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Lie-isotopic representation of stable nuclei
II: Exact and time invariant representation

of the Deuteron data
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Abstract

In the preceding paper, we have presented apparent insufficiencies of quan-
tum mechanics in nuclear physics To attempt a resolution of the indicated
insufficiencies, in this paper we present a systematic and upgraded out-
line of the axiom-preserving, time reversal invariant, Lie-isotopic branch
of hadronic mechanics for the characterization of stable nuclei via the rep-
resentation of the dimension, shape and density of protons and neutrons
in the experimentally measured conditions of partial mutual penetration in
a nuclear structure, with ensuing potential-Hamiltonian and contact non-
Hamiltonian terms in nuclear force. We show that the Lie-isotopic methods
allow a numerically exact and time invariant representations of all Deuteron
data in the ground state without orbital contributions. We finally show that
said representations are primarily due to the violation by Lie-isotopic meth-
ods of Bell’s inequalities with explicit and concrete realizations of Bohm’s
hidden variables, as well as to the completion of Heisenberg’s uncertainty
principle for point-like particles in vacuum under electromagnetic interac-
tions into the isouncertainty principle of hadronic mechanics for extended
nucleons in condiitons of partial mutual penetration allowing a progressive
recovering of Einstein’s determinism under strong interactions up to its full
recovery at the limit of Schwartzschild’s horizon.
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1 Introduction

1.1. Experimental foundations
Inspired by the 1935 historical argument by A. Einstein, B. Podolsky and N.
Rosen (EPR) that Quantum mechanics is not a complete theory [1] (see also recent
studies [2] [3] [4]), in the preceding paper [5] (herein referred to with the prefix
I), we have presented apparent insufficiencies of quantum mechanics in nuclear
physics with particular reference to the prohibition by Heisenberg’s uncertainty
principle for point-like particles in vacuum to achieve a quantitative representa-
tion of the neutron synthesis from the Hydrogen in the core of stars, Eq. I-3) and
of other nuclear data (Sect. I-2).

In this paper, we attempt a resolution of the indicated insufficiencies based on
the rather dramatic physical differences between atomic and nuclear structure. In
fact, atomic structures can be well approximated as being composed by point-like
constituents in vacuum under sole action at a distance, thus potential interactions
and ensuing exact validity of quantum mechanics.

By comparison, experimental evidence [6]-[? ] establishes that nuclei are
composed by extended protons and neutrons (collectively called nucleons) in con-
ditions of partial mutual penetration when they are members of a nuclear struc-
ture. As an example, the charge radius of the Helium-4 DHe = 1.67 fm [9] is
0.07 fm smaller then the diameter of the proton DN = 1.74 fm [11]. Conse-
quently, the charge distributions of the four nucleons composing the Helium-4 are
in conditions of 0.07 fm mutual penetration of their dense structure, with gener-
ally increasing values for heavier nuclei.

The latter conditions imply the expectation that nuclei are composed by ex-
tended constituents under conventional action at a distance, thus Hamiltonian in-
teractions, plus basically new contact, thus zero range and non-Hamiltonian inter-
actions outside any possible representation by quantum mechanics with ensuing
need for its suitable completion.

1.2. Hamiltonian interactions
We are collectively referring to interactions that are linear, local and derivable
from a potential, thus being fully representable by the conventional Hamiltonian
of quantum mechanics (Sect. 2).

1.3. Non-Hamiltonian interactions
We are collectively referring to interactions that are: Nonlinear (in the wave func-
tion) as pioneering by Werner Heisenberg [13]; Nonlocal (distributed in a volume
not reducible to points) as pioneered by Louis de Broglie and David Bohm [14];
Nonpotential (of contact zero-range type) as pioneered by R. M. Santilli in the
1978 Harvard University monograph [15] via the conditions of variational self-
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adjointness according to which Hamiltonian interactions are variationally selfad-
joint (SA ), while non-Hamiltonian interactions are variationally nonselfadjoint
(NSA) (Sect. I-3).

1.4. Hadronic mechanics
In this paper, we shall outline and update the EPR completion of quantum into
hadronic mechanics, first introduced by R. M. Santilli in the 1983 second vol-
ume [16] for the representation of extended nucleons under Hamiltonian/SA and
non-Hamiltonian/NSA interactions in such a way to preserve the basic axioms of
quantum mechanics at their abstract level, according to the following two primary
branches:

TIME REVERSIBLE LIE-ISOTOPIC BRANCH OF HADRONIC MECHANICS
studied in this paper, which was introduced in Charts 5.2, 5.3 and 5.4, p. 165 on
of [16] and comprises the axiom-preserving isomathematics (Sect. 3) and isome-
chanics (Sect. 4) for the representation of stable (thus, time-reversal invariant)
systems of extended particles at short mutual distances under Hamiltonian/SA and
non-Hamiltonian/NSA interactions. The Lie-isotopic methods are based ion the
generalization oi the conventional associative product AB = A × B of generic
quantities into the associativity-preserving form A×̂B = AT̂B, T̂ > 0 (first pre-
sented in Eq. (5), p. 71 of [16]) where T , called the isotopic element (and at times
the Santillian) is positive-definite but possesses otherwise an unrestricted func-
tional dependence on all needed local variables, with ensuing Lie-isotopic gener-
alization of Heisenberg equation idA/dt = A×̂H −H×̂A = AT̂H −HT̂A (Eq.
(18a), p. 153 of [16]) where the Hamiltonian H represents all SA interactions
and the Santillian T̂ represents the extended character of particles and their NSA
interactions.

TIME IRREVERSIBLE LIE-ADMISSIBLE BRANCH OF HADRONIC MECHAN-
ICS introduced in Chart 5.1, p. 148 on of [16] which comprises genomathematics
and genomechanics. Lie-admissible formulations are intended to achieve an ax-
iomatization of irreversibility by restricting all associative products AB = A×B
to be ordered to the right A > B = AŜB, Ŝ > 0 (left A < B = AR̂B, R̂ > 0)
for motion forward (backward) in time. Irreversibility is then assured for R̂ ̸= Ŝ
(for technical details, see the 1981 paper [17] from Harvard’s Department of
Mathematics). The basic dynamical equation is given by the Lie-admissible gen-
eralization of Heisenberg’s equations (Eqs.(19a), p. 153 of [16]) idA/dt =
(A,H) = A < H − H > A = AR̂H − HŜA which admits the Lie-isotopic
case for R̂ = Ŝ = T̂ > 0 and, for the particular case R̂ = 1, Ŝ = 1 − F/H ,
assumes the form idA/df = (AH −HA) + FA, by therefore providing the first
known operator realization of Lagrange’s and Hamilton’s external terms F for
the representation of irreversibility in their celebrated analytic equations. Lie-
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admissible methods are suggested for the axiomatically consistent representation
of controlled nuclear fusions and other irreversible processes to be studied in sub-
sequent papers.

For advances on hadronic mechanics that occurred during the past decades,
the interested reader can inspect: the final classification of hadronic mechanics
(including the additional hyperstructural branch for biological structures and the
isodual branch for antiparticles) [18]; the collection of papers [19]; the list of early
workshops and conferences [20]; independent studies [21]-[29]; and the general
presentation [30] [31] [32].

1.5. EPR entanglement
Experimental evidence known since Einstein’s times establishes that particles,
which are initially bounded together and then separated, can influence each other
continuously and instantaneously at arbitrary distances [33]. Albert Einstein stron-
gly objected against the terms ”quantum entanglement” on grounds that the sole
possible representation of particle entanglements via the Copenhagen interpre-
tation of quantum mechanics would require superluminal communications that
violate special relativity.

For the intent of honoring the generally forgotten Einsteins view, R. M. Santilli
[34] proved that the sole possible representation of particle entanglement by the
Copenhagen interpretation of quantum mechanics is that the particles are free,
evidently because the sole possible interactions admitted by said interpretation
are those derivable from a potential which is identically null for particles at large
mutual distances.

By recalling that the wave packet of particles is identically null solely at infi-
nite distance, Ref. [34] then pointed out that the sole interactions that are contin-
uous, instantaneous and at arbitrary distances are given by the mutual penetration
of wave packets of particles which, being NSA [15], are beyond any hope of treat-
ment via quantum mechanics.

Thanks to the prior development of isomathematics for the representation of
nonlinear, nonlocal and NSA interactions [26] [29] [30], Santilli [34] proposed
the axiom-preserving completion of quantum into hadronic entanglement under
the suggested name of EPR entanglement which does indeed provide a quantita-
tiverepresentation of particle entanglements without superluminal speeds via con-
tact, nonlinear, nonlocal and non-Hamiltonian, thus NSA interactions between the
wave packets of entangled particles (Fig. 1).

Einstein’s entanglement has intriguing implications for the studies presented
in this paper, such as:

1.5.A) A new conception of nuclei as hadronic bound states of extended nu-
cleons in condition of deep entanglement that persists following nuclear fission or
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fusion.
1.5.B) A new conception of computers based on isomathematics, which has

been suggested under the name of EPR computers [35], with: increased energy ef-
ficiency because NSA interactions carry no potential energy; better cybersecurity
(Sect. 3.5) and faster computations (Sect. 4.6).

1.5.C) A new conception of continuous and instantaneous interactions that, in
view of the recent detection of entanglement at classical distances [36], is here
suggested as a possible realization of the fifth interaction (see also Ref. [37]. Its
lack of identification to date is easily explained by the fact that the EPR entangle-
ment cannot be conceived, let alone treated via quantum mechanics.

1.6. Bell’s inequalities
In the 1950’s, J. S. Bell [38] proved a number of quantum inequalities, the first
one of which essentially states that systems of (point like) particles with spin
1/2 represented via quantum mechanics do not admit classical counterparts. This
view was assumed by mainstream physicists for over half a century to be the
final disproof of the EPR argument, and to establish the validity of Heisenberg’s
uncertainty principle for all possible particle conditions existing in the universe.

Again thanks to the prior development of isomathematics, R. M. Santilli [39]
proved in 1998 a number of hadronic inequalities essentially stating that systems
of extended particles with spin 1/2 represented via the Lie-isotopic branch of
hadronic mechanics do indeed admit classical counterparts, while providing ex-
plicit examples. Santilli’s hadronic inequalities are confirmed by experiments [40]
[41] [42] establishing the existence in nature of particle conditions which violate
Bell’s inequalities (see also experiments [7]-[19] of Paper I).

A deeper understanding of this paper requires the knowledge that the theo-
retical [39] and experimental works [40] [41] [42] disproving Bell’s inequalities
imply the expectation that Heisenberg’s uncertainties principle is correspondingly
violated by strong interactions between extended nucleons in conditions of mutual
penetration.

1.7. Einstein’s isodeterminism
Soon after joining the faculty of Harvard University under DOE support in late
1977, R. M. Santilli expressed doubts on the exact validity for strong interactions
of Heisenberg’s uncertainty principle and other basic quantum mechanical laws,
as one can see from the titles of the 1978 introductory memoir on hadronic me-
chanics [43] (see also the subsequent papers [44] [45]). The argument underlying
such a conviction is that the standard deviations for coordinates ∆r, momenta ∆p
and their product are certainly valid for the conditions of their original conception,
i.e., for point-like charged particles under electromagnetic interactions, because
a point-like particle can move within a star by solely sensing action-at-a-distance
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interactions due to their dimensionless character.
The situation is conceptually, mathematically, theoretically and experimen-

tally different when considering extended nucleons in conditions of mutual pen-
etration because, in view of their ’strength’, their strong interactions imply the
emergence of a pressure created on a given nucleon by its surrounding nucleons
(Fig. 3) according to a view pioneered by L. de Broglie and D. Bohm with their
nonlocal theory [14]. It is then evident that the standard deviations for the in-
dicated nucleon ∆r and ∆p cannot be the same as the corresponding standard
deviation for an electron in vacuum, thus implying the need for a suitable comple-
tion of Heisenberg’s uncertainty principle for strong interactions.

Thanks to works written at Harvard University in the late 1970’s [43] [44] and
the recent works [45] [34] [39], R. M. Santilli [46] finally achieved the axiom-
preserving, EPR completion of Heisenberg’s uncertainty principle for point-like
particle under electromagnetic interactions into the isouncertainty principle for
extended nucleons under electromagnetic, weak and strong interactions collec-
tively called Einstein’s isouncertainies (see Sect. 4.7 for its formulation), which
new principle essentially states that Einstein’s determinism [1] is progressively
recovered with the increase of the density in the interior of hadrons, nuclei and
stars and fully recovered at the limit of Schwartzschild’s horizon.

Ss known to experts, despite one century of studies under large public funds,
nuclear physics has been unable to achieve exact representations of nuclear data,
the synthesis of the neutron from the Hydrogen atom in the core of stars, nuclear
stability despite the natural instability of the neutron and extremely repulsive pro-
tonic Coulomb forces and other open problems.

A main point which is attempted to convey in this and in the next paper is that
the indicated open nuclear problems appear to be due to the theoretical assump-
tion that Heisenberg’s uncertainty principle for point-like particles under electro-
magnetic interactions is also valid for extended nucleons under strong interac-
tions. However, in view of the lack of any direct experimental verification, said
assumption is a personal view by the individual physicist, while the indicated open
problems deal with clear physical evidence, by therefore suggesting the need for
collegial mathematical, theoretical and experimental studies on the uncertainties
of nucleons in a nuclear structure as a necessary premise for advances in the re-
cycling of radioactive nuclear waste, controlled nuclear fusions and other clear
societal needs.

1.8. Bohm hidden variables
From the preceding outline one can see that Bohm’s hidden variables [48] [49] are
hidden in the associative axiom of quantum mechanics with generic realization in
terms of the Santillian λ = T, A×̂B = AλB, A×̂(B×̂C) = (A×̂B)×̂C.

It should be noted that, despite its apparent elementary character, the quantita-
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tive study of the indicated realization of Boh’s hidden variables required nonlocal
lifting of 20-th century applied mathematics, including the Newton-Leibnitz dif-
ferential calculus [50] (see also studies [29]). A preliminary realization of Bohm’s
hidden variables has been presented in Sect. 4.C.3, p. 170 on and Sect. 6.8, p. 254
on of [31] (see Sect. 5.5 for details). Additional explicit and concrete realizations
of Bohm’s hidden variables have been presented in Refs. [51] [52].

The deterministic interpretation of Bohm’s hidden variables resulted to be pro-
gressive [46] because dependent on the density of a composite strongly interacting
system represented by the isotopic element T̂ which becomes null for gravitational
collapse under which nucleons are essentially frozen in their position with identi-
cally null standard deviations ∆r ≡ 0, ∆p ≡ 0 due to the immense surrounding
pressures. (see Sect. 4.7 for details).

1.9. Simple construction of hadronic models
On pedagogical grounds, the main objectives of this paper are:

1.A) Show that quantum mechanical models for point-like nucleons with sole
Hamiltonian interactions can be mapped via simple nonunitary transformations
into covering hadronic models for extended, deformable and hyperdense nucleons
under Hamiltonian and non-Hamiltonian interactions.

1.1.B) Show that, when formulated on quantum mechanical spaces over con-
ventional fields, said nonunitary models are afflicted by serious consistency prob-
lems, such as the lack of conservation of the Hermiticity/observability, lack of
prediction of the same numerical values at different times, loss of causality and
others (Sect. 3.11).

1.C) Show that, the indicated inconsistencies are resolved when said quan-
tum mechanical nonunitary models are reformulated into hadronic models on
isospaces over isofields (3.12).

In this paper, we shall: review the main axiomatic structure of quantum me-
chanics; outline and upgrade the foundations of the axiom-preserving isomath-
ematics and isomechanics; and then show that the resulting Lie-isotopic meth-
ods, including above all Einstein’s isodeterminism presented in Sect. 4.7 [46],
allow the first known numerically exact and time invariant representation of the
Deuteron experimental data in a form expectedly extendable to other stable nuclei.

2 Axiomatic foundations of quantum mechanics

In this section, we recall a few axiomatic aspects of quantum mechanics that are
relevant later on for comparison with their corresponding axiom-preserving com-
pletion.

As it is well known (see, e.g., Refs. [53] [54] [55], nuclear physics has
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been based since its inception on the universal enveloping associative algebra
ξ : {A,B, ...;AB,= A × B; 1} of Hermitean operators A,B, ... on a Hilbert
space H with states |ψ(r) > over the field of complex numbers C with conven-
tional associative product

AB = A×B, (1)

and unit
1× A = A× 1 = A ∀ A ∈ ξ. (2)

In fact, the above basic axioms are sufficient to characterize, uniquely and un-
ambiguously, all quantum mechanical methods used in nuclear physics including:

2.1) The representation of stable nuclei via a primitive, k-dimensional space-
time or internal Lie symmetry with anti-symmetric Lie algebra attached to the
enveloping algebra L ≡ ξ− with commutation rules for Hermitean generators
Xk = X†

k, k = 1, 2, ..., N

[Xi, Xj] = XiXj −XjXi = Ck
ijXk, (3)

including the rotational symmetry SO(3), the spin symmetry SU(2), the Lorentz
symmetry SO(3.1), the Lorentz-Poincaré symmetry P (3.1), the spinorial cover-
ing of the Poincaré symmetry P(3.1), and others.

2.2) The infinite class of equivalent nuclear models under the unitary law

UU † = U †U = I = Diagk×k(1, 1, ..., 1). (4)

2.3) Heisenberg’s representation of the time evolution of a Hermitean operator A
in terms of the Hamiltonian H here expressed in the infinitesimal and its unitary
finite form

idA
dt

= [A,H] = A×H −H × A,

A(t) = eH×t×i × A(0)× e−i×t×H = W (t)A(0)W †(t),

WW † = W †W = I.

(5)

2.4) The unitarily equivalent Schrödinger representation of the time evolution of
A on a Hilbert space H with states |ψ(r)⟩ over the field of complex numbers C

⟨ψ(r)|ψ(r)⟩ = I,

< ⟨ψ(r)H|ψ(r)⟩ =< ⟨ψ(r)|Hψ(r)⟩∗,

H × |ψ(r) >= [ 1
2m
δijpi × pj + V (r)]× |ψ(r) >= E × |ψ(r) >,

p× |ψ(r)⟩ = −i∂r|ψ(r)⟩,

[ri, pj]× |ψ(r)⟩ = −iδij, [ri, rj]× |ψ(r)⟩ = [pi, pj]× |ψ(r)⟩ = 0.

(6)
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2.5) The important prediction of the same numerical values under the same condi-
tions at different times (hereon called time invariance), which is evidently due to
the unitary structure of time evolutions (5) (6) with ensuing invariant of numeric
values, e.g.,

1 → 1′ = U1U ≡ 1. (7)

2.6) The perturbation theory based, e.g., on power series

A(t) = A(0) + w × [A,H]

1!
+ w2 × [[A,H], H]

2!
+ .... (8)

2.7) The remaining well known methods used for a century in the quantum me-
chanical study of nuclear physics.

3 Elements of isomathematics
3.1. Historical notes
On September 8, 1977, R. M. Santilli joined the Lyman Laboratory of Physics
of Harvard University with a research contract from the Department of Energy
(DOE) to search for possible new clean forms of nuclear energies. To conduct
this task, Santilli requested authorization from the DOE to initiate the research
with the study of the most fundamental fusion in nature, that of the neutron from
the Hydrogen atom in the core of stars [56], (the inability by quantum mechan-
ics to provide any quantitative representation of the neutron synthesis despite the
extremely big e−p Coulomb attraction) was identified as part of this initial study.

The origin of the insufficiency was identified with the need to represent the
charge distributions of the proton as being extended. The admission of the ex-
tended character of particles then implied Insufficiency I.2.1 (the expectation at
short mutual distances of non-Hamiltonian interactions 1.3, Fig, I.1), which ex-
pectation is essentially implied by Rutherford’s ”compression” [56] of the elec-
tron within the hyperdense proton. The analysis essentially confirmed the EPR
argument [1] because a quantitative representation of the neutron synthesis was
beyond any hope of achievement via quantum mechanics, thus leaving no other
possibility than that of constructing a suitable completion.

Since the task was of primary mathematical nature, Santilli was moved in
1979 from the Lyman Laboratory of Physics to the Department of Mathematics
of Harvard University (see, e.g., paper [17]) where he proposed the completion
of quantum mechancs into hadronic mechanics [16] (to indicate its intended use
for strong interaction), under the challanging intent of maintaining the abstract
axioms of quantum mechanics despite the admission of non-Hamiltonian interac-
tions.
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Figure 1: In this figure we illustrate the notion at the foundation of the studies presented
in these papers, which is given by the ”Einstein-Podolsky-Rosen (EPR) entanglement of
particles” when interpreted as being due to the continuous and instantaneous overlapping
of the wave packets of particles at arbitrary mutual distance [34], with resulting nonlin-
ear, nonlocal and nonpotential interactions whose representation required the construc-
tion of the new isomathematics, isomechanics and isosymmetries (see also the overview
[3]).

3.2. The birth of isomathematics
As it is well known, Lie’s theory (see, e.g., Ref. [57] and works quoted therein)
has acquired a justly historical value for the representation of point-like parti-
cles under sole Hamiltonian interactions, such as the representation of the spin
S = 1/2 of atomic electrons via Pauli’s matrices, and the consequential exact rep-
resentation of the magnetic moment of the electron via the giromagnetic factor,
µ = gS.

By contrast, Lie’s theory appears to be excessively restrictive in nuclear physics
due to its inability to represent the extended character of nucleons and their ex-
pected non-Hamiltonian interactions, with consequential insufficiencies studied in
Paper I. At the same time, the numeric value 1/2 of the spin of nucleons is beyond
scientific doubt. Hence, the problem addressed by Santilli in the late 1970’s was
that of identifying a completion of Lie’s theory for the representation of extended
particles under Hamiltonian and non-Hamiltonian interactions while preserving
conventional spin values.

To achieve the intended needs, Santilli proposed in Eq. (5) p. 71 of the 1983
Springer-Verlag monograph [16] the completion (also called lifting) of the univer-
sal enveloping associative algebra ξ{A,B, ...;AB = A× B; I} (Sect. 2) into the
associativity-preserving, thus isotopic envelope ξ̂ characterized by the new prod-
uct called the isoproduct (first introduced in Eq. (5), p. 71, and then studied in
details from Sect. 5.1, p. 148 and Sect. 5.2 of [16])

A×B → A×̂B = AT̂B, T̂ > 0, (9)
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with related new unit, called the isounit

ℏ = 1 → Î = 1/T̂ , Î×̂A = A×̂I = A, ∀A ∈ ξ̂, (10)

where the isotopic element T̂ , at times called the Santillian, is solely restricted
by the condition of being positive-definite T̂ > 0, while admitting an arbitrary
functional dependence on the relative coordinate r, momentum p, acceleration a,
energy E, charge radius R, density d, pressure π, temperature τ wave function ψ,
and any other needed local variable (Fig. 3),

T̂ = 1/Î = T̂ (r, p, a, E,R, d, ψ, π, τ, ψ, ...) > 0, (11)

which dependence is hereon tacitly assumed.
The reader should be unformed that the generalization of the basic unit of

quantum mechanics, ℏ = 1, into a nonlinear, nonlocal and nonpotential opera-
tor Î = 1T̂ intends to represent the possible ack of quantized energy exchanges
within a nuclear structure in favor of rather complex integro-differential energy
exchanges, as expected for extended nucleons in conditions of mutual penetration
(see Sect. 3.12 for more comments, experimental works [47] and papers quoted
therein).

3.3. The Lie-isotopic theory
Despite its simplicity, isotopic completion (9) of associative product (1) has re-
quired, for consistency, a compatible isotopic completion of the totality of 20th
century applied mathematics (with no exception known to the author) into the
novel isomathematics [15] [16] (see monographs for physicists [28] [30] and those
for mathematicians [26] [29]) whose knowledge is essential to avoid structural in-
consistencies in isotopic nuclear models that may remain unknown to non-experts
in the field.

To begin a brief outline of the isomathematics implied by basic axiomatic
assumptions (9) and (10), in Chapter 5, p. 148 on of [16] Santilli constructed
the step-by-step isotopies of the various branches of Lie’s theory, including the
isotopies of the universal enveloping associative algebras (Sect. 5.2), Lie algebras
and Lie’s Theorems (Sect. 5.3), Lie groups and the Lie transformation theory
(Sect. 5.4), resulting in the Lie-isotopic theory, today known as the Lie-Santilli
isotheory [22] [58] [59], with generic isocommutation rules for a k-dimensional
isoalgebra with iso-Hermitean generators

[Ji,Jj] = Ji×̂Jj − Jj×̂Ji = JiT̂ Jj − JjT̂ Ji =

= Cijk(r, p, a, E,R, d, ψ, π, τ, ψ, ...)Jk.
(12)

Lie-Santilli isoalgebras are nowadays classified into [60]: regular isoalgebras
when the structure quantities Ck

ij are constant, and irregular isoalgebras when
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said structure quantities are functions of local variables. As we shall see in Sect.
3.11, regular isoalgebras can be easily constructed via nonunitary transformations
of the original Lie algebras, while irregular isoalgebras cannot, by therefore con-
stituting new realizations of Lie’s axioms which remain vastly unexplored to this
day.

It should be noted since these introductory words that the above assumptions
have permitted various explicit and concrete realizations of Bohm’s hidden vari-
ables λ [48] (Sect. 1.8). Such a realization is known to be impossible for the
Copenhagen interpretation of quantum mechanics, but it becomes possible for iso-
mathematics because Bohm’s variable are hidden in the axiom of the associative
product of quantum mechanics [31]

λ = T̂ ,

A×̂(B×̂C) = Aλ(BλC) = (A×̂B)×̂C = (AλB)λC.

(13)

The time invariant and numerically exact representation of nuclear data presented
in Sect. 5 is a direct consequence of the capability of isomathematics (and, there-
fore, of isomechanics) to represent Bohm’s hidden variables.

It should also be noted that isoproduct (9) assures that hadronic mechanics
is outside the infinite class of unitary equivalence of quantum mechanics (be-
cause the new product AT̂B cannot be obtained via a unitary transformation of
the original product AB). Despite that, isoproduct (9) does preserve the ”majestic
axiomatic structure of quantum mechanics” indicated in Sect. I.1.

3.4. Representation of extended particles and their non-Hamiltonian interac-
tions
The main objective of the isotoopic element T̂ > 0 is that of resolving axiomatic
insufficiencies I-3.1, I-3.2 and I-3.3 of quantum mechanics in nuclear physics,
(namely, its linear, local and potential character) via its representation of nonlin-
ear, nonlocal and nonpotential/NSA interactions among extended nucleons.

The representation was initiated by Newton’s historical conception of velocity-
dependent resistive, thus nonpotential forces which were then represented by La-
grange and Hamilton via the external terms in their analytic equations.

As indicated in Sect. 1, particle interactions nonlinear in the wave function bur
represented with a Hamiltonian were initiated by W. Heisenberg [13]; interactions
occurring in volumes not reducible to points but also represented with a Hamil-
tonian were initiated by L. de Broglie and D. Bohm [14]; nonlinear and nonlocal
interactions not representable with a Hamiltonian were initiated by R. M. Santilli
in the1978 Harvard University monograph [15] via their technical characterization
as being variationally non selfadjoint (NSA).
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The first known application of NSA interactions in particle physics occurred
in Santilli’s 1978 memoir [43] via an isotopic element of the simple type

T̂ = e−
F̂ (r)
F (r) , F̂ (r) > 0, F (r) > 0, (14)

where F̂ (r) (F (r)) are positive-definite, generally nonlinear and nonlocal func-
tions of relative coordinates r representing NSA (SA) forces in the Schrödinger-
Santilli isoequation H×̂|ψ̂⟩ = HT̂ |ψ̂⟩ = E|ψ̂⟩ (see Sect. 4.3 for the full repre-
sentatiion).

Despite its simplicity, isotopic element (14) allowed the first known represen-
tation of all characteristics of the π0 meson, the µ± lepton and other particles
(including the mechanism for their spontaneous decay and the representation of
their mean lives) via hadronic structure equations of physical constituents, elec-
trons and positrons, produced free in the spontaneous decay with the lowest modes
(Sect. 5.1, p. 827 on of Ref. [43]).

The isotopic element for the joint representation the extended character of
particles and their non-Hamiltonian/NSA interactions adopted in these papers is
given by the (contravariant) form [3]

T̂ = T̂4×4 = Πα=1,2,3,4


1

n2
1,α

0 0 0

0 1
n2
2,α

0 0

0 0 1
n2
3,α

0

0 0 0 1
n2
4,α

× e−Γ(r,p,a,R,d,ψ,ψ̂,...) > 0,

nµ,α > 0, Γ > 0,
(15)

wqhere
3.4.A) The representation of the dimension and shape of the particle is done

via semi-axes n2
k,α, k = 1, 2, 3 (with n3 parallel to the spin) with normalization

for the vacuum n2
k,α = 1 (Fig. 2).

3.4.B) The representation of the density is done via the characteristic quantity
n2
4,α per individual nucleons with normalization for the vacuum n2

4,α = 1.
3.4.C) The representation of the nonlinear, nonlocal and nonpotential interac-

tions between extended particle is done via the exponential term eΓ(ψ,...) generally
realized in terms of volume integrals, as we shall see in Sects. 3 and 4.

3.4.D) When representing nucleons and their NSA interactions, the dimension
of the ellipsoids is restricted not to surpass the range of strong interactions R =
1 fm = 10−13 cm.

3.4.E) When considering fifth interactions (Sect. 1.5.C), the dimension of
the particle is generally assumed to be infinite so that isointegrals [30] [29] yield
measurable predictions.
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Figure 2: In this figure, we illustrate the second fundamental notion of these studies,
the implementation of the nonlocality advocated by Einstein-Podolsky-Rosen [1] via the
representation of protons and neutrons (nucleons) as being extended, thus deformable
charge distribution that, as such, can be prolate or oblate ellipsoids [3].

The reader should keep in mind that the isotopic element for covariant nuclear
models is the inverse of contravariant isotopic element (15), thus have a positive
value in the exponent.

3.5. Isonumber theory
The formulation of experimental values of isotopic nuclear models over the con-
ventional field of real numbers R(n,×, 1) implies the loss of their invariance over
time because the conventional unit 1 of the theory is no longer invariant under the
nonunitary transformations of hadronic mechanics, 1 → 1′ = W1W † ̸= 1, with
the consequential loss of the base field over time and the invalidation of experi-
mental measurements.

In order to maintain the crucial time invariance of isotopic numeric predic-
tions, it has been necessary to complete the conventional number theory into a
form applicable for arbitrary, positive-definite isounits Î > 0. This completion
was achieved by Santilli in the 1993 memoir [61] (see independent studies [25]
[62]) via the notion of isofields F̂ (n̂, ×̂, Î) for which the infinite family of rings
with elements n̂, called isoreal, isocomplex or isoquaternionic isonumbers, char-
acterized by the ordinary product of conventional numbers n times a given isounit
Î

n̂ = n× Î , (16)

when equipped with isoproduct (9)

n̂×̂m̂ = (nÎ)T̂ (mÎ) = (nm)Î ∈ F̂ , (17)
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verify all axioms of a numeric field, thus being fully acceptable for experimental
values.

Predictably, all conventional operations with numbers should be replaced, for
consistency, with the compatible operations for isonumnbers, such as (see [30] for
details)

n̂2̂ = n̂×̂n̂ = (n2)Î , n̂/̂m̂ = n̂(/Î)m̂, n̂
ˆ1/2 = n1/2Î , etc. (18)

In essence, Santilli discovered that the abstract axioms of a numeric field do
not necessarily require that the multiplicative unit be the millenary unit 1 since
said axioms merely require that the multiplicative unit be invertible and it is here
assumed to be positive definite for isotopic theories.

It should be noted that the primary difficulty in using isonumbers in nuclear
physics is of conceptual, rather than of mathematical nature because from realiza-
tions (15), isonumbers represent volumes, as expected for the needed representa-
tion of extended nucleons at all levels of study, thus including the number theory.
For example, the isoreal isonumbers for the nonrelativistic representation of one
nucleon are given by the following volumes on isospaces over isofields which,
when projected into the Euclidean space, acquire the meaning of volumes (Fig. 2)

n̂ = n×Diag.(n2
1, n

2
2, n

2
3), (19)

although, on grounds of abstract axions, there is no difference between n and n̂
due to the positive-definiteness of the isounit.

The isonumbers for a nucleus with A nucleons are given by the following
collection of overlapping volumes

n̂ = n× Πα=1,2,...,ADiag.(n
2
1,α, n

2
2,α, n

2
3,α). (20)

It should also be noted that the implications of Santilli’s isonumber theory are
not trivial. As an illustration, consider the isoreal isofield F̂ (n̂, ×̂, Î) for which
Î = 3 ∈ F . In this case 2×̂3 = 2 and

1̂ = 3, 2̂ = 6, 3̂ = 9, 5̂ = 15, 7̂ = 21, etc., (21)

by therefore suggesting that the numeric values of prime numbers depend on the
selected multiplicative unit.

The above reformulation of prime numbers is not trivial because it has permit-
ted the development and use of isocryptograms, (Appendix 2C, p. 84 of Ref. [30])
consisting of conventional cryptograms reformulated via isomathematics with a
change of the unit such to require infinite time for the solution by hackers (see
also Ref. [63]).
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Figure 3: In this figure, we illustrate a third basic notion of these studies, which is given
by the representation in the nuclear force of pressure, density, temperature and other
measurable quantities for nuclei conceived as physical media (generally called ’hadronic
media’) [31].

3.6. Isofunction analysis
In quantum mechanics, all scalar quantities must have values in an ordinary field
F . Corresponding quantities of isotopic theories must be isoscalar, that is, they
must have values in the isofield F̂ . This means that all functions used in 20th cen-
tury physics must be replaced by suitable isofunctions whose study was initiated
with the isoexponential isofunction (Eq. (55), p. 171, Ref.[16])

êX = Î +X +X×̂X/1̂! + ... = (eXT̂ )Î = Î(eT̂X). (22)

Consequently from definition (16), ordinary coordinates r = (x, r, z) repre-
senting a point of the 3-dimensional Euclidean space are mapped into iso-coordinates
representing volumes

r̂ = r × Î = r ×Diag(n2
1, n

2
2, n

2
3). (23)

This implies that Newtonian massive points r are replaced by massive volumes r̂
(Fig. 2).

Similarly, functions f(r) of local coordinates r must be completed into iso-
functions f̂ of isocoordinates r̂, and in addition, have values in F̂ , thus suggesting
the structure

f̂(r̂) = [f(r̂)]Î . (24)

Interested readers should be aware that the elaboration of isotopic nuclear
models studied in these papers requires the use of isotrigonometric, isohyperbolic
and other isofunctions that cannot be reviewed here for brevity (see monographs
[30] [31] and Refs. [64]-[66]).

79



Exact Lie-isotopic representation of the Deuteron data

Figure 4: This picture illustrates the isodifferential calculus [50] with birds flying in
close formation without wing interferences. This flying formation can be best understood
by assuming that birds conceive themselves as a volume encompassing their wings, rather
than a mass concentrated in their center of gravity as it would be requested by the Newton-
Leibnitz differential calculus [50]

3.7. Isodifferential calculus
Following the construction of all possible isotopies of 20th century mathematics
reviewed in the preceding sections, in the early 1990’s hadronic mechanics was
still missing a consistent isotopic formulation of the linear momentum, since the
sole available formulation at that time was the familiar form from Eq. (6) p|ψ⟩ =
−i∂r|ψ⟩. This insufficiency implied the inability, at that time, of formulating the
isotopies of the Schrödinger equations in a way compatible with all other aspects
of isomathematics, with ensuing inability to formulate meaningful experiments
(Fig. 4).

Studies of this impasse revealed that its ultimate origin rested in the conven-
tional differential calculus due to its sole definition at isolated points, while the
representation of the extended character of particles was needed for consistency
at all levels, including the differential calculus.

The above insufficiencies left no other option than that of constructing the
completion of the Newton-Leibnitz differential calculus, from its historical defi-
nition at isolated points r, to a formulation defined over volumes r̂ = rÎ , which
completion was finally achieved by Santilli in the 1996 special issue of Springer
Nature Rendiconti [50] via the following:

Isoaxiom 3.7.1: The isodifferential d̂ of an isocoordinate r̂ = rÎ incudes all pos-
sible completions d̂r̂ of the conventional differential dr under the sole condition
of recovering the latter at the limit when the isounit Î recovers the conventional
unit 1

LimÎ=1d̂r̂ = dr, (25)
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with solution for the isodifferential [50]

d̂r̂ = T̂ dr̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ, (26)

and consequential solution for the isoderivative

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (27)

The discovery of the isodifferential calculus finally allowed the formulation of
the isolinear isomomentum with the consequential consistent isotopies of Schrödinger
equations presented in next section (for systematic studies on the isodifferential
calculus, see the monumental works by the mathematician, S. Georgiev [29]).

3.8. Isospaces
Let E(rk, δij, I), i, j = 1, 2, 3 be the three-dimensional Euclidean spaces in the
(contravariant) coordinates rk, over the field of real numbers R with invariant
r2 = riδijr

j = r21 + r
2
2 + r

2
3. The infinite family of isotopic images of E(rk, δij, I)

are given by the iso-Euclidean isospaces [26] [31] ) Ê(r̂k, ∆̂ij, Î) characterized
by the contravariant isotopic element

T̂ = Diag.(
1

n2
1

,
1

n2
2

,
1

n2
3

), (28)

in which the exponential term of Eq. (15) has been imbedded in the n-characteristic
quantities, with isocoordinates r̂k = rkÎ , isometrics

∆̂ij = δ̂ij Îcr = (T̂ ikδ
kj)Î , (29)

and isoinvariant

r̂2̂ = r̂i×̂∆̂ij×̂r̂j = (riδ̂ijr
j)Îcr = (

r21
n2
1

+
r22
n2
2

+
r23
n2
3

)Î , (30)

where one should note that ∆̂ = δ̂Î is an iso-metric, namely, a metric whose
elements are iso-numbers. Note also that the covariant isotopic element is the
inverse of the contravariant expression (28).

Let M(x, η, I) be the conventional Minkowski space over the field of real
numbers R with contravariant spacetime coordinates x = (x1, x2, x3, x4 = ct),
metric η = Diag.(1, 1, 1,−1), unit I = Diag.(1, 1, 1, 1) and invariants x2 =
xµηµνx

ν and p2 = pµη
µνpν . The infinite family of iso-Minkowskian isospaces

[21] [31] M̂(x̂, Γ̂, Î) are characterized by the infinite family of isotopic elements

T̂ = 1/Î = Diag.(
1

n2
1

,
1

n2
2

,
1

n2
3

,
1

n2
4

), (31)
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Figure 5: In this figure, we illustrate a basic notion of the isotopies of the Lorentz sym-
metry (Sect. 3.10.1), that of providing the invariance of Lorentz’s locally varying speed of
light C = c/n within physical media with density n = n4 (left view), while reconstructing
the universal invariance of the constant speed c on isospaces over isofields (right view)
[3].

isocoordinates x̂ = xÎ , isometrics

Γ̂ = η̂Î = (T̂ η)Î , (32)

and isoinvariants

x̂2̂ = x̂µ×̂Γ̂µν×̂x̂ν = (
x21
n2
1

+
x22
n2
2

+
x23
n2
3

− x24
n2
4

)Î . (33)

3.9. Isogeometries
Euclidean, Minkowskian, Riemannian, symplectic and other 20th century geome-
tries are axiomatically based on the conventional associative product and their
values are formulated over numeric fields. It is then evident to see that the lift-
ing of the associative product into its isotopic form (9), with compatible lifting of
number theory and functional analysis, implies non-trivial isotopies of 20th cen-
tury geometries we cannot possibly review here (see Refs. [30] [31], independent
studies [24], the recent monoigraph in iso- Euclidean geometry [67] and papers
quoted therein).

For future needs, we limit ourselves to recall that the isometric (32) of the
Iso-Minkowskian isospoace M̂ coincides with the Riemannian metric ω(x), as a
result of which:

3.9.1) The iso-Minkowskian geometry admits the complete machinery of the
Riemannian geometry although expressed in terms if the isodifferential calculus
[68].

3.9.2) The Riemamnnian metric ω(x) admits the factorization into the gravita-
tional isotopic element (Santillian) here illustrated with the particular case of the
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Schwartzschild’s isotopic element [69]

ω(x)Riem = T̂Sant × ηMink, T̂Sant > 0,

T̂Schwar = Diag.( 1
(1− 2M

r
)
, 1
(1− 2M

r
)
, 1
(1− 2M

r
)
, 1− 2M

r
),

(34)

where the positive definiteness TSant > 0 is guaranteed by the factorization of the
Minkowski metric.

3.9.3) Despite its dependence on iso-coordinates, the iso-Minkowskian ge-
ometry is isoflat, that is, with null curvature when formulated on isospaces over
isofields, because the lifting of the Minkowski metric η → ω(x) = T (x) × η
is compensated by the inverse lifting of the Riemannian unit I4×4 → ÎSant =
1/T̂Sant.

3.9.4) Relativistic isomechanics characterized by the isounit Î = 1/T̂Sant
provides an axiomatically consistent unification of Einstein’s field equations and
quantum mechanical axioms. [70].

3.9.5) In view of the absence of curvature, the above identical reformulation of
Einstein’s field equations provides an axiomatically consistent unification of grav-
itation and electroweek interactions [70] studied in detail in the Springer Nature
monograph [71].

3.10. Isosymmetries
The main methods used in nonrelativistic hadronic mechanics are given by the
isotopies of the Galilean symmetry and relativity first presented in Chapter 6, p.
199 on of monograph [16] with various applications in pages 253-267. Said iso-
topies were then studied in the1991 monographs [72] [73] (see also notes [21]
from Santilli’s 1991 lectures at the ICTP, Trieste, Italy, and review [28]).

The main conceptual and technical difference between the conventional Galileo
symmetry and its isotopic image is that the former symmetry is based on the New-
tonian notion of massive points, as a consequence of which no resistance can be
admitted during the free fall in our atmosphere. By contrast, the iso-Galilean sym-
metry represents the dynamics of massive volumes moving within physical media
with ensuing resistive and other NSA forces represented via the isounit of the
theory in such a way to recover the conventional Galilean symmetry at the limit
Î → I .

Regrettably, we cannot review these Galilean studies to prevent excessive
length of this paper and refer the interested reader to monographs [72] [73] and
independent reviews [21] [28].

The main methods used for relativistic hadronic mechanics are given by the
isotopies of spacetime symmetries which include: 1) The isotopies ŜO(3) of the
rotational symmetry [74]-[76]; 2) The isotopies ŜU(2) of the spin symmetry
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SU(2)[77]; 3) The isotopies ŜO(3.1) of the Lorentz symmetry SO(3.1) in clas-
sical [78] and operator [79] formulation; 4) The isotopies P̂ (3.1) of the Lorentz-
Poincaré symmetry P (3.1) [80]; 5) The isotopies P̂(3.1) of the spinorial sym-
metry P̂ (3.1) [81]; 6) The isotopies of the various discrete spacetime symmetries
[31]; 7) The isotopies M̂(3.1) of the Minkowskian geometry M(3.1) [82].

To render this paper minimally self-sufficient, let us outline the isotopies of
the Lorentz and Poincaré symmetries which are needed for the representation of
the Deuteron data of Section 5.

3.10.1. Iso-Lorentz symmetry. As it is well known to historians, H. Lorentz
attempted in 1904 the construction of the invariance of the speed of light within
physical media C = c/n where n is the local density of the medium considered,
but failed to do so and had to restrict his study to the invariance of the constant
speed of light in vacuum c. The latter symmetry was characterized by the unitary
irreducible representations of the Lie group SO(3.1), which are the justly cele-
brated Lorentz transformations. It is unfortunate for science that Lorentz’s crucial
words in vacuum were generally ignored in the 20th century physics, resulting in
the widespread belief that the speed of light is a universal constant c throughout
all possible conditions existing in the universe. A list of inconsistencies for such
an assumption is available in Sect. 8.4.4., p. 134 of the overview [3] and a decade
of experiments in the U.S.A. and in Europe establishing Lorentz’s local value
C = c/n of the speed of light in a physical medium, such as our atmosphere, are
presented in Ref. [? ] and papers quoted therein.

Santilli pointed out in the 1983 Springer-Verlag monograph that the restric-
tion of the invariance to the constant speed c was due to the Hamiltonian character
of Lie’s theory, while Lorentz’s problem was highly non-Hamiltonian due to the
complex functional dependence (11) of the index of refraction n. For this rea-
son, Santilli constructed in Ref. [16] the Lie-isotopic completion of Lie’s theory
for non-Hamiltonian systems, and achieved in the 1983 paper [78] the universal
invariance of Lorentz’s speed of light (34), which is characterized by the isouni-
tary isoirreducible isorepresentations of the Lie-Santilli isosymmetry ŜO(3.1) of
isoinvariant (33), today known as the Lorentz-Santilli isosymmetry. It’s isoalgebra
ŝo(3.1) is characterized by the isogenerators (Eq. (10), p. 550 of [78] expressed
in terms of the characteristic quantities bµ = 1/nµ)

Ĵ1 = n2n3J1, Ĵ2 = n1n3J2, Ĵ3 = n1n2J3,

M̂k = nkMk,

(35)

where Jk,Mk are the conventional generators of so(3.1), with isocommutation
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rules (Eq. (12), p. 551 of [78])

[Ĵi,Ĵj] = ϵijkĴk, [M̂î,Mj] = C2ϵijkĴk,

[Ĵî,Mj] = −ϵijkM̂k,

(36)

and iso-Casimir isoinvariant (Eq. (13), p. 551 of Ref. [78])

Ĉ1 = Ĵ 2̂ − 1

C
M̂ 2̂ = −3Î , Ĉ2 = Ĵ×̂M̂ = 0. (37)

A main feature of the Lorentz-Santilli isosymmetry at the abstract level is that
of being identical to the conventional Lorentz transformations when formulated
on an iso-Minkowskian isospace M̂(x̂, ∆̂, Î) over the isoreal isofield R̂, in which
case the speed of light is indeed the universal constant c (Fig. 5). The invariance
of the Lorentz speed C = c/n occurs in the projection of the isosymmetry on the
conventional Minkowski space M(x, η, I) over the field of real numbers C, e.g.,
for the case of the isoboosts (Eq. (15), p. 551 of Ref. [78] for isotransformations
in the (3, 4)-plane, and Chapter 8, p.329 on of Ref. [31] for a general treatment)

x1
′
= x1, x2

′
= x2,

x3
′
= γ̂(x3 − β̂ n3

n4
x4), x4

′
= γ̂(x4 − β̂ n4

n3
x3),

C = c
n4

= invariant,

(38)

where

β̂ =
v3/n3

c/n4

, γ̂ =
1√

1− β̂2

. (39)

It should be indicated that the Lorentz-Santilli isosymmetry leaves invariant
the local speed of light C = c/n4, with ensuing wiggly-shaped light cone (left of
Fig. 5), only when the isosymmetry is projected into the conventional spacetime
over the conventional field of real numbers, as it is the case for isotransformations
(38). By contrast, the isosymmetry ŜO(3.1) restores the perfect light cone in the
isospacetime over the isoreal isofied (right of Fig. 5). We can therefore say that
the speed of light c is indeed a universal constant, but only on isospacetime over
the isoreal isofield, while it is a local variable in the physical realty.

It should be indicated that isomathematics introduces no restrictions on the
density of the medium besides that of positive-definiteness, n4 > 0 which, as such,
can be smaller or greater than one. Consequently, the Lorentz-Santilli isosymme-
try confirms Lorentz’s local speed of light for transparent media of low density
for which C = c/n4 < c, n4 > 1 and predicts superluminal speeds for physical
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particles within hyperdense media in the interior of hadronic, nuclei and stars for
which C = c/n4 > c, n4 < 1 [83] [84] [85], a prediction that has been con-
firmed by all exact and time invariant representations to date of all characteristics
of unstable particles with physical constituents (Sect. 5).

Intriguingly, the Lorentz-Santilli isosymmetry has essentially proved that the
abstract axioms of special relativity do indeed admit arbitrary speeds, with a con-
sequential considerable increase of its representational capability [86].

Note finally that the Lorentz-Santilli isosymmetry ŜO(3.1) is irregular be-
cause the structure quantities are isofunctions (Sect. 3.3), thus constituting a new
realization of Lie’s axioms.

As it is the case for the symmetries, the axioms of special relativity and its
isotopic extension, called isospecial relativity, coincide at the abstract level, since
physical differences solely occur in specific realizations. Regrettably, we are un-
able to review this additional profile for brevity and have to refer the interested
reader to monographs [72] [73] [30] [31], the 2021 upgrade [3] and independent
reviews [21] [28].

3.10.2. Iso-Poincaré symmetry. The second basic isosymmetry of relativis-
tic hadronic mechanics is given by the isotopies P̂ (3.1) of the lorentz-Poincaré
symmetry P (3.1) introduced by Santilli in the 1993 paper [80] [81] (see also
Sect. 8.3, p. 342 on of Ref. [16] and independent studies [21]), today called the
Lorentz-Poincaré-Santilli isosymmetry. It’s isoalgebra with Hermitean generators
(Jµν = (Jk,Mk) is characterized by the isocommutation rules where

[Jµν ,̂Jαβ] == ı(η̂ναJβµ − η̂µαJβν − η̂νβJαµ + η̂µβJαν),

[Jµν ,̂Pα] = i(η̂µαPν − η̂ναPµ), [Pµ̂,Pν ] = 0,
(40)

and iso-Casimir-isoinvariants

Ĉ1 = Î(t, r, p, E, µ, τ, ψ, ∂ψ, ...) > 0,

Ĉ2 = P̂ 2̂ = P̂µ×̂P̂ µ = (η̂µνP
µT̂P ν)Î ,

Ĉ3 = Ŵ 2̂ = Ŵµ×̂Ŵ µ, Ŵ = WÎ, Ŵµ = ϵ̂µαβρ ⋆ J
αβ×̂P ρ.

(41)

We should note that the isounit of isoinvariant Ĉ2 is the inverse as that of
the Lorentz-Santilli isosymmetry due to the covariant nature of the considers iso-
Casimir invariant. We should also note that isomomenta isocommute on isospaces
over isofields, but they do not commute when they are projected on conventional
spaces over conventional field, thus confirming the nonlinearity of the Lie-Santilli
isotheory.
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As it is well known, a particle can be assumed to be physical according to 20th
century physics (that is, existing and experimentally detectable in our spacetime
vacuum) if and only if it is represented by a unitary irreducible representation of
the Poincaré symmetry P (3.1).

An important feature identified since the 1978 Harvard University memoir
[43], and confirmed in subsequent works [3], is that in the transition from mo-
tion in vacuum to motion within a hadronic medium (such as a hadron, a nucleus
or a star), an extended particle generally experiences alterations of its intrinsic
characteristics originally called mutations and nowadays referred to as the char-
acteristics of isoparticles [87].

We shall therefore say that a particle within a hadronic medium is consid-
ered to be extended in these papers if and only if it is an isoirreducible isounitary
isorepresentation of the Lorentz-Poincaré-Santillii isosymmetry P̂ (3.1). As we
shall see, the mutations of the intrinsic characteristics of particles appears to be
dependent on the density of the hadronic medium, with minimal mutations (if
any) in the interior of mesons and maximal mutations in the core of stars or in the
interior of gravitational collapse. Intriguingly, the indicated mutations appear ti
be deeply linked with, or complementary to the expected deviations from Heisen-
berg’s uncertainty principle for extended particles in the interior of hadronic media
[46].

Note that the above isosymmetries are sufficient for the representation of the
Deuteron data studied in this paper, but they need a spinorial extension for the
studies of the subsequent paper.

3.10.3. Isorelativities. In these papers we gave assumed since the Introduction
of Paper I that the Galilean and the special relativity are exactly valid for point-
like particles in vacuum under Hamiltonian (thus including electromagnetic and
weak) interactions, although they need a suitable completions for extended parti-
cles within physical media under Hamiltonian and non-Hamiltonian (thus includ-
ing strong) interactions. Their study was initiated in 1983 [16] (see Chapter 6),
continued in monographs [72] [73] [30] [31] and upgraded in the 2021 work [3]
(see independent studies [21] [24] [28]).

By recalling from the preceding sections the isomorphism between conven-
tional space time symmetries and their isotopic formulation, the primary intent
for the EPR completion of the Galilean, special and general relativities, collec-
tively known as isorelativities, is that of preserving the original basic axioms and
merely introducing broader realizations, by therefore enlarging their representa-
tional capabilities.

3.10.4. Experimental verifications. Let us indicated the generally ignored ex-
perimental verifications of isorelativities for:
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1) The invariant representation of the the Bose-Einstein correlation [88] [89]
with physical characteristics of the proton-antiproton fireball (dimension, shape
and density) rather than with unknown ”chaoticity parameters”.

2) The representation of all characteristics, including their anomalies of muons
[35] [90] [91] [92], kaons [93] [94] [95], and unstable baryons [96] via hadronic
structure models with physical constituents generally produced free in the sponta-
neous decays with the lowest modes.

3) The representation of all characteristics of the neutron in its synthesis from
the electron and the proton in the core of stars at the non-relativistic and relativistic
levels [97] and its experimental verification [98] and generic cases in generic cases
in classical mechanics [3] (see the subsequent paper).

3.11. Simple construction of isotopic theories
As indicated in more details in Sect. 4, in practical applications of isotopic meth-
ods in nuclear physics, the HamiltonianH(r, p) > 0 represents all possible linear,
local and potential interactions, while the Santillian T̂ = 1/Î > 0, represents all
possible nonlinear, nonlocal and nonpotential interactions expected from the ex-
tended character of nucleons in conditions of partial mutual penetration (Fig.
I.1).

It then follows that, despite their apparent mathematical complexity, all as-
pects of regular (Sect. 3.3) isotopic formulations, thus including isomathematics,
isomechanics and all their applications, can be constructed via the following sim-
ple nonunitary transformation of the quantum mechanical unit 1 = ℏ defined on
conventional spaces over conventional fields [99]

UU † = Î > 0, T̂ = 1/Î = (UU †)−1 > 0, (42)

which transformation merely completes quantum mechanical models with the rep-
resentation of the extended character of nucleons and their non-Hamiltonian in-
teractions, provided that said transformation is applied to the totality of quantum
mechanical quantities and all their operations without any known exception.

In fact, the above procedure maps the quantum mechanical unit, product, Lie
algebras, etc., into their isotopic images, according to the simple rules (1 = ℏ)

ℏ = 1 → U1U † = Î ̸= 1,

AB → U(AB)U † = (UAU †)(UU †)−1(UBU †) = ÂT̂ B̂,

[Xi, Xj] → U [Xi, Xj]U
† = [X̂î,X̂j] = X̂iT̂ X̂j − X̂jT̂ X̂i = Ĉk

ij×̂X̂k,

(43)

where one should note that the transformations are defined on conventional spaces
over conventional fields and all products are conventional. Therefore Eqs. (43)
characterize quantum mechanical (rather than hadronic) transformations.
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Note the necessity of abandoning the century-old notion of quantized energy
exchanged for point-like electrons in vacuum when dealing with extended nu-
cleons in conditions of mutual penetration (see the experimental works [47] sug-
gesting integro-differential energy exchanges for complex/extended structures and
applications in Sect. 5).

Note also that, once quantum mechanical models have been completed via
the above simple procedure, when remaininhg within the quantum mechanical
formalism, the resulting new models are afflicted by a number of inconsstencies
which are typical of all nonunitary theories on conventional spaces over conven-
tional fields, such as:

3.11.1) Lack of invariance of the observables under additional nonunitary
transformations WW † ̸= I , including the lack of invariance of the isounit, iso-
product, etc.

Î → WÎW † = Î ′ ̸= I,

ÂT̂ B̂ → W (ÂT̂ B̂)W † = Â′T̂ ′B̂′, T̂ ′ ̸= T̂ ,

(44)

with consequential lack of invariance of numeric predictions.
3.11.2) Consequential general lack of conservation of Hermiticity/observability,

Eqs. (6), U(⟨ψH|ψ⟩)U † ̸= [U(⟨ψ|Hψ⟩)U †].
3.11.3) General loss of causality, including the possible admission of solutions

in which the effect precedes the cause (see also the analysis by L. Biedenharn
[100] on the violation of causality for nonunitarily achieved, half-odd-integer ein-
genvalues of the conventional SO(3) orbital symmetry). Additional problematic
aspects of nonunitary theories formulated over a conventional numeric field are
addressed in the so-called Theorems of catastrophic inconsistencies of nonunitary
theories (see p. 451 on of [101]).

The axiomatic origin of the above inconsistencies is that their basic product is
the conventional associative product (1), rather than isoproduct (9), with ensuing
nonconserved basic unit 1, loss under time evolution of the basic numeric field
and other insufficiencies.

3.12. Invariance of isotopic formulations
Problems 3.11.1-3.11.3 were resolved in 1998 by Santilli [99] via the identifica-
tion of the infinite class of equivalence of the dynamical equations of isotopic
theories (Sect. 4) which is given by the completion of unitary law (4) into the
isounitary law

Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î , (45)

completed by the identical reformulation of transformations (43) into the isouni-
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tary form

U = ŴT 1/2,

UU † = Î → Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î ,

Î → Ŵ ×̂Î×̂Ŵ † = Î ′ ≡ Î ,

Â×̂B̂ → Ŵ ×̂(Â×̂B̂)×̂Ŵ † =

= (Ŵ ×̂Â×̂Ŵ †)×̂Ŵ †,−1̂×̂Ŵ−1̂×̂(Ŵ †×̂B̂×̂Ŵ †) =

= Â′×̂B̂′ = Â′T̂ B̂′, (UU †)−1,

(46)

(where we have used the isotopoic inverse W−1̂ [30]) with consequential invari-
ance of isotopic formulations.

It should be indicated that isoinvariance (46) [99] embodies the very essence
of hadronic mechanics as an axiom-preserving image of quantum mechanics be-
cause:

3.12A) Quantum mechanical unitary transformations on H over C leave the
product × numerically invariant, i.e., U × (A×B)×U † = A′×B′, U ×U † = 1.

3.12B) Quantum mechanical nonunitary transformations on H over C change
the numeric value of the product ×, Eq. (43), i.e., W × (A × B) × W † =
A′T̂B′, × → T̂ = (W ×W †)−1, W ×W † ̸= 1.

3.12C) Isomechanical isounitary transformations on Ĥ over Ĉ leave numeri-
cally invariant the issoproduct ×̂, Eq. (46), i.e., Ŵ ×̂(Â×̂B̂)×̂Ŵ † = Ŵ ×̂(ÂT̂ B̂)-
×̂Ŵ † = A′×̂B′ = A′T̂B′, Ŵ = WT̂−1/2, Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = 1̂.

Note that the isotopies of spaces and numeric fields. thus of the entire 20th
century appleid mathematics, are necessary to achieve isoinvariance (46).

The axiomatically and physically important significance of transformations
3.12A and 3.12C is that they coincide at the abstract, realization-free level to
such an extent that quantum mechanics and the Lie-isotopic branch of hadronic
mechanics can be expressed via the same equations, only subjected to different
realizations of the associative produc,t to such an extent that the lack of formal
identity of quantum and isotopoic expressions is due to the insufficient knowledge
and/or use of isomathematics.

It is easy to see that the above reformulation resolves insufficiencies 3.11.1-
3.11.3 because: expressions (46) imply the numerical— invariance of the isounit Î
and of the Santillian T̂ , with ensuing invariance of the numerical predictions of the
theory; such an invariance implies that all observables of quantum mechanics re-
main observable in hadronic mechanics, e.g., H† ≡ H †̂ and isotopic formulations
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verify the causality laws of quantum mechanics (see the fully causal isoorbital
angular momentum with half-odd-integer isoeigenvalues of Ratherford’s electron
compressed inside the proton in the core of stars of Sect. 5.3) [30] [31].

On mathematical grounds, the invariance of numeric predictions, the conserva-
tion of Hermiticity under unitary transformations and the verification of causality
laws are ultimately reducible to the abstract associative enveloping algebra, thus
having an assured validity for conventional as well as isotopic realization of said
envelope.

On pedagogical grounds, all applications of isotopic formulations in nuclear
physics to date (including those of Sect. 5) have been derived via conventional
nonunitary transformations (42) (43) and thenir reformulation in terms of iso-
mathematics to prevent the indicated inconsistency problems.

Alternatively we can say that applications of isotopic theories in physics can
be initially done via simple rules (42) (43) because they represent the projection
on conventional spaces over conventional fields of covering formulations (45) (46)
on isospaces over isofields.

It should be indicated that this author has received various claims of incon-
sistency of hadronic mechanics via arguments based on product (1) with basic
unit 1, which claims are essentially equivalent to the early 20th century claims of
inconsistency of quantum mechanics based on Newtonian mechanics.

3.13. Inconsistencies of deformed Lorentz transformations
It should be indicated that decades following the 1983 isotopies of the Lorentz
symmetries [78], iso-Lorentz transformations (38) have been identically used un-
der the name of ’deformed Lorentz transformations’ but formulated over a con-
ventional numeric field’ (see books [102] [103] and literature quoted therein). As
an example, the 2005 deformed Lorentz transformations (4.9), p. 23 of [102] co-
incide with the 1983 isotransformations (15), p. 351 of [78] and they coincide
with Eqs. (38) with bµ = 1/nµ, although without the quotation, specifically, of
their origination [78], contrary to admission of said knowledge in preceding works
[89] [93] [94] [104]. Similarly, one can see that the 2005 principles of deformed
special relativity [102] coincide with the 1991 isoaxioms of special isorelativitry
[73].

Readers should be aware that deformed Lorentz transformations and special
relativity formulated on conventional numeric fields verify the Theorems of catas-
trophic inconsistencies of Ref. [101]) with particular reference to the lack of
invariance over time of the numerical predictions and consequential lack of mean-
ingful application to experiments.

This occurrence illustrates the importance of formulating nonunitary comple-
tions of quantum mechanics over isospaces and isofields due to their reconstruc-
tion of unitarity, Eq. (45).
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Figure 6: In this figure, we illustrate that the application of hadronic mechanics (hm) in
nuclear physics is restricted to hold in the interior of a sphere of radius Rhm = 10−13 cm,
called the ’nuclear hadronic horizon’ in representation of strong nuclear forces, while
uniquely and unambiguously recovering quantum mechanics outside said range. The un-
derstanding is that, in general, the continuous and instantaneous fifth interactions rep-
resented by Santillian (15) hold at arbitrary distances in view of the EPR entanglement
[34].

4 Elements of isomechanics

In order to render this and the following papers minimally self-sufficient, in this
section we review, update and specialize to nuclear physics the Lie-isotopic branch
of hadronic mechanics, also known as isomechanics, first proposed in the 1978-
1983 Springer-Verlag monographs [15] [16] and subsequently studied by various
authors (see the 1995 general treatment [30] [31], monographs [21] [29] and pa-
pers quoted therein).

4.1. Iso-Newtonian mechanics
It is important for these papers to indicate that the assumed realization of strong
nuclear forces as the most general possible combination of potential/SA (Defi-
nition 3.1) and nonpotential/NSA forces (Definition 3.2) originates at the purely
Newtonian level, carries over at the operator level and permits the numerically
exact and time invariant representation of the experimental data of the Deuteron
while preserving the abstract axioms of quantum mechanics (Sect. 2, p. 27 on of
Ref. [50]).

Consider the historical Newton’s equations for N ”massive points” (in New-
ton’s language) on a conventional 3-dimensional Euclidean space E(r, δ, I)

ma
dvak
dt

− Fak(t, r, v, ...) = 0, k = 1, 2, 3, a = 1, 2, ..., N, (47)
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which, under the conditions of variational selfadjointess [15] can be written

ma
dvak
dt

− F SA
ak (r, v)− FNSA

ak (t, r, v, ...) = 0. (48)

It was generally believed for centuries that the above equations can solely rep-
resent open nonconservative systems generally illustrated via Newton’s nonpoten-
tial velocity-dependent forces of the type FNSA = k1v + k2v

2, ...,. Eqs. (6.3.6),
p. 236 of Ref. [16] introduced the new notion of closed NS systems, which are
given by systems (39) for N ≥ 2 verifying all ten conservation laws of Galileo
relativity under the conditions∑

ak
FNSA
ak = 0,

∑
ak
r · FNSA = 0,

∑
ak
r ∧ FNSA = 0. (49)

The main equations of isomechanics are given by the formulation of New-
ton’s equations (39) on iso-Euclidean isospaces Ê(r̂, δ̂, Î) (Sect. 3.6) over isoreal
isonumbers R̂ (Sect. 3.4) first achieved in Eqs. (2.5), p. 31 of Ref. [50] follow-
ing the discovery of the isodifferential calculus (Sect. 3.7), and nowadays called
Newton-Santilli isoequations [21] [28],

m̂a×̂
d̂v̂ak

d̂t̂
− F SA

ak (r̂, v̂) = 0. (50)

The main features of Eqs. (41), hereon considered for the particular case t̂ =
t, Ît = 1, are the following:

1) By recalling that the isodifferential calculus coincides at the abstract level
with the conventional differential calculus, iso-Newton’s equation (41) coincide
at the abstract level with the Newton’s equations (39) with FNSA = 0.

2) Eqs. (41) provide the first known, axiomatically consistent representation
of the actual shapes and dimensions of the particles considered thanks to their rep-
resentation via the isodifferential calculus with realization of the isotopic element
of type (15).

3) Eqs. (41) are directly universal for NSA systems [31] in the sense of rep-
resenting all possible NSA systems directly in the r-coordinate system of the ex-
perimentalist, thus without any needs for the transformation theory. In fact, by
writing explicitly the isoderivative d̂v̂ak/d̂t̂, we reach the representation of NSA
forces in terms of isotopic element (15)

FNSA(t, r, v, ...) = mvT̂
dÎ

dt
, (51)

which always admit an isotopic element T for any given (nonsingular) NSA force.
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4.2. Iso-Lagrange and iso-Hamilton mechanics
A primary motivation for developing the isodifferential calculus has been the re-
formulation of NSA Newton’s equation in such a way to admit the following iso-
variational principle (Sect. 2.4, p. 43 on of Ref. [50]), here written for simplicity
for the case of one particle with evident extension to many particles

δ̂A = δ̂
∫̂
(p̂×̂d̂r̂ − Ĥ×̂d̂t̂) =

= δ̂
∫̂
[(pÎr)T̂rd̂r̂ − (HÎt)Ttd̂t̂] = δ̂

∫̂
(pTrdr̂ −HTtdt̂) = 0,

(52)

because important for operator images.
The above principle has permitted the formulation of the following main equa-

tions of classical isomechanics [50]:
i) The iso-Hamilton equations

d̂r̂

d̂t̂
=
∂̂H(r̂, p̂)

∂̂p̂
,

d̂p̂

d̂t̂
= − ∂̂H(r̂, p̂)

∂̂r̂
, (53)

(where we have assumed Ĥ = HÎt ≡ H) with time evolution for a quantity Q

d̂Q̂

d̂t̂
= [Q,̂H] =

∂̂Q

∂̂r̂

∂̂H

∂̂p̂
− ∂̂H

∂̂p̂

∂̂Q

∂̂r̂
, (54)

where the brackets [Q,̂H] constitute a classical realization of Lie-Santilli isoalge-
bras [16] [22].

ii) The iso-Lagrange isoequations

d̂

d̂t̂

∂̂L(r̂, v̂)

∂̂v̂
− ∂̂L̂(r̂, v̂)

∂̂r̂
= 0. (55)

iii) The iso-Hamilton-Jacobi equations also called Hamilton-Jacobi-Santilli
isoequations

∂̂A

∂̂t̂
+H = 0 (47a),

∂̂A

∂̂r̂
− p̂ = 0 (47b),

∂̂A

∂̂p̂
= 0 (47c). (56)

It should be indicated that the above analytic equations represent the external
terms of the historical Hamilton’s and Lagrange’s equations via the embedding of
said terms in the isodifferential calculus, as one can see for the simple case with
t̂ = t, Ît = 1, r̂ = r, Îr = 1 and Îv representing the external terms via equations
of type (50).

4.3. Iso-Schrödinger representation
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The isotopic lifting of the conventional naive quantization [105] characterizes the
following map of the (classical) iso-Hamiltonian mechanics into the (operator)
isomechanics

Â =

∫̂
(p̂×̂d̂r̂ − Ĥ×̂d̂t̂) → −î×̂ ˆlogψ̂(t̂, r̂) = −iÎlog|ψ(t̂, r̂)⟩, (57)

where we use the notion of isolog ˆlogψ̂ = Î logψ [30]. Note that map (57)
is restricted in nuclear physics to hold within a radius Rhm = 10−13 cm called
the nuclear hadronic horizon in representation of strong nuclear forces, while
uniquely and unambiguously recovering quantum mechanics outside said range
(Fig. 6).

The resulting iso-Schrödinger representation, also known as the Schrödinger-
Santilli isorepresentation, is characterized by:

1) The iso-Schrödinger equation here derived from the iso-Hamilton-Jacobi
Eq. (47a) (see Chapter 5, p. 182 of Ref. [31] for a general treatment)

−î×̂ ∂̂

∂̂t̂
|ψ̂(t̂, r̂)⟩ = Ĥ×̂|ψ̂(t̂, r̂)⟩ =

= [ 1
2m
p̂×̂p̂+ V̂ (r)]T̂ (ψ̂, ...)|ψ̂(t̂, r̂)⟩ = Ê×̂|ψ̂(t̂, r̂)⟩ = E × |ψ̂(t̂, r̂)⟩,

(58)

where we should recall our assumption Ĥ = HÎt ≡ H for our assumption that,
in first approximation, t̂ = t, Ît = 1, the last identity trivially follows from the
value Ê = EÎ , and in case the isostates |̂ψ̂(t̂, r̂)⟩ are k-dimensional, the isotopic
element t̂ must be a k × k-isomatrix to avoid evident inconsistencies.

2) The isolinear isomomentum from Eq. (47b)

p̂×̂ψ(r̂) = −î×̂∂̂rψ̂(r̂) = −iÎ∂r̂ψ̂(r̂), (59)

with ensuing isocanonical isocommutation rules

[r̂î,p̂j]×̂|ψ̂⟩ = −î×̂δ̂i.j×̂|ψ̂⟩ = −iδi.j|ψ̂⟩, [r̂î,r̂j]|ψ̂⟩ = [p̂î,p̂j]|ψ̂⟩ = 0. (60)

3) The independence of the isowavefunction from the isolinear isomomentum
from Eq. (47c)

∂̂p̂ψ̂ = 0. (61)

The above naive isoquantization is formulated on the Hilbert-Myung-Santilli
isospace [106] on an isocomplex isofield Ĉ (Sect. 3.4) with: isostates |ψ̂⟩, isonor-
malization

⟨ψ̂|×̂|ψ̂⟩ = ⟨ψ̂|T̂ |ψ̂⟩ = Î , (62)
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(where different isonormalizations per different applications should be kept in
mind); isoexpectation isovalues of an iso-Hermitean operator Â,

⟨̂Â⟩̂ = ⟨ψ̂|×̂Â×̂|ψ̂⟩, (63)

and isoidentity

⟨̂Î ⟩̂ = ⟨ψ̂|×̂Î×̂|ψ̂⟩ = Î . (64)

It should be recalled from Ref. [106] that the condition of iso-Hermiticity
coincides with the conventional Hermiticity. Therefore, all quantities that are
observable in quantum mechanics remain observable in isomechanics [31].

Note also that the characterization of extended particles via isomechanics re-
quires two quantities, the conventional Hamiltonian H for the representation of
SA interactions and the isotopic element T̂ for the representation of NSA interac-
tions.

We should finally note that the quantum mechanical representations of nonlin-
ear interactions via the Hamiltonian violate the superposition principle, by there-
fore preventing the study of individual nucleons under nonlinear nuclear forces.
This insufficiency has been resolved by isomathematics and isomechanics because
the representation of all nonlinear interactions via the isounit restores linearity at
the abstract, realization-free level called isolinearity (see Sect. 4.2, p. 128 on Ref.
[30]), by therefore allowing the decomposition of an isostate |Ψ⟩ (representing a
nucleus) into the isostates |ψk⟩ (representing the individual nucleons)

Ψ(r)⟩ = Πk=1,2,...,Nψk(rk)⟩, (65)

with consequential capability of quantiitative representations of individual nuclear
constituents.

4.4. Iso-Heisenberg representation
Nonrelativistic isomechanics is additionally based on the iso-Heisenberg isoequa-
tions, also called Heisenberg-Santilli isoequations (first formulated in Eq. (18a),
p. 153, Ref. [16] (see Sect. 3.1, p. 80 on Ref. [31] for a detailed treatment), here
written in the isoinfinitesimal form for the time evolution of an iso-Hermitean
operator Q̂ in terms of the Hamiltonian H representing all linear, local and poten-
tial interactions and the Santillian T̂ representing all all nonlinear, nonlocal and
nonpotential interactions

î×̂ d̂Q

d̂t̂
= [Q,̂H] = Q×̂H −H×̂Q =

= QT̂ (ψ, ...)H(r, p)−H(r, p)T̂ (ψ, ...)Q,

(66)
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Figure 7: An illustration on the left of the conventional Feynman’s diagrams representing
an elastic scattering of two point-like electrons via the exchange of a point-like photon,
and an illustration on the right of the elastic scattering of two extended hadrons mediated
by their EPR entanglement (Figure 1) without particle exchange due to the density of the
scattering region (Ch. 12 of [31]).

and in their isoexponentiated form

Q(t) = êHtti×̂Q(0)×̂ê−itH = Û(t)×̂Q(0)×̂U(t)† =

= eHT̂ tiQ(0)e−itT̂H ,

(67)

where we have used isoexponentiation (22), showing the reconstruction by the
Lie-Santilli isogroups of unitarity on isospaces over isofields, called isounitarity
(see Sect. 4.2, p. 128 on Ref. [30])

Û(t)×̂Û(t)† = Û(t)†×̂Û(t) = Î . (68)

Note that the iso-Heisenberg equations (65) verify the invariance under anti-
Hermiticity of the conventional equations (5), by therefore restricting the sole
consistent application of the Lie-isotopic formulations to stable nuclei.

The author contacted Prof. Werner Heisenberg in the early 1970’s on the ex-
pected nonlinear interactions in nuclear physics, with particular reference to the
inability for the Hamiltonian representation to characterize individual nucleons.
Prof. Heisenberg responded very nicely to a young physicist (then an Assistant
Professor of physics at Boston University), but essentially indicated no knowledge
available at the time of including nonlinear interactions while preserving the su-
perposition principle. The isotopic solution of the problem via the incorporation
of all nonlinear interactions in the isounit of the theory, Eqs. (49), was the out-
come of years of trials and errors by the author stimulated by his correspondence
with Prof. Heisenberg.

4.5. Relativistic isoequations
The relativistic isoequations of hadronic mechanics are characterized by the isosym-
metry Poincaré-Santilli isosymmetry P̂(3.1) (Sect. 3.8.2) of the covariant formu-
lation of the iso-Minkowski isospacetime M̂(p̂, Ω̂, Î) over the isoreal isofield R̂,
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with four-dimensional isomomentum

p̂µ×̂|ψ̂)(x̂)⟩ = −î×̂∂̂x̂µ |ψ̂(x̂)⟩, µ = 1, 2, 3, 4, x̂4 =
x4

n4

, (69)

resulting in the local speed of light within the considered physical medium, Eq.
(34), with density n = n4 (Figure 4). Consequently, the isometric Ω̂ = (η̂)Î is
now the inverse of isometric (29).

The second order relativistic isoequation, called Klein-Gordon-Santilli isoe-
quation [107] [108] (see Chapter 10, p.477 on Ref. [31] for a detailed study and
review [28]), is characterized by the second order iso-Casimir invariant of P̂(3.1)
and can be written

p̂2̂|ψ̂(x̂)⟩ = Ω̂µν×̂p̂µ×̂p̂ν×̂|ψ̂(x̂) =

= η̂µν(−iÎ∂µ)(−iÎ∂ν)|ψ̂(x̂) >= Î(mC)2|ψ̂(x̂)⟩.
(70)

The first order isorelativistic equation of isomechanics, called the iso-Dirac
equation, will be introduced in Section 5.5.

4.6. Isoconvergence
In all applications to date, the isotopic element (15) resulted to have a numeric
value much smaller than one, ||T̂ || ≪ 1. Since this numeric value has to be
sandwiched between all products of isomechanics, isomathematics may eliminate
quantum mechanical divergencies, besides allowing much faster data elaboration
via perturbative and other methods (see Chapter 11, p. 500 on Ref. [31]).

To illustrate this important feature, consider the following divergent quantum
mechanical series A(w) = A(0) + (AH −HA)/1! + .... → ∞, w > 1. But the
value of the isotopic element is much smaller than the parameter w. Therefore,
the isotopic completion of the above series

A(w) = A(0) + (AT̂H −HT̂A)/1! + ....→ N <∞, T̂ ≪ w, (71)

is always strongly convergent.
More specifically, the divergencies of quantum mechanics originate from the

singularity existing at the origin of the Dirac delta distribution which divergence,
in turn, originates from the point-like approximation of particles.

Another important feature of isomechanics is that of avoiding these singular-
ities as illustrated by the isotopic image of Dirac’s delta distribution, known as
Dirac-Myung-Santilli isodelta isofunction first introduced in Ref. [106] (see also
Nishioka’s studies [109]-[112])

δ̂(r̂) =

∫̂
êk̂⋆r̂ ⋆ d̂k̂ =

∫
ek̂T̂ r̂dk̂, (72)
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where we have used isoexponentials and isointegrals [30]. In fact, the appear-
ance of the isotopic element in the exponent of the integrant may change a sharp
singularity at the origin r = 0 into a bell-shaped function.

The author visited P. A. M. Dirac, in 1981 at the Department of Physics of the
University of Florida, Tallahassee, in connection with his suggestion to remove
the divergencies of quantum mechanics so as to avoid the removal of infinities via
infinities. During a brief encounter, the author indicated to Prof. Dirac isotopic
product (9) with ensuing strongly convergent perturbative series (64) without di-
vergencies. Following a long minute of complete silence, Prof. Dirac simply
stated ”Please send me the papers.” Following his return to Harvard University,
the author mailed the day after to Prof. Dirac: paper [106] that he was writing
with the mathematician H. C. Myung, a copy of monograph [15] and the draft of
[16]. It was unfortunate for science that, quite likely, Dirac never saw these works
because he became ill and died a few years later.

4.7. Einstein isodeterminism
Recall the physical reality that stars initiate their lives as an aggregate of Hydro-
gen, synthesize the neutron from the electron and the proton and then synthesize
all natural elements. Recall the prohibition by the 1927 Heisenberg’s indetermi-
nacy (also called uncertainty) principle to represent the synthesis of the neutron
from an electron and a proton in the core of stars despite their extremely big
Coulomb attraction at 1 fm mutual distances which can be computed to be of the
order of 230 N .

The above occurrences suggested the need to generalize Heisenberg’s uncer-
tainty principle for extended nucleons in conditions of mutual penetration whose
study was initiated by Santilli in the late 1970s at Harvard University under DOE
support (see the title of memoir [43]) which was first formulated in the 1981 pa-
per ”Generalization of Heisenberg’s uncertainty priciniple for strong interactions”
[44], followed by the 1994 paper for gravitational collapse [45], and applied in the
1998 paper [39] to set the foundations for the recovering of Einstein’s determin-
ism by showing that a system of extended spin 1/2 particles with potential and
non-potential interactions violate Bell’s inequalities [38] thus admitting classical
counterparts.

The considerable lapse of time between papers [44] - [45] - [39] is due to the
need for corresponding prior advances in isomathematics. In fact, starting with
the isotopies of Lie’s theory [16], the 1981 paper [44] established the need that the
formulations had to be defined over numeric isofieds that were discovered in 1993
[61]. The 1994 paper [45] established the need for the extension of the Newton-
Leibnitz differential calculus to volumes, that was achieved in 1996 [50]. The
1998 paper [45] identified the final needs to predict the same numeric values under
the same conditions at different times, such as the invariance under isounitary
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transformations reviewed in Sect. 3.12.
Santilli’s final (isotopic) form of the generalized uncertainty principle for strong

interactions was presented in the 2019 publication at Acta Mathematica [46] with
an extended 2020 presentation also published by Acta Mathematica [113].

Nowadays, the EPR completion of Heisenberg’ indeterminacy principle which
is needed for the synthesis of the neutron (studied in the next section) and the
representation of nuclear stabillity (studied in paper III) can be derived via a truly
elementary, quantum nonunitary transformation of the conventional principle on
conventional spaces and fields (Sect. 3.11) reformulated in terms of hadronic
isounitary transformations on isospaces over isofields to avoid the inconsistencies
of quantum nonunitary theories (Sect. 3.12) and can be reviewed as follows.

For applications in nuclear physics it is sufficient to assume the isonormaliza-
tion necessary for constant T̂

⟨ψ̂|×̂|ψ̂⟩ = T̂ , (73)

and isocommutation rules (60), under which a simple nonunitary-isounitary trans-
formation of the conventional principle yields the isoindeterminacy (or isouncer-
tainty) principle of hadronic mechanics whose projection on our spacetime (as
needed for experiments) is given by

∆r∆p ≈ 1
2
| < ψ̂(r̂)| ⋆ [r̂̂,p̂] ⋆ |ψ̂(r̂) >=

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) >=

= 1
2

∫ +∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ ≈ 1

2
h̄T̂ =

1
2
h̄e−Γ(r,p,a,R,d,ψ,ψ̂,...) ≈

≈ 1
2
h̄[1− Γ(r, p, a, R, d, ψ, ψ̂, ...) + ...] ≪ 1,

(74)

where the Santillian T̂ has beed derived from realization (15) to represent the
non-potential-NSA component of strong interactions.

It should be noted that isoprinciple (77) contains as particular cases all gen-
eralizations of Heisenberg’s uncertainty principle known to the author (see, e.g.,
Refs. [114] [115] [116] and papers quoted therein).

Note in isoprinciple (77) that the quantum expression ∆r∆p ≥ (12)ℏ (also
denoted σrσp ≥ (12)ℏ) is turned into the hadronic form ∆r∆p ≈ (1/2T̂ℏ because
of the impossibility to maintain quantum mechanical statistical averages of point-
like particles in vacuum for extended protons and neutrons under the contact-
nonlocal effects cause by the surrounding particles (Fig. 3).
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The connection between the above isoindeterminacy principle and Einstein’s
determinism [1] is intriguing indeed. Recall from Sect. 1:

4.7.1) The prohibition of Einstein’s determinism by Bell’s inequalities because
they prohibit the existence of classical images for quantum mechanical systems of
point-like spin 1/2 particles in vacuum [38];

4.7.2) The violation of Bell’s inequalities by extended spin 1/2 particles in
conditions of mutual penetration with the ensuing existence of classical counter-
parts [39] ;

4.7.3) Bohm’s attempt of achieving Einstein’s determinism via the hypothesis
of hidden variables [48]-[49];

4.7.4) Santilli’s explicit and concrete realization of Bohm’s variables as being
hidden in the axiom of associativity of quantum mechanics [31] [51].

4.7.5) Santilli [46] [113] has shown that isomathematics and isomechanics
uniquely and unambiguously characterize the explicit form of the standard isode-
viations for isocoordinates ∆r̂ and isomomenta ∆p̂ which, again in their projec-
tion on conventional spaces over conventional fields, can be written

∆r =

√
T̂ < ψ̂(r̂)|[ r̂− < ψ̂(r̂)| ⋆ r̂ ⋆ |ψ̂(r̂) >]2|ψ̂(r̂) >,

∆p =

√
T̂ < ψ̂(p̂)| [p̂− < ψ̂(p̂)| ⋆ p̂ ⋆ |ψ̂(p̂) >]2|ψ̂(p̂) >.

(75)

In view of the lack of energy by contact zero-range NSA interactions and
the ensuing very low value of T̂ for all known physical applications, the above
isodeviations, individually tend to zero with the increase of the density of the
hadronic medium up to the limit identity of T̂ with Schwartzschild’s horizon, Eq.
(34),

LimT̂=0∆r = 0, LimT̂=0∆p = 0, (76)

resulting in the Lemma (p. 127 of [113])

LEMMA 4.7.1 (EINSTEIN’S ISODETERMINISM): The standard isodeviations for
isocoordinates ∆r̂ and isomomenta ∆p̂ progressively and individually tend to be
zero for extended particles in the interior of hadrons, nuclei, and stars, and fully
achieve Einstein’s determinism at the limit of gravitational collapse.

The first significant implication of the above Lemma is a confirmation of the
isoconvergence of Sect. 4.6, which can be expressed via the following Corollary
(p. 128 of [113]):

COROLLARY 4.7.1. Einstein’s isodeterminism according to Lemma 4.7.1 implies
the removal of quantum mechanical divergencies in hadronic mechanics.

As we shall see, Einstein’s isodeterminism plays a fundamental role for first
known, numerically exact and time invariant representation of the Deuteron data
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(Sect. 5), as well as of the neutron synthesis from the Hydrogen and, consequently,
of nuclear stability (paper III).

4.8. Isoscattering theory without divergencies
As indicated in Section I.1, we have assumed in our study the exact validity of
quantum mechanics for point-like particles and electromagnetic waves in vacuum.
Consequently, we can safely assume that quantum mechanics is exactly valid for
particles in accelerators.

However, the mathematical, theoretical and experimental evidence presented
in these papers imply that quantum mechanics is not valid for high energy scatter-
ing regions, for numerous reasons, such as the lack of representation of the time
irreversibility of nonelastic scattering processes (Insufficiency I-2.7), unavoidable
nonlinear, nonlocal and nonpotential effects due to the impact of extended protons
on dense targets, and other reasons (Fig. 7).

Studies on the EPR completion of the conventional scattering theory into a
more realistic theory representing the collision of extended particles on dense tar-
gets have been initiated by R. Mignani [117]-[118], A. K. Aringazin and D. A.
Kirukhin [119], A. O. E. Animalu and R. M. Santilli [120] and others.

These studies have established the foundations of the scattering theories of
hadronic mechanics known under the names of isoscattering and genoscattering
theories and collectively, as hadronic scattering theories (Figure 7). Regrettably,
we cannot review these studies to avoid a prohibitive length. We limit ourselves
to the following comments (see Chapter 12, p. 507 on of Ref. [31] for details):

4.8.1. In view of the time-reversal invariance of the Lie-Santilli theory, the
isoscattering theory can solely represent the elastic scattering of extended parti-
cles/wavepackets on a dense target. The causal and axiomatically consistent rep-
resentation of inelastic scatterings is done via the broader genoscattering theory
with a Lie-admissible algebraic structure [120].

4.8.2. Evidently, hadronic scattering theories cannot change experimentally
measured values, such as scattering angles, cross sections, etc. However, hadronic
scattering theories do require a revision of the theoretical interpretations derived
via the conventional scattering theory.

4.8.3. Recall that rather vast studies have been conducted on nonunitary scat-
tering theories (see, e.g., Ref. [121] and papers quoted therein). These studies
had to be abandoned because nonunitary theories violate causality laws (Sect.
3.10). By contrast, hadronic scattering theories reconstruct unitarity on general-
ized space over generalized fields, thus restoring causality [30].

4.9. Connection between Birkhoffian mechanics and isomechanics
Following the technical characterization of NSA forces in the first volume of the
1978 Springer-Verlag monographs [15], the primary aim of the 1983 second vol-
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Figure 8: In this figure, we illustrate the two stable bound states of particles with spin
predicted by hadronic mechanics, which are given by the ’planar singlet coupling’ on the
left and the ’axiom triplet coupling’ on the right.

ume [16] was the achievement, via the use of conventional mathematics, of direct
universality for the representation of NSA Newtonian systems in terms of a gen-
eralized variational principle so as to allow apparently for the first time the opti-
mization, for instance, of the actual shape of a wing moving in atmosphere (see
representative papers [122]-[126]).

This aim was achieved via the formulation of Birkhoffian mechanics in the
6-dimensional phase space with local coordinates aµ = (r, p), µ = 1, 2, ..., 6,
and the assumption of the most general possible action principle in the indicated
phase space

δAδ
∫

[Rµ(t, a)da
µ −B(t, a)dt] = 0, (77)

with consequential Birkhoff’s equations (Sect. 4.2, p. 30 of [16])

[
∂Rµ(t, a)

∂aν
− ∂Rν(t, a)

∂aµ
]
daν

dt
− [

∂B(t, a)

∂aµ
− ∂Rµ(t, a)

∂t
] = 0, (78)

where B(t, a) is the Birkhoffian (which does not generally represent the energy)
with the most general possible realization of the Lie-Santilli isotheory in classical
mechanics in terms of brackets between observables while admitting as particular
case the conventional Hamilton’s equation in phase space (those without external
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terms) for R = (0, p)

[A,̂B] = ∂A
∂aµ

Ωµν ∂B
∂aν

,

ωµν
daν

dt
− ∂H(t,a)

∂aµ
= 0,

[A,B] = ∂A
∂aµ

ωµν ∂B
∂aν

= ∂A
∂r

∂B
∂p

− ∂B
∂r

∂A
∂p
.

(79)

Note that the conventional Hamilton’s equations can only represent SA New-
tonian systems while, by comparison, Birkhoff’s equations are directly universal
for NSA systems (Sect. 4.5, p. 54 of Ref. [16]).

A crucial point occurred in these studies with the identification of the fact that
the Birkhoffian form of the Hamilton-Jacobi equations (p. 205 on of Ref. [16])
no longer verifies the crucial property (47c) on the independence of the action
from the linear momentum. As a consequence, the Birkhoffian generalization of
Schrödinger equation (p. 211 of Ref. [16]) requires a generalization of quantum
mechanical axioms because wave functions would also depend on momenta ψ =
ψ(t, r, p).

In order to maintain the validity of quantum axioms for NSA interactions, R.
M. Santilli proposed in Eq. (15), p. 259 of Ref. [16] the decomposition of the
Birkhoffian eigenvalue equation into the iso-Hamiltonian

B(t, a)× |ψ(t, a)⟩ = H×̂|ψ(t, r)⟩ = HT̂ |ψ(t, r)⟩ = E|ψ(t, r)⟩, (80)

which is possible thanks to the embedding of all NSA terms in the isounit of the
theory.

By looking in retrospect, Birkhoffian mechanics has seen various applications
for the classical treatment of NSA systems (see representative papers [122]-[126])
while the isotopic formulation of NSA systems has been preferred over the oper-
ator Birkhoffian form in view of its clear preservation of quantum mechanical
axioms.

5 Representation of the Deuteron data
5.1. Foreword
Thanks to studies initiated in 1978 [43] and continued thereafter (see Refs. [127]-
[131]), in this section we review and upgrade the numerically exact and time in-
variant representation permitted by the Lie-isotopic mechanics of the following
experimental data of the Deuteron [6]-[? ] in the ground state used for experi-
mental measurements, that with null orbital contributions:
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Figure 9: In this figure, we reproduce known experimental data on the dimensions of the
Deuteron [8] and its constituent proton and neutron [11], as well as their interpretation
as a hadronic bound state in axial triplet coupling (Fig. 1), thus representing for the
first time the spin of the Deuteron SD = 1 in its ground state, that with null angular
contributions LD = 0 [51].

5.1.1. The spin SD = 1.
5.1.2. The magnetic moment µexpD = 0.85647 µN .
5.1.3. The total energy Etot

D =Mp +Mn −BE = 1875.7MeV.

5.1.4. The charge radius RD = µexpD = 0.85647 µN .
5.1.5. The mean life τD = ∞.
In order to apply isotopic formulations, in this section we assume in first ap-

proximation that the Deuteron is a hadronic bound state of a proton and a perma-
nently stable neutron. The representation of the stability of the Deuteron despite
the natural instability of the neutron and the Deuteron stability despite strongly
repulsive protonic forces, are studied in the following paper.

5.2. Representation of the Deuteron spin
Recall that the sole stable bound state predicted by quantum mechanics between
two point-like particles with spin S = 1/2 is the singlet for which SD = 0. The
stable bound states predicted by hadronic mechanics for two extended particles
with spin S = 1/2 are the planar singlet coupling and the axial triplet coupling
illustrated in Figure 8. It then follows that, according to the Lie-isotopic branch of
hadronic mechanics, the Deuteron in its true ground state is composed by a proton
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and a neutron in axial triplet coupling (Fig. 9) [51]

D =

(
p↑

n↑

)
, (81)

resulting in a structure illustrated in Figure 9 with dimensions from Refs. [8]
[11]. In the subsequent Figure 10, we illustrate the consequential structure of the
Helium-4 (Fig. 10).

It should be noted that the above representation of the Deuteron spin is highly
preliminary because a deeper study of the spin of the Deuteron requires the prior
representation of the synthesis of the neutron in the core of stars, which represen-
tation is studied in the next paper.

5.3. Hadronic angular momentum
As it is well known, the quantum mechanical angular momentum is given by
the familiar expression on an Euclidean space over the field of complex numbers
L = r ∧ p|b⟩ acting on a state of the Hilbert space H. The rotational symmetry
so(3) represents the conservation of the angular momentum.

The angular momentum for extended nucleons under strong interactions, called
hadronic angular momentum (first presented in the 1985-1991 papers [76]-[78]
and then studied in detail in Chapter 6, p. 209-285 of Ref. [31]) is characterized by
the isounitary isoirreducible isorepresentations of the Lie-Santilli isogroup ŜO(2)
characterized by the isorotations on the iso-Eucliean isospace Ê(r̂, ∆̂, Î) (Sect.
3.6)

r̂′ = R̂(θ̂)×̂r̂, R̂(θ̂)×̂R̂(θ)−1̂ = R̂(θ̂)−1̂×̂R̂(θ) = Î ,

R̂(θ̂)×̂R̂(θ̂′) = R̂(θ̂′)×̂R̂(θ̂) = R̂(θ̂ + θ̂′), R̂(θ̂)×̂R̂(−θ̂) = R̂(0) = Î = 1T̂ .
(82)

The isoalgebra ŝo(2) can be realized on an iso-Hilbert isospace over an isofield
via a simple isotopy of the conventional angular momentum (Section 3.6)

L̂×̂|b̂⟩ = (r̂∧̂p̂)×̂|b̂⟩,

r̂ = r̂I, p̂×̂|b̂⟩ = −i∂̂r̂|b̂⟩ = −îI∂r̂|b̂⟩.
(83)

As expected, the ŝo(3) isosymmetry characterizes the conservation of the hadronic
angular momentum, which conservation is evidently verified for stable nuclei.

The simplest possible realization of the isoalgebra ŝo(3) can be constructed
via the isotransformations of the conventional generators Jk, k = 1, 2, 3 (Sect.
3.8)

UJkU
† = Ĵk,

UU † = Diag.( 1
n2
1
, 1
n2
2
, 1
n2
3
) = (b21, b

2
2, b

2
3).

(84)
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It is easy to see that the above isoalgebra preserves the conventional structure
constants of so(3)

[Ĵî,Ĵi]×̂|b̂⟩ = (ĴiT̂ Ĵi − ĴjT̂ Ĵi)×̂|b̂⟩ = ϵijkĴk×̂|b̂⟩, (85)

as well as conventional quantum mechanical eigenvalues

Ĵ3×̂|b̂⟩ = m|b̂⟩, m = J, j − 1, ...,−J, j = 0, 1, 2, ...

Ĵ 2̂×̂|b̂⟩ = (Ĵ1T̂ Ĵ1 + Ĵ2T̂ Ĵ2 + Ĵ3T̂ Ĵ3)T̂ |b̂⟩ = j(j + 1)|b̂⟩,
(86)

by therefore assuring the isomorphic ŝo(3) ≈ SO(3).
It should be indicated that the above simplest possible isorealization of ŝo(3),

called standard (p. 212 of Ref. [31]), is sufficient for the representation of the
Deuteron magnetic moment done in the next section. Nevertheless, the represen-
tation of the conserved angular momentum of the neutron in its synthesis from the
Hydrogen atom (studied in the next paper) will require the broader regular isorep-
resentation (p. 213 of Ref. [31]) while the representation of nonconserved angular
momenta in nuclear fusions requires the more general irregular isorepresentations
[58] [59] [60].

5.4. Representation of the Deuteron magnetic moment via the hadronic an-
gular momentum
Let us recall the historical view by E. Fermi [53], V. F. Weisskopf [54], and other
founders of nuclear physics according to which the inability by quantum mechan-
ics to represent nuclear magnetic moments may be due to a deformation of the
charge distribution of nucleons under strong nuclear forces, a prediction hereon
referred to as the Fermi-Weisskopf hypothesis. In fact, p. 31 of Ref. [54] presents
the statement it is possible that the intrinsic magnetism of a nucleon is different
when it is in close proximity to another nucleon.

We are here referring to the fact that a rotating charge distribution creates a
magnetic field along its rotation axis. When said charge distribution is deformed
into a prolate (oblate) ellipsoid, the magnetic field decreases (increases). Since
the quantum mechanical prediction for the magnetic moment of the Deuteron is in
excess by about 3% of the experimental value µexpD = 0.85647 µN , the deformation
of the charge distribution of the proton and the neutron is expected to be of prolate
type (bottom right view of Fig. 2).

The representation of the Deuteron magnetic moment via the Fermi-Weisskopf
hypothesis achieved for the first time in the 1994 paper [127] (see also monograph
[128] and idnependent studies [129]-[131]) is based on the representation of the
deformation of nucleons via isotopic element (28) which reconstructs the per-
fect sphere on the iso-Euclidean isospace over an isofield (top of figure 2). The
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reformulation (isotopy) via hadronic mechanics (hm) of the conventional connec-
tion between magnetic moment and spin of nucleons [55] [7] (here omitted for
brevity) implies the following mutation of the magnetic moments of the protons
and the neutron [127]

µhmD =
n4

n3

(gpS + gnS) =
n4

n3

µ
(
Dqm). (87)

By recalling the experimental value µexpD = 0.8565µN , and the quantum mechan-
ical (qm) value µqmD = 0.8798µN , we reach the numeric value

µ̂expD

µqmD
=
n4

n3

=
0.8565

0.8798
= 0.9735. (88)

In the above expressions, n4 represents the density of individual nucleons whose
currently available best value is given by the density n4 = 605 of the p− p̄ fireball
of the Bose-Einstein correlation [88] [89], resulting in the numeric values

n3 =
0.605

0.9735
= 0.6215, n2

3 = 0.3862. (89)

To obtain the value of the remaining characteristic quantities, we assume that
the mutation of the magnetic moment does not alter the volume of nucleons. By
assuming a normalization of the type

n2
1 + n2

2 + n2
3 = 3, (90)

we obtain the numeric values of the semiaxes of the spheroids here expressed for
the characteristic quantities nµ of this paper as well as for their inverse bµ = 1/nµ
used in paper [127]

n2
1 = n2

2 = 1.3069, n2
3 = 0.3862, n2

4 = 0.3660,

b21 = b22 =
1
n2
1
= 1

n2
2
= 0.7652, 1

n2
3
= 2.5893, 1

n2
4
= 1.7668,

n1 = n2 = 1.1432, n3 = 0.6215, n4 = 0.605,

b1 = b2 =
1
n1

= 1
n2

= 0.8709, b3 =
1
n3

= 1.6098, b4− = 1
n4

= 1.653,

(91)

which confirm their prolate character because n2
3 < n2

1 = n2
2.

It should be noted that Ref. [127] studied the isotopic representation of a
possible 1% deformation of the neutron under nuclear interactions. By using the
same nucleon density b4 = 1/n4 = 1.653 of Refs. [88] used above [89], Ref.[127]
reached the numeric value b3 = 1/n3 = 1.662 (Eqs. (3.5), p. 124, of Ref.
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Figure 10: In this figure, we illustrate the structure of the Helium as a hadronic bound
state of two Deuterons composed by protons and neutrons in axial triplet coupling [51].

[127]) which is rather close to the value b3 = 1/n3 = 1.6098 of Eq. (90) above
confirming the prolate character of the deformation, The b1 = b2 value of Ref.
[127] different than that of Eqs. (90) is due to a normalization of the characteristic
quantities different than used above.

The possible application of the above model to a numeric representation of
the magnetic moments of light stable nuclei with N nucleons can be done via the
following isotopy of standard representation of nuclear magnetic moments [54] [?
] first presented in Eq. (3.8), p. 125 of Ref. [127]

µhm = Σk=1,2,..,N(
n4k

n3k

gLkLk3 +
n4k

n3k

gSkSk3), (92)

where gLk and (gSk ) are tabulated, orbital (spin) giromagnetic factors of the k-
nucleon, n4k is the density of the k-nucleon and n3k is its semiaxis along the
spin direction.

By assuming again in first approximation that nuclei are composed by protons
and neutrons, it is easy to see that isotopic model (91) provides a numeric repre-
sentation of the magnetic moment of the Helium and other light stable nuclei with
potentially significant information on the deformation of the individual nucleons.

5.5. Hadronic spin
The spin of extended nucleons under strong interactions, called hadronic spin
(first presented in Ref. [77] is characterized by the isounitary isoirreducible isorep-
resentations of the Lie-Santilli ŝu(2) isoalgebra whose general case is studied in
Chapter 6, pages 209-285 of monograph [31], jointly with the hadronic angular
momentum of the preceding section and the isotopies of spin-orbit couplings. The
hadronic spin was then used for the 1998 verification of the EPR argument [39]
and in other applications [32] (Fig. 8).
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We here study the particular case of the hadronic spin with conventional quan-
tum value S = 1/2, yet with new degrees of freedom representing Bohm’s hidden
variables [51]. Its formulation requires the isolinearization of the second order
isoinvariant Ĉ2 (41) of the Poincaré-Santilli isosymmetry P̂ (3.1) (Sect. 4.8.2)
done in Ref. [82] (see [31], Chapter 8, p. 329, particularly Sect. 8.5, p. 353). Said
isolinearization required:

1) A four-dimensional real valued isospacetine M̂(x̂, Γ̂, Î) for the characteri-
zation of the orbital motion (orb).

2) A two-dimensional complex valued isospace E(ẑ, δ̂, Îspin) for the represen-
tation of the spin (spin).

3) A six-dimensional total (tot) isospace M̂×̂Ê.
From Sect. 3.9, we introduce the corresponding nonunitary transformations

UorbU
†
orb = Îorb = Diag.( 1

n2
1
, 1
n2
2
, 1
n2
3
, 1
n2
4
),

UspinU
†
spin = Diag.(λ−1, λ),

(Uorb × Uspin)× (Uorb × Uspin)
† = Îtot,

(93)

where λ represents Bohm’s hidden variable [48] [49].
We now introduce the 4× 4-isomatrices Γ̂ verifying the conditions

Γ̂µ = γ̂µÎorb.

{γ̂µ̂,γ̂ν}. = γ̂µT̂orbγ̂ν + γ̂νT̂orbγ̂µ = 2η̂µν Îorb,

. (94)

The second order isoinvariant of P̂ (3.1) is then decomposed into the isoprod-
uct (Eq. (6.1a), p. 190, of Ref. [82])

η̂µν p̂µT̂orbp̂ν + m̄2C2 =

= (η̂µν γ̂µT̂totp̂ν + im̂C)T̂tot(η̂
µν γ̂µT̂totp̂ν + im̂C), C = c/n4,

(95)

where the local speed of light C = c/n4 within a hadronic medium with density
n4 originates from the Lorentz-Santilli isosymmetry ŜO(3.1) [78] (Sect. 3.8.1),
resulting in the Dirac-Santilli isoequation [107] (see also Refs. [50] [31]), here
written according to isomathematics and in its projection on the conventional
Minkowski space

[Ω̂µν×̂Γ̂µ×̂P̂ν + M̂×̂Ĉ]×̂|ψ̂(x̂) >=

= (−iÎ η̂µν γ̂µ∂ν +mC)|ψ̂(x̂) >= 0,

(96)
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where the Dirac-Santilli isogamma isomatrices Γ̂ = γ̂Î are given by

γ̂k =
1
nk

(
0 σ̂k

−σ̂k 0

)
,

γ̂4 =
i
n4

(
I2×2 0
0 −I2×2

)
,

(97)

and the Pauli-Santilli isomatrices (Eq. (6.8.20), page 254 of Ref. [31] and Ref.
[39])

σ̂1 =

(
0 λ
λ−1 0

)
, σ̂2 =

(
0 −iλ
iλ−1 0

)
, σ̂3 =

(
λ−1 0
0 −λ

)
. (98)

It is easy to see that the Pauli-Santilli isomatrices verify the iso-commutation
rules with the same structure constants of Pauli’s matrices

[σ̂î,σ̂j] = σ̂i×̂σ̂j − σ̂j×̂σ̂i =

= σ̂iT̂spinσ̂j − σ̂jT̂spinσ̂i = i2ϵijkσ̂k,

(99)

showing the iso-morphism ŝu(2) ≈ su(2).
The representation of the spin 1/2 of nucleons is given by the isoeigenval-

ues on an iso-state |b̂ > of the Hilbert-Myung-Santilli iso-space Ĥ[106] over the
isofield of isocomplex isonumbers Ĉ [61]

Ŝk =
1̂
2
×̂σ̂k = 1

2
σ̂k,

σ̂3×̂|b̂ >= σ̂3T̂ |b̂ >= ±|b̂ >,

σ̂2̂×̂|b̂ >= (σ̂1T̂ σ̂1 + σ̂2T̂ σ̂2 + σ̂3T̂ σ̂3)T̂ |b̂ >= 3|b̂ > .

(100)

It should be noted that the above hadronic spin, called standard, is sufficient
for our needs for this section, but it is insufficient for the synthesis of the neutron
studied in the next paper in favor of the broader notions of regular and irregular
hadronic spins [31].

5.6. Representations of the Deuteron magnetic moment via the hadronic spin
Let us recall the factorization of the Pauli-Santilli isomatrices in Eqs. (6.8.18), p.
254 of Ref. [31]

σ̂k = σkÎ = T̂ σk, Î = 1/T̂ = Diag.(λ−1, λ), Det.Î = DetT̂ = 1, (101)
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and assume the realization of the hidden variable [51] [52]

λ = eϕ ≥ 0,

Î = coshϕ+ σ3 sinhϕ = eϕσ3 ,

T̂ = coshϕ− σ3 sinhϕ = e−ϕσ3 .

(102)

By recalling that σ3 characterizes the nucleon spin S = 1/2, we have

σ̂3|b̂ >= σ3Î|b̂ >= σ3e
ϕσ3|b̂ >, (103)

with ensuing characterization of the magnetic moment

µhm|b̂ >= KgS|b̂ >, (104)

where K is an iso-renormalization constant of the gyromagnetic factor g created
by Bohm’s hidden variables in the hadronic spin. By using the above property, we
reach the relation

µhm|b̂ >= eϕσ3µqm|b̂ >= eϕσ3gS|b̂ > . (105)

Note that the proton and the neutron have the same spin 1/2, they have essen-
tially the same mass (thus being characterized by the same λ) and they have the
same eigenvalue equation

σ3|b̂ >= −|b̂ > . (106)

We can, therefore, write the expression per each nucleon

µhm,k ≈ (1 + ϕσ3)µqm,k = (1− ϕ)µqm.k, k = p, n, (107)

from which we obtain the isorenormalized value of the magnetic moment of the
proton and of the neutron

µ̂p = +(1− ϕ) 2.79285 µN , µ̂n = −(1− ϕ) 1.91304 µN , (108)

with corresponding value for the magnetic moment of the Deuteron

µhmD = (1− ϕ) 2.79285− (1− ϕ) 1.91304 µN =

= (1− ϕ) 0.87981 µN = µexD = 0.85647 µN ,
(109)

from which we obtain the numeric value

ϕ = 1− 0.87981/0.85647 = 1− 0.02334 = 0.97666, (110)
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with corresponding numeric value of Bohm’s hidden variable for the Deuteron
[51]

λ = eϕ = e0.97666 = 2.65557. (111)

We can, therefore, state that isomathematics and isomechanics do allow a
numerically exact representation of the Deuteron magnetic moment in terms of
Bohm hidden variable λ which is invariant over time due to the invariance of the
Dirac-Santilli isoequation under the isosymmetry P̂(3.1) [82].

5.7. Representation of the Deuteron mass, stability and charge radius
In accordance with our primary assumptions of Sect. 1, the terms hadronic struc-
ture equations are referred to iso-Galilean isoinvariant isoequation (57) represent-
ing stable bound state of extended nucleons in conditions of partial mutual pen-
etration. The conventional linear, local and potential interactions are represented
by the HamiltonianH , while nonlinear, nonlocal and nonpotential interactions are
represented by the isotopic element T̂ under the condition of rapidly recovering
the conventional unit, T̂ → I at mutual distances bigger than the range of strong
interactions R = b−1 = 10−13 cm.

The first hadronic structure equation was proposed by Santilli in Sect. 5.1,
p. 827 on of the 1978 Harvard University memoir [43] for the representation of
all characteristics of the pion π0 as a bound state of an electron and a positron
at R = 10−13 cm mutual distance, so as to have a physical origin of the great
instability of the particle as well as of the spontaneous decay with the lowest
mode π0 → 2 γ.

The isotopic element was selected to be of type (14), with the function F̂ (r)
given by the Hulten potential in representation of nonpotential interactions, and
the function F (r) representing the Coulomb attraction between the electron and
the positron

T̂ = e−
F̂ (r)
F (r) ≈ 1− F̂ (r)

F (r)
= 1−

e−br

1−e−br

e2

r

, (112)

resulting in the iso-Galilean invariant [72] [73] [21] iso-Schrödinger equation

[− 1

m̄
∆r −

e2

r
−N

e−br

1− e−br
]|ψ(r)⟩ = E|ψ⟩, (113)

where N is a normalization constant, E is the binding energy and the reduced
mass

m = m1m2/(m1 +m2), (114)

is isorenormalized to the form on isospaces over isofields m̂ = m/n4 originating
from the Lorentz-Santilli isosymmetry (Sect. 3.8.1), with value for the π0 m̄ =
me/2n4.
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The resulting hadronic structure equations of the π0 in their radial form are
given by (Eqs. (5.1.14), p. 835 of Ref. [43])[

1
r2
( d
dr
r2 d

dr
) + m̄(E + e2

r
+N e−br

1−e−br )
]
= 0,

Eπ0 = Ee− + Ee+ − E = 135MeV,

τπ0 = 2πλ2|ψ̂(0)|2 α2Ee

ℏ = 10−16s,

Rπ0 = b−1 = 10−13 cm = 1 fm.

(115)

A detailed study of the analytic solution of the radial differential equation with
the inclusion of boundary conditions (p. 836-841 of Ref. [43]), reduced the struc-
ture model of the π0 to the solution of the following algebraic equations in the
parameters k1, k2 (Eqs. (5.1.32a) and (5.1.32b), p. 840 of Ref. [43])

τπ0 = 48×(137)2

4πbc
k1

(k2−1)3
= 0,

Eπ0 = k1[1− (k2 − 1)2]2h̄c
b

= 135MeV,

(116)

with energy spectrum

E =
1

4R2m̄
(k2

1

n
− n)2, n = 1, 2, 3, ...., (117)

numeric values for the pi0

k1 = 0.34, k2 = 1 + 4.27× 10−2, (118)

and consequential approximate value of the Binding Energy E ≈ 0.
Following the above 1978 proposal, the hadronic structure model of the π0 has

been applied to the structure of other particles, in each case providing a numeri-
cally exact and time invariant representation of all characteristics of the particle
considered [91] [35].

The application of the hadronic structure model of the π0 to the Deuteron
as a bound state of a proton and a neutron has been studied extensively in the
1998 monograph [128] resulting in the iso-Galilean isoinvariant hadronic struc-
ture equations of the Deuteron (we cannot review to prevent a prohibitive length)[

1
r2
( d
dr
r2 d

dr
) + m̄(E +N e−br

1−e−br )
]
= 0,

ED = Ep + En − E = 1875.7MeV,

τD = 2πλ2|ψ̂(0)|2 α2Ee

ℏ = ∞,

RD = b−1 = 10−13 cm = 1 fm,

(119)
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with values for the k-parameters

k1 = 2.5 k2 = 1. (120)

The following comments may be helpful for identifying some essential aspects
of structure model (119):

5.7.1. As expected, non-Hamiltonain interactions generate no binding energy,
because for k2 = 1 the finite spectrum of the Hulten potential (116) solely admits
the solution E = 0. Consequently, the binding energy and related missing mass
in nuclear structures is created by potential interactions.

5.7.2. Model (114) contains the clearly identified Coulomb potential between
the electron and the positron with ensuing well identified binding energy E. By
contrast, the author could identify no physical, independently verifiable potential
between the proton and the neutron. Consequently, the representation of the total
energy of the Deuteron in model (118) occurs on isospaces over isofields via the
isorenormalized mass of the constituents

Etot = m̄1 + m̄2 = (
m1 +m2

n4

), (121)

where n4 is a geometrization of the energy density of the Deuteron.
5.7.3. The author has no words to express the highly approximate character of

model (118) and therefore, of the Deuteron conceived as a bound state of a proton
and a neutron, thus suggesting the reinspection of model (118) with the synthesis
of the neutron done in the next paper.

6 Concluding remarks
In accordance with the Einstein-Podolsky-Rosen argument that quantum mechan-
ics is not a complete theory [1], the main aim of these papers is to present the Lie-
isotopic methods as a recommendable ore-requisite for the broader Lie-admissible
methods for the search (to be conducted in future papers) of new radiation-free
controlled nuclear fusions of light element, which have been preliminarily pre-
sented in report [132] (see also the video on a reactor built with funds from China
[133]).

Along the above lines in this paper we have reviewed and upgraded the EPR
completion of quantum mechanics into hadronic mechanics as originally proposed
in 1978 by R. M. Santilli [43] [15] [16] at Harvard University under DOE support
comprising:

6.1) The technical characterization of nonpotential interactions via the con-
ditions of variational self-adjointness presented in the 1978 monograph [15] and
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their classification into Self-Adjoint/Hamiltionian (SA) interactions and Non-Self-
Asdjoint/non-Hamiltionian (NSA) interactions.

6.2) The proposal presented in Charts 5.2-5.4, p. 154 on of the 1983 mono-
graph [16] of representing stable, thus time reversal invariant systems, via the
axiom-preserving time-reversal invariant Lie-isotopic formulations representing
SA interactions via the conventional Hamiltonian H and representing NSA in-
teractions via the Santillian T̂ > 0. The representation is based on the comple-
tion of the universal enveloping associative algebra of quantum mechanics with
generic product AB = A×B into the associativity-preserving form with product
A×̂B = AT̂B, T̂ > 0.

6.3) We have then reviewed, upgraded and specialized to nuclear physics stud-
ies conducted on hadronic mechanics by various scholars since the late 1970’s
[30]- [32] [19] [18] [21]-[29].

We have shown that isotopic formulations are based on:
6.i) The novel EPR entanglement characterized by the non-Hamiltonian inter-

actions of the wave packets of particles [34].
6.ii) The violation of Bell’s inequalities [38] by a system of extended spin

1/2 particles under NSA/non- Hamiltonian interactions with ensuing existence of
classical counterpart [39].

6.iii) The completion of Heisenberg’s uncertainty principle for point-like par-
ticles under electromagnetic interactions into the isouncertainrty principle for ex-
tended particles under electromagnetic and strong interactions (Sect. 4.7) [46]
which implies a progressive recovering of Einstein’s determinism [1] with the in-
crease of the density of hadronic media (decrease of the value of T̂ ) in the interior
of hadrons, nuclei and stars and its full recovering at the limit of gravitational col-
lapse due to the identity of the isotopic element with Schwartzschild’s horizon,
Eq. (34).

6.iv) Explicit and concrete realizations [51] [52] of Bohm’s hidden variables
λ [48] [49] in terms of the Santillian T̂ = λ, as being hidden in the axiom of
isoassociativity of hadronic mechanics sA×̂(B×̂C) = (A×̂B)×̂C, A×̂B =
AλB.

We have shown that the time reversal invariant isotopic formulations per the
above outline permit the representation of stable, thus time reversal invariant nu-
clei as a collection of extended protons and neutrons in conditions of partial mu-
tual penetration with Hamiltonian and Santillian interactions, with the consequen-
tial numerically exact and time invariant representation of the experimental data
of the Deuteron conceived as a hadronic bound state of a proton and a neutron in
its ground state as experimentally measured without orbital contributions.

In the hope that the methods may by applied to strong interactions at large, ,
we have shown that quantum mechanical nuclear models for point-like nucleons
with sole Hamiltonian interactions and insufficient representation of nuclear data
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can be uniquely and unambiguously mapped into hadronic models for extended
nucleons with Hamiltonian and non-Hamiltonian interactions with ensuing exact
representation of nuclear data via the simple quantum nonunitary transformation
on conventional spaces over conventional fields U × U † = Î = 1/T̂ (Sect. 3.11),
provided that the resulting model is reformulated in terms of the hadronic isouni-
tary transformations on isospaces over isofields Û×̂Û † = Î = 1/T̂ to avoid
insidious inconsistencies (Sect. 3.12).

We have finally shown that, despite the indicated advances, the conception of
the Deuteron as a hadronic bound state of a proton and a neutron does not allow
a quantitative representation of the Deuteron stability in view of the natural insta-
bility of the neutron or of the strongly repulsive protonic Coulomb forces. These
insufficiencies, combined with unsolved nuclear problems of societal relevance
(such as the recycling of radioactive nuclear waste and the controlled nuclear fu-
sion) suggests the conduction of deeper studies on nuclear structures which are
presented in the subsequent paper.
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