢ equipped with the isoassociative product A%B = AxTxB over
(&, +3) originally submitted by Santilli in 1978 (see 138} for details and references).
The operator image of the isobrackets (5.27) is therefore given by

[AB] = AxtxB - BxTx4&, @272

which constitute the operator realization of the Lie-Santilli isoproduct.
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The exponentiated form of Eq.s (2.72) yields the time evolution of isostates
¥ - 0%y =(FAY%g = HTxG, 73

where & is the isoexponentiation of an arbitrary (welt behaved) quantity «, Le,, the
exponentiation in ¥ turned into a universal enveloping isoassoclative algebra via the
isotopic Poincare-Birkhoff-Witt theorem first formulated in [28], and then studied
in [30]

B=1+alll+aka/21+..=(eTIL 2r4)

The notion of unitarity is preserved under isotopies and expressed by the
broader isounitary transforms, t.e., transforms verifying the rules on x

00l = 0T %0 = 1. . {2.79)

The important point is that unitarity and isounitarity coincide at the abstract level
for Class I isotopies. :

The isotopic group laws [28] can be written for lsounitary transforms on an
isoparameters w € Rifi+%)

OO % OW) = O6F+ W), OWIX0C-W) = 00 = 1. (276)

and they also coincide with the conventfonal group laws at the abstract level.

Most importantly, the condition of isohermiticity, ie., hermiticity in
isohilbert space, coincide with the conventional Hermiticity, 4! = H (see [38] for
detailed prof). This carries the importance consequence that all observables of
quantum mechanics, such as energy, linear momentum, angufar momentum elc.
remain observables under isotopies.

Despite the above equivalences, quantum and hadronic mechanics are
inequivalent because the latter can only be derived from the former via a
nonunitary transform. In fact, the unit, associative product and Lie product are
notoriously invarlant under unitary transforms uxul = UxU = 1. In order to reach
thelr isotopic covering, one need the nonunitary transform

UuxUuT=1=1"=1, T =(uxuly! =1,

uxixul =1, UxaxBxUl = AxTxB
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Ux(AxB - BxA)xul = A% TxB’ - BxTxA’
A= UxAxyl B =UxBxyl 277

Once an isotopic structure is achieved via nonunitary transforms, it does
not remain invariant under additional nonunitary transforms wxwl =K = I, eg,
because the isounit is not invartant, WAxW! = 1 #1. However, the latter transform
can always be written In the isounitary form

W=WxTV2e wxwl = wxwh = wixw = Waw =1, (2.78)

. which establishes the form-invariance of hadronic mechanics under its own

transformation theory, that of isounitary transforms,
Wxlxwl =1, wnxgﬁvr = A'%8,
Wi(A% 8 - BXA)X W = A58 =« B'% &,
A= WRASW!, B.= WXBXW!. @279

Note that the isounit and isotopic element are left numerically invariant,
and they preserve all properties of Planck’s constant,

1 =1x1% %1 =1, e, M=1,
jA1/at=1%A-Ax1=A-A=0. (2.80)

As one can see, the matrix T of the isotopic Newton equations is preserved

“ in its entirety at the operator level, and this confirms the capability of the isotopic

operator theory of representing nonsphericai-deformable shapes, nonselfadjoint
forces and nonlocal~integral interactions (see [38] for comprehensive studies).

- The significance of the Lie-Santilli isotheory over the conventional
formulation is illustrated by the appearance of the matrix T with arbitrary

" nonlinear-integral terms in the exponent of the isogroup, Eq. (273). This assures

that the original linear, local and canonical theory is mapped under isotoples into
nonlinear, nonfocal and noncanonical forms, as desired (see the following article by
Kadeisvili [16] for details). ’
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The abstract identity of quantum and hadronic mechanics should be
kept in mind because it assures the axiomatic consistence of hadronic mechanics.
Criticisms on hadronic mechanics may therefore result to be criticisms on the
axiomatic structure of quanturn mechanics itself. In fact, all properties of the
latter are equally shared by the former, both mechanics being different
realizations of the same abstract axioms.

By comparison, the reader should be aware of physical problematic aspects
of other modifications of quantum mechanics, such as the so-called q-
deformations, which do not possess an invariant unit {and, therefore, cannot be
applied to actual experiments), Hermiticity is not generally preserved in time {thus
preventing the existence of observables), the g-special functions are not invariant
under the time evolution of the theory (thus preventing invariant data elaboration()
ar other problems (see [38] for detals. All these problems are resolved by quantum
mechanics, by therefore indicating that isotopies are preferable on methodological
grounds over other generalizations.

Conventional quantym mechanics admits an antiautomorphic image under
isoduality called isodual quantum mechanics [38], which is used for the
representation of antiparticles and is characterized by: 1} Isodual complex fields
Cc+>d), with isounit #¢ = ~h = -1, elements ¢ = —C. and product x3 = -x (See Sect.
1.3 for more details); 2} [sodual enveloping operator algebra £ with unit 1l = ~h = -]
and isodual products ASdpd = —AxB, and 3) the isodual Hilbert space with isodual
states | ¢ >3 =~ < ¢ | {or ¢ = ~¢N) and Isodual inner product

el < o|p =<k~ n)x]I>x(-n¥lecd n=1. (28D

The dynamical equations are derived via isodual naive quantization which
consists of the mapping of the isodual canonical action AY — —irfLn® g%t9, x9,
where one should remember the isoselfduality of the imaginary unit ({4 == i)
under which the isodual Hamiltonian mechanics of Sect. 2.4 is mapped into the
isodual Schrodinger equation

ja% 4 = HOxdyt = pOxdyd, ' (282

thus resulting in negative elgenvalues Ed = -E, as requested for consistency under
duality as well as for compatibility with the classical counterpart {where the
Hamiltonian is negative-de{inite).

The isodual Heisenberg equation Is given by [38]
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td%d /ddtt = ofxdyd - pixdod, {2

The rest of the isodual mechanics can be derived accordingly (see [38] for details).

The mapping from quantum mechanics to its iscdual has resulted to be
equivalent to charge conjugation (see [38] for details). However, isoduality appears to
be preferable over charge conjugation because it avoids the need for the "hole
theory” and the uneasiness of its underlying assumptions. In short, antiparticles
were discovered in the negative-energy solutions of Dirac’s and other equations, but
they behaved unphysically (when tacitly referred to our positive units of space and
time), thus requesting the construction of the “hole theory” in second quantization.
Santilli [38] has shown that negative-energy solutions behave in a fully physical
way when referred to negative units of space and time, thus eliminating the need
to conjecture the existence of many different infinite oceans of antiparticles, one
‘per each antiparticle and each ocean inside all others, whose “holes” are the
antiparticles we observe physically. As shown in this section, antiparticle acquire
their identity under isoduality beginning at the Newtonian level, which
identification then persists at all subsequent levels. Note that for charge
conjugation antiparticles remain in ocur space-time, while under iscduality they
exist in the different isodual space-time.

Note finally the identity of the conventional and isodual inner products of
the Hilbert space, which may explain why isoduality has not been discovered until
recently despite about one century of investigations. Note however that the
identification of isoduality requires the prior knowledge of new nurmnbers, those
with negative units.

Isodual quantum mechanics admits simple isotopies into the isodual
hadronic riiéélanics which is here omitted for brevity. Hadronic mechanics also
admiits forward and backward genotopic formulations [38] as well as forward and
backward hyperformulations [40] each with its isodual, whose explicit form is not
presented here for brevity . '

Hadronic mechanics possesses nowadays applications and experimental
verifications in nuclear physics, particle physics, astrophysics, superconductivity
and other fields, which we cannot review here for brevity (37,38l We merely
mention that in all cases the tsounit is assumed to be different than I only at very
small distances {of the order of 1 fm) where nonlinear, nonlocal and noncancnical
effects are expectéd to be significant. Therefore, at the sca!é, say, of the atomic
structure, 1 = [ and hadronic mechanics recovers quantum mechanics identically.

-~
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3. Isotopic liftings of local-differential geometries

3.1. Intreduction [n Sect. 2 we have studied from an analytic profile the
historical distinction between the exterior problem, consisting of point particles
moving in the homogeneous and isotropic vacuum, and the interior problem,
consisting of extended, nonspherical and deformable particles moving within
inhomogeneous and anisotropic physical medfa.

On geometrical grounds, the above distinction was well known in the first

part of this century. For instance, Schwarzschild wrote two papers, the celebrated
paper [41] on the exact solution for the exterior problem, and the virtuaily
unknown second paper [42} on an approximate solution for the interior problem.
The same distinction was kept in the well written treatises in geometry of the first
part of this century, but then it was progressively ignored up to the current virtual
complete silence in the technical literature.

This is unfortunate for several reasons. Te begin, the exterior and interior
problems are geometrically inequivalent. For instance, it is known that the speed
of light ¢, is constant in vacuum, while within physical media light has the locally
varying speed ¢ = ¢,/n, where n is the familiar index of refraction. It is evident that
geometries which have been built for the characterization of the constant speed of
light c,, are not effective for the characterization of locally varying speeds of light
¢ =c/n, e.g., because of the need of different metrics.

The inequivalence of exterior and interior problems is confirmed by the fact
that the equations of motion of the former are variationally selfadjoint [29), thus
admitting a {first-order} Lagrangian or a Hamiltonian, while the equations of
motion of the latter are nonselfadjoint [loc. cit] thus being beyond the
representational capabilities of a Lagrangian or a Hamiltonian. As an example,
missiles in atmosphere have nowadays reached such speeds to experience drag
forced proportional up to the tenth power of-the speed. The expectation that such
systems can be exactly represented via the Riemannian or other conventional
geometries is outside the boundaries of science.

But the deepest inequivalence of the exterior and interior problems is of
topological nature. [n fact, the former admits an exact local-differential topology
{such as the Zeeman topology for the Minkowski space), while the latter requires an
integro—differential topology, as discussed in Sect.s I and 2, Thus, interior problemns
are outside any realistic capability of conventional geometries (for additional
arguments on the inequivalence here considered see [38]).
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Mbreover, the interfor problem cannot be exactly reduced to a collection of
elementary particles in exterior conditions in vacuum, as generally assumed in the
contemporary literature. Besides the lack at this writing of a consistent quantum
gravity {which is evidently requested in the transition from the classical to the
particle level), the expectation of recovering the exterior problem at the particle
level has been disproved by the so-called No-Reduction Theorems [38], which
essentially establish that, say, a space-ship during re-entry in atmosphere with
monotonically decreasing angular momentum, simply cannot be reduced in a
consistent way to a finite collection of point particles in vacuum, each with
conserved angufar momentum (for additional arguments on the irreducibility here
considered, see [38]).

Even ignoring the preceding issues, conventional local-differential
geomelries are usable In practical applications only for systems which are
Hamiltonian in the frame of the observer b = (x, p), which constitute a rather small
class of physical systems. By ignoring nonlocal-integral terms and under suitable
regularity and continuity conditions, Darboux’s theorem [9] of the sympiectic
geometry does indeed permit the identification of new coordinates bi{b) = [x{x, p,
plx, pl} in which nonhamiltonian systems acquire a Hamiltonlan form. However, as
indicated In Sect. 2.4, the transformed coordinates are nonlinear functions of the
original ones. As such, Darbouxs coordinates Y = (X, p) are not realizable In
actual experiments. Moreover, being nonlinear fmages of inertial frames,
Darboux’s coordinates are highly noninertial, thus implying the loss of
contemporary relativities, such as Galilel’s and the special rélativities.

The above occurrences have created the problem of constructing new
geometries specifically built for the description of interior probiems In the fixed
inegrtial frame of the observer or, egulvalently, for the geometrization of
inhomogeneous and anisotropic physical media. Moreover, to be effective in
physical applications, the new geometries must satisfy certain physical
requirements, such as admitting of the conventional geometries as particular cases,
and permitting a clear separation between local-differential and nenlocal-integral
effects (the latter being needed for experiments).

A number of new geometries resolving some of the preceding problems
already exist in the literature. Without any claim of completeness, we here quote
the Finslerian geometry 120} which is particular suited to represent anisotropic
interior systemns, such as a spinning body. Nevertheless, the geometries which are
needed for Interior problems must necessarily be both anisotropic and
inhomogeneous, thus requiring a necessary broadening of the Finslerian geometry.
At any rate, the latter is arbitrarily nonlinear only in the coordinates, thus being
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insufficient for interior problems.

We also mention the higher—order Lagrangian formuiationt by Miron and his
collaborators (see, e.g., [22] and quoted references) which s arbitrarily nonlinear in
the velocities and, thus, directly applicable for the representation of (local-
differential) interior systems in the coordinates of the observer. However, higher
order Lagrangian formulations do not have a conventional Hamiltonian counterpart
which is needed for quantization. This illustrates the emphasis on the first-order
character of the Lagrangian representation of Sect. 2

Similarly, we mention here the new time~oriented Lorentzian geometry by
Papuc [25] which, as such, is also directly applicable for the geometrization of
jrreversible interior systems. The latter geometry is however arbitrarily nonlinear
only in the coordinates besides being local-differential, thus creating the need for
further generalizations.

A solution of the above problems was submitted by the author in memoirs
(32,33] of 1988 {see monographs [37,38] for a recent presentation) via the
Isogeometries which were built via the isotopic degrees of freedom of the
product. In this section we present, apparently for the first time, the isogeometries
characterized by the isodifferential calculys of Sect. 1.5. The latter formulation
results to be preferable over the former because it permit a much more transparent
abstract unity of conventional and isotopic geometries which, in turn, permits a
unified treatment of exterior and interior problems.

The fsoeuclidean and isominkowskian geometries are studied in details in
monograph (37} Their reformulation in terms of the isodifferential calculus is
elementary and therefore they will not be considered here for brevity.

In this section we shall first reformytate the isosymplectic geometry via
the isodifferentiat calculus for the primary purpose of reaching an alternative to
Darboux’s theorem and, more generally, achieving the direct universality for
interior systems, that is, the representation of all interfor systems of the class
admitted (universality), directly in the fixed inertial frame of the experimenter
(direct universality). The reformulation also satisfies the above indicated conditions
of admitting the conventional geomelry as a particular case and possessing a clear
separation between local-differential and nonlocal-integral terms. The
isosymplectic geometry will emerge as the isogeometry underlying the
isohamiltonian mechanics of Sect. 2 and of the Lie~Santilli isotheory of Sect. 1.9
and of the accompanying paper by Kadeisvili [16] .

we shall then reformulate the isoriermannian geometry via the
isodifferential calculus to achieve: a geometrization of locally varying speeds of
light; a theory on the “origin” {rather than the "description”) of the gravitational
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field; the "identification” (rather than the “unification”) of the gravitational and
electromagnetic field; the geodesic characterization of free motion within physical
media (such as a leaf falling from the Pisa tower);, and other objectives. The
isominkowskian geometry is a particular case of the isoriemannian geometry at
null curvature. .

We shall then merely outline the isodual isogeometries for the
antiautomorphic characterization.of antimatter, for the purpose of confirming the
expectation that antimatter-antimatter systems experience a gravitational
attraction stmilar to that of matter-matter systems, although the theory predicts
the reversal of gravitational attraction fantigravity) for matter-antimatter systems.

We shall finally point out the expectation that the isogeometries admit
further broadening of genotopic and hyperstiuctural type, although without
treatment at this time.

3.2, Isesymplectic geometry. The isotopies of the sympiectic geometry,
or isosymplectic geometry for short, were first identified by Santilli in memoir
{32] of 1988 via the isOtopic degrees of freedom of the product, they were then
studied in various works, and presented in monograph [37). In this section we shall
present the isosymplectic geometry formulated via the isodifferential calculus of
Sect. 1.3,

Unless otherwise stated, our formulation is local and in the fixed coordinates
of the observer. All quantities are assumed to satisfy the needed continuity
conditions, e.g., of being of class (™ and all neighborhoods of a point are assumed
to be star-shaped or have an equivalent topology. For the conventional symplectic
geometry one may inspect ref. [1] for the abstract treatment and ref. [20] for the
local formulation. We shall first study the isosymplectic geometry of Class |
representing matter and then study its anttautomorphic image under isoduality for
the characterization of antimatter.

Let M(£} = M(E(B,R) be an n-dimensional Tsagas-Sourlas isomanifold [44,45]
on the isoeuctidean space B(%5,R) over the isoreals R = R(A,+*) with nxn-
dimenstonal isounit 1 = (12, i,j=1,2 .. n,of Kadeisvili Class I and local chart X =
(kX). A tangent tsovector X(rh) at a point i € M(E) is an isofunction defined in the
neighborhood R(rfi) of i with vatues in R satisfying the isolinearity conditions

R (@%T+PRg) = & % RaM+B*R@).

R A% = TR % K@) + 3l xR ), @1
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for ali T, § € M(f)} and & B € R, where % is the isomultiplication in f and the use of
the symbol © means that the quantities are defined on isospaces.

The collection of all tangent Isovectors at rit is called the tangent isospace
and denoted TM(E). The tangent isobundle is the 2n-dimensional union of all
possible tangent isospaces when equipped with an isotopic structure {see below).

The cotangent isobundle T*MIE) is the 2n-dimensional dual of the tangent
isobundle with local coordinates b = (6"} = &, pJ 1 = 1, 2, .., 2n,. Since pis
independent of ¥, the isounits of the respective differentials are generally different,
Le., we can have ax = 1dx and 3p = Wdp, 1 # W, in which case the total isounit of
T*MKE) is the 2n-dimensional Cartesian product 1, =1xW.

For reasons which will be clarified later on, in this note we assume the
following particular form of the isounit of the cotangent isobundle

1 Opx
1, = 04 = ( e )= T, = (T 1=17 62

On*n Tﬂ"ﬂ

where 1 is the isounit of the coordinates dx = 1dx, and T Is the isounit of the
momenta, dp = Tp = 1"'dp. In different terms, we select the particular case in
which W=1"1

An isobasis of T*M(E) is, up to equivalence, the {ordered) set of

{soderivatives 3 = (8/381} = (T,,"3/3b"). A generic elements X € T*M(E), called

vector isoffeld, can then be written X = XHri) 3/6" = R T, "a/abM.
The fundamental one-isoform on T*M(E) is given in the local chart b by

3= R B3 = K01F, b = R = pakeK, R=(p0). 63

The above expression, which can be written d = pdx = p,'lijdxj to emphasize the
differential origin of the isotoples, should be compared with the originally proposed
one—fsoform & = pidx = p, ¥, dx' [13] obtained via the isotopic degrees of freedom
of the product. The preference of the Isodif ferential calculys over the
isomultiptication is then evident for a geometric uhity of the conventional and
isotopic formulations.

The space T*M(E), when equipped with the above one—form, is an isobundle
denoted T,"M(E). The isoexact, nowhere degenerale, isocanonical isosymplectic
two-isoform is given by

G= 30 = 4 AR, 4) = + o, AHAQEY =
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= BEAD = W dR'A Ty ldp = dRK A dpy (3.4)

The isomanifold T*M{E), when equipped with the above two-isoform, is called
{sosymplectic isomanifold in isocanonical realization and denoted T,M(E). The
isosymplectic geometry is the geometry of the isosymplectic isomanifolds.

The last identity in (3.4) show that the two-isoform & formally coincides
with the conventional symplectic canonical two-form «, and this illustrates the
selection of isounit (3.2). The abstract identity of the symplectic and isosymplectic
geometries is then evident. However, one should remember that: the underlying
metric is isotopic; B, = Ty 'p, where p, is the variable of the conventional canonical
realization of the symplectic geometry; and identity & = w no longer holds for the
more general isounits T, = W, 1= WL,

Note that the isosymplectic geometry fras the Tsagas—Sourlas Integro—
differential topology and, as such, it can characterize interior systems when all
nonlocal-integral terms are embedded in the {scunit.

A vector fsofield X{rm) defined on the neighborhood R(rfi} of a point m €
T,*MI(E) with local coordinates b is called (locally} isohamiftonian when there exists
an isofunction A on KM} over R such that

Lo =328, e,
yy M) At = AAlm) = (3A / 26%) abH, (3.5)

We are now equipped to present the main result of this paper, the isotopic
alternative to Darboux’s Theorem for the representation of nonlinear, nonlocal~
integral and nonhamiltonian interfor systems within the fixed coordinates of their
experimental observation, which can be formulated as follows.

Theorem 3.1 (Direct Universality of the Isosymplectic Geometry for Interior
Systems): Under sufficient continuity and regularity conditions, all possibie
vector fields which are not (locally) Hamiltonian in the given coordinates are
always Isoharniftonian in the same coordinates, that is, there exisls a nelghbdrhood
Niri) of a point nii of their variable b = (%, P} under which Eq.s (35) hold.

Proof. Let B} be a vector field which is nonhamiitonian in the chart 6,
and consider the decomposition

Kb} = ¥} X0, (3.6)
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where the 2nx2n matrix (V) is nowhere degenerate and X, is the maximal, local-
differential and Harmniltonian sub-vector field, i.p., there exists a function H(b) and a
neighborhood Nim) of a point m of b = (x, p) such that

wgp KPm) db? = gHfm) = (8 H /2 b%) ab", (81

and ali nonlocal-integral and nonhamiltonian terms are embedded in I. Then, there
always exists an isotopy such that

iy R0) BB = 03 L) R o) 6 =
= gflm = (an/aﬁ#)aﬂw'rn?amanﬂ)aw. {3.8)

In fact, the script ®* is only a unified formulation in 2n dimenston of two
separate terms each in n~dimension. Therefore, the quantity [ has the structure

A 0 _
r= ( v e ) : (39)
Onm Bl’l"“l’l
The identification -
_ o
1~( - ) 3.10)
c’n“n R n*n
then implies
Powy ¥ = g, (3.11)

and identities (3.8) always exist. q.e.d.

Coroliary 3.1.A: For all Newtonian systems we have A = B, e , the 2n-
dimensional fsounit of the cotangent isobundle has structure {3.2).

Proof, All Newtonian systems in the 2n-dimensional, first-order, vector
field form can be written in disjint n-component

dx/dt) ( - pfm ) '
: = = Ro)= () - 812
( dp/dt FSA & pISA
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where SA {NSA) stands for variational selfadjointness (nonselfadjointness), i.e., the

integrability conditions for the existence (lack of existence} of a Hamiltonian. Thus

F5A = - gH/ox, with H = p%2m + V(x), while there is no such Hamiltonian for F¥54,
Then, isohamiltonian representation (3.8) explicitly reads

(") (arma )= (o) o))
Sy ()

Ap/m /o AaH/8p

From which we have the general solution
P =B = 1+FNSAFSA = 471 =7 314

where the last identity follow from the fact that, since 8H/8p = p/m, A remains
arbitrary and can be therefore assumed to be A =B}, qee.d.

The above results confirm, this time on independent geometric grounds, the
corresponding results achifeved in Sect. 2 on analytic grounds, thus confirming the
overall unity of isotopic methods. '

It is now important to verify that the above geometric isotopies do indeed
preserve the remaining axiomatic properties of the symplectic geometry. For this it
is sufficient to prove the preservation under isotopies of the Poincaré Lemama and
of Darboux’s Theorem {1,20,30]. '

To prove the preservation of the Poincaré Lemma one can easily construct
isoforms 69 of arbitrary order p. The proof of the foilowing property is a simple
isotopy of the conventional proof (see, e.g., [20] via the use of the isodifferential
calculus.

Lemms 3.1 (Isopoincare” Lemma): Under the assumed smoothness and
regularity conditions, Isoexact p-isoforms are isoclosed, ie, .

b, = (A} = 0. (3.15)

The nontriviality of the above result is tifustrated by the following
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Corollary 3,1,A: [soexact p-isoform are not necessarily closed, ie., their
projection in the original tangent bundle does not necessarily verify the Poincaré
Lemma.

By comparison, we should mention that the original formulation of the
jsopoincare lemma [32,37], that via the isotopic degrees of freedom of the product,
did verify the Poincaré lemma in both the conventional and isotoplc bundle.

To prove the preservation of the Darboux’s Theorem [9], consider the
general one—isoform in the local chart b

olb) = R,(br Ak = Ru(b')’tzuu(t. b, db/dt, ..) db”, {3.16)
where ‘
R = (Px D) Q& P). (3.17)

The general isosymplectic isoexact two-isoform in the same chart is then
given by

(B = $a(RMab”) =40, & 6 ab/dL, ) 36" A DY,

oR, R, aR, aR,,
= — - = . a - 1.2 ) (3.18}
O S F A pa ¥

One can see that, while at the canonical level the exact two—form w and its isotopic
extension @ formally coincide, this is no longer the case for exact, but arbitrary
two forms (2 and £ in the same local chart. .

Note that the isoform {1 is isoexact, () = d6, and therefore isoclosed, 9() = 0
(Lemma 2.1), in isospace over the isofield R. However, if the same isoform {1 is
projected in ordinary space and called Q, it is no longer necessarily exact, 1 # do
and, therefore, it is not generally closed, dt1 = 0.

Recall that the Poincaré Lemma d0 = ¢{d6) = ¢ for the case of Birkhoffian
two~form € (Sect. 2.4} provides the necessary and sufficient conditions for the
tensor O =1{(11,,)7"}¥ to be Lie [29]. It is easy to prove that this basic property
persists under isotopy, although it characterizes the broader Lie—Santilli isotheory
{Sect. 1.9). We therefore have the following

Lemma 3.2 (General Lie-Santilll Brackets): Let Olf) = 36 = d(R,30%) =
0, A0"A0" be a general exact two-isoform. Then the brackels among
sufficiently smooth and regular isofunctions Alb) and B(b) on T,"M(E}
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1Y o8
v

{A'B}Isot.s A Ty B *

o =_[ (%— - %--)—l ]w . ‘(3.19)

68 ab®

satisfy the Lie-Santilli axioms (Sect. 1.9) in Isospace (but not necessarily the same
axioms when projected In ordinary spaces).

The above theorem establishes that the Isosymplectic geometry s Indeed
the geometry underiying the Lie-Santilll isotheory, as discussed in more details in
the accompanying paper by Kadeisvili [16]. In particular, the isocanonical two-~
isoform characterizes the isocanonical realization of the Lie-Santilli brackets, Eq.s
(2.64), while brackets (3.19) are the most general possible ones.

Even though We cannot use Darboux’s theorem in practical applications for
the reasons indicated in Sects 24 and 3.1, it is nevertheless important for
completeness to prove that it admits a simple yet significant isotoptes.

Theorem 3.2 (Isodarboux Theorem): 4 2n-dimensional cotangent isobundle
T,*M(E) equipped with a nowhere degenerate, exact, C two-isoform @ in the
focal chart § Is an Isosymplectic manifold if and only if there exist coordinate
transformations b — B’ (B) under which O reduces to the tsocanonical two-

isoform @, ie,

Ly
T

= Wga - (3.20)

Proof. Suppose that the transformation b — &{b) occurs via the following
intermediate transform b — 5”(6) = H{b"(b)). Then there always exists a transform b
— B such that

(P /359 (6) = 1P, 6067, - (3.21)

under which the general isosymplectic tensor ﬂm, reduces to the Birkhoffian form
when recompute in the b chart
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» (B(6) il ( L T (3.22)
1) = - = (] . 322
b @ qu aprB b ab* ab¥ | & “ e

The existence of a second transform §” — B’ reducing Qgp to wyg is then known to
exist (see, e.g., [30]). This proves the necessity of the isodarboux transform. The
sufficiency is proved as in the conventional case [20]. q.e.d.

The nonlinear, nonlocal and noncanonical character of the isotopies is

evident from the preceding analysis. It is important to point out that linearity is -

reconstructed in isospace and called fsofinearity, as shown in Eg. (3.1). Locality is
equally reconstructed in isospace, and called isolocality, because one~ and two-
isoforms are based on the local isodifferentials d% and dp. Similarly, canonicity is
reconstructed in isospace, and called isocanonicity as shown in Sect. 2.4 (see, eg.,
isoaction principle of Sect. 2.4 which is precisely isocanonical).

The isotopies of the remaining aspects of the symplectic geometry (Lie
derivative, global treatment, symplectic group, etc.) can be constructed along the
preceding lines and are omitted for brevity. The isosymplectic geometry is also
expected to admit a genotopic and hyperstructural extension, aithough they are not
studied in this paper for brevity (for an initial formulation of the genosymplectic
geometry, see (29], Ch. 7).

On closing we should mention that the preceding formulation of the
isosymplectic geometry is solely restricted for the representation of matter. The
characterization of antimatter is made via the antiautomorphic isodual map 1, —
‘!2" = -1,. This results in the isodual isesymplectic geometry which s
characterized by fsodual coordinates 6% isodual isodifferentials %Y, isodual
one-isoforms Y09, isodual two-isoforms &% isodual cotangent isobundie
T*MULY), and simitar isodualities whose explicit construction is left to the interested
reader for brevity.

in closing, we mention that the isosympiectic quantization were first
studied by Lin [t8] via the early formulation of the symplectic geometry. The same
quantization via the isosymplectic geometry of this section is remarkable inasrnuch
as it leaves the formulation of the conventional symplectic quantization
completely unchanged, and merely introduces broader realizations via the lifting
of the unit h = | into the isounit 1, of the differential dx tnto the {sodifferentials dx,
and of the canonical two-form w into the isocanonical two~isoform @, with the
understanding that at the abstract level h =1, dx = 8% w = @ and all differences
cease to exist. Yet, the isotopy is nontrivial because the the emerging new operator
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theory, the hadronic mechanics of Sect. 2.5, is related to the conventional quantum
mechanics via a nonunitary transform (38].

3.2. Isoriemannian geometry. The isotopies of the Riemannian geomelry,
or isoriemannian geometry for short, were submitted for the first time by Santilli
in memoir [33] of 1988 via the tsotopic degrees of freedom of the product. In this
section we present, apparently for the first time, the isoriemannian geometry
constructed via the isodifferential calcufus of Sect. 1.5. As we shall see, the latter
formulation is more conducive to a single, unified, abstract formulation of the
conventional and isorlemannian geometries, thus permitting a unified treatment of
the exterior and Interior problems.

Our study is in local coordinates representing the fixed frame of the
observer. All abstract, coordinate-free treatments are left to the interested

" mathematician. For the conventional geometry we assume all topological properties

of Lovelock and Rund [20] of which we preserve the symbols for clarity in the
comparison of the results. For the isotopic geometry we assurme the topological
properties by Tsagas and Sourlas [44,45] as outlined of Pef. 1.6. Our presentation is
made, specifically, for the (3+1)-dimensional space-time, with the understanding
that the extension to arbitrary dimensions and signatures is elementary. For clarity
we shall first study the isorlemannian geometry of Class [ for the characterization
of matter and then study its isodual image {Class 1I) for the characterization of
antirnatter.

Let # = Alx,g,R)} be a {3+ )-dimensional Riemannian space over the reals
Rin,+) [20] with: local coordinates x = {x*) = [r, x¥), x¥ = c,t, 1L = 1, 2, 3, 4, where c, is
the speed of light in vacuum; nowhere singular, symmetric and real-valued metric
gh) = (g,,,) = g' and tangent Minkowski space Mxn.R) with metric n = diag. i1
-1} over the reals R. Let the interval be written in the familiar expression X2 =
xg, bk € R with infinitesimal line element ds? = dxMg,(Xidx" and related
formalism (covariant derivative, Christoffel’s symbols, etc. [20].

Let # = (% 8R) be the isoriemannian space of Definition 1.2 with local
coordinates % = [#) = {x")} and isometric gx, v, a, i, T, .} = T(x, v, a, . 7, .. )g(x),
where T = (Tu”) is 2 nowhere singular, real valued and symmetric matrix of Class !
with C® elements. The isospace $t is defined over the isoreals R = R(fi,+%) with
common isounit1 = ") = T-1. We then have the isoline element

2= [k nanT R X eR, (323)

with infinitesimai version 852 = (3%% g, 3% )x1e k.
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The isonormal coordinates y occur when the isometric g is reduced, nof to
the Minkowski metric m, but rather to its isotopic image, i.e, g~ 7 = Tn and, as
such, they are the conventional normal coordinates (principle of isoequivalence
[38]). In different terms, the correct tangent space is not the conventional space
Mix,nR), but the isominkowskian space M(x,R) characterized by the same sounit
and isotopic element of A(%,g.R), that is, with the isominkowskian metric i} = Tn,
where T is the same as in the isoriemannian metric g = Tg. Under these conditions,
the tsonormal coordinates reduce the g-component in § = Tg to the T—component
of §j = Tn and this illustrates that isonormal coordinates coincide with the
conventional normat coordinates.

To have an idea of the possible appiications, we mention that the isounits of

Class I can always be diagonalized, thus expressed in the form
T = diag. (2 ny %080 A, 0y >0,m=1,234 (3.24)

As such, the above isounits permit the achievement of the central geometric
objective of Sect. 3.I: the geometrization of a locally varying speed of light ¢ =
¢/ Ny within physical media, which occurs via the fourth component of the isoline
element ’

Fax =ttt Jdet, c=c/nfp 1.0, (325

where g4, is the ordinary metric element and n, is the familiar index of refraction.

The general isotopic rule g = Tg then permits the lifting into interior
conditions of any given exterior metric, such as Schwarzschild’s metric {41l Note
that the latter metric can only represent the constant speed ¢, and this illustrates
the effectiveness of the isotopies for the geometric study of interior problems.

The representation of locally varying speeds of light technically occurs via
the isolight cone [3537) 38 = 8x#g,,,8%" = 0 which is the image in isospace of the
deformation of the light cone in the tangent Minkowski space caused by variable
speeds. It has been proved that the isolight cone is a perfect cone in isospace and,
moreover, that the characteristic angles of the conventional and isolight cones
coincides (see ref. [30], Ch. 8 for details). In other words, the isotopies reconstruct
the speed of light in vacuum as the maximal causal speed in isospaces over
isofields, thus preserving all Einsteinian axioms In their entirety.

The Iatter resuft is not a mere mathematical curiosity because it is
important for specific applications, such as the correct calculations of gravitational
horizons. In Tact, the region outside these horizons is not empty, but filled up
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instead by very large and dense chromospheres. It is well known that within these
chromospheres the speed of light is locally varying with the density y, temperature
T, elc, thus preventing the exact validity of the conventional light cone. The use of
the isolight cone then permits more realistic studies of gravitational horizons
because, while in isospace the maximal speed is c, the speed of light in its
projection in the conventional space-time is the actual speed ¢ = c/nlx, i, T, ...
Note that the conventional exterior geometrization in vacuum with constant
speed of light c, is a particular case of the isorlemannian geometry occurring for 1
= . This ittustrates the covering character of the isorlemannian geometry over the

conventional form,

In the first formulation of the {soriemannian geometry [33], differentials of
contravariant isovector fields X° on # where defined by df = (@R%d% = (3,%)
TR # dX = (9, X)ix#, 8, = 8/ax* The isodifferential calculus allows us to

introduce the following alternative definition
A%P =(3, BIAH =T,P (3, RV, 07 = (g, RO i = (0% R gy, 0P, (326)

where the last expression is introduce to recall that the contractions are in isospace.
The preceding expression then shows that isodifferentials of isovector fields
coinicide at the abstract level with conventional differential of vector fields for ail

Class I isotopies.
The isocovariant differential can be defined by
D8P = 2%k + f’aﬁy £o XY, (3.21)
with corresponding isocovariant derlvative
= B qu
%, = 3,8+ 15 10, (3.28)
where the isochristoffel’s symbols are given by
Pagy = 4%y * Oy Bop ~ Fplay) = g
Py = B0y = NP, 8% 7 UE, TP, (3.29)

One should note the abstract identity of the conventional and Class [ isotoplc
connections. The extension to covariant isovector flelds and covariant or
contravariant isotensor fields is consequential (see [45]).
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The isotopy of the proof of [20}, pap. 8081, yields to the following:

Lemma 3.3 (Isoricci Lemma): Under the assumed conditions, the Isocovariant
derivatives of all isometrics on isoriemannian spaces are identically nuli,

faa1y = 0, a,Bv=1234. {3.30)

The novelty of the isoriemannian geometry is then illustrated by the fact.
that the Ricci property persists under an arbitrary dependence of the metric.

Despite the similarities with the conventional case, the lack of equivalence
of the Riemannian and isortemannian geometries can be illustrated via the
isotorsion {33]

L S (3.31)
which is identically null for the isoriemannian geometry here considered, but its
projection in the original space % is not necessarily null. Interfor gravitational
models treated with the isoriemannian geometry are therefore theories with null
Isotorsion but generally non—nufl torsion. This property is needed for a realistic
treatment of interior problems to avoid excessive approximation such as the tacit
assumption of the existence of the "perpetual motion” within a physical medium
which is implied by interior theories with null torston.

The occurrence also illustrates the property, verified at subsequent levels
later on, that departures from conventional geometric properties must be studied in
the projection of isoriemannian spaces in the original spaces because, when treated
in their respective spaces, the two geometries coincide. Stated in different terms,
when using the conventional Riemannian geometry, exterior gravitation can only be
studied in the spaces . On the contrary, when using the isoriemannian geometry,
interfor gravitation can be studies in two different spaces, the isoriemannian

spaces # and their projection into .
Another way of identifying the differences between the Riemannian and

isorlemannian geometries is by considering the following isogeodesic equations

Dixy dvy . ax*  ggv .
— = {%, ¥, 3,.J) — =9, (3.32)
D5 a’é i GG G

where ¥ = d%/88 = 1xdx/ds, 3 is the proper isottme and 1  the related (one-
dimensional) isounit. The preceding equations must then be compared with the

B
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conventional equations

Dy vy dx®  dxY
— + Fogyl) = 0. {3.33)
Ds ds ds ds

It is evident that the latter equations are at most quadratic in the velocities
while the isotopic equations are arbitrarily nonlinear in the velocities, as it occurs
already in a flat space (Sect. 2.5). Also, the latter equations are local-differential and
varfationally selfadjoint while the former admit nonlocal-integral terms and are
variationally nonselfadjoint in R although isoselfadjoint in H.

We now introduce: the isocurvature tensor

- a‘f raBB + Fpss 1“a;' f‘ B Tl (3.34)

EO.B Rﬂﬂ; the

Rcr.ByB = 3% raB'r

the isorfcci tensor Ry, = P .o+ the isocurvature isoscalar R
isoeinstein tensor G, = Ry, - 38, R; and the isotopic isoscalar
8= g% (F 0510 BFfs) = P P (03P - 38 8) (3.39)

the latter one being new for the isoriemannian geometry (see below).
Tedious but simple calculations then yield the following five basic identities

of the isoriemannian geometry:
Identity 1: Antisymmetry of the last two mdices of the Isocurvature tensor
Rbys = RoPyys (3.36)
Identity 2: Symmetry of the first two indices of the isocurvature tensor

Raa-ya = Rﬁa‘y& H (337)

Identity 3: Yanishing of the totally antisymmetric part of the isocurvature

tensor
RGBYS * RVBBa * R&Bay =0; (3.38)
Identity 4: Isoblanchi identity
Blrste * Rloyrs * Rty = 06 (3.39)
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Identity 5: Isofreud identity
R% - $8%R - 18%6 = 0% + 3, V%, {3.40)
where & is the isotopic iscscalar and

0a ) 36 a8
B =" 7 T &8
%% 1a

V@B = i[gys(San‘apa -Spﬁf‘.rpsﬂ

+(8 3T - 8% BPYIE B + BV, - B LR (3.41)

A curiosity is that the conventional Riemannian geometry is generally
thought to possess only four identities. In fact, the fifth identity, given in the
above list by the Freud identity, is generally unknown in the contemporary
technical literature in the field.

The latter identity was introduced by Freud {11] in 1939, treated in detail by
Pauli [26] and then generally forgotten for a half a century, apparently, because of a
conflict between the lack of source of Einstein’s field equations in vacuum, R“ﬂ -
%8“5 R = 0, and the evident need of a source in vacuum for the Freud identity, R“B
-38%R -18% 0 = U% + 3, V%, (here written in a conventional space, see {39]
for details).

Following a suggestion by the author, Rund [27] studied again the identity
and proved that the Freud identity is a bona fide identity for all Rlemannian spaces
irrespective of dimension and signature, thus confirming the general need of a
source also in vacuum {see below). In this paper we have presented the isofopies
of the Freud identity, that is, its formulation in isoriemannian spaces, as
characterized by the isodifferential calculus.

Note that all conventional and isotopic identities coincide at the abstract
level. This confirms that the conventional and isotopic geometries {exterior and
interior problems} can be treated at the abstract, realization—-Tree level via one
single set of axioms, as desired (Sect. 3.1), in which both the exterior and interior
formulations are realizations of the same axioms.

The isotopy of the proof of the Theorem of (20}, p. 321, leads to the following
property first identified in 1988 33 (see also [38]) and which is here recovered via
the isodifferential calculus.
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Theorem 3.3 (Fundamental Theorem for Interior Gravitation of Matter):
Under the assumed regularity and continuity conditions, the most general possible
isolagrange equations £98 = 0 of Class I along an actual path P, on a (3+1-
dimensional isoriemannian space for the characterization of the inlerior
gravitational problem of matter satisfying the properties: 1) Symmetry condition,
£oP = P9 2) Contracted isobianchi identfly, %, = 0;and 3 The isofreud
identity; are given by

£eB = o (R - 13PR - 157 6) +pg® -~ gip® =0, (342

where: §'= (det 22 a and B are constants; and D™ is a source tensor. For a = |
and p=0 the interior isogravitation field equations can be written

RoB - 3B - 3 3B O =198 - B = 0% + 3, V%, {343
where 1% is a source tensor and T is a stress—energy tensor.

Note the appearance in Eq.s (3.43) of the isotopic isoscalar & in the Lhs and
of source terms in the r.hs, both originating from the isofreud identity. Additional
studies not reported here for brevity (see (38}, Ch. 9) have shown that the tensor 1%
is nowhere null, of first order in magnitude and given by the electromagnetic
tensor originating the mass of the elementary particles which constitute the body
considered. Therefore, the isotopies permit the ~identification” of the gravitational
and efectromagnetic fields in the exterior problem by eliminating the need of their
~unification” {in the interior problem there are additional contributions from short
range interactions) [38].

Also, the isotopic formulation of the interior probiem permits a theory on
the “origin” of the gravitational field, rather than its "description”, in which all
mass terms are replaced by the fields which originate the same at the particle level,
This establishes the need of a source also for the field equations in vacuum, exactly
as requested by the exterior Freud identity R% - 48%R - 18%0 = U+ ¥y =
18 — 798 | which therefore emerges as the exterior limit of interior equations (3.43)
[loc. cit]

Equivalently, it has been proved that the equations R%; - 48%R = 0 are
incompatible with the primary, well established, electromagnetic origin of the mass
of elementary particles, and are afflicted by other problematic aspects, such as:
lack of weight in the refativistic description of particles in tangent Minkowski
space; problematic aspects in the relativistic limit of conservation laws; lack of
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uniqueness in the PPN approximation with consequenttal serious ambiguities in the
interpretation of experimental data; and others. These problematic aspects are
apparently resolved by the above isotopic theory on the "origin” of the gravitational
field based on the Freud identity and its exterior limit in vacuum [33].

We should finally note that the isotopic scalar is written in the Lhs, rather
than in the r.h.s. of the field equations because of geometric problems with
Einstein's tensor G, = R“ - 48%R {tack of preservation of the Ricci Lemma under
isotopies), which are resolved by the tensor 8,,, = R% - #8%R - 4590 (see 38}, Ch. §
for details).

Theorem 3.3 applies, specifically and solely, for the characterization of
matter, The corresponding representation of antimatter can be obtained via the
antiautomorphic map called {isoduality) 1 > 0 =19 = -1 <0 of the entire formalism,
including the basic unit, numbers, spaces, etc. This results in the isodual
Isortemannian geometry, that of Class Il, which is characterized by isodual isoreal
isoffelds RYAS+3Y), isodual isoriemannian spaces RYRIFIRY, isodual curvature
tensor R%,,, isodual curvature scalar RY, Isodual isotopic scaler €, etc., whose
study is omitted for brevity {see {16b} for all details).

The above isodual formulation essentially implies that all conventionally
positive quantities change sign under isoduality, including the energy-momentum
tensor, curvature, etc., although these negative quantities are now referred to a
negative unit. In this way, the gravitational treatment of antimatter is brought in
line with the particle treatment, that is, the characterization of antiparticies as
historically discovered, that via negative energy, which now holds at all levels of
study.

A first result is that antimatter-antimatter have a gravitational "attraction”
equivalent to that of matter—matter systems because a negative curvature
referred to a negative unit 19 is fully equivalent to a positive curvature referred
to the positive unit 1.

However the isodual theory predicts that matter-antimatter and
antimatter-matter systems experience a gravitational “repulsion”, because in this
case we have the projection of one system in the corresponding isodual space,
resulting in negative curvature referred to a positive unit, or viceversa, which
represents repulsion (see {38] for detatls and proposed experimental verifications).

An isovector field XF on # is said to be transported by isoparallel
displacement from a point M onacurveConfitoa neighboring point niv{x + Q%)
onCif

DR =A%+ 1P R2axY = 0. ' (3.44)
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or in integrated form
w ) G T
F: Tl

) - L = [ 8. (3.45)

where one should note the isotopic character of the integration. The isotopy of the
conventional case [20] then yield the following:

Lemma 3.4: Necessary and sufficient conditions for the existence of an isoparaliel
transport along a curve C on a (3+1}-dimensional isoriemannian space are that all
the following conditions are identically verified along C

Raﬁ'yﬂxa=0- Bv,8 =1234. {3.46)

Note, again, the abstract identity of the conventional and isotopic parallel
transport. However, it is easy to see that the projection of the isoparatlel transport
in the conventionat space ® is structurally different than the conventional parallel -
transport. [n particular, if the latter is represented by an arrow, one would note a
twisting action as occurring in the reality of motion within physical media, which
is evidently absent in the exterior case.

Along similar lines, we say that a smooth path X on R with isotangent Vg =
8% ,/35 is an isogeodesic when it is solution of the isodifferential equations

Dk, & B A
Xa - Vﬂ N F X

_* (3.47)
05 & T n ®»

0
(=]

It is easy to prove the following:

Lemma 3.5: The Isogeodesics of an isoriemannian space f are the curves
verifying the isovariational principle

B[ ok 00w ) BEBPI2 = 0 (348)

where again isointegration is understood.

Finally, we point out the property which is inherent in the notion of
isotopies as realized in this paper according to which geodesic frajectories in
ordinary space coincide with the corresponding isogeodesic trafectories in



78 RUGGERQ MARIA SANTILLE

isospace. For instance, if a circle is originally a geodesic, its image under isotopy in
isospace remains the perfect circle, the isocircle {Sect. 1.3}, even though its
projection in the original space is an ellipse. The same preservation in isospace
occurs for all other curves.

The differences between a geodesic and an isogeodesic therefore emerge
only when projecting the latter in the space of the former.

An empirical but conceptually effective rule is that interior physical media
“disappear” under their isoriemannian geometrization, in the sense that actual
trajectories under resistive forces due to physical medta {which are not geodesics of
a Riemannian space) are turned into isogeodesics in isospace with the shape of the
geodesics in the absence of resistive forces.

It should be also noted that the isoriemannian geometry is a particular case
of the broader genoriemannian geometry over genofields of Sect. 1.2 [371. The
latter is intriguing inasmuch as it establishes that the abstract axioms of the
Riemannian geometry do not require the metric to be necessarily symmetric. In
fact, the same axiors permit a nonsymmetric metrics > = Tg, provided that the
nonsymmetric component T is totally represented by the underlying isounit, 17 =
(e

The genoriemannian geometry is particularly suited to represent
irreversibility, in which case the ordering to the right represents motion forward
in time and that to the left motion backward in time. The difference 1> # < then
assures an axiomatic representation of irreversibility, that is, a representation via
the geometry itself which remains irreversible even for fully reversible Lagrangians
{see [37,33] for detals and applications).

Finally, we should mention that, in turn, the genoriemannian geometry is
expected to be a particular case of the still broader hyperiemannian geometry on
the hyperfields of Sect. 2.2, although no study has been done on the latter geometry
at this writing.

In summary, a basic question raised in this section is: why use in interior
problems the Riemannian geometry with metric glx} when the same axioms
permit metrics g, ¥, 3, ..) with an unrestricted functional dependence in the

velocities and other variables 7 Equivalently, we can ask the question: why use the
simplest possible realization of the Riemanmian axioms when a structurally more
general realization exists for a more adequate representation of interior problems?
still equivalently, why use geometries implying the sole constancy of the speed of
light when the same axioms in a more general realization geometrize focally
varying speed of light as occurring In the physical reality ?
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Lie’s theory in ifs current formulation is linear, local and canonical. As such, it s
inapplicable to a growing number of nonlinear, nonlocal and noncanonical systems in
varlous fields. In this paper we review and develop a generalization of Lie’s theory proposed
by the physicist R. M. Santilli in the late 1970’ then at Harvard University and today called
Lie-Santilli fsotopic theory or isotheory for short. The latter theory i3 based on the s0—
called isotopies which are nonlinear, nonlocal and noncanonical maps of any given inear,
local and canonlcal theory capable of reconstructing linearity, locality and canonicity in
certain ‘generalized spaces and fields. The emerging Lie-Santilll isatheory is remarkable
because It preserves the abstract axioms of Lie's theory while being applicable to nonlinear,
nonlocal and noncanonical systems. We review the foundations of the Lie-Santliii
{soenvelopes, isoalgebras, Isogroups and isorepresentation theary; we introduce seemingly
novel advances in their structure and interconnections; and we show that the Lie-Santi!li
fsotheory provides the invarfance of all infinitely possible, signature-preserving, nonlinear,
nonlocal and noncanenical deformations of conventiona! Euclidean, Minkowsklan or
Riemannian Invariants, We finally indicate a number of applications and identify rather
intriguing open mathematical problems.

1. Introduction

1.A. Limitations of Lie’s theory. As it is well known, Lie’s theory has
permitted outstanding achievements in various disciplines. Nevertheless, In its

traditional conception {30] and realization (see, eg. [15D, Lie’s theory is finear, local-
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differential and canonical-Hamiltonian. As such, it possesses clear limitations.

An illustration is provided by the historical distinction introduced by
Lagrange [29], Hamilton [14] and other founders of analytic dynamics between the
exterior dynamical problems in vacuum and the interior dynamical problems
within physical media. Exterior problems consist of particles which can be
effectively approximated as being point-like while moving within the homogeneous
and {sotropic vacuum under action—at-a—distance interactions (such as a space-ship
in a stationary orbit aroynd Earth). The point-like character of particles permits
the exact validity of conventional local-differential topologies {e.g., the Zeeman
topology in spectal relativity) the homogeneity and isotropy of space then allow the
exact validity of the geometries underlying Lie’s theory (such as the symplectic
geometryk and the action-at-a—distance interactions assures their representation
via a potential with consequential canonical character.

Interior problems consist instead of extended, nonspherical and deformable
particles moving within inhomogeneous and anisotropic physical media, with
action—-at-a—distance as well as contact-resistive interactions {such as a space-ship
during re—entry in Earth’s atmosphere). In the latter case the forces are of local-
differential type {e.g., potential forces acting on the center-of-mass) as well as of
nonlocal-integral type (e.g., requiring an integral over the surface of the body), thus
rendering inapplicable conventional local-differential topologies; the inhomogeneity
and anisotropy of the medium imply the inapplicability of conventional geometries
for their quantitative treatment; while contact-resistive interactions violate
Helmholtz’s conditions for the existence of a potential {the cenditions of
variational selfadjointness [109]), thus implying the noncanonical character of
interfor systems.

We can therefore say that Lie’s theory in its conventional linear, local and
canenical formulation is exactly valid for all exterior dynamical problems, while it
is inapplicable (and not "violated”) for the more general interior dynamical
problems on topological, geometrical, analytic and other grounds.

L.B. The need for a sultable generalization of Lle’s theory. Lie’s theory is
currently applied to nontinear, nonlocal and noncanonical systems via their
stmplifications into more treatable forms, e.g., via the expansion of nonlocal-
integral terms into power series in the velocities and then the transformation of the
system into a coordinate frame in which it admits a Hamtiltonian via the Lie-
Koening or the Darboux Theorems [110}.

_ However, however, nonlinear, nonlocal and nonhamiltonian systems cannot
be consistently reduced or transformed into linear, local and Hamiltonian ones. An
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illustration exists in gravitation. The distinction between exterior and interior
gravitational problems was in full use in the early part of this century (see, eg.,
Schwarzschild’s two papers, the first celebrated paper [119] on the exterior problem
and the second little known paper (1201 on the interior problem). The same
distinction was also kept in early well written treatises in the field (see, e.g., 4], [38D.
The distinction was then progressively abandoned up to the current treatment of
all gravitational problems, whether interior or exterior, via the same local-
differential Riemannian geomelry.

The above trend is based on the belief that interior dynamical problems
within physical media can be effectively reduced to a collection of exterior
problems in vacuum {e.g., the reduction of a space-ship during re-entry in our
atmosphere to its elementary constituents moving in vacuum).

It is important for this paper to know that the exterior and interior
problems are inequivalent, and the fatter is not exactly reducible to the former.
The inequivalence is established by the fact that the exterior problem is local~
differential and varfational selfadjoint 109, while the Interior problem Is
nonlocai~integral and variationally nonselfadjoint [toc. cit.l This establishes the
inequivalence on: topological grounds (because the conventional topologles are
inapplicable to nonlocal conditions); anatytic grounds {because of the lack of a
first-order Lagrangian); geometric grounds (because of the inapplicability of
conventional geometries to characterize, say, locally varying speeds of light and
other grounds (see monograph [116] for comprehensive studies).

The irreducibility of the interior to the exterior problem is established by
the so-called No-Reduction Theorems {65] which prohibit the reduction of a
macroscopic interior system (such as a satellite during re-entry) with a
monotonically decreasing angular momentuim, to a finite collection of elementary
particles each one with 2 conserved angular momentum {see also [116] for
comprehensive studies here omitted for brevity}.

On geometrical grounds, gravitational collapse and other interior
gravitational problems are not composed of ideal points, but instead of a large
number of extended and hyperdense particles (such as protons, neutrons and other
particles) in conditions of total mutual penetration, as well as of compression in
large numbers into small regions of space. This implies the emergence of a
structure which is arbitrarily nontinear {in coordinates and velocities), nonlocal-
integral (in various quantities) and non-hamiltonian {variationally nonselfadjoint).

Additional insufficiencies of the current formulation of Lie's theory as well
as of its underlying geometries and mechanics exist for the characterization of

. antimatter. [n fact, we possess today effective methods for the characterization of
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antimatter only at the operator level via charge conjugation. These roethods do
not have a counterpart at the classical level because charge conjugation is
antiaytomorphic and no corresponding map exists in the classical realization of
Lie's theory, as well as in its underlying carriers spaces, geometries and mechanics.
There is therefore the need of achieving first a consistent antiautomorphic
characterization of antimatter at the classical-astrophysical level, and then at the
Tevel of its elementary constituents.

Similar occurrences have recently emerged in astrophysics,
superconductivity, theoretical biclogy and other disciplines. These occurrences

establish the need for a generalizatiori of the conventiona! Lie theory which s -

directly applicable {i.e., applicable without approximation or transformations) to
nonlinear, integro—differential and variationally nonselfadjoint equations for the
characterization of matter, and then possesses a suitable antiautomorphic map for
the effective characterization of antimatter.

1.C: Santilli’s isotopies and isodualities of Lie’s theory. In a seminal
memoir [52] written in 1978 (see also memoir {53] and paper [54] written in the same
year) when at Harvard University, the theoretical physicist Ruggero Marla Santilli
proposed a step-by-step generalization of the conventional formulation of Lie’s
theory {that is, a generalization of envelopes, algebras, groups, representation
theory, etc.) specifically conceived for nonlinear, integro-differential and
noncanonical systems. The generalized theory was subsequently studied by Santilli
in over one hundred papers, including studies on the structure of the theory and its
applications in various fields (see representative papers [52-108)), and then
additionally studied in ten monographs [108-118. The new formulation of Lie’s
theory which has emerged from these studies is today called the Lie-Santilli
isotopic theory or isotheory for short (see papers [1], (2], (8], [11], [12], [16H23), [25],
(32}, [33], [35H37], (401143, [122-125), independent monographs (3], [24], [3t), [121] and
additional references quoted therein).

A main characteristic of the Lie-Santilli isotheory, which distinguishes it
from other generalizations, Is its isotopic nature intended (from the Greek meaning
of the word) as the capability of preserving the original Lie axioms. More
_ specifically, Santilli’s isotopies [52}-54] are today referred to maps of any given
Hinear, local and canonical structure into its most general possible nonlinear,
nonlocal and noncanonical forms which are capable of reconstructing linearity,
Iocality and canonicity in certain generalized isospaces and isoffelds within the
fixed inertial coordinates of the observer.

These properties are remarkable, mathematically and physically, inasmuch
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as they permit the preservation of the abstract Lie theory and the transition from
exterior to interior problems via a more general realization of the same theory. We
assume the reader is aware of the array of novel problems raised by the above
definition of isotopies, such as the representation of nonhamiltonian vector fields
in the coordinates of the observer without parboux’s transformations to an
equivalent Hamiltonian form, because the latter, being nonlinear images of the
coordinates of the observer, are not realizable in experiments as well as noninertial
and, as such, are not usable in practical applications {see the preceding article {100]
by Santilli for the solution of this and the other problems connected with the above
definition). :

It should be indicated that Santilii submitted his isotopic theory in memoir
[52) as a particular case of a yet more general theory today called Santillis Lie-
admissible theory or Lie-Santilli genotopic theory, where the term genotopies
was introduced (from its Greek meaning of “inducing configuration”) to denote the
characterization of covering Lie-admissible axioms.

In fact, Santilli initiated his research during his Ph. D. studies in theoretical
physics at the University of Turin, Italy, by introducing in 1967 [47] a new noticn of
Lie-admissibte algeBra with its explicit realization. These early studies in Lie-
admissibility were then continued in papers 149H53), [55H58), and numerous other,
as well as in monographs (111}, {112

In essence the first notion of Lie-admissibility is duye to the American
mathernatician A. A. Albert (see the historical notes of ref. (52D and is referred to a
nonassociative algebra U with elements 2, b, ... and {abstract) product ab whose
attached antisymmetric algebra U, which is the same vector space as U but
equipped with the product [a, bly = ab - ba, Is Lie. As such, the algebra U does not
necessarily contain a Lie algebra in its classification, thus resulting to be

. inapplicable for the construction of mathematical and physical coverings of Lie's

theory. ]
{n fact, Albert was primarily concerned with the requirement that U should

contain Jordan algebras as particular cases, and conducted his studies with the
quasiassoclative algebra with product (a, b) = Aab + {I-Alba, where X is a non-null
scalar, which yield a commutative Jordan algebra for A = { and ab associative, but
which does not admit a Lie algebra under a finite value of A

The second notion of Lie-admissibility was introduced by Santillt in paper
[47] as the preceding definition, plus the condition that the algebra U admits Lie
algebras in thelr classification of, equivalently, that the product ab admits as a
particular case the Lie product. This definition was presented via the realization of
the flexible Lie-admissible algebras with product (a, b) = Aab - ba, where A, p and
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A + p are non-null scalars, under the conditions that [a, bl;=(a, b) ~ (b, a} = (A +
pXab - ba) is Lie, ptus the condition that the product (a, b) admits the Lie product as
particular case. The latter conditions are easily met for A = 1 and ab associative.

To the author’s best knowledge, paper [47] initiated in 1967 the studies in the
so—called "q~deformations” subsequently conducted in the 1980's by a large number
of authors with the simpler produyct (a, b) = ab - qba, A = [, o = ¢ {although papers
in the latter field rarely quote [47]. Santilli also identified in paper [49] of 1969 the
first Lie-admissible structure on record of classical dynamics for dissipative
{s“};sltems. thus iliustrating the physical need of his “want of a Lie algebra content”

Subsequently, in memoirs [52], 53] of 1978, Santilli introduced the realization
of the general Lie~admissible algebra with the product {a, b} = axRxb — bxSxa,
where axR, Rxb, etc. are associative, and R, S, R+S are nonsingular but otherwise
arbitrary operators with scalars values A and |2 as particular cases. He then
discovered that the attached antisymmetric algebras were not conventionally Lie
with the familiar commutator axb - bxa, but were instead characterized by the
product [a, bl = (a, b) - (b, 3) = axTxb ~ bxTxa, T = R + §, which he called Lie~
isotopic {52, [53] This resulted in the third definition of Lie-admissibility, today
called Albert-Santilli Lie-admissibility, which refers to & nonassociative algebra U
which admit Lie-Santilli Isoalgebras both in their attached antisymmetric form U~
as well as in their classification.

Jointly, Santilli identified in the same memoirs a classical [52] and operator
i53] realization of the general Lie-admissible algebras, thus establishing the
foundations of a structural generalization of Lie~-admissible type of analytic and
Guantum mechanics and of their interconnecting map, of which in this paper we
shall merely study the isotopic particuiar case cccurring forR=8=T= T =0,

Albert-Santilli notion of Lie—admisstbility can be corléidered the birth of the
Lie-Santilli isotheory, and can be found in Sect. 3 (particularly Sect. 3.7) of ref. [52}
and in Sect. 4 (particularly Sect. 4.14 } of ref. [53]. In fact, Santilli recognized that the

antisymmetric brackets {a, b}y attached to the nomassociative algebra U with
product (a, b} = axRxb - bxSxa can be identically. rewritten as the antisymmetric
brackets attached to an associative algebra A with product axRxb, {a, bl = [a, bl;.

‘The latter identity signaled the transition from studies within the context of
nonassociative algebras (done by Santiiii until 1978), to genuine studies for the
generalization of Lie’s theory (done from 1978 on), which are based on the lifting of
ti:e assoclative enveloping algebras, from the product axb, to the isotopic product
axb = axTxb,

Santilli then discovered that the quantity t = T~} is indeed the correct left
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and right unit of the isotopic envelope A. The Lie-Santilli isotheory can therefore
be initially conceived as the Image of the conventional theory under the lifting of
the trivial unit 1 of conventional use to a weil behaved but otherwise arbitrary
unit1.

This conception perrnitted Santilli to identify all main fines of the isotheory
already in the original proposal (52, which include: the isotopies of universal
enveloping associative algebras {including the isotopies of the fundamental
Poincaré-Birkhoff-Witt and Baker-Campbell-Hausdorff theorems), the isotopies of
Lie algebras {inctuding the isotopies of the celebrated Lie's first, second and third
theorem); the isotopies of Lie transformations groups; and other isotopies.

The original proposal (52} also included the remnarkable property of the Lie-
Santilli isoalgebra of unifying compact and noncompact simple Lie algebras of the
same dimension (see ref. [52], Definition 3.7.2 on the isotopic envelope characterizing
nonisomorphic Lie algebras with the same basis and changing instead T, and the
isotopic unification of O(21) and O{3) in p. 289). All subsequent developments,
including this presentation, have essentlally been refinements of these foundations
introduced in the original proposal {52], [53] _

By the early 1980's Santilli recognized that the available Lie, Lie-isotopic and
Lie-admissible formulations could only be applied to matter and not to antimatter
for the reasons indicated in Sect. LB. He then reinspected his isotopies and in papers
(62} [63] (written In 1983 but published in 1985 because of quite unreasonable
editorial obstructions by various physics journals reviewed in p. 26 of {62 he
discovered that, once the elementary unit +1 is abandoned in favor of an arbitrary
quantity 1, the latter unit admits in a natural way negative values. He also
discovered that the map 1 > 0 =19 = -1 < 0 i3 antiautomorphic precisely as the
charge conjugation, and called it isoduality in the sense of being a form of duality
which necessarily requires the isotopic generalization of the unit. '

{n the same papers (62}, [63] he reformulated the Lie-isotopic theory for
negative units 1% which iIs today called isodual Lie-Santilli isotheory, and
introduced a number of novel notions, such as isorotational symmeltry O{3) and
its isodual O43) which leave invariant the conventional ellipsoids with positive
semiaxes, and the new isodual ellipsolds with negative semiaxes, respectively. He
then proved the isomorphism ({3} ~ 0(3) (and the anti~isomorphism between 0%3)
and O(3)), thus disproving the rather popular belief that the rotational symmetry is
broken for the elltpsoldical deformations of the sphere {which is correct only under
the assumption of realizing Lie's theory in its simplest concetvable form, but

incorrect otherwise, as illustrated In Sect. 3E).
Despite these advances and as admitted in private communications, Santilli
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abstained from indicating in papers (62}, 163] the applicability of the isodua! theory
for the characterization of antimatter because of its rather deep implications such
as a causal motion backward in time, the prediction of antigravity for antiparticles
in the field of matter, and others.

After due studles, the above reservation were resolved, and Santilli first
applied his isodual theory for the characterization of antimatter in monographs
{113}, f114] of 199i. The equivalence between isoduality and charge conjugation was
first proved in paper [84] of 1994. Some of the far reaching implications of
isoduality were studied in papers [86], [87] of the same year. The first comprehensive

treatment of isoduality appeared in the 1994 edition of monograph (116l The

mathematical and physical studies based on Isoduality are now rapidly expanding.

The culmination of Santilli’s isotopies and Isodualities can be seen in the
emergence of new notions of space-time and internal symmetries for matter, and
their isodual for antimatter which, in turn, culminate in the isotopies and
isodualities of the Poincare symmetry, first proposed by Santilli in paper [59] of 1983
{see paper [79] of 1993 for the latest comprehensive study including its isospinorial
covering). The isotoptes of the SU(3) symmetry were first studied in paper [34] of
1984 and those of the quark theory in paper [90] of 1995,

The new space-time isosymmetries imply corresponding new classical and
quantum mechanics and have far reaching implications, such as: the first exact—
numerical representation of the magnetic moment of the deuteron [85] {which has
escaped quantum mechanics for three quarters of a century despite all possible
relativistic and tensorial corrections) the first exact-numerical representation of
the synthesis of the neutron inside new stars from protons and electrons only [95]
(which cannot be treated quantitatively by quantum mechanics and quark theories);
the consequential prediction of a new source of clean, subnuclear energy called
"hadronic energy” [88] (all predictive capacities for new energies based on the
conventional Poincaré symmetry were exhausted during the first half of this
century} and other novel applications, verifications and predictions [£16], [118].

In view of the above advances, Santilli received various honors, including
the Nomination in 1983 by the Estonia Academy of Sciences among the most
fllustrious applied mathematicians of all times, jointly with Gauss, Hamilton, Cayley,
Lie, Frobenius, Poincaré, Cartan, Riemann, and others, the only member of Italian
origin to enter in the list (see the charts of pages 6-7 of ref. [31]. Quite
appropriately, the Nomination lists Santilii's first paper [47] on Lie-admissibility
written at the University of Turin, Italy, from which everything else follows.

This paper Is written by a theoretical physicist for mathematicians and it is
solety devoted to the Lie—Santilli isotheory with a few indication of its isodual. A
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study of the broader Lie-Santilli genotheory is conternplated as a future work. To
avoid un-necessary repetition, all background notions on isotopies are referred to
the preceding article by Santilli {100} in this Journal. Therefore, in Sect. 2 we shall
only indicate certain rudimentary notions. The isotopies and isodualities of Lie's
theory are presented in Sect. 3 jointly with new developments, such as a study of
the transition from isogroups to the corresponding isoalgebras which are permitted
by the recent advanced of paper (100l

As an illustration of the capabilities of the Lie~Santilli isotheory, we review
in Sect.s 3D-3F the "direct universality” of the Poincare—Santilli isosymmetry, that
is, the achievement of the symmetries of all infinitely possible, well behaved,
nonlinear, nonlocal and noncanonical generalization of the minkowsklan line
element {universality), directly in the coordinates of the observer {direct
universality). This universality includes as particular case the symmetry of all
possible gravitational models in {3+1)~dimension with consequential unification of
the special and general relativities and emergence of a novel quantization of gravity
via the unit of relativistic quantum mechanics without any need of a Hamiltonian -
(791 [98]. A number of intriguing open mathematical problems will be identified
during the course of our analysis and in the final section. '

A comprehensive mathematical presentation of the Lie-Santitli isotheory up
to 1992 is available the monograph by Sourlas and Tsagas [121]. A historical
perspective is available in the monograph by Lohmus, Paal and Sorgsepp [31). The
study of continuity properties under isotoples was initiated by Kadeisvili [22] The
first identification of isomanifolds (today called Tsagas-Sourlas isomanifoldd was
done in ref. [122] which is a topological complement of these algebraic studies.

In this paper we can only quote contributions on the generalization of Lie's
theory based on the broadening of the unit and we regret our inability at this time
to quote the rather numerous contributions on different generalization based on
the conventional unit. The author would be grateful to any colleague who cares to
bring to his attention additional relevant lterature for quotation in future works.

2. Elements of Isotopies and Isodualities

2.A: Statement of the problem. Lie's theory is the embodiment of the
virtual entirety of contemporary mathematics by encompassing: the theory of
numbers; differential and extertor catculus; vector and metric spaces; geometry,
algebra and topology; functional analysis; and others. Santilli’s isotopies of Lie's
theory require simple, yet unigue and significant isotopic liftings of all these
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mathematical methods, without any exception known to this author.

The most recent presentation on the isotoples of contemporary
rnathematica! methods is presented in the preceding article by Santilli [100] in this
Journal. To avoid un—necessary repetitions, we shall herein assume the entirety of
the content of paper [100] and refer to it as I, Sect. 1.3 or Eq. (1.3.33). Additional
studies via a different type of isotopies are avallable in monographs {115}, [116] with
numerous applications,

In this section we shall mainly recall the fundamental notions, and refer to
paper [ for all details.

2.B. Isotoples and isodualities of the unit and of related mathematical
structures. The fundamental isotopies from which all others can be uniquely
derived are given by the liftings of the n-dimensional unit T = diag. (1, 1, .., ) of the
current formulation of Lie's theory into a matrix 1 of the same dimension of I, but
with unrestricted functional dependence of its elements in the local coordinates x,
their derivatives with respect to an independent variable of arbitrary order, X, %, ..
as well as any needed additional quantity [52}, 53]

I = 1=Mxx%%.). 20

The isotopies occur when 1 preserves all the topological characteristics of |, such
as nowhere—degeneracy, real-valuedness and positive-definiteness.
Once the unit is generalized, there Is the natural emergence of the map [62],

[63!
T LT (22

called by Santilli isoduality which provides an antiautomorphic image of all
formulations based on 1.

The above liftings were classified by Kadeisvili {22] into:

Class I (generalized units that are sufficiently smooth, bounded, nowhere
degenerate, Hermitean and positive-definite, characterizing the isotopies properly

speaking);
Class I {the same as Class [ although T is negative-definite, characterizing
isodualitiesk -

Class ITI (the unfon of Class [ and I}

Class IV (Class [1] plus singular isounits) and

Class V (Class IV plus unrestricted generalized units, e.g., realized via
discontinuous functions, distributions, lattices, etc.).
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All isotopic structures studied in this paper also admit the same
classification which will be omitted for brevity. Hereon we shall generally study.
isotopies of Classes I and I, at times treated in a unified way via those of Class LIl
whenever no ambiguity arises. Santilli's isotopies of Classes [V and ¥ have not been
studied until now, to our best knowledge.

Lie’s theory is constructed over ordinary fields Fla,+X) hereon assumed to be
of characteristic zero {the fields of real #, complex C and quaternionic numbers Q
with generic elements a, addition aj + ap , multiplication ajag : = aj*ap, additive
unit 0,a+0=0+a=a, and multiplicative unit 1, axl=Ixa=a Va3 a),az¢€F.

The Lie-Santilli isotheory is based on a generatization of the very notion of
numbers and, consequently of fields (see the review in Sect. 1.2.2 of [100], ref. [73}
mathematical studies and monograph [115} for comprehensive treatment).

Consider a Class I lfting of the unit I of F, I -1 with T being outside the
original set,1 £ F. In order for 1 to be the left and right unit of the new theory, it is
necessary to lift the conventional associative fnultipiication ab into the so-called
isomultiplication [52]

ab=axb # asb:=axTxa=aTh, {23)

where the quantity T is fixed and called the isotopic element. Whenever1 =T, 1
is the correct left and right unit of the theory, Tsa = a®l = a, ¥a<€F, in which case
{only) 1 is called the isounit In turn, the liftings I ~+ 1 and % - » tmply the
generalization of fields into the Class I structure .

f = (G495 = al »=xTx1=T""), 24

called Isofields, with elements 3 € F called fsonumbers (73] (in paper [100] the
isoproduct is denoted with the new symbol %, while in this paper we have preserved
the symbol * used in the preceding literature in the field for easiness in the
comparison of the results).

All conventional operations among numbers are evidently generalized in the
transition from numbers to isonumbers. In fact, we have,a+b - a+b = (a+b
)Y; axag — & *ag = 3 Tag=(ajap)h al - 3l = alha/b=¢c -
a’h=¢ a - af = at1}; etc. Thus, conventional squares > = aa have no
meaning under isotopy and must be lifted into the isosquare '3 = 3. The
isonorm is

1al = Ga /21 = |a|1 ef, . 25
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where 3 denote the conventiona! conjugation in F and | a | the conventional norm.
Note that the isonorm is positive-definite for isofields of Class I, and negative~
definite for isofields of Class 1L

The isotopic character of the lifting | -1 is confirmed by the fact that the
isounit 1 verifies all axioms of 1,1¢le.. 41 =1,171 21,1 = 1,etc.

The isodual isofields are the antihomomorphic image of Ma,+2) induced by
the map1 - 19=-1and are given by the Class II structures

£ = (6340939 =310 aspdy Td=-T1,19=-1),  (26)
in which the elements a9 = 719 are called isodual isonumbers. For real numbers we
have nd = -n, for complex numbers we have d= -c, where ¢ is the ordinar
complex conjugate, and for quaternions in matrix representation we have qd = —ql,
where 1 is the Hermitean conjugate.

It is to be observed that the imaginary number i Is isoselfdual, ie,
invariant under isoduality, d== i, and the conjugation of a complex number is
given by {n + pmf = nd + &9 = - o + C-X-m) = -n + im. The isodual
isosum is given by 3% + 63 = (@ + B9, while for the isodual isomultiplication we
have 3 ed i = 30 TIH% = -39 TH% =(2H)14

An important property is that the norm of isodual isofields is negative~
definite,

1adtd = |39 = -1af. 27

The latter property has nontrivial implications. For Instance, it implies that
physical quantities defined on an tsodual isofield, such as time, energy, angular
momentum, etc, are negative—definite. For these reasons, isodual theories provide
a novel and intriguing characterization of antimatter [61).

Note also that, as a necessary condition for isotopies {isodualities) all
fsoffelds Fi(a,+s)} (isodual isofields Fy 18a9+9%) are isomorphic fanttisomorphic) to
the original field Fla,+,%). The reader should be aware that the distinction between
real, complex and quaternionic numbers is lost under isotopies because all possible
numbers are unified by the isoreals owing to the freedom int the generalized ynit
26

As an lllustrative example, the tsounit used by Animalu [i} for the
representation of the Cooper pair in superconductivity is giveri by

3.
tN } &y
le Idx¢1{r‘¢lr). (28

=
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where t represents time, N is a positive real constant, and {4 and $] are the
wavefunctions of the two electrons of the Cooper pair with related orientation of
their spin. Animalu’s isounit (2.8) therefore represents the nonlocal-integral
contributions due to the wave overlapping of the two electrons in the Cooper pairs.

We also recall the still more general genofields [73] at the foundation of
Albert-Santilli Lie-admissibility, characterized first by an isotopy of conventional
fields, and then by the differentiation of the isomultiptications to the right 3>b =
AxRxb from that to the left 3<b = axSxh, a>0 = a<b, R = S. The important property
is that all abstract axioms of a field are verified per each ordered isomultiplication
thus yielding one genofield F(3,+>) for the multiplication to the right and a
different one <P{a+.<) for the multiplication to the left.

A still more general formulation is currently under study via the
hyperstructures [105), [106]. In essence, the genotopic elements R and § are
irreducible and fixed in the genotopic products 3>h and a<b. In the transition to the
hyperstructure, the genotopic element R and S assume finite or infinite and ordered
or non—ordered sets of values.

We Tinally recall that all liftings of the sum are prohibited in this study,
e.g., because they would imply the divergence of exponentiation and all quantities
defined via an infinite series [73].

The isotopies and isodualities of fields outlined above admit corresponding
lifting of all conventional mathematical quantities defined on them, such as vector
and metric spaces, functional analysis, differential calculus, etc. as presented in
{100}, whose knowledge i3 hereon tacitly assumed.

2,C. Isolinearity, Isolocality and isocanonicity. In Sect. | we pointed out
that the primary limitations of Lie’s theory are that the theory is linear, local and
canonical. The primary objectives of the Lie-Santilli isotheory are the achievement
a covering theory which is structurally nonlinear, nonlocal and noncanonicai, yet
capable of reconstructing linearity, locality and canonicity on isospaces over
isofields called isofinearily, isofocality and isocanonicity.

In turn, the preservation at the abstract level of the original linearity,
locality and canonicity will prove to be crucial for the achievement of
mathematical and physical consistency under nonlinear, nonlocal and
nonhamiltonian interactions.

Let S(x,R} be a conventional, real vector space with local coordinates x over
the reals Rin,+), and let ¥ = Alw)x, w € F,x '= x’ A%w) be a conventional right,
and left, linear, local and canonical transformation on S(xR), where t denotes
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anspose.

The isotopic lifting Six ) - S(xR) [100] requires a corresponding necessary
otopy of the transformation theory. In fact, It Is instructive for the interested
sader to verify that the application of conventional transformations to the
ospace Xx,R) implies the Joss of linearity, transitivity and other basic propertles.

For these and other reasonsSantilli submitted in the original proposals (52]
1e Isotopy of the transformation theory, called isotransformation theory, which
j characterized by isotransforms g

%' = AWex = AWITY, %t o= xte Al = T AW, (2.9a}
T = T =fixed, %eS&R), We RAHX, 1=7 {2.9b)

vhere the isotopic element T is assumed to be of Class 1.

The most dominant aspect in the transition from the conventionai to the
sotopic transforms is that, while the former are linear, local and canonical, the
latter are nonlinear in the coordinates as well as other quantities and their
jerivatives of arbitrary order, nonlocal-integral in all needed quantities, and
noncanonical when projected in the original spaces SixF). in fact, from the
inrestricted nature of the isotopic element T, the projection of isotransform {29 in
3x, R) reads (for x = &) = (x¥))

% = AW TL %% & )X, (2,10
But the conventional and isotopic transforms coincide at the abstract level
where we have no distinction between the modular action "Ax” and its isotopic

form "A*x"We therefore have the foliowing

Proposition 2.1 {115} [sotransforms (29) of Class I are "isolinear” when formulated
on isospaces S%.F) because they verify the conditions of linearity in 1sospaces,

A*(avi+ﬁ*?)-——é*(ﬁ*i)*-b*(h?). {4.2.42)
vk yeSP, abe 3,45, {4.2.4b)
and coincide with linear transforms at the abstract level

More directly, we can say that a Lle algebra Is linear because it can be
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interpreted as a linear vector space over a conventional fleld, By the same token,
we can that that a Lie-Santilii isoalgebra 1s isolinear because it can be interpreted
as an isolinear vector space over an isofteld.

Note that conventional transforms are characterized by the right modular
associative action Ax of AOnx € SixR). Isotransforms {2.9) are then characterized
by the right isomodular associative actiorraction Ak of A on % € SR

The situation for locality and caronicity follows the same lines (100 It is
known that Lie's theory is local hecause it possesses a local-differential topology.
By the same token, we can say that the Lie-isotopic theory is fsolocal because it
possesses the Tsagas-Sourlas 1solocal topology (100}, Sect. 1.6).

sirilarly, we can say that the Lie-Santilli isotheory is jsocanonical because
it is derivable from a first-order action which is canonical in isospace over
isofietds {100), Sect. 2).

The following property Is important for the understanding of isotopic

theories:

Proposition 221 15k All possible nonlinear, nonlocal and noncanonlcal transforms
on a vector space SxR) ‘

= Blw, %)X, %€ SxR, we Rin+), {z.11)

can always be rewritten in an identical isolinear, Isolocal and isocanonical form,
that is, there always exists at least one isolopy of the base field, Rin+ — R, ),
and a corresponding isotopy of the space slx,R) - §x,R) under which

w=Blw,x.)x B AMdex, T= Kis. (2.12)

The above property is at the foundation of the "direct universality’ of the
Lie-Santitli isotheorles, that is, its applicability to all possible nonlinear, nonlocal
and noncanomnical systems {universality} in the frame of the experimenter (direct
universality). In order to apply 2 Lie-Santilli sosymmetry to a nonlinear, nonlocal
and noncanonical system, one has merely to identity one of its possible Isolinear,
isolocal and isocanonical identical reformulation in the same system of
(contravariant) local coordinates. The applicability of the methods studied in Sect.
3 then follows.

the "isodual isotransforms” of Class I are given by the image of
isotransforms (2.9} under isoduality, and, as such, are defined on the isodual

isospace 8969, R%) (1001
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0= Ab W ot id= - A0 178, x e SR, wie R%i 49, (2.13a)
gt =30 490 (39 = -39+ 20T W9 {2.130)

where A% and A9 will be identified later on in Sect. 3.
Isodual isotransforms characterize the isodual Lie Isotopic theory which, in
turn, characterizes the isodual symmetries for the treatrnent of antiparticles.

3. Isotopies and Isodualities of Lie’s Theory

As recalled in Sect. 1, Lie's theory (see {13}, [15] is centrally dependent on the
basic n~dimensional unit [ = diag. {1, 1, .., 1) in alt its major branches, such as
enveloping algebras, Lie algebras, Lie groups, representation theory, etc. The main
idea of the Lie-Santilli isotheory (52}, 53], [110] is the reformulation of the entire
conventional theory with respect to the most genera! possible, integro—differential
isounit Ux, %, %, ...\

One can therefore see from the very outset the richness and novelty of the
isotopic theory. In fact, it can be classified into five main classes as occurring for
isofields, isospaces, etc., and admits novel realizations and applications, €.g., in the
construction of the symmetries of deformed line elements of metric spaces.

3.A. Isotopies and isedualities of universal enveloping associative
algebras. Let £ be a universal enveloping associative algebra [15] over a field F {of
characteristic zero} with generic elements A, B, C,... , trivial associative product AB
and unit I. Their isotopes § were first introduced in {47} under the name of
isoassociative envelopes. They coincide with E as vector spaces but are equipped
with the isoproduct so as to admit 1 as the correct {right and left) unit

t. A+B = ATB, Tfixed, [*A=A*l=A vat 1=1L@E1

Let £ = EL) be the universal enveloping algebra of an N-dimensional Lie
algebra L with ordered basis (X, k=1, 2 ... N, [ELI ~ L over F, and let the
infinite-dimensional basis of &L) be given by the Poincare-Birkhoff~Witt theorem
(15 A fundamental result due to Santiti (52] see also [110), p. 154-163) is the
following:
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Theorem 3.1. The cosets of T and the standard, isotopically mapped monomials
1, X XXy =), XpxXprXg (i=j=k) 3.2

form a basis of the universal enveloping isoassociative algebra E(L) of a Lie
algebra L.

A first important consequence fs that the isotoples of conventional
exponentiation are given by the expression, called isoexponentiation, for wekf,
eglw*x 1 () /04 oK) & (0 / 2+ = 10N )= (e XTW) 7,

(3.3

The implications of Theorem 3. also emerge at the level of functional
analysis because all structures defined via the conventional exponentiation must be
suitably lifted into a form compatible with Theorem 3.1. As an example, Fourier
transforms are structurally dependent on the conventional exponentiation. As a
result, they must be lifted under isotopies into the expressions [23]

) = (am " g0 i ak, g = (r2n)f T M vey o dx, (34

with similar liftings for Laplace transforms, Dirac-delta distribution, etc., not
reviewed here for brevity.

On physical grounds, Theorem 3.1 implies that the isotransform of a
gaussian in isofunctional analysis is given by [23]

)= Nee, %282 e 2T /228, ) = Nwep k2 a2/ 2 _ e~ k2Ta? /2,
(3.5)

As a result, the widths are of the type Ax ~aT ™}, Ak ~a~1T7¥ it then follows that

the Isotopies imply the loss of the conventional uncertainties Ax Ak =~ 1 in favor of

the local fsouncertaintles [61b}

Ax Ak ~ T, - {3.6}
which illustrate the nontriviality of the the isotopy.

The isodual isoenvelopes 4 are characterized by the isodual basis X® = -
Xy, defined with respect to the isodual isounits 19 = -1 and isodual isotopic element
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T4= T over the isodual isofields F9. The isodual isoex—ponentiation is then given
by

idwd xdxd _

e pd 1d{e WTX ) twX (37

= -p .
¢

and plays an important role for the characterization of antiparticles as possessing

negative—definite energy and moving backward in time {as necessary when using

isodual isofields).
It is easy to see that Theorem 3.1 holds, as originally formulated (52}, for

envelopes now called of Class LI, thus unifying isoenvelopes & and their isoduals wd

{n fact, the theorem was conceived to unify with one single Lie algebra basis Xy
nonisomorphic compact and noncompact algebras of the same dimension N {see the
example of Section 3E).

The isotopy & — ¢ is not a conventional map because the local coordinates x,
the infinitesimal generators Xg and the parameters wg are not changed by
assurnption, while the underlying unit and related associative product are changed.
Also, in the operator realization the Lie and Lie-Santilll isotheory can be linked by
nonunitary transformations uut =1 11116l for which

I = 1= UIUT, AB~uaBUl = A'*B'=A'TB’,T-=(UUT)_I. {3.8)

wherg A’ = UAUT, B = UBUT. The lack of equivalence of the two theories is further
itlustrated by the inequivalence between conventional eigenvalue equations,

H|b>=E|b> H =4, E e fh+x,
and their isotopic form in the same Hamiltonian [116]
He|b> = HT|b> = E+[b>=E|b> M = H,

where E' € #in+,%) , with consequential different eigenvalues for the same
operator H, E' # E (see Section 3.E for an example). We therefore expect that the
weights of the Lie and Lie-Santilli theories are different.

3.B. Isotoples and isodualities of Lie algebras. A (finite-dimensional)
isospace [, over the isofield F of isoreal AR+ or isocomplex numbers with
isotopic element T and isounit 1 = T~ is called a Lie~Santiili algebra over F (see
the original contributions (52}, 53], [110] [115), [116} independent studies (3}, {24], [31],
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T121] and references quoted therein), sometimes called isoalgebra (when no
confusion with the isotopies of non-Lie algebras arises), when there is a
composition {A"8] in L, called isocommutator, which is isolinear (i.e., satisfies
condition (2.40}} and such that for atl A,B,Ce L

[A;B] =- (B Al, (3.92)
[AJ[B;Cl] + [B,IC;All + [C[A;B]] =0, (3.9b)
[A*B;Cl=As«[B Cl+ A C)*B. (3.9¢)

The isoalgebras are said to be: isoreal (isocomplex) when £ = A (F = {), and
isoabelian when  [A'Bl =0V A B¢ L. A subset [, of L is said to be an
isosubaigebra of [ when [Lg Lyl € Ly and an fsoideal when (L L) C £y, A
maximal isoideal which verifies the property IL [Lql = 0 is catled the isocenter of
L. For the isotopies of conventional notions, theorems and properties of Lie algebras
see [74] i

We recall the isotopic generalizations of the celebrated Lie’s First, Second
and Third Theorems Introduced in ref. [47], but which we do not review here for
brevity (see [52]. For instance, the isotopic second theorem reads

Xy TXJ = XpeX) = Xjo X =X T, D X=X T, X o= ¥, 8, ) X

(3.10)
where the s are called the structure functions, generally have an explicit
dependence on the underlying isospace (see the example of Section 3.E), and verify
certain restrictions from the Isotopic Third Theorem.

Let L be an N-dimenstonal Lie algebra with conventional commutation rules.
and structure constants C; jk on a space S{x,F} with local coordinates x over a field
F, and let L be (homomorphic to} the antisymmetric algebra [EL) attached to the
associative envelope £{L). Then L can be equivalently defined as (homomorphic to)
the antisymmetric algebra [H{L)"attached to the isoassociative envelope L} (52D. In
this way, an infinite number of isoalgebras L, depending on all possible isounits 1,
can be constructed via the isotopies of one single Lie algebra L. It is easy to prove
the following resuft:

Theorem 3.2. The isotoples L —+ L of an N-dimensional Lie algebra L. preserve
the original dimensionality.
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In fact, the basis e , k = 1, 2, .., N of a Lie algebra L is not chinged under isotopy,
except for renormalization factors denoted . Let the commutation rules of L be
given by le, e} = Cijk ek-

The isocommutation rules of the isotopes [ are

Biod)) = & TE - 8T8 = &k x 8 ) 8, .1

where € = CT. One can then see in this way the necessity of lifting the structure
"constants” into structure “functions”, as correctly predicted by the I[sotopic Second
Theorem.

The structure theory of the above iscalgebras s still unexplored to a
considerable extent. In the following we shall show that the main lines of the
conventional structure of Lie theory do indeed admit a consistent isotopic lifting.
To begin, we here introduce the general isolinear and isocomplex Lie-Santilli
algebras denoted GL{n,L} as the vector isospaces of all nxn complex matrices over
C. It is easy to see that they are closed under isocommutators as in the conventional
case. The isocenter of GL(n,C) is then given by 3+ 1, ¥ 3 € #. The subset of all
complex n*n matrices with null trace is also closed under isoccommutators. We shati
call it the special, complex, isolinear isoalgebra and denote it with SL(n,C). The
subset of all antisymmetric n*n real matrices X, xt=- X, is also closed under
isocommutators, it is called the Isoorthogonal algebra, and it is denoted with O(n).

By proceeding along similar lines, we classify all classical, non-exceptional,
Lie~-Santilli algebras over an isofield of characteristic zero into the isotopes of the
conventional forms, denoted with A, Bp, € and Dy each one admitting
realizations of Classes I, If, I, IV and V {(of which only Classes I, [[ and II are
studied herein). In fact, A~y = SL(nCk By, = O2n+1, & €, = SPIn,C); and Dy, =
O{2n,C). One can begin to see in this way the richness of the isotopic theory as
compared to the conventional theory.

The notions of homomorphism, automorphism and isomorphism of two
isoalgebras L and [', as well as of simplicity and semisimplicity are the
conventional ones. Stmilarly, all properties of Lie algebras based on the addition,
such as the direct and semidirect sums carry over to the isotopic context
unchanged {because of the preservation of the conventional additive unit 0).

An lsoderivation D of an isoalgebra L is an isolinear mappling of L into
itself satisfying the property

Dia,Bl) =[DA);B] + [A;DB})] vABel. {3.12)

-
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If two maps D and Dy are isodertvations, then aeDy + b+Ds s also an isoderivation,
and the isocommutators of Dy and Dy is also an isoderivation. Thus, the set of all
isoderivations forms a Lie-Santifli algebra as in the conventional case.

The isolinear map ad() of L into itself defined by

adAB) = [A7Bl, V ABel, (313

is called the isoadjoint map. It is an iscderivation, as one can prove via the iso—
Jacobl tdentity. The set of all ad{A) is therefore an isolinear isoalgebra, called
isoadjoint algebra and denoted L, . It also results to be an isoideal of the algebra
of all isoderivations as in the conventional case.

Let £0 = £, Then 80 = £0) ~¢(0)) 22 1 (D () ete, are atso isoideals
of L: L is then called isosolvable if, for some positive integer n, tin} = o, consider
also the sequence Lig) = LIy = [Lg L, L) = [ L], etc. ThenLis
'said to be isonilpotent if, for some positive integer n, {{;) = 0. One can then see
that, as in the conventional case, an isonilpotent algebra is also isosolvable, but the
converse is not necessarily true.

Let the fsotrace of a matrix be given by the element of the isofield [61]

TrA = (TrA)T eF, (3.14)

where Tr A is the conventional trace. Then Tr(A+B) = (TFA)«{TrB)and T¢
{BAB™!) =Tt A. Thus, the TT A preserves the axioms of Tr A, by therefore being
a correct isotopy. Then the {soscalar product

(AIB) = Tr[{ABX)+(AQ BY], (3.15)

is here called the isokilling form. It is easy to see that (A ;'B} is symmetric, bilinear,
and verifies the property (AQX(Y); 2) + (Y ; Ad X(Z)) = 0, thus being a correct, axiom-
preserving isotopy of the conventional Killing form.

Leteg,k=1,2 .., N, be the basis of L with one-to—one invertible map ey -+
&y to the basis of L. Generic elements in L can then be written in terms of local
coordinates x, y,z, A= xiéi and B = yjéj ,and

c=Key = Bl = PRI =LA A GK . @
Thus,

(aaamlk = (a7Bk = Gk xdxl. : (3.17)
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¥e now introduce the isocartan tensor gy of an isoalgebra {, via the definition
A B) =gy x! yJ yielding

'g'ij(x. %)= Cipk Cjkp . (3.18)

Yote that the isocartan tensor has the genera! dependence of the isometric tensor of
Section 2.C, thus con{irming the inner consistency among the various branches of
the isotopic theory. In particular, the isocartan tensor is generally noniinear,
nonlocal and noncanonical in all variables x, %, &, ... This clarifies that isotopic
generalization of the Riemannian spaces studied in ref. [60} Rixg 3 = RxgH, § =
8ls, x, %, &, ..., has its origin in the very structure of the Lie-isotopic theory.

The isocartan tensor also clarifies another fundamental point of Section 1,
that the isotopies naturally lead to an arbitrary dependence in the velocities and
accelerations, exactly as needed for realistic treatment of the problems identified in
Section I, and that their restriction to the nonlinear dependence on the coordinates
x only, as generally needed for the exterlor (e.g., gravitational} problem, would be
manifestly un—necessary.

The isotopies of the remaining aspects of the structure theory of Lie
algebras can be completed by the interested reader. Here we limit ourselves to
recall that when the isocartan form Is positive= {or negative-) definite, Lis
compact, otherwise it is noncompact. Then it is easy to prove the following

Theorem 3.3. The Class ti1 fiftings L. of a compact (noncompact) Lie algebra L
are not necessarily compact {noncompact). .

The identification of the remaining properties which are not preserved under
liftings of Class 1! is an instructive task for the interested reader. For instance, if
the original structure Is irreducible, its isotopic image is not necessarily so even for
Class I, trivially, because the isounit itself can be reducible, thus yielding a
reducible isotopic structure. -

Let [ be an isoalgebra with generators X and tsounit 1 = T~! 5> 0. From
Equations (3.7) we then see that the isodual Lie-Santilli algebras 18 of L is
characterized by the isocommutators

[X; :Xj]d = - %] = Cijk ta) X3 . Cijk(q) = - Cijk. (3.19)

L, and £9 are then (anti} isomorphic. Note that the isoalgebras of Class 111 contain all
Class | isoalgebras L and ail their isoduals 8 The above remarks therefore show

FOUNDATIONS OF THE LIE-SANTILLI ISOTHEORY 105

that the Lie-Santilli theory can be naturally formulated for Class II1, as implicitly
done in the original proposal [47]. The formulation of the same theory for Class IV
or Y is however considerably involved on technical grounds thus requiring specific
studies.

The notion of isoduality applies also to conventional Lie algebras L, by
permitting the identification of the isodual Lie algebras 1 via the rute [62]

lxl,xj']daxdi 19x4, - x4, 19x9, = - 1x;, X1 =
- Cijk (d) xdk’ Cijk(d) - _Ci]k' (3_3’\\

Note the necessity of the isotopies for the very construction of the isodual of
conventional Lie algebras. In fact, they require the nontrivial lift of the uynit (=@
= {-1), with consequential necessary generalization of the Lie product AB — BA into
the isotopic form ATB ~ BTA.

For realizations of the Lie-Santilli isoalgebras in classical and operator
mechanics, we refer the reader for brevity to ref.s [115} {116,

3.C. Isotopies and Isodualitles of Lle greups. A right Lie-Santilll isogroup
G (see the original contribution (52}, independent monographs (3], [24], (31} 21l and
papers quoted therein) on an isospace Sx,F} over an isofield £,1 =T (of isoreal A
or isocomplex numbers (), also called isotransformation group or isogroup, 1s a
group which maps each element x € S(x,F} into a new element X’ € 8(x,F) via the
isotransformations x’ = O=x = O'Tx, T fixed, such that: (1) The map (U, x) = 0 » x of
Cx8ix.£) onto SixF) is isodifferentiable; 21+ 0=0+1=0v 0 e G and (3 0y (O *
)= (0 » Ug} # x, ¥ x € StxF) and 0y , Oy € G. A [eft isotransformation group i3
defined accordingly.

The notions of connected or simply connected transformation groups
carry over to the isogroups in their entirety. We consider hereon the connected
isotrz}ns]fonnation groups. Right or left isogroups are characterized by the following
laws [47

0 = 1, O =0(W) = O+ 06 =0(F + W), 0@ =0Cw =1, Wwef -

(3.21)
Their most direct realization of the isotransformation groups is that via
iscexponentiation (3.3},
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069) = Thee , <" % = Tlke,' Xk~
- U™ ™) = (TTe™*™kn, (3:29)

where the X's and w's are the infinitesimal generator and parameters, respectively,
of the original algebra L. Equations (3.22) hoid for some open neighborhood of N of
the isoorigin of L and, in this way, characterize some open neighborhood of the
{sounit of 6. Then the isotransformations can be reduced to an ordinary transform
for computational convenience,

x'=Qsx = [erzixk‘“'km = [Tk e™xT¥kix, . (329)

with the understanding that, on rigorous mathematical grounds, only the

isotransform is correct.
Still another important result obtained in [52] is the proof that conventional

group composition laws admit a consistent isotopic lifting, resulting in the
following Isotopy of the Baker-Campbell-Hausdorff Theorem

{eex]"{eexkeex3.X3=X|+X2+[X| TXo M2+ (X X) [X i Xpll 12+,
. . (3.24)
Note the crucial appearance of the isotopic element Tix, x, %, ..} in the
exponent of the isogroup. This ensures a structural generalization of Lie's theory of
the desired nonlinear, nonlocal and noncanonical form. For details see [49] and (74}
The structure theory of isogroups is also mostly unexplored at this writing.
In the Tollowing we shall point out that the conventional structure theory of Lie
groups does indeed admit a consistent isotopic lifting. The isotopies of the notions
of weak and strong continuity of [22] are a necessary pre-requisite. Let Lbea
(finite-dimensional) Lie-Santilli algebra with {ordered) basis {Xg}, k = 1, 2 .., N. For

a sufficiently small neighborhood N of the isoorigin of L, a generic element of ¢ .

can be written

0w = TTemtz. ey © K, 629

which characterizes some open neighborhood M of the isounit 1 of G. The map

8g (02 = 0y s 05407, (3.26)

FOUNDATIONS OF THE LIE-SANTILLI 1SOTHEORY 107

for a fixed 0) € G, characterizes an inner isoautomorphism of G onto G. The
corresponding iscautomorphism of the algebra L. can be readily computed by
considering the above expression in the neighborhood of the isounit 1, In fact, we
have

U= 0 *02*01_1 = s +wiw2[X2:X;]+0(2). {3.2m

The reduction of the isogroups to isoalgebras requires the knowledge of
isodifferentials dw = Tdw and isoderivatives /dw = 1dw [100] under which we have
the following expression in one dimension:

N )
1 v iwX _
i 'a—wﬁ‘wzo =X Be |W=9 = X, , {3.28)

Thus, to every inner iscautomorphism of G, there corresponds an inner
isoautomorphism of L, which can be expressed in the form:

(L )ij = Ckl} Wk . (3.20)

The isogroup G, of all inner isoautomorphisms of G is called the isoadjoint group.
It is possible to prove that the Lie-Santilli algebra of G is the isoadjoint algebra Ly
of L. This establishes that the connections between a]gebrés and grouyps carry over
in their entirety under isotopies.

We mentioned before that the direct sum of isoalgebras is the conventional
operation because the addition is not lifted under isotopies (otherwise there will be
the loss of distributivity, see [73). The corresponding operation for groups is the
semidirect product which, as such, demands care in its formulation.

Let G be an isogroup and G the group of all its inner isoautomorphisms. Let
G°, be a subgroup of Gy, and let A(R) be the image of § € G under GO%,. The
semidirect isoproduct G%G%, of G and GO is the isogroup of all ordered pairs

@ Nelg, &) = (§=A@), Ak, (3.30)

with total isounit given by (1,13) and inverse g, AsTT =( 1'('1(@']) . A1), The above
notion plays an important role in the isotopies of the inhomogeneous space-time
symmetries outlined later on.

Let Gy and Gy be two isogroups with respective isounits 1; and 1p. The
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direct isoproduct () 8Gy of G} and Gy is the isogroup of alt ordered pairs (&, 29),
g1 € Gy, 82 € Gp, with isomultiplication

{8.82)4(87,8%) = (g *g".82% 82}, (331}

total isounit {1}, 1) and inverse (él_]. §2—1). The isotopies of the remaining aspects
of the structure theory of Lie groups can then be investigated by the interested
reader.

Let G be an N-dimensional isotransformation group of Class 1 with
infinitesimal generators Xy , k = 1, 2, .., N. The Jsodual Lie-Santilli group ¢dor @
(I52), 53] is the N—dimensional isogroup with generators Xkd = -X} constructed
with respect to the isodual isounit 19 = -1 over the isodua! isofield £, By recalling
that we F = wd € Fd, wi = -w, a generic element of Gd in a suitable
neighbortiood of 19 is therefore given by

d.sd,yd .
0% = eedi WX -eE‘“’*" Y (3.32)

The above antiautomorphic conjugation can also be defined for conventional Lie
group, ylelding the isodual Lie group G4 of G with generic elements vdwd =
& diwd)( = - ppiWX

The symmetries significant for this paper are: the conventional form G, its
isodual Gd, the isotopic form G and the isodual isotopic form 69, These different
forms are useful for the respective characterization of particles and antiparticles in
vacuum (exterior problem) or within physical media (interior problem) [116],

It is hoped that the reader can see from the above elements that the entire
conventional Lie's theory does indeed admit a consistent and nontrivial lifting into
the covering Lie—Santilli formulation. Particularly important are the isotopies of the
conventional representation theory, known as the isorepresentation theory [118),
which naturally yields the most general known, nonlinear, nonlocal and
noncanonical representations of Lie groups. Studies along these latter lines were
initiated by Santilli with the isorepresentations of S0(2) and of S0{3) [76], by Klimyk
and Santilli Klimyk [27], and others.

A classical realization of the Lie-Santilli isogroups can be formulated on the
isotangent bundle T+E(r8.R), = T6, with local chart a = (K, phi=123456k
= 1,2, 3, and isounit [[1-71] .

15 = diag. 0, T) {3.33)
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the Hamilton—-Santilli equations

aH
Bt/ = 2 = (ﬂ""aTgav? , (3.34)
!

where '@ s the familiar canonical Lie tensor. Eq.s (3.34) can be isoexponentiated
and, after factorization of the isounit, can be written

. t2a/0qH

1oV 1) 3/52%
alt) =(& o tH0Taq” (aH/2al) /2

) #al0) ={ ] al0), (3.35)
where we have ignored the factorization of the isounit in the isoexponent for
simplicity. The computation of the Lie~santilli isoalgebra is consequential and
coincides at the abstract level with the conventional formulation in terms of vector
fields.

An operator realization of the Lie-Santilli isogroups is given by isounitary
transformations x’ = G+x on an isohilbert space 3¢ [100] with

os0f = ogfeg =1, - (330

with realization via an isohermitean operator H

=it (o 1HTEy (337

0
The use of the bimodular isotransforms and the techniques studied in this section,
then characterize the corresponding Lie-Santilli isoalgebra, thus confirming the
interconnection and mutual compatibility between isoalgebras and isogroups in
exactly the same manner as that for the conventional theory.
The above classical and operator realizations are also interconnected in a
unigue and unambiguous way by the isoquantization{ 100},

3.D. Santilli’s fundamental theorem on Isosymmetrles. We are now
eguipped to review without proof the following important result [62}

Theorem 3.5, Let G be an N-dimensional Lie symmetry group of an m-
dimensional metric or psepdo-metric space Sx.gF) over a field F

G: ¥ =Alw) x, (x-yFAlg A(x-y)={x-yff g{x-y),

A P e ) m s 2 e
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Alga =agal=g. {3.38)

Then the infinitely possible isotopes G of G of Class Ul characterized by the
same generators and parameters of G and new isounits 1 (isotopic elements T),
automfﬂcally leave Invariant the fso-composition on the isospaces SxgF), g = Tg
1 . T- ' L] *

Gx'=Awlex, (x-yl+AfgA*{x-vy) =
= eyt gx-y), AfgA = AgAf =131, (3.29)

The "direct universal” of the resulting isosymmetries for all infinitely
possible isotopies g = & = Tit, x, %, ¥, ..)g is then evident owing to the completely
unrestricted functional dependence of the isotopic element T. One should also note
the insufficiency of the so—called trivial z'sotbpy

Xk = Xy = Xk1 . (3.40)

for the achievement of the desired form~invariance. In fact, under the above
mapping the isoexponentiation becomes

e PXRTWE Lo KR T Wiy oo KRV (3.41)

namely, we have the disappearance precisely of the isotopic element T In the
exponent which provides the invariance of the isoseparation.

3.E. Isotoples and isodualities of the rotational symmetry. We now
iltustrate the Lie-Santilli isotheory with the first mathematically and physically
significant case, the isotopies of the rotational symmetry, also called isorotational
symmetry. They were first achieved by SantiH in paper [62], [63] and then studied
in detaits in {monographs (115}, [116], including the isotopiles of SU(2), their
isorepresentations, the iso—Clebsh—Gordon coefficients, etc.

Consider the lifting of the perfect sphere in Euclidean space E(r,8f} with
local coordinates r = (x, v, z), and metric 3 = diag. {4, 1, 1} over the reals #,

2= rlgr = XX +yy+zz, (3.42)

+
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into the most general possible ellipsoid of Class It on isospace el s, 8=15T
=diag. (g, 80 23317 L

2= 81 = xgy ytyenytIem,
ST = B’A gkk = gkk(t, T, i‘. \‘, ...) # 0. (3'43)

The tnvariance of the original separation 12 is the conventional rotational
symmetry O(3). The isotopic techniques permit the construction, in the needed
explicit and finite form, of the tsosymmetries 0(3) of all infinitely possible .
generalized invariants 12 via the following steps: {1} Identification of the basic
isotopic element T in the lifting 6 — B = T8 which, in this particular case, is given
by the new metric § itself, T = 8, and identification of the fundamental unit of the
theory, 1 = T™L; (2) Consequential lifting of the basic field fn+x) = R/if,+0) (3
[dentification of the isospace in which the generalized metric 3 is defined, which is
given by the three-dimensional isoeuclidean spaces BN, 8=T5,1=T% (4
Construction of the’0(3) symmetry via the use of the original parameters of ol3)
(the Eulers angles 8¢, k = 1, 2, 3), the original generators (the angular momentum
components Mg = €k d py in their fundamental (adjoint} representation, and the
new metric & and (5) Classification, interpretation and application of the resuits.

The explicit construction of {3} is straightforward. According to the Lie-
Santilli theory, the connected component SO(3) of O(3) is given by {63l

sOd: = Re=r, RE) =l'["|c==|,?.,a‘3EiMkﬂk =

= Mgeioge "6 T, (64

while the discrete component is given by the isoinversions lloc. cit] v = f*r = mr
= - 1, where T is the conventional inversion.

Under the assumed conditions on the isotopic element T, the convergence of
{soexponentiations is ensured by the original convergence, thus permitting the
explicit construction of the isorotations, with example around the third axis (53]

X' = xcos[.83(g“222){' 1+ ygalen ng)"}sinlea.(g“ ggg))"].

g = -xgy (g g2a) Fsinloggr gl + v coslozlerigz)tl

7' =z ‘ (3.45)



112 1. V. KADEISVILI

{see [116] for general isorotations). One should note that the argument of the
trigonometric functions as derived via the above iscexponentiation coincides with
the iscangle of the isotrigonometry in E{r.51) (see paper 160} thus confirming the
remarkable compatibility and interconnections of the various branches of the the
isotopic theory.

The computation of the isoalgebras {3) of O{3) is then straighforward. When
the M ‘s are assumed to be in thelr regular representation we have [63]

B3 M M) = My TMy=M;TM; = Cf ey, (3.46)
where Cuk = €jjk gkk"l 1. The above isoalgebra illustrates the explicit dependence
of the structure functions. The proof of the isomorphism (3} ~ of3) was done {loc.
cit.] via a suitable reformulation of the basis under which the structure functions

recover the value & = €jx 1 .The isocenter of s(3) ts characterized by the
{socasimir invariants

o1, =M= MM o= Ty oM TMy. (34D

In hadronic mechanics {116} one of the possible realizations'is the following.
The linear momentum operator has the isotopic form

P> = -i0fd> = - il v,

(see [11-71] for a different realization). The fundamental isocommutation rules are
then given by :

(efp) = i8h=118Y, (el = Ip7p) = 0.
However, in their contravariant form the coordinates are given by ry = 8¢ i Asa
result ¥ ry = 8y (where the delta is the conventional Kronecker delta). In this case
the fundamental isocommutation rules are given by

[rypf = 131j=ﬂ 3’}. [rgrd = [pypf = 0,

namely, their elgenvalues coincide with the quantum cnes. The operator isoalgebra
8(3) with generators My = €j; 1y py is then glven by '

A3 [M M) = M TMy - MM = 18K oM,
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where %Uk = e”k'l . namely the product of the algebra is generalized, but the

structure constants are the conventional ones (see [61} for details). The above

results illustrates again the abstract identity of quantum and hadronic mechanics,
Note the nonlinear—nonlocal-noncanonical character of isotransformations

- {3.45) owing to the unrestricted functional dependence of the diagonal elements gy .

Note also the extreme simplicity of the final results. In fact, the explicit symmetry-
transformations of separation {3.43) are provided by just plotting the given gkk
values into transformations (3.45) without any need of any additional computation.
Note finally that the above invarlance includes as particular case the general
isosymmetry O(3) of {the space—component of) gravitation which, since it is locally
Euclidean, remains isomorphic to O{3),

As an example, the symmetry of the space-componernt of the Schwarzschild
line element is given by plotting the following values

grp= {1 - M/, gop = 1%, ga3 = r2sin0, {3.48)

(see next section for the full {3+I-dimensional case).

Despite this simplicity, the implications of the above results are nontrivial.
On physical grounds, the isounit 1 > 0 permits a direct representation of the
nonspherical shapes, as well as all their infinitely possible deformations. By
recalling that O3} ts a theory of rigid bodies, O(3) results to be a theory of
deformable bodies [63) with fundamentally novel physical applications in the
theory of elasticity, nuclear physics, particle physics, crystallography, and other
fields [115}, [116).

On mathematical grounds, we have equally intriguing novel insights. To see
them, one must first understand the background isogeometry e384 which
unifies all possible conics in E{r,5 R} {115} as mentioned earler. To be explicit in this
important point, the geometric differences between {oblate or prolate) ellipsoids and
{eNiptic or hyperbolic) paraboloids have mathematical sense when projected in our
Euclidean space E(r,5,%). However all these surfaces are geometrically unified with
the perfect isosphere in £{r,55).

These geometric occurrences permits the unification of O3} and O{2.1), as
well as of alt their infinitely possible isotopes,as formulated in the original proposal
i52] In fact, the classification of all possible isosymmetries O(3), achieved in the
originat derivation {53}, includes:

{1) The compact O{3) symmetry evidently for 8 = 8 = diag. {4, 1, 1)

(2 The noncompact O{2.1) symmetry evidently for & = diag. (1, 1, ~ 1)
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3} The isodual 0%3) of O(3) holding for § = diag. (-1, -1, -1}

{4) The isodual 0%2.1) of O(2.1) holding for § = diag. (-1, -1, 1}

(5) The infinite family of compact isotopes O{3) ~ O3} with 1> 0 for § =
giag. {02 bg?, bg?), br >

(6) The infinite Tamily of noncompact isotopes 0(2.1) ~ 0(2.1) for 3 = diag.
{ b|2, b22, - b32 k

{7} The infinite family of compact isodual isotopes 0d(3)~od 9 for & =
diag. { -bj2, -bg?, —bz? )

(8 The infinite family of isoduat isotopes 09 (2.)~ 0% (2.1) for 8 = diag -
b|2, ‘“b22. b32 ).

Even greater differentiations between the Lie and Lie-Santilli theories occur

in their representations because of the change in the eigenvalue equations due to
the nonunitarity of the map indicated in Sect. 3A, from the familiar form H{ = E°¢s,
to the isotopic form Hef = Exl = EJ, E° = E), thus implying generalized weights,
Cartan tensors and other structures studied earlier.

The first differences emerge in the spectrum of eigenvalues of o/2) and of2).
In fact, the of2) algebra on a conventional Hilbert space solely admits the spectrum
M =0, 1, 2, 3 (as a necessary condition of unitarity). For the covering of2) isoalgebra
on an isohiibert space with isotopic element T = Diag. {g| | goo), the spectrum is
instead given by

M=gy 2 gp /2 M

and, as such, it can acquire continvous values in a way fully consistent with the
condition, this time, of isounitarity. For the general 0(3) case see also the detailed

studied of refs[116].
Similarly, the unitary irreducible representations of sul?) are characterize

the famniliar eigenvalues
BE=My, Zg=d(I 1) M=llLo-h =04l . (349

Three classes of irreducible isorepresentation of 83(2) were identified in (76}
which, for the adjoint case, are given by the following generalizations of Pauli's
matrices: (1) Regular isopauli matrices

. 0 . - 0-ig
T T ]

goz 0 +igon 0
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R _ gy O
03 ='A*( )-
0 -gy

T=diag.(g)|.gm) A=detT = g1 g2>0,
[&i,&le‘—'l?A&Eijk&k.
G3¢|b>=tatb>, G2¢|b>= 3A|6>.

(2} Irregular isopauli matrices

o (0 I) . ( 0 -i)
lx EU'Q"z =09,
N1 o0 I+ 72 + 0 2

[ g0
o3 = - =A'[CF3,
0 ~gn

Iﬁ"f&z'}e=2ia’3',
[&3.03k=2148, (63,6 =2i807,
F3e|b>=1A]6>,

G2 b>= Al A+2]b>.

{3} Standard isopauli matrices

. 0 A 0 -ix

g1 = - f 6’2 = f
a7l oo il oo
L

&3 = *
0 =X

T = diag. {A,A71), A®0, A=detT =1,
[6”].6’j}$=l€|jk6"k,

F3e[b>=2]b>, &% |b>=3]b>.
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(3.50a)

(3500)

{3.50¢)

(351a)

(3.510)

{351c)

(3.52a)

(3.520)
{3.52¢)



116 J. V. KADEISVILI

The primary differences in the above Isorepresentations are the following.
For the case of the regular isorepresentations, the isotopic contributions can be
factorized with respect to the conventional Lie spectrum. For the irregular case this
is no longer possible, Finally, for the standard case we have conventional spectra of
eigenvalues under a generalized structure of the matrix representations, as
indicated by the appearance of a completely unrestricted, integro-differential
function A.

The regular and irregular representations of (3) and sui(2) are applied to the
angular momentuen and spin of particles under extreme physical conditions, such
as an electron in the core of a collapsing star. The standard isorepresentations are
applied to conventional particles evidently because of the preservation of
conventiona! quantum numbers [116]. The appearance of the isotopic degrees of
freedom then permit novel physical applications, that is, applications beyond the
capacity of Lie's theory even for the simpler case of preservation of conventional

spectra {see Section 3.G).
The spectrum-—preserving map from the conventional representations Jg of

a Lie—algebra L with metric tensor g to the covering isorepresentations 3@ of the
Lie-Santilli algebra £, with Isometric § = Tg and isounit1 = 1is important for
physical application. It is called the Klimyk rule{27] and it given by

3@ = JgP, P=kl, kefF, (3.53)
under which Lie algebras are turned into Lie-Santilli isoalgebras
By = dpdp =ckue m (Y = YKL T = R kT TY,
that is,
ey - ey =,

thus showing the preservation of the original structure constants.

However, by no means, the Klimyk rule can produce afl Lie-Santilli
isoalgebras, because the latter are generally characterized by ronunitary
transforms of conventional algebras, with a general variation of the structure
constants, .

Nevertheless, the Kiimyk rule is sufficient for a number of physical
applications where the preservation of conventional quantum numbers is
important, because it permits the identification of one specific and éxplicit form of
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standard isorepresentations with "hidden” degrees of freedom represented by the
isotopic element T available for specific uses. For instance, the standard isopauli
matrices permit the reconstruction of the exact isospin symmetry in nuclear
physics under electromagnetic and weak interactions [76], or the construction of the
isoquark theory [100] with all conventional quantum numbers, yet an exact
confinement (with an tdentically null probability of tunnel effects for free quarks
because of the incoherence between the interior and exterior Hilbert spaces), and
other novel applications.

A.F. Isotoples and isodualities of the Lorentz and Peincare” symmetries,
One of the most fundamental results achieved by santilll as a culmination of all his
efforts [47H118] is a structural generalization of the current formulation of the
Poincaré symmetry with far reaching mathematical and physical implications
which we can onty indicate in this section.

The generalized symmetry has been entirely and solely studied by Santill up
to this writing, and it is called the Poincaré-Santilli isosymmetry, with no
additional studies by other scholars krown to this author on the study of the
isosymmetry itself (thus, excluding studies on its applications which are
numerous). In fact, Santilli proposed: the classical isotopies of the Lorentz
symmetry in Ref. {59] of 1983; their operator image in paper (60} of the same year;
their rotational component in papers [62], [63] of 1985 reviewed in the preceding
section; a comprehensive classical study in memoir [67}; a comprehensive operator
counterpart in memoir [72} of 1992 {with the first experimental verification to the
Bose-Einstein correlation); the comprehensive classical and operator study in paper
[79] of 1993; specific studied on the spinorial case were conducted in paper {95! with
additional experimental verifications; a detailed clagsical treatment in monograph
{114] and the operator treatment in monograph [116}:

Consider the line element tn Minkowski space x2 = xH Hy mv=1,234
with local coordinates x = | xl, x2, %3, x4 x4 = Got, and metric n = diag. {1 1, 1, ~1}.
its simple invariance group, the six-dimensional Lorentz group L{3.1), Is
characterized by the {ordered sets of} parameters given by the Euler’s angles and
speed parameter, w={wy }={8,v], k = 1,2,...,6,and generators X =(Xi ] ={
My L in their known fundamental representation (see, e.g., [31], [32D.

Suppose now that the Minkowskian line element is lifted into the most
general possible ronlinear-integral form verifying the conditions of Class HI

-

= Mgk t.dn,  detgeo, =gl (354)
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which represent: all modifications of the Minkowski metric as encountered, eg., in
particle phystcs; conventional exterior gravitational line elements with g = glx), such
as the full Schwarzschild line element; all its possible generalizations for the
interior problem; etc.

The explicit form of the simple, six-dimensional invariance of generalized
line element x~ was first constructed by Santilli [59] by following the space-time
version of Steps 1 to 5 of the preceding section. Step 1 Is the identification of the
fundamental isotopic element T via the factorization of the Minkowski metric, § =
Tn which, under the assumed conditions, can always be diagonalized into the form

T = diag.(g);.820.833. 844} T = T, detT = 0. (3.55)

The fundamental isounit of the theory is then given by 1 =T L

Step 2 is the lifting of the conventional numbers into the isonumbers via the
isofields #(n,+*), fi = n 1 (which are different than those of O3} because of the
different dimension of the isounit).

Step 3 is the construction of the isospaces in which the isometric g is
properly defined, which are given by the isominkowski spaces Mi{x,g#). The reader
should keep in mind that, when g is a conventional Riemannian metric, isospaces
M(x.gR) are not the Riemannian spaces Rix,gR) because the basic units of the two
spaces are different.

Step 4 is also straightforward. The Lorentz-Santilli isosymmetry [{3.1} is
characterized by the isotransformations

O3.1): x' = Awhex = Alw)x, (3.56)
verifying the basic properties
AlgA = Agal =181, or
t =g, (3.57a)

Atgih = R

o1}
(1)
bl

DatA = [Det{A T = %1, {(3.576)

It is easy to see that [{3.1) preserves the original connectivity properties of L{3.1)
(see [61] for a detailed study). The connected component SO(3.1) of L{3.1} is
characterized by Dét A = +1 and has the structure [loc. cit.]

1 Xy W
Aw) = H‘k=l.2.....6 € KT -
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= [ Tlk=12..6¢ e TwWey, (3.58)

where the parameters are the conventional ones, the generators Xi are also the
conventional ones in their fundamental representation and the isotopic element T is
given by Equations (3.23). The discrete part of £{3.1) is characterized by Dét & = -1,
and it is given by the space-time Isoinversions [loc. cit.)

Fex =wx = -r.xY), Fex = 1x ={r,-x). {359)

Again, under the assumed conditions for T, the convergence of infinite
series (3.58) is ensured by the original convergence, thus permitting the explicit
calculation of the symmetry transformations in the needed explicit, finite form.
Their space compoenents have been given in the preceding Section 3.E. The
additional Lorentz-Santilli isoboosts were explicitly computed for the first time in
[59], yielding the expression for afl possible isometrics §

x'laxl, x2=42 : (3.60a)

x'3= x3coshlviggzaas)?t] - x ggqlganggy) Fsinhlv(gagaug)il=

= ¥ x3 - gaa-I/Z 844“23 xd), (3.600)

x 4= -x3g33(g3304) Fsinh[v(g3ageq)?) + x*coshlv(ggagey)?]

= F(x4 - gas2gy 1288, (360¢)
where x? = Coth B =v/ic
B = Vk gkk Vk/CO g44Co {3.61a)

cosh{vigazga) il = ¥ =(1 - p2)H,
sinh{v{ggzgq)t] = B . (361b)
Again, one should note: {A) the unrestricted character of the functional

dependence of the isometric g; (B) the remarkable simplicity of the final results
whereby the explicit symmetry transformations are merely given by plotting the
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values g, in Equations (3.60); and (C) the generally nonlinear—nonlocal-
noncanonical character of the isosymmetry.

The isocommutation rules when the generators le are in their regular
representation can also be readily computed and are given by lloc. citl

3.0t My Mg = Bya May ~ §1a May = 88 Map * Bup May + (362
with fsocasimirs
0=, d =My, TMY = MeM - NN, (3.63a)
c® = VT M, TMyy = ~M*N, M =

= [Mg. Mg Mgy }, N = (Mg, Mgz, M3 {3.63%)

The classification of all possible isotopes $043.1) was also done in the original
construction 59 via the realizations of the isotopic element

T = diag. (£ b2 £ bg?, £ bg?, £bg?), by >0, (364)

where the s are the characteristic functions of the interior medium, resulting ir:
{1) The conventional orthogonal symmetry SO} for T = diag. (L, I, |, -1}
(2} The conventional Lorentz symmetry SO(3.1) for T = diag. {L, 1, 1, 1)
(3 ‘The conventional de Sitter symmetry S0(2.2) for T = diag. (I, I, =L, I}
(4) The isodual SO%4) for T = diag. (-1, ~1, =1, 1}
{5) The isodual 0%3.1) for T = - dtag. (1, 1, 1, 1}
(&) The isodual S0%2.2) for T = diag. (=1, =1, 1, —1)
(7) The infinite family of isotopes SO4) = SO(4) for T =
diag. (b2, by2 , b3 ~bg% }
(8) The infinite family of isotopes SO(3.1) =~ SO.1) for T =
dlag. (112, by? , bg? b )
(9) The infinite family of isotopes SX2,2) ~ S0(2.2) for T =
diag. (-b;2, bp? , b?, bg? )
(10)The infinite family of isoduats S0%4) ~ so%4) for T =
diag. { “b|2 . —b22 . —b32. b42 X .
{11) The infinite family of isoduals S0%3.1) ~ s0(3.1) for T
- diag. bi2 . b22 , b32 ' b42 k
(12) The infinite family of isoduals 50%2.2) ~ s0%2.2) for T

i}
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diag. { 2. -by? -bg? ~bg?)

On the basis of the above results, Santilli submitted the conjfecture that alf
simple Lie algebra of the same dimension over a field of characteristic zero in
Cartan classification can be unified into one single abstract isotopic algebra of the
samne dimension.

The above conjecture was proved by Santilli for the cases n = 3 and 6. A
theorem unifying all possible fields into the isoreals was proved by Kadeisvili et al
[26] in the expectation of such general unification. The conjecture has been recently
studied by Tsagas [124] for the non-exceptional case.

In the above presentation we have shown that the lifting of the Lorentz
symmetry can be naturally formulated for Class [I1. Nevertheless, whenever dealing
with physical applications, the isotopic element is restricted to have the posttive- or
negative-definite structure T = tdiag. (b 2 b22, b32, b42). thus restricting the
isotopies to S0(3.1) ~ SO@3.1) and s0%3.1} ~ so%3.1).

The operator realization of the latter Lorentz-Santiili isoalgebra is the
following. The linear four-momentum admits the isotopic realization [116]

purld> = -idyld> = -1 o ld>.

Also, for xy = Thvxv {where ) is the conventional Minkowski metric). one can show
that 3%, = iy, The fundamental relativistic isccommutation rules are then given
bylloc. cit.]

[Xu:W] =i fhy , [Xu:xp] = [pp:pvl =0,
The isocommutation rules are then given by
aa-l): E Mﬂy:‘NhB] = iﬁ\}aMB{.L-ﬁld MBV— ﬁvB Mal_l"'ﬁla Mau) y (3.62)

thus confirming the isomorphism SO.1) ~ SO(3.1) for all positive-definite T.
The Poincaré-Santilli ispsymmetry [79]

Pa.L = LBBxTE, (3.65)

and its isodual P%3.1) have been constructed in their classicat {114] and operator
[116] forms as well as in their isospinorial form #(3.1) = SL2.CT{3.1) [95]. We here
limit ourselves to a brief outline of the nonspinorial case mainly to {llustrate the
advances in the structure of isoalgebras and isogroups studied in this paper.
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A generic element of P(3.1) can be written A = (A, 3 ), A e {31}, 3¢ ™31
with isocomposition

=R =(£a)+(Ra)=(A=X,a+ Xea), (3.66)

The realization important for physical apptications is that via conventional
generators in their adjoint representation for a system of n particles of non-nuit
mass ma

X= {xk} = {Lﬂuy = Ea(Xaupav"xavpa“_].
P=Yapal.k=1,2.10, (3.67)

and conventional parameters w = {wy) = (v, 8, a), where v represents the Lorentz
parameters, 0 represents the Euler’s angles, and a characterizes conventional space-
time translations. .

The connected component of the isopoincaré group is given by

PaD: x = Aex, A=Tlger X" = (TTee "™k, (369

where the isotopic element T and the Lorentz generators Mpv have the same
realizatlon as for ({3.1). The primary different with isosymmetries 0{(3.1) 1s the
appearance of the isotranslations

NaDsx = {eeip"a!«x = eeipga]*x= x + 3, MaDep = 0. (369

Theorem 3.6 (General Poincare’~ Santilll Isogroup [95]: The ‘peneral
Poincaré-Santiili isogroup’ of Class I as characterized by the isotheory Is given

by the twelve-dimensional isotransforms

X" = Rex Lorentz-Santilli isotransf. , {3.70a)
X' = x+ ayBls,x % & ..), isotransl., (3.700)
x' = fioex = (-r,x%), spaceisotnv., {3 70c)
x' = fpex = (r,-x4), time isoinv. , {3.700)
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1->M=-1 § » ff=-n, isoselfduality (3.70€)
1 =Y =n0n?1, §§ » &= §/n? isoselfdilation. (3.70¢)

where the B-functions are given by the expansions
By = by + a%lty [P/ 11+ BBl (P 1]pgl/ 2+, (87D

isotransforms (3.70a)~(3.70d) are a direct consequence of the preceding
analysis. The last two isotransforms (3.70e} and {(3.70f) originate from the isoscalar
character of the line element, that is, its structure {x - y)z = nymberxisounit €
Rify+ ). tn fact, the same isotransforms cannot be deflned for the conventional Hne
element {x - y*= number € Rin,+x). Note that the isoduality and isodilation of the
unit do not exist for the conventional transform, and this explains the reason of
the transition from a ten- to a twelve-dimensional structure.

The operater realization of the Poincaré-Santilli isosymmetry is

characterized by the isocommutation rules
[Myp 'Mgg ! = 1(fyq Mgy ~ Ty May = Tig Mgy + g Mgy ), (3.722)
(Myy Pgl = i (T Py = ya Py )y
[Py Pyl = 0,v,a,B=1,234 (a720)

and the isocenter Is characterized by the isocasimirs

clo =1, D =p2oprp = ppgll"'pv, (3.73a)
d2 o w2 - Wy B W, (3.73b)
Wy = )P+ P, (3730)

The restricted isotransformatfons occur when the isotopic element T is constant.
An important application of the isotranslation is the characterization of the

so—called isoplane-waves on Mix,if)
Ay 2 - 2
Mxt = eElpx ~1e'P™ - 'Ieip”gu ¥ u e (PR *k ~ Pabe”xg)
(3.74)
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which are sotutions of the isotopic fleld eguations, represents electromagnetic
waves propagating within Inhomogeneous and anisotropic media such as out
atmosphere and offer quite intriguing predictions for experimentally verifiable
<novel> effects, that Is, effects beyond the predictive or descriptive capacities of
the Poincare symmetry.

As one can see, the verification of total conservation laws (for a system
assumed as isolated from the rest of the universe), is intrinsic in the very structure
of the isosymmetry. In fact, the generators are the conventional ones and, since
they are invariant under the action of the group they generate, they characterize
conventional tota! conservation laws. The simplicity of reading off the total
conservation laws from the generators of the isosymmetry should be compared
with the rather complex proof in conventional gravitational theories.

The isodual Poincaré-Santilli isosymmetry p43.1) is characterized by the
isodual generators Xkd == Xk. the isodual parameters wkd == wy , and the isodual
isotopic element 4= -T, resulting in the change of sign of isotransforms. This
implies a novel law of universal invariant under isoduality which essentially state
that any system which is invariant under a given symmetry is automatically
invariant under its isodual. [n turn, this law apparently permits novel advances in
the study of antiparticles [116], .

The significance of the Lie-Santilli isotheory for gravitation is ittustrated by
the following important property of the isosymmetry P(3.1) which evidently follows
from of Theorem 3.5

Theorem 3.7 (Unlversal Polncare - Santilli Isosymmetry) [95]: The general
Poincaré-Santilli isotransforms of Theorem 3.6 with Class III isounits x, x, 8, ..) =
T > 0 leave invariant all infinitely possible (3+1)-dimensional intervals with
isometrics wx, &, &, .3 =T, %, %, ...}m, where | is the Minkowski metric,

(x-yP =Hx-yHaas . dx-y V1, {3.75)

[t is an instructive exercise for the interested reader to verify that the
1sodistance (3.75) is indeed left invariant by all isotransforms (3.70).

As it is well known, each invariance of a space-time separation has
profound physical implications. In fact, Theorem 3.7 essentially characterizes a
covering of the special relativity for interior conditions worked out by Santilll at
the classicat [114] and operator [116] tevel, and known as Santilli’s isospecial
relativity.
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The latter is a covering of the conventicnal relativity because: 1} it applies
for much broader systems (nonlocal-integral and variationally nonselfadjoint
systems}, 2} it is constructed via structurally more general methods {the isotopic
ones), and 3 it contains the conventional relativity as a particular case for 1 = 1.

Yet, the two relativities coincide at the abstract level by conception and
construction for Class 1 1sotopies [114], [116] This uitimate identity of the special
and isospecial relativities assures the axiomatic consistency of the new relativity
because criticisms on the latter ultimately result to be criticisms on Einstein’s
theories.

To outline some of the main result and tmplications of the 1sospeciall
relativity, the Lorentz-Santilli iscsymmetry has numerous applications for interior
conditions, such as [116} direct representation of locally varying speeds of light

c=¢gu'? = ¢/ m,
where n is the ordinary index of refraction; exact-numerical representation of the
difference In cosmological redshift between quasars and their associated galaxies,
which is reduced to the decrease of the speed of light within the quasar’s huge
chromospheres; and several others in various fields.

The isoinversions permit the regaining of exact discrete symmetries when
conventionally broken, such as the regalning of the exact space—parity under weak
interactions by embedding the symmetry breaking terms in the Isounit.

The invariance under isoduality {isoselfduality} assures the consistency of
the isodual representation of antimatter, evidently because the same invariant hotds
identically for both matter and antimatter.

Moreover, the invariance under isotopic dilation (isoselfdilation) confirms
the direct representation of the locally varying character of the speed of light. For
instance, light propagating within homogeneous and Isotropic water Is represented
by the isotopic element T with elements g, = n®, The Isoinvariant then reduces
identicatly to the conventional invariant

x-yP = ((x-yﬁ‘(%/nz)(x-—y)””nzl) E
= (x-yFn,(x-yHFL
This permits the resolution of the problematic aspects of the special relativity in

water, such as the apparent violation of the principle of causality, or the violation
of the relativistic sumn of speeds {because the sum of two light speeds in water does
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not yield the speed of light in water for the conventional Lorentz symmetry, but
the sum Is correct for the Lorentz-Santilli isotransforms).

Rather intriguingly, the quantity n in isoinvariance (3.70f) is non-nuil but
otherwise arbitrary. Santilli's isospecial relativity therefore predicts in a natural
way that the speed of light is a local quantity which arbitrarily smaller or bigger
than the speed of light in vacuum. In fact, ¢ = c/n is smaller than ¢, in ordinary
media such as water, but it is predicted to be bigger than ¢, in other conditions,
such as in the hyperdense media inside hadrons or inslde stars. For all these aspects
and related references, see [118].

The above results are only the beginning of the tmplications of Theorem 3.7.
In fact, the implicatlons of Theorem 3.7 for gravitation alone are far reaching, and
we can only indicate thern here without treatment.

To begin, the theorem includes as particular cases the conventional
Riermnannian metric #fx, &, %, ..) = glx),. The Poincaré-Santilli isopsymmeltry therefore
provides the universal invariance of all infinitely possible exterior gravilation in
vacuum. More generally, Theorem 37 includes all infinitely possible signature—
preserving modifications of the Minkowski and Riemannian metrics for interior
problems. The simplicity of this universal invariance should aiso be kept in
mind and compared with the known complexity of other approaches to noniinear
symmetries. In fact, one merely plots the Sup elements in Isotransforms (3.45),
{3.60), (3.70) without any need to compute anything, because the invariance of
general separation (3.75) is ensured by the theorem. For numerous examples, see [95],
[116]

Moreover, Theorem 3.7 imptlies the unification of the special and general
relativities, {116]. After all, the unification is a necessary prerequisite for the very
achievement of the universal symmetry of gravitation. Santilli achieves the
unification by factorizing the Minkowski metric in any glven exterfor Riemannian
metric glx),

B = Ty, ' @77)

and then by embedding the gravitational isotopic element Tg{x) in the
gravitational isounit

Tgld = [Tbd I (3.78)

The Poincaré-santillj isosymmetry with the above isounit then evidently unifies the
general and special relativity.
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Note the necessity of the representation of gravitation in the
isominkowskian space N(%,fR), fx) = Tg b, 1o = [Tg,.(x)l"'. for the achievement
of such a unification. In fact, no isosymmetry can be formulated in Riemannian
spaces, as clear from the review of this section. This implies the formulation of
gravity in an isoflat space. [n fact, the space M(x,f,R), being an isotopy of the
Minkowski space, preserves the geometric properties of the latter, including
flatness, yet possesses the same metric as the Riernannian space, thus permitting a
novel characterization of gravity. :

Another implication of Theorem 3.6 is 8 novel quantization of gravity (1186]
which is based on the embedding of gravitation in the unit of relativistic quantum
mechanics without any need of a Hamiltonian In fact, the quantization is achieved
via the lifting of the four-dimensional Minkowskian unit I = diag. (L, 1, 1, 1)of
relativistic quantum mechanics into 15(x). As the reader can verify, the operator
treatment of the Poincaré-santilli isosymmetry reviewed above /s a quantum
version of gravity for 1lx, X, & ..} = 1g{). The commutativity of the linear
momentum, Eq.5 (3.7?b) confirms the novel achievement of a flat representation
of gravity in terms of the Riemannian metric which emerges as the structure
functions glx} = §| of Eqs (3.72).

The kotopic quantization gravity, called by Santili quantum-fso-gravity,
has itself rather deep implications. Recall that quantum gravity is afflicted by
serious problems of consistency, such as the lack of invariance of the unit with
consequential inapplicability to actual measures, the general lack of preservation of
Hermiticity in time with consequential lack of observables, etc. [116]. Quantum-
jso-gravity avoids all these problems ab imitio. In fact, the isotopies assure that
quantum-iso-gravity Is as axiomatically consistent as relativistic quantum
mechanics, After all, the two theories coincide at the abstract level because, from
the local Minkowskian character of gravity, Tg,(x) Is necessarily positive~definite.

Moreover, Theorem 3.7 predicts antigravity for elementary antiparticles in
the field of matter 861 [116). In essence, calculations show that the gravitational
force for antimatter-antimatter systems in vacuum characterized by P43.1) is
attractive in the same way as for matter-matter systems in vacuum
characterized by P{3.1). However, antimatter-matter systems in vacuum experience
a gravitational repulsion, because they are characterized by the profection of
PX3.1} in the space of P(3.1) {see [116] for details. Note that these results are derived
by the simplest possible case of Theorem 37, that in vacuum forl = [ and 1=,

Theorem 3.7 has even greater implications in cosmology, because it implies
a new conception of the universe called Santilli’s isocosmology [116], which is
based on the universal isosymmetry U = P,(3.1<0%(3.1) and implies that, at the limit
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of equal amounts of matter and antimatter, all total physical characteristics of the
universe are identically null, including null total energy, null total mass, null totat
time, etc.

This renders the act of creation of the universe more mathematically
treatable then the "big bang” and other models, because the total characteristics
remain null before and after the creation in Santilli's ispcosmology, while for the
“big bang” and other models we have the creating of the immensity of the universe
literalty fTrom "nothing” with evident large discontinuity at creation,

Recall that the Poincaré symmetry provides the invariance only of

relativistic classical and quantum systems. The significance of the Poincare-Santilli

Isosymmetry ts then illustrated by the fact that it provides the invariance of all
{well behaved) infinitely possible, linear or nonlinear, local or nonlocal, Hamiltonian
or nonhamiltonian, relativistic or gravitational, exterior or interior, classical or
operator, and local or cosmological systems.

3.G: Mathematical and physical applications. Lie’s theory is known to be
at the foundation of virtually all branches of mathematics. The existence of
intriguing and novel applications in mathematics originating from the Lie-Santilli
theory is then beyond scientific doubts.

With the understanding that mathematical studies are at their first infancy,
the isotopies have already identified new branches of mathematics besides
isoalgebras, isogroups and isorepresentations. We here mention: the new branch of
number theory dealing with isonumbers; the new branch of functional isoanalysis
dealing with isospecial isofunctions, isotransforms and isodistribution; the new
branch of topology dealing with the integro-differential topology; the new branch
of the theory of manifolg@ dealing with isomanifolds and their intriguing properties;
and so on, It is hoped that interested mathematicians will contributed to these
novel mathematical advances which have been identified and developed until now
mainly by physicists, except a few exceptions.

Lie's theory in its traditional linear-local-canonical formulation is also
known to be at the foundation of all branches of .ontemporary physics. Profound
physical implications due to the covering, nonlinear-nonlocal-noncanonical Lie-
Santilli theory cannot therefore be dismissed in a credible way.

With the understanding that these latter applications too are at the
beginning and so much remains to be done, we have recalied after Theorem 3.7
some of the implications of the isotheory. We refer the interested reader to
monographs [116], {118] for several additional applications and experimental
verifications in nuclear physics, particle physics, astrophysics, cosmology,
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superconductivity, theoretical biology and other fields.
The indication of existing contributions directly or indirectly related to the

topic of this paper would be appreciated.
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