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Bi-a ISO-DIFFERENTIAL INEQUALITIES AND APPLICATIONS

Svetlin Georgiev Georgiev
Sorbonne University, Paris, France

Abstract

In this lecture, firstly we deduct some multiplicative iso-differential
inequalities for multiplicative iso-functions of first, second, third,
fourth and fifth kind. Then they are deducted and proved some
bi-a-multiplicative iso-differential inequalities. As applications, in
the lecture are deducted some uniqueness results for some classes
multiplicative iso-differential equations and bi-c~-multiplicative iso-
differential equations.
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1 Multiplicative iso-Differential Inequalities

Let D is a domain in R?, a > 0, 29 € R, J = [z0, %0 + a), T' € C1(J),
T(z) >0in J, f € (D).

Definition 1.1. (solution of multiplicative iso-differential inequality) A
function y(x) is said to be a solution of the multiplicative iso-differential
inequality

(@) > @)

or
W) Y@ >y FD + flo,y(z) MEe
in Jif

1. o/(x) exists for all z € J,
2. for all x € J the points (z,y(x)) € D,

3. ¥(z) > y(a:) T(ﬂ) + f(ar:,y(:)c))%@-l for allz € J.

The solutions of the multiplicative iso-differential inequalities .

y'(z) > y(w) o ) Y o)
T'(z) T(z) — 27" (x)
y'(z) < y(z)= (@) + (2, y(z)) @)
T'(z) T(z) - 2T"'(x)
y'(z) < yla)=——= o) + f(=, y(z)) @)

are defined analogously. Our first result for multiplicative iso-differential
inequalities is stated in the following theorem.

Theorem 1.2. (i baszc theorem for the multiplicative iso-differential inequal-
ities) Let T'(z)—2T"(z) > 0 for everyz € J, y1(z) and yo(z) be the solutions
of the multiplicative iso-differential inequalities

@) @) <SuEFL + (50 () ML,

T(z)
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() w(@) > 0@ FE + f(o, () HETE
on J, respectively. Then the inequality

Y1(%0) < y2(wo)
implies that
(4)  wn@) <yplz) for Vzeld
Proof. We suppose that (4) is not true. Then we define the set
A= {z: z€Jd,  yulz) > y(2)}

From our assumption it follows that A # @.
Let z* be the greatest lower bound of the set A. Then x, < z* and

% (z") 2 ya(z”).

Let us assume that

y(z*) > ya(z*).
Because y;(x) and yo(z) are continuous functions in J then there exists a
¢ > 0 such that

n(z” —€) = pa(z” —¢),
which is a contradiction with the definition of z*. Consequently

y1(z*) = ya(z%).
Let h < 0. We have
n(z* + h) <y(z* +h),
and hence . ; .
Vi — 0) = limy_ B
foeert limh._.)o ___(_yl KZ:*-{—_ h"h; :'yz z
> limy, o 2R3 w*+hfz_y2 S

= yé(iL'* - 0)7
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ie.,
5)  9i(@* = 0) 2 yh(z* - 0),
From (2) we get

T(z*) — 2 T"(z)
T'(z*)

)

(@) < y1(o) (( ; T fet (@)

from where, using (5),

6) @) EEL 4 e,y () TeETE) > g ),

T(z*) T'(a*)
On the other hand, from (3) we have

T(x*) - T ()
T(z*) ’

Bh(a* —0) > g(a") (())+f(:c,y(x*))

whereupon, using (6),

yo(z* )Z—@— Flz*, ya(z*)) & 2w l(@)

T(a*) T(z*)

<ule") g + (@) RO

T(z*) T(a*)

o o B N o Yl A a

T(a*) Py
and since T'(z*) — z*7"(z*) > 0 we get the contradiction

F(@"4a(2")) < F(2%, pa(z")).

Consequently
A=0,

from where we conclude that

y1(z) < yo(z) in J.
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Corollary 1.3. Let T'(z) — z1"(z) > 0 in the interval J. Let also,

(1) y(z) be a solution of the initial value problem

Y(2) = —y(@) 2D 4 plo,y(@)T@2l@ iy (g g+ a),

(6)

y(:BO) = Yo,
(i) y1(z) and yo(z) be the solutions of the multiplicative iso-differential
inequalities
(M %@ <nu@FS +f(@n@) 55",
(8)  9h(2) > 1a(2) 5E + f(, ya @) HEED
in J, respectively,
(1i) y1(zo) < o < ya(xo).

Then
yi(z) <y(z) < 2(z)
for all z € (zo, 20 + a).

Proof. We shall prove that
y(x) <ya(z) for  Vz € (20,20 + a).
1. case yp < ya(zo). Then from the last theqrem we have that

y(x) <wyplz) in (0,70 + a).

2. case Yo = Ya(Zo).
Let
#(z) = ya(z) — y(=).
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Then
(o) = y2(zo) — y(z0) = 0,

Z(z) = y3(z) — ¥'(2),
2 (0) = y3(z0) — ¥ (20)

> ya(w0) 20 4 (o, o (o)) Lizelzael (@)

T(@o) T(o)

(@) F22 — f(mo, y(ao)) Heskeeel(en)

'f'(mo) T(wo)

=0,

therefore the function z is an increasing function to the right of x4 in
a sufficiently small interval |29, 2o +6]. Consequently y(z) < ya(z) for
all z € (zg, o + 6], from where

y(zo + 6) < ya(zo + 9).
Now the last theorem gives that
y(z) <ya(z) In  [wo+ 6,20+ a).
Since ¢ can be chosen sufficiently small, then
y(z) <ye(z) in (@, zo+ a).

O

Theorem 1.4. Let T'(z) — «1"(z) > 0, T'(z) <0, %9‘3 < Pin J for

some positive constant P, and for all (,9), (%,2) € D such that z > x,

Yy > z, we have

 f@y) - f(,7) < Ly - 2),

for some positive constant L. Let also,

(i) y(x) be a solution to the initial value problem (6),

(i1) wi(z) and yo(z) be solutions to the multiplicative iso-differential in-

equalities (2) and (3) on J, respectively.
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(iii) y1(20) < o < yalwo).

Then
yi(z) < y(z) < valz) for Vzeld

Proof. Let € >0, A > LP. Let also,

z1(z) = yi(z) — %) z € J
Then
z1(xo) = y1(xo) — € < y1(xo)
and
As) = Yi(z) ~ ereXe=o
9

< yi(z)f@ 7o T /(@Y (m))ﬂ@f;(%@ _ e\eMe—wo).

On the other hand, from the definition of the function z;(z) we have
z21(z) <wy(z) in

Then
F@,y1(2)) = f(2, 21(2)) < L(wa(z) — z1(x))

f@ (@) < f@21(2) + Lp(2) —a1(2)) I .

From the last inequality and (9) we become

z(x) < zl(w) (f(a: 21(x)) + L{y: (z) — zl(;g)))w _ e)\eMa—u0)

T(z)

=2z (33)2;(%) + flz, zl(x))ﬂ?LTt(&ill + LeeNa—20) L= ~wT’(:v — e)eMa—a0)

<z (37) o ) )y 7 (z, zl(x))ﬂ%i(oi)jll + LPes@=w0) _ ¢)\eMe~o)

< Zl(x) o) 2+ f(=, zl(x))w,

T(=)
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ie.,

0 4() < 2@ 5 + f@,a@) LD W
10

z1(xo0) < y(zo).

Let now
2o(x) = yo(z) + eeM@=wo) z € J

Then
zo(z) > yo(x) in T

Therefore

f(@,22(z) — f(3,92(2)) < L(ze(2) — y2(2))  m
from where

f(z,92(2)) 2 f(2,22(%)) + L(ge(2) — 22(2))  in  J
Also, using the last inequality,

4(2) = 1(@) + e

> yz(x)m -+ f(x, yz(x))M 4+ E)\eA(a’“wO)

T(z) T(x)

> 4(@) 2D 1 (f(z, 22()) + Ly () — 22(2))) 2D | o\ Mo—a0)

> zg(x):’:@ - f(x, zz(x))w _ LeeA(w“mO)ﬁ%ﬂl + EAeA(m—mo)

) Ta)

> 2(2) 58 + f(z, 7)) L@  [epere—so) 4 ereMo—so

ie.,
zh(x) > zz(:z:)%{%) + flz, zz(x))l’@%lﬂ in J,
(11)

z(z0) > ya(20).
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From (10) and (11) it follows that the functions z1(z) and zy(z) satisfy
all conditions of the basic theorem for the multiplicative iso-differential in-
equalities. Therefore

z(z) <y(z) <z(z) in  (zo,70+ a),
ie.
() — €27 < y(z) < yo(z) + 2@ ip (@0, zo + a),
from here, when ¢ ~— 0,
v(z) <y(z) <epe) o J
O

Corollary 1.5. Let for every points (z,y), (x,2) € D such that x > xg, we
have

12)  |f(z,y) = f(=z,2)] < Lly — 2|

for some positive constant L, —~P < T?l(%l <0,0< ﬂﬂ)ﬁglﬂ < P in J for

some positive constant P.
Let also,
(1) y be a solution to the initial value problem (6),

(if) yi(z) and ya(z) be solutions to the multiplicative iso-differential in-
equalities (2) and (3) on J, respectively,

(iii) y1(wo) = 9o = Ya(zo).

Then for every z1 € J, x1 > w9, either y1(z1) < y(z1) (y(z1) < va(z1)) or
yi(z) = y(x) (va(z) = y()) for Vo € [xo, 21].

Proof. From (12) we have that if y > 2 then
_L(y - Z) < f(x)y) - f(x7z) < L(y - Z)
Therefore all conditions of the last theorem are fulfilled. Consequently

yi(z) <ylz) <yelz) for  Vzeld
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Also, we have

Y (@) = ¥4(2) = y(2) 5D + (=, y(z) LAZLE _ ()

T(z) T(x)

> y(@) 29 4 f(g, y(x)) Le2l@

T(z) T(z)

~, (@) T8 _ f(g, 4 (2)) LR @

= (y(z) — yl(x))f_l'ﬁﬁl + (f(z,y(z)) — f(=, yl(w)))_fﬁ.m%wf’gm)

T(z) 1()
> —(y(z) — y1(2))P — LP(y(z) — va(x))
= —P(1+ L)(y(z) — 1:(z)),
from where
((z) ~ 1 (x)) + P(1 + L)(y(x) — 11(x)) > 0,

and ,
(e e4P2(y(z)) 2 0,

From the last inequality, when z < x;, we get

/m (eP(1+L)m(y($))lde' <0,

Z1

or

(13)  eP0D2(y(z) ~ y1(2)) < PO (y(21) — g (22)).

Then, if y(z1) = y1(z1), using (13), we have that for every = € [xo, z1]
y(z) < (@),

whereupon
y(z) = n(z) for  Vz € [z, 1)
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Definition 1.6. A solutionr(x) (p(z)) of the initial value problem (6) which
exists in J = [x9, %o + a) is said to be mazimal(minimal) if for an arbitrary
solution y(x) of (6) existing in J, the inequality y(z) < r(z) (p(z) < y(z))
holds for all z € J.

Theorem 1.7. Let f(z,y) be continuous in Sy = {(z,y) : 1z < x
zo+a, |y—yo| < b} and hence there exists a M > 0 such that | f (z,y)| <
<

for all (z,y) € Sy. Let also, T(z) — z1"(x) > 0 in [0, To + a), %%gl

ﬂ%@ < P in [zg,%o + a). Then there exists a mazimal solution r(:v)
and a minimal solution p(x) of the initial value problem (6) in the interval

[Zo, o + @), where

T RIA

a-{a 2b }
U7 2P+ Jyol + M) + b7

Proof. We will prove the existence of a maximal solution.
Let

b
< —,
0<e__2

Let us consider the initial value problem
V(@) =y@) 58 + foy@) LD e in [m,m0+0),
(14)
y(@o) = o
We define
= b
Sez{($,y)ER2: wOSwS$O+a'7 |y_('y0+€)|_§§}

We have that

because

2|y_y0|—67
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or b
ly —wo| < 5 +¢

b b
§§+§
= b.

Also, for every (z,y) € S, we have

¥(@) 5 + £, ) R 4 | < Jy(a)| HE + | £ (o, )| Lol 4

T(x) () T(z) T(x)
S P+ [yol) + MP +¢

< P(b+ |yl + M) + 2.

From here and from the multiplicative iso-Cauchy-Peano’s existence theo-
rem it follows that the problem (14) has a solution y(z, €) which is defined
in [zo, Zo + @).
Let now
0<e <e <e

We have '
y(an 62) =Yo+e <Y+ €= y(ﬂﬁo, 61),

Y(@,e0) = y(@) HD + f(o,y(2) 1@ | o,

T(z) T(z)

v(ze) =y(@) R + flo (@) ERT D e

T(x) T(z)

> y(@) 58 + f(o,y(@) @ 1,

T(e)
From here and from the basic theorem for the multiplicative iso-differential
inequalities it follows that
y(@,e) <ylz,e1) for  Vz € [xo, 20+ ).

Using the proof of the multiplicative iso-Cauchy-Peano’s existence theorem
we have that the sequence {y(z, €)}es0 is equip-continuous and uniformly
bounded.
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Let {e,}22.; be a sequence of positive real numbers such that

lim ¢, =0
n—00

and the corresponding sequence {y(z, €,) }22, of solutions of (14) is defined
in [CBQ, xo + a).
We have

Y(@,e) =y +ent [, (y(t)i'ﬁl + f{t, y(t))flzl—_@lﬁ) dt,

T() T(t)
Yo = Y(Zo, 0) < Yo + €n,

Y (3, 6) = y(2) 22 + f(z, y(z) QL@ o

() T(z)

> y(2) 2D + f(z, y(z) T2l @, —

T(x) T(x)

From here and from the basic theorem for the multiplicative iso-differential
inequalities it follows that

y(@) <y(®,6) in  [mo,mo + ).
Consequently
y(z) < lim y(z,€,) = r(z) for Vz € [z9, 2o + ).
300

U

Theorem 1.8. Let r(z) be a mazimal solution to the initial value problem
(6) in J, J = [0, %0 + a). Let also, y(z) be a solution to the multiplicative
iso-differential inequality (2) in J. If
y(zo) < 1o
then
y(z) Sr(m) in J

Proof. Let zy € [zg, 2o + a). Let also € > 0 be chosen enough small. We
consider the problem

y'(z) = y(a:)%(%2 + f(z,y(z)) +€¢ in J,
(15)

y(zo) = Y.
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Let r(z, €) be a maximal solution of the problem (15) in the interval J. We
have that

El_iLnOr(:Jc, €) =r(x)

uniformly in 2o, z1).

Since ’
Y(zo) Sy <wote,
y(@) < y(@)FQ + £(z,(@) "5 52
< y(@) 5 + f(z,y(2)) HELE 4
and . N
T'(z) T(z) — «T"(x)

9

7'/(3% €) = (z,¢€) T(.’,‘C) + f(=, r(z, 6)) T(w)

then from the basic theorem for the multiplicative iso-differential inequali-
ties it follows that

y(z) < r(z,€) in [zo, 1],

whereupon
y(z) < lim r(z, ) = r(a).

2 Existence and Uniqueness of Solutions

In this chapter (zo,70) € R?, D is a domain in R* containing the point
(2o, 10), J is an interval in R containing o, T(x) € C*(J), T'(x) > 0 for
every x € J. ) .

We begin to develop the theory of existence and uniqueness of solutions
of the initial value problem

® (@) =Fere), sl

(2) y(wO) = Yo,
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where f will be assumed to be continuous in the domain D.
The equation (1) can be rewritten in the following form

V@@l _ fea@) e g
P(2) | T(@) - (2) T()

or

Y@1@) - y(@)T'(2) = fw,y@) (1) - 2l'(@),  we

D) T(@) 7

Definition 2.1. We will say that a function y(z) is a solution to the initial
value problem (1), (2) if

1. y(zo) = Yo,
2. y(x) exists for allz € J,

3. for all z € J the points (z,y(z)) € D,

4. ¢ (z) = y(m)ﬂﬂ + f(a:,y(:c))w for all z € J.

T(x) ()

If f(z,y(x)) is not continuous, then the nature of the solutions of (1) is
quite arbitrary. For example, let

feye) = WA= YD ) e,

and (o, y(zo)) = (0;0). Then the equation (1) admits the representation

V() = y(a) + (P - 1) (1)

z(1—z)
= y(z) + 44222 _ y(z)

= 2(y(=) - 2),
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its general solution is
(3)  y(z) =2+ Cx?,
where C' is a constant. From here, we conclude that

y(0) =2 #0,

therefore the considered initial value problem has no any solution. If we
take (o, y(xo)) = (0,2), then every function (2) will be a solution of the
considered initial value problem.

We shall need the following result to prove existence, uniqueness, and
several other properties of the solutions of the initial value problem (1), (2).

Theorem 2.2. Let f(z,y(z)) be continuous function in the domain D, then
any solution of the initial value problem (1), (2) is also a solution of the
integral equation

4 y@)=w+[, (y(t)?-'—@ + f(t,y(t))i@z:ﬁﬁ> it

T() 7(t)
and conversely.

Proof. An integration of the equation (1) yields

7'(t)

T(t) — t1(8)
Fo VO =g )

v(e) ~v(eo) = [ (ut) 75

Conversely, if y(x) is any solution of (4), then

?/(fl?o) = Yo,

and since f(z,y(z)).is a continuous function in D and 7" is a continuous
function in J, then y(z) is a continuous function in J and we can differentiate
(4), from where we find

_ili(_a:_)_ ol T(z) — 21" (z)

Y'(z) = y(z)
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We shall solve the integral equation (4) by using the method of suc-
cessive approximations due to Picard. For this reason, let yo(z) be any
continuous function, we often take yo(z) = yo, which we will suppose to be
initial approximation of the unknown solution of (4), then we define y(z)
as follows

- () T(t) — t1"(t)
@) =+ [ (wOgd+ 10 ?Jo(ﬂ)w*)dt

We pick this y1(z) as our next approximation and substitute this for y(z)
in the right side of (4) and call it y»(z),

T

B 1'(t) T(t) — 17 ()
Y2() = vo + /w 0 (’yl(t) 1) + f(t, yl(t))———————-—T(t) )dt

Continuing in this way, the (m + 1)st approximation y,.;(z) is obtained
from ym(z) by means of the relation

) i@ =v0+ [3 (snOFD + Fum@) L D)t m=0,1,2,..

@) T(t)

If the sequence {ym(z)}%°_; converges uniformly to a continuous function
y(x) in the interval J and for all z € J the points (z, ym(z)) € D, then we
may pass to the limit in both sides of (5), to obtain

y(z) = limpy, o0 Ym+1(T)

= qo + lim,,, 00 JZ; (ym(t)zz_l@)_ + f(t, ym(t»T!t)«_tT'(t))dt

@ T(t)

= yo+ [ (v 5L + £(t,0) 5D ) ar,

0 0

so that y(z) is the desired solution. Below we will suppose that a and b are
positive real numbers. Let P be positive real number such that

@), F@) =T

= <P for Vz € [xg — a, T + al.
() () Fomazota

Theorem 2.3. Let the following conditions be satisfied
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(i) f(z,v) is continuous in the closed rectangle S : |z —zo| < a, |y —1yo| < b
and hence there ezists a M > 0 such that | f(z,y)| < M for all (z,y) €
S,

(ii) f(z,y) satisfies a uniform Lipschitz condition

|f(z,11) — f(z,92)| < Llgh —

for all (z,v1), (x,vs) in the closed rectangle S,
(iii) yo(z) is continuous in |z — zo| < a, and |yo(z) — yo| < b.

Then the sequence {ym(z)}o_; generated by Picard iterative scheme (5) con-
verges to the unique solution y(x) of the initial value problem (1), (2). This
solution is valid in the interval Jy, : |x—xo| < h, where h = min{ a, mm}
Further, for all x € J,, the following error estimate holds

6) |y — (@) < Ne(P+PL)hmin{1, iﬁfi{;—%lm} m=0,1,2,...,

where

— < N.
max y,(z) ~ yo(@)| < N

Remark 2.4. This Theorem is called a local existence theorem since it
guarantees a solution only in the neighborhood of the point (zo, yo).

Proof. We will show that the successive approximations y,,(z) defined by
(5) exist as continuous function in J, and (z,y,(z)) € S for all z € J,.
Since yo(z) is a continuous function for all z such that |z — x| < a, the
function Fo(z) = f(z,yo(x)) is continuous function in Jy, and hence y; ()
is continuous in Jj.
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Also,

[y1(2) = 30| =

Sz (o5& + £t 30(6)) REE D ) ot

o 0) T@)

<

Lo (lyo(t)l%{f)ﬂ + | (2, yo(t))|g_@l%ﬂ)dt’

<

J2 (®+ oy P+ MP)dt]

= P(b+ lyol + M)l —

< P(b+ lyo| + M)A

<b.
Assuming that the assertion is true for y,.(z), m > 1, then it is sufficient
to prove that it is also true for ym+1(x). For this, since ym(z) is continuous

in Jy, the function F,(z) = f(x,yn(z)) is also continuous function in Jj.
Moreover,

S (ym(t)?—'@ + £t ym () T dtl

o T() T(t)

|Ym1(2) — wo| =

<

12 (19m (VG + 172, ()| LB )

%o T() Tt

<

Jz. (6 + o) P+ MP)dt]

< P(b+ o] + M)z — 20|

< P(b+ |yo] + M)h

<b.
Now we will prove that the sequence {ym ()}, converges uniformly in Jj.
Since y:(z) and yo(z) are continuous in Jy, there exists a constant N > 0

such that
lyi(z) — wo(z)| < N for Yz € Jp.
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Also, for every z € Jy,, we have

I <(y1(t) — 9o FD + (F(t,1(1)) — (2, 0(8)) D70 )dtl

Zo

lya(z) — y1(z)| =
< |12 (1) ~ 30 (OUEL + 176, 0.9) — £t o)LL) g
o 7(t) T(t)

<|fZ (1?41(?5) - yﬂ(t)lm + Liyi(t) - yo(t)|M)dt’

< | [ (NP+ LNP)dt

= NP(1+ L)|z — zy|.

Supposing that

m—1
(P+LP)[z—o|
(7) [Ym(2) = Ym-1(z)| < N( 1)1 ) z € Jy,

for some m € N.

We will prove that

(& +LP)o —zl)"

i s z € Jp.

|ym+1($) - ym($)| <N
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Really,

tnss () = (o)
= |12 (n(® ~ s 5L + (9 (0) — £ a9 222

< fﬁ(Wm@)‘ymamﬂwﬁ@l+Lﬂ@ym@»-uﬂtym_ﬂﬂﬂﬁﬁtﬂﬂﬂ)d4

@0 () ()

< 2 (I9m0(®) = vna () EEEL + Llgin(8) = s (8)] LA ) ]

L T(t) 0)

< | J2(P + PL)lyn(t) ~ ymoa(8) it

< N(P + PL)™+

t—xg)""
J2 ez ay
@z — m+1
= N(P + PL)m+tlezelc

Thus inequality (7) is true for all m € N.

Next, since
m~—1 m
- ((P+PL)|a:~:co|) - 1 (P+PL)h }
NZm‘—:l (m—1)! S NZm:O ml

= NeP+PLh < o

we have that the series
[o 0]
Yo(x) + Z(ym(x) = Ym-1(T))
m=1 .

converges absolutely and uniformly in the interval J;, and hence its partial
sums

yl(w)zyg(x), e Um(®), .

converge to a continuous function in this interval, i.e.,

y(z) = m@m Y ()-
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As we have seen above we have that y(x) is a solution to the problem (1),

@)

To prove that y(x) is the only solution, we assume that z(z) is also a
solution to the initial value problem (1), (2) which exists in the interval Jj,
and (z,2(z)) € S for all z € J,. The hypothesis (i%) is applicable and we
have

(=) — 2(@)| < |2 (Iv(t) — 25 + 18, 9(8) - £t )| LU LA gy

E0) ()

<

12 (Ply®) — 2(0)| + LPYy(t) — (0) )t

_(P+1P)

JE y(t) - z(t)|dt[, z€Jy

Consequently

ly(z) — 2(z)| = 0

for all z € J,.

Finally, we will obtain the error bound (6).
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For n > m the inequality (7) gives
[92() = 4 (@)] = [Ya() = Yu-1(2) + Yn1(%) = Yn2() + *+ + Y41 () — Y ()|

< Y ks () — ()]

k
a1 ((P+LP)|a;—~:vo])

S N Zk;m k!
k
- ( (P+PL)h!
(8) < NZk:m k!
e ((P+PL)h)’c L
=N ((P + P L)h) k=0 (m+)! ((m+lc)! = m)
m k
(P+PL)h o (PO
<N (—-mf*)“ fm0 LTL
<l ey,
and hence as n — 00, we get
((p+Pop)"™ X
[y(z) = ym(z)| < N gD

m!
in J; he
The inequality (8) provides

k
_ ‘ (P+PL)h ’
9n(2) — Ym(@)] < N Y0ss, ~—5
k
- ((P+PL)h D
<N "Zkzo

i
= Ne(PHPL)R
and as n — oo, we find
[y(@) — ym(2)] < NP
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in ']h- O

Definition 2.5. If the solution of the initial value problem (1), (2) exists
in the entire interval |z — x| < a, we say that the solution exists globally.

The next result is called a global existence theorem.
Theorem 2.6. Let the following conditions be satisfied
(i) f(z,y) is continuous in the strip T : |z — zo] < a, |y| < o0,
(ii) f(z,y) satisfies a uniform Lipschitz condition in T,
(iii) yo(x) is continuous in |z — zo| < a.

Then the sequence {yn,(x)}X_, generated by Picard iterative scheme exists
in the entire interval |z —xo| < a, and converges to the unique solution y(x)
of the initial value problem (1), (2).

Proof. For any continuous function yo(z) in |z — zo| < a, as in the proof
of the local existence Theorem, can be established the existence of each
Ym(x) In |z — 20| < a satisfying |ym ()| < co. Also, as in the proof of the
previous Theorem we have that the sequence {ym (z)(}3_; converges to y(z)
in |z — 29| < a, replacing h by a throughout the proof and recalling that
the function f(z,y) satisfies the Lipschitz condition in the strip T. O

Corollary 2.7. Let f(z,y) be continuous in R? and satisfies a uniform
Lipschitz condition in each strip T, : |z| < a,|y] < oo, with the Lipschitz
constant L,. Then the initial value problem (1), (2) has a unique solution
which exists for all x.

Proof. For any z there exists an a > 0 such that |[x—zo| < a. From here and
from T' C T (o|5 it follows that the function f(x,y) satisfies the conditions
of the previous Theorem in the strip 7. Hence, the result follows for any
x. O

We will note that there exist positive constants M; and M, such that

(o)
T(z)

1y
‘SMl, Il—mj:(x)lgMz for z € [zg— a,z0+ al.
T(z)
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Theorem 2.8. (multiplicative iso-Peano’s existence theorem) Let f is de-
fined, continuous and bounded function on the strip T = {(z,y) € R? :
|z — @o| < a, ]yl < oo} Then the Cauchy problem (1), (2) has a bounded
solution y(x) which is defined on |z — 20| < a and

ly(z)| < (1 +6“M1)(|yol + sup |f(z,y)|Mea) for Vz € [zg— a,z0+ al.
(zy)eV

Remark 2.9. We can consider our main result as a continuation of the
well - known Peano’s Theorem.
If we put

@) , ()
o(m9) = v(o) 5+ @) (1-o00),

then g is unbounded function on the strip T. Therefore we can not apply
the classical Peano’s Theorem for the Cauchy problem (1), (2), because g
has to be bounded on T.

Proof. Since f is a bounded function on T then there exists a positive
constant M such that

|f(z,9)| <M for (z,y)€T.

We will prove our main result for « € 2o, Zo + a|. In the same way one can
prove the main result for z € [z — a, To).
For z € [z, %o + a] we define the sequence {y,(z)}_; as follows

Ym(z) =yo for z€ [xo,:vo + ;";—],
ym(@) = g0+ [ (ym(t)ggz)l + f(t, ym(t))(l ~ tT—T—(%z))dt for
z € |20+ k2,50 + (k+ e, k=12..,m-1

For this sequence we have

1. Let m € N is arbitrary chosen.
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Ifze [:co, o + %] then

[9m (2)] = [gol-

If z ¢ [xo,a:o + n%] and z € [xg + kZ,zo + (k + 1)%] for some
k=1,2,...,m~1, then

o)1 = o+ 12 (52 + 70t () (1 - 252 )

O+ 1y @)1 - 58 )at

<lyol+ [ (|ym(t)| )

< [vol + [ (Malym ()| + MMy)dt

p—2

= lyol + My [ [ym(t)|at + MMy (2 — & — 2o )

< ool + Ms [ lyn (01 + MMy (0 + (5 + 1) & — & — )

22—
zo

< |yo| + M Maa + M, f;;% lym ()] dt,
ie forz e [md‘l— ki, zo+ (k+ 1)%] we have

[ym (2)] < [o] + M Moa + My [ |ym(t)|dt

< |yl + MMza + M, [, [ym(t)|dt.
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From here and the Gronwall’s inequality we get
[m(@)] < lvol + MMaa + My [2 (lyol + M Mya)eMr =Dt

= lgol + MMaa + ¥ M ([yo| + MMaa) [ e~ Mitdt
= luol + MMaa + €¥5%(lyo] -+ M Mya) (e~ 20 — e“MIw)

< |'y0! -+ MMga -+ eMI(w_mO)(iyol + MMga,)

< |yo| + M Maa + €M1 (|yo| + M M,a)

= (1 + ) (|lyo| + MMya) =: Mz for z € [wo + k2, xo+ (k+ 1)-7%],
for some k=1,2,...,m—1.
Consequently for every z € [z, 2o + a] we have
9 |ym(@)] < Ms

for every m € N.

Therefore the sequence {ym(x)}3_, is uniformly bounded on [z, zo +
al.

. Let 21,25 € [, 29 + a] and m € N is arbitrarily chosen. Then
1. case. 21,25 € [a;o,xo + ';:7] Then

y'm(xl) = ym($2) = Yo,
and therefore
|ym($2) — Ym(z1)| = 0.

2. case. Let z; € [wo,xo + —7%], Ty ¢ [:vo,aso + ;‘;—] Then there exists
ke{l2,...,
m — 1}, such that z, € [xo +kZ, zo+ (k+ 1)%} and

’ym(.iUl) = Yo,

Ym(@2) = Yo+ [22m (ym(t)T—T'% + £t ym(?)) (1 - t%f)l»dt,
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from here,

Y (22) — Ym(z1)| =

2P (0 S0 (1 - 655 )

5 (@) 52 + 176 )1~ 52t

() @)

< MM, (wz ~&_ :co) + My [ lym(8)]de

now we use that z; € [mo, Ty + ;‘;—]

< MMo(zo — z1) + Ml/ |ym (2)]dt,
o

i.e.

mz——

|Ym (®2) = Ym(z1)] < M My(zy — 21) + Ml/ |Ym () |dt.

o

From here and (9) we obtain
[Ym(@2) — ym(@1)| < MMa(my — 1) + My Ms [ T dt
= MMy(x; — 1) + M1 M3 (332 — - 930)

< (MM, + MiM3)(zy — 7).

3. case. Let z1, 2o ¢ {azo, Zo+ %] Without loss of generality we can
suppose that ©; < z,. Let

o € [xo+k3—,:co+(k+l)3], Ty € [xo+i-‘-‘—,x0+(z’+1)9—], k<,
m m m m

kyic{L2,...,m—1}
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Then

Un(@2) =0+ S22 (un(F + (8 un(0) (1 — 2 ) i,
(1) = 30+ [ (un() T+ F(&un(0) (1 — 52 ) i,

Un(@2) ~ () = [72E () + £t um(2) (1~ 152 ),

[9m(22) = ym(n)| = | [5ZE (un (T2 + £ um®)) (1 — 152 )

8 (lum 1| 58] + 17 um@) |1 - 29 )t

= Jop—-% T(t) T(t)

<M [P 2 |ym(®)|dt + MM, f‘”‘ﬁ dt

=M [, lym(t)|dt + MMy(zz — z1)
now we apply (9)
< MM fw‘?jg dt + M My(x, — z4)
= (MlMg -+ MMz)(.’L’z - iBl).
From 1, 2, and 3 cases follows that for every 1,33 € [z, 2o + a] we have

(10) |[Ym(@2) = Ym(21)| < (M1 M3+ MMa)|zs — x1] for VYm e N.

Let ¢ > 0 is arbitrary chosen and fixed. Let § =
T1, Ty € [0, Tg + a], |21 — x5 < J, using (10), we get

|ym(932j — Ym(@1)| < (M1 M3z + M My)|zs — 24

€ .
m . Then lf

< (M1M3 + MMQ)(S = €.

Consequently {ym(z)}se-; is equip-continuous family on [xy, z + a].
Therefore there exists a subsequence {ym, () }22; of the sequence {ym ()},
which is uniformly convergent to y(z) on [zo, o + a].
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For Y, (2), = € [z, zo + a], we have

Vi (@) = Y0 + [ (v, ()52 + £ (t’ymp())(l"t?%))dt
(11) =0+ J2 (U (D52 + 112,y ) (1 - 52 )t

+ J777% (vmp (BT + 72, 9m, () (1 - o) )
Since f is a continuous and bounded function on T" we have
limy—sco [ (U () 52 + (b ymy (1)) (1 — 582 ) ) it
(12)
= [z (y(t)% + f(t, y(t))( t%ff))dt'
Also,
'f (ymp(t)%"—,gl + [t Y, (£)) (1 - t%))dt‘

< 12 o (m O]+ om0~ 58]

SMy[2 o [y, ()]t + MMy
mp

now we use (9)
a
< (MiMs + MMz)m‘_ —p—s00 0.
(2

From here and (11), (12), when p — 00, we get

o(&) = w0 + /(y(t)T(())+f(t v®)(1- T’((t)>>)dt

for every x € [z, :chx—(!- a). Therefore y is a solution of the Cauchy problem
(1), (2) which is defined on [z, 7o + a]. From (9) follows that |y(z)] < Ms
for every x € [@o, zo + a). O

Corollary 2.10. Let f(z,y) be continuous in '5’—,__ and hence there exists a
M > 0 such that |f(z,y)| < M for all (z,y) € S. Then the initial value
problem (1), (2) has at least one solution in Jy,.
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Proof. The proof is the same as that of the proof of multiplicative iso-
Peano’s existence theorem with some obvious changes. |

Definition 2.11. (e-approzimate solution) A function y(x) defined in J
is said to be an e-approzimate solution of the multiplicative iso-differential
equation (1) if

1. y(z) is continuous for all x € J,
2. for all x € J the points (z,y(z)) € D,

3. y(x) has piecewise continuous derivative in J which may fail to be defined
only for a finite number of points, say 1, T2, ..., Tk,

y(@) ~ y(@) 5L - £,y L@ < ¢ for allw € J, 5 £z, i =

T(z) T(x)
1, y ")k'

The existence of an e-approximate solution is provided in the following
theorem.

Theorem 2.12. Let f(x,y) be continuous in S and hence there exzists
a M > 0 such that |f(z,y)| < M for every (z,y) € 8. Then for all
€ > 0, there exists an e-approzimate solution y(x) of the multiplicative iso-
differential equation (1) in the interval Jy, such that y(zo) = yq.

Proof. Because the function f(z,y) is a continuous function in the closed
rectangle S, it is uniformly continuous in this rectangle. Thus, for a given
€ > 0 there exists 6 = §(e) > 0 so that

[f(@,v) — flz1,91)| <e,

_T__(:_B)_ + f(.’L' y) T(m)——o:T’(a;) T (z1) f(xl’yl)T!atl!——anT (@1)

YFe) T(a) Y15 () T(x1)
for all (z,y), (%1,91) € S such that
|z —~2 <6 and  |y—w| <4

We shall construct an e-approximate solution in the interval [z, 2o + h]. A
similar process will define it in the interval [z — h, z].
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For this aim, we divide the interval [z, Zo + h] into m parts
Lo <1 <ZTyg...<ZTm=xo+h
such that

(13) @ -z < min{a i=1,2,...,m.

s
? P(lyol4+-b+M) }’

Now we define a function y(z) in the interval [zo,zo + h] in the following
manner

y(#) = y(@i-1) + (2 — 24-1) (y(xi—l)%gff)l + f (i1, y(mz‘—l))T(mi“l)T_(o;ij? (wM))»

(14)
Ti1 <z < 2, t=1,2,...,m.

Obviously, this function y(z) is continuous and has a piecewise contin-
uous derivative

Ti-1) — 377:—1T'(-'Ez'—1)
T(z4-1) ’

T’ (xi_l)
T(.’Ei..l)

/(2) = y(zis) T P @, y(wer)

Ti1 < T <3, 1= 1,2,...,m, which fails to be defined only at the points
%y ¢ = 1,2,...,m — 1. Since in each subinterval [z,1,z;], ¢ = 1,2,...,m,
the function y(z) is a straight line, to prove that (z,y(z)) € S it suffices to
show that . ‘

ly(@:) — o] < b

foralli=1,2,...,m.
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For this reason, in (14) let 4 =1 and = = x4 to obtain

Y(@1) = g0 + (o — 21) (w5 + (a0, ) Kol ),

[y(21) = 4ol = f(x — 1) <yo—£—l + f (w0, yo) Tiee)=uel (z0) )l

T'(zo) T(xg)
< (o1 = o) (fol 2 + 1, o)| Pttt
< (21— o) (Plyo| + MP)
< hP(M + [yo|)
< hP(b+ |yo| + M)
b
< s PO+ vl + M)
= b.
Now let the assertion be true for i = 1,2,...,k—1 < m— 1, then from (14)
T(zo)

Y(z1) — 9o = (z1 — o) (yoJ—l + (o0, o )M)

y(@2) — y(m1) = (22 — 21) (y(:cl)—@ﬁ + fl@, y(z,)) Led=al @)

T(o: T(ml) 3

Y(@) — y(@p-1) = (xk — Tp-1) (y(xk—l)T“—l(M + f (@1, y(ﬁk—l))T@k—l)‘_mk_lr(wk_l)).

Tlok-1) T(wp-1)

From here,

Y(zk) — Yo = Zf:l(xl ~ 1) (@/(:cz 1)%;1(51 = f@e, y(o- 1))T(ml_1)§(zll:§(ml"1)),
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which gives

T/Cb‘_. Aa:_ _m_j‘-/ -
(k) = 9ol < Sia (01— 1) ([ o1n)| FE + [ (1,91 | Dl el

< (@~ @) ((b + Iyl P+ MP)

= P(M +b+ [yol) Tpy (2 — 21-1)
= P(M + b+ |yo|) (1, — @o)
< P(M +b+ [yl
< P(M +b+ |vol) sy
=b.
Finally, if ;-1 < 2 < =;, then from (13) and (14)

(wi_l)__ﬁ_w_z.;l + fl@imn), Y(Tiy ))T(mz—l)“mz—lT($z—1)

T(w;. T(zi1)

ly(z) = y(i)| = (& — z)) |y

< (@ = 22) (Jy(os-)| FE + | (@), y(a1-1)) [ Eeslpzl e

T2 T(w B)
< (w5 — i) ((|Z/o| +b)P + MP)

< P(lyolj-b+M)P(M + |vo| +b)

= 4.
Therefore
V(@) - y@) 5 - f(o,y(e) DT

= o) T + i ylona)) et — y) Tl — fla, (o)) A

<e
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forallz € Jy, z # x;,4=1,2,...,m—1. This completes the proof that y(x)
is an e-approximate solution of the multiplicative iso-differential equation
(1).

This method of constructing an approximate solution is said to be mul-
tiplicative iso-Cauchy-Euler method. i

Theorem 2.13. (multiplicative iso-Cauchy-Peano’s existence theorem) Let
f(z,y) be continuous in S and hence there exists a M > 0 such that
|f(z,9)] < M for every (z,y) € S. Then the initial value problem (1),
(2) has at least one solution in J,.

Proof. We shall prove the assertion for the interval [z, zo + h].
Let {€m}oo_; be a monotonically decreasing sequence of positive numbers
such that

lim ¢, =0.
mMm—>rc0

For each €, we construct an ep,-approximate solution yy,(z).
As in the proof of the theorem for existence of e-approximate solutions
we have

[ym(@)] < b+ |yol
for every m € N and for every z € J,. In other words, the sequence
{ym(z)}2_; is uniformly bounded in Jj.
Let z, 2* € [0, 20 + h]. Then
[9m(@) = wm(@)] < |77 (I (GG + 1t (8)) 2L ) g

T(t) T(t)

<

S (Pwol +8) + MP) ]

< P(M +b+ |yl)|z — z*|

and from this it follows that the sequence {y,,(z)}%>_, is equip-continuous.

Consequently the sequence {yu()}5r-1 contains a subsequence {ym, (z)}2,
which converges uniformly in [0, 2o + A to a continuous function y(z). We
define :

( it T 0 e T
U (2) = Umn(2) 5 — (2, () HEE L
em(Z) =4 at the points where Y (z) exists

0 otherwise.

\
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Then

(1) ) = w0+ L2 (um®FL + £ ym(®)) + em(®) ) dt

and

lem(2)] < €m.
Since f(x,y) is continuous in S and y,, () converges to y(x) uniformly in
[Zo, Zo + A, the function f(z, ym,(x)) converges to f(z,y(x)) uniformly in
[0, Zo + k). Thus, by replacing m by m, in (15) and letting p — 0o, we
become that y(z) is a solution to the integral equation (4). O

Remark 2.14. We suppose that all conditions of the multiplicative iso-
Cauchy-Peano’s existence theorem are satisfied. Further, let the initial value
problem (1), (2) has a solution y(z) in an interval J = (o, B). We have

|[y(@2) — y(@1)| < P(M + [yo| + b)|zz — 1]
for every zy, zo € J. Therefore

y(z2) —y(z1) — 0

as r1,x2 — ot. Thus, by the Cauchy criterion of convergence we have
that
lim y(z)

z—sot
exists.
A similar argument holds for

lim y(z).
s~

Theorem 2.15. Let all conditions of the multiplicative iso-Cauchy-Peano’s
existence theorem be satisfied. Let also, y(x) be a solution of the initial value
problem (1), (2) in the interval J = (o, B). Then y(x) can be extended over
the interval (o, B + ] (o — v, B)) for some v > 0.

Proof. We define the function y;(z) as follows.
v(@) =yl@) for  z€(ap),

y1(B) = y(6—0).
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We observe that for all z € («, 8] we have

vi(z) =y(B8-0)+ [§ (yl(t)-fi"(—’ﬁz + f(t, yl(t))i@tﬁw) dt

T(t) T(t)

= y(@o) + [ (5D + £t 1) T D ) at

T(t) T(t)

+Js (@/ax(t)%:%g2 +f(t, yl(t))w)dt

T(t)

= y(@o) + 2 (1 (5L + (.5 e D) .

T(t) T(t)

Therefore the left-hand derivative y; (8 — 0) exists and

vi( - 0) =y1(ﬂ)%%+f(ﬂ,yl(ﬂ))T(mZZ(g)T 8,

Thus, () is & continuation of y(z) in the interval (o, ].
Let ya(x) be a solution to the problem

y'(z) = y(m)%ﬁf‘(%)‘ + f(z,y(z)) X @ wﬁ,«fgl(ﬁ) ,

y(B) = (),

existing in the interval [8, 8 + ~] for some v > 0.
We define the function

yl(m) RS (C“HBL
ys(z) =
ya(x)  z€[B,8+1],

which is a continuation of y(z) in the interval (o, 8 + 4].
Also,

le) =+ / (yfs(t)T;.,—'g—)) + f(t,y3<t>>f.@17;§@>dt
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for every = € (o, 8 + 7], because for all z € [, 8 + ] we have

%@Q=y@—0}hﬁ@ﬂﬂ%§+f@%ﬁ»ﬂ%%1»t

= 1o + (%(ﬂw + f(t, ya(t))w) dt

() Ta(t)

+J5 (y3(t)-7:'-@ + f(t, y3(t))w)dt

7(t) 0)

= w0+ [2 (16052 + £ (t,05(8) 195D at,

7() 7@
O

Theorem 2.16. (multiplicative iso-Lipschitz unigueness theorem,) Let f(z,y)
be continuous and satisfies a uniform Lipschitz condition in S with o Lip-

schitz constant L. Then the problem (1), (2) has at most one solution in

|z — zo| < a.

Proof. We suppose that the problem (1), (2) has two solutions y;(z) and
Y2(z), @ € [To — a, 2 + a]. Then

(@) = yo+ [2 (@5 + (8,120 29T D ) ar,

@) @)

yz(ll!) = Yo+ f;o (y2(t)2%(%2 + f<t7 yz(t))T t);(gl’ t)>dt7

whereupon

T 0] () - ¢7(s)
@)@ = [ (0-00) 5 +0n0) -6 w) e

and

12 (1918) = sa )G + 1£(,0a(8)) = £ o ()| 2O AL )

[92(2) — a(z)| <

< |foo (Plos(®) = wal®)] + LPIn(t) — a(0)])

=P(1+1L)

)2 loa8) — wa (et
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From the last inequality and Gronwall’s type inequality we conclude that
ly1(x) — ya(z)| =0  in [z — @, o + al.
O

Theorem 2.17. (multiplicative iso-Peano’s uniqueness theorem) Let f(z,y)
be continuous in

Sp={(z,9) eR*:zy <z < 2o +a, |y — 0| < b}
and nonincreasing in y for all [zo, zo + a]. Let also,
T'(z) <0, T(z) —2T'(x) >0  for  Vz € [zo, 30+ al.
Then the problem (1), (2) has at most one solution in [zo, o + a].

Proof. Let the problem (1), (2) has two solutions y;(z) and yx(x) in [2o, zo+
a] which differ in [z, zo + a]. We assume that

a(z) >wn(z) I (1,21 +€) C 20,20 +d,

while y1(z) = ya(x) for = € [mo, 71], i.e., z1 is the greatest lower bound of
the set A consisting of those z for which ys(z) > y1(z). This greatest lower
bound of the set A exists because the set A is bounded below by x, at least.
Thus for every x € (1, z; + €) we have

f(x,yl(fl?)) = f(m,'yz(fl?)),
F@ () DL > f(a, (o) Tl

T(a) Tl@)
T'(z) T (2)
whereupon

1 (2) 5D + f(z,yy (z)) L2l @)

T(z) T(x)
T (a T(@)~2l' (@
> yz(w)—f@% + f($,y2(90))4‘%(7)—-2
for all & € (z1,%1 + ¢€), and from here

vi(z) > yp(z)  for  Vz € (®1,71 +¢€).
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Hence the function
2(z) = yo(z) — 11(w)
is nonincreasing function in (z1, z; + €).
Because

2(21) = ya(z1) —i(z1) =0
we obtain .
2(z) <2(z1)=0 in  (z1,21 +¢)

or
ya(z) < yi(z) in (@1, 1 + €).
This contradiction proves that
v1(z) =yo(z) for  Vz € [zo, 20+ al.
Ul

Theorem 2.18. (multiplicative iso-Peano’s uniqueness theorem) Let f(x,v)
be continuous in Sy and nondecreasing in y for every x € [xg, 20 + al. Let
also,

T'(x) <0, T(z) ~2T'() <0 for  Vz € [zo, 70+ al.
Then the problem (1), (2) has at most one solution in [zo,xo + a.

Proof. Let the problem (1), (2) has two solutions y; () and yx(x) in [z, 2o+
a] which differ in [z, 2o + a]. Let

Y2(z) > ()  in (2,21 +€) C [mo, %o + a,

and
yo(z) =(x)  for  Vz € [z, 2]

Therefore for every & € (1,21 + €) we have

f($,y2($)) 2 f(x7yl(m)))
f(x,yl(w))f“gm)—xff"gm) > f(ﬂ],yz(iv))f(m*wfﬂm

T(z) T@)

(@) e = 1a(e) Fo)

T(z)’
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whereupon

yl(x)i’izl + f(z, yl(x))ﬁi{t@@

() T(x)

> 1y(2) 58 + £z, yo(x)) TR @

T(x) T(z)
for every x € (z1, %, + ¢). Consequently

vi(z) > yy(x)  for  Vz € (31,31 +¢)
and then the function
#(z) = ya(z) — 1(z)
is nonincreasing function in (x1, 1 + €), therefore
Yo(z) — 11(®) S yolz1) — y1(z1) =0 for  Vz € (21,21 +¢),

which is a contradiction. From here we conclude that y(z) = yo(z) for
every ¢ € [z, o + al. O

Lemma 2.19. (multiplicative iso-Osgood’s lemma) Let w(z) be continuous
function in [0,00), w(0) = 0, z+w(z) > 0 in (0,00), z+w(2) be increasing
function in [0, 00), and

(16)  limeyor [ 5% = co.

Let w(z) be a nonnegative continuous function in [0,a]. Then the inequality
(17)  wl(x) < P [ (u(®) + wlu(t)))dt, 0<z<aq,

implies that u(z) =0 in [0,a].

Proof. We define the function

v(z) = max u(t)

and assume that v(wj >0 for 0 <z < a. Then
u(t) <ov(z) for VEel0,z]

Because u(x) is a continuous function in [0, a] then there exists z; € [0, z]
such that

v(z) = u(z1).
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Therefore, using that z 4 w(z) is an increasing function in [0, co),

o(e) = ufas) < P [ (ult) + wlu(t)))dt
< P [2(o(t) + w(u(t)))dt

< P [ (w(t) +w(v(t))dt

Let .
B(z) = P /O (0(t) + w(o(t)))dt.
We have
Uz) 20, v(x) <o(z),
and
7'(z) = P(v(z) + w(v(z)))
< P((z) + w((z))),
and since
(z) + w(v(z)) = 0,
then
CAC))
P((z) + w(v(z)))’

Consequently for 0 < § < a we have
“ do(z) /
dz,
/ P(@(z) +w(@(z))) ~

. a 47| d
lims__o+ fg p(a(m)::z('ﬁ(m))) = lims o+ f v(8) Ply+w(y))

whereupon

<a
which contradicts with (16). Consequently u(z) = 0 in [0, a]. O

Theorem 2.20. (multiplicative iso-Osgood’s uniqueness theorem) Let f(z,y)
be continuous in Sy and for all (z,1), (z,v2) € Sy it satisfies

|f(@,91) = f(@,92)| < w(lyr — 32));

where w(z) satisfies all conditions of the multiplicative iso-Osgood’s lemma.
Then the problem (1), (2) has at most one solution in [z, zo + a].
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Proof. Let (%) and yy(x) are two solutions of the problem (1), (2) in
[Zo, zo + a]. Then, if

2(z) = ly(z) ~ (=), =€ [,z +ad,
we have
@) = | (@) — 1) 52 + (1 (0) - £t 1) 9210 ) it

< :o(fyl(t) - yz(t)]@ﬁﬂl + |f (¢, (2) = f(2, yz(tmw)dt

T(t) T(t)

< Jao(Plya(®) = 12(O)] + Pw(lya(t) - 9a()]))de

= P [ (2(t) + w(z(t)))dt.

Let
u(z) = 2(zo + x).

Therefore

w(z) < P [ (2(t) + w(z(t))dt

= P [ (2(zo +t) + w(z(zo +1)))dt

= P [ (u(t) + w(u(®)))dt.
Consequently u(z) satisfies the multiplicative iso-Osgood’s lemma, from
where u(x) = 0 in [0, a], i.e., 11(z) = yo() in [zo, 2o + a]. 0

Lemma 2.21. (multiplicative iso-Nagumo’s lemma) Let u(z) be nonneg-
ative continuous function in [xo,%0 + a] and u(zo) = 0, and let u(x) be
differentiable at x = zo with w'(zy) = 0. Then

€T T
/ u(t)dt < a/ u(t) dt, € [y, o+ al,
Zo 20 t — o

and the inequality
@ t
u(z) < / ) dt, x € [@o,zo + al,
*0 t— To

implies that u(z) = 0 in [zo, zo + a].
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Proof. Let

9(z) = /:c u(t)dt — a/w tu(t)odt, z € [0, To + al.

0 o v

Since
lim u(z)

20 T — Lg
<
/ ul) g
%0 t— Zo

g (z) = u(z) — axufxio = u(z)——— < 0

= o/(z9) = 0,

then the integral

exists for x € [zg, 2o + a).
Also,

for every x € [x9, %o +a]. Therefore g is a nonincreasing function in [z, zo +
a], whereupon

9(z) < g(=mo) for Vi € [zg, 2o + al,

/ u(t)dt < a/ ) g
zo @ t— o

for every x € [z, zo + al.

or

Let now .
v(x) = / u(®) dt, x € [%g, To + a.
@0 t— oo
Then
u(z) < v(z), z € [xo,Zo + a],
and w(a)
UL
'U/(.'L') = T—20
< -:J_"—;%, z € [Zo,To + a).
Consequently

d ( v(z) ) o' (@) (z—z0)—v(z)

dz\ z—zo | — (z—x0)?

<0
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I(z) = %

or the function

is a nonincreasing function in [z, o + a] and since {(zo) = 0, we have that
v(z) <0 in [Zo, Zo + @,

from where
v(iz)=0 in  [zo,%0+al.

Consequently u(z) = 0 in [z, 2o + a]. O

Theorem 2.22. (muitiplicative iso-Nagumo’s theorem) Let P(a+1) < 1,
f(z,y) be continuous in S, and for all (z,vy1), (z,ys) € Sy. it satisfies

|f(z,91) — fz,02)| < K|z — !130|_1|y1 — ¥, T 7 To. k<1
Then the problem (1), (2) has at most one solution in [zo, xo + a.

Proof. Let yi(x) and y.(x) are two solutions of the problem (1), (2) in
[0, Zo + a]. Then for x € [mo, 2y + a] we have

1(z) — va(2) < [, (Iyl(t) — e @IFR + £t 1m(0) - £t (&) 2O ) i

< S (Plvat) = val)] + bt = 90) " us(#) - ()| P )
<P [E foa(t) - wa(t)|dt + P 7 @@l

< aP f:; lylﬁi_); %2£t)ldt+met y1(t)—ya(t) dt

t—20

= (a+1)P [ ul-udlqy

< [® ly1 (8} —ya () dt.

— J&g t—20

Let
uz) = |y1(z) ~v2(z)], = € [wo, %0 +a].
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Then u(z) = 0 and from the mean value theorem we have

o/ (o) = L, Memth)utn)

h

= limy, g ly1 (@o)+hyf (wo+01 h)-}!;yz (wo)—hyh (o +02h)|

= (sgnh) limp_0 |y1 (2o + 01h) — y5 (o + O2h)|

=0, 0<01,02<1.

Then the conditions of multiplicative iso-Nagumo’s lemma are satisfied and
’U;(fL’) = O’ i'e'a yl(x) = yg(ax) in [.'130,560 —+ a]. [
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According to the causality theory presented in the differential ontology and
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I have mentioned Santilli, and I should like to say that he — one who belongs to
a new generation — seems to me to move on a different path. Far be it from me
to belittle the giants who founded quantum mechanics under the leadership of
Planck, Einstein, Bohr, Born, Heisenberg, de Broglie, Schrodinger, and Dirac.
Santilli too makes it very clear how greatly he appreciates the work of these
men. But in his approach he distinguishes the region of the ‘arena of
incontrovertible applicability’ of quantum mechanics (he calls it ‘atomic
mechanics’) from nuclear mechanics and hadronics, and his most fascinating
arguments in support of the view that quantum mechanics should not, without
new tests, be regarded as valid in nuclear and Hadronic mechanics, seem to me
fo augur a return to sanity: to that realism and objectivism for which Einstein
stood, and which had been abandoned by those two very great physicists,
Heisenberg and Bohr. (Karl Popper 1982:14)

Die Quantenmechanik ist sehr achtung-gebietend. Aber eine innere Stimme sagt
mir, daf} das doch nicht der wahre Jakob ist. Die Theorie liefert viel, aber dem
Geheimnis des Alten bringt sie uns kaum néher. Jedenfalls bin ich iiberzeugt,
daf3 der nicht wiirfelt.

(Einstein 1926: Letter to Max Born)

(Quantum mechanics is very imposing. But an inner voice tells me that this is
still not the true Jacob. The theory delivers much, but it barely brings us closer
to the secret of The Old One. In any case, I am convinced that He does not
throw dice.)

What is in the notion of “throwing a dice” ?

Let us inspect and unfold what logical operations that reside enfolded in
the notion of throwing dices as an exemplar of randomness and probability
distributions. There are six classes of possible results for every event, the top
face of the cube ending up as 1, 2, 3, 4, 5 or 6. When we consider the total result
of many such events, we can group these results into six classes of results E
where index j varies from 1 to 6.
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In each particular event the individual effect is uniquely determined by
physical laws and the initial conditions for the particular throw of the dice, such
as gravitation, the force and direction of the throw, inertia and texture of the
table, shape and texture of the dice etc. Thus, each individual effect is de facto
uniquely determined by its corresponding and preceding individual cause, with
the effect resulting from the cause by physical causality. If we specify and
compare the individual causes in sufficient detail to pinpoint the decisive
physical differences between causes that result in the physical differences
between effects, the six classes of effects are also to be regarded as the result of
six corresponding and preceding classes of causes C;, where index i varies from
1 to 6. Thus, also the six classes of effects would result from six classes of
causes by physical causality.

In the case of throwing dice it is difficult to specify and compare the
individual causes in sufficient detail to establish the six classes of causes. It is
hard to see that any easy attempt to specify significant variation in attributes
between individual causes would favor one class of effects towards the other
classes of effects. This consideration becomes reinforced when our empirical
experience indicates that the six classes of effects occur almost equally often,
and the more equal the more events of throwing the dice we consider. Hence,
we find it adequate to regard the result of throwing dice as if it was random
which class of effect the dice ended up into. This does not imply that we really
mean that each individual effect is not uniquely determined from each
individual cause, or that the six classes of effects are not uniquely determined
from six imagined classes of causes, or that we will deny that both these
determinations happen by physical causality if we investigated the events in
sufficient microscopic physical detail. It only means that such an investigation
is not worth the effort and trouble for our purpose at hand. It represents a huge
advantage in thought economy for description and explanation when we
radically simplify the whole constellation of physical events by applying the
simile category of randomness instead of remaining (solely) at the physical level
for description and éexplanation. '

When it is considered random which class of effect the throw of the dice
ends up into, this implies that the result can be considered random in relation to
both the individual physical cause and to the classes of physical causes.
Compared to description and explanation by merely physical causality, this
represents a radical simplification at the cause side of the logical expression.
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The concept of randomness ignores and deletes all internal distinctions at the
side of the cause, regarding them as if they were irrelevant for the effect.
However, this does not imply any annihilation of cause. Now the form of the
logical expression becomes:

ExpI: IF [cause] a dice is thrown as an individual event, with a resulting
individual effect belonging to six possible classes of Ej;
THEN [effect] it is considered random which class of E; that will be the
effect of the individual event

Thus, introduction of the concept of randomness does no way contradict
causality as such, but makes possible a novel type of causality which we denote
randomness causality. By adding this novel type of causality, including the
according type of simile, the universe of causal relations becomes expanded, not
restricted.

We realize that randomness causality represents a certain, novel type of
causality built on the preexisting causality type of physical causality, and —
further — that the adequacy of randomness causality is underpinned by certain
relations of physical causality. Thus, it represents a philosophical mistake of
category, i.e. a mistake in consistent meta-thinking, to consider randomness
causality to contradict or undermine physical causality.

This is with respect to the very category of randomness causality as
regarded from conceptual logic. In order for this novel causality type to become
adequately mobilized and applied, in partial substitution of underpinning
relations of physical causality, certain requirements firom said underpinning
physical relations must be met. These requirements fall into two classes,
depending on whether the physical requirements for randomness are considered
ad negativo vs. ad positivo:

Ad negativo: The totality of external physical relations existing together
with the cause in ExpI and with the physical underpinnings of individual causes,
or during the time span from cause to effect, is considered irrelevant for the
relation between cause and effect at the level of physical causality. When
already having established the concept of randomness, this means that these
external physical relations are regarded as random and as cancelling out in
relation to the cause in Exp/ and to the physical underpinnings of individual
causes. Thus, the exclusion of these external physical relations expresses the
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relevance of the concept of randomness for excluding purposes. We denote this
as negative randomness.

Ad positivo: Expl expresses positive randomness, i.e. the application of
randomness causality gffer irrelevant externalities have become excluded by
negative randomness. In order for this (positive) causality type to become
adequate, it is required, as already stated, that the differences in individual
physical causes really do result in a an (approximately) equal — i.e. random —
distribution between the six possible classes of physical effects. In order for this
to happen, it must also be the case that the individual cases of physical causes
are distributed (approximately) equally between six imagined classes of
physical causes C; preceding and corresponding to their respective six classes
of E;.

That these said (approximately) equal distributions really are the case
we discover by solely investigating the distribution of individual effects among
the six classes of E;. It is this discovery from inspecting the distribution of
physical effects from physical causality that makes it adequate to ignore any
inspection of the differences between individual physical causes, and thus also
to ignore the make-up and internal differences between the imagined six classes
of physical causes Ci.

When we from our scientific thinking do not see any obvious reason for
one Ejto occur more often than another one, it is adequate to consider it random
which E; an individual physical effect will show to belong to. In the next step,
though, it makes a big difference whether our hypotheses from thinking
becomes supported or not, through experimental evidence. In the case of
throwing dices it does become supported from our observation of the
distribution of individual physical effects. It is our discovery from observation
of the individual physical effects that makes it adequate to regard any difference
between physical causes as if they were random.

Thus, the positive randomness causality of Expl does not contradict
physical causality, but presupposes physical causality by observing a certain
pattern in the distribution of physical effects, i.e. of physical effects by physical
causality from physical causes.

Thus, before establishing Expl, and especially after observation from
experiment, there is another cognitive operator in place, stating that because it
is regarded as random what E; the dice ends up into, the application of Exp! is
regarded as an adequate consequence.
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Obviously, observations of a random pattern in the distribution of
individual physical effects between the classes E; will not happen if the physical
system is characterized by deviations from an idealized situation of throwing a
dice, e.g. if the dice is thrown a very short distance, if the dice is not a regular
cube, if the eyes of the dice are magnetic and the dice is thrown at a magnetic
table, etc. Thus, there exist obvious constraints for which physical systems that
can be adequately described or explained with good approximation by
randomness causality. Only certain physical systems can be adequately
approached by means of randomness causality.

When it is regarded as random which E; a throw of a dice ends up with
as physical effect, this means that the six different classes of effects are regarded
as non-differentiated with respect to probability. However, in next steps of
thought the considered randomness between each six classes, rather
automatically leads to various cases of non-randomness and differentiations
with respect to probability. As trivial examples, the probability of effect E; OR
E; from one throw of the dice will be twice the probability of effect Es, and the
probability of effect E, to occur twice from throwing the dice two times will be
1/6 x 1/6 = 1/36. The laws of probability distributions and mathematical
probability theory as a whole emerges from systematic unfoldments of what
resides enfolded in the very concepts of randomness and probability.

Since the concept of probability both presupposes and follows rather
directly from the concept of randomness, we realize that probability causality
also presupposes and follows rather directly from randomness causality as a
novel and somewhat more elaborated #ype of causality than randomness
causality. Because classes of physical effects are regarded as random compared
to each other, more elaborated regroupings and sequences of these classes of
effects must be non-random and differ in probability by exact mathematical
laws. Thus, explanation of a physical system by means of probability causality
will essentially relate to physical causality the same way as explanation of a
physical system by means of randomness causality relates to physical causality
in manners we already have clarified. We apply the broader term chance
causality to cover both randomness causality and probability causality.

To sum up we realize that:

(1) randomness does not contradict causality, but implies a certain type of
causality as expressed by Expl;
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(ii) randomness causality does not eliminate physical causality, but represents
amore elaborated type of causality (by adding a certain simile) which
presupposes physical causality;

(iii) randomness causality represents an adequate wrapping with (formally
regarded) partial substitution of physical causality only when being
underpinned by certain cases of physical systems already characterized by
physical causality.

(From the above it should be clear that what here is stated with respect
to randomness and randomness causality, also holds for probability causality
and thus for chance causality as a whole.)

It follows from (i) that the very question of whether the universe is based
on random events or causality does not make any good sense, and even less to
claim the first alternative. It follows from (ii) that the very question of whether
the universe is based on chance causality or physical causality does not make
any good sense, and even less to claim the first alternative. These conclusions
follow from strict philosophical reasons without respect to the scientific theory
under consideration. For theories in mathematical physics to reach adequate and
fully mature expressions, they should be consistent with points (i), (ii) and (iii),
and theoretical developments might benefit from deeper and more detailed
reflections on their scientific material in relation to these points.

In theories of mathematical physics interpretations and discussions with
respect to the role of causality, tend to consider causality only in the sense of
Dhysical causality. In our philosophical treatise OQutline of Differential
Epistemology (Johansen 2008), we pretended to have presented a rather
complete systematic development and exhibition of the whole nexus of causality
types (cf. Johansen 2008: ch.3, 113-194; 248-9). It was disclosed and explained
that the nexus included several types of causality, classified into ten
fundamental types and ten elaborated types. Chance causality was presented as
one among the ten elaborated types (cf. Johansen 2008: 165-175), while
physical causality was presented as the least fundamental among the ten
fundamental type (cf. Johansen 2008: 155-157). Above we have sought to
clarify that chance causality for strict reasons of conceptual logic can not
constitute any fundamental causality type on an equal footing with physical
causality. However, even physical causality can not adequately be considered
that fundamental as usually regarded in theoretical physics. In the following we
will present some clarification of why this must be the case, in order to
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contribute to some according clarification when contemplating the role Aof
causality in theoretical physics. (For further discussion of various aspects, see
Johansen 2008a, 2008b, 2008c, 2013, 2017.)

Abstract causality vs. formal-logical causality

When throwing a dice is considered a physical event implying physical
causality between individual cause and individual effect, there already reside
more fundamental types of causality enfolded in the very notion of physical
causality.

Before differentiating between types of causality there already must exist
a universal and abstract concept of causality as such in cognition, namely the
concept of the relation between two relata where a logically proceeding relatum
denoted ‘effect’, with logical necessity follows from a logically preceding
relatum denoted ‘cause’. In conventional formal logic causality is approached
by the notion material implication where binary truth values of cause and effect
in a logical expression first are assumed (or determined) independently of each
other, whereafter material implication is defined as a certain truth function of
the four pairs of said truth values, more specifically that the material implication
is decided as true iff the pair (cause is true; effect is false) does not show up.
While highly useful for many purposes, e.g. computer electronics, this approach
to define causality is too shallow to hit the mark of that which it attempts to
target and catch the essence of.

From the definition of material implication the following expressions
will be decided as true:

(I p=>(@=>p

P=>({P=>q)

(P=>qv(Q=>p)

However, the claimed truths of such expressions are rather contra-
intuitive and not aligned with the concept of the relation IF...THEN... that
tacitly is de facto operative in our ordinary cognition. The modus operandi of
our innate, subconscious (or rather supraconscious) category of ‘causality’ does
not start out with first separating and establishing candidates to cause and effect,
for next comparing pairs of their truth values, and thereafter deciding one pair
as a causal relation in distinction to the three other pairs. Our innate category
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starts out with a logical entity of truth (cause) which unfolds organically into
another logical entity of truth (effect) as its logically necessary result or fruit in
a relation which we are not able to reflect upon before afer the unfoldment has
taken place. (And if performing such a reflection we will remobilize the same
innate category of causality at a meta-level.)

To hit the mark of the implicate, innate cognitive category of causality
an adequate approach has to be much more abstract, deeper and accurate than
what was the case for establishing the concept of material implication in
conventional formal logic. In our treatise (Johansen 2008) we presented a novel
—and tentatively completed — theory in order to cover and solve core issues of
philosophy. We denoted our philosophical theory differential ontology,
including differential epistemology as the more sophisticated “head” unfolded
from and (next) into the ontological “body”. Our philosophy presented a
systematic unfoldment of categories residing enfolded inside information as
such, i.e. inside something being, whatever it might be, conceived in its most
elementary, abstract and universal sense.

The starting point for our systematic philosophical exhibition and
successive unfoldments of categories, was information as such. The concept of
information in the most abstracted qualitative sense, was established as close to
Gregory Bateson’s famous definition of information as a difference that makes
a difference for something/someone. (Our relatively minor and subtle deviations
from the definition by Bateson do not matter much for the present text.) This
definition can be reformulated as an input-difference making an output-
difference for a subject. (If the subject is not a human, or not even a living being,
when e.g. one billiard ball receives — and reacts to — an input-difference from
being hit by another billiard ball, the category of subject is operative by a
minimum of anthropomorphic projection applied as an adequate simile. Already
our grammar, with classes of subjects, verbs and objects, applies a minimum of
such a simile.) Thus, the category of subject, whether in the emphatic sense or
in the simile sense, is with necessity implied in the very definition of
information in the most abstract sense. One striking illustration of the tacit de
facto inclusion of the subject may be the notion of “rock hard reality”, not
possible to deny for anyone with their senses intact, applying as exemplar the
situation of a heavy stone falling on the toes of a human. Here we notice that a
preferred exemplar of “rock hard reality” depends on the inclusion of the
subject, i.e. of one emphatic subject showing (strong) emotion. In the most
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abstract concept of information the input-difference makes an output-difference
for a third entity which is considered a subject by having emotion (in the most
abstract sense), and — as already stated — with pseudo-subjects rot considered as
having emotions treated with a minimum of anthropomorphic projection from
the analyzing human subject.

When starting out with this most abstract definition of information as
such, the very act of the input-difference making (or better: unfolding into) the
output-difference, can be adequately conceived as the causal relation between
input-difference and output-difference, when this act of making, or unfoldment
into, is cognitively regarded as logically necessary. In order to conceive this
relation as solely logically necessary, we have to conceive the input-difference
unfolding into an output-difference as abstracted into an imagined pure and
free-standing thought universe of solely logical relations without regard to any
connection to a physical input-difference and a physical output-difference.

It is inside this imagined pure and free-standing universe of thought,
without regard to correlations to physical input-differences and output-
differences, we can conceive causality, in its most abstract sense, as the relation
from an input-difference unfolding into an output-difference. The cognitive
category of causality must be grasped in its purest and most abstract sense before
we can study how the category is universally implied in various fypes of
causality such as e.g. physical causality.

In our philosophical treatise we explained how the most abstract notion
of causality as organically unfolding the input-difference into an output-
difference, could be adequately back-reflected by a certain formal
representation achieved by means of set theory when placing and relating
elements and classes at concisely differentiated ontological levels of thought
inside a freestanding thought universe. The differentiations in ontological levels
was presented as unfolding with necessity from consistent reflection from and
upon the thought of information as such, in some distinction to modal logic
which have tried to overcome — with some success — shortcomings in the notion
of material implication by adding various logical operators while still not
acknowledging the necessity of developing differentiations in ontological levels
of thought in an organic, strict and systematic way quite different from “freely”
playing around with voluntaristic constructions inside a logical toy universe.

In the present context it would take too much space to try to represent
our formal expressions and according philosophical reasoning. The main point
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is that we found it possible and adequate to express the most abstract notion of
causality by means of formal logic, so that abstract causality could be renamed
Jormal-logical causality presupposing that this refers to the particular formal
expression presented in our treatise.

Projective causality

Let us take a look at sensory perception. Neuroscience has shown that
perception has a stepwise constitution, so that there is a lot going on from the
subject receives an initial recept, defined as the first and most elementary kind
of sensory information objectively possible to register for a subject, say a
human, until the subject sense a percept available for its consciousness. The
subject will consider its percept, say a flash of light, as residing outside the
boundary represented by the skin of the subject, while in reality the percept
occurs inside the boundary of the subject, with the preceding recept occurring
at the immediate inside. Thus the subject performs an outward and backward
projection of the real location of its perceived input-difference. Further, what
sensory input the subject perceives, both in quality and in quantities of the
quality, depends on the algorithms (including their semantics) constituting the
sensory apparatus of the subject. During the perception these algorithms are
hidden for the subject who de facto applies a projection outwards and backwards
also of these subject-internal algorithms and their related subject-internal
differences. Such projection of one causal relation between input-difference and
output-difference to another causal relation between input-difference and
output-difference, we denote as projective causality.

By applying technical instruments more sensitive than our (direct)
perception, another subject can research the exact relations between input- and
output-differences constituting sensory perception, e.g. when studying how
inputs of volumes and frequencies of sound from an external source become
perceived by a human subject as corresponding but different volumes and
frequencies. The reséarcher will tend to find that such relations between input-
and output-differences follow the Weber-Fechner law for sensory perception.
The Weber-Fechner relation implies that:

(i) Input-differences are represented logarithmically as the output-differences
registered by the subject. (If the volume of a sound increases with a factor of 8,
the human ear will perceive this as increase with a factor of 3 due to 23=8.)
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(ii) Input-differences below the lowest threshold and above the highest threshold
for reception by the subject will not be represented as output-differences at all.
(Frequencies too high or too low will not be heard by the human ear.)
(iii) Since the resolution of input-differences is higher than the resolution of
output-differences, any output-difference will cover plural preceding input-
differences which hence becomes conflated into the same output-difference. (If
the difference between two frequencies are too small, the human ear will not
perceive any difference.)

With regard to perception we thus see that many input-differences do not
unfold into any output-difference, and therefore they do not constitute any
information for the perceiving subject (only for the external researcher). Also,
we see that when the subject projects his percept (with implied subject-internal
algorithms) outwards, there is implied a quantitative (logarithmic)
transformation between the “real” external input-difference (as measured by the
researcher) and the input-difference as perceived by the subject. The qualitative
incongruence is even more radical since the perceiving subject does not have
any access to the quality of any external difference. The first input-difference
that constitutes information is the recept located at the immediate inside of the
subject. Thus, the external input-difference is better considered as a pre-input-
difference.

When we move from perception to proceeding information processing
by the subject, projective causality must still be involved in every step of
thought, although the implied incongruences (at least the qualitative ones) will
be less radical in most cases. The tacit continued presence of projective causality
is due to the fact that the subject can not process or reflect upon its distinctions
before it has manifested them, and during the act of manifestation the distinction
is hidden for the subject. Thus, the subject is always processing information one
step ahead (when observed by the meta-subject of an external researcher) of
what itself can be able to conceive.

If, say, you make a distinction between yellow and green in an observed
rainbow, there is not'inserted any physical border between yellow and green as
when children draw a line between objects by a black pencil. The border
between the two colors is invisible at the perceived physical level, while the
border still has a real existence as a mental category in the inherent make-up of
the subject. It is the tacit projection of the border category, residing in the mental
domain, onto the conceived physical domain, that constitutes the difference
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between yellow and green in the object perceived by the subject. The subject
perceives the difference in color affer the category of border has become
projected outwards. What the subject perceives as an input-difference from the
physical domain is, when regarded from an external subject with imagined
access to the inside of the subject, to be regarded as an output-difference where
the inside category of border becomes projected. In general, since the criterion
for classification always is hidden (while at the same time expressed) in the
classification, the subject will always consider the level of being/reality it
operates on (at least) one step lower than what is the case if regarded from an
advanced external subject. Thus, projective causality, with this objectively
implied 'simile of unidirectional level substitution, is with necessity tacitly
present in all information processing and thus also tacitly enfolded in all (other)
types of causality.

In sensory perception the internal classifications that are projected
remain hidden for the subject itself. We denote such as traceless classifications
which yields trackless representations and processing of information. In more
conscious information processing the projected internal classifications can
become preserved and reflected upon, and we denote such as reflexive
classifications.

We may consider, as an example from more refined thought, a logician
wrapping his head around whether the expression “I am always lying” (E) is
true or false. This seems tricky to decide when he has only one out of two binary
truth values to his disposition and the assumption of each of them leads to a
contradiction. The contradictions arise when expression E is applied self-
referentially to also include itself as something to be true vs. false about, as
indicated by the term ‘always’ interpreted as expanded without contextual
limitation. Thus, the logician realizes that his trouble originates from that E
conflates two different levels or logical types of expressions. In order to seek
clarification he has to add a meta-level where E can be regarded to also be about
itself. The logician unfolds a differentiation already residing enfolded in
expression E as soon as he experienced some trouble, so that his reflexive
classification into two levels arrives after the more immediate manifestation of
expression E in the mind of the logician.

The logician’s adequate differentiation into two levels of ontological
being residing inside a considered freestanding logical universe of logical
categories of thought, must be considered to have physical correlates in his
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corresponding brain chemistry, and the logician will seek to express the two
levels and the relation between them by physical means as drawings of
classification schemes or written logical operators. In general, zero information
can exist without being manifested by a physical expression and carrier
(“physical” as regarded relatively to the ontological level of information) as the
lower side of the “coin” of the information “atom”, whatever minimal (as
software or net bank money expressed by pixels at a computer screen). Here,
information represents the upper side of the coin and the physical
manifestation/carrier the lower side, as far as the physical manifestation is
regarded as expressing the information. The information of the same amount of
money can be expressed by plural alternative physical carriers (coins, bills, net
bank pixels), as well as the same universal Turing machine can be expressed by
plural kinds of computer hardware. Thus, it can not be a 1:1 relation between
information and its physical manifestation and carrier, and in this relation
information represents the upper and most significant side of the coin vis-a-vis
the lower side of the coin that represents the substance which incarnate the
information. There is no information without substance, and thus without a
differentiation (and relation) between two different ontological levels; and the
substance is significant only insofar it manifests and carries the information.

The triad of Truth, truth and false

Back to our logician contemplating expression E. Before starting out to
decide the truth value of the expression, he has first to receive and get the
immediate meaning of the expression from possessing ordinary skills of
language. Thereafter he starts out to reflect upon the truth vs. not of the
expression from applying formal logic. Thus, he can not question the truth of
the verbal expression E as being exposed to and received by him in the first
place, i.e. the reality (inside a thought universe) of his initial thought object
which only later on becomes reflected upon by his logical contemplations. To
Jjudge by logic whether an expression is true or not, it is presupposed (somewhat
pre-meta) that the logician in the first place did receive and conceive the
expression itself, i.e. the very thought object for his logical reflections, as taken
for true. This can be denoted the prior truth of expression E without which the
following logical investigation of whether E is true vs. false can not happen or
have any meaning.
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Thus, conventional formal logics is not restricted only be some
shortcomings shortly indicated previously in this text, but also by ignoring the
arrival of the initial expressions of the thought objects for exercises of formal
logics; where these initial expressions are a priori to be regarded as prior truths
qua stated. If we denote the prior truth with capital letter as Trurh, the truth
values of true and false become assigned afterwards as statements abous the
Truth expression. Without Truth there would not exist any thought object to
think about as true vs. false, so that Truth must have logical priority to both true
and false. It is not possible to start out with False as category, since the truth
value false only can be about Truth and in this sense must be logically secondary
and parasitic on the category of Truth. Conventional formal logic is constructed
as if truth and non-truth are existing at (only) an equal footing, while from an
extended contemplation there is always a tiad involved in logical reflection,
where Truth becomes differentiated into being true or false when Truth becomes
reflected upon. In much human thinking Truth is not reflected upon, but unfolds
organically into another Truth by mostly unconscious types of causality. It is
due to ignoring this circumstance that conventional formal lo gic includes as true
various expressions where claimed truthfulness appear contra-intuitively
inadequate, as the examples we gave in (1).

When a newborn baby opens its eyes, it will be confused and perhaps
start wondering whether it is true or false that it is not dreaming. But in the first
place, before the baby starts wondering about truth values and strives to place
its novel visual experience ontologically, the baby can not question the fact of
its visual experience as such. Thus, the triad of Truth and truth vs. false is
operative in real life phenomena also outside the free-standing thought universe
of formal logics.

By analogy, it is mistaken to conceive the categories of creation and
destruction as existing (only) at an equal ontological footing. It is not possible
to destroy anything that is not already created; thus the prior category is
Creation that next differentiates into being treated by (further) creation vs.
destruction. It may ‘be reason to question the adequacy of considering the
category entropy that fundamental as in most theoretical physics. From a
consistent triadic approach it may seem most reasonable to consider Syntropy
as the prior category which becomes differentiated into negentropy vs. entropy.
In the present context, however, it will lead way too far to attempt to lift and
reinterpret the laws of thermodynamics from a triadic approach.
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(As an aside with respect to moral philosophy: From analogous triadic
reflections we might find that nor do the categories of good and evil exist (only)
at an equal ontological footing. The category evil (vs. good) has to be about
something, and if this prior something was not Good it is hard to see how the
category of evil can have any meaning as negation of anything.)

The profound ontological significance of the Fibonacci algorithm

Already from our reflections above concerning abstract causality and
projective causality it is indicated that when information is constituted as an
input-difference unfolding into an output-difference for a subject, this happens
by (i) the subject projecting subject-internal difference onto an ontological level
residing below the ontological level where the subject-internal differences
reside themselves, so that this projection is implied in the constitution of the
input-difference; and by (ii) the subject unfolding the input-difference by means
of its inherent causal operator(s) into the output-difference. When regarded
formally as abstract, universal and elementary as possible, this has the form of
the Fibonacci algorithm where the subject processes its preceding state by
tacitly combining it with a projection of its present state, whereafter the next,
proceeding state of the same subject unfolds by causal necessity. This means
that the Fibonacci algorithm is tacitly residing inside information as such, when
information is considered in its most abstract qualitative sense. Consequently,
the Fibonacci algorithm must constitute the fundamental bridge between the
qualitative and quantitative aspects of nature (cf. also Johansen 2006, 2008a,
2014b).

A radical implication from this apparent philosophical result was that
even the field of natural numbers, as a distinguished part of (cognitively
conceived) nature, should be possible to unfold from systematic reflection on
the Fibonacci algotithm. In our treatise Fibonacci generation of natural
numbers and prime numbers (Johansen 2011) the field of natural numbers
became established ds a supra-structure generated uniquely from the Fibonacci
algorithm by successive alternations between ordinal and cardinal aspects of
Fibonacci entities/numbers. Thus, while the Fibonacci series trivially is a subset
of natural numbers, from this deeper contemplation, representing some
Copernican turn, the natural numbers themselves emerged as generated from
the Fibonacci algorithm (cf. also Johansen 2014a).
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Our mathematical results connected to this refoundation of number
theory may suggest that profound and concise reflections on information and
causality categories hold a potential for catalyzing clarification and progress
also in topics of theoretical physics.

The nexus of causality types

In our philosophical treatise different ontological levels and dimensions
are systematically developed from successive reflections on categories residing
tacitly enfolded in the very concept of information as such. Our causality theory
does not hold any autonomous position towards ontology in general, but are
anchored in this differential ontology and epistemology. Our development and
differentiations between various causality types are, more accurately expressed,
presented as integral and crucial aspects, unfolding more organically, inside the
development of our differential ontology.

As a whole this causality theory is too extensive and complex to become
much presented in this text, but at least we can provide a condensed — and by
necessity rather cryptical — description in order to give some idea about the
nature of the fundamental causality types and of the relations between them: (cf.
Johansen 2017)

Fig. I: Illustration of the causality nexus anchored in the three dimensions physical
(horizontal in black; 3 + 1D compressed as 1D time), algorithmic (vertical in yellow),
and transalgorithmic (depth in red). Description of first-order alternates between
process (black) and transfiguration (yellow), second-order between blue and orange.
Higher orders activate from emergence (red) and unfold as structural change in process
(light blue) or innovative change in transfiguration (dark green), with the possibility of
the last being retroactive (purple). Whatever degree of order and systemic complexity,
the illustrated conglomerate of causality types and arrows constitutes a completed
nexus of information flows.
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Formal logical causality: this category is universal for all thinkable
information, i.e., for any information flow in any described information matrix,
i.e., in the imagination of a pure and free-standing logical universe. Formal
logical causality is deduced in its precise form from specified classification
logic between the thinkable classes and elements from ontology differentiated
vertically. All other causality types are subtypes and “clothes” of this abstract
one, which is what qualify them as causality types. They unfold from specified
additions of different similes, necessary in any dynamic system description,
explicitly stated or not.

Algorithmic causality: this is the causal relation from an input-value to
an output-value inside the algorithm.

Intra-physical causality: this is the causal relation from start point to end
point of a process.

Dynamic causality: this is the causal relation with the two subclasses: a)
from end point of a process to start point in an algorithm; b) from end point of
an algorithm to start point in a process.

Projective causality: this is the causal relation from the meta-subject to
the thought object as a whole; the potential inner classifications and causal
relations being actualized in this projection (including formal logical causality).
In fig. 1, the arrow of projective causality originates from the field (in green) of
an enfolded nexus of causality types, denoting a segment inside the thinking
meta-subject that makes the description, and manifests as the field (in indigo)
of an unfolded nexus of causality types. The frame of the originating field is
marked with broken white lines in order to distinguish its ontological status from
the nexus projected into the derived field.

Structural causality: this is the meta-algorithmic causality relation
directing the process-output from an algorithm to the process-input for another
algorithm and hence positioning all algorithms in a structure.

Inter-algorithmic causality: this is the causal relation from an
algorithmic output to the algorithmic input for another algorithm, hence
ignoring the intermediary physical process by a projection to the vertical
algorithmic axis.

Emergent causality: this is the causal relation from an algorithm to a
meta-algorithm. »

Innovative causality: this is the causal relation from a meta-algorithm to
a first-order algorithm. An important subtype of innovative causality is the
retroactive causal relation from a meta-algorithm to a first-order algorithm
earlier connected to the meta-algorithm by emergent causality.
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Diasynchronic causality: this is the causal relation made up by a circuit
of algorithmic, physical, intraphysical, dynamic, projective, emergent,
structural, and retroactive innovative causality.

Physical causality: this is the physical relation from a process output to
the process input of the next process; hence, ignoring all intermediary
algorithmic and transalgorithmic transfigurations by a projection from the
vertical axis or the depth axis to the horizontal axis.

It follows from the illustration of the causality nexus in fig.1, that, e.g.,
the conventional notion of physical causality is far from constituting the most
fundamental causality type. It is also far from any #rivial causality types, due to
its condensation of many involved causality paths through plural shortcuts and
similes. Thus, it follows from strict and consistent philosophical-ontological
reflection on the nexus of causality types which comstitutes the reality of
information in the cosmos, that ideas about cosmos as fundamentally physical
or—even worse—only physical, are basically radically amputated and
illusionary as judged by strict standards of scientifically informed and informing
philosophy/meta-science.

From these fundamental causality types, various elaborated causality
types constituted by combinations of fundamental causality types were
exhibited by Johansen (2008: ch. 3.2); among these are: randomness causality,
probability causality, stochastic causality, intentional causality, selective
causality, and imagined causality. Thus, more elaborated and epistemologically
refined causality types, crucial in human and social systems, were understood
inside the causality nexus anchored in the three ontological dimensions (see
Johansen 2008a and 2008c¢ for specified applications of this causality theory).

It follows from our philosophical work that without a sufficiently
differentiated and concise ontology, it becomes difficult and in part impossible
to discover, differentiate and adequately place and relate several types of
causality. Far most of theoretical physics is not much sophisticated in
ontological differentiations, which leads — more or less — to corresponding
restrictions in reflections on causality in general and on various causality types.
Still, the most common “folk ontology” among physicists is limited to the
simple binary distinction between the physical world and the mental world, for
next to consider the physical world as the primary world or even as the only
“real” world. We may take even Einstein as an example expressing a rather
naive ontology subscribing to philosophical materialism, although without the
conventional notion of ‘matter’, expressing support to the tradition from Hume
and Mach (cf. Einstein 2000 [1954]:81).
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For many — not to say far most — purposes of physics, say, engineering
by Newtonian mechanics, shortcomings in more or less subtle ontological
differentiations do not matter much — if at all —, nor do shortcomings with regard
to understanding the rather intricate relations between more fundamental
causality types that reside enfolded in the conflated notion of physical causality.
Extensive philosophical meta-reflections will in most cases show contra-
productive with respect to solving the task at hand, and the required implied
relations between cognitive categories are best delegated to the wisdom, speed
and precision performed by unconscious algorithms.

However, in order to adequately approach and treat more fundamental
issues in theoretical physics, which present crucial paradigmatic challenges,
more abstract differentiations and meta-reflections may make a constructive
difference. With respect to quantum physics more tricky philosophical issues
became actualized as soon as the role of the observer had to be included into a
broader perspective in order to understand what real entity that manifests
through quantum measurements targeting the wave function.

Approaching the Einstein-Podolsky-Rosen paradox

When approaching the Einstein-Podolsky-Rosen paradox (Einstein et al.
1935) in theoretical physics it is not adequate to consider the (mathematical)
chance distribution as an attribute by the (physical) wave function, as opposed
to causality (which tacitly is considered as physical causality). We have clarified
that as located inside our theory of causality, anchored in our ontological
framework, this can not with logical consistency be considered as an absolute
opposition, in the sense of representing two opposing categories in their
ontological basis. Firstly, physical causality does not represent the most
fundamental type of causality, but enfolds and is internally built from more
fundamental types of causality. Secondly, the concept of chance (including the
concepts of randomness and probability) does itself represent a certain type of
causality. Thirdly, chance causality does not represent any fundamental
causality type, but one among several elaborated types of causality. Fourthly,
chance causality, as when applied in explanation of a physical system,
presupposes physical causality as one among the causality types chance
causality is made-up by and from by addition and inclusion of certain simile
operators.
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When not being consistent with the four points above, theoretical
discussion of EPR will contain some categorical conflations and inaccuracies.
This does not implicate, however, that the discussion is without intellectual
merit or importance, but it does implicate that more basic and consistent
categorical differentiations and relations might catalyze further clarification of
the issues discussed.

Our differential philosophy might be characterized as a systematic
qualitative informatics, i.e. that unfoldment into qualitative differentiations and
categories precedes related quantifications of the unfolded qualities, as already
indicated by the significance of the Fibonacci algorithm for refoundation of
number theory as a whole (and in next steps catalyzing certain novel
mathematical results more technically regarded), or by the significance of the
Weber-Fechner logarithm in constitution of recepts.

We may contrast this to the guantitative informatics presented by
Shannon& Weaver (1949) where the concept of information was defined (1949:
103f) from the concept of probability when contemplating signal to noise ratios
and applying entropy formulas from theoretical physics. Their approach was
technically sophisticated and showed highly fruitful, e.g. for developments of
telecommunications. However, their quantitative “definition” of information
appears as a second-hand pseudo-definition, since it already tacitly presupposed
the very quality of ‘information’ to have become established (and thereafter
becoming differentiated qualitatively into the concept of ‘signal’ as input-
difference at the sender side and an output-difference at the receiving side)
before it became quantified for practical purposes.

Later on both Chaitin and Kolmogoroff presented theories of
quantitative  informatics which were basically complementary to
Shannon& Weaver, and Zurek presented a reasonable synthesis of Shannon vs.
Chaitin/Kolmogoroff. In any case these potent developments of quantitative
informatics, based on i.a. the notion of chance causality, has to be regarded as
second-hand as compared to the qualitative informatics represented by our
differential philosophy where the very category of chance causality does not
occur before rather late in our systematic unfoldment of causality types. Thus,
from a more profound and basically qualitative approach it is not adequate to
refer to the quantitative second-hand definition of information applied in the
information theory of Shannon (or others), with the according fundamental role
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played by chance causality, in order to approach the deeper issues of theoretical
physics as e.g. addressed by the EPR paradox.

The abstract, while concise, definition by Turing (1935) of information
as computation, connected to his astonishing invention of the Universal Turing
Machine, is definitely more qualitative (in the first place) and independent of
probability reflections than the definitions of information referred above. Still
though, our definition is more qualitative, abstract and universal than Turing’s,
with according possible robustness towards more fundamental progresses in
informatics (e.g. Deutsch, Diaz/Rowlands, Bohm; cf. Johansen 2008:260f for a
short discussion).

Einstein, Podolsky and Rosen (1935) argued quantum mechanics to not
represent a complete (physical) theory because the description of (physical)
reality by the wave function in quantum mechanics was judged as not being
complete,

They stated as a necessary condition for a complete theory that “every
element of the physical reality must have a counterpart in the physical theory”
(ibid.: 777). (We apply symbol Eg to denote the first kind of element, and
symbol Er to denote the second kind of element.) They stated as a sufficient
condition for the occurrence of Er that the “value of a physical quantity” can be
predicted with certainty, i.e. with probability=1 (ibid.). Next, from performing
a certain thought experiment, consistent with quantum mechanics and its
mathematical transformation theorems, they argued the occurrences of certain
Ers that were not possible to describe by a corresponding counterpart of Er.
Consequently, quantum mechanics could not be considered a complete theory.

It was concluded as an open question whether a complete theory,
overcoming their argued limitations of quantum mechanics, could be achieved,
but the authors stated their belief in such a more advanced and general theory to
be possible.

Their thought experiment (ibid.: 779f) considered two (physical)
systems interacting for some time, after which system I and system II are
separated. The initial states of the two systems when they start to interact, are
assumed as known. Then, from the Schrodinger equation with the wave function
we can calculate the state of the combined system I&II at any time, including
after the two systems separate. However, we can not calculate the state of each
system after their interaction has become terminated. According to quantum
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mechanics, such calculation is only possible from a measurement executing
reduction of the wave packet. It is assumed that measurement only takes place
in system I, either of coordinate(s) (position), thus being considered as Eg, or
of momentum considered as Er. Depending on which of the two binary
alternatives for measurement that is chosen, the inferred wave function for
system II, gfier the two systems have been separated, will look different. It does
not appear consistent that the same system 11, after separation, can be assigned
with two different wave functions.

Next, their thought experiment assumed two Er candidates, namely two
particles P and Q with corresponding eigenfunctions of two non-commuting
operators with respective eigenvalues. They presented a technical proof,
concluded in their eq. (18), that the two different eigenfunctions, depending on
starting out with measurement of the momentum of P vs. with of the
coordinate(s) of P, represent alternative expressions of the same reality, and
thus that both of the two non-commuting P and Q should be considered
simultaneously as Er.

Since the measurement process in system I is considered to not have any
possible influence on the state of system II affer the two systems have become
separated, so that the measurement process in system I is irrelevant for the state
of system II, it does not seem to make sense that the objective Er status of
something residing in system II affer the separation should depend on whether
the measurement procedure in system I targeted position vs. momentum of a
particle residing merely in system L, i.e. excluded from system II.

The authors concluded that quantum mechanics offers a non-complete
description of objectively existing Ers residing in system II since a calculation
of both Egrs residing simultaneously in system II is impossible to achieve
(predict) from a definite measurement in system I, because such a measurement
has to exclude one calculation on behalf of the other.

Niels Bohr (1935) replied to this critique by pointing out that the very access to
receive any expetiméntal data about what was going on at the quantum level
required expetimental apparatus and procedures at the classical level. From the
freely chosen specifics of the experimental design at the classical level it would
be uniquely determined whether the position or the momentum of an elementary
particle became targeted and measured. Consequently, it was not empirically
possible to avoid that measurement of position vs. momentum of an elementary




- 631 -

particle had to be binary. Thus, it did not make sense to criticize quantum
mechanics for not being “complete” in its description since the very access to
the quantum level presupposed such incompleteness. Further, without such
access to the quantum level, with said according narrowing constraints, zero
predictions or possible assignments of values of Eg, or indicating any existence
of Er at all, would not be possible. Thus, Bohr argued that you could not criticize
quantum mechanics for shortcomings with respect to not achieving complete
descriptions at the quantum level when these shortcomings with necessity was
entailed in the classical apparatus and procedures to get any access to the
quantum level at all.

Bohr presented the principle of complementarity, with respect to the
quantum level, in order to account for the fact that even if it was not possible by
experimental apparatus to measure (and calculate from) position and
momentum of an elementary particle simultaneously, both approaches,
corresponding to according measuring devices, should at the quantum level be
regarded as contributing to physical knowledge at an equal footing. Although
not referred to by Bohr, this appears basically similar to the gestalt switch in
psychology of perception, where, say, the alternation between rabbit and duck
gives more complete information about the whole object for perception than
each of the two perspectives. With respect to natural philosophy, regarded more
in general, Bohr’s consideration implied that the complementarity principle had
to be applied with more strict and basic necessity at the quantum level than at
the classical level.

Further, Bohr addressed some possible self-referential inconsistencies in
the argument by Einstein et al. by clarifying that their critical conclusion was
based on applying the transformation theorems developed inside the
mathematics of quantum mechanics — and thus, at least to some extent,
subscribing to the paradigmatic framework of quantum theory. Bohr also
pointed out that quantum mechanics involved exchange of energy at the
quantum level so that time and energy variables should be regarded as
conjugates, rather " analogous to position vs. momentum, and that this
conjugation had an interesting similarity to a certain paradox in Finstein’s
relativity theory. In order to perform experiments to fest predictions from
relativity theory, highly accurate assignments of time and space coordinates are
required, as determined at the classical level, despite that relativity theory,
especially the general theory of relativity, implies a novel theory about the very
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relation between the coordinates of space and time where these coordinates can
not be determined independently of each other. Thus, one crucial point from
Bohr’s anti-critique is that we can not require from an advanced theory of
physics that such paradoxes can be completely avoided; thus the question is how
they are next treated and attempted reconciled from firstly acknowledging the
necessity of the involved theoretical paradox.

In the proceeding discussions in theoretical physics about the EPR
paradox, Bohr’s anti-critique tended to be judged as satisfactory. There should
be no doubt that Bohr clarified some key issues in a rather concise as well as in
a creatively interesting manner. On the other hand, there might be that the
arguments by Einstein et al. addressing possible limitations by quantum
mechanics, compared to an imagined more advanced theory of physics,
enfolded some rather deep and relevant points, despite that the philosophical
clarity in presenting the argument was not that impressing and that the
mathematical dressing of the argument did not support the basic argument thar
much, as much clarified by Bohr’s anti-critique. The more subtle and
challenging request might be to attempt to access the possibly brilliant intuition
by Einstein, never mind shortcomings in the published presentation of 1935
Jfrom the intuition.

David Bohm (1951) supported the anti-critique by Bohr (cf. ibid.: 611), while
on the other hand Bohm followed Einstein by arguing that quantum theory
should not imply denial or downplaying of causal laws. Bohm’s rather profound
and constructive discussion of the EPR paradox might thus be said to represent
some complementary superposition of both Bohr and Einstein.

With respect to causality Bohm pointed out “the role of causal laws in
making possible the identification of an object, whether it changes or not” (ibid.:
163). In general “an object is identified by the way it reacts to forces of various
kinds...Since the statement than an object reacts in a definite way to forces
implies that it obeys causal laws, we conclude that no object can even be
identified as such uriless it obeys causal laws” (ibid.:163f; italics by me).

Elementary particles as protons and electrons do not represent any
exception in this regard: “It is from the reaction to electric and magnetic forces,
and from the ionization of other atoms by the electric forces produced by a
charged particle, that an electron or proton is identified” (ibid.:163; italics by
me).
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Bohm noted “that this criterion also includes seeing the object with the
aid of light” (ibid.: 163; italics by me). Since causal laws are involved in all
perception (cf. our previous discussion of projective causality and constitution
of percepts), and there are no observations without perception, all observations
must obey causal laws.

According to Bohm the role of causal laws in order to identify an object
was “certainly no less important” (ibid.: 163) in quantum physics than at the
classical level. At the same time Bohm acknowledged Bohr’s complementarity
principle for the quantum level, connected to Heisenberg’s uncertainty relation,
and did not find it possible to interpret the non-commuting variables of
momentum and position as separately and simultaneously existing and precisely
defined elements of reality (cf. ibid.: 622f). And “exact causal laws would be
meaningless in a context in which there were no precisely defined variables to
which they could apply” (ibid.: 625; italics by me). Bohm interpreted the wave
function as describing “the propagation of correlated potentialities” (ibid.: 621;
italics by me), so that the quantum concept of a potentiality became more
~ fundamental than the notions of momentum and position.

In his general ontology Bohm (1987, 1993) regarded borders
distinguishing physical objects not as totally absolute, but more — or less — as
dotted lines. While the ontological assumption of complete separation between
independent physical objects obviously represented an adequate approximation
for theoretical physics at the classical level, Bohm argued that this assumption
had to be relaxed with respect to certain phenomena occurring from the quantum
level.

Bohm (1951: 624-628) sought to clarify the interrelation between the
classical and quantum level, as well as between their respective theoretical
concepts. Rather than viewing the classical level as some special case from a
generalized quantum theory, Bohm argued that the quantum world and the
classical world should be understood complementary as mutually dependent.
One of his points was that quantum theory presupposes the classical level
because “the last stages of a measuring apparatus are always classically
describable” (ibid.: 625). Without such measurements, quantum theory can
hardly be said to have any meaning at all. And, if we look at the uncertainty
relation between position and momentum, and the related complementarity
between wave and particle, this relation does not manifest before in interaction
with a classical system of measuring devices (cf. ibid.: 625, 627).
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If we reflect a bit on the very concept of a physical wave, it is implied
that the form of a wave as a mathematical concept must have a physical
manifestation and carrier, as e.g. sound waves carried by molecules in the air
or ocean waves carried by water molecules. Thus, a physical wave must be
carried by a huge number of physical particles (or at least by something
physical as in contrast to the information of the wave pattern itself). Here, the
form of the wave appears at a much /arger scale than each of the physical
particles that make up the physical wave. If we consider a physical wave to
have a complementary state as a particle at the same scale as itself, the concept
of a physical wave will then tacitly (by transitivity) imply a relation between
the large-scale particle and the small-scale particles. The wave-particle duality
at the quantum level is well known, but transformations between the physical
state and the wave state have also been documented as possible at the
molecular level where (more or less) the same information of the molecule is
preserved during the transformation to its specific frequency constellation (cf,
i.a. Gariaev et al. 2000, 2011; Montagnier et al. 2011, 2014; Marvi&Ghadiri
2020, Brand et al. 2020). The philosophical point here, of some possible
relevance for theoretical physics, is that the conceptual contrast between a
physical wave and a physical particle is not an absolute opposition, but
relative to the scales considered adequate for description of the involved
phenomena.,

Then one may ask: When describing a quantum phenomenon as a wave,
and consider the wave to be a physical wave and not only a pure mathematical
notion, what are the physical sub-entities that make up the wave? If such sub-
entities are imagined to exist, then the application of chance causality in
describing measurement probabilities in quantum mechanics might not be that
completely different, after all, from applying chance causality when throwing
dices.

In his work Causality and Chance in Modern Physics (Bohm 1984; first
ed. 1957), Bohm presented a sophisticated reflection on the philosophical
categories of causality vs. chance. There are significant overlaps between some
key points in Bohm’s treatment and our own treatment of chance vs. causality
(originally presented in a publication from 1991 and developed without
knowledge about Bohm’s work), especially where he discusses “chance and
necessary causal interconnections” (ibid.: 139-146). In his last work, The
Undivided Universe. An Ontological Interpretation of Quantum Theory (Bohm
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1993), Bohm stated: “To sum up then...in no sense is probability being regarded
as a fundamental concept. Rather the properties of the individual system are
taken as primary, and probabilities are interpreted in terms of these”.

In his works Bohm presented various causal interpretations of physical
phenomena and theories often opinioned nor to be causal, with related
discussions of causality in different aspects. In the present context we have
focused mostly on his basic points about the role of causality as expressed in
more direct relation to his discussion of the EPR paradox.

Bohm followed Einstein in demanding that principle(s) of causality
should prevail also in interpretation of and further development of quantum
theory. However, Bohm found Einstein’s requirement of one-to-one
correspondence between any conceivable Er with a counterpart Et to be too
strong, and he did not share Einstein’s optimistic belief that a complete
(physical) theory should be possible to achieve. Bohm wrote:

A complete theory will always require concepts that are more general
than that of analysis into precisely defined elements. We may probably
expect that even the morve general types of concepts provided by the
present quantum theory will also ultimately be found to provide only a
partial reflection of the infinitely complex and subtle structure of the
world. As science develops, we may therefore look forward to the
appearance of still never concepts, which are only faintly foreshadowed
at present (Bohm 1951: 622)

The last words by Bohm may be taken as rather prophetic when
reflecting upon the immense contributions to progress in theories of physics, as
well as to related progress in mathematics, chemistry, biology and technology,
achieved by Ruggero Maria Santilli.

Some basics about the hadronic sciences initiated by Santilli

Santilli initiated the establishment of vast new fields of scientific theory
and discovery denoted by the umbrella term hadromic science(s) coveting
hadronic mathematics, hadronic mechanics, hadronic chemistry, hadronic
biology, and hadronic technology. The main reason for the choice of the term
‘hadronic’ was that Santilli initially approached the hadrons in the nucleus by
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regarding elementary particles as extended particles, in distinction to
conventional quantum mechanics ftreating elementary particles more
simplistically as if they were point particles, and found it necessary to develop
novel mathematics in order to adequately analyze extended particles. Next, this
mathematics and related development of novel physical theory showed both
potent and rather necessary when also addressing plural issues of physics
outside nuclear physics. Hadronic mathematics was structured by a layered
architecture where a novel layer of isonumbers emerged as a “second floor”
above natural numbers where the “elevator” (these metaphors are mine, not
Santilli’s) between the two floors was constituted by the isotopic element which
indicated the transform of the conventional unit, represented by the natural
number 1, to another (arbitrary) unit whereby a whole field of novel numbers
emerged from the basic relation between the two units. A further layer of
genonumbers emerged as a “third floor” of non-commuting numbers accounting
more directly for irreversibility as category. An even further layer of
hyperstructural numbers emerged as a “fourth floor” of numbers themselves
having an intrinsic layered structuring, somewhat similar to one hand possessing
plural fingers and thus being multi-valued.

In the architecture of hadronic number theory the numbers residing at
each level were included as a sub-set of the numbers residing at the level above
(that is, when taking the “elevator” down again and performing downwards
degeneration as the opposite transform of upwards lifting). Further, in the
architecture of hadronic number theory each level in the number landscape had
a “mirrored twin landscape™ of numbers, denoted its isodual.

In hadronic mathematics hadronic geometry corresponds isomorphically
to the architecture of hadronic number theory. Although Santilli by far has been
the most innovative and important scientist contributing to the development of
the hadronic sciences, by a rough estimate some 2-300 scientists world wide
have also published contributions in more or less specialized fields inside the
hadronic sciences. Some obviously important contributions have been T.
Vougiouklis creating:much of the sufficiently abstract hyperstructures to inspire
Santilli’s mathematical inventions; S. Georgiev lifting the ordinary calculus to
the more complex isocalculus published in voluminous detail; J. Dunning-
Davis lifting the laws of thermodynamics to a more general formulation by
isomathematics; 4. Animalu pioneering the field of iso-superconductivity (along
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with Santilli himself); and C. Illert pioneering hadronic biology (along with
Santilli himself).

With regard to hadronic geometry the achievements by Illert (1995; cf.
also Johansen 2008a, 2008b, 2008c) hold extraordinary significance. Illert
wanted to find a universal formula to describe the growth pattern of sea shells,
with as few variables as possible, compared with a data base covering some
100 000 empirical cases of sea shell growth. This showed not to be possible by
applying Euclidian geometry, nor with the geometries of Minkowski (applied
in Einstein SR) or of Riemann (applied in Einstein GR), while it did show
possible by applying hadronic geometry. Further, formulated by the
mathematical concepts of hadronic geometry, the universal formula showed to
be surprisingly simple, entailing only two basic variables, while at the same
time, for certain particular species of sea shells, the growth pattern, as described
by hadronic geometry, included non-trivial information flows jumping forwards.
and backwards as perceived from our ordinary experience of Euclidian time.
This circumstance could be interpreted as firther support for the adequacy and
potency of hadronic geometry, since such non-trivial time flows were included
as possible at the genotypic level of hadronic geometry, and also — before Illert’s
discovery — had been predicted by Santilli to later become discovered in
empirical systems!

Santilli himself presented results in nuclear physics providing further
support to the relevance and potency of hadronic geometry. The discovery by
Illert stands out as rather spectacular since it provided crucial support to
hadronic geometry from an extensive study at the classical level involving much
more complex entities (sea shells) than elementary particles. More generally
regarded, this was not that much of a surprise from hadronic mathematics, since
higher and more complex levels of hadronic geometry, in this case: the level of
genotopic geometry, were assumed to become more relevant for analysis the
more complex the targeted empirical system was assumed to be.

When it showed not possible to find a universal formula for sea shell
growth at the classical level by means of the Minkowski geometry of Einstein
SR, nor by means of the Riemann geometry of Einstein GR, while it did show
possible to find by hadronic geometry, it ought to suffice to give Santilli, the
main inventor of hadronic mathematics and geometry, a very strong voice with
regard to an adequate hadronic reconsideration of the EPR paradox and the
implied relations between the classical and the quantum level.
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(For an introductory overview of the hadronic sciences, see Gandzha and
Kadeisvili (2011). For a general bibliography per 2008, see Institute for Basic
Research (2008). For some key publications, see Santilli 1994, 2001, 2003,
2006, 2008.)

Santilli’s reconsideration of the EPR discussion from achievements in
hadronic mechanics

From the very onset of developing hadronic mechanics the whole body
of conventional quantum mechanics, addressing elementary particles as
idealized point particles instead of as extended particles, had to be considered a
sub-set of, and explained from, the lifted and broader theory of hadronic
mechanics, due to being based on simplified assumptions and thereby
scientifically limited. Quite recently, Santilli (2019, 2020) has directly
addressed and provided a rather extensive reconsideration of the EPR
discussion, based on achievements by hadronic mechanics. Although he also
previously has given substantial comments to the EPR discussion (cf. Santilli
1998), the recent publications of Santilli offer much more and sharpened foods
for thought.

In his publications Santilli has often displayed a humble attitude with
respect to (anyone) ever achieving a complete or final theory about
physical/empirical systems, much aligned with the attitude displayed by Bohm
in the quotation we referred above before as a transition to introducing Santilli.
Santilli (2019) states that “ ‘completion of quantum mechanics’ is used in
Einstein’s sense for the intent of honoring his memory”, and Santilli (2020)
claims “there is no doubt that the ‘completion’ of quantum mechanics is, by far,
Einstein’s most important legacy”. Taken together, we may interpret this as
Santilli regarding development fowards a complete theory in the sense of
Einstein as adequate and highly important, and that various achievements of
hadronic mechanics as a matter of fact have provided important results along
that line. o '

Let us shortly address at least a few key points in Santilli’s
reconsideration of the EPR discussion from achievements by hadronic
mechanics.

Reversible vs. irreversible time. Some of the objections against the EPR
argument had as necessary condition the conventional axiom of quantum theory
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where time was considered invariant with respect to time-reversal, i.e. that time
at the quantum level could flow backwards with the same probability as
forwards as conceived in Euclidian time. The obvious incompatibility between
this axiom and the arrow of thermodynamics at the classical level, became
resolved by hadronic mechanics lifting both classical descriptions and quantum
descriptions to a genotypic level of description which basically accounted for
irreversibility of time across the distinction between the classical and quantum
level (while at the same time allowing three novel and non-trivial categories of
time as necessarily “attached”, categorically more secondary, to this
irreversibility). It may be of some interest to note this theoretical achievements
being somewhat foreshadowed by Bohm’s closing note in his thick book
Quantum Theory:

We propose also that irreversible processes taking place in the large
scale environment may also have to appear explicitly in the fundamental
equations describing phenomena at the nuclear level.

(Bohm 1951: 628)

Radical shrinking of the span of the insecurity relation. The isotopic
elements required for adequate descriptions by iso-mechanics (or geno-
mechanics) of coordinates and momenta for particles within Ayperdense media
(as the interior of hadrons, nuclei, or stars), have showed to always be very
small. This reduces rather radically, and proportional to the density of the non-
empty medium, the span of the insecurity relation between position and
momentum when an adequate description by means of hadronic mechanics are
being applied. This shrinking could not be discovered by treating elementary
particles as point particles instead of as extended particles. From this discovery
Santilli provided a mathematical formulation of the so-called iso-deterministic
iso-principle, implying that the product of (iso)standard (iso)deviations for
(iso)coordinates and (iso)momenta progressively approaches a classical
description for extended particles with the increase in density of the medium.

Generalized lifting and revision of the conventional wave function. By
lifting the description of the conventional wave function to a more generalized
description by iso-mechanics, Santilli argued that it was possible to include a
representation of the attractive force between identical electron pairs in valence
coupling (the so-called fifth force, or contact force, connected to the notion of
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the iso-electron, with related orbit and magnetic polarization, in hadronic
chemistry). This more advanced description of the wave function in quantum
mechanics gave support to Einstein’s suspicion that the wave function as
described in conventional quantum mechanics did not represent a final or
complete description.

It should be indicated already from these few key points that a
scientifically competent discussion of EPR today, both philosophically and
more directly related to theoretical physics, needs to be upgraded to the present
state of de facto forefront theoretical physics.
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Abstract

A general relativistic theory of electromagnetic (EM) field is
developed by constructing an EM tensor which is an outer product
of EM vector potentials. The Einstein’s equations are modified
using this EM tensor and the coupling constant is found to be
inversely proportional to Planck’s constant. Maxwell’s equations, in
their current form, do not provide equations of motion; equations of
motions are provided by Lorentz force equations which do not
follow from Maxwell’s equations. However, with the proposed
theory of EM field, the modified Maxwell’s equations lead to
Lorentz force equations. The derived wavefunction for photons may
be interpreted deterministically as the slowly varying envelope of
the EM potential or statistically as the absolute square of the
wavefunction is the probability density of photons.
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1. Introduction

The problems of classical electrodynamics can be divided into two classes. (i)
The charge and current distributions are known and the resulting electromagnetic
(EM) fields are calculated, and (ii) the external EM fields are specified and the
motion of charged particles under the influence of EM fields are calculated [1].
When these two problems are combined as in the case of bremsstrahlung, the
classical treatment is a two-step process: (i) the motion of charged particle in the
external field is determined ignoring the emission of radiation by the charged
particles, and then (ii) Maxwell’s equations are solved to find the EM fields taking
into account the trajectory of the moving charges. As pointed by Jackson [1], this
way of handling problems in electrodynamics is of approximate validity since the
emitted radiation due to accelerating charges carries off energy and momentum,
and so must influence the subsequent motion of charged particles. A correct
treatment must include the reaction of radiation on the motion of sources. A
classical treatment of reactive effects of the radiation does not exist [1]. However,
a semiclassical theory in which the field is treated classically and the charged matter
is treated quantum mechanically, contain the back-action of the radiation field on
the charge [2]. In Maxwell’s theory (classical theory), the field equations do not
provide the equations of motion for charged particles; equations of motion are given
separately by Lorentz force equations. In contrast, in the theory of gravitation, the
equation of motion of mass points follow from Einstein’s field equations [3].
Bergmann [4] attributed this to the fact that the field equations of gravitation satisfy
four identities, while Maxwell’s equations satisfy only one. Another important
difference is that Maxwell’s equations, in the current form, are linear for vacuum.
If solutions are obtained by the linear combinations, charged particles will not
interact with each other. In contrast, Einstein’s field equations are nonlinear; even
the classical interaction of mass points is brought about by the nonlinear terms in
the field equations [5,6]. Bergmann pointed out that a field theory can lead to laws
of motion only if the (i) field equations satisfy at least four identities, and (ii) they
are nonlinear [4]. In this paper, four identities that are satisfied by the EM vector
potentials are first derived and then a general relativistic theory of EM field is
developed. The resulting EM field equations are nonlinear and the equations of
motion that resemble the Lorentz force equations follow from these nonlinear EM
field equations.

Tolman, Ehrenfest, and Podolsky [7] investigated the gravitational interaction
between two electromagnetic waves in vacuum and showed that the “test rays of
light” in the neighborhood of an intense electromagnetic pulse are not deflected
when the test ray is propagating paralle]l with the intense pulse. Later, Scully [8]
showed that when a probe pulse and an intense laser pulse are propagating parallel
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with their velocities less than the speed of light in vacuum, interesting gravitational
interaction between them can occur. For example, when an intense laser pulse
propagates in a dielectric waveguide and the probe pulse propagates in the bulk
dielectric (i.e. outside the waveguide) in the same direction as that of intense pulse,
the probe pulse undergoes a small shift (towards the intense pulse) due to
gravitational interaction between them. There have been many attempts to combine
the theory of gravitation and electromagnetesim, which is summarized by Santilli
[9]. Kaluza combined electromagnetism with gravitation in 5 D [10] and Klein
applied this idea to quantum theory [11], laying a basis for various versions of string
theory [12]. As in the Kaluza-Klein theory, the tensor formed by the outer product
of electromagnetic vector potentials plays an important role in our approach.

Although Einstein’s general theory of relativity (GR) is well accepted,
alternative theories and modified GR theories have drawn significant interest [10-
14]. The GR has been verified for masses on length scales of the solar system, but
it faces challenges on quantum and cosmological scales [14]. In this paper, we
retain the structure of GR theory, but introduce a novel electromagnetic tensor as
an additional source term in Einstein’s equations. Without this term, the modified
Maxwell-Einstein equations do not lead to Lorentz Force equations. The relation
between matter and EM field can be interpreted from two different standpoints [13].
The first is the unitarian standpoint which assumes only one entity, the EM field.
The particles of matter are considered as singularities of EM field and mass is a
derived notion to be expressed by EM field energy (or EM mass). The second is the
dualistic standpoint which takes particles and fields as two different entities. The
particles are the sources of the field, but are not a part of the field [13]. In classical
electrodynamics, charged particles (the cause) are distinguished from EM field (the
effect). The charged particles are considered as the sources for the EM field
corresponding to dualistic standpoint. In this paper, it is postulated that the cause
and effect are inseparable and the charge is embedded in the field itself. Using this
idea, an electromagnetic tensor which is an outer product of EM vector potentials
is constructed and the divergence of this tensor satisfies four identities. In the theory
of gravitation, the constant appearing in Einstein’s field equations is connected to
the gravitational constant. Similarly, in the proposed theory, the coupling constant
(x) is connected to Planck’s constant. Under the slowly varying envelope
approximations, it is shown that the nonlinear EM field equations reduce to
Schrodinger equation with one of the potential terms being the self-trapping
potential. It is also shown that the rate of change of mean momentum of the EM
wave packet is given by Newton’s laws with one of the forces being Lorentz force.
Using a weak field approximation for the metric tensor, modified Manakov
equations are derived for orthogonal polarization components of electromagnetic
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fields. Manakov equations have been used to describe the evolution of orthogonal
polarization components in a nonlinear fiber [15].

The modified Maxwell-Einstein equations lead to a wavefunction ¢ for
photons, which can be interpreted in two different ways: (i) deterministic

interpretation - ;Z is the slowly varying envelope of EM potential and momentum
density of the EM wave is wIm[gZV;Z*]/ 2, where @is

the mean frequency of the EM field, (ii) statistical interpretation - |¢~

(x,y,z)|*dxdydz represents the probability that a photon is present in the region
between (x,y, z) and (x + dx,y + dy, z + dz), and the probability current density

is j(r,t)zziﬁn[jvﬁ*]. In the classical limit, Schrodinger equation leads to
m
Lorentz force equations.

Next, by treating the nonlinear effects (i.e. spacetime curvature) as a small
perturbation on the linear fundamental mode of a rectangular cavity resonator, a
dispersion relation is derived. It is found that the resonant frequency of the cavity
is shifted by an amount proportional to the square of the EM energy stored in the
cavity, due to spacetime curvature. The dispersion relation is expressed as a special
relativistic equation describing the relation between the EM energy, the EM
momentum and rest mass, from which it is found that the coupling constant is
inversely proportional to Planck’s constant.

This paper is organized as follows. In Section 2, an EM tensor which is an outer
product of EM vector potentials is constructed and the EM energy-momentum
tensor appearing in Einstein’s equations is modified using this tensor. The field
equations are solved under the weak field approximations in Section 3 and it is
shown that the modified Maxwell’s equations reduce to modified nonlinear
Schrodinger equation or modified Manakov equations, which lead to Lorentz force
equations. Section 4 deals with the analysis of rectangular cavity resonator under
the weak field approximation and the impact of spacetime curvature on the resonant
frequency of the cavity is investigated.

2. Electromagnetic Tensor and Field Equations

The electromagnetic potential 4#may be written as

dx.u
Aﬂ:ﬂ;}‘l—:?ﬂ]“, (1)
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where 7is a scalar similar to charge (although of different dimension), Ais a

parameter along the world line, and {/# are the components of 4-velocity. Consider
a locally inertial frame O. We follow the notations of [16]. Let

ﬁ7(U°,U1,U2,U3 ). 2

In the frame O, the components of Uare constants along the worldline at a point
P ie.,

do_
di
or 3)
au” . &’
=U% ——=0.
di dA
In the frame O, the Lorentz gauge condition is
4", =0. )

With the definition of Eq. (1), the Lorentz condition is nothing but the conservation
of 7. Using Eq. (1) in Eq. (4) and using [/ /‘# = (), we find

dn
2. (5)
di

Using Egs. (5) and (3), we find

A ey 9U7 (©)
di dA dA
From Eq. (6), we have
aa” _ A“/,U"’ =0,
dA "
or (M
47,47 = 0.

Using Egs. (7) and (4), we find the conservation relation

(A°A%) y= A" AP+ A%, AP = 0. ©)
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Since (8) is a tensor equation, it is valid in any coordinate frame. So, we have

(44", =0, €

where semicolon denotes the covariant derivative. We define an electromagnetic
tensor

T = A4 4P, (10)
with the conservation relation
B _
T, =0. (11)

To the best of our knowledge, the conservation relation (8) is not known in the
literature. We choose the unit of 4%as m so that the unit of energy density,
(E*+H?*)/2 is J/m’and the dimension of T7%is J/m. Hence, T may be
termed as power-force tensor.

In fact, the tensor 7% is similar to stress-energy tensor for ‘dust’, which is given
by [4,15,16]

T%

dust

= pUsu’, (12)

where pis the energy density. Eq. (10) may also be written as

Taﬂ :nZUaU,B’ (13)
with n’playing the role of p, although their dimensions are different.

To verify the validity of Eq. (8), consider a forward propagating plane wave

A =D explith,x)],  j=12. (14)
Using the Lorentz gauge conditions, we find
kD' =k, D>, (15)

Using Eq. (15), we find that Eq. (8) is automatically satisfied for a forward
propagating plane wave. To verify if Eq. (8) is satisfied when the EM field is
confined, we solved Maxwell’s equations using the finite difference time domain
(FDTD) technique for a rectangular cavity resonator, which is a rectangular
metallic waveguide that is closed off at both ends by metallic walls (see Fig. 1).
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The length of the cavity is Z; in ¥/ direction and for simplicity, we assumed that
L=L. The walls of the cavity are assumed to be a perfect conductor so that the
tangential component of the electric field is zero at the conducting walls. We
excited this cavity on the left side with a propagating plane wave given by Eq. (14)
and the constants p/ satisfy Eq. (15) (for example, there is an antenna on the left
wall which emits the EM field of the form given by Eq. (14)). Numerical solution
of the Maxwell’s equations showed that the Lorentz gauge condition, Eq. (4) and
conservation relations, Eq. (8) are satisfied at each point in the cavity for t>= 0.

//:Metallic Walls

~ P ~ 5 ; /
T /
L
L 3
— —l”

Figure 1. A rectangular cavity resonator.

2.1. Einstein’s Field Equations
Einstein’s field equations are given by [4,9,17]
1 87TG mai em
G;lvERﬂl'__z—gﬂvR_Ag,uvz__cT[T [+‘77u ], (16)

ng v
where ];l”l’j” and T::’ are the energy-momentum tensors of matter and

electromagnétic field, respectively. For “dust”, we have
Tmal — pVﬂ V; , (17)

Hv
where pis the energy density of the matter and v, is its four-velocity. Santilli [9]

has analyzed the gravitational field of partons under the assumptions that (i)
gravitational field of any massive body is partially due to the EM fields of its
charged basic constituents (weak assumption) and (ii) gravitation field is entirely
due to the EM fields (strong assumption).
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When only the electromagnetic field is present (i.e. p =0), Einstein’s field
equations are given by [4,17]

3rG

Tem (1 8)
C4

a2

1
G/lv = R#V _—ig#VR _Ag,uv =
where the EM energy-momentum tensor is given by

em 1 5
T,uv =Fny/7_Zgva75Fy )

F75 = Aﬁ,r _ANS’

(19)

and
(T =0. (20)
According to the GR with the EM tensor given by Eq. (19), there is no

gravitational interaction between two EM fields propagating in parallel in vacuum
[7]. In this paper, we modify the EM tensor as

T =ad,d,+T; 21)

v Hy 2

where @ is a constant. Since 4,4, is the power-force tensor, o/ has a dimension

of 1/ m*.Using Eqgs. (11) and (20), we find this new tensor to be divergence-free,
ie.

(TH)or =0. 22)
Since G", =0, using T':’Z’/instead of T:l’/”in Eq. (18), we find
1 87G ..o
R,uv "*E'g#VR '—Ag,uv = KA/JAV - c4 :Zjuv ’ (23)

where x=-87aG/c*. Since we chose the unit of 4# to be JJ/m, x hasthe
dimension of 1/ (Jm), which is the same as that of 1/ (hc), where h is Planck’s
constant. Santlli [18] discusses in detail the importance of the forgotten Freud
identity [19] of Riemannian geometry that requires a first order source on the right
hand side of Einstein’s equations, as in Eq. (23).

Equation (23) may also be derived using the following Lagrangian density for the
electromagnetic field,

L= [2704/’,4# —S—ZQF“VFW}/@, (24)
where g is the determinant of the matrix of metric components. The effect of the
last term on the right hand side (RHS) of Eq. (23) on the evolution of
electromagnetic field is already studied in Refs. [7-8]. While studying the evolution
of electromagnetic field, we expect that the impact of the term with cosmological
constant Ais negligible and hence, we set A = 0. In this paper, we focus only on
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the impact of the first term on the right hand side of Eq. (23) on the spacetime
curvature and the subsequent changes in the evolution of electromagnetic field.
2.2 Maxwell’s Equations in Curved Spacetime
In a locally inertial frame, Maxwell’s equations are given by

2 4v
@ 94 __ (25)
OE“DEP
where 1 is the Minkowski metric. The Lorentz gauge conditions are
o4 g (26)
9¢
Using the transformation,
u
A% = Ox AV, (27)
o&”

where 4'# is the electromagnetic potential in the new coordinates {x*}.
Substituting Eq. (27) in Eqgs. (25) and (26) and with 4" —y 4#, we find
gh4s,, + 15, AT +2T A°,

. (28)
o T0 o o o AN
+T5, L0 47 =T (4% +T% 47)]=0,
A, +T A% =0, (29)
H v
g# = ox" Ox ' (30)
0&” oL”

It may be noted that Eqs. (26) and (27) could as well be obtained using Einstein’s
principle of equivalence (comma-goes-to-semicolon rule [16]). In fact, Egs. (28)
and (29) describe the Maxwell’s equations in curvilinear coordinates whether or
not the spacetime is flat. For example, in a flat spacetime with spherical
coordinates, we have

gow=-1 g,.=1 g,= 2, 8y = #2sin? 6, 31
and rest of the metric coefficients are zero. If A_>( A4°,0,0,0), Eq. (26) reduces to
0

10(,04Y 1 of . oA
= + | Sinf— |+
r°or or r°sin@ 06 00 1
2 40 2 40 ( )
1 24 194

-— =0
r’sin’@ 0¢> * oF
which is nothing but Maxwell’s equations in spherical coordinates. However, as the

magnitude of A increases, metric coefficients deviate from Eq. (31). Now, they are
determined by Einstein’s equation (23), and Eq. (28) provides the evolution of EM
field. Equations (23) and (28) form a coupled system of equations that govern the
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evolution of metric coefficients and EM field, respectively, with the conservation
relations (22) and (29). In the next Section, we solve this system of equations under
the weak field approximations.

3. Weak field approximations
We use a first order perturbation theory and assume that :

g;zv = 77/1;/ + Kh,uv’ (33)
where| kA, |<<1,and 7, is the Minkowski metric. We use a harmonic coordinate
system, for which

g#vl—‘zl =0, (3 4)
Using Eq. (33) and Eq. (34) in Eq. (23) and ignoring the terms proportional to 2
and higher, we obtain [17]

|
Dh,uv = Z(T,av __Z_U/JVT';)a (35)

where [Ois the four-dimensional Laplacian operator and T w =44,
3.1 A'only:
We consider the case for which 4°= 4° = 4°=0corresponding to an

electromagnetic wave with the electric field in x!-direction and the magnetic field
in x?-direction. For this case, Eq. (35) reduces to

Ok, =(4)?,
8 = ys Ty = hyy =~y

Ignoring the terms proportional to x2and higher, Maxwell’s equations (26) and
Lorentz gauge condition (29) become

04 = (( ) +77#Vh1]#Al ] (37)

'"hn,lAl =0. (38)

(36)

where

W =n*n*h,,, and 4, =n,,A4". (39)
It may be noted that Eqs (36)-(38) are Lorentz invariant. Usmg Egs. (34) and (38),
we find

A, =0 andh,, =0. (40)

The first term on the right hand side of Eq. (37) has the form of third order nonlinear
effect in nonlinear optics, which is responsible for Kerr effect or self-phase
modulation (SPM) and four wave mixing (FWM) [20-21]. Hence, the effect of

spacetime curvature may be interpreted as the nonlinear change in refractive index.
Let
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1 Irs ~iat
A = -Z-[gé (r,0)e™™ + c.c.:]. (41)

Using Eq. (1), let the envelope ¢ be /U, where fand {7 are the envelopes of 7
and U’ respectively. Using the slowly varying envelope approximation, we ignore

the second order derivative of ¢~ with respect to ¢ and now, Eq. (37) reduces to a

modified nonlinear Schrodinger equation (NLSE),

iwdp 1_,+ 3k,2,+ K[, . ~

c—zgf'+5v2¢ +'1—é'l¢lz ¢:~5[77]kh11,j¢,k +la)h“,0¢:|. (42)
In deriving Eq. (42), we have ignored the third harmonic component proportional
to ¢, In nonlinear optics, while deriving the nonlinear Schrodinger equation
(NLSE) from the nonlinear wave equation, the third harmonic component is
ignored [21]. Unless there is a special phase matching, the growth of third harmonic
component is small. The second and third terms in Eq. (42) denote diffraction and
Kerr effect, respectively. When the diffraction/dispersion balances the Kerr effect,
a spatial/temporal pulse propagates without pulse broadening and such a pulse is
called soliton [22,23]. Hence, x may be interpreted as the nonlinear coefficient of
vacuum. In the absence of the terms on the right hand side, Eq. (42) represents the
three-dimensional (3-D) NLSE. In the 1-D case, NLSE admits the well-known
soliton solutions [21-23]. Interestingly, in the 1-D case, the terms on the right hand
side of Eq. (42) have the forms similar to self-steepening and Raman effects in
nonlinear fiber optics [21].

3.1.1. Lorentz Force
Electric field intensity E, and magnetic field intensity /, are related to the vector

potential 4' by
E =-AyandH,= A, (43)
Let

E, -1 [E]e_’ “ c.c.] )
? (44)
H, = %[ﬁze_i"” + c.c.:|.

Using Eqgs. (41), (43) and (44), and using the slowly varying envelope
approximation, we find
B =10 it =, (45)
¢
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Using Eq. (44), electromagnetic momentum density may be written as [1]

= =%Re[Elﬁ2*]=:ZZ)—hn[gZ¢52], (46)
and the energy density is [1]
E={[IEF +|4,F ] 47
We multiply Eq. (40) by ;Z*ﬁ, add its complex conjugate and integrate over the
volume dV = dx'dx*dyx’. First, consider the first term of Eq. (42):

W 7 wew -0 d 77
—[1Bfi=dsdalav =—— [1m(@F,)av,

(48)
_,4{7’)
=/
dx
Next consider the third term:
_‘6K ~2 ~ % _6K "‘2 ~F 7 Fr*
——Re dV =——Re U H,dV,
¢ RelI9f @Fay =—=Re 137 70'H; o)
=2Re [ p(UxH*),q7,
where
—3K T2 ~
= , (50)
P= " 77

and 7is the complex envelope of 7. pmay be interpreted as the density of the
embedded charge. Now Eq. (42) leads to

d(p’ I
_éf()_) = Re(P(UXH*)3>_<hoo,3E>+<hss,op3>» 1)
where the subscript 3 on the first term on the RHS refers to the z-component of
UxH*. The first term on the RHS of Eq. (51) represents the Lorentz force on the
embedded charge. It can be shown that in this simple case of transverse
electromagnetic wave, the expectation of the Lorentz force is zero. Nevertheless,
Eq. (51) shows that the equation of motion is built into Einstein-Maxwell’s
equations. In contrast,-the conventional Maxwell’s equations in vacuum do not
provide the equations of motion for the charged particle; it has to be supplemented
with Lorentz force equations to describe the interaction of charge and
electromagnetic field. It may be possible that the time-independent solutions of Egs.
(23) and (28) correspond to elementary electric charges and their interactions would
have the form similar to Eq. (51). The second and third terms on the right hand side
of Eq. (51) are similar to those present in the Einstein’s theory of gravitation under
the weak field approximations, except that Eq. (51) has expectation operators.
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3.1.2  Interpretation of ¢~ :
In Section 4.3, it will be shown that

3/2
oz 2@m) (52)
hc
and using Eq. (52), Eq. (42) may be rewritten as

2
ih@-+2h Vi+Vg=0, (53)

ot My
where
30 Ty 7
V:§|¢]2 +]:77jkhn,,¢,k /¢ +m)h”,o:|, (54)
and
ho
M, =— (55)
g2

is the effective mass of the wave packet. The potential ¥ consists of self-trapping
potential (the first term on the RHS of Eq. (54)) and the other terms are due to

~

spacetime curvature. ¢
could be interpreted in two different ways.

(i)Deterministic interpretation : ;Z is the slowly varying envelope of EM
potential A* and the momentum density is given by the Poynting vector,

ExH =-0Im[gVd*]/ (20).
(ii)Statistical interpretation: | ¢7 x,, z)lzdxdydz represents the probability that

a photon is present in the region between (x,y,z) and (x + dx, v + dy, z + dz),
and the probability current density is

i, 0) = - Im[gV 4. (56)
2m
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Using Ehrenfest’s theorem, Eq. (51) can be retrieved, i.e.

ap’) ),

dx’ c (7)
= Re <p(I~J xH*), > - <h00,3E> + <I’%3,0p3 >

3.2 4' and 4 only:

In this section, we assume that A =4"=0. Using
T, =(4 )T, =(4,),T, = 4 Aand the rest of T, being zero, Equation (35)
becomes

Ohye = (4, )2 +(4, )29 (58)
Ohy =(4)" - (4,)", (59)
Ohy =244, (60)
By =—=hy, and hy =~y (61)

and the rest of h,,are zero. The Maxwell’s equations (28) take the following form

152 2\2
DAI zkl:___ (A ) ;(A ) A] _nyvhlL#Aly +hﬂVA1”u,,,i|
1
- K(hn,z,lAz + E(hlz,z,z - ]'112,1,1)j A (62)

- K[hll,zA2,1 + (hll,l + 2h]2,2 )A2,2 + h12,3A2,3 - h12,0A2,0 :I >

A +(47) y v
0 x| LY o o |

1
—-K (}722,2,11‘11 + 5 (h12,1,1 - ]"12,2,2 )j A (63)

—K [hZZ,IA],Z (Pt + 20y VA + P A~y o A :I J
with the Lorentz gauge condition ‘
A+ 4 ~hy A ~hy A =0, (64)
The first term on the right hand side of Eq. (62) or Eq. (63) leads to the phase

modulation proportional to the magnitude square of A . Egs. (62) and (64) reduce
to Eq. (37) when 42 is zero. Let

A= [Pnesee] j=12 69
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Using the slowly varying envelope approximations and in the absence of terms
with hw and their first order derivatives, Egs. (62) and (63) reduce to the three-

dimensional Manakov equations

io 0§’

ot
One-dimensional Manakov equations describe the evolutions of two polarization
components in nonlinear optics [15,21]. From the third term of Eq. (66), it follows
that the phase of the polarization component 4! (or 4?) is modulated not only by its
intensity, but also by the intensity of 42 (or 4'), which is known as cross-phase
modulation (XPM). Proceeding as in Section 3.1.1, it can be shown that the
following Lorentz force equation can be obtained

VNG I F PP 20,7212 66)

,
-
where
P =Rl BT, - B |- 2P @Y, 45, | ©®
p==X04F +19 P, (69
By =i =12 -
H,= A, and H = -4, )

3.3 Rectangular cavity resonator
We consider a closed cubicle cavity of dimension [3with perfectly conducting
walls located at planes +(L / 2)]) j=x9,2,

where {x',x*,x’} = {x,,z} (See Fig. 1). Without the loss of generality, we
assume that z is the direction of propagation. The electromagnetic field in the cavity
are divided into two types — (i) transverse electric (TE) for which the electrical field
component £, = 0 and (ii) transverse magnetic (TM) for which the magnetic field
component A, = 0. In this paper, we focus only the TE modes for which
A® = 4° =0. The linear modes (TEmn) (i.e. the right hand sides of Egs. (62) and
(63) are zero) are given by [24,25]
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A = g, (x,y)cos(wt)[ D, exp(ik,z) +cc]/2, j=1.2,
g (x,y) =cos[k, (x+ L/ 2)]sin(k,(y+ L/2)],
g, (%, y) =sin[k (x+ L/2)]cos(k,(y+L/2)],
Dk, + D)k, =0,

(72)

where
k.=mn/L, k,=nr/L, mandn areintegers,  and g (x,y)represents  the

transverse mode distributions and £, is the propagation constant. The requirement

that the tangential component of the electric field intensity should be zero at the
planes z=-1/2 and /2 leads to

k.= jn/L,jis an odd integer,

(73)
=k +k2+k =0’ /.

In this Section, we focus on the fundamental TEo; mode,

A" = D, cos(k,y) cos(k,z) cos(ar),
A* =0, (74)
k,=k,=n/Lk =0.

We wish to find the quasi-linear modes of the cavity under the weak field
approximations satisfying the boundary condition that the tangential components
of the electric field intensity are zero at the conducting walls. The evolution of

A" and h,, in the cavity are given by Egs. (37) and (36), respectively.

1\3
. =—K(S%)——+77”"h00,#A1,V], (75)
DAy, = (4" (76)
Let
A =y (y,z)exp(iot)+c.c. (77)

Squaring Eq. (77) and substituting it in Eq. (76), we find that the excitation is at
frequencies 0 and 2w. Hence, let the response be

hyo =l (y, 2) exp(2at) +c.c]+ h(y,2).(78)
Substituting Eq. (78) in Eq. (75) and ignoring third harmonic components, we find
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2
WontWast Ky =-x ('3‘_(//%_‘/1 _2k2]”1W*J

(79)
~ k(P o + Py s + R, R,
/’11,2,2 + ]’11,3,3 + 4k2h1 = ‘//2» (80)
hz,2,2 +h2,3,3 =2|y |2 . 81)
To further simplify Egs. (79)-(81), let
w(»,z) =cos(k,y)g(2), (82)

We assume that g(z)is real, which reduces to cos(k,z) as h,w - 0.
Substituting Eq. (82) in Egs. (80) and (81), and separating components at the spatial

frequencies 0 and 2k, we find
b = B(z) +C(z) cos(2k, y),

(83)
h, = D(z)+ F(z) cos(2k,y),

4B(2)k* + B,, = g’ (2)/2,

4(k* - kf, X (2)+C,, = g (2)/2,
l),z,z = gz (Z)9

—4kf,F (2)+F,, = g°(2).

(84)

Substituting Egs. (83) and (84) in Eq. (79), we obtain

W@® /e =k + g..1cos(k, ») = —x (__.3 cos (k)8 ]

2
2 rew? (85)
— —zz_g [B —C cos(2k,y)cos(k,»)]

+rcg [ 247 sin(24, ) sin(k, YX(C + /]

~rg., cos(k, )| (B + D)—(C + F)cos(2k, »],-

In this Section, our objective is to find g(z) which becomes zero at z=+L/2s0
that the boundary condition is satisfied. In order to accomplish this, we follow the
approach typically used to derive the nonlinear Schrodinger equation (NLSE) from
the nonlinear Maxwell’s equation [26,21]. In Refs. [26,21], fiber nonlinearity is
treated as a small perturbation on the fundamental transverse mode (HE1) and the
NLSE is derived to describe the evolution of the mode weight of the fundamental
transverse mode as a function of the propagation distance, z, by multiplying the
nonlinear wave equation by the transverse mode distribution and integrating over
the transverse dimensions x and y. Here, we follow the same approach. We assume
that the field in the transverse direction is the same as that of a linear mode and the
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nonlinear terms appearing on the RHS of Eq. (85) cause a small perturbation to this
linear mode. Multiplying Eq. (85) by cos(ky y) and integrating from —L/2 to L/2

with respect to y, we obtain
g..+pg= K[-%gg' +k (2B + C)]
—k[k,g(C+F)+g. (B+D+(C+F)/2) ],

where g =.[(w/c)* - k; is the eigenvalue to be determined under the condition

that g(z) becomes zero at +1/2. For the linear case (i.e. x = 0), from Eqgs. (86)
and (74), we have g = k. =7/ L.In a general case, Eq. (86) provides the evolution

(86)

of a quasi-linear mode (in z-direction) with the transverse mode distribution being
proportional to cos(zy/ L). From the right hand side of Eq. (85), we see that there
are excitations proportional to cos(3zy/ L)and one should expect the generation
of such higher order modes due to nonlinear effects. However, when Eq. (85) is
multiplied by cos(z y/ L) and integrated over y, higher order transverse modes do
not contribute and Eq. (86) may be interpreted as the equation that provides the
weight of the fundamental transverse mode distribution (cos(zy/L)). As the
amplitude of 4! becomes larger, there could be a nonlinear coupling between the
fundamental transverse mode (coc cos(zy/L)) and the higher order mode (
o« cos(3zy/ L)) . However, such nonlinear interactions are not captured in Eq.
86).
}(quzations (86) and (84) form a coupled nonlinear differential system of equations
which are solved using an explicit Runge-Kutta method (Matlab built-in function
ode45). We look for a solution that is symmetric with respect to z=0. The problem
can be formulated in two ways (i) For the given initial condition
g(0)=g,, and g'(0) = Owhere ' denotes differentiation with respect to z, the
propagation constant B is found such that the boundary condition g(L/2)=0is
satisfied (i.e. the tangential component of the electric field is zero at the walls) (ii)
For the given g (or equivalently for the given ®), find g(0)such that the
boundary condition g(Z/2)=0 is satisfied. We follow the latter approach. Note
that in the absence of nonlinearity ( & = 0), B =k, w=ck and the amplitude g(0)
is arbitrary. Let
ck c

Jres YN -3 (87)

be the resonant frequency of the cavity when x = 0 for the fundamental mode. In

the presence of nonlinearity ( k& #0), as the frequency of the EM field deviates from
the resonant frequency, the initial amplitude £(0) (equivalently energy of the EM
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field) should be changed to satisfy the boundary condition at z=L/2. Due to
nonlinear effects (which is the signature of spacetime curvature), let the frequency
detuning be

N =f=f (88)
where fis the frequency of the EM field. Figure 2 shows the evolution of the field
g(z) as a function of distance z. As the frequency detuning increases, the amplitude
of the field at z=0 increases and hence, the EM energy stored in the cavity increases.
If the frequency detuning Af is negative, we found that the boundary condition that

g(L/2)=0cannot be satisfied. If Eq. (86) is solved with x =0, one finds that Af
should be zero so as to satisfy the boundary condition g(L/2)=0 (unless Af is so

large that f'coincides with the higher order resonant frequencies) and the amplitude
of the field at z=0 is arbitrary.

To verify the validity of Eqs. (84) and (86), the coupled partial differential
equations (73)~(75) are numerically solved using the FDTD technique with the
boundary condition that the tangential components of the electric field intensity are
zero at the metallic walls. In the numerical solution, the growth of higher order
mode (oc cos(37y /L)) was observed. To be consistent with the semi-analytical
approach, the numerical solution of Eq. (79) is multiplied by cos(zy/L) and
integrated from —L/2 to L/2 to obtain the mode weight of the fundamental mode.
‘“+’ in Fig. 2 show the numerical solutions obtained by the FDTD technique and as
can be seen, the agreement between the semi-analytical approach and numerical
approach is quite good.

x 1071
6l + 4.77kHz,num
* 47 .7kHz,num
g + 477kHz,num
E o= —4.77kHz,semi-anl
34 PRy, +‘:+\\ 47 7kHz,semi-anl|
g_ * 47‘_;;\ ----477kHz,semi-anl
.................... N
g 245 LK R :m"'.,", ..... * "'\+\
o
LL
0 s

0 0.1 0.2 0.3 0.4 0.5
Distance (m)
Figure 2. Plot of g(z) of electromagnetic vector potential 4' vs distance, z for
frequency detuning factors, Af= 4.77 kHz, 47.7 kHz and 477 kHz. L = 1 m,
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resonant frequency, f, = 211.98 MHz ; num = numerical, and semi-anl = semi-
analytical.

The small discrepancy is attributed to the fact that semi-analytical approach does
not take into account the coupling between the fundamental and higher order
transverse mode.

We define the rest mass of the EM field confined to the cavity as

m=(E,+E )/c%, (89)
where E and E are the mean energy stored in electric and magnetic fields
respectively,

B, =([Eav).E =([c;+ HD)av). 00)

E =-A,, H =4, andH =-4,. (91

For the given frequency £, the field g(z) is calculated by solving Egs. (86) and
(84) numerically, and using Eq. (91), electric and magnetic field intensities are
calculated. Using Eqs. (89) and (90), the rest mass is calculated for the given

frequency fand plotted in Fig. 3. The line with ‘+* shows the mass calculated semi-
analytically using the above procedure and the solid line shows the curve fitting. A

good fit was found by using
2 2_ g2
e V27 ("~ f) 92)

3
cK
Equation (92) may be rewritten as the following dispersion relation

2.6 .2
o =(kef +72 5 93)
T

where the wave number at the resonant frequency is

k=R +k2 =Qrf,)lc.  (94)

2(27[)3/2
hc

By setting E = Awand p = hk,and if

3

(95)
Equation (93) could be rewritten as a special relativistic relation relating the energy,
momentum and rest mass of a particle,
E* = p*c +m*c*. (%96)
As the amplitude of 4! goes to zero, m —» 0, and hence, @ = kcis correct only for
the EM field with vanishing amplitude. In the absence of spacetime curvature (x
=0), the EM field is governed by the linear Maxwell’s equations and in this case,
E = pceven if the field is confined to a localized region. The relation between
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and #given by Eq. (95) may be off by a scaling factor of O(1) due to
approximations made in the derivation of Eq. (86). We have considered the impact
of spacetime curvature only on the fundamental mode TEg; and as the mode order
increases, the dependence of the frequency detuning on the field intensity is
expected to be given by a formula similar to Eq. (93), but there could be an
additional constant in Eq. (93) that may depend on the mode order.

% * sembanatytical?
mcurveliling &

ot - . - f S 1 i
0.21198 0212 0.21202 021204 0.24206 0.21208 0.2121 021212
Frequencv (GHz)

Figure 3. Plot of the rest mass as a function of the frequency of the electromagnetic
field. L = 1 m, resonant frequency, fres =211.98 MHz.

Conclusions

An electromagnetic (EM) tensor which is an outer product of EM vector potential
is used to modify Einstein-Maxwell equations. In Einstein’s theory of gravitation,
the coupling constant connecting Einstein tensor and stress-energy tensor is
propottional to gravitational constant. Similarly, we find that the coupling constant
connecting Einstein tensor and electromagnetic tensor is inversely proportional to
Planck’s constant. In classical electrodynamics, Maxwell’s equations do not
provide the equations of motion for charged particles; they are provided separately
by Lorentz force equations. However, Einstein-Maxwell equations with the new
EM tensor derived in this paper lead to equations of motion that resemble Lorentz
force equations. Using slowly varying envelope approximation, these equations
reduce to Schrodinger equation with a self-trapping potential. '
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Abstract

In 1935, A, Einstein stated, in a historical paper with-B. Podolsky
and N. Rosen [1] that * quantum mechanics is not a complete theory”
and that determinism could be recovered at least under limit condi-
tions (EPR argument). In 1964, J. S. Bell [2] proved a theorem accord-
ing to which a system of quantum mechanical particles with spin 1/2
with SU(2) Lie algebra [0}, 03] = 2¢;,4,0%, where the os are the Pauli
matrices, cannot admit a classical counterpart, thus appearing to dis-
prove the EPR argument. In 1978, R. M. Santilli [3] discovered the
axiom-preserving generalization-” completion” of the various branches
of Lie’s theory (universal enveloping algebras, Lie algebrgs, arid Lie
groups) based on the isoassociative product Xy X; = X;T'X;, 7" > 0,
with Lie-Santilli isoalgebras [X;, Xj]* = Xy * Xj — Xjx X; = Cy 0 Xi,
classified into regular (irregular) when the C-quantities are constant
(functions). In 1998 [4] Santilli proved that Bell’s theorem is valid
for point-particles, but it is inapplicable for systems of extended par-
ticles with spin 1/2 under deep mutual entanglement, and that said
systems do admit classical counterparts when represented with the iso-
topic SU(2) Lie-Santilli isoalgebars [;, £;]* = 2¢; 5,15k, where Ty, are
the new Pauli-Santilli isomatrices, with realization of the isotopic ele-
ment T = Diag.(1/)\N), det T = 1 providing a concrete and explicit
realization of ”hidden variables” under the full validity of quantum
axioms. Subsequently, Santilli [5] proved that Einstein’s determinism
is progressively approached in the structure of hadrons, nuclei and

stars and it is fully recovered at the limit of gravitational collapse
(see Refs. [6] for a detailed presentation). In'this lecture, by following
our recent paper [7], we outline the aspects of the Lie-Santilli 1soth601y
which are esgential for Santilli’s proofs of the EPR argument.

Copyright © 2020 by Hadronic Press Inc., Palm Harbor, FL. 34682, U.S A.
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1 Introduction

The well known EPR argument was proposed by A. Einstein, B. Podolsky
and N.Rosen in 1935 [1] implies that; Quantum mechanics is not a complete
theory but should be supplemented by additional variables. i.e. Quantum
mechanics has to be deterministic. In this regard Einstein has made a famous
statement that ”God doesn’t play dice with the universe.”

In other words, Einstein believed that quantum mechanics is not a complete
theory, in the sense that it could be broadened to recover classical determin-
ism at least under limiting conditions.

Numerous objections against EPR argument have been raised by scholars in-
cluding N.Bohr [8], S.Bell [2, 9], J.Von Neumann [10]. Till date, it is widely
believed that Quantum mechanics is the final theory for all conceivable con-
ditions existing in the universe.

Any Physical Theory operates with physical concepts which correspond with
the objective reality. Success of a physical theory depends on;

e Correctness
e Completeness

Correctness is judged by the degree of agreement between theoretical con-
clusions and human experience.
Completeness of a Physical Theory Requires;

o Every element of the physical reality must have a corresponding concept
in the physical theory.

e Elements of physical reality must be experiments and measurements.

Scientifically, a reasonable interpretation of physical reality would be; if,
without in any way disturbing a system, we can predict with certainty
(i.e.with probability-unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity.

If we start with the assumption that wave function does give a complete
description of the physical reality, we arrive at the conclusion that two phys-
ical quantities with non commuting operators can have simultaneous reality.
This implies that quantum mechanical description of physical reality given
by wave function is not complete. i.e. quantum axioms do not admit hidden
variables (Local Realism), [2]. So, quantum mechanics can not be described
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by local hidden variables. For that matter, assuming the validity of Bell’s
theorem, any deterministic hidden-variable theory that is consistent with
quantum mechanics would be non-local. Hence, dismissal of EPR, argument.
Following decades of research since 1998, R.M.santilli, assuming the validity
of quantum mechanics, with consequential validity of the objections against
the EPR argument{11],[12] for point-like particles in empty space under lin-
ear, local and potential interactions (exterior dynamical problems); proved
the inapplicability (and not their violation) of said objections for the broader
class of extended, deformable and hyperdense particles within physical media
under the most general known linear and nonlinear, local and non- local and
potential as well as non- potential interactions (interior dynamical problems).
Santilli’s Contribution also provided the apparent proof that interior dynam-
ical systems admit classical counter- parts in full accordance with the EPR
argument via the representation of interior systems with of isomathematics,
also called isotopic branch of hadronic mathematics, and isomechanics, also
called isotopic branch of hadronic mechanics.

The main assumption of apparent proof of EPR argument is; particles can be
represented as extended, deformable and hyperdense under the conditions of
mutual overlapping/entanglement with ensuing contact at a distance. This
eliminates objection ’quantum entanglement’ regarding non-locality of quan-
tum mechanics.

In the 2019 paper [5], Santilli provided the apparent proof (of ’comple-
tion’ of quantum mechanics as isotopic/axiom-preserving type, being fully
admitted by quantum mechanics merely subjected to a broader realization
than that of Copenhegen school) that Einstein’s determinism is progressively
approached in the interior of hadrons, nuclei and stars and it is fully achieved
in the interior of gravitational collapse.

Thus, inapplicability of 20th century ’applied mathematics’ in general and
of Lie’s theory in particular to the interior dynamical systems led Santilli to
construct a new mathematics, known as isomathematics exactly applicable to
the interior dynamical systems. In particular, Lie-algebra structure required
in quantum mechanics was lifted structurally to show that objections against
EPR argument are inapplicable.

Appropriate lifting of conventional Lie theory applicable to exterior dy-
namical systems to Lie-Santilli isotheory applicable to interior dynamical
systems was achieved by Santilli [13].

The Lie-Santilli isoalgebras and isogroups were elaborated with the conven-
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tional mathematics of Lie’s theory via conventional functional analysis and

differential calculus on conventional space such as original Hilbert space H
over conventional field F'(n, x, 1).

2 Isomathematics

The basic multiplicative unit 1 is replaced by an arbitrary, positive definite
quantity I = % whether or not element of the original field. 7" is called the
isotopic element and

~ 1
I=~ 1
7 o

is called the isounit, and all possible associative products are lifted via
XZ;(XJ ZXZ XTXXJ' (2)

with | being the correct left and right multiplicative unit for all the ele-
ments of the set considered such that

I$X =xxI=2X (3)
for all X in the resulting new field called as Santilli Isofield. The new numbers

X in the isofield are called asjsonumf)ers
This new field is denoted by F(#, X, I).

3 Lie-Santilli isotheory

It is well known that Lie’s theory is at the true structural foundation of
quantum mechanics via celebrated product;

[4,B]=AxB-BxA (@)

where A X B = AB is the conventional associative product.

Today, by Lie-Santilli isotheory we mean the infinite family of iso-
topies of Lie’s theory formulated on an iso-Hilbert space H defined over an
isofield ' generated by iso-Hremitean generators Xy, k = 1,2,3, ....., N with
all possible products lifted into the isoassociative form (2) and multiplicative
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isounit [ = £, [14].
Generalization of Lie’s theory by Santilli [15]in 1978 under the name Lie-
isotopic theory with the basic product;
[A/B] = AXB — BxA
=AxTxB-BxTxA
= AT(t,z, %, &9, ¥1, 89, 091, 4, 7,0, ...) B

- BT(t7 z, .’ij, 51:") 'Qba ¢T, &P, 6¢T7 My Ty 17, )A
Lie-isotopic theory is also called as Lie-Santilli isotheory.

(5)

1. Lie-Santilli isotheory is based on isotopic product LA,“BJ = ATB—-BTA
where T' is a hermitean matrix or operator with 7' = T,

2. Lie-admissible theory, also called as Lie-Santilli genotheory, is based
on the product (4, B) = ATB — BI'A = ARB — BSA where T is a
nonhermitean matrix or operator with T = R # Tt = .

3. Hypertheory, the most general formulation of hypegstructu{al character
[16] is based on the product of type A® B = ARB — BSA where R
and S are sets.

4 Lie Algebra

Let L be an N-dimensional Lie algebra over a field F(n, x,1) of char-
acteristic zero and associative product nm = n x m € F and multiplicative
unit 1.

Let the generators of L are the Hermitean operators X, k= 1,2,....n,
on a Hilbert space H over F. _

Let ¢(L) be the universal enveloping associative algebra of ordered
monomials based on the associative product;

Let the Lie algebra L be isomorphic to the anti-symmetric algebra at-
tached to the enveloping algebra L ~ [{(L)]~ with ensuing Lie’s theo-
rems and and commutation rules;
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[Xi,Xj]=X¢XXj——Xj XX¢=OZ XXk (7)

4.1 Isotopies of Lie Algebra

e the isotopy of the associative product
XixX; =Xy x T'x X (8)

where 7" (the isotopic element)is a fixed positive-definite operator with
an arbitrary functional dependence on local variables;

e the isotopy of the enveloping algebra £(L) characterized by or-
dered monomials of the Poincare-Birkhoff-Witt-Santill is a theorem
based on isoproduct (2);

o the isotopies of Lie algebras, today called the Lie-Santilli isoal-
gebra L as the anti-symmetric algebra attached to the isoenvelope

L=[EL) 9)
with Lie-Santilli isocommutation rules

e the isotopies of Lie groups today known as the Lie-Santilli isogroups;
and

o the isorepresentation theory.

4.2 Lie-Santilli Isoalgebra

Definition 4.1 A (j ﬁmte-dzmenszonal) isospace L over an isofield B, +, X)
of isoreal numbers R(n +, X), isocomples numbers C(c +, ><) or isoquater-
nions Q(g, +, X) with isotopic element T and isounit I = T-1 is called a
?Lie-Santilli isoalgebra” over F when there is a composition [A;B] in I,
called ”zsocommutator” which verifies the following "isolinear and zsodzﬁer—
ential rules” for all &, be F and A B Cel




4% A +b% B,, €] = aX[A,, C] + bx[B,C) (11)
[AxB,C] = AX[B,C] + [A,C|x B (12)
and ”Lie-Santilli isoaxioms”
[AB] = —[B/4] (13)
[4,1B,C1) + [B,1C Al + [C,1A Bl = 0 (14)

It is important to note that the associative character of the underlying
envelope is preserved while using isoreals, isocomplexes and isoquaternions.
Consistent isotopic generalization of celebrated Lie’s First, Second and Third
theorems has been proved by Santilli in [17].

4.3 Isorepresentations of Lie-Santilli isoalgebras

Isorepresentations of Lie-Santilli isoalgebras is classified into;

1. Regular isorepresentations which occur due to C’s of the rules (10)
are constants; and

2. Irregular isorepresentation occurring when the C’s of the rules (10)
are functions of the local variables (an occurrence solely possible for the
Lie-Santill isotheory).

5 Construction of Regular Isorepresentations

General Construction: Regular isorepresentation of Lie-Santilli isoal-
gebras [ over an isofield of characteristic zero can be constructed
via non-unitary transformations of the conventional representa-
tions of the conventional Lie algebra L.

The general rule for mapping Lie algebras into regular Lie-Santilli isoa)-

gebras were identified for the first time by Santilli in [18] and then studied
systematically in monographs [14]. They can be written as follows;
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UxUt=1+#1 (15)

This non-unitary transformation is applied to the entire mathemat-
ics of Lie’s theory leading to Santilli’s isomathematics. We get the
following important fundamental transformations;

1

[—T=UxIxU'= (16)
T

a—a=UxaxUl=axUxUl=axfeFacF (17)
e s Uxe x Ul =1 xel*A= (AT x | (18)
AxB-—=Ux(AxB)xU' = (UxAxUNx(UxUNx(UxBxU
= AxB (19)
(X, X5] — U x [X;, X;] x UT = [Xi3X;]=U x (CF x X)) x U

<SP x [P >—=Ux<gp|x|9p>xU" = <o | xU x (UxUNIxUx |$>x(Ux U
| = <P |%|¢>xl, (21)

Hx | >—=UxHx |p>U" = UxHxUYXx(UxUY 1 x Ux |9 >)
= HX|¢> (22)

etc.

6 Classification of regular isounitary isoirre-
ducible isorepresentations of the Lie-Santilli
SU (2) isoalgebras over isofields of charac-
teristic zero

Santilli [21, 22] identified and constructed the following regular isorep-
resentation of Lie-Santilli isoalgebra SU(2), from the conventional
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two-dimensional irreducible representation of the SU(2) Lie algebra
defined by the well known Pauli’s matrices.

This Classification is merely given by either the nonunitary transform U —
Diag(n1,ng), ny, real > 0, or by U — Of fDiag(ny, ny).

Conventional Paulli matrices o) [19, 20] satisfy the rules 0505 =
€51, %, Jy k = 1,2,3. We present the identification and classification
ref.[21, 22] of these matrices due to isoalgebra SUq(2).

In general Lie-isotopic algebras are the image of Lie algebras
under nonunitary transformations [23, 24]. Under the transfor-
mation UU' = [ # I a Lie commutator among the matrices acquires
the Lie-isotopic form

U(AB— BA)U' = A'QB' — B'QA/,
A =UAU, B =UBU',Q = (UUN =@t (23)
As a result, a first class of fundamental (adjoint) isorepresenta-
tions called as regular adjoint isorepresentations are characterized
by the maps Jy = 1o, = Jp = UJRUT,UU # I with isotopic con-
tributions that are factorizable in the spectra, =1 — +1f(A), 2 —

(37%(A)) where A = detQ and f(A) is a smooth nowhere-null func-
tion such that f(1) = 1.

7 Iso-Pauli matrices

Santilli constructed the following example of regular iso-Pauli ma-
trices.

R 1 0 g1 R _1 0 —igu
= A 3 = ATz ,
7 ’ ( g2 O ) 72 ( igr 0

&3=A—%(982 0 ) (24)

—gi11

where A = detQ = g11g90 > 0.
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These representations verify the isotopic rules 6;Qd; = z'Aée,,Jka“k,
and consequently the following 1socommutator rules and general-
ized isoeigenvalues for f(A) = A% and

1
Gak | BF) = £AT | b3) (26)
5P | B2) = 3A | B2),i=1,2 (27)

This confirms the ’regular’ character of the generalization con-
sidered here. The isonormalized isobasis is then given by a trivial
extension of the conventional basis | b) Qi 7| 0b).

In fact, regular iso-Pauli matrices (24) admlt the conventional
elgenvalues % and 3 for A = 1 which can be verified by putting
g1 = 922 = A

It is important to emphas1ze the condition of isounitarity, i.e. UUT =

I # I for which n;? = 1/n,2 = A > 0. Thus, realization of isotopic el-
ement 7' = Diag.(1 /A A) with detQ provides a concrete and explicit
realization of "hidden variable” under full validity of quantum
axioms.

Remarks:- This degree of freedom has major fundamental im-
plications presented in [22] as well as for the spin component of the
first known representation of nuclear magnetic moments presented
in the papers [25, 26].
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Abstract

Since the discovery of antimatter it has only been treated at the
level of second quantization, where as, matter is treated at all levels
of study, from Newtonian mechanics to quantum field theory. To re-
solve this scientific imbalance of 20th century, Santilli in 1993 [1],[2],[8]
took up to study antimatter at all levels. In this paper we present the
classical representation of antimatter at Newtonian level and emerg-
ing images at subsequent levels. The most appropriate theory of an-
timatter as proposed by Santilli [4] is based on a new map called
isoduality which is applicable at the Newtonian level and all the sub-
sequent levels of study of antimatter. Santilli also formulated the new
anti-isomorphic isodual images of the Galilean, special and general
relativities compatible with the experimental knowledge on electro-
magnetic interactions. Antigravity for antimatter {6] (and vice versa)
is a natural consequence of this study and awaits validity due to lack
of sufficient experimental evidence.

Copyright © 2020 by Hadronic Press Inc., Palm Harbor, FL. 34682, U.S A.
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1 Introduction

Scientific studies have come a long way from Newtons equations, Galilios
relativity and Einsteins special and general relativities. Existence of anti-
matter asteroids and cosmic rays in the universe has already been suggested
by phenomena like; 1) Catastrophic explosion in Tunguska in Siberia in 1908
of the power of thousand Hiroshima bombs with devastating effect and to-
tal absence of any debris and crater. Surprisingly, entire Earths atmosphere
was charged for some days so much so that people in Sydney could read
news papers without any artificial light. Such a large excitation of the at-
mosphere can only be explained by annihilation of matter by antimatter. 2)
NASA has recently reported explosions in our upper atmosphere which can
be caused only by small antimatter asteroids annihilating the upper portion
of our atmosphere while coming in contact with it and 3) Astronauts and
cosmonauts have observed flashes of light in the upper atmosphere which can
only be interpreted as being due to antimatter cosmic rays coming in contact
with our atmosphere. In short, the evidences of existence of antimatter as-
teroids hitting our earth has become a major threat to humanity and hence
warrants a serious study of antimatter in general and antimatter asteroids,
comets and galaxies in particular. We know that matter is described at all
levels of study from Newtonian mechanics to Quantum field theory but an-
timatter is solely treated at the level of second quantization; as antimatter
particles with negative-energy do not behave in a physical way. Thus, New-
ton, Galileo and Einstein’s theories were solely describing matter and not
antimatter. A. Schuster in 1898 conjectured existence of antimatter. It was
discovered by Dirac [5] in 1920, fourteen years following the formulation of
general relativity. He even submitted hole theory for the study of antimat-
ter at the level of second quantization. Today, the stand adopted in general
is that; As Einsteins special and general relativity do not provide a proper
description of antimatter, it does not exist in the universe in appreciable
amount; the sole exception being that of a man made antiparticles created
in the laboratory. The above scientific imbalance was for the first time iden-
tified by Italian- American scientist Ruggero Maria Santilli who decided to
ascertain whether a far away star or galaxy is made up of matter or anti-
matter. Santilli soon discovered the entire body of mathematical, theoretical
and experimental formulation [6, 1, 7, 8] applicable to his aim as his previous
knowledge at the graduate studies was insufficient. Santilli first took up to
formulate the mathematics needed for classical and operator representation
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either neutral or charged antimatter. Secondly, a reformulation of Newton’s,
Galileo’s and Einstein’s theories suitable for the study of neutral or charged
antimatter at all possible levels and thirdly, the formulation of experiments
to ascertain, in due time, whether far away stars or galaxies are made up
of matter or antimatter. Antimatter asteroids must be treated as as they
are isolated in space. Also, they are too large for the treatment via opera-
tor theories. Hence, scientific studies in the detection of antimatter requires
physical theories for classical treatment of antimatter. Santillis mathemati-
cal and theoretical studies in antimatter are unique in a way being capable
of classical representation of neutral antimatter. In his writings, Santilli has
specifically mentioned that A protracted lack of solution of physical prob-
lems is generally due to the use of insufficient or inadequate mathematics
[6]. Moreover, he says that There can not exist a really new physical theory
without a new mathematics, and there can not exist a really new mathemat-
ics without new numbers. Santilli spent decades of exhaustive research in
developing new numbers; subsequently new mathemetics sufficient to treat
neutral or charged antimatter. Santilli introduced new numbers called iso-
dual numbers [9] where the prefix iso was introduced in the Greek sense
meaning preserving the conventional axioms used for matter. The term dual
indicates the map from matter to antimatter. Santilli’s entire theory for
of antimatter is called Isodual due to predominant role and importance of
Santillis isodual numbers. Subsequently, in 1993 [1] Santilli constructed the
isodualities of Euclidean and Minkowskian spaces, evidently needed for pos-
sible physical applications. He then proceeded to construct the isodual image
of Lies theory [2] needed for the construction of basic symmetries for anti-
matter viz. isodual images of the Galileo and Lorentz symmetries. Second
landmark discovery was a new formulation of differential calculus which was
crucial for the achievement of the first ever known formulation of Newtons
equation for neutral or charged antiparticles. Readers can find the complete
formulation of isodual mathematics in the monograph [11] of 1994 and with
more updation in [8].. Thereafter, Santill initiated his physical studies in the
paper [12] of 1993 written on his original aim of possible detection of anti-
matter stars and galaxies. Subsequently, Santilli wrote an important paper
[16] on all important classical representation of neutral antimatter; the sub-
mission of experiment in paper [7] of 1994 to test the gravity of positrons
and paper [14] of 1994 on the causal space-time machine i.e. the capability
of moving as desired in space and time without violation of causality which
is an invertible consequence of gravitational repulsion between matter and
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antimatter. A.P.Mills, an experimentalist established that Santillis gravity
experiment [15] is resolutory because displacement due to gravity of very low
energy positrons on a scintillator at the end of a flight in a super-cooled,
supervacuum tube is visible to the naked eye. Paper [16] of 1997 included
the first isodualities of Galileo and Einstein’s relativities; another basic phys-
ical discovery has been discussed in paper [17] of 1997 via the prediction that
light emitted by antimatter is repelled by the matter gravitational field. This
prediction is an invertible consequence of the main feature of the studies re-
viewed here, namely, the classical conjugation from neutral matter to neutral
antimatter that evidently also applied to light. The prediction can mainly
be used to ascertain whether a faraway galaxy is made up of matter or anti-
matter. One of the best papers of Santilli [1] in 1998 achieves the first ever
known representation of the gravitational field of antimatter which serves in
and sets the foundation for the first known grand unification of electroweak
and gravitational integration including antigravity, developed in details in
[6] of 2001. The first quantitative study of thermodynamics of antimatter
is available in the paper [18] of 1999 written by J. Dunning Davis. Also,
the treatment of matter and antimatter under the general conditions of ir-
reversibility over time over classical operator level has been discussed in [19]
of 2006 by Santilli. In his paper [20] in 2011, Santilli finally acquires the
position to address his main objective namely To identify experimentally the
existence of stars and galaxies, and detections of asteroids. The conformation
that Santillis experiment in [7] on gravity of positrons in horizontal flight on
earth is resolutory came via paper [21] of 2011 by the experimentalist V. de.
Haan by confirming Mills results [15]. In this direction, the paper by Santilli
with the mathematicians B. Davaas and T. Vougiouklis is completely the
most advanced paper because it establishes that the universe is multi-valued
and not multi-dimensional, as matter and antimatter co-exist in physically
distinct space-times implies multivaluedness. Subsequently, Santillis studies
on antimatter at three successive levels of study, including ; 1) Single-valued
reversible 2) Single-valued irreversible and 3). Multi-valued irreversible con-
ditions, are provided in monograph [22] of 2011 by theoretical physicists I.
Gandzha and J.V. Kadieisvilli. Reference [23] in 2013 by A.A.Bhalekar is an
excellent account of the basic mathematics behind the above subject matter.




- 687 -
2  Santillis Isodual mathematics

Inapplicability of 20th century mathematics for consistent representation of
antimatter led to decades of rigorous studies of suitable formulation for quan-
titative representation of matter-antimatter annihilation. As such, applica-
tion of the same (existing ) mathematics for matter and antimatter proved to
be incompatible due to matter-antimatter annihilation. Santilli found that
the matter-antimatter annihilation could only be represented by the use of
mathematics that is anti-homomorphic to each at all their levels. In fact,
the mathematics anti-homomorphic to 20th century mathematics did not
exist in 1980s. Physical theories describing antimatter at all the levels asked
for construction of entirely new mathematics that would allow classical treat-
ment of neutral or charged antimatter. While at Department of mathematics
Harvard University in 1980s, under DOE support Santilli constructed the re-
quired new mathematics for the exact representation of antimatter, today
known as Santilli isodual mathematics [2, 16, 10](monograph [6] for compre-
hensive presentation). This new mathematics is anti-homomorphic to the
conventional mathematics. We outline the main branches of Santillis isodual
mathematics;

2.1 Isodual Map

Note that the term isodual denotes a conjugation characterized by the word
dual under the preservation of the axioms of conventional mathematics de-
noted by the Greek prefix "iso”.

2.2 Isodual numbers
Isodual numbers are characterized via new basic isodual unit 1¢ defined as;
= (-1 =~1 (1)
with resulting isodual real, complex and quaternion numbers;
¢ = n1? = (—n)! (2)

and isodual multiplication defined as;

nddmd — ~ndmd (3)
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with ensuing isodual operations of division power, square root e.t.c. under
which 1¢ is the basic unit of new theory. Also,

1dd,nd — ’I’de].d — ,nd (4)

As numeric field does not necessarily require that the basic unit be pos-
itive, it can indeed be taken as negative, and all the operations can be re-
formulated accordingly. This fact is the ultimate basis of the new theory of
antimatter and the resulting new era of cosmology.

Lemma 2.1 All quantities which are positive-definite when referred to fields(
such as mass,energy, angular momentum,density, temperature, time etc.) be-
came negative-definite when referred to isodual fields.

Positive-definite quantities referred to positive-definite units characterize mat-
ter, and negative-definite quantities referred to negative definite units, char-
acterize antimatter.

These characterizations lead to subsequent levels of representation of matter
and antimatter.

Definition 2.1 A quantity is called isoselfdual when it is invariant under
isoduality.

2.3 Isodual functional Analysis:

Functional analysis at large was subjected to isoduality with consistent ap-
plications of isodual theories resulting in a simple, unique and significant
isodual functional analysis by Kadeisvili [24].

Isodual functions are defined as;

f) =~ fi(=r)! (5)

is called the isodual image of the conventional function,

2.4 Isodual differential calculus

This is the isodual image of the conventional differential calculus and re-
lated isodual derivative. Isodual differential coincides with the conventional
differential by Santilli conception,

d%r® = dr (6)

Actually, because of this the new isodual calculus was not discovered since
Newton’s time till 1996.
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2.5 Isodual Lie theory

Let L be an n-dimensional Lie algebra with universal enveloping associative
algebra &(L), [¢(L)]™ ~ L n-dimensional unit I = diag(1,1,....1) for the reg-
ular representation, ordered set of Hermitean generators X = X1 = {X;} ,

conventional associative product X; x X; , and familiar Lie’s Theorems over
a field F(a, +, x).

The isodual universal associative algebra [£(L)]* is characterized by the
isodual unit I¢, isodual generators X¢ = —X and isodual associative product
3

X x X% = —X; x X; (7)
with corresponding infinite-dimensional basis(isodual version of conventional
Poincare- Birkhoff-Witt theorem) characterizing the isodual exponentiation
of a generic quantity A

e = 144 A/ 4 4G XA g = e 8)

where e is the conventional exponentiation.

The attached isodual Lie algebra L* = (£%) over the isodual field F4(a?, +¢, x%)
is characterized by the isodual commutators;

d
2, X" =~ X51 = CFf x? X ©)

with a classical realization.

Let G be the conventional, connected, n-dimensional Lie transformation
group on S(z, g, F) admitting L as the Lie algebra in the neighbourhood of
the identity, with generators X} and parameters w = {wy}. The isodual Lie
group G* admitting the isodual Lie algebra L¢ in the neighborhood of the
isodual identity I is the n-dimensional group with generators X¢ = {—X;}
and the parameters w? = {w} over the isodual field F? with generic element

Ud(wd) — ez'dxdwd’ded = W)X _ ——U(—w) (10)

The isodual symmetries are then defined accordingly via the use of the
isodual groups and they are ant-isomorphic to the corresponding conven-
tional symmetries, as desired ref.[26] for additional details. Conventional Lie
symmetries are used for the characterization of matter where as Isodual Lie
symmetries are used for the characterization of antimatter.
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2.6 Isodual Euclidean Geometry

Let S = S(z, g, R) be a conventional N-dimensional metric space with local
coordinates x = {zx}, k = 1,2, ...V, nowhere degenerate, sufficiently smooth,
real valued and symmetric metric g(z, ...),and related invariant

z? = atg;z’ (11)

over the reals R. The isodual spaces are the spaces S%(z%, g%, R?) of S(z, g, R)
with isodual coordinates ¢ = z x I¢ , isodual metric

¢(at,.) = —g(=2, ..) = —g(~, .. (12)

and isodual interval
(z—1)%¢ = [(z—y) " x%gl x (@ —y)"* = [(z—y)  x g x (x—y)"| x I (13)

defined over the isodual field R? = R4(n¢,+¢, x%) with the same isodual
isounit I¢. The three dimensional isodual Fuclidean space is defined as;

E4(r%, 6%, R : r? = {rb¥} = {~rF} = {3, —y, —2} (145

with
64 = —§ = diag(—1,—-1,-1),I* = —I = diag(—1,-1,~1)  (15)

Thus, the isodual Euclidean geometry is the geometry of the isodual space
E? over R? which is given by step-by-step isoduality of the various aspects
of conventional geometry.

Lemma 2.2 The isoeuclidean geometry on E* over R® is anti-isomorphic
to the conventional geometry on E over R.

Isodual sphere is the perfect sphere in B¢ over R? with negative radius;

2.7 Isodual Minkowski space

This new space M%x?, n?, I¢) is characterized by the isodual image of the
conventional Minkowski space for matter M(xz;n,I) where z denotes space-
time coordinates, n = Diag(1,1,1,1) denotes the Minkowski metric [25], and
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I = Diag(1,1,1,1) is the basic unit. Now the isodual line element is given
by
29 = (7% x4 n? x4 z9)1% = 2 (17)

where the multiplication by 1¢ is necessary for the isodual line element to
have values in the isodual field. Note that the above isodual line element
coincides with the conventional line element also by Santilli conception

It is important to note that Santilli’s studies on antimatter requires a knowl-
edge of the fact that representation space of antimatter coexists with
that of matter while being totally different from the latter.

2.8 Isodual Riemannian geometry

Let R(z,g,R) be a 3 + 1 dimensional Riemannian space with basic unit
I = diag(1,1,1,1) and related Riemannian geometry in local formulation.
Then the isodual Riemannian spaces are given by

ot = (-3}
Rd(xd,gd,Rd) . gd = —g= {$}7g € R(waga R) (18)
I* = diag(—1,-1,-1,-1)

with interval 2¢ = [z% x? g4(z%) x4 24| x I? = [z x g*(z?) x 2] x I* on R?,
where ¢ stands for transposed.

The isodual Riemannian geometry is the geometry of spaces R* over R?,
and is also obtained by taking step-by-step isodualities of the conventional
geometry, including, most importantly, the isoduality of the differential and
exterior calculus.

2.9 Isodual Lie theory and symmetries

These are characterized by Hermitean generators X' = X verifying Lie-
Santilli isodual product

X4V =Y x4 X4 - X4 %Y = [X,Y] (19)

and related Lie-Santilli isodual theory formulated on isodual spaces over an
isodual numeric field and elaborated via the isodual functional analysis and
isodual differential calculus.
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It is important to note that the above isodual product coincides with the con-
ventional Lie bracket also by Santillis conception; this identifies the deep
meaning of the term isoduality. This new symmetry called as IsoSelfDuality
(ISD) [8, 6, 1]is simply given by the invariance under isoduality. It can be
verified that P?(3.1) does not verify ISD where as P(3.1) x P%(3.1) does
verify ISD as each symmetry is transformed in to other, resulting in a total
invariance.

2.10 Isodual Lorentz-Poincare - Santilli symmetry

Santilli constructed isoduality of the Lie theory. He achieved this by way
of the isodual rotational symmetry SO%(3), the isodual symmetry SU%(2) ,
the isodual Lorentz symmetry SO%3 : 1) and finally, the isodual Lorentz-
Poincare symmetry P4(3 : 1) which is the fundamental symmetry of the new
theory of antimatter. Here it is important to note that isodual mathematics
is solely applicable to point-like abstraction of antimatter masses or parti-
cles.

Here it is important to note that Isodual mathematics is solely applicable
to point-like abstraction of antimatter masses or particles. Covering isodual
isomathematics is required for the representation of time reversal invariant
systems of extended antimatter particles. Also, representation of their coun-
terparts requires isodual genomathematics

The most general conceivable mathematics for antimatter is given by San-
tilli isodual hypermathematics which is particularly suited for multi-valued
(rather than multi dimensional) formulations [27, 28],

2.11 Representation of antimatter at Newtonian level

As we know, Newtonian treatment of antimatter consisting of N point-like
particles is based on a T-dimensional representation space which is a Kro-
necker products of the Euclidean spaces of time ¢, coordinates r, and veloci-
ties v as;

S(t,r,v) = E(t, R;) x E(r,6, R.)E(v, 0, Ry) (20)

where

r= (%) = (r,73,73) = (Ta, Yo Za) (21)

dr

v = ('Uka) = ('Ula7'02aa'v3a) = ('Uwa,y'vya)'vza) = -

7 (22)
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§ = Diag: (1,1,1),k=1,2,3,a=1,2,3, .N (23)

where the base fields R;, R, and R, are trivially identical all having trivial
units +1, resulting in the trivial total unit

Ipg=ILix I x,=1x1x1=1 (24)
Newtons celebrated equations of motion for point-like particles are;

d’l)ka
dt

For the isodual treatment of antiparticles basic space is TN -dimensional
isodual space given by,

Mg X

= Fro(t,r,v),k=1,2,3,a=1,2,3,..N (25)

sS4, r%, v = B4t RY,) x B4(r%; 6% RY) x E*(v%, 6% RY)  (26)

with isodual unit and isodual metric

I, =1I¢ x I x I¢ (27)
I¢ = —1,1% = I? = Diag : (-1,-1,-1) (28)
6% = Diag(1¢,1%,1%) = Diag(-1,-1,-1) (29)

This transformation results into celebrated Newton-Santilli isodual equa-
tions for point-like antiparticles first introduced by Santilli [6] as,

mé x¢ dvgal /2d%¢ = F2 (t%%), k = ,9,2,a = 1,2,3,.n  (30)

which has been experimentally verified. 1t is important to note that the above
isodual equations are anti-isomorphic to the conventional forms.

2.12 Implications of Newton-Santilli isodual equations

Antimatter exists in a spacetime, co-existing, yet different than our own. As
such, isodual Euclidean space E?(r¢, 6%, R%) co-exist within, but is physically
distinet from Euclidean space E(r,d, R) and same occurs for full representa-
tion spaces S%(t4,7¢,v%) and S(t,r,v).

Antimatter moves backward in time in a way as causal as the motion of
matter forward. In fact, Newton-Santillis isodual equations provide the only
known causal description of particles moving backward in time.

Antimatter is characterized by negative mass, negative energy and negative
magnitudes of other physical quantities.
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3 Isodual Relativities

3.1 Isodual Galilean Relativity

First we introduce isodual Galilean symmetry G%(3.1) as isodual image of the
conventional symmetry G(3.1). For the Galilean symmetry of a system of N
particles with non-null masses

Maya = 1,2,..N,G%3.1) has isodual parameters and generators defined
as;

w? = (0%, rke vl thd) = —q j¢ = Zr;ia xdp?a =—~Jp, Pt =~P, (31
aijk

and
GY = Z(m xdrd % pl,), H? = deakxd fydrd) = —H (32)

with isodual commutator defined as
[Ad, Bd]d — Z[(adAd/dad,r{:d) xd(adBd/dadpgk)__(adBd/dad,,,kd) d(adAd/dadpak)

ak [ A B] (33)

The structure constants and Casimir invariants of the zsomwm

G%(3.1) are negative-definite. If g(w) is an element of the connected
component of the Galilei group G(3.1) then éts isodual is defined as

ghw?) = IS L O = _g(—w) € GU3,1)  (34)

The isodual Galilean transformations are then given by the following;
st =t td =t =l = (35)
r /% =l x4 = ¢ 1% o ' = RY9Y) x4l = ;R(—G) (36)

where R*(89) is an element, of the isodual rotational symmetry. The above
isodual representation of antimatter is truly consistent with available classical
experimental knowledge for matter [6]. The situation in isodual space is
described by the following Lemma.

Lemma 3.1 The trajectories under the same magnetic field of a charged
particle in Fuclidean space and the corresponding antiparticle in the isodual
Euclidean space coincide.
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Proof 3.1 Consider a particle with charge —e in the Buclidean space E(r, 6, R)
t.e. the value —e with respect to positive unit +1 of the underlying field of
real numbers R(n,+, X). Suppose the particle is under the influence of the
magnetic field B.

The corresponding antiparticle via isoduality changes the sign (reversal of
sign) of all physical quantities resulting in the charge (—e)* = +e in the cor-
responding isodual Euclidean spaceE*(r%, 6%, R%) simultaneously reversing the
magnetic field B* = — B defined with respect to the negative unit (+1)% = —1.
This establishes the fact that the trajectory of the particle with charge —e in
the field B defined with respect to the unit +1 in the Euclidean space and
that for the antiparticle in the field —B defined with respect to the unit —1in
the isodual Euclidean space coincide.

Corollary 3.1 Antiparticles reverse their trajectories when projected from
their own isodual space into our own space.

3.2 Isodual Special Relativity

Classical relativistic treatment of point-like antiparticles can best be done via,
isodual special relativity . Conventional special relativity [29] is constructed
with the 4-dimensional unit of the Minkowski space, I = Diag.(1,1,1,1)
which represents dimensionless units of space {+1,+1,+1} and the dimen-
sionless unit of time +1, and is the unit of Poincare symmetry P(3.1). The
isodual special relativity is defined by the map

I = Diag({1,1,1},1) > 0 = I* = —Diag({1,1,1},1) < 0 (37)

1t is based on negative units of space and time.

The isodual special relativity is expressed by the isodual image of all
mathematical and physical agpects of conventional relativity in such a way as
to admit the negative definite unit I¢ as the correct left and right unit,including:
the isodual Minkouski spacetime M%(z% n? R%) with isodual coordinates
z?¢ = x x I¢, isodual metric n% = —n and basic invariant over R%

( —9)® = [(* — v*) x 7, X (& —¢")] x I € R? (38)
and fundamental isodual Poincare symmetry [12]

P43.1) = L4(3.1) x*T%(3.1) (39)
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where L%(3.1) is the Lorentz-Santilli symmetry, x¢ is the isodual direct
product and T%(3,1) represents isodual translations. The algebra of the
connected component Pid of P%(3,1) can be constructed in terms of the
isodual parameters w?® = {—wy} = {—0,—v,—a} and isodual generators
X% = -X = {—M,,,—P,}, where the factorization by the 4-dimensional
unit 7 is understood.

Also, the isodual commutator rules are given by;
(M, MZgl* = i x%(n, x Mg —nl, x M — g X ML 4n) x A ME, (40)

wr ey
(M, 93] = i x? (1l X% 1) — nie ¥ 1) 05, 9] = O (41)
The basic postulates of isodual special relativity are simple isodual image of

the conventional postulates.
Isodual inversions and spacetime inversions are equivalent.

3.3 Isodual General Relativity

The most effective gravitational characterization of antimatter is isodual gen-
eral relativity obtained by isodual map of all the aspects of conventional rel-
ativity. This is defined on the isodual Riemannian spaces R%(z?, g% R?) .
Isodual Riemannian geometry is defined on the isodual field of real numbers
R%(n?, +%, x4) for which the norm is negative-definite. As a result, all quan-
tities which are positive in Riemannian geometry become negative under
isoduality, including the energy-momentum tensor. Explicitly, the electro-
magnetic field follows the simple rule under isoduality

Fl, = %A /%50 — 98 A%)%0%aH = —F v (42)

and for the energy-momentum tensor we have
Ta, = (4m) x4 (Fd x4 Fl, +(1/4) 7 x g, x? Fag x* F%#) = —T,, (43)

In fact, isodual Riemannian geometry has negative-definite energy-momentum
tensor and other physical quantities which open up new possibilities for at-
tempting a grand unified theory.

Reader should note that the universal symmetry of the isodual
general relativity, the isodual isoPoincare symmetry P%(3.1)P%(3.1)
has been introduced at the operator level in [10].
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4 Antigravity

In the words of Santilli ” Isodual theory of antimatter predicts the existence of
antigravity (here defined as the reversal of the sign of the curvature tensor in
our space-time) for antimatter in the field of matter or vice-versa” As such,
the isodual theory of antimatter predicts in a consistent and systematic way
at all levels of study, from Newtonian mechanics to Riemannian geometry,
that matter and antimatter must experience gravitational repulsions ref [7,
30] and monograph [6]

We may summarize above results as; classical representation of an-
tiparticles via isoduality renders gravitational interactions equiv-
alent to the electromagnetic ones, in the sense that the Newtonian
gravitational law becomes equivalent to the Coulombs law.

These results could not have been achieved without isoduality.
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