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PREFACE

Almost from the moment it was first published in 1935, the famous - some 
might say infamous - article by Einstein, Podolsky and Rosen, claiming 
quantum mechanics to be an incomplete theory, has courted controversy. 
Following the initial furore, things calmed down with many accepting 
Bohr’s refutation of the Einstein, Podolsky, Rosen argument. However, 
the topic has resurfaced periodically over the intervening years with no 
completely clear resolution emerging as far as some are concerned. In 
2018 the entire issue resurfaced with the publication of some experimen-
tal results from a laboratory in Basle, results which served to support the 
view of that 1935 paper by Einstein, Podolsky and Rosen. This was fol-
lowed by the international conference to be held in Florida in 2020 but 
which had to be turned into an online conference because of the covid-19 
problem occurring in most, if not all, of the World. The conference ended 
up being a success at publicizing so many views, from so many people, 
which again supported the Einstein-Podolsky-Rosen line of thought. In 
particular, the conference brought to the fore the enormous, unheralded 
contribution to the debate by Sir Ruggero Maria Santilli (www.i-b-
r.org/Ruggero-Maria-Santilli.htm - ”Ruggero” hereon), with his first ma-
jor contribution having come in 1998 after many years devoted to devel-
oping the new mathematics needed to cope adequately with the prob-
lems surrounding the Einstein, Podolsky, Rosen issue.

This book is intended to outline a collection of primary works from 
the mid 1960’s to date by Ruggero and his collaborators on the verifica-
tion and application of the Einstein-Podolsky-Rosen (EPR) argument that 
Quantum mechanics [and, therefore, quantum chemistry] is not a complete 
theory, in the expected recovering of classical determinism at least un-
der limit conditions [1] (references indicated with square brackets refer 
hereon to those of Ruggero’s Overview, while references indicated with 
upper numbers refer to additional works quoted in this preface).

I
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This Preface is intended to provide a guide through a rather volumi-
nous collection of works in various fields, as well as indicate important
references following Ruggero’s writing of the Overview.

During his Ph. D. studies at the University of Torino, Italy, in the mid
1960’s, Ruggero discovered that the most advanced mathematics avail-
able at that time was insufficient for the representation of systems more
complex than atomic structures, such as nuclear fusions, extended parti-
cles in deep mutual overlapping, combustion, biological structures, anti-
matter and other complex systems in the universe.

Extensive research carried out in 1964 at European mathematics li-
braries and repeated in 1978 at Cantabridgean mathematics libraries, con-
vinced Ruggero that the mathematics needed for the effective represen-
tation of the indicated complex systems did not exist but had to be built
and he had the courage to do it. In fact, Ruggero first recognized the need
for new mathematics, constructed it himself and then proceeded to use
it to examine complex systems not only in physics but in chemistry and
biology as well.

In fact, throughout his research life, Ruggero first constructed the
needed new mathematics and then passed to the treatment of complex
systems in physics, chemistry or biology.

It then follows that no serious understanding of Ruggero’s works is
possible without a prior knowledge of the underlying new mathemat-
ics that, for the reader’s convenience, are merely listed below with their
primary references.

Quite notable is Ruggero’s quote that ”There cannot exist a truly new
physical theory without a new mathematics, and there cannot exist a new
mathematics without new numbers.”

I. NEW MATHEMATICS.
I-1. Lie-admissible mathematics.
As part of his Ph. D. curriculum, Ruggero studied the works by Giuseppe
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Luigi Lagrange who lived in Torino and wrote a number of papers in
Italian. In this way, Ruggero learned that Lagrange represented physi-
cal reality via his celebrated analytic equations containing potentials rep-
resented with Lagrangiansi L, plus external terms F representing non-
conservative systems that, as such, are irreversible over time.

A comparison of Lagrange’s original equations with the theories he
was studying in Ph. D. courses soon revealed that Lagrange’s external
terms were not present in any of the available theories and that said ex-
ternal terms could not be represented with the available mathematics for
various technical reasons.

A study of the works by Sir William Rowan Hamilton revealed their
full parallelism with Lagrange’s works, only formulated in phase space.
In fact, the celebrated Hamilton’s equations comprise a Hamiltonian H
plus external terms F representing non-conservative and irreversible ef-
fects which were absent in the scientific literature of the mid 1960’s.

Ruggero also learned that quantum mechanics cannot represent time
irreversible systems because its main dynamical equations, Heisenberg’s
equation for an observable A, idA/dt = [A,H] = AH −HA (where AH is
the conventional associative product) can only represent the conservation
of the energy, since idH/dt = [H,H] = 0.

To build the new mathematics needed for the representation of energy
releasing, irreversible processes, Ruggero identified the main mathemat-
ical structure of quantum mechanics, which is given by Lie’s theory with
brackets [A,B] = AB − BA and decided to generalize Lie’s algebras into
an algebra with brackets (A,B) = A < B−B > A = ARB−BSA (where
R, S are different, positive-definite operators) that turned out to be Lie-
admissible according to the American mathematician, A. A. Albert [9].
The identification of the foundations of the new Lie-admissible mathe-
matics immediately allowed Ruggero to generalize Heisenberg’s equa-
tion into the form, today called Heisenberg-Santilli Lie-admissible equa-
tions, idA/dt = (A,H) = A < H − H > A = ARH − HSA which repre-
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sents the time rate of variation (rather than the conservation) of the energy
idH/dt = (H,H) = H(R−S)H 6= 0 (see papers [6] [7] [8] of Ruggero’s Ph.
D. thesis although the unpublished version of the thesis better illustrates
the originating thoughts).

The above studies in irreversibility attracted NASA attention and Rug-
gero moved to the U.S.A. in 1967 with his wife Carla and their newborn
daughter Luisa for a one year appointment at the Center for Theoretical
Physics of the University of Miami, Florida, with NASA support. He then
accepted a faculty position at the Department of Physics of Boston Uni-
versity where he remained from 1968 to 1974 with partial support from
the U. S. Air Force by teaching mathematics and physics at all levels and
writing various papers with his associates and graduate students listed
in his curriculum. From 1974 to 1977, Ruggero was a visiting scientist at
the MIT Center for Theoretical Physics following an invitation from his
Director Francis Low.

During his three year stay at the MIT-CTP, Ruggero wrote works1−11

which are the analytic foundation of verifications [210]-[214] of the EPR
argument, and comprise:

A. MIT-CTP preprints1−5 on the necessary and sufficient conditions
for the existence of a Lagrangian in field theory, technically known as the
conditions of variational selfadjointness (SA), and their use for the repre-
sentation of systems that are variationally non-selfadjoint (NSA) that are
analytic in the sense of being derivable from a generalized action princi-
ple.

B. MIT-CTP memoirs6,7,8 published at Annals of Physics which sum-
marize the content of preprints1−5.

C. MIT-CTP preprints9,10 presenting the Newtonian particularization
of the preceding field theoretical works, that Ruggero submitted in early
1977 to Springer-Verlag, Heidelberg, Germany, for publication as mono-
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graphs.

D. MIT-CTP preprint10 intended to be a third field theoretical vol-
ume of the Newtonian references9,10, which preprint has remained un-
published, yet available as Annals of physics papers6,7,8.

As we shall see in Section III, the above field theoretical works are im-
portant for the EPR completion of quantum electrodynamics into a form
representing deviations of the theory from recent measures.

In September 1977, Ruggero joined Harvard University with a joint
appointment as a visiting scientist at the Lyman Laboratory of Physics
and at the Department of mathematics. In view of his works at MIT,
Ruggero received on arrival an invitation from the U. S. Department of
Energy for a grant intended to search for possible new clean nuclear
energies. Soon thereafter, Ruggero also received the acceptance from
Springer-Verlag for the publication of MIT preprints9,10.

Encouraged by these openings, Ruggero plunged himself, firstly, in
the construction of the Lie-admissible mathematics and secondly, in its
application for the treatment of energy releasing irreversible systems.

The resulting main studies at Harvard University in the Lie-admissible
mathematics, also called genomathematics6,7,8, are given by: the 200 page
memoir [19] of 1978 setting up the foundations of the new mathematics;
Springer-Verlag monographs [21] [22] of 1978 proposing for the first time
the completion of quantum mechanics into hadronic mechanics (see page
112) via the Lie-admissible generalization of Lie’s theory and Heisen-
berg’s equations and monographs [39] [40] on the Lie-admissble formu-
lation of various aspects of 20th century applied mathematics.

In 1982, Ruggero accepted the position of President and Professor of
Physics at the Institute for Basic Research (IBR) located at the Prescott
House within the compound of Harvard University, which was moved
to Florida in 1989 (www.i-b-r.org).

Among a rather large scientific production at the IBR reviewed in the
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Overview, we here merely mention the systematic presentations of the
various branches of hadronic mechanics in monographs [23]-[25] of 1996,
and the five volumes [74] of 2006, all works having extensive references
on independent contributions.

Various lectures on Lie-admissble mathematics are available on the
website www.world-lecture-series.org. A tutoring lecture specifically in-
tended to the verification of the EPR argument is available in Ref. [145].

Contributions in Lie-admissible mathematics that are important for
the verification of the EPR argument are the following:

1. Paper [37] of 1979 established the �bimodular structure of Lie-admis-
sible mathematics, in the sense that the product (A,B) = A < B − B <
A = ARB −BSA can be reduced to two nodular actions, one to the right
(representing motion forward in time) H > |ψ >= HS|ψ >= E|ψ >, and
one to the left (representing motion backward in time) < ψ| < H =<
ψ|RH =< ψ|E ′, E ′ 6= E, whose in-equivalence assures the axiomatic
representation of irreversibility. Said bimodular structure also assured
the preservation of quantum mechanical axioms by the Lie- admissible
branch of hadronic mechanics, since in a bimodular structure, quantum
axioms are merely formulated per each selected time ordering.

2. In early 1980, it became known that physical applications of Lie-
admissible methods are inconsistent when formulated over conventional
numeric fields. This impasse was resolved with the discovery in the 1993
paper [33] of the genotopic numbers with multiplicative genounit to the
right I> = 1/s and to the left <I = 1/R.

3. In the mid 1990’s it became also known that the representation of
extended particles via Lie-admissible methods were inconsistent when
elaborated via Newton-Leibnitz differential calculus due to its strict local
character. In particular, hadronic mechanics was still missing in the mid
1990’s a consistent generalized formulation of the angular momentum
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due to the lack of a consistent generalization of the quantum mechanical
linear momentum p|ψ(r) >= −i~∂r|ψ(r) >. These additional impasses
were resolved via the generalization-completion in Ref. [34] of 1996 of the
conventional differential calculus into a form defined on volumes, rather
than points, with genomomentum p> > |ψ>(r>) >= −i∂>r>|ψ>(r>) >=
−iI>∂r>|ψ>(r>) > and to the left < ψ<(<r)| << p = −i∂<<r < ψ<(<r)| =
−i<I∂<r|ψ<(<r) > where volumes are represented by the genounits I> =
1/S and <I = 1/R, respectively.

4. Paper [35] of 1989 identified a very simple method for the com-
pletion of 20th century mathematics into the Lie-admissible covering via
the following two nonunitary transformations UW † = I>, WU † =<

I, UU † 6= I, WW † 6= I and the proof of the invariance over time of
the genounits with consequential invariance of the shape and density of
the represented particles.

5. Memoir [41] of 2006 proved the universality of the Heisenberg-
Santilli genoequation f for the representation of all possible (regular) non-
linear, non-local, non-conservative, NSA systems via realizations of the
type R = 1, S = 1− = F/H with dynamical equation idA/dt = (A,H) =
A < H − H > A = AH − HA − AF where F is a suitably normalized
operator form of Lagrange’s and Hamilton’s external terms.

In closing, we should indicate that there exists considerable literature
on Lie-admissible algebras within the context of non-associative algebras
in pure mathematics (see, e.g., Ref.13 and Vol. I of Refs. [74]). However,
these studies are formulated over conventional numeric fields, and even
though mathematically correct, they cannot be used for the verification
of the EPR argument because of a number of insufficiencies identified in
Ruggero’s Overview.

I-2. Lie-isotopic mathematics.
All objections against the EPR argument (see, e.g., Refs. [2]-[4]) are for-
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mulated for quantum mechanical, thus conservative systems for which
Lie-admissible mathematics is inapplicable.

Additionally, in order to search for possible new clean nuclear ener-
gies under his DOE grant, Ruggero had to study nuclear structures, that
when stable and isolated, verify all conventional total conservation laws,
yet admit a more general formulation of internal strong interactions.

These requirements mandated the construction of a new mathemat-
ics for the representation of isolated, thus conservative systems with ex-
tended constituents in deep mutual penetration-entanglement, under non-
linear, non-local and NSA interactions, yet such to verify conventional
total conservation laws.

The needed new mathematics was identified in paper [19] of 1978 as
the particular case of the Lie-admissible mathematics for R = S = T > 0
with basic brackets [A,B]∗ = A ? B − B ? A = ATB − BTA, where T is
called the isotopic element, which verify Lie’s axioms, for which reason
Ruggero called the new mathematics Lie-isotopic or �isomathematics for
short. Following the original proposal [19], isomathematics was studied
in detail in monograph [22] of 1981 via the identification of its universal
enveloping isoassociative algebra ξ with isoproduct A ? B = ATB, the
initiation of the isofunctional analysis and the isotopic completion of the
various branches of Lie’s theory.

Isomathematics achieved maturity with the discovery of isonumbers
[33], the isodifferential calculus [34] and the simple method for its con-
struction in Ref. [35]. Systematic presentations of isomathematics were
then provided in monographs [23]-[25] and [74].

Various lectures in isomathematics are available from www.world-
lecture-series.org. A tutoring lecture in isomathematics specifically in-
tended for the verification of the EPR argument is available from Ref.
[143].

We should note the completion of the quantum entanglement of par-
ticles into the covering EPR entanglement (introduced by Ruggero in his
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Overview and first released in paper18), which represents the non-linear,
non-local and NSA interactions due to the overlapping of the wavepack-
ets of particles via realizations of the isotopic element T , by jointly pro-
viding an explicit and concrete realizations of Bohm’s hidden variables
[17] (see Figure 2 and Section 7.3.2 of the Overview).

There is little doubt that Ruggero’s EPR entanglement will have ap-
plications in all quantitative sciences. To see it, it is sufficient to note that
the conception of a nucleus, or a molecule or a virus, as being composed
of extended constituents under EPR entanglement, implies the inapplica-
bility of all objections against the EPR argument [2]-[4], thus opening the
door for a new physics as well as chemistry and biology.

We should also indicate that isomathematics has attracted consider-
able interest in mathematical circles and has seen a number of important
contributions by pure mathematicians identified in the Overview, with
complete listing in Vol. I of monographs74.

I-3. Hypermathematics.
In line with his belief that mathematics will never admit final formula-
tions, Ruggero has stated various times, that despite their vast represen-
tational capabilities, Lie-admissible and Lie-isotopic formulations cannot
describe ”all elements of reality” [1] because they are single-valued (in
the sense that the multiplication of two quantities yields one single re-
sult, e.g., 2 × 3 = 6). This is an excessive limitation for the representa-
tion of complex systems, such as biological structures, which suggested
Ruggero to turn Lie-admissible and Lie- isotopic mathematics into multi-
valued (rather than multi-dimensional) forms via genotopic R, S and iso-
topic T elements representing an ordered set of values. As an example,
the assumption that the isotopic element has three values T = {2, 3, 1/2}
implies that 2× 3 = {12, 18, 1/3} [27].

Even though sufficient for ”simple” biological structures such as sea-
shells, the above formulation of hypermathematics turned out to be in-
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sufficient for the representation of a living organism such as a cell.
Thanks to the participation of the Greek mathematician Thomas Vou-

giouklis, the above multi-valued formulations were generalized-comple-
ted into the most general and complex mathematics conceivable nowa-
days by the human mind, that of the Lie-admissible and Lie-isotopic hyper-
structures defined on hyperspaces over hyperfields (see the Tutoring Lecture
[146]).

I-4. Isodual mathematics.
Despite the advances indicated above, Ruggero still considered Lie-admis-
sible and Lie-isotopic mathematics as being unable to represent all ele-
ments of reality [1].

During his graduate studies in the mid l960’s, Ruggero wanted to
study whether a far away galaxy is made up of matter or of antimatter,
but was prohibited from doing such a study because the most advanced
mathematics and physics available at that time identified no difference
between matter and other complex systems in the universe.

Additionally, Ruggero has been a supporter of Dirac’s view that anti-
matter has negative energy [11], as a pre-requisite for the representation of
matter-antimatter annihilation.

Recall that, as discovered by Dirac himself, negative energies violate
causality in the sense that the effect generally precedes the cause in the
solution of quantum mechanical equations with negative energy).

For the intent of resolving Dirac’s causality problem, while being at
the Department of mathematics of Harvard University in the early 1980’s,
Ruggero decided to build the foundations of yet another new mathemat-
ics, this time based on the negative unit ”−1” under the name of isod-
ual mathematics where the word ”isodual” stands to indicate an axiom-
preserving duality of 20th century mathematics.

This lead to the construction of the isodual images of the conven-
tional, Lie-isotopic and Lie-admissible mathematics [29].
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In view of the construction of the above new mathematics and their
application in physics, chemistry and biology, Ruggero was listed in 1990
by the Estonia Academy of Sciences among the most illustrious applied
mathematicians of all times (see http://santilli-foundation.org/santilli-
nobel-nominations.htm).

II. VERIFICATIONS OF THE EPR ARGUMENT.
Thanks to the new mathematics indicated in the preceding section, Rug-
gero and his associates have constructed the axiom-preserving comple-
tion of quantum mechanics into hadronic mechanics comprising the Lie-
isotopic, Lie-admissible, hyperstructural and isodual branches [23]-[25] [74],
with corresponding completions for hadronic chemistry [30] and hadronic
biology [27] (see the outline in Section 6 of the Overview). Following these
preparatory studies, as well as the teaching from historical completions of
quantum mechanics by W. K. Heisenberg [16], Prince L. V. P. R. de Broglie
[17], D. J. Bohm [18] and others reviewed in Section 5 of the Overview,
Ruggero achieved the following verifications of the EPR argument (see
also the presentation at the 2020 EPR conference by E.T. D. Boney om
Gödel’s incompleteness theorems [217] and by A.A. Nassikas on the min-
imum contradiction theory [218], as well as their recorded talks available
from Ref. [0]):

II-1. Verification of the EPR argument for irreversible
processes.
We are here referring to Ruggero’s 1967 Ph. D. thesis [6]-[8] (see also
memoir [41]) in which he proved the lack of completion of quantum me-
chanics for energy releasing, thus time irreversible processes and con-
structed the foundations of the Lie-admissible completion of quantum
mechanics, also called genomechanics.

Besides scientific and industrial applications, the irreversible charac-
ter of the Lie-admissible mechanics has stimulated studies to achieve a
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connection between mechanics and thermodynamics, of course, via the
intermediate step of irreversible statistical mechanics, see P. Roman et
al14, A. A. Bhalekar15, J. Fronteau et al [42], J. Dunning Davies [52] and
other contributions.

II-2. Verification of the EPR argument for classical
counterparts.
In a paper of 1964, J. S. Bell [3] proved a theorem essentially stating that
a system of quantum mechanical particles with spin 1/2 does not admit
a classical counterpart.

Thanks to the prior development of the Lie-isotopic mathematics, Rug-
gero proved in his 1998 paper [210] that Bell’s theorem is inapplicable
(rather than being violated) for a system of extended particles with spin
1/2 under deep EPR entanglement and said system does indeed admit a
fully defined classical counterpart.

The proof was essentially based on the completion of Bell’s theorem
via the isoproducts A ? B = At̂B, T̂ > 0, which allows an explicit and
concrete realization of Bohm’s hidden variables [17].

In the same paper [210], Ruggero illustrates the validity of hadronic
mechanics via a numerically exact representation of nuclear magnetic
moments that escaped a quantum mechanical representation for close to
one century.

II-3. Verification of the EPR argument for classical
determinism.
In a paper of 1981 [47], Ruggero introduced a generalization-completion
of Heisenberg’s uncertainties for strong interactions among extended ha-
drons in deep mutual entanglement (as occurring in a nuclear structure)
when they are represented via hadronic mechanics.

In the 2019 paper [211], Ruggero proved the progressive recovering of
Einstein’s determinism in the interior of hadrons, nuclei and stars and its
full recovering at the limit of gravitational collapse.
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The proof is based on the realization of the isolinear momentum via
the isodifferential calculus [34], p̂ ? |ψ̂(r̂) >= −i∂̂r̂|ψ̂(r̂) >= −iÎ∂r̂|ψ̂(r̂) >,
Î = 1/T̂ > 0 (where ”hat” denotes definition in hadronic mechanics).

Let Heisenberg’s uncertainties be given by ∆p∆r = (1/2) < ψ(r)|[r, p]-
|ψ(r) >≤ (1/2)~ under the normalization < ψ||ψ >= ~. The isotopies
lead uniquely and unambiguously to the isouncertainties ∆p̂∆r̂ = (1/2) <

ψ̂(r̂)| ? [r̂, p̂] ? |ψ̂(r̂) >≤ (1/2)T̂ under the isonormalization < ψ̂| ? |ψ̂ >=<
ψ̂|T̂ |ψ̂ >= T̂ . The results of paper [210] then follow from the fact that
according to all fits of experimental data in hadron and nuclear physics,
the isotopic element T̂ = 1 − F/H has very small values and represents
Schwartzchild’s horizon at the limit of gravitational collapse.

II-4. Verification of the EPR argument for electron
valence bonds.
In the final statement of their historic paper [1], Einstein, Podolsky and
Rosen state that the wavefunction of quantum mechanics [and, therefore,
of quantum chemistry] cannot represent all elements of reality.

In the 2001 monograph [30] on hadronic chemistry (see Chapter 4 on),
Ruggero proved the above statement by showing that the wavefunction
ψ(r) of the Schrödinger equation of quantum chemistry cannot represent
the attraction between the identical electrons in valence bonds since they
experience at 10−13 cm the extremely big repulsive force of 230 Newton.

By subjecting the Schrödinger equation for electron valence bonds to a
non-unitary transformation of the type UU † = Î = exp{−ψ̄/ψ

∫
ψ†ψd3r},

and by using an appropriate selection of ψ̄, the repulsive Coulomb po-
tential is transformed into a strongly attractive Hulten potential, with
corresponding completion of the wavefunction into a form representing
the element of reality given by electron valence bonds.

The resulting bound state was called isoelectronium and allowed the
numerically exact representation of the experimental data for the hydro-
gen [31] and water [32] molecules that have escaped quantum chemistry
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for half a century.

II-5. Verification of the EPR argument for antimatter.
Ruggero did not accept the conventional charge conjugation ψ(t, r) →
ψc(t, r) = −ψ†(t, r) as being final because it provides no conjugation of
matter into antimatter for neutral particles and prevents a representation
of matter-antimatter annihilation (because antiparticles have the same
positive energy of particles).

Hence, Ruggero developed the isodual mathematics for antimatter
[29] outlined in the preceding section which is characterized by the iso-
dual map (indicated with an upper letter ”d”) applied to the totality of
quantities and their operations of quantum mechanics, resulting in the
new isodual charge conjugation ψ(t, r) → ψd(td, rd) = −ψ†(−t†,−r†), un-
der which antimatter has negative energy as predicted by Dirac [11],
evolves backward in time and all its characteristics are opposite those of
matter, thus allowing a representation of matter-antimatter annihilation.

The violation of causality for particles with negative energies is re-
solved by the isodual mathematics because particles with negative energy
or negative time referred to negative units are as causal as positive energies
or positive time referred to positive units.

III. NEW APPLICATIONS.
Section 8 of Ruggero’s Overview and the vast literature quoted therein,
illustrate quite clearly that the verifications of the EPR argument, the new
notion of EPR entanglement and their embodiment in the completion of
quantum into hadronic mechanics, chemistry and biology, have impor-
tant new implications (that is, applications not permitted by quantum
mechanics) in all quantitative sciences.

We here merely note that what appears to be a central implication of
the EPR argument, the existence of superluminal speeds under strong
interactions (Section 8.4.4-VI), was first voiced by Ruggero in 198216.
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The exact character of quantum electrodynamics (QED) has been re-
cently disproved by accurate measurements12,17 establishing a deviation
of the measured muon g-factor from the QED prediction. Following the
release of his Overview, Ruggero has provided a numerical representa-
tion of the anomalous muon g-factor via a branch of hadronic mechanics
called isoelectrodynamics (IED)18 whose analytic counterpart is given by
the MIT-CTP papers6,7,8.

We should finally mention that, following the release of the Overview,
an independent review of the Einstein, Podolsky, Rosen argument has
been published19 and this is recommended for reading before embarking
on a study of the technical issues as outlined in some detail in this book.
In this article, inspired partly by the above-mentioned 2020 Florida Con-
ference, much of the latest information, both experimental and theoreti-
cal, pertaining to this topic - a topic whose resolution is so important for
the future of all science, not just physics - is provided. Also, reference
is made to some earlier work supporting the Einstein-Podolsky-Rosen
stance, which as far as many are concerned, has remained conveniently
almost hidden ever since its ideas were advanced in the mid-1980’s.

Further, the article contains some purely reflective thoughts on the po-
sition of probability theory in physics and other sciences, thoughts which
may have relevance in other disciplines as well. The article also gives
an independent view of some of the possible consequences of Ruggero’s
work - consequences which could affect each and every one of us, with
the possibility of a new method for the quick and safe disposal of nuclear
waste being probably the most important for many.

Even this, though, is merely one side product of his work which could
lead to many more benefits for mankind.

In many ways, as with so many issues, the main problem encountered
in discussions of the Einstein, Podolsky, Rosen issue has been an unwill-
ingness to think ’outside the box’, as the saying goes. However, the final
resolution of this and other outstanding questions facing modern day
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science will surely rely on unorthodox thinking and in this respect, all
should remember that final paragraph in the 1958 edition of Dirac’s well-
known text on quantum mechanics:

It would seem that we have followed as far as possible the path of logi-
cal development of the ideas of quantum mechanics as they are at present
understood. The difficulties, being of a profound character, can be removed
only by some drastic change in the foundations of the theory, probably a
change as drastic as the passage from Bohr’s orbit theory to the present
quantum mechanics.

This powerful statement from such an eminent theoretical physicist
surely deserves careful contemplation and certainly cannot be dismissed
easily. It is the contention here that Ruggero has achieved, at least in part,
that drastic change envisaged as necessary by Dirac. Not that Ruggero
would claim this work constituted a complete theory, because as he has
said on so many occasions, there cannot be a truly complete theory which
successfully encompasses every possible situation. Physics, and indeed
all of science, will always be continuously evolving subjects but it is felt
the work discussed in this book represents a significant step forward in
helping man gain a better understanding of the universe in which we all
live.
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Figure 1: Albert Einstein, Boris Podolsky and Nathan Rosen in the 1930s.
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Abstract

In the 2020 Teleconference Ref. [0]: 1) We studied the 1935 objections against the
quantum entanglement moved by Einstein, Podolsky and Rosen (EPR argu-
ment) [1]; 2) We pointed out that the interactions caused by wave-overlapping
are of contact, zero-range, non-linear, non-local and non-Hamiltonian type; 3)
We studied the new type of particle entanglement, here called EPR entangle-

ment, consisting of particles in continuous and instantaneous communication
via the overlapping of their wavepackets, thus without any need for superlu-
minal speeds [1], whose non-Hamiltonian interactions are represented by the
isotopic element T̂ in the axiom-preserving product A×̂B = AT̂B of isomath-
ematics and related hadronic mechanics (Tutoring Lectures [143] [144]); 4) We
showed that the isotopic element T̂ provides an explicit and concrete realization
of Bohm’s hidden variables; 5) We reviewed the recent verifications of the EPR
argument by R. M. Santilli [210]-[214] showing the inapplicability of Bell’s in-
equalities and other objections against the EPR argument for extended particles
under non-potential interactions, with ensuing progressive recovering of classi-
cal images and Einstein’s determinism in the structure of hadrons, nuclei and
stars, and its full recovering at the limit of Schwartzchild’s horizon under the

full preservation of quantum axioms merely subjected to a broader re-

alization; 6) We studied otherwise impossible advances in physics, chemistry
and biology, including the exact representation of nuclear data, the achievement
of an attractive force in valence electron bonds with ensuing exact represen-
tation of molecular data, and a new conception of life consisting of extended
constituents under continuous E PR entanglement represented via hyperstruc-
tures [231]; 7) We showed the impossibility for the Copenhagen interpretation
of quantum mechanics to solve our increasingly alarming environmental prob-
lems, such as recycling nuclear waste, achieving controlled nuclear fusions, and
reaching the full combustion of fossil fuels; and pointed out their possible reso-
lution under the EPR argument according to which ”quantum mechanics is not
a complete theory.”
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1. FOREWORD.
As it is well known, Nazism reached in 1935 the peak of its military, po-
litical as well as, lesser known, scientific power, the latter being due to
the conception and construction of quantum mechanics by German sci-
entists, such as M. Planck, I. Schroedinger and W. Heisenberg and others.

The R. M. Santilli Foundation (http://www.santilli-foundation.org)
and the Family of Israel Foundation (http://www.i-b-r.org/translational-
medicine.htm) organized, conducted and recorded the International Tele-
conference from September 1 to 5, 2020 (see Ref. [0] and8 proceedings pa-
pers [210]-[233]) for the study of old and new verifications of the histori-
cal view by Albert Einstein, expressed jointly with his graduate students
B. Podolsky and N. Rosen, that ”quantum mechanics is not a complete
theory,” with ensuing expectation that a suitable completion of quantum
mechanics would recover classical determinism at least under limit con-
ditions (EPR argument) [1].

This Overview is intended to provide an outline of studies conducted
over one century in old and new verifications of the EPR argument and
their applications in physics, chemistry and biology, with particular ref-
erence to the search for possible resolutions of our increasing alarming
environmental problems via the new sciences permitted by the EPR argu-
ment, which resolutions appear to be impossible via quantum mechanics.

In Section 2, we present a brief outline of the EPR argument and its
historical objections, including Bell’s inequalities; in Section 3, we review
known insufficiencies of quantum mechanics in various fields; in Section
4, we review the experimental verifications of the validity of Bell’s in-
equality for point-like particles under linear, local and potential interac-
tions as well its inapplicability (rather than violation) for extended parti-
cles under non-linear, non-local and non-potential interactions; in Section
5, we review the first historical completions of quantum mechanics essen-
tially along the EPR argument by W. Heisenberg, L. de Broglie, D. Bohm
et al.; in Section 5, we outline the completion of quantum mechanics,
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chemistry and biology into the various fields; in Section 7, we review five
different verifications of the EPR Argument by R. M. Santilli [210]-[214];
in Section 8 we review applications and predictions in physics, chemistry
and biology, as well as the implications of the EPR argument for high en-
ergy scattering experiments; and in Section 9, we present what appears
to be the ultimate implications of the EPR argument.

To properly present and document a century of research in the field,
we have made an effort to provide free pdf downloads of:

i) Reprints of Santilli’s 1998 and 2019 verifications of the EPR argu-
ment [210]-[214];

ii) Papers [6]-[188] by numerous authors that resulted in time to be
significant for the proofs the EPR argument, including:

ii-1) Refs. [32]-[36] that are important for the axiomatic structure and
elaboration of Lie-isotopic theories;

ii-2) Refs. [49]-[52] that contain original important contributions by
various authors for the construction of hadronic mechanics;

ii-4) Refs. [53]-[67] that provide a step-by-step Lie-isotopic completion
of conventional space-time symmetries, their implications for physical
laws and the proof of their isomorphism with conventional symmetries,
which references play an important role in the construction of explicit
and concrete realizations of Bohm’s hidden variables with ensuing veri-
fication of the EPR argument.

iii) Monographs by various authors [154] [201]-[207] that review the
process leading to verifications [210]-[214] of the EPR argument;

iv) References in the first representation of nuclear magnetic moments,
spin, stability and other data with the consequential prediction and initial
verification of new clean nuclear energies (Sections 8.1 and 8.2);

v) Internet debates for anonymous expressions of personal views in
cosmology [76], neutrino [91], gravitation [180], applications of the EPR
argument in physics [208], and applications of the EPR argument in chem-
istry [209];
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vi) Tutorial lectures in isomathematics [143], verifications of the EPR
argument [144], Lie-admissible formulations [145], and hyperstructures
[146]; and

vii) Proceedings of international meetings in the field [188]-[200], in-
cluding: five Workshops on on Lie-Admissible Formulations conducted at
Harvard University from 1978 to 1982; twenty five Workshops on Hadronic
Mechanics conducted from 1983 on at various locations in the U.S.A., Eu-
rope and China; and three International Conferences on non-Potential in-
teractions and their Lie-admissible treatments, the first conducted in 1981
at the Université d’Orleans, France, the second conducted in 1995 at the
Castle Prince Pignatelli, Molise, Italy, and the third conducted in 2011
at Katmandu University, Nepal. Out of all these meetings, the author
could identify only twelve proceedings available with links for free pdf
download which illustrate the number of scientists who contributed in
the construction of hadronic mechanics, chemistry and biology.

It should be stressed that, by no means, the content of this Overview
isexpected to be accepted by all participants of our 2020 Teleconference
in the EPR Argument [0] because, particularly when dealing with funda-
mental open aspects, debates on qualified dissident views are essential
for a serious scientific process.

2. THE EPR ARGUMENT.
A most mysterious experimental evidence in nature is the capability of
particles to influence each other instantly at a distance. In view of the
apparent influence in the 1930’s by the Nazism, the scientific community
of the time assumed that such an effect is predicted by quantum mechan-
ics, for which reason the effect continues to be called to this day quantum
entanglement.

By contrast, Albert Einstein noted that the Schrödinger equation of
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Figure 2: A view of the new ”EPR entanglement” introduced during the 2020 In-

ternational Teleconference [0] (see Section 7.2.3 for a technical treatment), which

consists of particles under continuous and instantaneous communication via the

overlapping of their wavepackets, thus without any need for superluminal com-

munications[1], with ensuing contact, zero-range, non-linear, non-local and non-

potential interactions represented via isomathematics [54] and isomechanics [24].

quantum mechanics (for ~ = 1)

[− 1

2m
∆r + V (r)]ψ(r) = Eψ(r), (1)

can only represent point-like particles at a distance in vacuum and, there-
fore, cannot predict the entanglement of particles, in which case the sole
possible representation of the entanglement is that via superluminal com-
munications that would violate special relativity.

To avoid such a violation, Einstein Podolsky and Rosen argued that
”quantum mechanics is not a complete theory” [1].

The EPR argument was quickly criticized by N. Bohr [2] a few months
following its appearance although, under a sufficiently deep scrutiny,
Bohr did not truly address the EPR argument, namely, the possible ex-
istence of ”elements of realty” in the universe beyond those of the atomic
structure which would require a suitable completion of quantum me-
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chanics.
Despite such a visible insufficiency, Bohr’s opposition to the EPR ar-

gument was supported quite widely by numerous scientists apparently
because of the Nazism scientific power of the time.

In 1964, J. S. Bell [3] proved an inequality which essentially estab-
lished that quantum mechanical systems of particles with spin 1/2 do not
admit classical counterparts. Bell’s inequality was considered by the main-
stream scientific community, with due exceptions, to be the final dis-
missal of Einstein’s dream of recovering classical determinism, and set
the current widely accepted view that quantum mechanics is valid for
whatever conditions exist in the universe (see review [4] and its compre-
hensive literature).

3. CONCEPTUAL FOUNDATIONS
3.1. Insufficiencies of quantum mechanics in
particle physics.
The Copenhagen interpretation of quantum mechanics can only repre-
sent particles as being point-like at a distance in vacuum, because Schröd-
inger’s equation (1) is characterized by wavefunctions ψ(r), potentials
V (r), Laplacians ∆r and other quantities that can only be defined at a
finite set of isolated points r. Consequently, contrary to a rather popu-
lar belief, the Copenhagen interpretation of quantum mechanics cannot
consistently predict or represent particle entanglements without superli-
uminal communications, as correctly stated in the EPR argument [1].

The novel quantitative representation of particle entanglements stud-
ied at the 2020 teleconference [0] and called EPR entanglement, can be
conceptually outlined as follows (see Figure 2 and Section 7.2.3 for a tech-
nical definition). Recall that the wavepacket of a particle fills up the en-
tire universe with an intensity inversely proportional to the square of the
distance. Hence, the entanglement of particles at a distance is character-
ized by the mutual penetration/overlapping of their wavepackets, under
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which conditions particles are in continuous instantaneous communica-
tion through the overlapping of their wavepackets without any need for
superluminal speeds (Figure 2).

The technically challenging problem is that the interactions caused by
the overlapping of the wavepackets of particles are: 1) Non-linear in the
wavefunctions; 2) Non-local because defined in a volume, and 3) Not
derivable from a potential because they are of contact, thus zero-range
type, hereon referred to as non-Hamiltonian interactions.

Also recall that quantum mechanics is strictly Hamiltonian in the sense
that interactions can only be represented via the Hamiltonian H . Conse-
quently, the vast historical literature based on quantum mechanics (not
listed in this Overview for brevity because easily identifiable with an
internet search) represents particle entanglements with a Hamiltonian.
By contrast, the 2020 Teleconference studied the alternative approach
according to which the interactions occurring in particle entanglement
should be represented with an operator other than the Hamiltonian, by
therefore mandating a completion of quantum mechanics according to
the EPR argument [1].

An important objective of the 2020 Teleconference has been that of re-
viewing half a century of research by R. M. Santilli as well as by various
scholars in the completion of 20th century applied mathematics, from its
sole validity at isolated points, into a covering mathematics providing a
consistent representation of interactions 1), 2), 3) above (see the recorded
Tutoring Lectures of Ref.[0]). Physical and chemical completions and ap-
plications of the new notion of particle entanglement were considered
only thereafter.

Note that, from the basic axioms of the SU(2)-spin algebra and of Lie’s
theory at large, the validity of Bell’s inequality [3] crucially depends for
point-like particles under linear, local and potential interactions. There-
fore, the study of systems of extended particles under non-linear, non-
local and non-potential interactions automatically assures the inapplica-
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bility (rather than the violation of Bell’s theorem), by therefore establish-
ing rigorous grounds for the verification of the EPR argument.

A study of Goedel’s incompleteness theorems presented at the 2020
Teleconference is available in Ref. [217] and in the recorded lecture by E.
T. D. Boney [0].

The connection between causality and quantum mechanics was stud-
ied at the 2020 Teleconference by S. E. Johansen, see Ref. [224], and his
recorded lecture [0].

The connecton between the EPR argument and the minimum contra-
diction theory was studied at the 2020 Teleconference by A. A. Nassikas,
see contributed paper [228] and hiss recorded lecture [0].

3.2. Insufficiencies of quantum mechanics in
nuclear physics. On serious scientific grounds, a theory can be
claimed to be exactly valid for given systems (“elements of reality” [1]) if
and only if the theory provides an exact representation of all experimen-
tal data of the systems considered from first axiomatic principles without
the adulterations appearing in the contemporary physics literature via
manipulated form factors, venturing of particles and/or entities not di-
rectly testable, and the like.

Under the above serious scientific conditions, quantum mechanics
can indeed be considered to be exactly valid for the structure of the hy-
drogen atom. However, with the understanding that the approximate va-
lidity of quantum mechanics in nuclear physics is out of question, the
assumption of quantum mechanics as being exactly valid for the nuclear
structure implies the exiting from the boundaries of serious science due
to the well known failure by quantum mechanics to achieve an exact
representation of nuclear experimental data, such as nuclear magnetic
moments, nuclear spins, nuclear stability (recall that the neutron is un-
stable.....), and other data, despite the use of billions of dollars of public
funds in about one century of research. This insufficiency begins with the

12

12

Reprinted by permission from Accademia Piceno Aprutina dei Velati (APAV),
“Overview of Historical and Recent Verifications of the EPR Argument and their

Applications to Physics, Chemistry and Biology”, R.M. Santilli, in press at APAV.



Figure 3: A reproduction of the Schmidt limits providing a documentation of

the deviations of the predictions of quantum mechanics from experimentally mea-

sured nuclear magnetic moments beginning with that of the smallest nucleus, the

Deuteron. Similar insufficiencies exist for the representation of nuclear spins,

nuclear stability and other data.

lack of representation of experimental data on the smallest nucleus, the
Deuteron, and becomes embarrassing for large nuclei such as the Zirco-
nium (Figure 3) [6].

An understanding of the origin of the indicated insufficiency can be
reached via the comparison of atomic and nuclear structures. In the hy-
drogen atom, the proton and the electron are at such a large mutual dis-
tance to allow their effective point-like approximation, with the ensuing
exact validity of the theory. By contrast, experimental data on nuclear
volumes and on the volume of individual nucleons, establishes that nu-
clei are composed by a collection of extended and hyperdense nucleons in
conditions of partial mutual penetration, thus EPR entanglement, of their
charge distributions (Figure 4) with ensuing non-Hamiltonian interactions
(Section 3.1), with consequential need for a suitable completion of quan-
tum mechanics.

3.3. Insufficiencies of quantum mechanics for irreversible
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Figure 4: An illustration on the left of the sole possible representation of nuclear

structures by quantum mechanics due to its locality and linearity. An illustration

on the right of the experimental reality establishing that nuclei are composed by

extended and hyperdense nucleons in conditions of partial mutual overlapping

with ensuing non-Hamiltonian interactions mandating a suitable completion of

quantum mechanics [1].

processes.
Beginning with his Ph. D. studies at the University of Torino, Italy, in the
mid 1960’s, Santilli dedicated his research life to the proof of the EPR ar-
gument [1] because quantum mechanics cannot achieve a consistent rep-
resentation of energy releasing processes, such as combustion, nuclear fu-
sions and others. This is due to the fact that all energy releasing processes
are irreversible over time, while quantum mechanics can only represent
systems whose time reversal image does not violate causality (Figure 5,
left view) due to the invariance under anti-Hermiticity of Heisenberg’s
equation for Hermitean operators A

i
dA

dt
= [A,H] = AH −HA = −[A,H]†. (2)

The century old objection against the verification of the EPR argument
via irreversible processes, which is still widely accepted nowadays, is
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Figure 5: A view on the left of the irreversibility of combustion and its lack of

representation via quantum mechanics due to its reversibility. A view on the right

of the clear irreversibility of high energy particle collisions, with ensuing need for

an irreversible completion of quantum mechanics (Section 8.7).

that irreversibility is ’illusory’ (sic) because, when irreversible processes
are reduced to their quantum mechanical elementary constituents, re-
versibility is fully regained. As part of his 1967 Ph. D. thesis [6]-[8], San-
tilli proved a number of theorems essentially stating that a macroscopic
irreversible system cannot be consistently decomposed into a finite number of
quantum mechanical particles all in reversible conditions and, vice-versa, a
finite number of quantum mechanical particles cannot recover a macroscopic
irreversible system under the correspondence or other principles.

An important discovery made during the 2020 Teleconference [0] is
that macroscopic irreversibility originates at the ultimate level of elemen-
tary particles, as established by the mere visual inspection of high energy
scattering experiments at CERN, FERMILAB and other particle physics
laboratories (Figure 5, right view).

In view of the above insufficiency, Santilli proposed in 1967 (loc. cit.)
the first known completion of quantum mechanics based on the embed-
ding of Lie algebras of quantum mechanics with brackets [A,B] = AB −
BA into covering algebras with brackets (A,B) that are Lie-admissible
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(Jordan-admissible) according to the American mathematician A. A. Al-
bert [8] when the attached anti-symmetric brackets [A,B]∗ = (A,B) −
(B,A) verify the Lie algebra axioms (attached symmetric brackets {A,B}∗ =
(A,B) + (B,A) verify the Jordan algebra axioms), with realization of the
type

(A,B) = ARB −BSA = (ATB −BTA) + (AJB +BJA), (3)

whereR = T+J snd S = −T+J are non-singular operators representing
non-Hamiltonian interactions. The representation of irreversibility from
first axiomatic principles is evidently assured by the violation of the in-
variance under anti-Hermiticity, (A,B) 6= −(A,B)† which occurs when-
ever R 6= S. In particular, the Lie-isotopic operator T represents the
non-Hamiltonian interactions of particle entanglement, while the Jordan-
isotopic operator J represents the irreversibility of energy-releasing pro-
cesses via a representation of the external terms in Lagrange’s and Hamil-
ton’s equations that are completely absent in the Copenhagen interpreta-
tion of quantum mechanics (see Sections 6.2 and 7.6 for an overview).

3.4. Insufficiencies of quantum mechanics for
antimatter.
Another majestic event in nature is given by the annihilation of particle-
antiparticle pairs into light. The mechanism of this event cannot be rep-
resented via quantum mechanics because charge conjugation

ψ(r) → ψc(r) = −ψ†(r), (4)

characterizes antiparticles in the same Hilbert space of the original par-
ticles, as a result of which antiparticles have the same positive energy of
particles. Consequently, a particle-antiparticle pair both having positive
energy cannot possibly annihilate into light, besides being in conflict with
P. A. M. Dirac historical hypothesis that antiparticles have negative energy
[11].
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Figure 6: Another topic studied at the 2020 Teleconference [0] has been the in-

ability by quantum mechanics to represent the mechanism of particle-antiparticle

annihilation into light because charge conjugation characterizes antiparticles with

the same positive energy of particles against Dirac’s view [11] that antiparticles

should have negative energy.

This occurrence clearly suggests the need for an additional comple-
tion of quantum mechanics, this time, for a representation of antiparticles
in a way compatible with the experimental evidence on annihilation that
can only be achieved when all characteristics of antiparticles are opposite
those of particles (see Section 7.7 for an overview).

3.5. Insufficiencies of quantum mechanics in
chemistry.
With the full admission of the historical advances achieved by quan-
tum chemistry in the past century, the advancement of basic scientific
knowledge requires the indication of the basic insufficiency of quantum
chemistry given by the absence of a quantitative model of valence bonds
due to the inability to represent the attractive force between identical va-
lence electrons (Figure 7), with consequential lack of a quantitative model
of molecular structures that carries evident environmental implications
[12].
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In fact, the Schrödinger equation of valence electron pairs is given by

[− 1

m
∆r +

e2

r
]ψ(r) = Eψ(r), (5)

where m is the reduced mass, thus solely allowing a repulsion caused
by the equal electron charge −e which is represented by +e2/r. Simple
calculations show that the repulsive force between two valence electrons
at 10−13cm = 10−15fm mutual distance is given by

F = k
e2

r2
= (8.99× 109)

(1.60× x10−19)2

(10−15)2
= 230 N, (6)

thus being so enormous for particle standards to prevent any realistic
hope of being overcome by current models of valence bonds, thus con-
firming the need for a suitable completion of quantum chemistry. accord-
ing to the EPR argument [1].

The lack of a sufficiently strong attractive force between identical va-
lence electrons has rather serious implications in chemistry, such as:

a) The lack of an exact representation of molecular binding energies
with deviations of the order of 2% that, rather than being ignorable, cor-
responds to about 950 kcal/mole.

b) The prediction that all substances are ferromagnetic in view of the
lack of strongly bonded valence electron pairs.

c) The inability to achieve a quantitative representation of molecular
electric and magnetic moments, with consequential inability to identify
the attractive force between molecules in their liquid state, and other in-
sufficiencies [loc. cit.].

4. EXPERIMENTAL FOUNDATIONS.
An important lecture delivered at the 2020 Teleconference has been that
by Gerald Eigen [13] (see also Ref. [235]) who presented various exper-
iments that essentially provide a clear experimental verification of Bell’s
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Figure 7: A schematic view of the lack of a quantitative representation of molec-

ular structures by quantum chemistry due to the large Coulomb repulsion between

identical valence electrons according to Schrödinger equation (5) which is explic-

itly computed in equation (6).

inequality for point-like particles in vacuum, thus including electromagnetic
interactions.

Independently from the above tests, Matteo Fadel et al [14] conducted
experiments similar to those of Ref. [13], but this time for the study of
spin-correlations between space separated atoms of a Bose-Einstein con-
densate, by measuring uncertainties below the bound of Heisenberg’s uncer-
tainty principle.

Additionally, the ALICE experiments at CERN on heavy ions [15] have
shown deviations from quantum mechanics bigger than those measured
by experiments [14].

A view expressed at the 2020 teleconference is that tests [13]-[15] pro-
vide a conceptual and experimental verification of the EPR argument
[1] because tests [13] confirm the acceptance by Einstein, Podolsky and
Rosen of the validity of quantum mechanics for point-like particles in vac-
uum, while tests [14] [15] establish the existence of deviations from quan-
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tum mechanics for extended particles.
The main difference between tests [13] and [14] [15]] deal with the

underlying interactions. In fact, for tests [13], the sole possible interac-
tions are those at a distance, since the particles are dimensionless. By
contrast, for the case of tests [14] [15], since the constituents are given
by extended atoms and ions under the known compression caused by
the Bose-Einstein condensate, the interactions are of the non-linear, non-
local and non-potential type causing the inapplicability (rather than the
violation) of Bell’s inequality.

As we shall see, besides the above direct tests, there exist additional
experimental evidence in support of the EPR argument in particle physics,
nuclear physics, chemistry and other fields.

5. HISTORICAL EPR COMPLETIONS.
In general, the limitations of basic physical laws have been best iden-
tified by their originators. For example, following the discovery of the
matrix realization of quantum mechanics on a Hilbert space H over the
field of complex numbers C, with historical time evolution (2), Werner K.
Heisenberg identified the limitations of his own theory caused by its lin-
earity, and studied what can be well called the first non-linear completion
of quantum mechanics [16].

Quantum mechanics is a strictly Hamiltonian theory and, therefore,
can only represent non-linear interactions with the Hamiltonian, result-
ing in eigenvalues equations of the type

H(r, p, ψ)ψ(r) = Eψ(r). (7)

As part of his decades of studies on completions according to the EPR ar-
gument, Santilli pointed out at the 2020 Teleconference [0] that, despite its
clear historical value, Heisenberg’s non-linear completion does not allow
the characterization of the constituents ψk(r), k = 1, 2, ..., N of a bound
state with non-linear internal interactions because non-linear equations
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(7) generally violate the superposition principle,

ψ(r) 6= Σk=1,2,...,Nψk(r). (8)

The lack of a superposition principle then implies serious limitations
on the representation of experimental data, e.g., on how the neutron,
which is naturally unstable, becomes stable when bonded to a proton
in a stable nucleus.

Therefore, in order to preserve the superposition principle under com-
pletion, Santilli suggested that non-linear interactions should be repre-
sented with a suitably selected operator other than the Hamiltonian. In
any case, as indicated earlier, non-linear interactions are of contact, zero-
range type thus carrying no potential energy. Their representation with
the Hamiltonian would then cause consistency problems in the axiomatic
structure of the completed theory.

Despite the indicated limitation, Heisenberg’s non-linear completion
of quantum mechanics played an important role in Santilli’s studies. In
fact, there is a mention in the Comments of Teleconference [0] that Santilli
had various mail contacts with Heisenberg in the early 1970’s precisely
on the superposition principle when Santilli was in the faculty of the De-
partment of Physics of Boston University.

As it is well known, Louis V. P. R. de Broglie was one of the pri-
mary contributors to the development of the wave structure of particles
in quantum mechanics. Jointly, de Broglie was the first to identify the
limitations of such a description caused by the locality of the wavefunc-
tion ψ(r). The theory developed by de Broglie was semiclassical as a
condition to by-pass Heisenberg’s uncertainty principle and, as such, it
can be considered to be one of the first attempts at recovering Einstein’s
determinism.

Unfortunately for science, de Broglie was dissuaded by mainstream
scientists of the time to continue his studies on possible broadening of
quantum mechanics. Nevertheless, de Broglie’s ideas were resumed and
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further developed by David J. Bohm and the theory can be well called
resulting the de Broglie-Bohm non-local completion of quantum mechanics
[17].

This theory was discussed at the 2020 Teleconference [0] because of its
important influence in the development of new completions of quantum
mechanics. In particular, Santilli pointed out that, in his view, no con-
sistent representation of the entanglement of particles can be achieved
without a non-local theory since the overlapping of wavepackets occurs
in a volume. Yet, to be effective, the representation of said non-locality
should be done via an operator other than the Hamiltonian since said
wave-overlapping carries no potential energy.

The third important historical completion of quantum mechanics stud-
ied at the 2020 Teleconference [0] is that by D. J. Bohm with his theory of
hidden variables [18]. As it is well known, quantum mechanics is a prob-
abilistic theory, with ensuing uncertainties in the position and momen-
tum of particles. Bohm conjectured the possible existence of more funda-
mental physical laws hidden in the mathematics of quantum mechanics
that would allow the theory to recover Einstein’s determinism. Despite a
large literature in the field, no concrete formulation of hidden variables,
and related recovering of Einstein’s determinism, was achieved up to the
early 2000’s . Nevertheless, Bohm’s intuition on the lack of final char-
acter of the Copenhagen interpretation of quantum mechanics remained
fundamental.

Santilli’s view on Bohr’s hidden variables presented at the 2020 Tele-
conference [0] is essentially the following:

1) Bell’s inequality on the lack of existence of classical images should
be considered valid for the infinite family of unitary equivalence of quan-
tum mechanics. Consequently, the sole known possibility of bypassing
Bell’s inequality and achieving concrete realizations of hidden variables
is the construction of a non-unitary completion of quantum mechanics.

2) Bell’s inequality has been experimentally verified by G. Eigen and
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others [13] for electromagnetic interactions of point-like particles in vac-
uum. Consequently, the most promising applications of non-unitary com-
pletions of quantum mechanics are those for strong nuclear interactions
for which quantum mechanics is known to be incomplete (Section 2).

3) As it is the case for Heisenberg’s non-linear theory, and de Broglie-
Bohm on-local theory, Bohm hidden variables should be realized via an
operator— other than the Hamiltonian which is hidden in the axioms of
quantum mechanics.

A geometric interpretation of hidden variables was presented at the
2020 Teleconference by O. A. Olkhov, see contribution [239] and his record-
ed lecture [0].

6. HADRONIC MECHANICS, CHEMISTRY AND
BIOLOGY.
6.1. Hadronic mechanics.
It is evident that the completion of quantum mechanics according to Ein-
stein, Podolsky and Rosen [1] has implications for all quantitative sci-
ences, including physics, chemistry and biology. In order to initiate an
expectedly long process, in his Ph. D. thesis at the University of Torino,
Italy, in the mid 1960’s, Santilli proposed the completion of quantum me-
chanics for irreversible processes via Lie-admissible completion of the
quantum mechanical Lie algebras [6]-[8] according to A. A. Albert [9],
and continued the studies at Harvard University under DOE support in
the late 1970’s with further developments of the Lie-admissible formula-
tions as well as their Lie-isotopic particularization [19]-[22].

Because of important contributions by numerous mathematicians, phy-
sicists and chemists, the above studies achieved in the late 1990’s a com-
pletion/covering of quantum mechanics known as hadronic mechanics
[23]-[28] for a consistent representation of extended particles under non-
linear, non-local and non-Hamiltonian interactions due to wave-overlap-
ping, thus EPR entanglement.
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An important feature of the studies herein considered is that the Copen-
hagen interpretation of quantum mechanics resulted as being the simplest
possible realization of quantum axioms, such as associativity, distributivity,
linearity, locality, potentiality, etc., while hadronic mechanics is charac-
terized by the progressive more general possible realizations of said axioms
depending on the complexity of the considered ”elements of reality” [1], ac-
cording to the following:

Classification of hadronic mechanics:

6-1-I) Quantum mechanics, with the familiar Heisenberg’s time evolu-
tion (2) of an observable A in the infinitesimal form

i
dA

dt
= [A,H] = AH −HA = −[A,H]†, A = A†, H = H†, (9)

and finite form

A(t) = UA(0)U † = eHtiA(0)e−itH , UU † = U †U = I, (10)

characterized by the Lie’s theory with brackets [A,H] for the representa-
tion of stable, thus time-reversal invariant systems of point-like particles
in vacuum via the Hamiltonian H .

6-1-II) Isomechanics (see Refs. [23] [24], reviews in Section 2 of Ref. [25]
and Tutoring Lecture I [143][144]), with the iso-Heisenberg time evolution
in its infinitesimal form (first introduced in Eqs. (18), page 153, Ref. [22])

i
dA

dt
= [A,̂H] = AT̂H −HT̂A = −[A,̂H]†, T̂ > 0, (11)

and finite form

A(t) = WA(0)W † = eHT̂ tiA(0)e−itT̂H , WW † 6= I, (12)
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characterized by the axiom-preserving Lie-Santilli isotheory with brack-
ets [A,̂B] = AT̂B − BT̂A, for the representation of stable (thus time-
reversal invariant) hadrons, nuclei and stars composed by extended, there-
fore deformable constituents in conditions of deep mutual entanglement
with conventional interactions represented with the Hamiltonian H , and
non-linear, non-local and non-potential interactions represented with the
isotopic element T̂ .

6.1-III) Genomechanics (see Refs. [23] [24], reviews in Section 3 of Ref.
[25] and Tutoring Lecture IV [145]), with the geno-Heisenberg equation in
their infinitesimal form (first introduced in Eqs. (19), page 153, Ref. [22])

i
dA

dt
= (A,H) = AR̂H −HŜA =

= (AT̂H −HT̂A) + (AĴH +HĴA) 6= −(A,B)†,

R̂ = T̂ + Ĵ 6= Ŝ = −T̂ + Ĵ , T̂ > 0, Ĵ > 0, (13)

and finite form

A(t) = WA(0)W † = eHR̂tiA(0)e−itŜH , WW † 6= I, (14)

characterized by the Lie-admissible/Jordan-admissible theory with prod-
uct (3), for the representation of time-irreversible processes between ex-
tended constituents via: A)The conventional Hamiltonian H for the rep-
resentation of conventional potential interactions; B) The Lie-isotopic op-
erator T̂ for the representation of non-Hamiltonian interactions due to
mutual EPR entanglement as in Case II; and C) The Jordan-isotopic oper-
ator Ĵ for the representation of the external terms in the Lagrange’s and
Hamilton’s equations that are completely missing in the Copenhagen in-
terpretation of quantum axioms.

6.1-IV) Hypermechanics (see Ref. [27] [28] and Tutoring Lecture V
[146]) characterized by the formulation of genomechanics in terms of
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T. Vougiouklis Hv hyperstructures [233] for the representation of irre-
versible systems with a large number of extended particles in deep EPR
entanglement.

6.1-V) Isodual quantum, iso-, geno- and hyper-mechanics [29] for
the representation of antiparticles in condition of increasing complexity
via an anti-Hermitean map (called isoduality and denoted with the upper
index d) of the preceding time evolutions, such as

id ×d d
dAd

ddtd
= [Ad, Hd]d = Ad ×d Hd −Hd ×d Ad, (15)

providing a causal representation of antimatter with negative energy ac-
cording to P. A. M. Dirac [11] because necessary to represent particle-
antiparticle annihilation (see Section 3.4 and Figure 6, contribution [227]
to the 2020 Teleconference and the recorded lecture by A. S. Muktibodh
[0]).

6.2. Hadronic chemistry.
Following the achievement of mathematical [23] and physical [24] matu-
rity, as well as a number of experimental verifications [25] [26], hadronic
mechanics was applied to chemistry, resulting in a completion-covering
of hadronic chemistry for the representation of molecules composed by
extended constituents in condition of EPR entanglement, called hadronic
chemistry [30] which is also axiom-preserving, thus implying that quan-
tum and hadronic chemistry coincide at then abstract realization-free level.

The most important function of hadronic chemistry is to show that the
basic open problems in chemistry listed in Section 3.5 cannot be solved
via quantum chemistry due to its linearity, locality and potentiality. By
contrast, the achievement of an attractive force between identical valence
electrons in molecular bonds has been possible [30] following the ad-
mission of the ”element of reality” [1] given by the non-linearity, non-
locality and non-potentiality of valence electron bonds (Figure 7). This
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new strong valence bond has permitted the achievement of exact rep-
resentations of experimental data for the Hydrogen [31], water [32] and
other molecules.

6.3. Hadronic biology.
Studies in the field were initiated by C. R. Illert [176] who proved that a
conventional three-dimensional Euclidean spaceE(r, δ, I), r = (x, y, z), δ =
I = Dag.(1, 1, 1) can indeed represent all possible shapes of seashells, but
the representation of their growth in time requires a three-dimensional two-
valued space here denoted Ê(r̂, δ, I), r̂ = (r̂k), r̂k = (r1k, r

2
k), k = 1, 2, 3.

In order to initiate the expectedly long process to represent the ex-
treme complexity of the DNA code, and by recalling that all living organ-
isms are irreversible over time, thus requiring genomathematics, Santilli
introduced the representation of biological structures via three-dimensional
multi-valued geno-Euclidean genospaces Ê(r̂, δ̂, Î) over genofields with
genounits having an arbitrary numberN of ordered elements, Î = Diag.(I1,
I2, ..., IN) [34], with classical operations, e.g., the genoproduct of two ob-
servables A > B yields N ordered results [27].

T. Vougiouklis formulated the preceding results via the reformulation
of genomathematics in terms of his Hv-hyperstructures on a hyperfield
formulated in terms of hyperoperations called hopes (see Tutoring Lecture
V [146] and Ref. [233]).

Vougiouklis’ hyperformulation allowed the introduction at the 2020
Teleconference [0] of a new conception of living organisms presented in
Ref. [231] as being composed by a very large number of molecules all in
EPR entanglement, thus being in continuous and instantaneous commu-
nication, resulting in such a complex structure that can only be quantita-
tively represented with the most complex mathematics developed by the
human mind.

It is significative that the 2020 Teleconference [0] ended up with the
view: There is hope that ’hope’ can represent life.
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7. VERIFICATIONS OF THE EPR ARGUMENT.
7.1. Foreword.
A main topic of the 2020 Teleconference [0] has been the study of iso-
topic verifications [210]-[214] of the EPR argument [1], namely, verifica-
tions based on the preservation of the basic axioms of quantum mechan-
ics and their most general possible realization which verifications are the
outcome of the life-long research by R. M. Santilli with contributions by
numerous scholars.

In this section, we review the indicated isotopic verifications in a lan-
guage as simple as possible, including a rudimentary review of the needed
basic formalism for minimal self-sufficiency of this Overview, as well as
for the specialization of the formalism to the EPR problem.

A central concept of this section is that extended particles immersed
within a hyperdense medium, as it is the case for a proton in the core
of a star, experience a pressure in all radial directions proportional to the
density of the medium (Figure 8) which evidently restricts Heisenberg’s
uncertainties in favor of Einstein’s determinism [1]. Note that such a no-
tion of pressure is completely absent in the 20th century physics due to
the point-like approximation of particles.

With the understanding that the participants to the 2020 Teleconfer-
ence are available for consultations, including this author, it should be
indicated that a full understanding of the isotopic verifications reviewed
in this section requires a technical knowledge of hadronic mechanics [24].

7.2. Recovering of classical images.
7.2.1. Rudiments of isomathematics. As recalled earlier, Bell [3]
proved the lack of existence of classical images for systems of quantum
mechanical point-like particles with spin 1/2.

Since the systems studied by Bell are described by the time-reversible
Heisenberg law (9)-(10) (Sections 3 and 6), Santilli studied in the 1998
paper [210] systems characterized by isomathematics (Tutoring Lecture
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Figure 8: This figure provides a conceptual rendering of the central notion used

for the verifications of the EPR argument, namely, the inward ’pressure’ experi-

enced by ’extended’ particles in ’all radial directions’ when immersed in hyper-

dense media, such as a proton in the core of a star, which pressure evidently

restricts uncertainties in favor of Einstein’s determinism first identified in the

1981 paper [47] and then studied in detail in Refs.[210]-[214]. Note that the

above notion of pressure did not exist in 20th century physics due to the approx-

imation of particles as being point-like.

I [143]) and related isomechanics [23] [24] with iso-Heisenberg’s time
evolution (11)-(12) for which the represented systems are equally time-
reversible, yet they admit internal non-linear, non-local and non-potential
interactions represented with the isotopic element T̂ .

Additionally, Bell [3] used the conventional SU(2)-spin symmetry for
the derivation of his result. Consequently, Santilli constructed the Lie-
isotopic completion of the various branches of Lie’s theory, including the
isotopies of universal enveloping associative algebras, Lie algebras, and
Lie groups [22], resulting in a theory nowadays known as the Lie-Santilli
isotheory [21]-[25] [50] [55] [201] (see also contribution [226] to the 2020
Teleconference and the recorded lecture by A. S. Muktibodh [0]).

The foundation of the Lie-Santilli isotheory is given by the universal
isoenveloping isoassociative isoalgebra with isoproduct between arbitrary
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quantities A,B (first introduced in Eq.(5), page 71, Ref. [22])

A×̂B = AT̂B, T̂ > 0, (16)

where T̂ , called the isotopic element, is solely restricted by the condition
of being positive-definite, but can otherwise possess an arbitrary (non-
singular) dependence on all needed local variables of interior dynamical
problems, such as a dependence on time t, coordinates r, momentum p,
energy E, density µ, temperature τ , pressure γ, wavefunctions ψ, their
derivatives ∂rψ, etc. T̂ = T̂ (t, r, p, E, µ, τ, γ, ψ, ∂ψ, ...), which dependence
is hereon omitted for brevity.

It is evident that product (16) verifies the axioms of associativity and
distributivity, although in the following more general form

(A×̂B)×̂C = A×̂(B×̂C),

A×̂(B + C) = A×̂B + A×̂C, (17)

for which reason it is called the isoproduct.
It should be indicated upfront that the primary function of isoproduct

(16) is that of providing novel explicit and concrete realizations of Bohm’s
hidden variables [18] via the the isotopic element T̂ which is ”hidden” in
the associative and distributive laws as clearly indicated by Eqs. (17).

Santilli realized in the early 1978 that, despite its simplicity, isoprod-
uct (16) requires for consistency the isotopic completions of all aspects
of 20th century applied mathematics with no known exception. As an
illustration of the Lie-Santilli isoalgebra, we indicate the isotopic com-
pletion L̂ of an N -dimensional Lie algebra L with Hermitean generators
Xk, k = 1, 2, ..., N, characterized by the isocommutator rules

[X̂î,X̂j] = X̂i×̂X̂j − X̂j×̂X̂i =

= Ĉk
ij(t, r, p, E, µ, τ, ψ, ∂ψ, ...)×̂X̂k, (18)
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whose verification of Lie algebra axioms is evident. Nowadays, Lie-
Santilli isoalgebras are classified into regular when the structure quan-
tities Ĉ are constant, and irregular when they are function of the local
variables [55].

It should be noted, as illustrated below, that regular Lie-Santilli isoal-
gebras can be obtained via non-unitary transformations of the original
Lie algebras, while irregular isoalgebras cannot, thus constituting new
realizations of Lie’s axioms.

The elaboration of isocommutation rules (18) with the conventional
mathematics used for Lie’s theory soon proved to lead to serious incon-
sistencies. This occurrence mandated the construction of isomathematics
with the following main features:

1) The multiplicative unit of quantum mechanics ~ = 1 is no longer
invariant for isomechanics due to its non-unitary structure, Eq. (12). The
consistent multiplicative unit under isoproduct (16) is given by the isounit

Î = 1/T̂ , > 0 Î×̂A = A×̂Î = A; (19)

2) The isotopy of the unit 1 → Î mandates, for consistency, the cor-
responding isotopic completion of numeric fields F (n,×, I) into isofields

F̂ (n̂, ×̂, Î), first introduced in Ref. [33] of 1993, with isonumbers n̂ = nÎ
where n ∈ F equipped with isoproduct (16) and isounit (19);

3) The elaboration of the Lie-Santilli isotheory needs to be done, also
for consistency, via the isofunctional isoanalysis initiated in Refs. [47] [48]
of 1992 (see Refs. [23] [24] for a general treatment) with expressions, for
instance, for the isoexponent

êX = (eXT̂ )Î = Î(eT̂X); (20)

4) Recall that non-unitary transformations on conventional spaces over
conventional fields generally violate causality[24] [212]. To regain causal-
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ity, all non-unitary transformations can be reformulated into the isouni-
tary isotransforms

U = Û T̂ 1/2, UU † 6= I → Û×̂Û † = Û †×̂Û = Î , (21)

for which the non-unitary time evolution(12) is identically reformulated
in the correct isounitary form

A(t) = Ŵ ×̂A(0)×̂Ŵ † = êHti×̂A(0)×̂ê−itH ,

Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î; (22)

5) For consistency, scalar quantities must be elements of isofields, with
ensuing expression for isocoordinates r̂ = rÎ and generic expression for
isofunction

f̂(r̂) = [f(rÎ)]Î; (23)

6) Also for consistency, Lie-Santilli isoalgebras must be formulated on
isospaces over isofields, (first formulated in Ref. [34] with reference, as an
illustration, for non-relativistic formulations to the iso-Euclidean isospace
Ê(r̂, δ̂, Î) with isocoordinates r̂ = rÎ, r = (x, y, z), isometric δ̂ = (T̂ δ)Î
where δ = Diag.(1, 1, 1) and isoinvariant as an element of the isofield of
isoreal isonumbers R̂

r̂2̂ = r̂i×̂δ̂i,j×̂r̂j = (
x2

n2
1

+
y2

n2
2

+
z2

n2
3

)Î , (24)

and the iso-Minkowski isospace for relativistic treatmentsM̂(x̂, η̂, Î), with
space-time isocoordinates x̂ = xÎ = (x, y, z, t)Î , space-time isometric η̂ =
T̂ η, η = Diag.(1, 1, 1,−1) and space-time isoinvariant

x̂2̂ = x̂µ×̂η̂µν×̂x̂ν = (
x2

n2
1

+
y2

n2
2

+
z2

n2
3

− t2 c
2

n2
4

)Î; (25)

32

32

Reprinted by permission from Accademia Piceno Aprutina dei Velati (APAV),
“Overview of Historical and Recent Verifications of the EPR Argument and their

Applications to Physics, Chemistry and Biology”, R.M. Santilli, in press at APAV.



7) Since the multiplicative isounit is generally dependent on local iso-
coordinates, Î = Î(r̂, ...), the elaboration of Lie-Santilli isoalgebras via the
conventional Newton-Leibnitz calculus leads to axiomatic inconsisten-
cies (see also Section 7.3), and must be lifted into the isodifferential isocal-
culus, first introduced by Santilli in Ref. [34] (see also monographs. [207],
contributions [222] [223] to the 2020 Teleconference, and the recorded lec-
tures by S. Georgiev [0]), with basic isodifferential

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ ′ (26)

and isoderivatives
∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
; (27)

8) Contrary to a popular belief that isomathematics is excessively com-
plex for physicists, all aspects of (regular) isomathematics can be very easily
constructed via a non-unitary transform of the corresponding aspect of 20th
century applied mathematics. For instance, the trivial unit 1 can be trans-
formed into the isounit Î , the conventional associative product AB can
be transformed into the isoproduct AT̂B, etc. [35]

1→ U1U † = Î = 1/T̂ 6= I, T̂ = (UU †)−1,

AB → U(AB)U † = (UAU †)(UU †)−1(UBU †) = A′T̂B′,

EX → êX = (eXT̂ )Î = Î(eT̂X), etc.; (28)

9) The crucial invariance of the numeric values of the isounit and iso-
topic element representing non-Hamiltonian interactions is verified by
the appropriate time evolution, the isounitary form (21)-(22) [35]

Î → Û×̂Î×̂Û † = Î ′ ≡ Î ,

A×̂B = AT̂B → Û×̂(A×̂B)×̂Û † = A′×̂′B′ = A′T̂ ′B′, T̂ ′ ≡ T̂ . (29)
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Following the isotopic completion of Lie’s theory in the period 1978-
1982 [19]-[22], the step-by-step isotopies of conventional space-time math-
ematics, Santilli constructed in Refs. [60]-[70] the isosymmetries leaving
invariant isospacetime (26).

These studies established that, rather then being violated for line el-
ement (25), the Lorentz symmetry remains valid because its isotopic im-
age ŜO(3.1) is isomorphic to the original symmetry SO(3.1) [60], and the
same holds for all continuous as well as discrete space-time symmetries
[23] [24].

We here merely recall for future comments: the Lorentz-Santilli iso-
transformations introduced in the 1983 paper [60], here indicated in the
(3, 4)-plane (see Ref. [24] for their full formulation)

x1
′
= x1, x2

′
= x2,

x3
′
= γ̂(x3 − β̂ n3

n4

x4), x4
′
= γ̂(x4 − β̂ n4

n3

x3), (30)

where
β̂ =

v3/n3

c/n4

, γ̂ =
1√

1− β̂2

; (31)

the second order iso-Casimir invariant of the Lorentz-Poincaré-Santilli
isosymmetry [ 66]-[69]

Ĉ2 = (η̂µνPµPν)Î
c =

(n2
1P

2
1 + n2

2P
2
2 + n2

3P
2
3 − n2

4P
2
4 )Îc = m2C2, (32)

where, from line element (25), C s the local speed of light left invariant
by isosymmetry (30),

C =
c

n4

, (33)

and Îc is now the contravariant isounit, thus being equal to T̂ ,

Îc = T̂ = 1/T̂ c = Diag.(
1

n2
1

,
1

n2
2

,
1

n2
3

1

n2
4

); (34)
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and the iso-Klein-Gordon isoequation [24] derivable from iso-Casimir in-
variant (32) which, for the simplest possible assumptions nk = 1, k =
1, 2, 3, ~ = 1 and m4 is a positive quantity given by

(−1

c

∂2

∂t2
+

1

n2
4

5)T̂ cψ̂(x̂) =

= (
m2

n2
4

c2

n2
4

)T̂ cψ̂(x̂) = (m̄2c2)T̂ cψ̂(x̂), (35)

where
m̄ =

m

n2
4

(36)

is the isorenormalized energy of an extended particle within a physical
medium with n2

1 = n2
2 = n2

3 = 1 holding for the particular case in which
the particle is perfectly spherical and the medium is homogeneous and
isotropic [24] (see the formal treatment in Section 8.4.4, Eq. (133) of Isoax-
iom IV).

Finally, the isotopies ŜU(2) of the SU(2)-spin symmetry were con-
structed in Refs. [64] [65] (see the review in Section 3, Ref.[213]).

7.2.2. Recovery of classical images. Thanks to the above advances,
Santilli introduced in paper [210] the following simplest possible realiza-
tion of Bohm’s hidden variables

ÛU † = Diag(λ, 1/λ) 6= I, DetÎ = 1, λ > 0, (37)

applied to Pauli’s matrices

σk → σ̂k = UσkU
†, (38)
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with explicit form

σ̂1 =

(
0 λ−1

λ 0

)
, σ̂2 =

(
0 −iλ−1
iλ 0

)
,

σ̂3 =

(
λ 0
0 −λ−1

)
,

(39)

and regular isoalgebra

[σ̂î,σ̂j] = σ̂iT̂ σ̂j − σ̂jT̂ σ̂i = i2εijkσ̂k, (40)

establishing the isomorphism ŜU(2) ≈ SU(2), and isoeigenvalue equations
(where all products, thus including squares, are isotopic)

σ̂3×̂|b̂ >= ±|b̂ >, (41)

σ̂2̂ = (σ̂1T̂ σ̂1 + σ̂2T̂ σ̂2 + σ̂3T̂ σ̂3)T̂ |b̂ >= 3|b̂. (42)

thus confirming the spin 1/2 for isoparticles, namely, extended particles
in deep EPR entanglement which are characterized by isounitary isoirre-
ducible isorepresentation of the Lorentz-Poincaré-Santilli isosymmetry
P̂ (3.1) [66]-[69] (see Section 2 of paper [213] for a review).

Bell’s proof of the lack of existence of classical images for two parti-
cles with spin 1/2 is reduced a quantum mechanical (qm) quantity Dqm

which, when computed via the use of Pauli’s matrices, verifies the ex-
pression

Dqm ≤ 2. (43)

Santilli conducted in paper [210] a step-by-step non-unitary/isounitary,
transformation of Bell’s derivation along rules (28) for two isoparticles
described by hadronic mechanics (hm) with Bohm’s hidden variables
λ1, λ2 in realization (37), resulting in the following property

Dhm =
1

2
(
λ1
λ2

+
λ2
λ1

)Dqm. (44)
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Since the factor 1
2
(λ1/λ2 + λ2/λ1) can assume values arbitrarily larger

than 2, Santilli proved in Ref. [210] that a systems of isoparticles with spin
1/2 in condition of mutual penetration, thus EPR entanglement and ensu-
ing non-Hamiltonian interactions does admit classical images with specific
examples identified in paper [210].

The invariance of the results under the the time evolution of the the-
ory was also proved according to rules (39).

7.2.3. Realization of the EPR entanglement. It should be noted that
realization (28) of hidden variables is indeed the most elementary pos-
sible because the notion of EPR entanglement (Figure 2) is characterized
by the isotopic element T̂ with realization for the hadronic bound state of
two isoparticles (such as the Deuteron) of the type

T̂ = Πk=1,2Diag.(1/n
2
1k, 1/n

2
2k, 1/n

2
3k, 1/n

2
4k)×

×exp[−Γ(ψ, ψ̂, ...)] > 0, (45)

where n2
kα, , α = 1, 2, 3, k = 1, 2,where: n2

αk = 1 represents the deformable
semi-axes of the extended k-particle normalized to the values for the
sphere; n2

4k represents the density of the k-particle normalized to the
value n2

4k = 1 for the vacuum; and the exponent is a positive-definite
function representing non-linear, non-local and non-potential interactions
with realizations of the type

exp[−Γ(ψ, ψ̂, ...)] = exp[−|ψ/ψ̂|
∫
ψ̂1ψ̂

†
2d

3r, ] (46)

where ψ is a quantum mechanical wave function, and ψ̂ is the completed
wavefunction under isotopy.

In conclusion, Ref. [210] has shown that the historical intuition of
hidden variable by David Bohm [18] is truly fundamental because it char-
acterizes the completion of quantum into hadronic mechanics resulting
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in a basically new notion of particle entanglement with momentous ap-
plications indicated in the next sections.

The cosmological implication of the EPR argument based in the clas-
sification of elementary particles via Dinkins diagram was presented by
the 2020 Teleconference [0] by E. Trell, See contributed paper [232].

7.3. Recovering of Einstein’s determinism.
7.3.1. Rudiments of isomechanics. The proof of the recovering of Ein-
stein’s determinism achieved in the 2019 paper [211] requires the use of
isomathematics outlined in the preceding section plus the use of isome-
chanics [24] whose basic elements can be briefly outlined for the non-
initiated reader as follows:

1) The basic unit of isomechanics is given by the completion of Planck’s
unit ~ = 1 into the isounit Î which is the inverse of the iso‘ topic element
(45)

Î = 1/T̂ = Πk=1,2Diag.(n
2
1k, n

2
2k, n

2
3k, n

2
4k) > 0, (47)

where exponent (46) is incorporated into the n-characteristic quantities.
Isounit (47) represents the volume and density of isoparticles as well as the
impossibility for extended protons in the core of a star to solely have dis-
crete energy exchanges due to the extreme local densities and pressures,
in favor of integro-differential energy exchanges;

2) The Lie-Santilli isotheory has be formulated on a Hilbert-Myung-

Santilli isospace [45] Ĥ over the isofield of isocomplex isonumbers Ĉ [33];
3) Isostates ψ̂(r̂) ∈ Ĥ should have isonormalization

< ψ̂(r̂)|×̂|ψ̂(r̂) >=< ψ̂(r̂)|T̂ |ψ̂(r̂) >=

=

∫ +∞

−∞
ψ̂†(r̂)T̂ ψ̂(r̂)d̂r̂ = T̂ , (48)

were one should note the need for isointegrals and isodifferentials (23);
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Figure 9: Experimental evidence establishes that the wavepacket of particles has

approximately the same size 10−13 cm as that of all hadrons (top left). Conse-

quently, hadrons are composed by wavepackets in deep EPR entanglement (Sec-

tions 3.1 and 7.2.3) called ’hadronic medium.’ A corresponding structure holds for

nuclei, stars and black-holes due to partial or deep mutual penetration of hadron

constituents. The realization via the isotopic element of hadronic mechanics of

the pressure exercised by the hadronic medium on individual constituents (Figure

8) implies the progressive weakening of Heisenberg’s uncertainties first identified

in Ref. [47] of 1981, with progressive recovering of Einstein’s determinism [1] in

the structure of hadrons, nuclei and stars and its full recovering at the limit of

gravitational collapse studied in detail in Refs. [210]-[214]. Note that Heisen-

berg’s uncertainties remain valid for the center of mass of hadrons, but not so for

black-holes, thus illustrating the indicated full recovering of Einstein’s determin-

ism.
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4) The isoexpectation values of an observable A are given by

<̂A>̂ =< ψ̂(r̂)|×̂A×̂|ψ̂(r̂) >=< ψ̂(r̂)|T̂AT̂ |ψ̂(r̂) >; (49)

5) The realization of the linear momentum on isospaces over isofield
via the conventional differential calculus leads to major inconsistencies.
The correct formulation of the isolinear isomomentum is that via isoderiva-
tive (27) and it is given by

p̂×̂ψ̂(r̂) = −î×̂∂̂r̂ψ̂(r̂) = −iÎ∂r̂ψ̂(r̂), (50)

thus providing a forceful illustration of the need for the novel isodiffer-
ential calculus [34];

6) The isocanonical isocommutation rules are consequently given by

[ri ,̂pj] = î×̂δ̂ij = iÎδij, [ri ,̂rj] = [pî,pj] = 0, (51)

by illustrating that isomechanics is isolinear, that is, linear on isospace
over isofields because [pî,pj] = 0, although the theory is highly non-linear
when projected into our conventional spaces over conventional fields be-
cause, in that case, [pi, pj] 6= 0;

7) The iso-Schrödinger isoequation is then given by [20]-[24]

Ĥ×̂ψ̂(r̂) = [− 1

2m
4̂r̂ + V̂ (r̂)]×̂ψ̂(r̂) = Ê×̂ψ̂(r̂) = Eψ̂(r̂), (52)

and now represents extended, deformable and hyperdense particles at
all levels, including isocoordinates r̂, isostates ψ̂(r̂), isotopic element T̂ ,
isopotentials V̂ (r̂) iso-Laplacian 4̂r̂, etc. In particular, isostates verify the
isosuperposition principle on isospaces over isofields

ψ̂(r̂) = Σk=1,2ψ̂k(r̂), (53)

because the theory is isolinear as indicated above. Therefore, hadronic
mechanics resolves the inability by Heisenberg’s non-linear completion
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of quantum mechanics [16] to represent the constituents of a bound state
of particles with non-linear internal forces discussed in Section 5.

7.3.2. Confirmation of the EPR argument. It is evident that the
recovering of classical images in paper [210] established the foundation
for the recovering of Einstein’s determinism. These studies were initiated
by Santilli in the 1981 paper [47], continued in various papers due to
the need to achieve maturity in the formulation of isomathematics (see
monographs [23] [24]), and concluded in the 2019 paper [211] via the
following simple isotopy of the conventional derivation of Heisenberg’s
uncertainties

∆r∆p =
1

2
| < ψ̂(r̂)|×̂ [r̂̂,p̂] ×̂|ψ̂(r̂) >≈ 1

2
T̂ � 1, (54)

where the property T � 1 is established by all fits of experimental data
to date [25] [26] (see Section 7.6 for the analytic aspects).

By recalling that the value of the isotopic element is inversely propor-
tional to the increase of the density [211], isodeterministic principle (47)
establishes the progressive validity of Einstein’s determinism in the inte-
rior of hadrons, nuclei and stars, and its full achievement in the interior of
gravitational collapse (Figure 9).

The latter result is due to the fact that the isotopic element admits
a realization in terms of the space component of Schwartzchild’s metric
[211]

T̂ =
1

1− 2M
r

=
r

r − 2M
, (55)

where M is the gravitational mass of the body considered with ensuing
isodeterministic isoprinciple

∆r̂∆p̂ ≈ T̂ =
r

r − 2M
⇒r→0= 0. (56)
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Figure 10: A conceptual rendering of the ’attractive’ force between ’identical’

electrons in valence pairs first identified in Chapter 4 of the 2001 Ref. [30] against

their very big Coulomb repulsion, Eq. (6), thanks to the representation of the ex-

tended character of the electron wavepackets via isomathematics and isochemistry

with ensuing total EPR entanglement of the electrons. Note that this achievement

proves the last statement of the EPR argument to the effect that quantum wave-

functions cannot represent ’all elements of reality’ [1].

Note that the center-of-mass of hadrons and nuclei verifies quantum
uncertainties while that for stars and gravitational collapse verifies clas-
sical determinism.

Note also that isodeterministic principle (54) holds for the infinite
class of isounitary time evolutions of the theory, Eqs. (29).

7.4. Achievement of attractive force between valence
electrons.
Einstein, Podolsky and Rosen ended their historical paper [1] with the
statement: “While we have thus shown that the wavefunction does not pro-
vide a complete description of the physical [and we add chemical] reality,
we left open the question of whether or not such a description exists. We
believe, however, that such a theory is possible.”

In Section 3.5, we indicated that a primary insufficiency of quantum
chemistry is the lack of an attractive force between the identical electrons
in valence coupling, Eq. ( 5), and that their repulsive force is so big, Eq. (6),
to prevent any realistic hope to achieve an attractive force via quantum
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chemistry due to its linear, local, Hamiltonian and unitary structure.
In monograph [30] of 2001, particularly Chapter 4, Santilli achieved

the needed attractive force between identical valence electrons via a non-
unitary/isounitary completion of the wavefunction of quantum mechanics
which is a direct verification of the final EPR statement quoted above
(see Figure 10 and Section 5 of paper [214]).

The above result can be outlined as follows. Assume that the electrons
are perfectly spherical for which n2

k = 1, k = 1, 2, 3, and that their density
is ignorable for which n1

4 ≈ 1. Consider then a non-unitary transforma-
tion with the following simple realization of Eqs. (45)(46)

Î = UU † = e
Vhm
Vqm ≈ 1 +

Vhm
Vqm

T̂ = (UU †)−1 = e
−Vhm

Vqm ≈ 1− Vhm
Vqm

(57)

where Vhm is a quantum mechanical (qm) potential, for instance, the re-
pulsive Coulomb potential, and Vhm is a strongly attractive potential of
hadronic mechanical (hm), such as the Hulten potential,

Vqm = +
e2

r

Vhm = −W e−br

1− e−br
, (58)

where W is a normalization constant.
It is then easy to see that a non-unitary transformation can turn the

quantum mechanical repulsion between valence electrons into the attraction
needed to represent the ”element of reality” given by valence bonds

UVqmU
† ≈ Vqm(1 +

Vhm
Vqm)

= Vqm + Vhm =
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= +
e2

r
−W e−br

1− e−br
≈ K

e−br

1− e−br
(59)

where the last step is due to the fact that the Hulten potential behaves
at short distances like the Coulomb potential [20]. However, the former
is much stronger than the latter, by therefore allowing the absorption of
the Coulomb potential into the Hulten potential irrespective of whether
the Coulomb potential is attractive or repulsive. In this way, the final
equation solely shows the Hulten potential with the new, positive, renor-
malization constant K (see page 833 of Ref. [20], Chapter 4 of Ref. [30],
and paper [56]).

To achieve the corresponding iso-Schrödinger equation, recall rules
(28) for the nonunitary transformation of the linear into the isolinear mo-
mentum

Upψ(r)U † = UpU †(UU †)−1Uψ(r)U † = p̂×̂ψ̂(r̂) =

= −î×̂ ∂̂

∂̂r̂
ψ̂(r̂) = −iÎ∂r̂ψ̂(r̂). (60)

Under the above properties, the application of non- unitary transfor-
mation (57) to the conventional Schrödinger equation (5) for the valence
electron pair with repulsive force then yields the iso-Schrödinger equa-
tion for their attraction as in the physical reality, which we write in its
projection into the conventional Hilbert space over the field of complex
numbers (see Section 2 of Ref. [214] for its detailed derivation)

(− 1

m̄
∆̂r −Ke

−br

1−e−br )ψ̂(r) = Eψ̂(r), (61)

where vm̄ is the reduced form of isorenormalized masses, Eq. (56).
The above results confirm the final statement by Einstein, Podolsky

and Rosen quoted above because the wavefunctionψ(r) of quantum chem-
istry cannot represent the physical reality of the attraction between the
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identical valence electrons in molecular bonds in favor of its comple-
tion into the isowavefunction ψ̂(r̂) of hadronic chemistry. A more recent
derivation of the attraction between valence electrons is available in Sec-
tion 2.8 of paper [214].

It should be indicated that valence electron bonds appear to be one of
the most significant realizations of the EPR entanglement (Figures 2 and
Section 7.2.3) apparently occurring at the limit of null mutual distance with
a considerable broadening of the implications of entanglement in physics,
chemistry and biology. In fact, by merely admitting the evidence, we
learn that the entanglement of wavepackets allows particle to influence
each other at a distance, we learn from isotopic element (37)-(39) that
entanglement plays a crucial role in nuclear forces (see also Section 8),
and we now learn that, at the limit of null mutual distance, entanglement
may alter the very characteristics of particles, a feature called mutation,
which is evidently needed to turn a natural repulsion into an attraction.

It may be of some interest to note that the indicated mutation of va-
lence electrons can be quantitatively represented by the transition from
particles characterized by a unitary irreducible representation of the spino-
rial covering of the Poincaré symmetry P(.) into isoparticles characterized
by isounitary isoirreducible isorepresentations of the Lorentz-Poincaré-
Santilli-isosymmetry P̂(.) [66] - [69] (see reviews Ref. [213]).

In fact, the transition from P(.) to P̂(.) implies, in general, a mutation
of all intrinsic characteristics of entangled particles also called isorenor-
malization because caused by the isotopic element representing non-Hamil-
tonian interactions. When the entanglement is limited, as occurring in a
nuclear structure, the spin 1/2 of the constituents is maintained, but when
the entanglement is total, as occurring in valence bonds, all characteris-
tics of the particles are expected to be mutated, including the charge.

7.5. Removal of quantum divergencies.
Recall that the divergencies of quantum mechanics originate on the sin-
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gularity of Dirac’s delta function

δ(r) =
1

2π

∫
−
∞+∞eikrdk, (62)

at the origin r = 0.
It is easy to see that there exist an isotopic element for which the singu-

larity at the origin r = 0 is removed for the Dirac-Myung-Santilli isodelta
isofunction [45] (see also Refs. [47] - [51]), as illustrated by the following
simplest possible formulation

δ̂(r) =
1

2π

∫
−
∞+∞êikrd̂k =

1

2π

∫
−
∞+∞eiT̂ krdk. (63)

Similarly, recall that the isotopic product A ? B = AT̂B must be ap-
plied to the totality of the products, thus including all products appearing
in perturbative series. But the isotopic element T̂ has very small values
in all known applications. Consequently, perturbative series that are gen-
erally divergent in quantum mechanics and chemistry are turned under
isotopy into strongly convergent series. This is illustrated by fact that,
given a divergent perturbative series

A(t) = A(0) + (AH −HA)/1! + ....→∞, (64)

there always exist a value of the isotopic element T̂ causing the strong
convergence of the isotopic series

A(t) = A(0) + (AT̂H −HT̂A)/1! + .... = K �∞, T̂ � 1. (65)

Consequently, the validity of Einstein’s[ determinism per Section 7.3 im-
plies the removal of quantum mechanical divergencies (see Corollary 3.7.1,
page 128, Ref. [213]).

The actual verification of the above important property has been pro-
vided by D. D. Shillady and R. M. Santilli in papers [31] [32] with the
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proof that the perturbative series of hadronic chemistry converge at least
one thousand times faster than the corresponding quantum chemical series.

In Santilli’s view, the above rapid convergence of calculations for the
EPR entanglement is an important advantage over the conventional quan-
tum entanglement, particularly for applications such as that for comput-
ers based on the entanglement of electrons.

Note that the new computers are called in this Overview EPR comput-
ers, instead of ’quantum computers’, due to the impossibility by quan-
tum mechanics to provide a representation of the entanglement of elec-
trons discussed throughout this work.

7.6. Representation of irreversible processes.
As indicated in Section 3.3 and Figure 5, the insufficiency of quantum
mechanics that stimulated Santilli’s lifelong research on the completion
of quantum mechanics according to the EPR argument [1] is the inabil-
ity to represent time-irreversible events, including energy-releasing pro-
cesses ,due to the invariance under anti-Hermiticity of the Lie brackets
for Hermitean operators , [A,B] = −[A,B]†.

The above occurrence stimulated the construction of the Lie-admissble
branch of hadronic mechanics [6]-[9], [19]-[25], [38]-[39], with time evo-
lution (13)-(14) (see Section 2 of Ref. [212] for a review).

Discussions during the 2020 Teleconference [0] established that geno-
topic elements R̂ and Ŝ represent the external terms F > 0 in Lagrange’s
and Hamilton’s equations

d

dt

∂L(t, r, v)

∂v
− ∂L(t, r, v)

∂r
= F (t, r, v),

dr

dt
=
∂H(t, r, p)

∂p
,

dp

dt
= −∂H(t, r, p)

∂r
+ F (t, r, p). (66)

In fact, in his Ph. D. thesis of the mid l960s [6]-[8], Santilli accepted
the EPR argument [1] on the lack of completeness of quantum mechan-
ics because quantum mechanics cannot represent the external terms F of
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Lagrange’s and Hamilton’s analytic equations which is the analytic rep-
resentation of the irreversibility of nature.

Santilli noted that the brackets (A,F,H) of the classical time evolution
with the external terms

dA

dt
= (A,H, F ) =

∂A

∂r

∂H

∂p
− ∂H

∂r

∂A

∂p
+
∂A

∂r
F, (67)

violate the right distributivity and scalar laws, thus prohibiting the con-
struction of a completion of quantum mechanics characterized by an al-
gebra as understood in mathematics.

Therefore, Santilli turned brackets (67) into the identical but bilinear
form verifying the axioms of an algebra

dA

dt
= (A,H) =

∂A

∂r

∂H

∂p
− ∂H

∂r
S
∂A

∂p
,

S = 1− F

∂H∂r
. (68)

The algebra characterized by the new brackets (A,H) turned out to be
Lie-admissible according to Albert [9].

In subsequent studies, Santilli constructed the operator image of brack-
ets (57) with the following realization of the genotopic elements R̂ and Ŝ

i
dA

dt
= (A,H) = A < H −H > A =

= AR̂H −HŜA = AH −HA− AF,
R = 1, Ŝ = 1− F/H, (69)

that was proved in paper [41] to be directly universal for the representation
of all possible (non-singular) non-conservative, thus irreversible systems
(”universality”) directly in the coordinates of the experimentalist (”direct
universality”) without any need for the transformation theory.
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Note that the isotopic element T̂ is a particular case of the genotopic
element Ŝ and that, in numeric values, F < H . Consequently, Eqs. (69)
establish the analytic origin of the important property that the isotopic ele-
ment is smaller than 1, T̂ = 1 − F/H < 1 which property is important for
the regaining Einstein’s determinism.

Additionally, Eqs. (69) provide a quantitative identification of the in-
sufficiency of quantum mechanics for nuclear fusions, evidently given by
the absence in the quantum mechanical time evolution of the extra term AF
representing irreversibility.

It is important to clarify that, despite the lifting of Lie into Lie-admissible
algebras, quantum mechanical axioms are indeed preserved. This im-
portant property can be best seen in the axiomatic representation of irre-
versible systems via Lie-admissible formulations whose main aspects are
the following.

A tacit assumption of quantum mechanics is that the product of a
quantity A times B to the right A→ B is equal to the product of B times
A to the left A ← B = A → B (which property is different than commu-
tativity AB = BA), and the same property holds for isomechanics.

In Lie-admissible formulations, motion forward (backward) in time is
represented by the axiom of restricting all products to be ordered to the
right A > B (to the left A < B). The representation of irreversibility is
then assured when the numeric values of the two products are different,
A > B 6= A < B. This results in the following ordered products and units
called genoproducts and genounits to the right and to the left

A > B = AR̂B, Î> = 1/R̂,

A < B = AŜB, Î< = 1/Ŝ,

R̂ > 0, Ŝ > 0, R̂ 6= Ŝ. (70)

The above basic assumptions imply the duplication of isomathemat-
ics and related isomechanics, one for product to the right and one for
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product to the left whose review is omitted for brevity [24]. The combi-
nation of forward and backward mathematics and mechanics are known
as genomathematics and genomechanics.

An important point is that the abstract axioms of quantum mechanics
remain fully valid for each direction of time, including the preservation of the
abstract axioms of numeric fields [33], functional analysis [23] differential
calculus [34], etc, merely realized in a time-ordered isotopic form.

It is generally believed that genomathematics and genomechanics are
too complex for physicists. This is unfortunate because, as shown in Ref.
[35], the construction of genomathematics is truly elementary. The com-
pletion of a quantum mechanical model of nuclear fusion into a form
inclusive of irreversibility, is given by subjecting �all quantum mechanical
quantities and operations to the following two non-unitary transforma-
tions U and W , including Planck’s unit ~ = 1, products, etc.

1→ Î> = U1W † = 1/Ŝ,

1→ Î< = W1U † = 1/R̂,

AB → U(AB)W † = (UAW †)(UW †)−1(UBW †) = AŜB = A > B,

AB → W (AB)U † = (WAU †)(WU †)−1(WBA†) = AR̂B = A < B. (71)

As illustrated in the next section, the treatment of energy releasing
processes via the Lie-admissible branch of hadronic mechanics has been
done via the simple, dual, non-unitary transformation (71) of quantum
mechanical models.

7.7. EPR completion for matter-antimatter annihila-
tion.
As indicated in Section 3.4 and Figure 6, the additional insufficiency of
quantum mechanics studied at the 2020 teleconference [0] has been the
apparent impossibility of representing the mechanism of particle-antipar-
ticle annihilation via the conventional charge conjugation, Eq. (4).
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This insufficiency lead Santilli to propose in papers [62] [63] of 1985
a fifth EPR completion of quantum mechanics, that characterizes the isod-
ual map (denoted with an upper symbol d) which is also an anti-Hermitean
map like charge conjugation, but it is applied to the totality of the quanti-
ties Q representing particles and their operations with no known excep-
tion, such as

Q(t, r, E, ψ, ...)→ Qd(td, rd, Ed, ψd, ...) =

= −Q†(−t†,−r†,−E†,−ψ†, ...). (72)

The above map implies that antiparticles have the negative energyEd =
−E < 0 predicted by Dirac [11]which is necessary to represent particle-
antiparticle annihilation [29].

The novel mathematics characterized by isodual map (72) is known
as isodual mathematics [29] [57], and it is based on the isodual unit

1d = −1, (73)

isodual numbers [33]
nd = n1d = −n, (74)

isodual product

A×d B = AT dB = −AB, 1d = 1/T d = −1, (75)

isodual spacetime

xd2d = xdµ ×d ηdµν ×d xdν = −x2, (76)

and isodual image of 20th century applied mathematics [34] [32].
On axiomatic grounds, isodual mathematics resolves the violation of

causality by particles with negative energy identified by Dirac [11] be-
cause negative energies referred to negative units are as causal as positive
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energies referred to positive units, and the same holds for time and other
physical quantities.

On experimental grounds, the isodual map is equivalent to charge
conjugation at the particle level. Consequently, the isodual theory of anti-
matter represents all available experimental data in particle physics [32].

A basic novelty of the isodual theory of antimatter is that isodual-
ity (72) predicts that antimatter emits a new light called isodual light [75]
whose characteristics are all opposite to those of matter emitted light,
thus implying new annihilations of the type

e− + e+ → γ + γd. (77)

which are independently requested by the symmetry of Dirac’s equation
and of the l. h. s. of the above decay known as isoselfduality, namely, the
invariance under the isodual map (72) [32].

In particular, light emitted by antimatter is predicted not to be visible by
any Galileo-type refractive telescopes with convex lenses available on Earth
or in terrestrial orbits, because it requires for its detection a basically new
type of telescopes currently under development. The cosmological im-
plications of the isodual theory of antimatter are discussed in debate [76]
and Ref. [163].

8. APPLICATIONS OF EPR COMPLETIONS

8.1. Foreword.
Following various requests, in this section we provide an outline of the
novel applications permitted by the recent verifications [210]-[214] of the
EPR argument [1] in: nuclear physics (Section 8.2), chemistry (Section
8.3), relativities (Section 8.4), and high energy scattering experiments (Sec-
tion 8.5).

Since the outline presented in this section is mainly conceptual with
a bare minimum of quantitative treatments, the study of the quoted lit-
erature is essential for a serious understanding of the treated topics. In
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addition, the literature in the field is quite vast by therefore forcing us for
brevity to quote only the originating papers. Comprehensive bibliogra-
phies can be obtained from the quoted reviews.

Needless to say, the fundamental methods of this section are the iso-,
geno- and hyper-mathematics, with particular reference to the iso-, geno-
and hyper-completions of Lie’s theory, and corresponding iso-, geno- and
hyper-mechanics and chemistry [21]-[30]. To assist the non-initiated reader,
Tutoring Lectures in the above methods have been provided in Refs.
[143]-[146].

In inspecting this section, interested readers should keep in mind that
the basic axioms of 20th century theories are preserved in their entirety,
and merely subjected to the broadest possible realization.

Consequently, this section is intended to illustrate the remarkable broad-
ening of the prediction and representational capabilities of the basic ax-
ioms of 20th century theories, as well as to point out that technically un-
substantiated criticisms of the applications reviewed in this section are,
in reality, criticisms on 20th century theories.

Another important aspect needed for the understanding of the appli-
cations herein reviewed is that 20th century theories have one single for-
mulation, the conventional one. By contrast, their isotopic completions
have two formulations, that on isospaces over isofield and their projection
on conventional spaces over conventional fields.

Recall that 20th century Hamiltonian interactions between point-like
particles cause alterations of the characteristics of particles called renor-
malization. It is known since the original 1978 proposal to construct hadronic
mechanics that contact non-Hamiltonian interactions between extended
particles causes different alterations of the characteristics of particles called
isorenormalizations (see Section 5 of Ref. [20], and Refs [23] [24]). The
latter renormalizations are triggered by the isotopic element T̂ . Conse-
quently, the conventional notion of particle is no longer applicable under
EPR completion in favor of the covering notion of isoparticles pointed out
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in the preceding section [66]-[70].
As an illustration, the assumption that the particles in a valence bond

are ordinary electrons leads to major inconsistencies that remain unde-
tected by the non-initiated reader. Similarly, the assumption that the par-
ticles in the synthesis of the neutron from the hydrogen in the core of stars
are conventional protons and electrons leads to inconsistencies so serious
to prevent a consistent synthesis in disagreement with the experimental
evidence on the existence of the neutron synthesis in nature.

8.2. Applications of EPR completions in nu-
clear physics.

8.2.1. Representation of nuclear magnetic moments. As
it is well known, the magnetic moment of a rotating charged sphere in-
creases (decreases) when said sphere is deformed into an oblate (prolate)
spheroid while keeping constant its angular momentum. Enrico Fermi,
Victor Weisskopf and other founders of nuclear physics suggested in the
1940’s that the anomalous values of nuclear magnetic moments (Section
3.2 and Figure 3) may be due to a deformation of the charge distribution
of protons and neutron caused by strong nuclear interactions.

Despite its manifestly plausible character and authoritative origina-
tion, the hypothesis of the deformability of nucleons has not yet been
accepted by the mainstream physics community to date (with due ex-
ceptions) because it would require a modification of quantum mechanics
essentially along the EPR argument [1]. In any case, point-like particles
cannot be deformed.

The Lie-isotopic completion of quantum mechanics with two-body
isounit (45), related deformation of charge distributions (Figure 14), and
exact representation if the Deuteron magnetic moment first achieved in
Ref. [40] of 1994, have been proposed to honor the legacy by Fermi, Weis-
skopf and others without altering the basic axioms of quantum mechan-
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Figure 11: A view of the deformation of the proton and the neutron in the

Deuteron structure that permitted the first exact representation of the deuteron

magnetic moment in Ref. [40] of 1994. Note that the triplet coupling used to

represent the Deuteron spin 1 is unstable according to quantum mechanics. The

resolution of this paradoxical occurrence is outlined in Section 8.2.5 [26] [213].

ics.
However, in so doing the constituents of nuclei are no longer point-

like protons and neutrons per 20th century definition, but extended, thus
deformable isoprotons p̂+, isoneutrons n̂0, or isonucleons, as defined by
the LPS isosymmetry. In fact, the 1998 proof of the EPR argument [210]
applies the underlying isomathematics and isomechanics for the exact
representation of the nuclear magnetic moment of the Deuteron D =
(p̂+, n̂0)hm , as well as of heavier nuclei, precisely along the legacy by
Fermi, Weisskopf and others indicated above.

It should be noted that the deformability of nucleons was preliminar-
ily confirmed by the 1981 neutron interferometric experiments [43] and
the adjoining theoretical study on the Lie-admissible completion of the
rotational symmetry [44].

Additionally, paper [210] used isomathematics and isomechanics for
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Figure 12: At the mutual distance of 10−13 cn, the proton and the electron expe-

rience the extremely big Coulomb attraction of 230 Newtons, Eq. (6), although

quantum mechanics prohibits their bound state. In this figure we depict the two

bound states predicted by hadronic mechanics [68] [84] [214]: the neutroid in the

left for a singlet coupling with total spin 0 and 7 s mean-life, and the neutron in

the right with spin 1/2 and 900 s mean-life under the total compression of the

electron inside the proton in the core of stars (Section 8.2.2).

the reconstruction of the exact ŜU(2)-isospin symmetry when believed
to be broken by electromagnetic interactions. This result was achieved
via the representation of the proton-neutron mass difference with Bohm’s
hidden variable λ.

The systematic reconstruction of all space-times continuous and dis-
crete symmetries at the isotopic level when believed to be broken is pre-
sented in Refs. [23] [24].

Note that, according to the basic axioms of quantum mechanics, the
triplet coupling of the proton and the neutron of Figure 11 generally used
to represent the spin 1 of the deuteron, is highly unstable, The only stable
quantum mechanical bound state is the singlet, but in this case the total
spin of the deuteron would be 0 contrary to experimental evidence. The
resolution of this paradoxical situation via hadronic mechanics has been
achieved in Refs. [26] [213] and will be outlined in Section 8.2.5.
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8.2.2. Representation of the neutron synthesis. Nuclei are
assumed to be bound states of protons and neutrons under strong inter-
actions. However, isolated neutrons are naturally unstable. Therefore, a
deeper representation of nuclear structures requires the understanding of
the mechanism in which neutrons become stable when they are members
of a nuclear structure. In turn, this understanding can best be achieved
in the study of the neutron synthesis from a proton and an electron in the
core of stars.

The problem is that the neutron synthesis is impossible for quantum
mechanics despite the enormous Coulomb attraction between the proton
and the electron at short distances per Eq. (6), because the mass of the
neutron is 0.784MeV bigger than the sum of the masses of the proton and
of the electron, in which case the Schrödinger equation would require a
positive potential energy producing a mass excess which is anathema for
quantum mechanics.

The 1978 Harvard University paper [20] assumed the above insuffi-
ciency of quantum mechanics as a clear evidence on the lack of com-
pletion of quantum mechanics according to the EPR argument [1] and
proposed the construction of the axiom-preserving hadronic mechanics
precisely for the representation of the neutron synthesis from the hydro-
gen.

In view of the list of insufficiencies of the conjecture that the hypo-
thetical and directly undetectable quarks are the physical constituents
of hadrons [38], paper [20] presented in Section 5 a structure model of
the octet of mesons as hadronic bound states of actual physical particles
produced free in their spontaneous decays with the lowest mode. Note
that the model achieved compatibility with the SU(3) model of the time
by merely restricting it to the sole quantum mechanical classification of
mesons, and the use of hadronic mechanics for the structure of individual
mesons due to the known inapplicability of quantum mechanics in the
interior of hadrons, much along the dichotomy classification/structure
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set in history for atoms and other structures.
Following the development of the Lie-Santilli isotheory [22] and its

application to the isotopies of the SU(2)-spin symmetry [62] [63], hadronic
mechanics was used in Ref. [84] for the first known non-relativistic rep-
resentation of all characteristics of the neutron as a hadronic bound state
of an isoelectron ê− and an isoproton p̂+

n = (ê−, p̂+)hm, (78)

resulting in the prediction of two hadronic bound states: the first is called
neutroid and occurs for the singlet coupling isoelectron-isoproton with
spin 0 and 7 s mean-life (left of Figure 12); the second is given by the
neutron with spin 1/2 and 900 s mean-life, which occurs under the total
compression of the isoelectron inside the isoproton (right of Figure 12).

The representation of the rest energy, mean life and charge radius of
the neutron were represented by a non-unitary transformation of the con-
ventional Schrödinger equation (1) with isotopic element of type (57) and
ensuing iso-Schrödinger equation of type (61) in which the fine spectrum
of the Hulten potential is constrained to have one value only, the neutron.

The representation of the spin 1/2 required the irregular isotopies
ŜO(3) and ŜU(2) to represent the hadronic angular momentum of the iso-
electron when compressed inside the hyperdense isoproton, thus being
forced to rotate with its spin, resulting in an orbital eigenvalue 1/2 which
is impossible for the unitary SU(2) symmetry of quantum mechanics, but
readily possible for the non -unitary ŜU(2) isosymmetry.

The representation of the anomalous magnetic moment of the neu-
tron became possible thanks to the contribution from the rotation of the
isoelectron inside the isoproton which is completely absent in quantum
mechanics (see the review and upgrade in paper [214]).

The relativistic representation of all characteristics of the neutron in its
synthesis from the hydrogen was achieved in the 1993 paper [68] written
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at the Joint Institute for Nuclear Research, Dubna, Russia (see also the
1995 paper [69] published in China).

By ignoring in first approximation the negative binding energy due
to the Coulomb interactions between the isoelectron and the isoproton
(because the Coulomb attraction is absorbed by the Hulten potential),
iso-Schrödinger equation (62) admits physically meaningful solutions for
the Hulten potential only when the isorenormalized rest energy of the
isoelectron, Eq. (36), acquires the value

m̄ê =
me

n2
4

= 0.511/n2
4 = 1.295 MeV, (79)

from which we obtain the density value

n2
4 = 0.394, (80)

which is fully within the values of similar densities, such as that of the
proton-antiproton fireball obtained from the fit of the experimental data
of the Bose-Einstein correlation, which are given by the value n2

4 = 0.428
of Ref. [85] , Eq.(10.27a), page 127 and the value n2

4 = 0.364 of Ref. [86],
Table I, page 441.

As recalled earlier, the radial equation of iso-Kein-Gordon equation
(35) or the iso-Dirac equation (163), do not admit physically meaningful
solution in the event the rest energy of the neutron is smaller than the sum
of the rest energies of the electron and of then proton, thus suggesting
isorenormalization (79) that includes the missing 0.782 MeV .

A primary function of the iso-Minkowskian geometry [70] is the char-
acterization of the isorenormalization of the rest energy of the electron
caused by non-Hamiltonian interactions in the interior of the neutron in
such a way to avoid the indicated ”mass-energy defect” and allow isorel-
ativistic equations to have physical solutions.

Needless to say, the above relativistic effects mandate the study of
the laws applicable in the hyperdense medium inside the neutron, which
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study is rudimentarily done in Section 8.4.4, see in particular Isoaxiom
IV, Eqs. 133 (see alsoVolume IV or Ref. [87] for a 2008 review and Ref.
[214] for a recent update).

In Section 8.2.5, we shall outline the significance of the neutron syn-
thesis for the representation of nuclear data, such as the stability of nuclei
as bound state of protons and neutrons despite the natural instability of
the neutron when isolated.

8.2.3. Etherino or neutrino? Due to the respect toward the
memory of W. Pauli and E. Fermi, it took years to indicate that in both,
the non-relativistic [84] and relativistic [68] derivations, there is no energy
available for the neutrino due to the fact that the neutrino is written in the
right-hand-side of the synthesis,

p+ + e− → n+ ν, (81)

while 0.784 MeV are missing for the synthesis of the neutron itself.
Additionally, the isotopic ŜU(2)-spin isosymmetry established that

there is no spin available for the neutrino because the total spin of the
isoelectron inside the neutron must be 0. This is due to the fact that the
orbital motion of the isoelectron inside the isoproton must be equal to
the isoproton spin to avoid huge resisting forces and be opposite to the
isoelectron sped for a stable singlet coupling (right of Figure 12).

These stability conditions confirm the original conception of the neu-
tron synthesis by Rutherford in 1920 [88],

p̂+ê− → n. (82)

In summary, despite a widespread oblivion in the best Ph. D. schools
of physics, the neutron synthesis is indeed the most fundamental event
in nature with yet unsolved basic problems. For instance, it is gener-
ally believed that the missing energy of 0.784 MeV is provided by the
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latent energy in the interior of stars. However, at the initiation of the pro-
duction of light, our Sun synthesizes 1038 neutrons per seconds. In the
event the missing energy is provided by the latent energy, stars would
lose 1038 MeV per seconds, thus cooling down and not being able to pro-
duce light.

It is also believed that the missing energy in the neutron synthesis
is provided by the p+ − e− relative kinetic energy. However, the scat-
tering cross section of protons and electrons at about 1MeV is so small,
10−20 Barns, to prohibit any synthesis.

Independently from the above aspects, in supernova explosions we
have the emission of many times the entire energy released by the Sun
in its entire life of 10 billion years. Calculations have shown that the
emission of such enormous amount of energy in one single explosion
cannot be consistently represented via the sole admission of quantum
mechanical processes.

In view of the above, paper [89] of 2007 suggested that the missing
energy in the neutron synthesis is provided by the ether as a universal
substratum with extremely high energy density (to propagate light at
300K km/s) via a longitudinal, spin 0 impulse called etherino, (denoted
with the letter ”a” from the Latin aether) and placed in the left-hand-side
of the synthesis,

p+ + a+ e− → n. (83)

It appears that the experimental data of indirect events predicted by
the neutrino hypothesis can be numerically interpreted via the etherino
hypothesis, of course, jointly with corresponding reinterpretations in the
standard model for its sole use for the classification of particles.

The historical criticism against the ether that it would violate special
relativity has been long dismissed because we would never be able to
identify a reference frame at rest with the ether. The additional historical
criticism against the ether as a physical medium given by the aethereal
wind that should be experienced by moving masses, has also been de-
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bunked long time ago (see the 1956 paper [90]) because, from the known
law E = hν, the electron is characterized by oscillations with the fre-
quency of

Hze = 1.25× 1020Hz. (84)

The idea that the above oscillations are those of a tiny mass inside the
electron has no scientific credibility. Hence, the sole known plausible hy-
pothesis is that the electron is characterized by oscillations of one point of
the ether with frequency (84). When the electron moves, said oscillations
are transferred to different points of the ether with no possible “aethereal
wind,” and the same holds for all particles and, therefore, for matter. In-
ertia is the resistance by the ether against changes in the transfer speed of
the oscillations to new points.

Note that, far from being pure philosophical considerations, the prob-
lem of the structure of the electron is crucial to achieve an understand-
ing of the mechanism according to which two identical valence electrons
bond themselves in molecular structures against their huge Coulomb re-
pulsion (see Section 8.3.1).

Note also that the transverse character of electromagnetic waves (oscil-
lations perpendicular to the direction of motion) mandates that the ether
should have a ”rigid-type” medium, while, by contrast, a ”fluid-type”
structure of the ether would be irreconcilable with the transverse charac-
teristics of light.

To illustrate the implications of the problem here considered, the above
view on the ether would imply that matter is completely empty and space
is completely full to such an extent that, in case we could stop time, the
entire universe would disappear.

Also, the etherino hypothesis provides a concrete example of the his-
torical hypothesis of the continuous creation of matter in the universe, oc-
curring not only for the neutron synthesis in the core of stars, but also for
supernova explosions and other possible events.

Recall that, according to available measurements, the Sun loses via
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radiation the rather sizable amount of

∆M loss
sun = −4.26× 109 Kg per second. (85)

In the event the etherino hypothesis is correct, the above loss would
be mostly counterbalanced by the synthesis in the Sun of 1038 neutrons
per second implying an increase of its mass by about [163]

∆M gain
sun = +2.87× 108 kg per second, (86)

resulting in the rather small loss by the Sun of about 3f73 Kg/s, which
is well within current errors, plus secondary contributions, such as accre-
tion of particles during travel in intergalactic space.

Rather than rejecting the above view due to its novelty, an important
scientific question is whether current knowledge in planetary trajectory
do set an upper value on the possible loss of mass by the Sun per second
(additional aspects are treated in Ref. [163] and in the EPR Debate [91]
and Ref. [136]).

8.2.4. Industrial synthesis of neutrons from the hydro-
gen. Tests on the laboratory synthesis of the neutron from the hydrogen
were initiated in the late 1940’s with support by Albert Einstein, but the
related papers were never accepted for publication by scientific journals
of the time. During the last of these initial tests, don Carlo Borghi de-
tected nuclear transmutations apparently caused by particles he called
neutroids emitted by the apparatus without the direct detection of syn-
thesized neutrons (see the historical account [92]).

Following, and only following, the theoretical understanding of the
neutron synthesis via hadronic mechanics (Section 8.2.2.), systematic tests
on the laboratory synthesis of the neutron were initiated in the early
2000’s. The first actual detection of the emission of neutrons synthesized
from a hydrogen gas were presented in paper [93] of 2007, with the re-
peated detection of synthesized neutrons as well as the confirmation of
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Figure 13: A view of the Directional Neutron Source (DNS) described in Section

8.2.4 which synthesizes on demand neutrons from the hydrogen in the desired

direction, flux and energy.

the synthesis of don Borghi’s neutroids via their stimulated nuclear trans-
mutations (see paper [214] for a recent review).

The neutron synthesis was achieved via the use of a special electric
arc submerged within a hydrogen gas which: ionizes the gas, synthe-
sizes the neutroid and then synthesizes the neutron by ”compressing”
the isoelectron inside the isoproton much according Rutherford’s origi-
nal conception [88].

These tests led to the formation of the U. S. publicly traded company
Thunder Energies Corporation (now Hadronic Technologies Corporation)
for the manufacturing and sale of equipment called Directional Neutron
Source (DNS) which produces on demand a neutron beam synthesized
from the hydrogen gas in the desired direction, flux and energy (see Fig-
ure 13, the latest systematic tests [94] and the lectures by S. Beghella Bar-
toli in the 2020 Teleconference [0]).
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Subject to appropriate funding, the DNS is intended to: 1) Provide
the clear detection of nuclear weapons or materials smuggled in luggage;
2) Detect precious metals in mining operation; 3) Test weldings of thick
plates in naval constructions; and other applications.

8.2.5. Representation of Deuteron data. As indicated in Sec-
tion 3.2, a second important verification of the EPR argument in nuclear
physics is the inability by quantum mechanics to represent the Deuteron
magnetic moment, spin, stability and other data for isolated Deuterons in
their ground state (because representations in excited orbits exist but they
do not represent the physical reality).

The representation of all data of the neutron in its synthesis from
an isoelectron and an isoproton allowed a new structure model of the
Deuteron as a hadronic bound state of one isoelectron and two isopro-
tons

D = (p̂+↓ , ê
−
↑ , p̂

+
↓ )hm, (87)

first presented in Ref. [26], Section 2.5, page 181 on, continued in various
works (see the references of paper [212]), and completed in Ref. [214].

These studies allowed the representation of all experimental data of
the Deuteron in its true ground state as follows:

1) The representation of the total spin J = 1 of the deuteron by appar-
ently confirming that the spin 1 suggests the Deuteron to be a three-body
bound state according to the structure (87). Note that the sole spin repre-
sentable via quantum mechanics for a stable bound state of a proton and
a neutron in the ground state is the singlet

D = (p+↑ , n
0
↓)qm, (88)

for which J = 0;
2) The representation of the anomalous magnetic moment of the Deute-

ron thanks to the anomalous magnetic of the neutron (Section 8.2.2.).
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Figure 14: An illustration of the structure of the Deuteron following the neutron

synthesis according to hadronic mechanics (Figure 12), composed by two isopro-

tons with parallel spin 1/2 and one interconnecting isoelectron in singlet coupling

with the isoprotons and orbital momentum inside the isoprotons constrained with

total angular momentum 0 (Section 8.2.2). These features imply a very stable,

gear-type, three-body configuration, Eq. (87), which has allowed the first known

representation of all Deuteron data in its ground state, including magnetic mo-

ment, spin, stability, and other features [26] [214].
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3) The representation of the stability of the Deuteron despite the natu-
ral instability of the neutron because isoprotons and isoelectrons are per-
manently stable particles.

Section 7 of paper [214] presents an upgrade of the Deuteron model
of Ref. [26] with a more accurate representation of the magnetic moment
and other nuclear data, thanks to the first known explicit representation of
strong nuclear interactions with isotopic element (38)(39).

Paper [95] of 2016 used the above results to achieve a representation
of the magnetic moment and spin of all stable nuclei.

8.2.6. Reduction of matter to isoprotons and isoelec-
trons. The preceding results, with particular reference to the reduction
of the neutron to a hadronic bound state of an isoproton and an isoelec-
tron, as well as the ensuing representation of nuclear data in their ground
state, imply the reduction of all matter in the universe to isoprotons and
isoelectrons, including protons and electrons as a particular case [26].
Note that neutron stars are equally reduced to isoprotons and isoelec-
trons.

8.2.7. The synthesis of the pseudo-proton. Following the
synthesis of the neutron via the compression of an electron within the
hyperdense proton, by following knowledge established fro the neutron
synthesis (Figure 12), the Directional Neutron Source (DNS) of Section
8.2.4, progressively synthesizes, in a statistical lesser amount, two nega-
tively charged strongly interacting particles. The first is given by a hadronic
singlet coupling of an electron and a neutron called protoid and denoted
p̄−1 [96] with spin 0, mass essentially that of the neutron and predicted
mean-life of about 5 s (left of Figure 12) whose existence is predicted from
the fact that non-Hamiltonian interactions caused by deep EPR entangle-
ment according to structure equation (61) are insensitive to charges. The
second particle is given by the compression of the electron, this time, in-
side the hyperdense neutron, called pseudo-proton p̄−2 [96] (Figure 15) with
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Figure 15: An illustration of two negatively charged strongly interacting particles

predicted by the EPR completion of quantum into hadronic mechanics with mean-

lives of the order of seconds and mass close to that of the neutron: the protoid

(on the left) with spin 0, which is a hadronic singlet state of an electron and a

neutron, and the pseudo-proton (on the right) which occurs when the electron is

totally compressed inside the neutron with spin 1 (Section 8.7).

spin 1, mass essentially that of the neutron and mean-life of the order of
7 s (see also [214] for a recent review).

In regard to the spin of the pseudo-proton, we recall that electrons
couple in singlet. Therefore, when the external electron is compressed in-
side the neutron, it couples in singlet with the pre-existing internal elec-
tron, resulting in a singlet electron pair with total spin 0 which is con-
strained to rotate by the hyperdense medium inside the neutron with the
neutron spin 1/2, resulting in the total spin 1. Different models are faced
with the extreme resistance that would be experienced by an extended
wavepacket to rotate inside and against the motion of the hyperdense
neutron medium.

The emerging new technology, called pseudo-proton irradiation is made
possible by the fact that, even though the pseudo-proton is evidently un-
stable, its mean-life is nevertheless of the order of a few seconds (a frac-
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tion of the 900 s mean life of the neutron), thus being suitable for appli-
cations.

On industrial grounds, by noting that pseudo-protons are strongly at-
tracted by nuclei,pseudoproton irradiation is significant to study new clean
nuclear energies, recycling of nuclear waste, and other intriguing appli-
cations studied in Section 8.2.10.

On medical grounds, pseudo-proton irradiation is under considera-
tion for cancer treatment via a localized low energy beam in replacement
of proton irradiation due to its excessive invasive character caused by the
high energies needed to overcome proton-nucleus repulsion.

It should be noted that the existence of the pseudo-proton, let alone
its long mean life for particle standards, is impossible without the EPR
completion of quantum into hadronic mechanics.

8.2.8. The synthesis of the pseudo-Deuteron. The Direc-
tional Neutron Source of Section 8.2.5 synthesizes neutrons and pseudo-
protons (as well as their intermediate states) when filled up with a com-
mercial grade hydrogen gas.

When filled up with Deuterium gas, the same DNS is predicted to syn-
thesize a negatively charged nucleus called the pseudo-Deuteron [96] [214]
with the structure

D̂ = [p̂+↑ , (ê
−
↓ , ê

−
↑ ), n̂0

↑]hm, (89)

namely, via the compression of an electron pair (ê−↓ , ê
−
↑ ) inside the Deuteron

D = (p+↑ , n
0
↑) resulting in a new nucleus with spin 1 that (in nuclear sym-

bols A = atomic number, Z = charge and J= spin) is denoted D̂(−1, 2, 1)

with evident decay D̂ → D + 2β.
To understand the above synthesis, let us recall that the valence elec-

trons of the deuterium molecule are bonded into the valence pair (ê−↓ , ê
−
↑ )

called isoelectronium [30] (Section 8.3.1) with charge 2 e, total spin 0, total
angular momentum 0 and total magnetic moment 0.

Under sufficient power, a submerged DC arc separates Deuterium
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Figure 16: An illustration of the negatively charged Deuteron, called pseudo-

Deuteron denoted D̂(−1, 2, 1), according to structure (89), which is given by the

compression within a Deuterium gas of a valence electron pair (known as isoelec-

tronium) inside a natural Deuteron via a sufficiently powerful DC electric arc.

molecules by forming a plasma mostly composed by protons and valence
pairs due to their strong bond (Section 8.1). Next we should recall the very
big Coulomb attraction between valence electron pairs and natural Deuteron
according to Eq. (6) which prepares synthesis (89) by forming an inter-
mediate state called Deuteroid [96]. The same DC arc then compresses the
valence pair inside the Deuteron according to the configuration of Eq.
(89) and Figure 16.

This process creates a negatively charged nucleus which is evidently
unstable, but its main-life (computed via hadronic mechanics) is of the
order of seconds, thus allowing industrial applications.

Recall that the structure D = (p+↑ , n
0
↑) is unstable due to the triplet

coupling of the proton and the neutron. Therefore, the compression of
the electron pair (ê−↓ , ê

−
↑ ) inside the Deuteron stabilizes the structure due

to the physical separation of the proton and the neutron.
Needless to say, the plasma created by the submerged DC electric arc
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also contains isolated electrons that are also very strongly attracted by
Deuterons, and can form other hadronic bound states with smaller statis-
tical probabilities and mean-lives [96].

Again, the pseudo-Deuteron is unstable, but again its mean life is es-
timated to be of the order of seconds, thus being suitable for applications.

8.2.9. New clean nuclear energies. In this section, we provide
a conceptual outline of new nuclear energies without harmful radiations
called hadronic energies originally proposed in paper [97] of 1994 , which
are not possible for quantum mechanics, but they are indeed possible
for the completion of quantum into hadronic mechanics [23]-[25] accord-
ing to the Einstein-Podolsky-Rosen argument [1] following the exact rep-
resentation of nuclear spin, magnetic moments, stability and other data
presented in the preceding sections.

The existence of the new energies in parts per million (ppm) has been
experimentally verified by verious independent laboratories thanks to
funds provided by Magnegas Corporation (now Taronis Corporation),
but no funds could be located for their development up to the level of in-
dustrial production of new nuclear energies, which development is there-
fore left to interested scientists and governmental officers.

Among the variety of hadronic energies predicted in Ref. [97] (thanks
to the Lie-admissible completion of quantum mechanics for irreversible
processes) we outline the following three clean energies (see Refs. [25]
and [98] for reviews):

8.2.9-I: Nuclear energies via stimulated neutron decays. Incon-
trovertible experimental evidence establishes that the neutron is synthe-
sized from the proton and the electron and decays into the proton and
the electron. Hadronic mechanics has permitted the representation of
all characteristics of the neutron at both non-relativistic and relativistic
levels (Section 8.2.3) when assumed to be a hadronic bound state of an
isoproton p̂+ with conventional rest energy of 938.272 MeV and an iso-
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electron ê− with isorenormalized rest energy of 1.295 MeV , Eq.(80) due
to its immersion within the hyperdense medium inside the proton with
density (79).

In view of the above data, Ref. [97] submitted the hypothesis that
when the member of a suitably selected, light, natural, and stable nucleus,
the neutron can be stimulated to decay via a resonating frequency which
is an integer multiple or submultiple of γ̂ = 1.295 MeV corresponding to
the resonating frequency (see Eq. (3.6), page 326, Ref. [87])

νreson = 3.1289× n× 1020 Hz, n = 1, 2, 3, ... (90)

or
νreson = 3.129/n× 1020 Hz. (91)

By recalling that 1.295 MeV = 0.0014 amu, and by ignoring integer
multiples or submultiples for a first analysis, the indicated hypothesis
can be written

γ̂(0, 0, 1, 0.0014 amu) +N(Z,A, J, amu)→

→ N̂(Z + 1, A, J + 1, amu) + ê−(−1, 0, 0, 0.0014 amu). (92)

Note that the energy supplied by the resonating photon is reemitted
by the isoelectron which has the rapid spontaneous decay in vacuum

ê− → e− + ν (or a), (93)

where the etherino alternative a is outlined in Section 8.2.4.
Among various possible hadronic energies, Ref.[97] suggested in page

340 the test of the stimulated decay of a neutron of 30−Zn−70 according
to the reaction (see Ref.[99] for nuclear data)

γ̂ + Zn(30, 70, 0, 69.9253)→

→ Ĝa(31, 70, 1, 69.9253) + β̂−, (94)
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where Ĝa is a highly unstable pseudo- nuclide due to the missing energy
of 0.0007 amu to have the tabulated mass for 31−Ga−70 of 69.9260 amu,
with spontaneous decay

Ĝa(31, 70, 1, 69.9253)→ Ge(32, 70, 0, 69.9242) + β− + ν, (95)

where 32−Ge−70 is a stable light natural element. Note that the indicated
transmutation triggered by the stimulated neutron decay provides two
different new clean hadronic energies without the emission of harmful
radiation or release of radioactive waste: 1) Heat produced in the amount
of 0.0011 amu = 1.024 MeV per reaction, and 2) Electricity generated by
the production of two electrons per reaction which can be easily trapped
via a thin metal shield to form a nuclear battery (see Sections 4-I and 4-II
of Ref. [97] for details.).

The stimulated double beta decay was tested in Ref. [100] (see also the
subsequent presentation [121]) with preliminary positive results reported
in Ref. [87].

The tests can nowadays be done by irradiating a plate of the selected
isotope (e.g., 30 − Zn − 70) with resonating frequency available from
radioactive isotopes for a few days, and then have comparative mass
spectroscopic analyses of the untreated and the treated plate to ascertain
the possible presence in the treated plate of the predicted new isotope
32−Ge− 70 in ppm.

The direct costs for the repetition of the tests are approximately given
by: 1) $1,200 for a sample of the needed pure 30 − Zn − 70 isotope with
certified content; 2) $2,200 for the purchase of the needed radioactive iso-
tope; and 3) $800 for mass spectroscopic analyses, for the total direct cost
of 4, 200.

It should be noted that there exist a considerable amount of scientific
literature on double beta decays (which is easily identifiable via an in-
ternet search), although none of them, to our knowledge, considers the
stimulated double beta decay proposed in Ref. [97] of 1994 and tested in
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Ref. [100] of 1996. The study of the triggering of known double beta de-
cays with resonating photons to search for new clean energies is left to
interested colleagues.

8.2.9-II: Intermediate Controlled Nuclear Fusions. It is
generally believed in mainstream physics circles that nuclear fusions can-
not occur without the emission of neutrons. It is important for our environ-
ment to disregard such a view because generally based on the dismissal
of the insufficiencies of quantum mechanics in nuclear physics (Section
3.2), and expressed in oblivion of Einstein’s view on the limitation of
quantum mechanics. This section is devoted to physicists interested in
testing nuclear fusions without the emission of neutrons, as predicted by
the completion of quantum into hadronic mechanics according to the EPE
argument.

Additionally, this section is intended for physicists interested in veri-
fying or dismissing in refereed scientific publications that the sole scien-
tific, i.e., quantitative interpretation of thunder is that via nuclear fusions
of light, natural and stable elements triggered by lighting without the
emission of neutrons.

As it is well known, the existence of nuclear fusions (also called syn-
theses) at low energies has been established by the so-called cold fusions,
but the energy available turned out to be insufficient to power all en-
gineering means needed for industrial production of clean energy. The
existence of nuclear fusions has also been established by the so-called hot
fusions, but their energies and temperatures are so big to create uncon-
trollable instabilities at the time of the initiation if the fusion process.

Despite the investment of billions of dollars of public funds over half
a century, cold and hot fusions have been unable to achieve the much
needed, industrially viable, clean nuclear energies.

The apparent primary reason is that all research in the field was based
on quantum mechanics in oblivion of the EPR argument [1] as well as
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of the known impossibility for quantum mechanics to provide an exact
representation of nuclear data, as well as the impossibility to provide
a correct representation of energy releasing processes due to their time
irreversibility (Section 3.3).

In view of the above occurrence, systematic research was initiated via
funds provided by Magnegas Corporation in the search of new clean nu-
clear energies based on the completion of quantum mechanics into the
irreversible, Lie-admissible branch of hadronic mechanics. This research
can be briefly outlined as follows.

Following, and only following the achievement of sufficient mathe-
matical [23] and physical [24] maturity on he Lie-admissible branch of
hadronic mechanics (see also lecture [101]), a study was conducted on
the formulation of the new physical laws of nuclear fusions according to
hadronic mechanics, which laws were presented in the 2008 paper [102]
to characterize the new Intermediate Controlled Nuclear Fusions (ICNF),
namely, nuclear fusions with energy intermediate between the cold and
hot fusions.

The main differences between quantum fusions and ICNF are: 1) Nu-
clei are massive points for quantum fusions, while nuclei are extended for
ICNF; 2) Quantum fusions solely admit action-at-a-distance potential in-
teractions, while ICNF are primarily based on contact non-potential inter-
actions; and 3) Quantum fusions are solely based on physical processes,
while ICNF are based on physical as well as certain crucial chemical pro-
cesses indicated in Section 8.3, thus requiring both hadronic mechanics
and chemistry (see the review in Section 3.25 of Ref. [25]).

A hadronic reactor for the test of ICNF was built in 2009 comprising:
1) A metal vessel housing in its interior a pair of Carbon electrodes

whose gap is electronically controlled from the outside;
2) A selected light, natural and stable gas called hadronic fuel which is

stored at pressure in the metal vessel;
3) A DC arc between a pair of electrodes submerged within the hadronic
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Figure 17: A view of the hadronic reactor used for the Intermediate Controlled

Nuclear Fusion (ICNF) of the Nitrogen from Deuterium and Carbon without the

emission of neutronic or other harmful radiations first achieved in Ref. [103] of

2010.

fuel powered by a commercially available 50 KW DC welder produced
by Miller Electric corporation which delivers up to 1K A in the arc be-
tween the submerged electrodes with about 7 mm gap;

4) Means for the control of the internal nuclear fusions including the
control of the DC power, gas pressure, electrode gap, and other engineer-
ing means;

5) The hadronic reactor is then completed with a number of peripheral
equipment, such as: a variety of radiation detectors with alarms preset at
minimal reading for safety; vacuum and pressure pumps; vacuum and
pressure gages; internal and external temperature gages; electric panel
for the monitoring and control of the pressure, temperature, radiation;
and other equipment (see Figure 19).

Samples of the gaseous hadronic fuel are taken before and after the
activation of the reactor whose operation is limited to a few minutes for
evident safety due to a generally rapid increase of the temperature. ICNF
occur when laboratory analyses signed by the laboratory director estab-
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Figure 18: A view of the team of scientists who confirmed the ICNF of the Deu-

terium and Carbon into the Nitrogen without the emission of harmful radiations

and without the release of radioactive waste [100]-[112].

lish the presence of new light, natural and stable elements at least in ppm,
under the condition that said new elements do not exist in the original
hadronic fuel.

Following extensive tests, Ref. [103] of 2010 announced the ICNF in
ppm of the Nitrogen from the Carbon of the electrodes and a commercial
grade Deuterium gas as hadronic fuel (Figure 17) according to the ICNF

D(1, 2, 1+, 2.0141) + C(6, 12, 0+, 12.0000)→

→ N(7, 14, 1+, 14.0030) + ∆Eheat, (96)

confirmed by chemical analyses [104]-[107] signed by the laboratory di-
rector, where the released heat is given by

∆Eheat = 10.2231 MeV = 1.57× 10−15BTU (97)

per fusion.
It should be stressed that the indicated Nitrogen synthesis can only

occur without any production of neutron or other harmful radia-
tion or release of radioactive waste wince it deals with the synthesis
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Figure 19: A view of the third hadronic reactor for the ICNF of the Carbon and

Oxygen into the silicon successfully tested in 2011 [109].

of two light, natural and stable elements into a third light, natural and
stable element with a smaller mass, as well as due to the limited power
of the DC source (50 KW ) which is clearly insufficient to crack nuclei
for the production of the popularly expected neutrons. A recording of
the sound of the hadronic reactor during operation is available from Ref.
[108].

The above results were all confirmed by systematic tests and verifica-
tions [109] - [112] conducted by an independent team of scientists (Figure
18).

Among a number of additional hadronic reactors build for the test of
ICNF, we mention the third hadronic reactor (Figure 16) built in 2011 for
a Chinese client for the ICNF of Carbon and Oxygen into the Silicon,

C(6, 12, 0+, 12.0000) +O(8, 16, 0+, 17.9991)→

→ Si(14, 28, 0+, 27.9769) + ∆E, (98)

were

δE = 2.0222 amu = 1, 882.6682 MeV = 2.8604× 10−13BTU/reaction,
(99)
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Figure 20: A view of one of the analyses [116]-[118] signed by laboratory directors

showing the pick of the Silicon synthesized from Carbon and Oxygen.

the ICNF
O(8, 16, 0+, 17.9991) +O(8.16, 0+, 17.9991)→

→ S(16, 32, 0+, 31.9720) + ∆E, (100)

where
∆E = 4.0262 amu = 3, 7483, 3922 MeV =

= 5.6950× 10−13BTU per synthesis, (101)

and other ICNF that were announced in video [113] and paper [114] of
2011 (see also lecture [115]) following systematic analyses [116] - [120]
also signed by the laboratory director (see the sample analysis of Figure
20).

It should be stressed that the above tests were primarily done to es-
tablish the existence and control of ICNF in parts per millions under the
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expectation that such an evidence was sufficient for funding the construc-
tion of industrial hadronic reactors, by keeping in mind that the efficiency
of the reactors was limited by the low operating pressure, the low power
of the DC generator and other reasons.

The rather voluminous amount of information collected on ICNF in-
dicates that the achievement of a an industrial hadronic reactor capable
of producing truly controlled and radiation free nuclear energy is in-
deed within current technological reach via the use of: a specially built,
100 KW DC power unit of the particular type used for the synthesis of
the neutron (Section 8.2.3); the use of bigger pressures; and other engi-
neering means. To see it, recall that the Nitrogen synthesis of Ref. [103]
produces 1.57 × 10−15BTU per fusion. The plasma surrounding a ‘1 cm
DC arc contains about 1030 atoms. The extrapolation of available data in-
dicates the realistic possibility of producing of 1021 fusions per hour with
the ensuing delivery of 106 BTU/h which are fully sufficient to generate
the needed electric power plus the delivery of clean energy of nuclear ori-
gin. Alternatively, as shown in video [113], the third hadronic reactor for
the synthesis of the Silicon was already producing electricity when oper-
ated at 1, 000 psi pressure under 50 KW power. The production of free,
clean, nuclear energy when operated at 5, 000 psi pressure with 100 KW
DC power is rather plausible.

A study of ICNF presented at the Teleconference is available in Ref.
[219] and in the lecture recorded by I. B. Das Sarma [0].

It is regrettable for the environment that billions of dollars of public
funds have been and continue to be invested in conventional nuclear fu-
sions despite known insufficiencies of quantum mechanics, while it has
not been possible to secure until now comparatively small funds for the
test of the indicated ICNF.

8.2.9-III. HyperFusions of natural nuclei and pseudo-
nuclei. The biggest problem that has prevented the achievement to date
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Figure 21: A first serious environmental problem facing mankind is the lack

of achievement of ’new’ clean nuclear energies (Section 8.2.9). In this pic-

ture, we illustrate the new HyperFusion without harmful radiation between natural

Deuterons and synthesized negatively charged pseudo-Deuterons solely permitted

by the EPR completion of quantum into hadronic mechanics.

of controlled nuclear fusions is the Coulomb barrier, namely, the repul-
sive Coulomb force between natural nuclei caused by their positive charge
which, from Eq. (6), has the extremely big value for nuclear standards of
hundreds of Newtons. In this section, we report the research done to date
on a basically new type of nuclear fusion, called HyperFusion occurring
between natural, positively charged nuclei and synthesized negatively
charged nuclei, by therefore turning the repulsive Coulomb force into an
attraction [96] [214].

The principle of HyperFusion is elementary. Recall from Section 8.2.2
that at 10−13 cm the electron and the proton experience the extremely big
attractive Coulomb force of 230 Newtons. Nevertheless, quantum me-
chanics admits no bound state between the electron and the proton at
short distance, by therefore confirming Einstein’s view on the lack of
completeness of quantum mechanics beyond scientific doubts [1]. The
completion of quantum into hadronic mechanics then allowed the iden-
tification of all engineering needs for the synthesis of the electron and the
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roton into an unstable particle with 900 seconds mean life, the neutron.
The principle of the new HyperFusion is essentially the same. At

1013 cmmutual distance, electrons are attracted by nuclei with a Coulomb
force of hundreds of Newtons. The technology established for the Ruther-
ford compression of the electron inside the proton is also applicable to
the compression of electrons inside nuclei, resulting in the synthesis of
negatively-charged nuclei, called pseudo-nuclei [214] that are evidently
unstable, but possess nevertheless mean lives of the order of seconds,
thus being usable for industrial applications. HyperFusion is then com-
pleted by established technologies for the controlled separation of pseudo-
nuclei from their originating plasma, and controllable engineering means
for their natural attraction by natural nuclei, activation at contact of strongly
attractive nuclear forces, and then inevitable HyperFusion.

As indicated in Section 8.2.4, when filled up with hydrogen, the Direc-
tional Neutron Source (DNS) produces neutroids, neutrons, and pseudo-
protons. When the same DNS is filled up with a commercially available
Deuterium gas, it produces negatively charged pseudo- Deuterons via
the synthesis [96] [214]

D(1, 2, 1) + (e−↓ , e
−
↑ )→ D̂(−1, 2, 1). (102)

The existence of the pseudo-Deuteron, and its separation from the
DNS plasma via standard technologies, allow the test of the HyperFu-
sion between natural Deuterons and pseudo-Deuterons according to the
reaction [96] [214]

D(1, 2, 1+
↑ , 2.0141 amu) + D̂(−1, 2, 1−↓ , 2.0141 amu)→

→ He(2, 4, 0, 4.0026 amu) + 2β− + ∆E, (103)

where [loc. cit.]
∆E = 0.0222amu = 20.67 MeV. (104)
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Note that the above fusion not only eliminates the repulsive Coulomb
force between natural nuclei, but turn the repulsion into an attraction
due to the opposite charges, as a result of which Deuterons and pseudo-
Deuterons are naturally attracted to the mutual distance of 10−13 cm needed
to activate nuclear forces.

Recall that a controlled quantum mechanical fusion of two Deuterons
into the Helium has been essentially impossible due to the need for a con-
trolled singlet coupling of the two Deuterons which is needed for the con-
servation of the angular momentum (see the hadronic laws for nuclear
fusoins in Ref. [102]). By comparison, the coupling of a Deuteron and a
pseudo-Deuteron is naturally singlet as expressed in reaction (103) due
to their opposite charges and magnetic moments, by therefore provid-
ing a second facilitation for a controlled nuclear fusion over conventional
attempts.

Note finally that the fusion D + D̂ → He + 2β0 can be initiated and
stopped on demand, and can be controlled via the control of: the pressure
of the Deuterium gas; the energy of the DC arc; its voltage; the flow of
the Deuterium gas through the arc; and other engineering means.

8.2.10. The problem of recycling nuclear waste. As it is
well known, automotive production is under reorganization in the U.S.A.
and in other developed countries to replace fossil fuels operated cars with
electrically operated cars. This reorganization implies a consequential,
not sufficiently spoken, exponential increase of electricity produced from
nuclear power plants and other sources. As a consequence, the prob-
lems of recycling highly radioactive nuclear waste and the achievement
of clean combustion of fossil fuels are becoming some of the most serious
environmental problems facing mankind today.

In this section we shall indicate the implications of the EPR argument
for the recycling of nuclear waste, while the achievement of full combus-
tion of fossil fuels is treated in the next section.
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Due to various oppositions, it has not been possible to store radioac-
tive nuclear waste in depositories such as that in the Yucca Mountain in
the U.S.A. Consequently, nuclear waste is stored nowadays by the nu-
clear power plants themselves in their own facilities. Such a storage has
already reached safety limits with an expected unreassuring surpassing
of safety limit under the ongoing automotive reorganization from fossil
fuels to electric cars.

Also, all attempts at an effective recycling of nuclear waste via quan-
tum mechanical technologies have failed to date. Therefore, a most unre-
assuring aspect of the current condition is the lack of a visible search for
new forms of waste recycling, despite the availability of large corporate
and governmental funds, and the continuation of the century old obliv-
ion of the EPR argument [1].

By recalling that any transportation of radioactive nuclear waste is
prohibited by popular opposition, the indicated unreassuring condition
mandates at least the search by responsible societies of the only viable
solution, that of developing new technologies for the recycling of nu-
clear waste by the nuclear power plants themselves in their own facilities.
Among all possible solutions, the most desirable recycling is that via the
stimulated decay of radioactive waste in such a manner of reducing mean
lives from thousands of years down to days or minutes.

It is known that such a recycling is impossible for quantum mechanics
because the alteration of the mean-life of radioactive nuclei would imply
a violation of the Poincaré symmetry which is at the foundation of special
relativity.

In this section, we outline the following three recycling of nuclear
waste proposed in Ref. [97], Section 4-III-A, page 342 on, which are made
possible by the completion of quantum into hadronic mechanics:

8.2.10-I. Recycling of radioactive hospital waste. Tests
conducted in 2011 at the U. S. publicly traded company Magnegas Cor-
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Figure 22: A second serious environmental problem facing mankind is the re-

cycling of radioactive nuclear waste now stored by nuclear power plants in their

facilities. It is unfortunate for mankind that the century old opposition to the the

EPR argument by mainstream physics generally discredits the search for stimu-

lated recycling of nuclear waste because not permitted by quantum mechanics.

poration have indicated that a 300KW PlasmaArcFlow Hadronic Reactor
(Figure 22) can apparently recycle lightly radioactive liquid waste from
hospitals by triggering their decays via the deformation of their nuclei
when exposed to intense electric and magnetic fields into such a prolate
shape to cause the disintegration of naturally unstable nuclei due to in-
ternal Coulomb repulsion between aggregated protons at the extremities.

Note that such a deformation is impossible for quantum mechanics
due to the representation of nuclei as massive points. By contrast, said
deformations are fully possible for hadronic mechanics due to the repre-
sentation of nuclei as extended and, therefore, deformable according to
Eqs, (45)-(46) for which the stimulated decay of nuclear waste is reduced
to the intensity of the electric and magnetic fields.

Jointly, the indicated 300 KW Plasma-Arc-Flow hadronic reactor ster-
ilizes the liquid waste due to its exposure to the high temperature of the
arc.
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Figure 23: In this figure, we show a 300 kw PlasmaArcFlow Recycler produced

and sold by Magnegas Corporation (now Taronis Corporation) which is recom-

mended for the recycling of radioactive hospital waste, since the extreme electric

and magnetic fields of the submerged electric arc predict their stimulate decay.

8.2.10-II. Recycling nuclear waste via stimulated neu-
tron decays. A primary reason for suggesting the rather inexpensive
test of the stimulated neutron decay in Section 8.2.9-I is that, in the event
successful, it would allow an effective recycling of radioactive nuclear
waste via the stimulated decay of some of its peripheral neutrons. This
possibility is illustrated in Ref. [97], page 340, with the predicted stimu-
lated decay of 42−Mo−100, which is an unstable nuclide with mean -life
of 1019 years. Yet, a stimulated neutron decay would imply the transmu-
tation of 42−Mo− 100 into 43− Tc− 100 according to the reaction

γ̂(0, 0, 1, 1.295 MeV ) +Mo(42, 100, 0, 99.9074 amu)→

→ Tc(43, 100, 1, 99.9076amu) + ê−(−1, 0, 0, 1.295 MeV ), (105)

by turning the mean life of 1019 years of 42−Mo− 100 into the mean-life
of18.5 seconds for 43− Tc− 100, with natural decay

Tc(43, 100, 1, 99.9076 amu)→
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→ Ru(44, 100, 0, 99.9042 amu) + e− + ν (or a), (106)

where one should note that the final nuclide is stable and there is no
emission of neutronic or other damaging radiation.

From data [99], we know that the indicated transmutation produces
heat for 3.475 MeV per reaction plus electricity generated by easily trap-
pable electrons.

For brevity, interested readers may inspect Ref. [97], page 342 for a
possible industrial recycling of nuclear waste via a beam of resonating
photons causing two or more stimulated neutron decay per nucleus.

8.2.10-III. Recycling nuclear waste via pseudo-proton
irradiation. The 2020 Teleconference [0] included discussions on the
possible recycling of radioactive nuclear waste via their irradiation with
pseudo-protons (Section 8.2.7). In this case, unlike stimulated decay (105)-
(105), we have the predicted reaction via the use of two pseudo-protoids
with spin 0

2p̄−(−1, 1, 01.0073 amu) +Mo(42, 100, 0, 99.9074 amu)→

→ Zr(40, 102, 0, 101.9229 amu)n+ ∆E, (107)

in which case the 1019 years main-life of 40−Zr− 102 is reduced to the of
2.9 seconds mean-life of 40− Zr − 102.

Since the corporate handling of nuclear waste is prohibited by law,
systematic research on the suggested stimulated recycling of radioactive
nuclear waste by nuclear plants themselves is left to governmental labo-
ratories of countries interested in developing new technologies permitted
Einstein’s legacy.

In closing this section, it should be indicated that mainstream physi-
cists generally attempt to discredit the search for the new clean nuclear
energies on grounds that they are not predicted by quantum mechanics,
without any repetition of the numerous inexpensive tests done to date,
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by ignoring the gross insufficiencies of quantum mechanics in nuclear
physics (Section 3.2), and in oblivion of Einstein’s view that ”quantum
mechanics is not a complete theory” (Figure 21).

Due to its importance for society, the problem of the recycling of nu-
clear waste was addressed in the opening lecture of the 2020 Teleconfer-
ence by J. Dunning-Davies (see the recorded lecture [0]) and Ref. [220].

8.3. Applications of EPR completions in chem-
istry.

8.3.1. Representation of valence electron bonds. There is
no doubt that, beginning with the 1916 pioneering contribution by G. N.
Lewis, followed by numerous advances, the 20th century valence bind
theory has allowed historical discoveries in chemistry.

Yet, it is well known that science at large, and chemistry in particu-
lar, will never admit final theories. Advances generally depend on the
identification of open problems followed by due scientific process in the
proposed solutions.

One of the best kept secrets of the best Ph. D. schools in chemistry
is that there is no possibility for quantum mechanics and, therefore, for
quantum chemistry, to represent the attraction between the identical elec-
trons in valence bonds because the Schrödinger equation for an electron
pair, Eq. (1), can only predict the extremely big repulsion, of 230 Newtons
at the 10−13 cm mutual distance of a valence electron bond (Eq. (6) and
Section 3.5).

A truly attractive force between identical valence electron pair was
achieved in 2001 (see Chapter 4 of Ref. [30]) inspired by the last statement
of the 1935 paper by Einstein, Podolsky and Rosen [1] according to which
the wavefunction of quantum mechanics and chemistry cannot describe
all ”elements of reality.”

As reviewed in Section 7.4, the much needed attractive force was
achieved thanks to the completion of quantum into hadronic chemistry,
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Figure 24: The third serious environmental problem facing mankind is the lack

of full combustion of fossil fuels. It is unfortunate for our environment that

mainstream chemistry generally discredits its solution via the EPR completion of

quantum chemistry in oblivion of the inability by quantum chemistry to represent

the attraction between valence electron pairs and Einstein’s legacy that quantum

wavefunctions cannot represent all ”elements of reality.”

resulting in a Hulten-type new bond, of type (61) called strong isovalence
bond, which is so strongly attractive to generate a quasi-particle called
IsoElectronium (IE)

IE = (ê−↓ , ê
−
↑ )hm, (108)

with double elementary charge, null spin and null magnetic moment.
In this section, we hope to indicate the unreassuring implications for

our environment of molecular models without a clear attraction between
valence electron pairs (Figure 19).

8.3.2. Representation of molecular data. Historical ad-
vances have been made during the 20th century in the collection and
representation of molecular data. Yet, a belief in the achievement of fi-
nal knowledge would imply the existing from the boundaries of science
since so much remains to be understood.

Quantum mechanics allowed the representation of the experimental
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data of the Hydrogen atom from first axiomatic principles with an incred-
ible accuracy. By comparison, when two Hydrogen atoms are bonded to-
gether in the Hydrogen molecule, quantum chemistry misses 2% of the
molecular binding energy from first axiomatic principles without adul-
terations, which percentage is far from being ignorable because it corre-
sponds to about 950 BTU .

The inability by quantum chemistry to achieve an exact representa-
tion of the binding energy of the Hydrogen and other molecules is clear
evidence of the appearance in valence electron bonds of short range non-
linear, non-local and non-potential, thus non-Hamiltonian interactions
typical of the EPR entanglement (Section 7.2.3) that are absent at the large
mutual distances of the atomic structure.

In fact, the EPR completion of quantum into hadronic chemistry, and
the achievement of a strong valence bond, have allowed the following
advances:

1) The representation of the binding energies of the Hydrogen [31]
and water [32] molecules which is exact to the desired decimal value.

2) Perturbative calculations used in the above results that have a con-
vergence at least one thousand times faster than the convergence of the
corresponding quantum chemical calculations, thanks to the very low
value of the isotopic element T̂ inserted in all associative productsA×̂B =

AT̂B (Section 7.5).
3) The representation of the diamagnetic character of the Hydrogen

molecule which is not possible for 20th century weak valence bonds.
4) The explanation of the reason why the Hydrogen molecule can only

accommodate two Hydrogen atoms in its stable configuration, resulting
in a restricted three-body model of the hydrogen molecule, with the conse-
quential, first known admission of analytic solutions that have evident
importance for the environment, e.g., to achieve full combustion of fossil
fuels.

5) Consequential advances in other molecules, such as the iso-Helium
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model [122] and other advances [123].

8.3.3. The new chemical species of magnecules. Nowa-
days, we release in our atmosphere about 35 billion tons of contaminants
per year mostly composed by Carbon Monoxide CO = C − O (where −
represent valence bond) and HydroCarbons HC. As it is well known,
this environmental problem is caused by the incomplete combustion of
fossil fuels (Figure 24). By noting that CO and HC are themselves com-
bustible, the indicated environmental problem is caused by the lack of
complete combustion of fossil fuels. In turn, this is due to a combus-
tion insufficient for the dissociation of the valence bonds of fuels such as
gasoline or diesel. Note that the dissociation of fuel molecules into their
atomic constituents is a necessary pre-requisite for the chemical synthesis
of CO and HC.

In view of the above unreassuring data, a considerable scientific and
industrial effort was done in early 2000 to conceive, test and produce fu-
els with the new chemical species of magnecules (see Chapter 8 of Ref. [30]
and the U. S. patent [123]). The new species of magnecules (to distinguish
them from molecules) has essentially the same atomic components of fos-
sil fuels and it is stable in pressure thanks at ambient temperatures, yet
the binding energy of magnecules is much smaller than that of molecules as
a necessary condition to achieve full combustion, namely, a combustion
without detectable CO and MHC n the exhaust.

The new species of magnecules is essentially composed by clusters
of atoms (such as H , C, etc.), dimers (such as H − O, C − H , etc.), and
ordinary molecules (such as H − H , C − O, etc.) bonded together by
the attractive force called magnecular bond between opposing magnetic
polarities of toroidal configurations of the orbits of peripheral electrons,
which magnecular bond is stable under ambient temperature.

As an illustration, by denoting the magnecular bond with the symbol
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Figure 25: An illustration of the elementary magnecule such as H × H, O ×
O, C ×O, etc., where one can see: the toroidal polarization of atomic orbitals;

the attraction between opposing magnetic polarities; and the exposure of nuclei out

of their electron cloud with the proper spin coupling, which features are essential

for the ICNF of Section 9.2.9-II.

”×”, samples of elementary magnecules are given by (see Figure 25)

H ×H, O ×O, C ×O, etc. (109)

By noting that electron orbitals can be controlled under very big elec-
tric and magnetic fields [30], new fuels with magnecular structure are
produced via specially designed hadronic reactors converting fossil fuels
into their gaseous magnecular form via a submerged electric arc. Water is
added to fossil fuels to increase the content of Hydrogen and Oxygen of
the magnecular species by therefore improving its environmental quali-
ties [124].

Stock cars produced to run on compressed natural gas, but operated
on compressed magnegas release an exhaust containing no appreciable
Carbon Monoxide CO or HydroCarbon HC; and Oxygen O2 up to 14%
(see Figure 23 and the documentation presented at the 2016 International
Summit on the Environment, Hainan Island, China [126]).

In view of the importance of the above features for the environment,
the publicly traded company Magnegas Corporation was organized for
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Figure 26: A view in the left of a Ford Cavalier produced to run on compressed

natural gas and run on compressed magnegas with no appreciable CO and HC

in the exhaust, and a view in the right of a Ferrari 308 GTS 1981 converted to

run on compressed magnegas and shown at the Moroso International Race Track,

Florida, to be competitive with same Ferraris running on gasoline.

the production and sale world wide of the gasification of fossil fuels into
the environmentally friendly magnegas (chemical symbol MG, Figure 26)
[125].

It should be indicated that the author does not recommend the large
scale use of Hydrogen as an alternative automotive fuel to gasoline because:
1) Cars running on compressed Hydrogen are expected to produce neu-
trons (Section 8.2.3); 2) The large scale use of Hydrogen would cause a
prohibitive Oxygen depletion; 3) Hydrogen seeps through walls and im-
mediately raises to the Ozone Layer with ensuing rapid chemical reaction
H2 +O3 → O2 +H2O; and for other environmental problems. [30].

8.3.4. Experimental verifications of the new species
of magnecules. The chemical composition of gases is nowadays ana-
lyzed via Gas Chromatographers Mass Spectrometers (GC-MS), InfraRed
Detectors (IRD) and other equipment all designed, specifically, to detect
molecules, that is, atoms bonded together by valence bonds with ensuing
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large binding energy. In said instruments, molecules are first exposed
to an ionization beam whose energy is below the molecular dissociation
energy; the molecules are then processed by a reactant in the column;
and then eluded with a speed inversely proportional to their masses for
identification.

By noting that magnecules have a binding energy which is about 10%
that of molecules, GS-MS are basically unable to detect magnecules be-
cause their ionization beams destroy the very species to be detected, since
they terminate all magnecular bonds and reduce the species to conven-
tional molecules.

In view of the above, magnecules can only be indirectly detected via
GC-MS/IRD and the findings confirmed via direct measurements of the
characteristics of the magnecular gas, such as flame temperature, BTU
content, etc. [126].

The instruments used so far for the analysis of fuels with magnecular
structure are GC-MS equipped with IRD (GC-MS/IRD) so as to test first
the gas un the GC-MS used with special provisions, such as the lowest
possible ionization energy, the lowest possible column temperature, and
the longest possible elusion time so as to minimize the destruction of
the species to be detected. The clusters identified in the GC-MS are then
tested via the IRD without transferring the gas to a separate IRD because
of the impossibility to combine with certainty results from different tests.
Magnecules are detected when the clusters identified in the GC-MS have
no IR signature because lack of IR signature implies the lack if existence
of internal molecular bonds.

The GC-MS/IRD tests that were originally done by the author in 1998
are reported in Chapters 8 and 9 of Ref.[30], Figures 8.7 on). More recent
independent experimental verifications via GC- MS/IRD are available in
Refs. [127] [128]. Comparison of the original tests [30] with then more
recent tests [127] [128] shows that the detection of magnecular clusters is
decreased in the latter tests due to the increase of the ionization energy
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of the GC-MS which was confirmed by comparison of data in the relative
manuals.

The best evidence establishing the existence of a new chemical species
is given by direct measurements of the characteristics of magnegas since
said characteristics cannot be explained with quantum chemistry.

The first of these anomalous characteristics is given by extensive tests
conducted by scientists of the Institute for Ultra Fast Spectroscopy and
Laser of the City College of New York, [129] [130] which established that
magnegas synthesized from fossil fuels has a flame temperature in air of
10, 597 F = 3, 647 C which is 56% bigger than the hydrogen flame tem-
perature in air 2, 045 C. The increased flame temperature explains the
absence of CO and HC in magnegas exhaust due to their combustion.
Additionally, the increased flame temperature makes magnegas a fuel
particularly suited for steel mills, refineries and other applications [124]-
[126].

An intriguing feature of magnegas is its energy content because mag-
negas cuts a 12” thick steel slab faster than acetylene (C2H2) which pos-
sesses 1, 498 BTU/cf [132]. This anomaly property is established by the
fact that a conventional chemical analysis of magnegas done at maximal
ionization energy and column temperature reveals that magnegas is com-
posed by

MG : 54% H2, 31% CO, 15% HC, (110)

with corresponding energy content of 325, 323 , 1, 500 BTU/cf . Hence,
according to quantum chemistry, magnegas synthesized from petroleum
should contain a maximum of

54% 325 + 31% 323 + 15% 1, 500 BTU/cf = 431 BTU/cf, (111)

namely, an amount basically insufficient to cut any metal, let alone 12”
thick steel plates, thus confirming that magnegas cannot be quantitatively
described via quantum chemistry.
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The description of the energy content of magnegas according to hadronic
chemistry is essentially the following. Let us denote the molecular bond
with the symbol ”−” and the magnecular bond with ”×.” It is generally
believed that the combustion of Hydrogen and Oxygen according to the
reaction

H −H + (1/2)O −O → H −O −H + 57 BTU/cf. (112)

However, the two Hydrogen atoms are separated in the H − O −
H molecule. Therefore, in order to verify the principle of conservation
of the energy, the combustion of Hydrogen and Oxygen must produce
104 kcal/mole for the H−H dissociation, plus 45 kcal/mole for the O−O
dissociation, plus 57 kcal/mole of produced heat, for a total of 206 kcal/mo-
le. In the event the Hydrogen and Oxygen species have a magnecular
structureH×H andO×O, the binding energy is only 10% of the molecu-
lar value. In this case, the combustion of the magnecular speciesH×H and
O×O produces the total energy of 97+40+57 kcal/mole = 194 kcal/mole

H ×H + (1/2)O ×O → H −O −H + 194 kcal/mole, (113)

which is 3.4-times the energy produced by the molecular species, Eq.
(113), resulting in the value of 1, 465 BTU/cf which is comparable to the
energy content of acetylane 1, 498 BTU/cf , by providing in this way the
only known quantitative explanation of the reason magnegas cuts faster
than acetylane under essentially the same atomic structure.

In conclusion, the energy content of molecular gases is constant while,
by comparison, the energy content of magnecular gases is variable because it
depends on the original liquid feedstock, the power of the hadronic reactor,
and other engineering data.

8.3.5. Magne-Hydrogen and Magne-Oxygen. The anoma-
lous temperature and energy content of magnegas is due to the anoma-
lous character of its primary components known as Magne-Hydrogen (sym-
bolMH), Magne-Oxygen (MO) and Magne-Carbon-Monoxide (MCO) [133].
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Figure 27: An illustration of the magnecule 3H = H × H × H that should be

compared with the molecule H3 = H − H − H. The main difference is that the

latter is unstable, while the former is stable at ambient temperature according to

repeated detections of 3 amu in the same MH gas. Such a difference is due to the

independence of the magnecular bond from the number of bonded atoms compared

to the lack of existence of a valence electron triplet.

The indicated new species have been separated from magnegas via Pres-
sure Swing Adsorption (PSA) equipment, also called molecular seeving,
and their anomalous specific weight has been confirmed by independent
measurements [134]-[137]. By recalling that MH constitutes more than
50% of MG, the anomalous energy content of MH is established by that
of MG. Tests on the increase of the efficiency of fuel cells via the use of
MH and Oxygen are reported in Ref. [124]. The case of a 3-atomic mag-
necule or molecule is indicated in Figure 27.

An important experimental evidence in the above tests is that the spe-
cific weight of the magnecular speciesMH ,MO andMCO increases with
the number of times the separated gas is passed again through the PSA
equipment. This is a clear indication of the effect known as magnecular
accretion, namely, the increase of the mass of magnecule with the increase
of pressure and other treatments.
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In turn, the above effect indicates that the Avogadro number is not ex-
pected to be a constant for magnecular gases [30], which feature is sug-
gested for test by interested chemists jointly with other innovative mea-
surements.

An understanding of the above intriguing feature is the following.
Recall from Section 3.5 that another insufficiency of quantum chemistry
is the impossibility of achieving an attractive force between the water
molecules if the liquid state due to their diamagnetic and dielectric char-
acters. It appears that such an attractive force is of magnecular type since
the Hydrogen atoms H in the water molecule H −O−H has a toroid po-
larization of its orbit for the proper bonding to the corresponding valence
electron of the Oxygen, thus allowing a magnecular attraction of the type
[138]

H −O −H↓ ×H↑ −O −H↑ ×H↓ −O − .... (114)

According to this view, the magnecules of the new species MH , MO
and MCO are quasi-liquid with consequential magnecular accretion and
the predicted lack of constancy of the Avogadro number.

Chemical analyses have repeatedly established that MH is composed
by atomic masses from 1 amu to hundreds of amu, thus suggesting a
structure of the type

MH : {H, H −H, H ×H, H ×H,

H −H ×H, H −H ×H, ....}, (115)

with a corresponding structure for MO and MCO.
In view of its special features, including the increased specific weight,

increased energy content and predicted increase of the liquefaction tem-
perature, MH is expected to be particularly significant for the aerospace
industry as well as for gasoline refineries, fertilize production and other
fields. MO is expected to be signifiant for medical applications, e.g., for
use in ventilators for persons affected by the Corona Virus because its
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magnecular structure is expected to decompose at contact with lungs,
with ensuing release of sterilizing UV radiation as it is the case for the de-
composition of Ozone. MCO has been conceived and tested for the pri-
mary aim of developing the HyperCombustion indicated (Section 8.3.7).

8.3.6. The HHO combustible gas. One of the most intriguing
fuels with magnecular structure is the HHO gas [139] which is produced
in the gasification of water via a specially designed water electrolyzer
developed by the U. S. company Hydrogen Technologies Applications, Inc.

Some of the unique features of the HHO gas, which are manifestly
outside any serious representational capability by quantum chemistry,
are:

1) The HHO gas instantly cuts bricks, tungsten and other hard mate-
rial at content in air or under water;

2) The combustion of the HHO gas occurs without any need for at-
mospheric Oxygen, since HHO is composed by a stochiometric ratio of
Hydrogen and Oxygen; and

3) The combustion exhaust of the HHO gas are composed by water
vapor without any contaminant.

By using a cautious scientific language, Ref. [139] (see also Ref. [124])
presents a series of measurements on the HHO gas conducted with vari-
ous instruments and their tentative representation with the new chemical
species of magnecules.

It should be indicated that all hadronic reactors indicated in this sec-
tion have a negative energy balance in the sense that they require energy
to produce a gaseous, environmentally friendly fuel, unless, jointly with
the gasification of the liquid feedstock, the hadronic reactos synthesize
new elements, such as the synthesis of Si − 28 from C − 12 and O − 16,
in which case the energy balance is positive even for nuclear synthesis in
ppm.

8.3.7. Hyper-Combustion. At the dawn of the third millennium,
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Figure 28: A view of the equipment developed by Hadronic Technologies Corpora-

tion to test Hyper-Combustion in a four cylinder electric generator showing (from

bottom right) Control Module, Variac and four ICNF Activation Banks (Section

3.3.7).

the combustion of fossil fuels is essentially the same as it was some fifty
thousands years ago, because in our civilian, industrial and military en-
gines we essentially strike a spark and lit the fuel.

This section is intended for scientists interested in the search for a
basically new form of combustion as a necessary condition for the future
achievement of a sustainable life of our planet.

Recall from Section 8.3.3 that magnegas does achieve full combustion,
namely a combustion without appreciable combustible contaminants in
the exhaust.

Based on such a result, a main drive of the physical and chemical stud-
ies reported in this section has been the achievement of full combustion,
this time, for fossil fuels as commercially available, including gasoline,
diesel, methane, acetylane, et al.

Recall that our combustion of about 36 billion barrels of crude oil per
year releases in the environment about 10 billion barrels per year of con-
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taminants such as CO and HC. However, it is important to note that
CO and HC are themselves combustible. This establishing that the tem-
perature of combustion in our civilian, industrial and military engines is
insufficient to achieve full combustion.

The studies reported in this section have led to the formulation of a
new form of combustion known as Hyper-Combustion [140] under devel-
opment by the privately held Hadronic Technologies Corporation which
can be defined as follows: the hyper-combustion of Carbon with atmo-
spheric Oxygen comprises the conventional chemical combustion plus a con-
trollable number of engineering means causing the synthesis of Silicon and
other light, natural and stable elements without the emission of harmful
radiation and without the release of radioactive waste.

The engineering realization of the hyper-combustion is based on the
use of a specially designed DC power unit delivering an arc that: 1) Ion-
izes the fuel; 2) Creates magnecules C × O between toroidally polarized
stable isotopes of Carbon and Oxygen; and 3) Triggers Intermediate Con-
trolled Nuclear Fusions (ICNF, Section 8.2.9) in parts per million (ppm)
of the indicated magnecule Carbon and Oxygen into the Silicon.

Recall from Nuclear Data [99] that Carbon has the following two sta-
ble isotopes with relative abundance 6−C−12, 98.898%, 6−C−13, 1.11%
and that the Oxygen has the following three stable isotopes with relative
abundance 8−O− 16, 99.76%, 8−O− 17, 0.037%, 8−O− 18, 0.200%.
Consequently, when dealing with nuclear fusions in ppm, the significant
isotopes are 6−C−12 and 8−O−16 with related nuclear fusion into the
14−Si−28 studied in Section 9.2.9-II, Eqs. (98)-(99). This fusion has been
experimentally verified with the Third Hadronic Reactor (Figures 16 and
17, video [113], sound [108], and verifications [114]-[120]).

Note that the aim of hyper-combustion is not that of replacing fossil
fuels with controlled nuclear fusions, but that of using Carbon and Oxy-
gen as fuels for nuclear fusions mainly intended to maximize the energy
output of crude oil and achieve full combustion without harmful radia-
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tions or radioactive waste.
To minimize possible misrepresentations, it should be reported that

Hadronic Technologies Corporation has manufactured an equipment (Fig-
ure 28) testing Hyper-Combustion in a four cylinders electric generator
with tungsten tip spark (patent pending) which comprises: 1) A control
module to set maximal power and arc settings per selected engine; 2) A
variac to operate with minimal and maximal power; and 3) Four ICNF
Activation Banks, one per cylinder. The equipment produced the desired
increase of the combustion temperature at which CO, HC and other
combustible contaminants burn by producing a first increase of power
output. The same equipment has produced a second increase of energy
output due to the activation of ICNF in ppm of Carbon and Oxygen into
Silicon within the thermodynamical limit of the electric generator.

In closing this section, it should be reported that mainstream chemists
generally dismiss the anomalous characteristics of magnegas as being due
to anomalous measurements, without repeating the measurements and
without considering the fact that said measurements were done by the
highly authoritative Institute for Ultra Fast Spectroscopy and Laser of
the City College of New York [130] [131].

Additionally, the same chemists generally dismiss the existence of the
new species of magnecules on grounds that the identified anomalous clus-
ters can be reduced by the GC-MS to their molecular constituents, by ig-
noring that: 1) Stable clusters systematically detected by GC-MS must
have an internal atomic or molecular bond to exist; 2) The ionization en-
ergy used in the decomposition of the clusters to their molecular con-
stituents destroys the very species to be detected; and 3) The dismissal
is done in oblivion of Einstein’s view on the limitations of quantum me-
chanics and chemistry, as well a without the proof in refereed journals
that quantum chemistry provides a quantitative representation of mag-
negas anomalous features.

Objections against magnegas and magnecules voiced in social media,
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rather than via publications in refereed journals, has significantly under-
mined and delayed the solution to our environmental problems. In fact,
as it is well known, social media plays in the hands of those who profit
by shorting the stock of publicly traded companies, by therefore causing
significant losses to investors eager to support the development of new
environmental technologies for a sustainable future of our planet.

8.4. Applications of EPR completions to spe-
cial relativity.
8.4.1. Foreword.
In this section, we show that the methods developed for the proof of the
EPR argument [1] imply a geometric unification of Einstein’s special and
general relativities for the exterior problem of point-like particles in vac-
uum, as well as their extension for interior dynamical problems of extended
particles within physical media .

8.4.2. Applications of the EPR completion to Galileo’s
relativity. As it is well known, the Galileo symmetry G(3.1) and rela-
tivity are exactly valid for the description of non-relativistic conservative
systems of point-like particles moving in vacuum (non-relativistic exterior
dynamical systems), thus without any resistive force or contact interaction.

Since point-like particles are an approximation of the physical real-
ity, the verifications of the EPR argument reported in Section 7 mandate
the completion of Galileo symmetry and relativity for non-relativistic in-
terior dynamical systems comprising extended particles in deep EPR en-
tanglement, with ensuing resistive, as well as non-linear, non-local and
non-Hamiltonian interactions (Figure 29).

The above need suggested the construction of the Lie-isotopic com-
pletion of the Galileo symmetry Ĝ(3.1) and relativity, called Iso-Galilean
isorelativity, for the axiom-preserving representation of extended masses
moving within physical media, thus experiencing resistive as well as con-
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Figure 29: A schematic view of the experiments done by Galileo Galilei at the

end of the 16th century to measure the acceleration due to gravity by dropping

from the top of the Pisa tower balls with different masses assumed to be point-like,

thus ignoring the resistance due to our atmosphere (vertical line). The axiom -

preserving iso-Galilean isorelativity aims at the dynamics of extended bodies, thus

including atmospheric resistance (wiggly line).

tact interactions. Note that the axiom- preserving condition restricts the
system to have a conserved total energy, as it is the case for the non-
relativistic description of an isolated nucleus with contact internal forces.

Since conservative systems are an evident particular case of noncon-
servative/irreversible systems, the studies here considered required the
construction of the broader Lie-admissible completion of the Galileo sym-
metry Ĝ>(3.1) and relativity for the description of extended particles in
nonconservative conditions, as it is the case for the non-relativistic repre-
sentation of nuclear fusions.

Since non-relativistic studies are an evident pre-requisite for relativis-
tic counterparts, we regret not to be able to review them to avoid a pro-
hibitive length of this Overview. Nevertheless, we indicate for interested
colleagues that non-relativistic studies were initiated in paper [19] of 1978
with the Lie-admissible completion of Galileo symmetry and relativity
for non-conservative and Galileo- non-invariant systems.
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The first direct study of Galileo’s isosymmetry was done in Section
5.3, pages 225 on, of the 1983 monograph [22] formulated over conven-
tional fields. These isotopies were then systematically studied and up-
graded in the 1991 volumes [71] [72]. The formulation of Galilean isosym-
metries with the full use of isomathematics was done in the 1995 mono-
graphs [23] [24] [73].

The above studies attracted the attention of Abdus Salam, founder
and President of the International Center for Theoretical Physics (ICTP),
Trieste, Italy, who invited Santilli in 1991 to deliver at his Center a series
of lectures in the isotopies of the Galileo symmetry and relativity, said
invitation being apparently the last one by Salam prior to his death. Dur-
ing his visit at the ICTP, Santilli wrote papers [147]-[153]. The notes from
Santilli’s lectures at the ICTP were collected by some of the attendees and
published in volume [154] of 1992.

8.4.3. Special Relativity (SR). Mainly for the sake of no-
tation, we recall that special relativity (SR) is defined on a Minkowski
space M(x, η, I) over the field of real numbers R with local coordinates
x = (x,ρ ), ρ = 1, 2, 3, 4, x4 = ct, metric η = Diag.(1, 1, 1,−1), unit
I = Diag.(1, 1, 1, 1), and spacetime interval

(x− y.)2 = (x− y)µηµ3(x− y)ν =

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 − (t1 − t2)2c2, (116)

which is left invariant by the Lorentz symmetry SO(3.1), the Lorentz-
Poincaré symmetry P (3.1) and its spinorial covering P(3.1).

The above methods uniquely and unambiguously characterize the
following basic axioms for a time-reversal invariant relativistic system of
point-like particles and electromagnetic waves propagating in vacuum:

AXIOM I: The speed of light c is the maximal causal speed for point-like
particles propagating in vacuum

Vmax = c (117)
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AXIOM II: The addition of speeds follows the relativistic law

Vtot =
v1 + v2
1 + v1v2

c2

. (118)

AXIOM III: The dilation of time, the contraction of lengths, the variation
of mass and the mass-energy equivalence follow the relativistic laws:

t′ = γ t, (119)

`′ = γ−1 `, (120)

m′ = γ m, (121)

E = mc2 (122)

where
β =

v

c
, γ =

1√
1− β2

. (123)

AXIOM IV: The frequency shift due to relative speed follows the law (for
null aberration)

ω′ = γ [1− β cos(α)] ω. (124)

The above axioms are hereon assumed to be exactly valid for the as-
sumed time-reversal invariant systems.of point-like particles and electro-
magnetic waves in vacuum.

8.4.4. Special isorelativity (SIR). As a consequence of the
widely assumed reduction of the entire universe to point-like particles, it
is generally believed that special relativity and the constancy of the speed
of light c, are valid for whatever conditions exist in the universe.

In the preceding sections we have shown that such a conception can
be considered as being approximately valid, although it implies a number
of insufficiencies, such as the inability to achieve exact representations of
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Figure 30: The light beam passing through a glass of water depicted in this figure

is generally reduced to photons for the intent of maintaining special relativity in

interior conditions. However, such a reduction is afflicted by the widely prop-

agated (yet ignored) Inconsistencies 1) to 7) of Section 8.4.1 whose resolution

mandates the completion of SR for interior dynamical conditions.

nuclear and molecular data due to the extended character of particles at a
mutual distances of the order of 10−13 cm (relativistic interior dynamical
problems ).

When the reduction of the universe to point–like constituents is as-
sumed as being exactly valid, it leads to serious inconsistencies that re-
main generally ignored by the mainstream physics community, although
they need to be brought to the attention of the scholars in the field. For
instance, the belief that electromagnetic waves propagating in water can
be reduced to photons propagating in vacuum and scattering among the
water molecules is afflicted by the following [24]:

INCONSISTENCY I: The reduction of light to photons cannot repre-
sent the angle of refraction of light in water, evidently because photons
will scatter in all directions at the impact with the water surface.

INCONSISTENCY II: The reduction of light to photons cannot rep-
resent the decrease of the speed of light in water by 100, 000 km/s, be-
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cause calculations have shown that the scattering of photons among wa-
ter molecules can at best represent a reduction of the speed of light of
about 7, 000 km/s.

INCONSISTENCY III: The reduction of light to photons cannot rep-
resent the propagation of light in water as a beam, again, because a beam
of photons will scatter among the water molecules and disperse in water.

INCONSISTENCY IV: The reduction light to photons has no physi-
cal sense for infrared light or radio waves with 1 m wavelength that ex-
perience the same phenomenology as that for electromagnetic waves at
large.

INCONSISTENCY V: The reduction of light to photons scattering
among water molecules, thus propagating in vacuum at speed c, cannot
represent the Cherenkov light because said light can only occur when
electrons travel faster than the local speed of light.

INCONSISTENCY VI: The reduction of light to photons cannot re-
solve the inapplicability of the relativistic sum of speeds in water, Eq.
(118), since the sum of two light speeds in water does not yield the light
speed in water.

INCONSISTENCY VII: The reduction of light to photons cannot be
tested experimentally due to the lack of an inertial frame in water.

Following the construction of the axiom-preserving isotopies of the
various branches of Lie’s theory in the 1983 monograph [22], Santilli con-
structed the axiom-preserving isotopies of special relativity for ex-
tended particles with interval (25) in Ref. [60] for the classical part
and Ref. [61] for the operator counterpart, with the first known construc-
tion of the the Lorentz-Isotopic symmetry ŜO(3.1), today known as the
Lorentz-Santilli isosymmetry, with isotransformations (30).
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Subsequently, Santilli conducted systematic studies [62]-[74] of the
isotopies of all conventional spacetime symmetries resulting in the Lorentz-
Poincaré- Santilli isosymmetry P̂ (3.1) [67] and related isospinorial cover-
ing P̂(.) [ 68] [69] which are formulated on an iso-Minkowskian isospace
first introduced in Ref. [60] (see Ref. [70] for detailed studies) M̂(x̂, Γ̂, Î)

over the isofield of isoreal isonumbers R̂ with isospacetime isocoordi-
nates x̂ = xÎ, ŷ = yÎ , isometric correctly written as having elements in
the isofield R̂

Γ̂ = {η̂µν}Î = (T̂ η)Î , (125)

and isounit (Î = 1/T̂ > 0 given in Eq. (34), with invariant (25),which we
now rewrite in the form

(x̂− ŷ)2̂ = (x̂− ŷ)µ×̂Γ̂µν×̂(x̂− ŷ)ν =

= [(x− y)Î]T̂ (η̂Î)T̂ [(x− y)Î] = [(x− y)µη̂µν(x− y)ν ]Î =

[
(x1 − y1)2

n2
1

+
(x2 − y2)2

n2
2

+
(x3 − y3)2

n2
3

− (t1 − t2)2
c2

n2
4

]Î , (126)

where: the multiplication of the interval by the isounit Î is necessary for
its value to be an element of the isofield; and the characteristic quantities
nρ, ρ = 1, 2, 3, 4 are solely restricted by the condition of being positive-
definite nρ > 0, but possess otherwise an unrestricted functional depen-
dence on all needed local variables (which shall be hereon tacitly as-
sumed) such as local coordinates x, velocity v, momentum p, energy E,
density ρ, temperature τ , pressure γ, frequency ω, wavefunctions ψ, their
derivatives ∂rψ, etc. nρ = nρ(t, r, v, p, E, ρ, τ, γ, ω, ψ, ∂ψ, .....).

A feature important for the understanding of this section is that all
(non-singular) infinitely possible realizations of the iso-Minkowski isospace
M̂ on an isoreal isofield R̂ are locally isomorphic to the conventional
space M over the reals R. This property was first proved in the 1983
paper [60] (see Refs. [23] [72] for a detailed treatment) and can be seen
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from the fact that the Minkowski metric η is completed into the isomet-
ric T̂ η while, jointly, the basic unit I is completed by the inverse amount
Î = 1/T̂ , thus preserving the original metric η.

Alternatively, one can see from Eq. (125) that the numeric value of the
Minkowskian metric η is preserved under isotopies since (T̂ η)Î ≡ η.

Note the duality of the formulation, namely, the iso-Minkowski isospace
can be first written on isospace over isofields (see the first line of interval
(126)), in which case SR applies identically, and then projected on the con-
ventional Minkowski space over a conventional field (see the third line
of interval (126))where novelties appear.

Recall that the Minkowskian geometry represents a homogeneous and
isotropic 3-dimensional space while, by comparison, the iso-Minkowskian
isogeometry represents an inhomogeneous space, due to the local variation
of the density, as well as an anisotropic space, due to the change of geom-
etry with the change of the direction.

Consequently, axioms (117)-(124) of SR do not need the identifica-
tion of the selected direction, while such an identification is necessary
for the SIR due to the indicated variation of physical characteristics with
the variation of the space direction.

Under the above clarifications, special isorelativity can be defined as
the axiom-preserving formulation of special relativity on iso- Minkowski
isospaces over isoreal isofields. Its universal LPS isosymmetry character-
izes uniquely and unambiguously the following isoaxioms first formu-
lated systematically in Refs, [72] of 1991 on conventional fields and com-
pleted in Ref.[24] of 1995 over isofields, here expressed for the selected
k-direction, e.g., that of the third space component,

ISOAXIOM I: The speed of light within (transparent) physical media is given
by the locally varying speed:

C =
c

n4

. (127)
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ISOAXIOM II: The maximal causal speed within physical media is given
by:

Vmax,K = c
nk
n4

. (128)

ISOAXIOM III: The addition of speeds within physical media follows the
isotopic law:

Vtot =
V 1.k
nk

+ c2.k
nnk

1 + v1v2
c2

n2
4

n2
k

. (129)

ISOAXIOM IV: The isodilation of time, the isocontraction of lengths, the
isovariation of mass and the mass-energy isoequivalence (isorenormaliza-
tion) within physical media follow the isotopic laws:

t′k = γ̂k t, (130)

`′k = γ̂−1k `, (131)

m′k = γ̂k m, (132)

Êk = m V 2
max,k = m̂kc

2, m̂k = m
n2
k

n2
4

, (133)

where, from Eqs. (31)

β̂k =
v3/nk
co/n4

, γ̂k =
1√

1− β̂2
k

. (134)

ISOAXIOM V: The frequency shift within physical media follows the isotopic
law (for null aberration)

ω′ = γ̂ [1− β̂ cos(α̂)] ω. (135)
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Note that the maximal causal speed in SIR is no longer given by the speed
of light, and it is given instead by value (128), because physical media are
generally opaque to light, thus requiring the broader geometric notion
derivable from the expression in (k − 4)-space

dx2k
n2
k

− dt2 c
2

n2
4

= 0. (136)

Among a variety of verifications of Isoaxioms I to V, we indicate here
the following representative examples:

8.4.4-I. Verification of SIR within liquid media. It is an
instructive exercise for the interested colleague to verify that Isoaxioms I
to V resolve all Inconsistencies I to7 (Figure 30) in the use of conventional
axioms.

This includes the verification via isoaxiom (118) that the sum of two
local speeds of light C = c/n4 yields the local speed of light C = c/n4.
Moreover, water can be assumed to be homogeneous and isotropic for
which nµ = 1, µ− 1, 2, 3, 4 for which interval (126) becomes

(x̂− ŷ)2̂ = (x− y)2Î =

= [(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 − (t1 − t2)2c2]Î , (137)

in which case the maximal causal speed in water is the speed of light c in
vacuum, by therefore providing the first known quantitative representa-
tion that electrons can indeed travel in water faster than the local speed of
light.

Additionally, the iso-Minkowskian geometry [70] provides a geomet-
ric representation of the difference between the actual size dact of an object
in water and that perceived by an external observer dext. For this purpose,
note that in water we have the value Î = n2

4 = 9/4 > 1. The use of the
basic law for isotopy [23] [24] d2actÎ = d2extI,, then yields the value

dext = n4dact =
3

2
dact (138)
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Figure 31: A view of the apparent increase of size of objects submerged in water as

seen by an outside observer. This increase is quantitatively represented by Special

IsoRelativity (SIR) via Eq. (138) of Section 8.4.4-I with intriguing geometric

implications.

which is essentially verified by visual inspection as one can see from Fig-
ure 31.

Intriguing similar properties occur for other external and internal char-
acteristics. For instance we have a similar distinction between the ob-
server time called external time t and related unit It = 1 (which is the time
of the external observer), and the intrinsic time t̂ with related isounit Ît
(which is the time for an internal observer). Said two times are intercon-
nected by the isotopic law tIt = t̂Ît.

The above notion of isotime appears to be significant for biological
structures [165] because we generally assume that the time felt by a seashell
î is identical to our time t, while in reality the external and internal times
may be different.

8.4.4-II. Verification of SIR within gaseous media. Recall
that the Doppler law in vacuum, Eq. (124), can be written in first order
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Figure 32: A view on the left of the 60′-long Isoshift Testing Station that es-

tablished the energy loss (gain), thus frequency decrease (increase) without any

relative motion of a blue laser light passing through air at 1000 psi and at −100 C
(+1500 C) called isoredshift (isoblueshift), which was first predicted in the 1991

Refs. [71] [72], and first detected in the 2010 paper [155] via the scan shown in

the right view.

approximation

z =
ω′

ω
− 1 ≈ ±v

c
, (139)

where the minus (plus) sign occurs for the source moving away (toward)
the observer. The corresponding expansion for the iso-Doppler law (135)
yields the expression

ẑ =
ω′

ω
− 1 ≈ ±vk

c

n4

nk
, (140)

where the factor n4/nk can be expanded in terms of (c/vk)d, d being the
travel of light in the medium

n4

nk
≈ 1± S(ρ, τ, )

c

vk
d, (141)

where S s a function of the local density ρ, temperature τ and possibly
other local variables.
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The iso-Doppler law (135) then assumes the form in first order ap-
proximation, first derived in the 1991 Refs. [71] [72],

ẑ =
ω′

ω
− 1 ≈ ±v

c
± S(ρ, τ, ...)d, (142)

which represents two independent frequency shifts, the conventional Dop-
pler’s shift ±v/c due to relative motion between observer and source,
and the isoshift ±S(ρ, τ, ...)d due to loss (absorption) of energy E = hν
to (from) a gas. at temperatures lower (bigger) than 0 C, called isoredshift
(isoblueshift), in which the prefix ”iso” denotes the sole possible deriva-
tion via isomathematics.

Following a decade of failed attempts to locate a physics laboratory
interested in proving or disproving the prediction of the isoshift [72],
Santilli conducted systematic tests in collaboration with the technicians
of Magnegas Corporation at its former laboratories located at 150 Rainville
Rd, Tarpon Springs, Florida. An isoshift Test Station (left view of Figure
32) was built consisting of a front (rear) air-conditioned cabins containing
a blue laser light (wavelength analyzers), the two cabins being intercon-
nected by a 60 ft long tube containing air at 1, 000 psi. The air tempera-
ture was varied from−30C to +200C via commercially available cooling
or heating means..

Systematic tests reported in the 2010 paper [155], established that a
blue laser light loses (gains) energy, thus decreasing (increasing) its fre-
quency, when passing through air contained in the indicated tube at 1, 000
psi and −10 C (+150 C).

Since none of the measured frequency shifts occurred with any rela-
tive motion between the source and the observer, tests [155] established
the existence of the isoshift as predicted in the 1991 monograph [72].

Systematic additional measurements were conducted in the USA and
Europe via the best available wavelength analyzers by following Sunlight
with a telescope from the Zenith to the horizon. These tests established
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Figure 33: In order to maintain the validity of special relativity within our inho-

mogeneous and anisotropic atmosphere, it is generally believed that the redness of

Sunlight at Sunset is due to the absorption of blue light resulting in the residual

red light, against evidence known since Newton’s time that blue light is the most

penetrant and red light is quickly absorbed by media. Systematic measurements

[159] done in the U.S.A. and in Europe established that the redness of the Sun at

Sunset (left view) is due to loss of energy to our atmosphere with ensuing isored-

shift of blue light into the red red light (right view).

that the redness of the Sun at the horizon (left view of Figure 33) is due
to a loss of energy to our atmosphere such to cause the isoredshift of the
blue light into the red light (right view of Figure 33) [157] (see also lecture
f). It should be noted that the scattering of photons among the molecules
of our atmosphere is basically insufficient to represent the large redshift
from the blue all the way to the red.

8.4.4-III. Verification of SIR in astrophysics. Measure-
ments [159] provided an experimental verification on Earth of Zwicky’s
hypothesis of Tired Light [160], according to which galactic light loses
energy to the very cold intergalactic medium (mostly composed by Hy-
drogen at absolute zero degree temperature) in a way essentially propor-
tional to the covered distance d in a static universe without motion of
galaxies at such a velocity v/c to provide a contribution to the redshift.
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In particular, SIR provides a direct representation of Hubble’s law
with the identification of the S quantity of Eq. (142) with the Hubble
constant H0 without any contribution from the Doppler shift

ẑ =
ω′

ω
− 1 = −H0

c
d. (143)

The above isolaw provides an excellent representation of astrophysi-
cal data on cosmological redshift as shown in Ref.[161], including a pro-
portionality from the distance, the representation of the very large red-
shift of light from galaxies at the end of the known universe without any
need for superluminal speeds of entire galaxies or the hyperbolic and
unverifiable assumption that space itself is expanding.

The numerical representation of internal galactic redshift anomalies
occurs via the use of the isoredshift for star light propagating through the
cold peripheral intergalactic medium, and the isoblueshift for star light
passing trough hot intergalactic medium near a black hole [162].

The acceleration of the cosmological redshift with the distance d can
be beautifully represented via a gravitational contribution to the redshift
of galactic light passing near stars or galaxies in their long travel to Earth
[163].

The above results set the foundations of the new Tired Light Cosmol-
ogy representing a static universe in total EPR entanglement (Figure 2) ac-
cording to the view preferred by Einstein, Hubble, Hoyle, Zwicky, Fermi,
and others who died without accepting the expansion of the universe.

Note that for about one century the cosmological redshift z has been
interpreted to be a direct ”measurement” of the speed v of galaxies in an
expanding universe according to the SR law (139), while in reality the
identification z = v/c is an assumption due to the existence of the Tired
Light and other interpretations of the cosmological redshift.

SIR has established that the identification z = v/c is an experimentally
unverifiable assumption since the cosmological redshift z can be equally
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interpreted via Zwicky’s Tired Light without any expansion of the uni-
verse, and via other models such as that of the Tired Time [85].

Note that the assumption z = v/c implies

v

c
=
Ho

c
d, (144)

from which
v = Hod, (145)

which establishes the radial character of the conjectured expansion of the
universe necessarily implying Earth at its center [163].

Following one century of oblivion of Einstein’s rejection of the expan-
sion of the universe as well as the oblivion of Einstein’s view that ”quan-
tum mechanics is not a complete theory, ” it is hoped that cosmologists
will compare the new Tired Light Cosmology with EPR entangled uni-
verse [155]-[162] with the forgotten conceptual, geometrical and physical
insufficiencies or sheer inconsistencies of the unverifiable conjecture of
the expansion of the universe [163] [164] (see also debate [76] for details).

8.4.4-IV. Verification of SIR with the mean-life of un-
stable hadrons. Ref.[166] of 1964 suggested that non-linear and non-
local effects in the interior of hadrons caused by their high density can
manifest themselves in the outside via deviations of the behavior with
energy of their mean lives τ from time evolution law (119), i.e.,

τ ′ =
τ√

1− v2

c2

. (146)

Numerous generalizations of said law were then proposed, but Ref.
[167] showed that, in view of the universality of the Lorentz-Santilli isosym-
metry ŜO(3.1) for all possible symmetric space-tines (116), all said gen-
eralized time evolution laws are particular cases of the SIR isolaw (130),
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Figure 34: In this figure, we show the exact fit by special isorelativity experimental

data [168] showing deviations from special relativity law (119) in the behavior of

the mean-life of Kaons from 1 to 100 GeV (left fit) as well as experimental data

[168] joined with those of Ref. [169] claiming the confirmation of special relativity

law (119) between 100 to 400 GeV (right fit) [170]-[172].

i.e.
τ ′ =

τ√
1− v2k

c2
n2
4

n2
k

. (147)

since they can be all obtained via different expansions of the term n2
4/n

2
k

in different variables and with different truncations. Consequently, Ref.
[167] provided a significant clarification for experiments since they can
be all restricted to test isolaw (130).

Experiments on the indicated prediction of deviation from law (146)
were conducted in 1983 [168] for the behavior of the unstable kaons with
speed and established deviations from law (119), consequently in favor
of isolaw (130) from 1 to 100 GeV . A counter-experiment was done in
1987 [169] claiming the confirmation of law (119) between the different
range of 100 to 400 GeV .

Refs. [170] [171] showed that the data from both experiments [168]
and [169] can be exactly fit with the iso-Minkowskian geometry of rel-
ativistic hadronic mechanics [60] [70] (Figure 34). The 1992 Ref. [172]
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Figure 35: The fit of experimental data for the two-point correlation function

of proton-antiproton annihilation in the Bose-Einstein correlation requires ’four’

arbitrary parameters of unknown origin [173]. Refs. [85] [86] (see also review

[174]) have shown the inapplicability of special relativity for the proton-antiproton

annihilation in favor of the exact fit via special isorelativity at high energy (left

plot) and low energy (right plot) from which the four characteristic quantities nµ
of the iso-Minkowskian geometry represent the very elongated fireball of proton-

antiproton annihilations, Eqs. (150)-(151).

confirmed the findings of Refs. [170] [171], by indicating flaws in the the-
oretical elaboration of the form factors of counter-experiments [169]. A
detailed presentation is available in Ref. [74], Vol. IV, Section 9.

It is unfortunate for our scientific knowledge that. according to the
official position of the editors of the journals of major physical societies,
SR is claimed to be exactly valid in the interior of hadrons following the
1987 counter-experiment [169] despite the fact that the deviations from
SR laws remained established between 100 to 400 GeV and in complete
oblivion of refs. [170] [171], while requests made to various particle
physics laboratories over decades to run the experiment again rom 1 to
400 GeV have been generally discredited.

8.4.4-V. Verification of SIR in the Bose-Einstein cor-
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relation. As it is well known (see, e.g., Ref. [173]), the fit of the ex-
perimental data of the two-point correlation function of the Bose-Einstein
correlation for proton-antiproton annihilation requires four different ar-
bitrary parameters of unknown origin or meaning called the chaoticity
parameters. It has been shown in Refs. [85] [86] that this occurrence is
clear evidence on the lack of exact character of SR for proton-antiproton
annihilation for a number of reasons, including the fact that the vacuum
expectation value of the two-point correlation operator C2×2 is given by
the known quantum mechanical expression

< C2×2 >=< ψ|C2×2|ψ >, (148)

which, being two-dimensional and real-valued, can at best allow two pa-
rameter following due manipulation of the basic axioms.

By contrast, the use of relativistic hadronic mechanics [24] implies the
following isoexpectation value

<̂C2×2>̂ =< ψ̂|×̂C2×2×̂|ψ̂ >=< ψ̂|T̂2×2C2×2T̂2×2|ψ̂ > . (149)

It is then easy to see that the positive-definite 2 × 2-dimensional iso-
topic element T̂2×2 > 0 does indeed allow in its non-diagonal realiza-
tion the introduction of four characteristic quantities n2

µ, µ = 1, 2, 3, 4
from first axiomatic principles without any adulteration, whose value
is fit from the experimental data resulting in the values (Ref. [85], Eqs.
(10.27a), page 127, Ref. [86], Table I, page 441, and review [174])

n2
1 = n2

2 = 10.666, n2
3 = 0.355,

n1 = n2 = 3.265, n3 = 0.595 (150)

n2
4 = 0.429, n4 = 0.654. (151)

One can see from values (150) that the fit of the experimental data
(Figure 35) characterizes the known prolongated toroid of the proton-
antiproton fireball, while value (151) characterizes its density (for details,
see Ref. [75]. Volume IV, Section 10, page 802-809 and review [174]).
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8.4.4-VI. Verification of SIR with superluminal speeds.
8.4.4.VIA. Solution of the historical Lorentz problem.
The most important implication of the axiom-preserving isotopies of the
Lorentz symmetry achieved in the 1983 paper [60] is the solution of the
historical Lorentz problem, namely, the invariance of the locally varying
speeds of light C = c/n that Lorentz could not solve due to the linearity
cf Lie’s theory, by being therefore forced to restrict his invariance to the
particular case of a constant c.

In the author’s view, the most important implication of the EPR argu-
ment [1] applied to isosymmetry [60] can be expressed with the following
property from Ref. [175] [176]: :

LEMMA 8.4.1. The axioms of Einstein’s special relativity provide a repre-
sentation invariant over time of speeds of light through transparent media
that can be arbitrarily bigger or smaller than the speed of light in vacuum,

C =
c

n4

Q c. (152)

PROOF:
Isosymmetries ŜO(3.1), P̂ (3.1) and P̂ of isospacetime(126) [60]-[70] (see
Refs. [24] and [213] for a review) require no restrictions on the value and
functional dependence of the characteristic quantities of the medium, ex-
cept for the condition of being positive definite, nµ > 0, µ = 1, 2, 3, 4.
Consequently, said isosymmetries provide a characterization of arbitrary
local speeds of light, Eq. (152), in a way fully compatible with the ax-
ioms of SR because said isosymmetries are locally isomorphic to the cor-
responding conventional spacetime symmetries SO(3.1), P (3.1), P. The
proof of the invariance over time of arbitrary speeds (152) can be done
via a simple isotopy of the invariance over time of the speed of light c
under the conventional symmetries SO(3.1), P (3.1), P.
Q.E.D.
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Alternatively, SR can be fully realized on the Minkowski-Santilli iso-
space [70] M̂(x̂, Γ̂, Î) over the isoreal isofields R̂ with isounit Î = 1/T̂ > 0,
in which case the line element given by the top line of Eq. (126).

The realization of the isocoordinates

x̂µ =
xµ

nµ
Î , (153)

then yields isosymmetries ŜO(3.1), P̂ (3.1), P̂ with arbitrary speeds (152).
The propagation of light within transparent liquids with densities

n4 > 1 and light speeds smaller than that in vacuum, C = c/n4 < c,
has been known for centuries (Section 8.4.4-I), e.g., for the case of water
with density characterized by n4 = 1.5 for which we have (Figures 30, 31)

C =
c

1.5
= 0.666c = 200K km/s. (154)

Note that the characteristic quantity n4 provides a geometric charac-
terization of the density of the medium whose actual value is given by
D = 1/n4.

Note also Inconsistencies 1) to 7) in the event mainstream physicists
attempt to maintain in water the speed of light in vacuum via the usual
reduction of electromagnetic waves to photons.

Recall that the Cherenkov light we see in the pools of nuclear power
plants establishes the propagation of electrons in water at speed bigger
than the local speed of light.

SIR has generalized the above Cherenkov effect to hyperdense physi-
cal media with geometrized densities n4 < 1 resulting in arbitrary speeds
C = c/n4 > 1. This result is implicit in all experimental fits of particle
physics experiments to date via the SIR (e.g., Figures 34, 35). The result
is also implicit in all structure models of hadrons, nuclei and stars based
on the EPR completion of quantum into hadronic mechanics [36] [74].

As an illustration, recall from Section 8.2.2 that the sole known possi-
bility to represent all characteristics of the neutron in its synthesis from
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the hydrogen is that the energy of the isoelectron is isorenormalized ac-
cording to Eq. (36) from me = 0.511 MeV to mê = 0.511 + 0.784 =
1.295 MeV , by therefore yielding the expected geometrized density of
the proton

n4 =
0.511

1.295
= 0.394 < 1, (155)

whose order of magnitude is confirmed by the geometrized density of
the proton-antiproton fireball in the Bose-Einstein correlation (Ref. [85],
Eqs. (10.27a), page 127).

This implies that the isoelectron is rotating inside the hyperdense proton
(Figure 12) with the superluminal tangential speed

C =
c

0.394
= 2.538 c. (156)

Superliuminal speeds are generally obtained within the π0 meson [20]
and hold for all remaining hadrons since they all have masses bigger than
that of the π0, while having essentially the same size of the π0. Conse-
quently, SIR suggests that particles travel at a superluminal speed that be-
gins with the interior of the π0, and increases with the increase of the mass
of the hadrons in a way parallel to the progressive regaining of Einstein’s
determinism with the increase of the density of hadrons [210]-[214].

8.4.4.VIB. Geometric locomotion. It may be of some inter-
est to mention the mathematical prediction by SIR of spaceships traveling
at speeds much bigger than the speed of light in vacuum which speeds
are evidently necessary for any interstellar travel. The prediction was
submitted in Section 4.3.3, page 281 on (see also Figure 4.5) of the 2006
monograph [29] under the name of geometric locomotion, also known as
isolocomotion due to the need of its treatment via isomathematics. Isolo-
comotion is an intrinsic feature of the iso-Minkowskian geometry [70]
and its Lorentz-Santilli isosymmetry [60].
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Recall that the main notion of any geometry dating back to Euclid is
the distance d between two points, which we write d1, where 1 is the unit
of measurement (as well as the unit of the basic numeric field), e.g. 1 m.
Recall the preservation of numeric values under axiom-preserving iso-
topies [24], which we write d 1 ≡ d̂1̂. Isolocomotion is based on means
capable of altering the local geometry in such a way to increase the value
of the isounit 1̂ in the desired direction, with consequential decrease of
the distance d̂ in the selected direction. Isolocomotion then occurs with-
out any possible geometric singularity, such as instantaneous accelera-
tions, sharp changes of direction, or arbitrary speeds because the inte-
rior observer in the iso-Minkowski isospace is at rest since locomotion
is achieved via the change of the geometry in its environment. By con-
trast, an observer in our external Minkowski space may see the distance
d being covered at a multiple the speed of light c.

Alternatively, the aim of isolocomotion is to achieve arbitrary speeds
without violating SR. This is mathematically achieved by turning a space-
ship into rather complex interior conditions via the mutation of the sur-
rounding geometry, with ensuing local applicability of SIR and related
arbitrary speeds.

8.4.4.VIC. Interstellar travel. Recall that no interstellar travel
is nowadays possible because of: 1) The need for superluminal speeds, 2)
The impossibility of carrying along the necessary fuel, 3) The inability to
change directions to avoid collisions under very high speeds.

The possible achievement of superluminal speeds has been discussed
in the preceding section. Studies on a future resolution of the fuel prob-
lem have been initiated in Refs. [29] [175]. The main result is that quanti-
tative studies for future interstellar travels can indeed be conducted pro-
vided that space is conceived as a universal substratum (ether) with an
extremely big energy density for the characterization and propagation of
particles and electromagnetic waves (Section 8.2.3).
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In different words, the sole known possibility for interstellar travel is
that the needed fuel has to be extracted from the ether.

The complexity of the problem soon emerges when considering the
need for two co-existing ethers, one with positive energy for the charac-
terization of matter, and one with negative energy for the characteriza-
tion of antimatter [29]. This structure is of such a complexity that, in the
author’s view, can be best represented via the hyperstructural branch of
hadronic mechanics [24].

Despite its complexity, the above conception of a universal substra-
tum implies that immense values of positive and negative energy are
available everywhere in the universe. Future attempts at the realization
of isolocomotion are then reduced to engineering means for the direc-
tional transfer of negative energy from the ether to the spaceship. Under
the indicated conditions, isolocomotion occurs via matter-antimatter re-
pulsion.

The third problem (how to avoid collisions with astrophysical objects)
is perhaps the most complex of all problems connected with interstel-
lar travel since its sole solution os a change of the very structure of the
spaceship in such a way to pass through planets without any damage, as
shown in reports by the U. S. Navy of UFO entering in the sea at high
speeds without causing any wave. Conceivably, the alteration of the ge-
ometry of the ether can mathematically be such to produce the needed
”de-materialization.”

In short, the ether appears to have a truly fundamental role for inter-
stellar travel due to various reasons treated in Ref. [175], as a result of
which the ether is considered by an increasing number of scientists as the
most important frontier of the third millennium.

In closing, we point out that the entire content of this section, includ-
ing superluminal speeds, is fully compatible with the axioms of Einstein’s
special relativity, only realized in their most general possible form [175]
[176].
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An additional study of the implications of the EPR argument for su-
perliuminal speeds was presented at the 2020 Teleconference [0] by Y. F.
Chang from China and it is available in Ref. [218].

8.5. Application of EPR completions to exte-
rior gravitational problems.
8.5.1. Universal invariance of Riemannian intervals.
As it is well known, Lie’s theory c an only provide the invariance of lin-
ear theories and this explains the reason for the inability to construct Lie
symmetries of Riemannian intervals due to their non-linearity.

A primary motivation for the construction of the non-linear comple-
tion of Lie’s theory into the covering Lie-Santilli isotheory [21]-[25] [50]
[55] [201] [226] has been the construction of the universal isosymmetry of
Riemannian intervals.

The above objective was studied for the particular case of isointerval
(126) in which the isometric η̂µν coincides with a Riemannian metric g(x),
and resulted in the following basic isosymmetries (see the review in Ref.
[213]): 1) The iso-Lorentz symmetry, nowadays called the Lorentz-Santilli

(LS) isosymmetry ŜO(3.1) first achieved at the classical level in the 1983
paper [60] with operator counterpart in Ref. [61];

2) The iso-Poincaré isosymmetry, nowadays called the Lorentz-Poincaré-

Santilli (LPS) isosymmetry P̂ (3.1), first achieved in the 1993 paper [67]
written at Moscow State University; and

3) The spinorial covering of the LPS isosymmetry P̂(3.1), first achieved
at the 1994 paper [68] written at the JINR, Dubna, Russia (see also the
1995 paper [69] published in China).

The understanding of the remaining parts of this section requires a
technical knowledge that the isotopic symmetries formulated on iso-Min-
kowskian isospaces over isofields are locally isomorphic to the corre-
sponding conventional symmetries formulated on a Minkowski space
over a numeric field, i.e., ŜO(3.1) ≈ SO(3.1), P̂ (3.1) ≈ P (3.1), P̂(3.1) ≈
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P(3.1).

8.5.2. Isogeometric unification of special and general
relativity. As indicated earlier, the iso-Minkowskian geometry [60] [70]
includes as particular cases all possible geometries with symmetric space-
time intervals (126), thus including the Minkowskian, Riemannian, Fyns-
lerian and other geometries.

Consequently, the iso-Minkowski geometry is particularly suited for
the isogeometric unification of Einstein’s special and general relativities un-
der the universal LPS isosymmetry, namely, a unification based on iso-
mathematics while maintaining identically Einstein’s field equations

Rµν −
1

2
RµνR = 0. (157)

Consider an arbitrary non-singular Riemannian metric g(x) where x
are the conventional space-time coordinates. Its identical reformulation
via isomathematics requires the decomposition of g(x) into the product
of the Minkowski metric η multiplied by a 4× 4 positive-definite gravita-

tional isotopic element T̂gr(x) [177] [178],

g(x) = Tgr(x)× η = η̂gr. (158)

The resulting iso-Minkowskian isospace M̂(x̂gr, η̂gr, Îgr) is then formu-
lated over an isoreal isofield R̂ with gravitational isounit given by the in-
verse of the gravitational isotopic element,

Îgr(x) = 1/T̂gr(x), (159)

and local isocoordinates
x̂gr = xÎgr. (160)

Exterior general isorelativity (EGIR) [177]- [182] can be defined as the
formulation of general relativity on isospace M̂(x̂gr, η̂gt, Îgr) over an isoreal
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isofield R̂ under the condition that its projection on a Riemannian space
over a conventional field recovers general relativity uniquely and identically.
Consequently, by construction, isogravitation is a mere reformulation of
general relativity via the use of isomathematics. The terms exterior iso-
gravitation are used to recall that general relativity describes the exterior
gravitational field in vacuum, in preparation of the complementary inte-
rior gravitational problem studied in the next section.

Note that, in view of the dependence of the isometric η̂(x) on space-
time coordinates, the iso-Minkowski isogeometry is formulated with the
entire mathematical machinery of the Riemannian geometry, although
expressed in terms of the isodifferential isocalculus [70].

Note also that isogravitation provides the reformulation of general
relativity with the axioms of special relativity in their isotopic formula-
tion, Isoaxioms I to V.

The isogeometric unification of special and general relativities is then
assured by the fact that isogravitation is an identical reformulation of
general relativity while admitting special relativity at the simple limit

LimÎgr I. (161)

8.5.3. Resolution of century-old controversies in grav-
itation? As it is well known to experts in gravitation, although rarely
admitted, general relativity has been plagued by a host of controver-
sies that have not been resolved in about one century of studies, such as
the apparent incompatibility of general relativity with special relativity,
quantum mechanics, grand unifications and other 20th century theories.

In the author’s view, protracted physical controversies are generally
due to the fact that the used mathematics is insufficient for the solution
of the problem considered. For the case of general relativity, it has been
shown that the origin of the controversies can be reduced to the incom-
patibility of the Riemannian geometry with the axiomatic structure of
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20th century theories, since the latter are all defined on flat spaces, while
the formed is define on a curved space.

Isogravitation (GIR), that is, the reformulation of general relativity via
the iso-Minkowskian geometry, appears to offer realistic possibilities of
resolving the indicated century-old controversies, as illustrated by the
following comments:

1) Isogravitation is isoflat, namely, it is flat on isospace over isofield.
This important feature can be seen from the fact that the isogravitational
isometric η̂gr is given by the Minkowski metric η multiplied by the iso-
topic element T̂gr according to Eq. (158), while jointly the basic unit of
the Minkowski geometry I = Diag.(1, 1, 1, 1) is completed by the inverse
amount, Eq. (150), resulting in no curvature. In the author’s view, the
isoflatness of GIR is important for the achievement of compatibility be-
tween gravitation and 20th century theories for the indicated reason that
the latter are formulated in flat spaces.

2) Invariance under isosymmetries that are locally isomorphic
to the corresponding conventional symmetries (Section 8.5.1). Recall
that another reason for the incompatibility of GR with 20th century theo-
ries is the invariance of the former under the Lorentz and Poincaré sym-
metries compared to the lack of invariance for GR. It is then evident that
the reformulation of gravitation in a form admitting symmetries locally
isomorphic to the conventional symmetries provides serious support for
the compatibility of isogravitation and 20th century theories.

3) Unique and unambiguous limit of isogravitation into spe-
cial relativity [177]. Recall that the limit of general into special relativity
has remained controversial for a century due to numerous reasons [181],
such as the impossibility of recovering from the Riemannian geometry
the Poincaré symmetry of special relativity, let alone its generators (con-
served quantities). These controversies appear to be resolved by isograv-
itation due to its formulation via the axioms of special relativity. Addi-
tionally, SR is recovered from GIR in full via simple limit (161).
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4) Unique and unambiguous operator formulation of gravita-
tion [177]. An additional reason for controversies is the lack of a clear and
unambiguous quantum mechanical formulation of GR. This is due to the
fact that GR is a non-canonical theory whose consistent operator image
is then given by non-unitary theories. But the latter theories formulated
in conventional fields violate causality as indicated various times in this
Overview, resulting in the lack of a unique, physically consistent opera-
tor image of GR. This additional, century-old controversy is resolved by
the fact that the operator image of GIR is uniquely and unambiguously
given by relativistic hadronic mechanics [36] when characterized by the
gravitational isounit Îgr, E q. (159). Additionally, relativistic hadronic
mechanics is isounitary, that is, unitary on isospaces over isofields, thus
recovering causality.

5) Unique and unambiguous grand unification [178]. Recall the
impossibility to achieve a consistent grand unification of gravitation with
other interactions beginning with Einstein’s own failed attempts. In addi-
tion to a number of problematic aspects [181], this impossibility is primar-
ily due to the curvature of the Riemannian geometry because, when com-
bined with electromagnetic and/or weak interactions, curvature causes
the collapse of their axiomatic structure, beginning with the loss of space-
time, gauge and other symmetries. This additional century-old contro-
versy appears to be resolved by isogravitation because of its isoflatness,
as studied in detail in monograph [29]. Note that the resulting grand uni-
fication required, for consistency, the addition of the gravity of antimatter
via the isodual cf completion of charge conjugation (Section 7.7).

6) Historical objections against the curvature of space. As it is
well known, when looking at the Sun at Sunset, the Sun is already below
the horizon due to the refraction of Sun light in our atmosphere without
any possible curvature of space. The historical, well known (but rarely
mentioned) objection against the curvature of space is that the bending of
light passing near our Sun is due to its refraction of light within the Sun
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chromospheres. Additional controversies occur from the fact that space
is assumed to be empty. It is therefore counter-intuitive for a number
of physicists to accept the idea that the curvature of an empty space can
control the trajectory of large planets such as Jupiter. Additional contro-
versies on curvature can be found in the debate [192].

7) Lack of time-invariant numerical predictions. Recall that a
majestic feature of special relativity is the preservation over time of nu-
merical prediction due to the invariance of the theory under the Lorentz-
Poincaré symmetry. The canonical character of SR then assures the unique-
ness of the space-time metric for all experimental verifications. As it is well
known to historians (but also rarely spoken), the lack of Lie symmetries
in the Riemannian geometry mandated the replacement in GR of the no-
tion of invariance with that of covariance. However, such a replacement
triggered a number of controversies, the first controversy being due to
the the lack of uniqueness of the Riemannian metric for all experimental
verifications in exterior conditions, with ensuing lack of final experimen-
tal results. Secondly, the use of covariance instead of invariance implies
that numerical predictions of GR are not preserved over time, with the
ensuing additional reason for the lack of final character of experimen-
tal verifications [161]. Additional controversies have occurred for experi-
mental verifications of GR due to the apparent ad hoc selection of the PPN
approximation for the selected experiment. It appears that GIR offers re-
alistic possibility ofd resolving the indicated controversies on experimen-
tal verifications in case seeded in a receptive scientific environment (for
additional controversies, see next section and Ref. [182]).

8.6. Application of EPR completions to inte-
rior gravitational problems.
8.6.1. Exterior and interior gravitational problems. In
the first part of the 20th century, dynamical problems were called exte-
rior problems when dealing with point-particles in vacuum and interior
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Figure 36: On the left of this figure, we reproduce the proposal in page 145
of the 1974 MIT paper [185] to test the Poincaré hypothesis that the exterior
gravitational field of a mass is entirely due to the electric and magnetic fields
of the charged constituents in high dynamical conditions. In the right of
this figure, we show the Gravity Generator Equipment (GGE) manufactured
by Hadronic Technologies Corporation to test the Poincaré hypothesis in
the expectation of its conduction by a physics laboratory with a sufficiently
sensitive gravity meter.

problems when dealing with particles in the interior of physical media.
For instance, Schwartzschild wrote two important papers: the first paper
[183] in the exterior gravitational problem that became justly famous, and
the second paper [184] on the interior gravitational problem that continues
to remain vastly ignored because not compatible with Einstein general
relativity.

This view is essentially based on the fact that the reduction of mat-
ter to point-like constituents according to quantum mechanics, essentially
eliminates any major distinction between exterior and interior problems.

The admission of the physical reality that particles in general, and
hadrons in particular, are extended, and the ensuing verifications [210]-
[214] of the EPR argument [1], reinstate the structural difference between
exterior and interior gravitational problems adopted by Schwartzschild
[183] [184[, due to the very complex interactions occurring for particles
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in interior conditions, ultimately reducible to deep EPR entanglements
(Figure 2 and Section 7.2.3), which internal interactions are completely
absent for the same particles in exterior conditions.

8.6.2. Interior General Isorelativity (IGIR). As noted in
Section 8.5, general isorelativity (GIR) is characterized by an isometric
solely dependent on space-time isocoordinates η̂(x̂), in which case the
theory can solely represent the exterior gravitational field.

In general, the isometric has an unrestricted dependence on all needed
local variables [70]

η̂ = η̂(x, v, p, E, µ, τ, ρ, ....) = T̂gr(x, v, p, E, µ, τ, ρ, ....)η. (162)

Consequently, isogravitation may indeed allow the study of interior grav-
itational problems, resulting in a theory called interior general isorelativity
(IGIR).

One of the best illustrations of IGIR is given by the iso-Dirac isoe-
quation, also known as Dirac-Santilli isoequation, on an iso-Minkowskian
isospace M̂(x̂, η̂, Î) first introduced in Ref. [70] of 1995

(−iÎ η̂µν γ̂µ∂ν +mC)|ψ̂(x̂) >= 0. (163)

In this case, the Dirac-Santilli isogamma isomatrices γ̂Î are given by

γ̂k = 1
nk

(
0 σ̂k
−σ̂k 0

)
, γ̂4 = i

n4

(
I2×2 0

0 −I2×2

)
, (164)

where σ̂k are the regular Pauli-Santilli isomatrices used for the EPR verifi-
cation [211] (see realization(39) via Bohm’s hidden variables and Section
3.3 of Ref. [213] for the general case), with anti-isocommutation rules

{γ̂µ̂,γ̂ν} = γ̂µT̂ γ̂ν + γ̂νT̂ γ̂µ == 2η̂µν . (165)

The simpler case of GIR holds when the isometric coincides with a Rie-
mannian metric, η̂µν = g(x)µν , including the Schwartzschild metric, by
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therefore describing an isoelectron-isopositron pair under an external grav-
itational field.

The isogeometric unification of this section is illustrated by the fact
that Eq.(163) allowed the representation of all characteristics of the neu-
tron in its synthesis from the hydrogen with the sole change of the metric
into one used for SIR, such as that of the EPR entanglement of Section
7.2.3 [70].

8.6.3. Black or brown holes? The study of IGIR has been rudi-
mentarily initiated in Ref. [180] with intriguing outcome, such as the
apparent reformulation of black holes into brown holes in representation of
the lack of existence of singularities in nature.

Alternatively, the reformulation of black into brown holes appears to
indicate the existence of a limit in the compressibility of protons at the
divergence of their entangled number

8.6.4. Studies in the origin of gravitation. Recall that the
gravitational field of a mass originates in the interior of the mass. Hence,
a historical open problem is that of the origin rather than the sole descrip-
tion of a gravitational field.

It may be of some interest to know that IGIR can be defined as a repre-
sentation of the origin of the gravitational field with particular reference to
the study of matter-matter gravitational attraction and matter-antimatter
gravitational repulsion.

As an example, a typical problem of the IGIR is the study of Poincaré’s
hypothesis that the exterior gravitation field of a mass is entirely gener-
ated by the electric and magnetic fields of its charged constituents.

The Poincaré hypothesis has been studied in detail in the 1974 MIT
paper [185] via advanced and retarded formulations of quantum field
theory. This study confirmed that the electromagnetic field of all charged
components of a mass, including atomic and nuclear constituents, can
indeed be the complete source of the exterior gravitational field of a mass
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even when the total charge is zero.
This study implies the existence of a gravitational source F̂ elm

µν repre-
senting the origin of the gravitational field, with ensuing completion of
field equations (157) [180] into the form

R̂µν −
1

2
R̂µνR̂ = kF̂ elm

µν , (166)

which does verify the forgotten Freud identity of the Riemannian geom-
etry [181].

Note that Eq. (163) no longer represent gravitation via curvature and
this explains the reason for which the study of the Poincaré hypothesis
in the origin of the gravitational field has been vastly ignorewd by main-
stream physics for one full century (see debate [91] for details) despite
Einstein’s doubts on the r.h.s. of field equations (162) which he called ”a
house made of wood” while called the l.f.s. ”a house made of marble.”

For non-initiated readers, we should recall that Eq. (163) is fully ad-
mitted by conventional GR although, in this case, F̂ elm

µν represents the
field of the total charge of the mass considered, with ensuing extremely
small contribution to the gravitational field that, as such, remains repre-
sented by curvature.

By contrast, in field equation (163) according to the 1974 paper [185],
the term F̂ elm

44 represents the total mass of the body assumed to be neutral,
the extension to the a non-null total charge being trivial. In this case, the
gravitational field cannot be represented via curvature, because it is cor-
rectly represented by the iso-Minkowskian geometry that, as indicated
earlier, is flat.

The basic open problems of the IGIR can then be tentatively formu-
lated as the study of: the gravitational attraction of two masses repre-
sented with two equations of type (163)a; and the study of the gravita-
tional repulsion between one mass represented with Eqs. (163) and its
antimatter image represented via the isodual iso-Minkowskian geometry
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and isodual image of Eqs.m(163) [29] [70].
Additional studies in the general relativistic formulation of the elec-

tromagnetic field and its implications for quantum gravity are available
from contributions [225] and [234] of the 2020 Teleconference [0].

8.6.5. Experimental test of the origin of gravitation. An
experiment to prove or disprove the Poincaré hypothesis was suggested
in page 145 of the 1974 MIT paper [185] (Figure 36). The U. S. Hadronic
Technologies Corporation has constructed the equipment according pro-
posed in Ref. [185] called gravity generation equipment (GGE), essentially
consisting of a series of discs with null total charge of 1” thickness and
diameter varying from 3” to 5”.The discs are composed by various ma-
terial, such as aluminum or Iron, which discs are pout in rotation up to
100, 000 rpm by a specially designed sequence of spindles (Figure 35).

The proposed experiment essentially consists in: 1) placing the indi-
cated GGE next to a highly sensitive gravity detector; 2) measuring the
local gravitational field when the GGE is disconnected; and 3) measur-
ing the local gravitational field when the GGE is progressively activated
up to the maximal 100, 000 rpm. The detection of any gravitational field
when the GGE discs are rotating would establish the first known creation
in laboratory of a gravitational field. Note that there is no need for the
GGE discs to be charged (see Ref.[185] for details).

In the author’s view, Einstein’s geometric conception of gravitation as
being entirely due to curvature is one of the most beautiful and impor-
tant discoveries by the human mind. However, such a conception has
merely initiated, rather than ended, the studies in gravitation in view of
century-old controversies yet to be resolved, and so much remains to be
discoveresd theoretically and experimentally.

8.7. Application of EPR completions to high
energy scattering experiments
The non-relativistic and relativistic elaboration of high energy scattering
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Figure 37: It is generally accepted in the physics community that quantum me-

chanics is inapplicable in the interior of a black hole. Consequently, quantum

mechanics should not be expected to be applicable in the interior of the scattering

region of current high energy particle experiments in accordance with the EPR

argument [1].

experiments with the EPR completion of the quantum into hadronic me-
chanics is known as:

i) isoscattering theory, when possessing a Lie-isotopic algebraic struc-
ture for the representation of elastic, thus time-reversal invariant scatter-
ing experiments on an iso-Hilbert isospace Ĥ over the isocomplex isofield
Ĉ;

ii) genoscattering theory, when possessing a Lie-admissible algebraic
structure for the representation of inelastic, thus time irreversible scatter-
ing experiments on an geno-Hilbert genospace Ĥ> over the genocomplex
genofield Ĉ>; and

iii) hyperscattering theory, when elaborated via hyperstructures for the
representation of time irreversible multi-particle scattering experiments
requiring a three-dimensional multi-valued representation on a hyper-
Hilbert hyperspace over the hypercomplex hyperfield [24] [233].
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Studies in the field were initiated by R. Mignani in 1984 [186] and con-
tinued by other authors (see the 1995 review in Chapter 12 of Ref. [24]).
Subsequent detailed studies have been conducted by A. K. Aringazin et
al. [54], A. O. E. Animalu et al. [187] [215].

Numerous additional works exist in the formulation of non-unitary
scattering theories, but they are formulated on a conventional Hilbert
space H over the conventional field of complex numbers C, thus gen-
erally violating causality [23] [212]. Nevertheless the latter scattering
theories are significant because they can be easily reformulated on the
appropriate iso-, geno- or hyper-space over a corresponding iso-, geno-
or hyperfield, by becoming iso-, geno- or hyper-unitary theories and re-
gaining in this way causality.

By recalling the preservation of quantum mechanical axioms by hadronic
mechanics (Section 8.4.4-I), and by remembering the dual formulation of
hadronic mechanics on isospaces over isofields and their projection on
conventional spaces over conventional fields, to the author’s best knowl-
edge the application of the EPR completions to high energy scattering
experiments essentially implies the following:

a) The simplest possible Copenhagen realization of quantum mechan-
ical axioms for point-particles in vacuum is no longer exactly valid for
the hyperdense interior of high energy scattering regions due to their ap-
proaching the density of black holes, in favor of the broadest possible re-
alization of quantum mechanical axions according to the iso-, geno- and
hyper-structural branches of relativistic hadronic mechanics (Figure 37).

b) All theoretical as well as numerical results of high energy scattering
experiments released by particle physics laboratories to date remain valid
when formulated on an iso-, geno-, or hyper-Minkowskian isospace over
an iso-, geno-, or hyper-complex fields.

c) The projection of the preceding formulations on our physical Min-
kowski space-time over the field of real numbers requires isorenormal-
ization (133) of Isoaxiom IV of the energy and other isorenormalizations
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of the characteristics of intermediate particles which have been crucial for
the exact representation of the neutron synthesis (Section 8.2.2), nuclear
data (Section 8.2.5), molecular data (Section 7.2), and other data.

9. CONCLUDING REMARKS
The author has stated various times in his works that the basic axioms
of quantum mechanics and special relativity are majestic in view of their
mathematical consistency, predictive power, and preservation over time
of numerical results for the conditions of their original conception (point
particles in vacuum).

A central feature of the research outlined in this Overview is that the
basic axioms of quantum mechanics are preserved identically in the ver-
ifications and applications [210]-[214] of the EPR argument [1], and they
are merely realized in their most general possible form.

A similar situation occurs for special relativity because, when equally
realized in their most general possible form, its axioms appear to al-
low: a geometric unification of Einstein’s special and general relativi-
ties; their extension to interior dynamical problems; the apparent reso-
lution of century-old controversies in gravitation; the study of the ori-
gin (rather than the sole description) of the gravitational field; the study
of the mechanism of matter-matter gravitational attraction and matter-
antimatter gravitational repulsion; and other intriguing open problems.
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Isorepresentations of the Lie-Isotopic,SU(2)
Algebra with Applications to Nuclear Physics

and to Local Realism

RUCGERO MARIA SANTILLI
Tha tnstitute lor Basic Retearch, PO Box 1577, Paln Harbor FL i4682, U,S'4,

(Recclvcd: 1 February 1994)

Abstract, In.thls noto, we study the nonlincar.nonlocal-nohcanonical, axlom-prcrerving isotoples/Q-

opcrator deformations S0q1Z1of the 5U(2) spin-isoepln symmolry. Wc provl the tocal lsomor'

phism .9Ua(2) er 5U(2), construct and ctassify the lsorcprescnhtlorts of 8Uq(2), identlfy thc
imerging gcneralizatioris of Pauli matriccs, and show thelr lack of unitarycqulvalence to thc con-
vcntiina'i lcpresentations. The thcory le applled for the rcconstruetlon of tho exact .5U(2)-lsospin
symmetty iri nucleor physlcs wlth equal p'and n masses in isospaces, Wealto provo that Bcll's
incquallty and ths von Nsumann thiorem urc lnappllcable undor lsotoplcs' thus permlttlng_thl
isot6pic iomplctlon/Q"opcrator dcformation of quaritum mcchanlcs studlcd ln thls noto which ls

considcrably along (ho cslsbrated argument by Einstcin, Podolsky and Rosen.

Mathematlcs Subjoct Classlfication (1991). S7R52.

Key uordsr isotopies, isoroproscntations, Lie-isotopic algabras.

l. Statemcnt of the Problem

According to curent knowledge (see, e.g., [1,4J), the SU(Z) spin ot isospin
symmetry can solely characterize the familiar eigcnvaluos iU + 1) and m, I -
0,*, t, ..,1 tn, = i,i - 1,.,. ,-i,

in this note, we show that the isotopic generatization of SU(2j, herein denoted

S*q(z\,while bolng locally lsomorphic to SU(2),can characterlzeffiate genaral

eigenvalues of the type

,F * ila)it/(A)J + lL Jx * !(a)m,
where j and m have conventional values and f(A) is a real valued, positive-
definite function of the determinant of the background metric A = Detg :
DetQS such that /(l) = l.

For the two"dimensional case, the condition del g = 1 for g = diag(gu,gzy)
is realized by 91 = gizt =,\. This implies the preservation of the conventiorat
value I of the spin, but the appearancs of a nontrivial generalization of Pauli's
matrices, herein called iso-Pauli matricen, with afl explicit realization of the

'hidden variable' I in the structure of the spin { itself.

1'17

(l.t)
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As a first application, we con.struct the isotopies of the conventional isospin
(see, e.g., [2, 0]), and show that the iso-Pauli matrices permit the reconstruction of

^n 
exdct SU(2)-isospin symmetry under electronagnetic and weak interactions

because protons and neutrons acquire equal massos in the underlying isospace.
As a second application, we show that Bell's inequality and ths von Neumann

theorem (see, e.g., review [7]) are inapplicable under isotopies, thus perrnitting
the isotopic completion of quanturn mechanics studied in this note, which ls
considerably much along the lines of the cetebrated Einstein-Podolski-Rosen
(EPR) argument,

It should be noted that, at the International Workshop on Symmetry Methods
itr Physics held at the JINR in July 1993, Lapez [9J showed that the so-calted
q"defornations (see, e.g,, [7, 45]) can be put in an axiomatio form precisely vla
the isotopic Q-operator deformations studied in this note,

One isotopy of Pauli mntrices was first presented by this author at the Third
International Wigner Symposium (held at Oxford University in September 1993,

I l3]). In this note, we present, apparently for the first time, a systematic study and
classification of the fundamental (adjoint) isorepresentation of the Lie-isotopic
S0q1Z1 algebra, their applications io the reconstruction of the exact isospin
symmetry as well as to the limitation of Bell's inequality and von Neurnann's
theorem. Additional applications to nuclear magnetic moments, particle physics
und other fields will be presented elsewhere,

2, Isotopies of SU(Z) Symmetry

The understanding of this note requires a knowledge of the nonlinear-nonlocal-
noncanonical, axiom-preserving isotopies of the theory of nurnbers [11] and of
Lie's theory as reviewed in the article [8] in this issue and studied in detail in
the monographs. [16, l8].

The fundnmental notion is the lsotopy o,f the unit of the theory considered [4,
6-14J, in this case, the unit f : diag(l,l) of ,5U(2), into a two-dimensionat
matrix f whose elements have the most general possible dependence on complex
coordinates z, Z of the underlying carrier space of SU(2), their derivative with
respect to time of arbitrary order, the wave functions rl, rl)l and their derivatives
also ofarbitrary order, and any needed additional quantity, subject to the condition
of preserving the original axioms of I (smoothness, boundedness, noflsingularity,
Hermiticity and positive-definiteness, as a necessary condition for isotopy),

/: diag(l,l) > 0 * ?:?(t,z,z,i,z1b,{t,ar!,A1b\,.,.) > 0. (2,1,)

The Isotopy of the unit then demands, for consisteney, a corresponding, compat-
iblo lifting of alt associative products .4.B among generic QM quantities A, B,
into the isoproduct

AB + A* B t= AqB, Q fixed, (2,2)
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where the isotopic eharacter of the lifting is estnblished by the preservation of
associativity by the isoproduct, .4 * (B x C) - (A * B) * C.

The assumElion i = Q]l then implies that i is the conect left and right unit
of the theory, I * A = A*I =.4, in rvhich case Q is called the isotopic elamcnt,
and f is called the isouttit, Note the invariant appeamnce of q-deformations in
their Q-operator form at the very foundation gf the theory, provided that they
are reformulated with rospect to the new unit.I = q-r ([0, 1l]).

The isotopies of the unit .I =+ f and of the product AB +,4 x B thcn imply
the necessary lifting of a/l mathematical structures of quantum mechanics (QM)
into those of a coverlng dlscipline called hadronic nwclnnics (HM) fi61. Here
we mention the lifting of the fteld of complex numbers C(c,*tx), with etements
c, ordinary sum * and multiplication c x C : cC, into the infinitely possible
isotopes Cq(e,*,*), with isocomplex nunrber,r e ='CI, conventional sum *
and isomultiplication 8l * I = 61Q02= brcz)?. Note for future use that, for an

arbitrary quantity A, e* A = c?QA e cA,
The isotopies of the unit, muttiplication and fields then demand, for mathemat-

ical consistehcy, corresponding compatible isotopies of the basic carrier space,
the two-dimensionalcomplex Euclidean space E(2,2,d,C) with familiar metric
f : diag(I,1) into the complex two-dimensional iso-Euclidean spaces intro-
duced in U5, 16I

EgQ,Z,8,Ay z = (zt,zz), 6.= Q6 = g = diag(g ntgzz) = rt > 0, (2.3a)

z h gil$,2,7,, , ,)zi =Ztgnzt *7292222, (2,3b)

where the assumed diagonalization of Q is always possible (although not neces-
sary) from its positlve-defi niteness.

The isotopic character (as well as novelty) of the generalization is established
by the fact that, un{er the joint lifting of the metric 6 =+ 6 :^Q6 = g and of
the field C + eg, T: Q*|, atl infinitety possible isospaces Eq(2,2,8,e) ar"
locally isomorphic to the originnl spacc E(z,z,,l,d) under the sols condition
of positive-definiteness,of the isounit i ttSt. In turn, this evidently sets ths
foundation for the local isomorphism of the conesponding syrnmetries,

Note that separation (2.3) is the most general possible nonliilear, nonlo-
cal and roncanonical generalization of the original separation z I z under the
sole condition of rernaining positive.definite, i.e,, o[ preserving the topology
sig 6 = sig F = (+, +). ThJ symmetries of invariant (2.3) are then cxpe"tea ii
be nonlinear, nonlocal and noncanonical, as desired.

The.preceding isotopies irnply, for consistency, the lsotopies of Hilbert spaces
U: (rbldl e 6 into the so-called in^o-Hilbert space fiq with isoproduct and
isonormalizallon

f;e, @l$t = q$1q1$1i e Cqt @idt : i, (2,4)

Then, operators which are Hermitian (observao-le) for QM remain Hermitian
(observable) for HM fi61.
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The liftings of the Hilben space require conesponding isotopies of alt oper-

ations in '17 U3, I4l, We here mention isounitarity^0 * 0i : 0t * 0 = f;
isoeigenvalue equations H .lflj = HQI{') : .0 * l0) = glfi; isoexpactation
vatues j,4i * $lAAel$)/($lql$l; *t".

The tiiting of the unit, bnse field and canier space then require, for rnathemat-
ical consistency, the lifting of the entire structure of Lie's theory first submitted
in [ 0J, We are here referring to the isotopies of enveloping associative algebras d,
Lie algebras f,, Lie groups G, representation theory, etc., today called Lie.-Santilli
theory. Here wo mention the isoassocialive enveloping operaior algehras iq with
isoproduct (2.2), A* B * AQB; the Lie-lsotopic algebras iq with isoproduct

td,EJfo * lAt* Bl * A* B * B,u Aq AeB * BeAi (2,s)

the (connected) Lid-tsotopic groups dq of lsolinear lsounttary transfom* on
Eq@,2,1,0)

z' * 0(w) * z * fi1y49, :tfu)e(z,z,it,Z,$,$!,.. .)r, (2,6a)

01w1 .*"if,." = f + 1ix*1 1u + (ixw) * (t xw) /zr +,,.
= 1e;XQw1?,

0(u,) * 01*'1 : 0 1*'1 * 0 1*1 * 0 (w + ru'),

09fi x0t-*) * 0101 = i,
where the reformulation in terms of the conventional exponentiation has been
done for simplicity of calculations.

The isounitary Uq(Z) synnnetry is the most general possible, nonlinear, nonlo"
cal and noncanonical, simple, Lie-isotopic invariance group of separation (2.3b)
with realization in terrns of isounltary operators on ?7q

* ^t ^t0 *.01 =0t n0 =T =e-t, (2.7)

(2,6b)

(2.6c)

verlfylng lsotopic laws (2,6), 0121 canbe decomposed into tha connected, special
isounltary symmetry SUq(Z) for

dot(Oq = *1, (Z,S)

pluo a dlscrete part which is similar to that for d(l) f to: and is here lgnored for
brevity.

The connected SUq(Z) coffiponents admit the reallearlon ir terms of now
generators ip and the same^parameters 0* q, R(n,*, x) of SU(Z) atthough
re-expressed in the isofield R(fi.,+,*)

, : 
T"lt-U, 

* {ye$tao,,}?, e.s)

under the conditions (necessary for isounitarity)
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r(.Aq)=0, k=1,2,3.

The tsorcpreientdtians of the isotopic algebras SlAQJ can be studied by
imposing that the isocommutation rules have the sarne structure constants of
SU(ZJ, i,e., for the rules

l8l

(2.'o)

(2.1t)

(2,t2)

(2.14a)

(2.t4b)

(2,l5al

(2,tsb)

(2,15c)

under conditiort (2.10).
The isorepresentations of the desired dimension can then be constnrcted accord-

ingly. In the next section we shall compute the twodimensional isorepresenta-
tions, while those of higher dimensions will be studled in a subsequent paper.

A new image of the conventional SU(2) symmerry is characterized by our
isotopic methods via the antiautomorphic map / = diag(l ,l) * I,t = -I ealled

lit,* ii * ItQ\ * iiAf, = ieit*ix.

wlth iso-Casimir

fr *Lit,n it,
k

The rnaximal isocommuting set is thorr given by ,P and.,f, asjn the convention.
al oase. These assumptions ensure the local isomorphlsm SU(Z) x SU(Z) by
construction.

t-et lBftl be the d"dlmensional isobasis of S1qQ) with iso-orthogonality con-
ditions

6!l.l6tt:= @f[q;6f) = o;y, c,i * ttz,,,,,n, (2,13)

By putting as in the conventional case ,ia = fi * i2, and by repeating the sarne
procedure as the familiar one fi], we have

fi * lit) * billBit, 3 *lBfry * b!(b!- t)l6f),
d,= 1,2r.,,, fu = lr2r,,, rd,1

b! a *bfi, bl(bf - D a big,i + t).

A consequence is that the dlmenslotts of tho iwrepreoentatlons of gfiA\j
remain the corwenttofial ones, i.e., they can be characteriepd by the farnillar
expression n * 2i + l, i .= 0,2r, 1,... as expected from the isomoryhism
S1q(z) ru su(z),

However, the expllclt form of thc matrix r€prese,$dtious ate dffircnt thdn the
convafitlonal ones, ag exprcesed by the rules

(fia * *tfi{tr qf- - 14"1*18t7,

tlz)u * *t6!l- (i- + i*7 *1tt1,
(4),; = 1ry|*fi*l6f),
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lsoduality (U2, l6]), which provides a novel and intrigting characterization of
antiparticles, The corr*esponding isodual isosymmctry SU|.Q) will be studied in
a separate work,

ln summary, our isotopic methods permit the identifieation of four physically
relevant isotopies und isodualities of $U(2) which, for the crse of isospin, are
given by the broken conventional SU(Z) for the usual treatment of p-n,; the

exrct isotopic S0q1Z1 for the charocterization of p * n (see next section); the
broken isodual SU't(2) symm€try for the characterieation of the antiparticles B*E

. in isodual spaces; and the exuct, isodual, isotopic 508(o) for the oharacterization
' of antiparticles p - fr in isodual isospace,

The reader may be interested in knowing that, when the positive- (or negative-)
definiteness of the isotopic element Q is relaxed, the isotopes SU(2) unifies all
three-dimensional simple Lie groups of Cartan classification over_a complox field
(of characteristic zero), In fact, wo have the compact isotopes S1AQ) .x SU(Z)
for g11 7 At 022 >> 0, and the noncompact isotopes g1q\) ru 1U(l,t) for
.qr r > 0 and 922 < 0 (.see [8J for the corresponding unification of orthogonal
groups over the reals). In this note we consider only positive-definite isotopic
elements @,

3, Isotopits of Pauli Matrlces

Recall that the conventional Pauli motrices o& (sse, e,8,,12,6]) verify the rules
rti.oi = i,6i11so111 i, i, k * 1,2,3. In this section we identify and classlfy the
generalizations of these familiar matrices implied by the isoalgetrla Sfrqlz).

To have a guiding principle, we recall that ([8, I5J), in generf,l, Lle-lsotoplc
algebras are the imdge af Lie algehras wtder nonwtltary transformationt,ln
fnct, under a transformation UUt * I * f, a Lle commutator among generic
matrices .d, B, acquires the Lie;isotopic form

U(AB * BA)U| = A'QB'- B'QA',
A'*UAUt, B'*UBUt, Q=(Uufi'l *Qt, (3.1)

We therefore expect a first class of fundamental (adjoint) isorepresentations,
here called regular a1ljoint isorepresentation,r, which are characterized by the
maps ./6 = iop '- Jk: UJ*UI, UUt I # l with isotopic contributions tfrat
are factonzable in the spectra, *i * +*/(A), 3/4 * (l/4)!2(A), wherc
L:tJetQ and /(A) is a smooth norvhere-null function such that f(l)= l.
, Au example is readily oonstructed via Equations (2,15) resulting in the fol-
lowing goneralizatlon of Pauli's nratrices herc called regular iso"Pauli matrices

'd' ) , Gz = L-! (*!*, -'J" 
) ,

0\
-r,, ) '

ol=

03=
^-t(0\ gzz

a_* (12 (3.2)
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where A = det Q = gngzz > 0. The above isorepresentation verifies the isotopic

rules fi1Q63 -,i,6ieU*O* ard, consequently, the following isocommutator rules

and generalized isooigonvalues for /(A) = A,

l6t,^6i = dt}olt'frfiilt =2iLlt*6x, (3'3a)

ar * lE) * *al lr?),

aL*|@l=3Alq), i=1t2,
which confirm the 'regutar' character of the generalization here considered (hat
is, tho factorizability of the isotopic contribution in the spectrunr of eigenvalues).
Tte isonormalized isobasis is then given by a trivial extpnsion of the conventional

basis 16) = CI-ilb),
Recall that Pauli's matrlces are essentially unique in the sense that their trans"

formations under unitary equivalence do not yietd signifioant changes in their
$tructure, ds well knorvn ([], 4]). The situation is different for the iso-Pauli
matrices, because isorepresentations are based on various degrees of freedom
which are absent in the conventional ,9U(2) theory, such as: (t) infinitely possi'
ble isotopie elements Q; (2) formutation of the isoalgebra in terms of structure

functions [7, 9]l (3) use of an isotopic element for the iso-Hilbert space different

than that of the isoalgebra [t3, l4J; and others,
In fact, we can identified a second class of isorepresentations, here called

irregular adjoint isorepresentatiotrs, in which the isotopic contribution.s is no
longer factorizable in the entirety of the spectra of eigenvalues. A first exarnple

is given by the follorving irregular iso-Pauli matlces

(3,3b)

(3,3c)

(3.4)

(3.5)

ol=

o3=

1\
0 ) ='r' ^, /0 -i\oz:\+i o ):oz,(?

('tr -;,, ) = Lrot'

which verify the isocommutation rules

161,*dzl = zi?t, l?'|,'ai|=zi\Att, l?\'ftil * 2id,6tz,,

without evidently altering the tocol isomorphism S0q1Z1 x 8U(2), The new

isoelgenvalue equations are given by

a\*l&) = *aE?), a'2 rl&rj = a(a +UW, (3,6)

which confirm the 'irregutar' character sonsideratlon (that ls, the lack of factor-
izabilily of the isotopic contributions in the entirety of the spectrurn of eigenval-
ues). Isorepresentation (3.4) also provide an illuStration of Equations (l,l) with
the nontrivial lifting of the spin t : * * g * *A.
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The 'degrees of freedom' of isorepresentations arc then illustrated via the

following second example of inegular Pauli matrices

(3.7)

with isocommutation rules and lsoelgenvalues for .76 = +All

1ii ,^ i{l * lbi{,

4 .tBt = *f,tqt,

where, as one can see, the eigenvalue of the third component is conventional, but
that of the magnitude is generalized rvith a nonfactorizable isotopic conhibution,

Intriguingly, the isorepresentalions generally occurring in physical applica-
tions are the inegular ones ([15, 16J) because the generators reprcsent physical
quantities and, as srtch, are not changed under isotopies [7-9], Their embed-

ding in an isotopic algebra then generally implies the appearance of the structure
functions and irregular isorepresentations.

By no mean do the above trvo ctasses exhaust all possible, physically signifi-
cant isorepresentations, We therefore introduce a third class of isorepresentations
without any claim of completeness (in fact, we do not study here for btevity
the isorepresentations with different isotopic elements for the isoenvelopes and
iso"Hilbert space which characterize yet more general isorepresentations).

We here defino as standard adjoittl isorepresentallono those occurring when
the spectra ofeigenvalues are conventional, but the represontations are nontdvial-
ly generalized, i.e,, remain nonunitarily equivalent to the conventional representa-
tions. In fact, regular iso-Pauli matdces (3,2) admit the conventional eigenvalues
I /2 and 3/4 for L * L This condition can be verified by putting 7tt = glzt : A,
We discover in this rvay the existence of lhe standard iso-Pauli matrices frrst
presented in fi 31

(3.e)

which admit all convertional structure cofisknt$ and eigenvalues for i* y *6*,

ll,,^li=ieu,.i*, 13*lt!=**16,), fr *1tl =lll;) (3,10)

u,' = (rl,n '** ) ' u, = (,:r -"{t) '

,i : (o';' _|,r;),

lit,*?r| =i3{,,' lA,^ ?i1

?a *tBt = lG+ a)t6?),

* iil,, (3,sa)

(3.8b)

= (rl' u't')' t' = (,s?,' -"P)'

* ('b'' -lr;)'

dl

oj
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yet exhibit ths 'hidden functions' gpp ln their structure.
Needless to say, isorcpresentation (3.9) rpmains standard under the physically

significant conditlon

detQ = glgzxi l,

which is reallzed for

gu*g22=A#0,

rvhere is a sufficlently smooth, real-valued and nowhore-null function of the local
variables, In this case, lsorepfesentation (3.9) assumes the form used in physical
applications (see tho next sections)

(3.r r)

Sirnilarly, inegular isorepresentations also become standard urder condition
(3,9) and realization (3.10). We therefore have the following additional standard
iso-Pauli matrices

a, =(19, l), a,:(,r1,-;^),
/A-t 0 \o'=\ o -^)'

ai * (? l)=",, ^' / 0 -ri\oi=\+d o )=oz,
(3,1%J

-r*),

(3,12b)

Iso-Pauli matrices with generalized eigenvalues are useful for interior struc-
tural problems, i.e,, the desmiption of a reutron in the core of a neutron strr or,
along the same lines,for a hadron constituent, As such, the applications of the
general case of the SUq(Z) isosymmetry is studied elsewhere It6J,

lVhen studying conventional particles, e.g., those of nuctear physlcs, the phys-
lcally relevant subctass of SUq(2) is the special one with conventional eigenval-
ues, rvhich is shrdied in the next sectlons. The image Gf;under lsoduallty, called
isodual Pauli matrices, will bB studied elsewhere.

4, Applieation to Isospln

As is well known (see, e,g,, 12,61), the convenfional SU(Z).lsospln symrnetry
is broken by electromagnetic and weak interactions, One of the first applioations

ui * (^;' i),
ar*(A:* t'), ar*(cro-r

ai * (rJ' j^)
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of our isotopic/Q-operator-deformation theory is to show that the ^9tl(2)-isospin
symmetry can be reconstructed as exact at the isotopic lovel, namely, there exists

a realization of the underlying isospace EqQ,z,-8,d) in whictL protons and

neutrons have the same mass, although the conventional values of mass are

recovered under isoexpectation values,
The main idea is that the ,9U(2)-isospin symmetry is broken when realized

via the simplest conceivable Lie product AB * B A, Horvever, when the same
symrnetry is realized via a lesser trivial product, such as our Lie-isotopic product
AQB - BqAtTl, it can be proved to bo exact even under electromagnotio and
weak interactions. In this case, the olernents of the Q-matrix are constants and
acquires the meaning of average of these interactions.

The reader should be aware that this is an isolated occuffsnce, because it
represents a rather general capabilities of the Lie-isotopic theory. In fact, it is
referred to as the isotopic reconstructiotr of exact spacetime and internal syfime-
tries when conventionally broken, For example, the rotational symmetry has been
reconstructed as exact for all infinitely possible ellipsoidical deformations of the
spherel the Lorentz symmetry has been reconstructed as exact at the isotopic lev-
el for nll possible signature preserving deformations fr = Qrl of the Minkowski
metric, etc, []51.

The reconstruction of the exact ,90q(2)-isospin symmetry is so simple to
appear trivial, Consider a 2-component isostate

$@): (4.1)

wnere $r@) and $r@) are solutions of the isodirac equation fl91 which trans-
forms isocovariantly under a stf,ndard isorepresentation of Fq$.t) x Slq,Q),
In this nots we study only the S1qQ) part without arry iso-Minkowskian coor.
dinates, thus restricting our attenlion to the isonormalized isostates

(wi:)'

(^;n), t$'t=(^i)
$p) = t, l, = P,n,

l$') =

@ilat (4,2)

where Q = diag(,l,1-r), i: q-t = Oiag(.\-l,A).
We then introduce rhe 8Uq(2)-isospin with isorepresentation (3.1 l) admitting

conventional eigenvalues *.1 / 2 and 3 / 4, defrned over the isospace E q Q,2,6, 0),
i=Q6,

We now select such an isospoce to admit tho ganre masses for the proton and
the neutron, Thls is readily peffiltted by the 'hldden variabte' A when selected
in such a way that

m,p\-l o nzalr i,e., Az = mtr/rnn = 0,99862, (4.3)
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The mass operator can then be defined by

O = {l^,rno+mn)t*f,^-'r*o-r lar\?

*(*r\-t o \=['o 
""^)' 

(4'4)

and manifestly reprerents equal masses fi, * mp\-l * mo,\ in isospace"

The recovering of convontional massos ln our physlcal spaco is readily achleved
vla the isoeigenvalue expression on ar arbitrary lsostato

ft rt$t * MtQFt)t * Mt0t = (? ,,|,, ) lfi]

or, Equivalontly, via the isoexpectation values

\0rtA,frql{,ol * mp, $,"lQfrAl$"| o rnn,

$imilarl5 the charge operator can be deffned by

o = l"g +u,) = ("f;, B )
Thus, the S1qlZl charges on isospace Bre g, a eA-l and Qn*0, However, the
charges in our physical space are tho conventional ones

($plQqQlrl,p) = ", $,"l1qQl$"| =a, (4.8)

The isodual 50f,,Q)-tsospin charucterizing the antiparticle B and fi will be
studied elsewhere. fhe entire theory of isospin and its apptication can then be
lifted in an isotopic forrn which remains exact under all interactions. This is

not a mers mathematical curiosity, because it canies a conesponding isotopy
of the nuolear force, e,g., via .9Uq(2)-isotopic exchange mechanism, essentially
representing the old legacy of a (generally small) nonlocal component in the
nuclear structure. These dynamical implications are shrdied elsewherc.

5. Applications to Local Roalism

ffia S0q(2) theory studied above is based on a structural generalization of QM
of nonllnear'nonlocal-non-Hamiltonian, although axiom-preseruing type, How-
ever, ln the so-called literature of local realism (see, e.g,t [7J] there exist certain
arguments, rnost notably Bell's Inequality artd von Neumann's theorem, prohibil-
lng a genenllzation of quantum mechanlcs.

This note would therefore not be completed without an inspection of these
issue and the proof that both Bell's lnequality and von Neumann's theorem art
inapplicable (and not 'violated') under isotopies, This then sets the foundations

(4,5)

(4.6>

(4.7)
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for the isofopic completion of QM studied in this note. The study also serves as

an application o[ the SUq(z) symmetry to spin,
The lack of applicability of Bell's inequality and von Neumann's theorem

under regular and inegular isotopies is hansparent from the alteration of the
speotra of eigenvalues and, as such, deserves no additional comment,

In the follorving rve show that the above inapplicability persists not only for
standard isorepresentations (3.9) but also for the particular case of detQ = 1,

isorepresentutions (3. I I ),
Consider two standard isoparticles with spin {, i,e., pa*icles charaeterized by

standard iso-Pauli matrices (3.9), Even though theit spin is the same, thero is no
necessary reason to restrict their isotopic dagrees of freedorn .\ to be the same
outside isospin tfeatments (e,g., because their density rnay be different). We can
therefore assume

Particle l: Q * diag(,\, A-l), A - detQ * I, spin *,
Particle 2: Qt =, rliag(l',,1'-t), A' = detQ' = 1, spin'*

Next, consider the composite system of the two isoparticles I and 2 which is
characterized by the isounit

flot = ?t x f2 -O*1 = (e x e1-l (5,2)

To properly recomputc the isotopies of Bell's inequality (see, e.g., flll for
the conventional case), it is necessary to identify the isonormalized basis l,Sr -z),
that is, the basis of the totat spin of the particles l and2 normalized to fro*,

(,ir-zTSr-z) = ($r-zlQ,otlBr-e)fi* = fio', (s.3)

A slmple lsotopy of the conventionalcase ($ee, e,g., [3], Sect, 17.9) then leads
f o the lrahasis for the slnglet $ate

(s.4)

It is a tedious but instnrctive exercise for the interested reader to verify isonor-
rnalizatlon condition (5,3) by constructing the adjoint of basis (5,4), by sandwich-
,ng the quantity Trot = Q x Q',by cofltractihg only quantities of the same particle,
rnd then multiplying the scalar results of the two difflerent particles,

Next, recall that the conventional scalar product c , at wh.cre a is a three-
vector, has no mathernatical or physical meaning in isospace frg(z,ZrF,n) anA
nust be replaced by the isoscalar product for isorepresentatiorr (3.1 1)

rs -z) = *{(^;*) (^,'- ) - (^?,) (^;*)}

(5.1a)

(5.1b)

6Qa : ( 6,? orul 
b' 

*-"0-"1) ' ti;.sl
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The tedious but straightforward repetition of the conventiornt procedure [7J

under isdtopy then leads to tho expression

($r-el(Q x q'){(a *a) x (F' *b)X8 x Q)l,Sr*z)
o *atbn, * evby - *(,tl'-' + l-t XtJarbo, (5,6)

Consider now unit vectors 0,, b, 0!, b' along the a-axis, Then the Bell's inequal.
ity under the convontional $U(2) symmetry [7J

DBou = MaxlP(o, b) * P(a,d)l + lP(a! ,b) + P(ot, Dt)l < 2, (5.7a)

P(a,b) = (Sp2l@1 , a) x lo2 ' b)1,5r -z) = -a' e (5,7b)

admits the followlng lsotopic image under the covering S1atZ) symmotry

Drur ( rfiH = *(rf'-'+ A*rA')Dprx, (5.8)

But, the factot * (4,\'- I + A-ll') can be easity proved to admit values bigger
than one. This establishes the statsment of Section l, to the effect that Bell's
inequality is not universally valid, but holds, specificalty, for the conventionat,
linear, local and canqnical realization of the SU(2) symmetry, The proof for
arbitrary orientations of the unit vectors follows the conventional one [3J and it
is here ornitted for brevity,

Similarly, von Neumann theorem [?] is inapplicable urder isotopies because

based on the uniqueness of the spectrum of eigenvalues of Hermitian operators.
In fact, isotopic theories establish that the same Hermilian operator I/ admits
an infinite variety of different spectra of eigenvalues, trivially, because of the

infinitely possible isotopic elements Q, H * lrf = HQlr!) = EAI{I 1131.
Similar obstacles to the completion of QM into a covering theory are removed

under isotopies as shorvn elsewhere fl 6J, We here merely mention the reasor why
HM ls indeed a completion of QM much along the EPR argument [3]. Recall
that

Dfiiff* * Maxlo, b * a, tl + la' . b + d, h\ * Zrt > z, (5.e)

and that Ds"fi 1DflHt', thus preventing the completlon of quantum rnechanics.

Horveveq, under isotopic liftings, one can assume n ctassical iso-Euctidenn
space .tq., E, fr,) lrepresenting rnotion of extended objects rvithin physical medio

[ 1J) with isotopic scalar product

a x b : atgb = angtftx * o11!)zzby * a;yyxbr. (5. t0)

Then, there alrvays exists a realizatlon oY frQ,E,W) under whlch we have lhe

identity of the maxinrul operatar and clusrical values, D$11 = D$l*rtcat, as it is

the case for the orientation of the unnit vectors as above, and values

grt : gz2 = l, or, = f,tsl,-t +,\-lA,) :'t/i, (5,tI)
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A number of additional, inhiguing corrpletions of QM are provided by HM
along the EPR argument, such as the recovering of classical determinism for a

particle in tho interior of a gravitational singularity and others [16J,
In closing, it is hoped that systematic,shrdies on the isorepresentations of Lie-

isotopic algebras, such as the isotopic 61:;, 611.t1, SLlZ-,e1, F1f.t;, S0$),
etc., are conducted by interested colleagues because of thelr capabilities of novel
applications, that is, results beyond the capacity of the conventional Lie theory.
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In this paper, we continue the study initiated in preced-
ing works of the argument by A. Einstein, B. Podolsky and N.
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Ruggero Maria Santilli

1. Introduction

1.1. The EPR argument

As it is well known, Albert Einstein did not consider quantum mechan-
ical uncertainties to be final, for which reason he made his famous quote
“God does not play dice with the universe.”

More particularly, Einstein accepted quantum mechanics for atomic
structures and other systems, but believed that quantum mechanics is an
“incomplete theory,” in the sense that it could be broadened into such a
form to recover classical determinism at least under limit conditions.

Einstein communicated his views to B. Podolsky and N. Rosen and
they jointly published in 1935 the historical paper [1] that became known
as the EPR argument.

Soon after the appearance of paper [1], N. N. Bohr published paper [2]
expressing a negative judgment on the possibility of “completing” quan-
tum mechanics along the lines of the EPR argument.

Bohr’s paper was followed by a variety of papers essentially support-
ing Bohr’s rejection of the EPR argument, among which we recall Bell’s
inequality [3] establishing that the SU(2) spin algebra does not admit limit
values with an identical classical counterpart.

We should also recall von Neumann theorem [4] achieving a rejection of
the EPR argument via the uniqueness of the eigenvalues of quantum me-
chanical Hermitean operators under unitary transforms.

The field became known as local realism and was centered on the rejec-
tion of the EPR argument via additional claims that hidden variables [5]
are not admitted by quantum axioms (see the review [6]).

1.2. The 1998 apparent proof of the EPR argument

In 1998, the author published paper [7] presenting an apparent proof of
the EPR argument based on the following main steps that we here outline
to render this paper minimally self-sufficient:

Step 1: The proof that Bell’s inequality, von Neumann’s theorem and
other similar objections against the EPR argument [6] are indeed correct,
but under the generally tacit assumptions of point-like particles moving
in vacuum under sole potential/Hamiltonian interactions (exterior dynam-
ical systems) when the systems are treated via quantum mechanics and
its underlying 20th century mathematics, including Lie’s theory and the
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Apparent proof of the EPR argument

Newton-Leibnitz differential calculus;

Step 2: The proof that the above treatments are not applicable for
extended, therefore deformable and hyperdense particles under condi-
tions of mutual penetration or entanglement occurring in the structure of
hadrons, nuclei, stars, and gravitational collapse such as for black holes,
with novel non-linear, non-local, and non-potential/non-Hamiltonian in-
teractions (interior dynamical systems);

Step 3: The treatment of interior systems via the axiom-preserving
lifting of 20th century applied mathematics known as isomathematics, whose
study was initiated by the author in the late 1970’s when he was at Har-
vard University under DOE support, Refs. [8] to [12] and then continued
by various mathematicians. Isomathematics is based on:

3-A) The axiom-preserving isotopy of the conventional associative prod-
uct between generic quantities a, b (numbers, functions, operators, etc.)
first introduced in Eq. (5), p. 71 of Ref. [11]

ab → a ? b = aT̂ b, (1)

where T̂ is a positive-definite quantity called the isotopic element providing
a representation of the dimension, deformability and density of particles
and physical media in which they are immersed via realizations of the
type

T̂ = Diag.(
1

n2
1

,
1

n2
2

,
1

n2
3

,
1

n2
4

)e−Γ, (2)

where: n2
4 represents the density; n2

k, k = 1, 2, 3 represents the deformable
share of particles; n2

µ, µ = 1, 2, 3, 4, and Γ are solely restricted to be positive-
definite but otherwise admit a functional dependence on any needed local
variables, such as time t, coordinates r, momenta p, energy E, density d,
temperature τ , pressure π, wavefunctions ψ, their derivatives ∂ψ, etc.

nµ = nµ(t, r, p, E, d, τ, π, ψ, ∂ψ, ....) > 0, µ = 1, 2, 3, 4, (3)

Γ = Γ(t, r, p, E, d, τ, π, ψ, ∂ψ, ....)� 0. (4)

e− Γ(t,r,p,E,d,τ,π,ψ,∂ψ,....) � 1. (5)

3-B) The formulation of isoassociative algebras on an isofield F̂ (n̂, ?, Î)
first introduced in Ref. [13] (see also independent work [14]), with isounit

Î = 1T̂ , (6)

7

187

Reprinted by permission from Ratio Mathematica, “Studies on the classical determinism predicted by A.
Einstein, B. Podolsky and N. Rosen”, R.M. Santilli, Ratio Mathematica  (Vol. 37),  5-23 2019.



Ruggero Maria Santilli

and isoreal, isocomplex and isoquaternionic isonumbers n̂ = nÎ under isoprod-
uct (1), with ensuing isooperations such as the isosquare

n̂2̂ = n̂ ? n̂. (7)

Isofields also imply the lifting of functions into isofunctions [11] [20]

f̂(r̂) = [f(rÎ)]Î , (8)

among which we quote the isoexponentiation

êX = (eXT̂ )Î = Î (eT̂X), (9)

where X is a Hermitean operator.

3-C) The ensuing axiom-preserving lifting of Lie’s theory into a non-
linear, non-local and non-Hamiltonian form first introduced in Ref. [11]
(see also the recent paper [15] and independent work [16]), which theory is
today known as the Lie-Santilli isotheory, with isobrackets at the foundation
of Ref. [7]

[X,̂Y ] = X ? Y − Y ? X = XT̂Y − Y T̂X. (10)

3-D) The isotopic lifting of the Newton-Leibnitz differential calculus,
from its historical definition at isolated points, into a form defined on vol-
umes, first introduced in Ref. [17] (see Refs. [18] for vast independent
works) with isodifferential

d̂r̂ = T̂ (r, ...)dr̂ =

= T̂ (r, ...)d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...),

(11)

and corresponding isoderivatives

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (12)

Step 4: The axiom-preserving lifting of quantum mechanics into the
isotopic branch of hadronic mechanics, or isomechanics for short, whose study
was initiated in Refs. [8] to [12] (see the 1995 monographs [19] [20] [21]
with 2008 upgrade [22] and independent studies [23][24]).

Isomechanics is formulated on a Hilbert-Myung-Santilli (HMS) isospace
[25] Ĥ over the isofield of isocomplex isonumbers Ĉ, and it is based on the
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iso-Heisenberg isoequations for the time evolution of a Hermitean operator
Q̂ in the infinitesimal form

î ? d̂Q̂

d̂t̂
= [Q̂,̂Ĥ] = Q̂ ? Ĥ − Ĥ ? Q̂ =

= Q̂T̂ Ĥ − ĤT̂ Q̂,
(13)

and the finite form

Q̂(t̂) = Û(t̂)† ? Q̂(0) ? Û(t̂) =

= êĤ?t̂?̂i ? Q̂(0) ? ê−î?t̂?Ĥ =

= eĤT̂ tiQ(0)e−itT̂ Ĥ ,

(14)

with the following rules for the basic isounitary isotransforms

Û(t̂)† ? Û(t̂) = Û(t̂) ? Û(t̂)† = Î , (15)

where t̂ = tÎt is the isotime which is assumed hereon to coincide with con-
ventional time, Ît = 1. Dynamical equations (13) to (15) were first pre-
sented in Eq. (4.16.49), page 752 of Ref. [9] over conventional fields and
reformulated via the full use of isomathematics in Ref. [17]).

Isomechanics is also based on the iso-Schrödinger isorepresentation char-
acterized by the fundamental representation of the isomomentum permitted
by the isodifferential isocalculus, Eq. (12),

p̂̂|ψ(t̂, r̂) >= −î ? ∂̂t̂,r̂ |̂ψ(t̂, r̂) >=

= −iÎ∂r̂ |̂ψ(t̂, r̂) >,

(16)

from which one can derive the iso-Schrödinger isoequation, [12] [17] [20]

î ? ∂̂t̂|ψ̂(t̂, r̂) >= Ĥ ? |ψ̂(t̂, r̂) >=

= Ĥ(r, p)T̂ (t, r, p, E, d, τ, π, ψ, ∂ψ, ....)|ψ̂(t̂, r̂ >) =

= Ê ? |ψ̂(t̂, r̂) >= E|ψ̂(t̂, r̂) >

(17)

and the isocanonical isocommutation rules,

[r̂î,p̂j]|ψ̂ >= î ? δ̂i.j ? |ψ̂ >= iδij|ψ̂ > (18)
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[r̂î,r̂j]|ψ̂ >= [p̂î,p̂j]|ψ̂ >= 0. (19)

Note that the characterization of extended particles at mutual distances
smaller than their size requires the knowledge of two quantities, the conven-
tional Hamiltonian H for the representation of potential interactions, and
the isotopic element T̂ for the representation of dimension, shape, density
as well as of non-linear, non-local and non-potential interactions.

Step 5: The proof in Ref. [7] that the isotopic ŜU(2)-spin symmetry
for extended particles immersed within a dense hadronic medium admits
an explicit and concrete realization of hidden variables [5], e.g., of the type

T̂ = Diag.(λ, 1/λ), DetT̂ = 1. (20)

In particular, the isotopic ŜU(2)-spin isosymmetry admits limit condi-
tions with identical classical counterpart, Eq. (5.4) page 189 Ref. [7].

One aspect of isomathematics and isomechanics which is crucial for
this paper is that in all applications to date, the isotopic element T̂ has values
much smaller than 1, Eqs. (4) (5), as it has been the case for: the synthesis
of the neutron from the hydrogen in the core of stars; the representation of
nuclear magnetic moments and spin; new clean energies; and other appli-
cations [21].

It should be also noted that thanks to the new interactions represented
by T̂ , isomathematics and isomechanics have permitted the first known
identification of the attractive force between identical valence electron pairs in
molecular structures [26]. A significant confirmation of values |T̂ | � 1 is
provided by the fact that exact representations of binding energies for the
hydrogen and water molecules have been achieved with isoseries based
on isoproduct (1) that are at least one thousand times faster than conventional
quantum chemical series [27] [28].

We should finally indicate that the numerical invariance of the isotopic
element T̂ and therefore, of the isounit Î = 1/T̂ , under isounitary time
evolutions (14) (15) was proved in Ref. [29]. Detailed reviews and up-
grades of isomathematics, isomechanics, and their applications to interior
problems which are specifically written for the EPR argument should soon
be available in Refs. [30] [31].

1.3. Aim of the paper

In this work, we shall attempt to complete the proof of the EPR argu-
ment of Ref. [7] by showing that extended particles in interior dynamical
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conditions appear to progressively recover classical determinism in inte-
rior dynamical conditions with the increase of the density and other char-
acteristics, as indicated at the end of Ref. [7].

It should be stressed that a technical understanding of this work re-
quires technical knowledge of hadronic mechanics, e.g., from Refs. [19]
[20] [21] or from the forthcoming reviews and upgrades [30] [31].

We should indicate that the words “completion of quantum mechan-
ics” is used in Einstein’s sense for the intent of honoring his memory. For
instance, the conventional associative product ab of Eq. (1), which is at the
foundation of quantum mechanics, admits a “completion” into the equally
associative, yet more general isoproduct aT̂ b. Under no conditions Ein-
stein’s word “completed theory” should be confused with a ’final theory,’
that is a theory admitting no additional Einstein’s “completions.” In fact,
the time-reversal invariant, Lie-isotopic isomathematics and isomechanics
studied in this work admit the “completion” into the covering, irreversible
Lie-admissible genomathematics and genomechanics (in which T̂ is no longer
Hermitean) which, in turn, admit a covering via the most general math-
ematics and mechanics conceived by the human mind, the multi-valued
hypermathematics and hypermechanics [32] [33], with additional “coverings”
remaining possible in due time [19] [20] [21] .

The reader should be finally aware that the isotopic element T̂ and
isounit Î = 1/T̂ are inverted in some of the early quoted literature not deal-
ing with determinism without affecting their consistency. An important
aim of this paper has been that of achieving the final selection of isotopic
element and isounit which is compatible with studies on determinism.

2. Recovering of determinism in interior conditions?

2.1. Heisenberg uncertainty principle

Consider an electron in empty space represented with the 3-dimensional
Euclidean spaceE(r, δ, I), where r represents coordinates, δ = Diag.(1, 1, 1)
represents the Euclidean metric and I = Dian(1, 1, 1, ) is the space unit.

Let the operator representation of said electron be done in a Hilbert
spaceH over the field of complex numbers C with states Ψ(r) and familiar
normalization

< Ψ(r)| |Ψ(r) >=

∫ +∞

−∞
Ψ(r)†Ψ(r)dr = 1. (21)

As it is well known, the primary objections against the EPR argument
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[2] [3] [4] were based on the uncertainty principle formulated by Werner
Heisenberg in 1927, according to which the position r and the momentum p of
said electron cannot both be measured exactly at the same time.

By introducing the standard deviations ∆r and ∆p, the uncertainty prin-
ciple is generally written in the form (see, e.g., [5])

∆r∆p ≥ 1

2
~, (22)

easily derivable via the vacuum expectation value of the canonical com-
mutation rule

∆r∆p ≥ | 1
2i
< Ψ| [r, p] |Ψ > | = 1

2
~. (23)

The standard deviations have the known form [34] (with ~ = 1)

∆r =
√
< Ψ(r)|[ r − (< Ψ(r)| r |Ψ(r) >)]2|Ψ(r) >,

∆p =
√
< Ψ(p)| [p− (< Ψ(p)| p |Ψ(p) >)]2|Ψ(p) >,

(24)

where Ψ(r) and Ψ(p) are the wavefunctions in coordinate and momentum
spaces, respectively.

2.2. Particle in interior conditions

We consider now the electron, this time, in the core of a star classically
represented with the iso-Euclidean isospace Ê(r̂, δ̂, Î) [17] with basic isounit
Î = 1/T̂ > 0, isocoordinates r̂ = rÎ , isometric

δ̂ = T̂ δ, (25)

and isotopic element of type (2) under conditions (3) to (5).
Besides being immersed in the core of a star, the electron has no Hamil-

tonian interactions. Consequently, we can represent the electron in the
HMS isospace Ĥ [25] over the isofield of isocomplex isonumbers Ĉ [13],
and introduce the time independent isoplanewave [20]

Ψ̂(r̂) = ψ̂(r̂)Î =

= N̂ ? (êî?k̂?r̂)Î = N(eikT̂ r̂)Î ,

(26)

where N̂ = NÎ is an isonormalization isoscalar, k̂ = kÎ is the isowavenumber,
and the isoexponentiation is given by Eq. (9).
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The corresponding representation in isomomentum isospace is given
by

Ψ̂(p̂) = M̂ ? êî?n̂?p̂, (27)

where M̂ = MÎ is an isonormalization isoscalar and n̂ = nÎ is the isowavenum-
ber in isomomentum isospace.

2.3. Isodeterministic isoprinciple

The isopropability isofunction is given by [20]

P̂ = <̂| ? |>̂ =< Ψ̂(r̂)| T |Ψ̂(r̂) > I =

= [
∫ +∞
−∞ Ψ̂(r̂)† ? Ψ̂(r̂) ? d̂r̂]Î =

= [
∫ +∞
−∞ ψ̂(r̂)†ψ̂(r̂)d̂r̂]Î ,

(28)

where one should keep in mind that the isodifferential d̂r̂ is now given by
Eqs. (11).

The isoexpectation isovalues of a Hermitean operator Q̂ are then given
by [20]

<̂| ? Q̂ ? |>̂ =< Ψ̂(r̂)| ? Q̂ ? |Ψ̂(r̂) > Î =

= [
∫ +∞
−∞ Ψ̂(r̂)† ? Q̂ ? Ψ̂(r̂)d̂r̂]Î =

= [
∫ +∞
−∞ ψ̂(r̂)†Q̂ψ̂(r̂)d̂r̂]Î ,

(29)

with corresponding expressions for the isoexpectation isovalues in isomo-
mentum isospace.

We now introduce, apparently for the first time in this paper, the iso-
topic operator

T̂ = T̂ Î = I, (30)

that, despite its seemingly irrelevant value, is indeed the correct operator
formulation of the isotopic element for the transition of the isoproduct
from its scalar form (1) into the isoscalar form

n̂2̂ = n̂ ? n̂ = n̂ ? T̂ ? n̂ = n2Î . (31)

Since the identity I can be inserted anywhere in the expectation values
of quantum mechanics without altering the results, realization (33) illus-
trates the central feature of the isotopies, namely, the property that the ab-
stract axioms of quantum mechanics admit a “hidden” realization broader
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than that of the Copenhagen School whose degrees of freedom have been
used in Ref.[7] for the proof of the EPR argument [1].

We now introduce the isoexpectation isovalue of the isotopic operator

<̂| ? T̂ ? |>̂ =< Ψ̂(r̂)| ? T̂ ? |Ψ̂(r̂) > Î =

= [
∫ +∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂]Î ,

(32)

and assume the isonormalization

<̂| ? T̂ ? |>̂ =

=
∫ +∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = T̂ .

(33)

We then introduce, in this paper apparently for the first time, the iso-
standard isodeviation for isocoordinates ∆r̂ = ∆rÎ and isomomenta ∆p̂ =
∆pÎ , where ∆r and ∆p are the standard deviations in our space.

By using isocanonical isocommutation rules (18), we obtain the expres-
sion

∆r̂ ?∆p̂ = ∆r∆pÎ ≈ 1
2
| < Ψ̂(r̂)| ? [r̂̂,p̂] ? Ψ̂(r̂) > | =

= 1
2
| < Ψ̂(r̂)|T̂ [r̂̂,p̂]T̂ |Ψ̂(r̂) > .

(34)

By eliminating the common isounit Î , we then have the desired isode-
terministic isoprinciple here proposed apparently for the first time

∆r∆p ≈ 1
2
| < Ψ̂(r̂)| ? [r̂̂,p̂] ? |Ψ̂(r̂) >=

= 1
2
| < Ψ̂(r̂)|T̂ [r̂̂,p̂]T̂ |Ψ̂(r̂) >=∫ +∞

−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = T � 1

(35)

where the property ∆r∆p � 1 follows from the fact that the isotopic ele-
ment T̂ has always a value smaller than 1 (Section 1.2).

It is now necessary to verify isoprinciple (35) by proving that the iso-
standard isodeviations tend to null values when T̂ → 0.

For this purpose, we introduce the following simple isotopy of Eqs.
(24) (where we ignore the common multiplication by the isounit)

∆r =

√
< Ψ̂(r̂)|[ r̂− < Ψ̂(r̂)| ? r̂ ? |Ψ̂(r̂) >]2̂̂|Ψ(r̂) >,

∆p =

√
< Ψ̂(p̂)| [p̂− < Ψ̂(p̂)| ? p̂ ? |Ψ̂(p̂) >]2̂|Ψ̂(p̂) >,

(36)
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where the differentiation between the isotopic elements for isocoordinates
and isomomenta is ignored for simplicity.

It is then easy to see that the isosquare (7) implies the covering forms
of the isostandard isodeviations

∆r =

√
T̂ < Ψ̂(r̂)|[ r̂− < Ψ̂(r̂)| ? r̂ ? |Ψ̂(r̂) >]2|Ψ̂(r̂) >,

∆p =

√
T̂ < Ψ̂(p̂)| [p̂− < Ψ̂(p̂)| ? p̂ ? |Ψ̂(p̂) >]2|Ψ̂(p̂) >,

(37)

that indeed approach null value under the limit conditions

LimT̂=0∆r = 0,

LimT̂=0∆p = 0,
(38)

thus confirming isodeterministic isoprinciple (35).

2.4. Particles under pressure

To illustrate the above expressions, we consider an electron in the cen-
ter of a star, thus being under extreme pressures π from the surrounding
hadronic medium in all radial directions, while ignoring particle reactions
in first approximation or under a sufficiently short period of time.

These conditions are here rudimentarily represented by assuming that
the Γ > 0 function of the the isotopic element (2) is a constant linearly de-
pendent on the pressure π, resulting in a realization of the isotopic element
of the type

T̂ = e−wπ � 1, Î = e+wπ � 1, (39)

where w is a positive constant.
The isodeterministic isoprinciple for the considered particle is then given

by

∆r∆p ≈ 1

2
e−wπ � 1, (40)

and tends to null values for diverging pressures.
The above example illustrates the consistency of isorenormalization

(33) because, a constant isotopic element implies the consistent expression

<̂ψ̂(r̂)|T̂ |ψ̂(r̂) > Î =

T < ψ̂(r̂)| |ψ̂(r̂) > Î =

< ψ̂(r̂)| |ψ̂(r̂) >,

(41)
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while, by contrast, the following alternative isonormalization

<̂ψ̂(r̂)|T̂ |ψ̂(r̂) > Î = Î , (42)

would imply the expression

< ψ̂(r̂)||ψ̂(r̂) > Î = Î , (43)

which is manifestly inconsistent since < ψ̂(r̂)||ψ̂(r̂) > is an ordinary num-
ber while Î is a matrix with integro-differential elements.

Note that we have considered a free particle immersed in a hadronic
medium, rather than a bound state of extended particles in condition of
mutual penetration. Consequently, in our view, isotopic element (2) repre-
sents a subsidiary constraint caused by the pressure of the hadronic medium
encompassing the particle considered, by therefore restricting the values
of the isostandard isodeviations for isocoordinates and isomomenta.

Illustrations of the isodeterministic isoprinciple in specific structure
models of hadrons and related aspects have been studied in Ref. [21]
and their interpretation in terms of the isodeterministic isoprinciple will
be studied in future works.

2.5. Gravitational example

To provide a gravitational illustration, recall that isotopic element (2)
contains as particular cases all possible symmetric metrics in (3+1)-dimensions,
thus including the Riemannian metric [20].

We then consider the 3-dimensional sub-case of isotopic element (2)
and factorize the space component of the Schwartzchild metric gs(r) ac-
cording to isotopic rule introduced in Refs. [35] [36]

gs(r) = T̂ (r)δ, (44)

where δ is the Euclidean metric.
We reach in this way the following realization of the isotopic element

T̂ =
1

1− 2M
r

=
r

r − 2M
, (45)

where M is the gravitational mass of the body considered, with ensuing
isodeterministic isoprinciple

∆r̂∆p̂ ≈ T̂ =
r

r − 2M
⇒r→0= 0, (46)
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which confirms the statement in page 190 of Ref. [7], on the possible recov-
ering of full classical determinism in the interior of gravitational collapse
(see Ref. [37], Chapter 6 in particular, for a penetrating critical analysis of
black holes).

It should perhaps be indicated that Refs. [35] [36] introduced the fac-
torization of a full Riemannian metric g(x), x = (r, t) in (3+1)-dimensions

g(x) = T̂gr(x)η, (47)

where T̂gr is the gravitational isotopic element, and η is the Minkowski metric
η = Diag.(1, 1, 1,−1).

Refs. [35] [36] then reformulated the Riemannian geometry via the
transition from a formulation over the field of real numbersR to that over
the isofield of isoreal isonumbers R̂ where the gravitational isounit is evi-
dently given by

Îgr(x) = 1/T̂gr(x). (48)

The above reformulation turns the Riemannian geometry into a new
geometry called iso-Minkowskian isogeometry, which is locally isomorphic to
the Minkowskian geometry, while maintaining the mathematical machinery
of the Riemannian geometry (covariant derivative, connection, geodesics,
etc.) us fully maintained, although reformulated in terms of the isodiffer-
ential isocalculus [38].

The apparent advantages of the identical iso-Minkowskian reformula-
tion of Riemannian metrics and Einstein’s field equations (see, e.g., Eqs.
(2.9), page 390 of Ref. [38]) are:

1) The achievement of a consistent operator form gravity in terms of
relativistic hadronic mechanics [39] whose axioms are those of quantum me-
chanics, only subjected to a broader realization;

2) The achievement of a universal symmetry of all non-singular Rie-
mannian metrics, which symmetry is locally isomorphic to the Lorentz-
Poincaré symmetry, today known as the Lorentz-Poincaré-Santilli (LPS) isosym-
metry [40], and it is notoriously impossible on a conventional Riemannian
space over the reals;

3) The achievement of clear compatibility of Einstein’s field equation
with 20th century sciences, such as a clear compatibility of general relativ-
ity with special relativity via the simple limit Îgr = I implying the tran-
sition from the universal LPS isosymmetry to the Poincaré symmetry of
special relativity with ensuing recovering of conservation and other spe-
cial relativity laws [41] [42]; the achievement of axiomatic compatibility
of gravitation with electroweak interactions thanks to the replacement of
curvature into the new notion of isoflatness with the ensuing, currently
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impossible, foundations for a grand unification [43]; and other intriguing
advances.

3. Concluding remarks

t In this paper, we have continued the study of the EPR argument [1]
conducted in Ref. [7] and preceding works, with particular reference to
the study of the uncertainties for extended particles immersed within hy-
perdense medias with ensuing linear and non-linear, local and non-local
and Hamiltonian as well as non-Hamiltonian interactions.

This study has been conducted via the use of isomathematics and isome-
chanics characterized by the isotopic element T̂ of Eq. (1) which represents
the non-linear, non-local and non-Hamiltonian interactions of the particles
with the medium [19] [20] [21].

The main result of this paper is that the standard deviations of coor-
dinates and momenta for particles within hyperdense media are charac-
terized by the isotopic element that, being always very small, T̂ � 1, re-
duces the uncertainties in a way inversely proportional to a non-linear
increase of the density, pressure, temperature, and other characteristics of
the medium, while admitting the value T̂ = 0 under extreme/limit con-
ditions with ensuing recovering of full determinism as predicted by A.
Einstein, B. Podolsky and N. Rosen [1].

We can, therefore, tentatively summarize the content of this paper with
the following:

ISODETERMINISTIC ISOPRINCIPLE: The product of isostandard isodeviations
for isocoordinates ∆r̂ and isomomenta ∆p̂, as well as the individual isodevia-
tions, progressively approach classical determinism for extended particles in the
interior of hadrons, nuclei, and stars, and achieve classical determinism at the
extreme densities in the interior of gravitational collapse.
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the Poincaré Symmetry,” Moscow Phys. Soc. Vol. 3, 255 (1993),
http://www.santilli-foundation.org/docs/Santilli-40.pdf

[41] R. M. Santilli, “Rudiments of IsoGravitation for Matter
and its IsoDual for AntiMatter,” American Journal of Mod-
ern Physics Vol. 4, No. 5, 2015, pp. 59, http://www.santilli-
foundation.org/docs/10.11648.j.ajmp.s.2015040501.18.pdf

[42] R. M. Santilli, “Isominkowskian reformulation of Einstein’s gravita-
tion and its compatibility with 20th century sciences,” IBR preprint
19-GR-07 (2019), to appear.

[43] R.M. Santilli, . Isodual Theory of Antimatter with Applications to Antigrav-
ity, Grand Unification and Cosmology, Springer (2006).
http://www.santilli-foundation.org/docs/santilli-79.pdf

23

203

Reprinted by permission from Ratio Mathematica, “Studies on the classical determinism predicted by A.
Einstein, B. Podolsky and N. Rosen”, R.M. Santilli, Ratio Mathematica  (Vol. 37),  5-23 2019.



204



Ratio Mathematica Volume 38, 2020, pp. 5-69

Studies on A. Einstein , B. Podolsky and
N. Rosen argument that ”quantum

mechanics is not a complete theory,” I:
Basic methods

Ruggero Maria Santilli∗

Abstract
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published in 1998 a paper showing that the objections against the
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than being violated) for extended particles within hyperdense phys-
ical media (interior dynamical systems) because the latter systems ap-
pear to admit an identical classical counterpart when treated with
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1. INTRODUCTION.
1.1. The EPR argument.
As it is well known, quantum mechanics does not admit classical preci-
sion in the measurement of the position or the mutual distance of particles
(Figure 1) in view of Heisenberg’s uncertainty principle and other physical
laws.

Albert Einstein did not accept this uncertainty as being final for all pos-
sible conditions existing in the universe and made his famous quote “God
does not play dice with the universe.”

More specifically, Einstein accepted quantum mechanics for atomic struc-
tures and other systems of point-like particles in vacuum (conditions known
as exterior dynamical problems), but believed that quantum mechanics is an
“incomplete theory,” in the sense that it could admit a “completion” into
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Figure 1: In this figure, we present a conceptual rendering of the sole representation of
particles permitted by the differential calculus underlying quantum mechanics, namely,
the representation as isolated points in empty space which particles, being dimensionless,
can only be at a distance, with ensuing EPR argument on the need for superluminal
interactions to explain quantum entanglement [1].

such a form to recover classical determinism at least under limit condi-
tions.

Einstein communicated his view to the post doctoral associates, B. Podol-
sky and N. Rosen at the Institute for Advanced Study, Princeton, NJ, and
all three together published in the 1935, May 15th issue of the Physical
Review, the paper entitled ”Can Quantum Mechanical Description of Physical
reality be Considered Complete?” which paper became known as the EPR
argument [1].

Soon after the appearance of paper [1], N. Bohr published paper [2] ex-
pressing a negative judgment on the possibility of “completing” quantum
mechanics along the EPR argument.

Bohr’s paper was followed by a variety of papers essentially support-
ing Bohr’s rejection of the EPR argument, among which we recall Bell’s
inequality [3] establishing that the SU(2) spin algebra does not admit limit
values with an identical classical counterpart.

We should also recall von Neumann theorem [4] achieving a rejection of
the EPR argument via the uniqueness of the eigenvalues of quantum me-
chanical Hermitean operators under unitary transforms.

The field became known as local realism and was centered on the rejec-
tion of the EPR argument on claims of lack of existence of hidden variables
λ [5] in quantum mechanics (see the review [6] with a comprehensive litera-
ture).

Nowadays, the EPR argument is generally ignored in view of the wide-
spread belief that quantum mechanics is universally valid for whatever
conditions may exist in the universe without any scrutiny of the limita-
tions and/or insufficiencies of quantum mechanics in various fields re-
viewed in this section.
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Figure 2: A conceptual rendering of the main assumption of the apparent proofs [7] [8]
of the EPR argument [1], consisting in the representation of particles as extended, de-
formable and hyperdense in conditions of mutual overlapping with ensuing continuous
contact at a distance eliminating the need for superluminal interactions to explains quan-
tum entanglement. Despite its simplicity, the quantitative treatment of said view required
decades of studies due to the need for a “completion” of the mathematics underlying
quantum mechanics. Intriguingly, the “completion” here considered turned out to be of
isotopic/axiom-preserving type, thus being fully admitted by quantum mechanical axioms,
merely subjected to a realization broader than that of the Copenhagen school.

1.2. Apparent proofs of the EPR argument.
In Vol. 50, pages 177-190, 1998, of Acta Applicandae Mathematica, R. M.
Santilli published paper [7] entitled “Isorepresentation of the Lie-isotopic
SU(2) Algebra with Application to Nuclear Physics and Local Realism,”
which paper appears to confirm Einstein’s view on the existence of a “com-
pletion” of quantum mechanics into the isotopic branch of hadronic mechan-
ics, or isomechanics for short and a “completion” of quantum chemistry
into a form known as isochemistry. These “completions” are based on a
broadening of applied mathematics known as isomathematics and admit
progressive conditions of particles in the interior of hadrons, nuclei, stars
and black holes that appear to recover classical determinism.

The proof presented in paper [7] was done via the following three main
steps:

1.2.1. The proof that Bell’s inequality, von Neumann’s theorems and
other similar objections of the EPR argument [6] are indeed correct, but
under the generally tacit assumptions:

A) The point-like approximation of particles moving in vacuum (Fig-
ure 1);

B) The sole admission of Hamiltonian interactions [18];
C) The treatment of assumptions A and B via 20th century applied

mathematics, including Lie’s theory and the Newton-Leibnitz differential
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Figure 3: An illustration of the central objective for the proof of the EPR argument con-
sisting in the transition from the quantum mechanical representation of the Newtonian
notion of massive points moving in vacuum under linear, local and potential interac-
tions (top view), to the time invariant representation of extended particles moving within
physical media under linear and non-linear, local and non-local and potential as well as
non-potential interactions (bottom view).

calculus;
1.2.2. The proof that the above treatments are not applicable to Ein-

stein’s vision on the existence of a “completion” of quantum mechanics
based on the following assumptions:

A’) The representation of extended, therefore deformable and hyper-
dense particles under conditions of mutual penetration/entanglement known
(Figure 2) as occurring in the structure of hadrons, nuclei, stars and black
holes (systems known as interior dynamical problems);

B’) The emergence under condition A’ of Hamiltonian as well as contact
non-Hamiltonian interactions of non-linear, non-local and non-potential
character;

C’) The treatment of assumptions A’ and B’ via isomathematics that, as
we shall see in Section 2, is based on:

i) The axiom-preserving isotopy ab = ab→ a?b = aT̂ b of the associative
product ab between generic quantities a, b (numbers, functions, operators,
etc.), where T̂ is a positive-definite quantity called the isotopic element rep-
resenting the dimension, deformability and density of particles;

ii) The ensuing axiom-preserving “completion” of Lie’s theory with
isotopic product [x̂,y] = x ? y − y ? x between Hermitean operators x, y;

iii) The reconstruction of the 20th century applied mathematics into a
form compatible with isoproduct a?b, including most importantly the iso-
topic lifting of the Newton-Leibnitz differential calculus from its centuries
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Figure 4: A first illustration of the lack of “completion” of quantum mechanics beyond
scientific doubt is the time reversal invariance of the theory with equal probability for
events forward and backward in time. Such a time reversibility is acceptable for atomic
structures, particles in accelerators, crystals and other reversible systems, but it does not
allow a consistent physical or chemical representation of energy-releasing process, such
as the coal burning depicted in this figure. In fact, the time reversal image of coal burning
implies that smoke must reconstruct coal with evident violation of causality.

old definition at isolated points to its definition in the volumes of particles
represented by T̂ .

1.2.3. The proof that the Lie-isotopic ŜU(2) algebra with isoproduct
[x̂,y] admits limit conditions with an identical classical counterpart.

More recently, R. M. Santilli completed the above proof in paper [8] by
showing that, under the above indicated conditions, the standard devia-
tions for coordinates ∆r and momenta ∆p appear to progressively tend to
zero for extended particles within hadrons, nuclei and stars, and appear
to be identically null for extended particles within the limit conditions in
the interior of gravitational collapse, essentially along Einstein’s vision.

It should be noted that the above proofs of the EPR argument are cen-
tered in the preservation of the basic axioms of quantum mechanics, only
submitted to their broadest possible realization.

It should be also noted that, under said broadest possible realization,
quantum axioms do admit an explicit and concrete realization of hidden vari-
ables embedded in the structure of the Lie-isotopic product [x̂,y] = xT̂ y −
yT̂x, for instance, via realization T̂ = Diag.(λ, 1/λ), DetT̂ = 1 [7].
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1.3. Insufficiencies of quantum mechanics for irreversible pro-
cesses.
One of the insufficiencies of quantum mechanics well known since the
1930’s is the inability to represent physical or chemical energy releasing
processes, such as nuclear fusions, fuel combustion and other processes.

This is due to the fact that energy releasing processes are irreversible
over time (namely, the time reversal image of the processes violates causal-
ity), while quantum axioms were conceived for and remain solely appli-
cable to systems reversible over time (namely, the time reversal image of the
systems verifies causality), such as atomic structures, particles in accelera-
tors, crystals and other systems (Figure 4).

It is hoped that the ongoing alarming deterioration of our environment,
with the consequential need for new clean energies, illustrate the need for
a “completion” of quantum mechanics for irreversible processes outlined
for completeness in Section 2.

It should be indicated that, except for the short presentation in Section
2, this and the following paper are solely devoted to the apparent proofs
of the EPR argument for reversible interior systems, while the study for
the broader irreversible interior systems is done elsewhere (see Refs. [9] to
[83]).

This is due to the fact that the objections against the EPR argument
were formulated for reversible exterior systems. Consequently, proofs [7]
and [8] studied in these papers were formulated for reversible interior sys-
tems.

1.4. Insufficiencies of quantum mechanics in particle physics.
Quantum mechanics is justly considered to be exactly valid for the structure
of the hydrogen atom because it achieved a numerically exact representa-
tion of all experimental data for the system considered.

It is hoped serious scholars will admit that quantum mechanics can-
not be considered as being exactly valid for particle physics because of
the known inability to achieve an exact representation of all experimental
data of any given family of particles, despite the admission of a number of
hypothetical neutrinos and other ad hoc conjectures.

Recall that, with the exception of electrons, protons and the hypothet-
ical neutrinos, all particles produced by contemporary accelerators are struc-
turally irreversible because unstable, thus being outside the capability of a full
representation via quantum mechanics (Section 1.3), e.g., because they require a
covering Lie-admissible (rather the Lie) treatment. [22] [23].

Additionally, quantum mechanics is completely inapplicable (rather
than violated) for the most fundamental synthesis in nature, that of the
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Figure 5: A conceptual rendering of the synthesis of the neutron as a “compressed hydro-
gen atom” in the core of stars according to H. Rutherford [84], which synthesis cannot be
represented by quantum mechanics due to a mass excess and other reasons (see Section
1.4). By contrast, all characteristics of the neutron in said synthesis have been represented
at the non-relativistic and relativistic levels by the “completion” of 20th century applied
mathematics and physics studied in this paper (Refs. [85] [95]).

neutron from a proton and an electron as occurring in the core of stars
[84], with ensuing inapplicability to the synthesis of other particles, such
as that of the π0 meson from the positronium [17].

This is due to the fact that quantum mechanical axioms have been con-
ceived for the synthesis of particles in which the mass of the final state is
smaller than the sum of the masses of the original constituents, resulting in
the well known mass defect caused by negative potentials.

By contrast, the mass of the neutron En = 939.565 MeV is 0.782 MeV
bigger than the sum of the masses of the proton Ep = 938.272 MeV and of
the electron Ee = 0.511 MeV , resulting in a mass excess requiring a posi-
tive potential for which Schrödinger, Dirac and other quantum mechanical
equations admit no physically meaningful solutions, with similar cases
occurring for the synthesis of other particles [17].

The inability by quantum mechanics to represent the fundamental syn-
thesis of the neutron in a star is ultimately due to the point-like character-
ization of particles since it is mathematically and physically impossible to
fuse together two point-like particles (the proton and the electron) into a
third point-like particle (the neutron).

In turn, this insufficiency identified the need for the representation of
hadrons as extended, deformable and hyperdense, which representation
is at the foundation of the EPR proof [7].
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Another insufficiency of quantum mechanics is its sole capability of
representing linear interactions (i.e., interactions linear in the wave func-
tion). By contrast, the sole known possibility of achieving a bound state
with excess mass is that via the admission of non-linear, generally non-
Hamiltonian interactions for extended particles in conditions of mutual
penetration/entanglement, as it is the case for the electron when totally
compressed inside the proton [16] [17].

In turn, non-linear interactions are crucial for the “completion of the
wavefunction” advocated by Einstein, Podolsky and Rosen [1] as we shall
see in Paper III of this series.

It is nowadays known that the above insufficiencies originate from the
theory at the foundation of quantum mechanics, Lie’s theory, because said
theory solely admits Hamiltonian linear interactions [19].

It is hoped that the above insufficiencies illustrate the significance of
the “completion” of Lie’s theory used for the proof of the EPR argument
[7].

In fact, only following the achievement of a “completion” of 20th cen-
tury mathematical and physical methods for extended, deformable and
hyperdense particles in interior dynamical conditions, Santiili achieved a
numerically exact representation of all— characteristic of the neutron in its
synthesis from a proton and an electron at the non-relativistic (Refs. [85]
to [87]), relativistic (Refs. [88] to [89]) and experimental (Refs. [90] to [95])
levels (see Sections 2, 3 and Paper II of this series).

1.5. Insufficiencies of quantum mechanics in nuclear physics.
There is no doubt that quantum mechanics has permitted historical achieve-
ments in nuclear physics.

However, quantum mechanics is only approximately valid in nuclear
physics because of the inability to achieve over the last century a repre-
sentation of the characteristics of the simplest nucleus, the deuteron, with
embarrassing deviations of the prediction of the theory from experimental
data for heavier nuclei, such as the Zirconium [59].

In Santilli’s view, the primary reason for the indicated insufficiency is
that the mathematics underlying quantum mechanics, with particular ref-
erence to the Newton-Leibnitz differential calculus, imply the conception of
nuclei as ideal spheres with isolated points in its interior (Figure 6) while
in the physical reality, nuclei are composed by extended and hyperdense
protons and neutrons in conditions of partial mutual penetration estab-
lished by the comparison of nuclear volumes with the constituent volumes
[59] (Figure 7).

The inability to represent nuclei as they are in the physical reality im-
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Figure 6: The mathematics underlying quantum mechanics is local-differential, thus
solely admitting a point-like approximation of particles. This figure illustrates the conse-
quential conception of nuclei as ideal spheres with isolated points in their interior with
ensuing insufficiencies beyond scientific doubt.

plies the inability to achieve an exact representation of nuclear magnetic
moments. In fact, the quantum mechanical representation of the anoma-
lous magnetic moment of the deuteron still misses 1 % despite all possible
relativistic or quark-based corrections.

Additionally, quantum mechanics misses much bigger percentages of
nuclear magnetic moments for heavier nuclei (as illustrated in Figure 8).

In turn, the inability to represent protons and neutrons as extended
charge distributions implies the inability to represent deformations under
strong nuclear forces, with related deformation of their angular momenta.

In fact, J. M. Blatt and V. F. Weisskopf state on page 31 of their treatise
in nuclear physics [96]: It is possible that the intrinsic magnetism of a nucleon
is different when it is in close proximity to another nucleon (Figure 9).

The representation of nucleons as extended, thus deformable and hy-
perdense charge distributions via the “completion of 20th century math-
ematics (Section 2) and physics (Section 3) has permitted the exact repre-
sentation of the anomalous magnetic moment of the deuteron [97], as well
as of heavier nuclei [98].

It should be noted that the representation of nuclear magnetic mo-
ments is presented in Ref. [7] as an illustration of the implications of the
proof of the EPR arguments for extended particles in interior conditions.

A second insufficiency of quantum mechanics in nuclear physics is the
lack of a consistent representation of nuclear spins despite efforts also con-
ducted for about one century.
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Figure 7: A conceptual rendering of nuclei as they occur in the physical reality, i.e., a col-
lection of extended and hyperdense protons and neutrons in conditions of partial mutual
penetration, with ensuing non-linear, non-local and non-potential interactions beyond any
dream of quantitative treatment via quantum mechanics.

Recall that the proton and the neutron have both spin 1/2 and that the
only stable bound state predicted by quantum mechanics between two
particles with spin 1/2 is the singlet with spin 0.

Therefore, quantum mechanics predicts that the deuteron in its ground
state must have spin 0, while experimental data establish that the deuteron
has spin 1.

In an attempt of salvaging quantum mechanics, the spin of the deuteron
is generally represented via a combination of excited orbital states which,
even though significant, does not represent the spin 1 of the deuteron in its
ground state.

The achievement of the synthesis of the neutron (Refs. [85] to [95]) has
permitted a resolution of the above impasse because the deuteron emerges
as being a three-body state composed by two protons and one exchange electron,
with ensuing spin 1 in the ground state [59].

Subsequent studies by A. A. Bhalekar and R. M. Santilli [100] based
on the “completion” of 20th century mathematical and physical methods
have achieved a representation of the spin of stable nuclei in their bound
state.

It should be finally noted that the biggest insufficiency of quantum me-
chanics in nuclear physics is given by the inability to achieve a consistent
representation of nuclear forces in one century of efforts.

This is due to the fact that the sole forces permitted by quantum me-
chanics are of potential, thus of action- at-a-distance type, which is solely
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Figure 8: A view of the experimental data of nuclear magnetic moments that cannot be
exactly represented by quantum mechanics. Similar insufficiencies exist for nuclear spins.

Figure 9: A conceptual rendering of the deformability of protons and neutrons under
strong nuclear interactions predicted by J. M. Blatt and V. F. Weisskopf [96] as being the
origin of the inability by quantum mechanics to represent nuclear magnetic moments.
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Figure 10: This picture depicts the hydrogen molecule at absolute zero degree temper-
ature to illustrate the fact that, despite historical achievements, quantum mechanics and
chemistry have been unable to identify the force attracting identical electrons in valence
bonds, because the sole admitted forces are of potential-Coulomb type, thus implying a
repulsion in valence bonds with ensuing lack of a “complete” representation of molecular
structures [60].

possible, mathematical and physical conception for nuclei as ideal spheres
with point-like particles in their interior (Figure 6).

One of the most important applications of the new methods studied in
this work is that of representing nuclear forces as being non-linear, non-
local and non-potential forces due to the mutual penetration/entanglement
of the charge distribution of the hyperdense nucleons. The latter forces
have emerged as being strongly attractive thus allowing the first known
initiation of the understanding of the charge independence of nuclear forces
[59].

1.6. Insufficiencies of quantum mechanics in chemistry.
Without doubt, quantum mechanics and chemistry have permitted chem-
ical discoveries of historical proportions. Hence, the historical and scien-
tific value of quantum chemistry is out of question.

Yet, it is the fate of all theories to admit, with the advancement of scien-
tific knowledge, suitable coverings and this is the fate of quantum chem-
istry as well.

In fact, on strict scientific grounds quantum chemistry is only approxi-
mately valid in chemistry, thus admitting a suitable “completion,” because
of the inability in one century of efforts to achieve an exact representation
of molecular experimental data from first axiomatic principles without ad
hoc form factors and other adaptations.

Recall that quantum mechanics has achieved a numerically exact rep-
resentation of all experimental data of the hydrogen atom.

By contrast, when two hydrogen atoms are bonded into the hydrogen
molecule H2, quantum mechanics and chemistry still miss the represen-
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Figure 11: This picture depicts the hydrogen molecule at absolute zero degree tempera-
ture with the strongly attractive force between identical valence electrons permitted by the
representation of valence pairs as being composed by electrons with extended wavepack-
ets in conditions of mutual penetration/entanglement with ensuing non-linear, non-local
and non-potential interactions that result to be so strongly attractive [17] to overcome
repulsive Coulomb forces [60]. The mutual distance d of said valence pair approaches
Einstein’s classical determinism and achieves it fully when it is in the interior of black
holes [7].

tation of 1 % of the H2 binding energy, which is not insignificant since it
corresponds to about 940 kcal/mole.

An in depth study of the impasse has shown that the above insuffi-
ciency is due to the inability by quantum mechanics and chemistry to represent
the attractive force between identical valence electrons in molecular bonds (Fig-
ure 10) because according to basic axioms, two identical valence electrons
must repel each other according to quantum mechanics and chemistry due to their
equal charge [60].

As it had been the case for other problems, the primary difficulty to
achieve an attractive force between identical valence electrons was of math-
ematical rather than of physical or chemical character, because quantum
mechanics and chemistry solely admit potential forces that, in this case,
can only be of repulsive Coulomb type.

By contrast, the sole possibility of resolving the impasse was the rep-
resentation of electrons as extended wavepackets, that when in conditions
of mutual penetration at 1 fm mutual distance, admit contact, non-linear,
non-local and non-potential interactions of Hulten type.

These new interactions result to be so strong to “absorb” repulsive
Coulomb forces resulting in the needed attraction [60] (Figure 11).

The new valence force was first identified in Table 5 of the 1978 paper
[17] as responsible for the birth of strong interactions in the synthesis of
the π0 meson from an electron and a positron.

In 1995, A. O. E. Animalu and R. M. Santilli published paper [101] es-
tablishing that the Hulten force of paper [17] is so strong to account for the
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bond of the two identical electrons in the Cooper pair of superconductiv-
ity.

A generalization of superconductivity based on the new methods was
then developed and it is today known as Animalu isosuperconductivity [102].

In 2000, R. M. Santilli and D. D. Shillady showed that valence electron
pairs with a strongly attractive force, called isoelectronia, permit numeri-
cally exact representations from first axiomatic principles of experimental
data on the hydrogen [103] and water [104] molecule, which representa-
tion had escaped quantum chemistry for about one century (see also re-
view [105]).

The achievement of a new model of molecular structures based on
the isoelectronium valence bond has permitted novel advances in larger
molecules whose study has been initiated by A. A. Bhalekar and R. M.
Santilli [106] with intriguing implications, e.g., possible improvements in
the combustion of fossil fuels based on a more accurate representation of
their molecular structure [53].

Additionally, Santilli and Shillady showed that perturbative series of the
resulting “completion” of quantum chemistry converge at least one thousand
times faster than the corresponding series of quantum chemistry (see Section
4.13).

1.7. Implications of the EPR argument.
It is hoped that the preceding sections have indicated the truly vast im-
plications for all quantitative sciences of Einstein’s view that “quantum
mechanics is not a complete theory” [1], thus warranting due scientific
process.

In this paper we outline the main aspects of the new mathematical
and physical methods underlying proof [7], with the understanding that
a technical knowledge can be solely achieved via a study of the original
literature.

The reader should be aware that the literature accumulated in half a
century of research in the field by numerous scientists is rather vast. Con-
sequently, in this paper we can only quote the most important original
contributions and provide comprehensive references for interested read-
ers.

2. LIE-ADMISSIBLE “COMPLETION” OF 20TH CENTURY
APPLIED MATHEMATICS.
2.1. Foreword.
R. M. Santilli never accepted quantum mechanics as a “complete” theory
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beginning with his graduate studies in physics at the University of Torino,
Italy, in the mid 1960’s because quantum axioms are invariant under time
reversal, due to the invariance under anti-Hermiticity of the Lie product
between Hermitean operators

[x, y] = −[x, y]†, (1)

and other physical laws.
By recalling the fundamental character of Lie’s theory, it follows that

the mathematics (more than physical laws) underlying quantum mechan-
ics does not allow a consistent representation of nuclear fusions and other
physical or chemical energy releasing processes, due to their known irre-
versibility over time (Figure 4).

2.2. The historical teachings by Lagrange and Hamilton.
In view of the above lack of “completeness” of quantum mechanics, R.
M. Santilli initiated his Ph. D. studies with the reading of the original
works by J. L. Lagrange and studying his true analytic equations, those
with external terms [9]

d

dt

∂L(r, v)

∂v
− ∂L(r, v)

∂r
= Fak(t, r, v), (2)

as well as the true Hamilton’s equations, those with external terms [10]

dr
dt

= ∂H(r,p)
∂p

,

dp
dt

= −∂H(r,p)
∂r

+ F (t, r, p),

(3)

where the Lagrangian L and Hamiltonian H were used to represent con-
servative and potential, thus notoriously reversible forces, while the irre-
versibility of nature was represented with their external forces F .

2.3. The “No Reduction Theorem.”
The external terms have been truncated in the 20th century sciences on
claims that irreversible systems can be decomposed into their elementary
particle constituents at which level the validity of quantum mechanics is
fully recovered.

However, Santilli proved the following theorem as part of his Ph. D.
thesis (see Refs. [56] [25]).

THEOREM 2.3.1 (No reduction Theorem): A macroscopic time irreversible sys-
tem cannot be consistently decomposed into a finite number of quantum mechan-
ical particles and vice versa, a finite collection of quantum mechanical particles
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cannot reproduce a macroscopic irreversible system under the correspondence or
other principle.

Consequently, a serious study of irreversible systems requires a re-
turn to the true Lagrange’s and Hamilton’s equations, those with external
terms.

2.4. The inevitability of the Lie-admissible “completion” of 20th
century science.
As it is well known, the true Lagrange and Hamilton equations cannot be
assumed as a “completion” of 20th century sciences because they are not
derivable from a potential.

Additionally, the brackets of the time evolution of an observableQ rep-
resented via Hamilton’s equations with external terms

dA
dt

= (Q,H, F ) =

= ∂Q
∂r

∂H
∂p
− ∂H

∂r
∂Q
∂p

+ ∂Q
∂r
F,

(4)

characterizes the triple system (Q,H, F ) that, in view of the external terms,
violate the right scalar and associative axioms to characterize an algebra
as currently understood in mathematics.

In the absence of a consistent algebra in the brackets of the time evolu-
tion, it was not possible to achieve a “completion” of quantum mechanics
via a covering for irreversible systems.

Hence, Santilli was forced to seek the needed “completion” on alge-
braic grounds.

Following a year of research in the European mathematics libraries,
Santilli did his Ph. D. thesis in 1965 on the “completion” of Lie algebras
into A. A. Albert’s Lie-admissible and Jordan-admissible algebras [11] with
product [12]

(a, b) = pab− qba, (5)

later on known as (p, q)-deformations [13], where p, q, p ± q are non-null
scalars, and time irreversibility is assured for p 6= q for which irreversib-
lity is ensured for p 6= q by the property (x, y) 6= − (x, y)†.

To achieve a first approximation of Hamilton’s equations with external
terms, Santilli introduced the following parametric Lie-admissible general-
ization of Hamilton’s equation [14] [15]

dr

dt
= p

∂H(r, p)

∂p
,

dp

dt
= −q∂H(r, p)

∂r
, (6)
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with corresponding parametric Lie-admissible generalization of Heisenberg
equation for the time evolution of a Hermitean operator Q (for ~ = 1)

i
dQ

dt
= (Q,H) = pQH − qHQ. (7)

As one can see, all dynamical equations are manifestly irreversible over
time, as desired.

2.5. Lie-admissible genomathematics and genomechanics.
In September 1977, Santilli joined the Department of Mathematics of Har-
vard University under DOE support during which stay he introduced
the most general known realization of irreversible Lie-admissible algebras
(see Refs. [16] to [23]) based on the generalization and differentiation of
the ordinary product ab of arbitrary quantities (numbers, functions, oper-
ators, etc.) into the ordered genomodular product to the right

a > b = aR̂b, (8)

and that to the left
a < b = aŜb, (9)

where R̂, S and R ± S are positive-definite operators with an unrestricted
functional dependence on wavefunctions ψ(t, r) and any other needed
variables.

The operatorsR and S were called genotopic element to the right and to the
left, respectively, where the prefix “geno” was suggested by Carla Santilli
in the Greek sense of “inducing a new structure” [16].

The new genomodular products permitted the construction of new
mathematics known as genomathematics to the right and to the left, [19] with
corresponding “completion” of quantum mechanics into an irreversible
covering known as genotopic branch of hadronic mechanics or genomechanics
for short [19] in which irreversible energy releasing processes are repre-
sented with ordered genomodular product to the right, as it is the case for
the geno-Schrödinger equation or Schrödinger-Santilli genoequation [20]

H > ψ = H(r, p)R(ψ, ...)ψ = Eψ, (10)

Irreversibility is then assured whenever the genotopic elements R and S
are not invariant under time reversal.

The time evolution of a Hermitean operator Q is given by the Lie-
admissible generalization of Heisenberg equations, also known as Heisenberg-
Santilli genoequations (see, e.g., Ref. [107]) first introduced in Eqs. (4.15.34),
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page 746 of Ref. [17] (see the 2006 general treatment [24] and the 2016
update [25]) which can be written in the infinitesimal form

idQ
dt

= (Q.H) = Q < H −H > Q =

= QSH −HRQ,
(11)

and the finite form
Q(t) = eHRtiQ(0)e−itSH . (12)

The representation of Lagrange’s and Hamilton’s external terms is pro-
vided by the difference R− S at both classical and operator levels [24].

2.6. Universality of Lie-admissible formulations.
The following simple realization of the genotopic elements

S = 1, R = 1− 1
H
K(ψ, ∂ψ, ...),

idQ
dt

= (Q.H) = [Q,H] +QK,
(13)

where K is a positive-definite operator representing non-Hamiltonian in-
teractions illustrates that the Lie-admissible generalization (11) of Heisen-
berg’s equations constitute an operator image of Hamilton’s equations
with external terms (3) [56].

The double infinity of possible realizations of the genotopic elements
R and S then allows Lie-admissible equations (11) to be “directly univer-
sal” for the representation of all possible (regular) non-linear, non-local
and non-Hamiltonian interactions in the sense of representing all of them
(“universality”) directly in the frame of the experimentalism without the
use of the transformation theory (“direct universality”) (for details, see
Ref. [24]).

It should be finally indicated that the original 1978 proposal [16] es-
tablished the universality of Lie-admissible algebras because the product
(A,B) = A < B − B > A admit as particular case the product of all
possible “algebras” as commonly understood in mathematics, including
Associative, Lie, Jordan, Lie-isotopic, Jordan-isotopic, alternative, super-
associative, super-Lie, super-Jordan, nilpotent, flexible and other possible
algebras.

2.7. Prediction of new clean nuclear fusions.
Scientific and industrial applications to search for new clean energies were
initiated in the late 1990’s only following the achievement of maturity in
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the mathematical and physical methods needed for the representation of
irreversible processes.

The first application was the conception of the new Intermediate Con-
trolled Nuclear Fusion (ICNF) of light, natural and stable elements into light,
natural and stable elements with smaller mass which occur without the
emission of harmful (e.g., neutron) radiations and without the release of
radioactive waste (see Ref. [26] to [32] for originating papers and Refs.
[33] to [40] for independent studies). Laboratory analyses [41] to [52] con-
firmed the existence oof ICNF at the particle levels, with the understanding
that the related industrial production of new clean energy require addi-
tional extensive research.

2.8. Prediction of a new clean combustion of fossil fuels.
To illustrate the implications of the lack of “completion” of quantum me-
chanics for energy releasing processes, we should note that the current
combustion of fossil fuels is essentially that at the dawn of our civiliza-
tion, because we essentially strike a spark and ignite the fuel with known
alarming environmental deterioration of our planet.

The achievement of the Lie-admissible representation of energy releas-
ing processes has permitted the first known conception and initiation of
tests for a new principle of combustion called HyperCombustion which is
based on the conventional combustion of carbon and oxygen dating back
to the dawn of our civilization, plus the novel synthesis of a limited num-
ber of nuclei C-12 and O-16 into Si-28 to achieve full combustion of fossil
fuels as well as a significant increase of energy output [53].

2.9. Literature on hadronic mathematics and mechanics.
Due to the prediction of new clean nuclear energies, the connection be-
tween irreversible mechanics and thermodynamics and other features, the
literature on the foundations of hadronic mechanics is rather vast.

Ref. [54] provides a summary of the formalism of hadronic mechanics.
Refs. [55] to [61] provide general presentations of hadronic mechanics.
Vol. I of Refs. [61] contains a comprehensive literature up to 2008 with an
upgrade to 2016 in Ref. [25].

Additional references are available in the reprint volumes [62] [63] and
in the proceedings of five Workshops on Lie-Admissible Algebras,, twenty
five Workshops on Hadronic Mechanics, and three international conferences
on the Lie-admissible treatment of Irreversible Processes whose references are
available from Ref. [61]. Representative independent papers are available
from Refs. [64] to [74] and independent monographs are available from
Refs. [75] to [83].
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3. LIE-ISOTOPIC “COMPLETION” OF 20TH CENTURY AP-
PLED MATHEMATICS.
3.1. Foreword.
As it is well known, the objections against the EPR argument (Section 1.1)
were formulated for isolated reversible systems of point particles in vacuum
with linear, local and Hamiltonian interactions called reversible exterior dynam-
ical problems.

Hence, the proof of the EPR argument had to study isolated reversible
systems of extended, therefore deformable and hyperdense particles in conditions
of mutual penetration/entanglement with ensuing linear and non-linear, local and
non-local and Hamiltonian as well as non-Hamiltonian internal interactions. The
latter systems are called reversible interior dynamical problems, and they oc-
cur in the structure of hadrons, nuclei, stars and black holes.

Despite their reversible character, the latter systems could not be stud-
ied with 20th century applied mathematics, including Lie’s theory, due to
its strictly Hamiltonian character. Reversible interior dynamical systems
could not be studied with Lie-admissible formulations due to their irre-
versible character. Hence, the needed new mathematics had to be built.

In this section, we review the foundations of the new mathematics
for the consistent representation of reversible interior dynamical systems
which was essentially constructed as a reversible particular case of univer-
sal Lie-admissible formulations.

3.2. Isoproduct.
In order to achieve a representation of the latter systems, Santilli intro-
duced in the original proposal [16] of 1978 the axiom-preserving particu-
lar case of genomathematics called isomathematics, which is characterized
by the genoproduct to the right being equal to that to the left, R = S = T̂ ,
resulting in the time-reversal invariant isoproduct, (first introduced in clas-
sical realization in Eqs. (3.7.10), page 352 of Ref. [16], introduced in opera-
tor form in Eq. (4.15.46), page 751, Ref. [17] and then studied in details in
Ref. [19], Eq. (2), page 71 on)

a ? b = a T̂ b, (14)

where T̂ , called the isotopic element, is a function, matrix or operator solely
restricted to be positive-definite, but possesses otherwise an unrestricted
functional dependence on all needed local variables, such as: spacetime
coordinates x = (t, r); linear momentum p; energy E; frequency ν; den-
sity of the medium α; temperature τ ; pressure π; wavefunctions ψ; their
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derivatives ∂ψ; and any other needed variable

T̂ = T̂ (x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, (15)

where the prefix “iso” was also suggested by Carla Santilli in its Greek
meaning of preserving the axions.

The physical significant of isoproduct (14) is illustrated by nothing that
it allows “ab initio” a direct representation of extended, thus deformable and
hyperdense particles and their non-Hamiltonian interactions illustrated in Fig-
ure 3 (Section 1.4). This important task is achieved via simple realizations
of the isotopic element of the type (needed for the neutron synthesis from
the hydrogen studied in Section 2.4) [55] [56]

T̂ = Diag.(
1

n2
1

,
1

n2
2

,
1

n2
3

,
1

n2
4

)e−Γ, (16)

with subsidiary conditions

nµ = nµ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4,

Γ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) ≥ 0.
(17)

The isoproduct also allows a direct representation of nuclei as a collec-
tion of extended nucleons in conditions of mutual penetration/entanglement
as presented in Figure 7 and Section 1.5 with broader realizations of the
type (needed to represent nuclear magnetic moments and spins, or for
the achievement of an attractive force between identical valence electron
bonds in molecular structures) [57]

T̂ = Πk=1,...,NDiag.(
1
n2
1k
, 1
n2
2k
, 1
n2
3k
, 1
n2
4k

)e−Γ,

k = 1, 2, ..., N, µ = 1, 2, 3, 4.

(18)

In the above realizations of the isotopic element, n2
1, n

2
2, n

2
3, (called char-

acteristic quantities) represent the deformable semi-axes of the particle nor-
malized to the values n2

1 = n2
2,= n2

3 = 1, for the sphere; n2
4 represents

the density of the particle considered normalized to the value n4 = 1 for
the vacuum; and Γ represents non-linear, non-local and non-Hamiltonian
interactions caused by mutual penetrations/entanglement of particles.

The mathematical significance of basic assumption (14) is that it requires,
for consistency, a compatible “completion” of all aspects of 20th century
applied mathematics without any known exception.
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This program was initiated in the 1978 proposal [16], continued in the
1981 monograph [19] and completed in numerous works by various math-
ematicians (see the 1995 monograph [55] for a comprehensive presenta-
tion).

Regrettably we cannot provide a technical review of isomathematics
to prevent excessive length. Nevertheless, a rudimentary outline of the
main aspects of isomathematics appears to be recommendable for an un-
derstanding of proof [7] of the EPR argument.

3.3. Isonumbers.
As it is well known, physical theories are formulated over a field F (n,×, 1)
of real, complex or quaternionic numbers n with product nm = n×m and
multiplicative unit 1. Said field remains invariant under the unitary time
evolution of quantum mechanics, thus allowing the prediction of the same
numerical values under the same conditions at different times.

But the time evolutions of hadronic mechanics, such as Eqs. (11), are
non-unitary when formulated on conventional space over a conventional
field (not so for isomathematics as shown below).

This implies the loss over time of the multiplicative unit 1, and conse-
quently, of the entire numeric field, with ensuing lack of consistent exper-
imental verifications.

To resolve this impasse, Santilli had no other choice than that of rein-
specting the historical classification of numbers, by discovering in this way
that the abstract axioms of a numeric field do not necessarily restrict the multi-
plicative unit to be the number 1, and allow for unit an arbitrary positive-definite
quantity Î provided that the multiplication is redefined for Î to verify the unit
axiom [107].

This lead to “completion” of numeric fieldsF (n,×, 1 into isofields F̂ (n̂, ?, Î

of isoreal, isocomplex, and isoquaternionic isonumbers n̂ = nÎ with isounit

Î = 1/T̂ > 0, (19)

isoproduct (14), n̂ ? m̂ = (nm)Î , and isounit isoaxiom

Î ? n̂ = n̂ ? Î = n̂, ∀n̂ ∈ F̂ . (20)

Isofields are completed by compatible redefinitions of all numeric op-
erations, such as isoquotient, isosquare, isosquareroot, etc. [107].

It should be indicated that isofields verify all axioms of a field. Hence,
isonumbers are fully acceptable for experimental verifications [57].

Isofields are classified into those of the first kind (second kind) depending
on whether the isounit Î is (is not) an element of the original field.
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In this paper, we shall solely consider isofields of the second kind since
the representation of extended particles and their non-Hamiltonian inter-
actions is achieved via the isounit or equivalently, the isotopic element.

Paper [107] has stimulated various studies in number theory, among
which we mention the study by C-Xu. Jiang [79], A. K. Aringazin [108], C.
Corda [109] and others.

3.4. Isofunctions.
As it is well known, a necessary condition for a variable to be measurable
is that it is an element of the base field, and the same holds for functions
of said variable.

The implementation of the same rule under isotopic “completion” stim-
ulated the construction of the isofunctional isoanalysis initiated by: J. V.
Kadeisvili [110][111]; A. K. Aringazin, D. A. Kirukhin and R. M. Santilli
[112]; Raul M. Falcon Ganfornina and Juan Nunez Valdes [80]; and others.

We here limit ourselves to indicate: the isotime t̂ = tÎt, isospace isocoor-
dinates r̂ = rÎr, and the isofunctions of isovariable,

f̂(r̂) = [f(rÎ)]Î , (21)

such as the isoexponentiation

êX̂ = [eX̂T̂ ]Î = Î[eT̂ X̂ ]. (22)

Similar expressions hold for virtually all conventional functions used
in applications [55].

3.5. Isospaces.
The initial construction of isomathematics [19] was formulated via con-
ventional vector or metric spaces over conventional fields.

The consistent need to formulate spaces over isofields triggered the
isotopic “completion” of metric spaces into isospaces whose study was ini-
tiated by the mathematician Gr. Tsagas and his school [113]. In turn, these
studies triggered the construction of the isotopology by R. M. Falcon Gan-
fornina and J. Nunez Valdes [114], yielding the first known topology for
the characterization of extended particles, known as the Tsagas, Sourlas,
Santilli, Ganfornina and Nunez (TSSGN) isotopology.

Let E(r, δ, I) be the conventional Euclidean space with space coordi-
nates r = (x, y, z), metric δ = Diag.(1, 1, 1), unit I = Diag(1, 1, 1) and
invariant

r2 = (x2 + y2 + z2)1, (23)
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where one should note the trivial multiplication by 1 for compatibility
with the isotopic image studied below.

The representation isospace of the non-relativistic proof of the EPR ar-
gument is given by the infinite family of iso-Euclidean isospaces, Ê(r̂, ∆̂, Î)r,
first formulated in the 1978 Ref. [16] and treated in detail in Ref. [19] , fi-
nalized in 1996 Ref. [115] and extensively treated in monograph [55].

For the simple realization of the isotopic element

T̂ = Diag.(1/n2
1, 1/n

2
2, 1/n

2
3), (24)

iso-Euclidean isospaces Ê(r̂, ∆̂, Îr) are characterized by: the isocoordinates
r̂ = rÎ , the iso-Euclidean isometric ∆̂ = (T̂ δÎ , and the isospace isounit Îr =
1/T̂ > 0 resulting in the iso-Euclidean isoinvariant

r̂2̂ = (r̂j ? ∆̂jm ? r̂
m) = (rj δ̂jmr

m)Îr =

= (
r21
n2
1

+
r22
n2
2

+
r23
n2
3
)Îr,

(25)

where we should recall that, for consistency, all scalar quantities have to
be elements of an isofield F̂ .

The above conditions require that: squares must be isosquares r̂2̂ =

r̂ ? r̂ = r̂2Îr; coordinates have to be isocoordinates r̂ = rÎr; to be iso-
matrices, isometrics must have the structure ∆̂ = δ̂Îr; and the elaboration
requires the use of the isotrigonometric isofunctions as well as of the isospher-
ical isocoordinates (see Ref. [55] for details).

Let M(x, η, I) be the conventional Minkowski space with spacetime
coordinates x = (x1, x2, x3, x4 = ct), metric η = Diag.(1, 1, 1,−1), unit
I = Diag(1, 1, 1, 1) and invariant

x2 = (xµηµνx
ν)I =

= (x2
1 + x2

2 + x3
3 − c2t2)I.

(26)

The isospace for relativistic treatments of extended particles is given
by the infinite family of iso-Minkowski spaces M̂(x̂, Ω̂, Îx) also known as
Minkowski-Santilli isospaces, (see e.g., Ref. [107]) first introduced in Ref.
[116] and then treated in details in Ref. [56].

Iso-Minkowskian isospaces are characterized by the isospace-time iso-
coordinates x̂ = xÎ ; isounit Î = 1/T̂ , and isometric Ω̂ = η̂Îx = (T̂ η)Îx formu-
lated on the isoreal isonumbers R̂.

For the simple realization of the isotopic element

T̂ = Diag(1/n2
1, 1/n

2
2, 1/n

2
3, 1/n

2
4), (27)
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Figure 12: This picture illustrates the isodifferential calculus [115] via birds flying in
close formation without wing interferences, which can be best understood by assuming
that birds conceive themselves as a volume encompassing their wings, rather than a mass
concentrated in their center of gravity as it would be requested by the Newton-Leibnitz
differential calculus.

we have the infinite family of realizations of the isospace-time isoinvariant

x̂2̂ = x̂µ ? Ω̂µν ? x̂
ν = (xµη̂µνx

ν)Î =

= (
x21
n2
1

+
x22
n2
2

+
x23
n2
3
− t2 c2

n2
4
)Î ,

(28)

where the final multiplication by the isounit is again necessary for the in-
variant to be an isoscalar.

It should be noted that, in addition to the use of the isospherical isoco-
ordinates, data elaborations in the iso-Minkowskian isospace requires the
use of isohyperbolic isofunctions (see Ref. [56], Chapters 5 and 6).

Note also that invariant (30) is the most general possible symmetric
(non-singular) invariant in (3 + 1)-dimensions, thus including as particu-
lar cases all possible Minkowskian, Riemannian, Fynslerian and all other
geometries.

3.6. Isodifferential isocalculus.
Despite the above advances, numerical predictions of isomathematics lacked
the crucial property of invariance over time.

In addition, isomechanics and hadronic mechanics at large, were in-
complete due to the inability to formulate the isotopies and genotopies of
the linear and angular momenta (see next section).
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In order to resolve this impasses, Santilli had no other choice than that
of reinspecting the Newton-Leibnitz differential calculus, by discovering
in this way that, contrary to rather popular belief for four centuries, the
differential calculus depends on the multiplicative unit of the base field because,
when the unit depends on the variable of differentiation, said calculus has
to be “completed” into the infinite family of isodifferentials, e.g., of the iso-
coordinates r̂, first formulated in memoir [115] submitted in 1995 and pub-
lished in 1996 and then treated in details in Refs. [55] [56]

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...), (29)

with corresponding isoderivative [114]

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (30)

Following decades of searches, the discovery of the isodifferential iso-
calculus finally permitted the achievement of the invariance over time of
numerical predictions, the formulation of isolinear and genolinear mo-
menta and signaled the achievement of maturity for applications and ex-
perimental verifications (see Refs. [56] [57] for details).

All novel applications of isomathematics in physics, chemistry and
other fields, including the proof of the EPR argument [7], originate from
the extra term rT̂ dÎ(r, ...) in isodifferential (29), which is absent in the
mathematics for point particles.

The covering character of the isodifferential isocalculus over the con-
ventional calculus is illustrated by the fact that whenever the isounit is
independent from the differentiation variable or it is a constant, the con-
ventional calculus is recovered uniquely and identically.

It should be indicated that the biggest difficulty in the use of the isodif-
ferential isocalculus is of conceptual, rather than of mathematical character,
because it requires the transition from the visualization of the calculus at
individual points to volumes (or surfaces) represented by the isotopic ele-
ment T̂ (Figure 12).

By looking in retrospect, it appears nowadays evident that a “comple-
tion” of quantum mechanics for the representation of extended particles is
fundamentally inconsistent when formulated via the conventional differ-
ential calculus, because of its sole possible characterization of particles as
being point-like.

Consequently, the generalization of the differential calculus into a form
defined on volumes represented by T̂ , rather than defined on coordinate
points r, is essential for a consistent representation of extended particles.
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Nineteen years following the discovery of the isodifferential isocalcu-
lus for extended particles, comprehensive studies in the field have been
conducted by the mathematician S. Georgiev in the series of six mono-
graphs [83] which consider the broadest possible formulation of the isod-
ifferential calculus, including the case of different isotopic elements for
different isovariables.

3.7. Lie-Santilli isotheory.
In Santilli’s view, the physically most important part of isomathematics
is given by the isotopic “completion” of the various branches of Lie’s the-
ory, today known as the Lie-Santilli isotheory, which was first formulated in
papers [16] [17] of 1978, systematically studied in monograph [19], final-
ized in Refs. [55] [56] of 1995 following the discovery of the isodifferential
calculus [115] and recently studied in paper [117].

In this section, we follow the presentation of Ref. [19] of 1981 upgraded
into a formulation on isospaces over isofields and elaborated via the isod-
ifferential isocalculus.

LetL be a n-dimensional Lie algebra with Hermitean generatorsXk, k =
1, 2, ...n defined on a conventional space over a conventional numeric field.
Then, the infinite family of isotopies L̂ ofL are characterized by the follow-
ing main theorems:

THEOREM 3.7.1 [19]: (Poincaré-Birkhoff-Witt-Santilli isotheorem): The iso-
cosets of the isounit and of the isostandard isomonomials

Î , X̂k, X̂i ? X̂j, i ≤ j, X̂i ? X̂j ? X̂k, i ≤ j ≤ k, . . . , (31)

form an infinite dimensional isobasis of the universal enveloping isoassociative
isoalgebra Ê(L̂) (also called isoenvelope for short) of a Lie-Santilli isoalgebra
L̂.

The first illustration of the above theorem is given by isoexponential
isofunction (22) whose correct derivation requires infinite basis (31).

The appearance of the non-linear, non-local and non-potential isotopic
element T̂ in the exponent illustrates the non-trivial character of the Lie-
Santilli isotheory.

THEOREM 3.7.2 [19]: (Lie-Santilli isoalgebras) The antisymmetric isoalgebras
L̂ attached to the isoenveloping algebras Ê(L̂) verify the isocommutation rules

[X̂î,X̂j] = X̂i ? X̂j − X̂j ? X̂i =

= Ĉk
ij(t, r, p, E, µ, τ, ψ, ∂ψ, ...) ? X̂k,

(32)
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where the quantities Ĉ are called the structure quantities.

The above isocommutation rules show the axiom-preserving charac-
ter of the isotopies in view of their evident verification of the Lie axioms,
although via a broader realization.

The Lie-Santilli isotheory is called regular or irregular depending on
whether the structure quantities Ĉk

i,j are isoscalars or isofunctions, respec-
tively.

This classification is important because as shown in the next section,
the regular Lie-Santilli isotheory can be constructed via a well defined
transform of corresponding Lie theory, while irregular Lie-Santilli isothe-
ories are truly new theories verifying Lie’s axioms without a known map
form the conventional formulation.

THEOREM 3.7.3 [19]: (Lie-Santilli isogroups) The isoexponentiated form Ĝ of
isocommutation rules (32) defined on an isospace Ŝ with local isocoordinates x̂
over an isofield F̂ with isounit Î = 1/T̂ > 0 is a group mapping each element
x̂ ∈ Ŝ into a new element x̂′ ∈ Ŝ via the isotransformations

x̂′ = ĝ(ŵ) ? x̂, x̂, x̂′ ∈ Ŝ, ŵ ∈ F̂ , (33)

verifying the following isomodular isoaction to the right:
1) The isomap of ĝ ? Ŝ into Ŝ is isodifferentiable ∀ĝ ∈ Ĝ;
2) Î is the left and right isounit of Ĝ,

Î ? ĝ = ĝ ? Î ≡ ĝ, ∀ĝ ∈ Ĝ; (34)

3) The isomodular isoaction is isoassociative,

ĝ1 ? (ĝ2 ? x̂) = (ĝ1 ? ĝ2) ? x̂, ∀ĝ1, ĝ2 ∈ Ĝ; (35)

4) In correspondence with every element ĝ(ŵ) ∈ Ĝ with ŵ ∈ F̂ there exists
the inverse element ĝ(−ŵ) such that

ĝ(0̂) = ĝ(ŵ) ? ĝ(−ŵ) = Î; (36)

5) The following composition laws are verified

ĝ(ŵ) ? ĝ(ŵ′) = ĝ(ŵ′) ? ĝ(ŵ) = ĝ(ŵ + ŵ′),∀ĝ ∈ Ĝ, ŵ ∈ F̂ ; (37)

with corresponding isomodular action to the left, and general expression

ĝ(ŵ) =
∏
k

êî?ŵk?X̂k ? ĝ(0) ?
∏
k

ê−î?ŵk?X̂k . (38)
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Nowadays, isomathematics is referred to as the infinite family of iso-
topies of 20th century applied mathematics, with particular reference to
the isotopies of Lie’s theory when formulated on isospaces over isofields
and elaborated via the isodifferential isocalculus. Isomathematics is then
classified into regular and irregular isomathematics depending on whether
the structure quantities Ĉij are isoscalars or isofunctions of local isovari-
ables, respectively.

It should be indicated that, the proof [7] of the EPR argument uses both
regular and irregular Lie-Santilli isoalgebras.

Since Lie’s theory is at the foundation of the axiomatic structure and
applications of quantum mechanics, the covering Lie-Santilli isotheory
predictably stimulated a number of independent contributions, such as
the studies by the mathematicians: D. S. Sourlas and Gr. T. Tsagas [76], J.
V. Kadeisvili [118], T. Vougiouklis [119] and papers quoted therein.

3.8. Simple construction of regular isomathematics.
A simple method for physicists has been identified in Ref. [120] of 1997
for the construction of regular isomathematics. The method consists of:
1) Selecting the desired representation of extended particles with non-
Hamiltonian interactions via isotopic elements T̂ of type (16) or (18); 2)
Identifying a non-unitary transformation representing the selected isounit
Î = 1T̂

UU † = Î; (39)

3) Subjecting the totality of conventional applied mathematics to the above
nonunitary transform with no known exception, resulting in expressions
of the type

I → Î = UIU † = 1/T̂ , (40)

n→ n̂ = UnU † = nUU † = nÎ, n ∈ F, (41)

f(r)→ f̂(r̂) = Uf(r)U †, (42)

eA → UeAU † = ÎeT̂ Â = (eÂT̂ )Î , (43)

AB → U(AB)U † =

= (UAU †)(UU †)−1(UBU †) = Â ? B̂.

(44)

It should be indicated that the above transformations imply the possi-
bility of constructing the infinite family of Lie-Santilli isoalgebras via non-
unitary transforms of the considered Lie algebra. This is possible in view
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of the transformation of commutation rules into their covering isocommu-
tator forms,

[A,B]→ U [A,B]U † = [Â,̂B̂]. (45)

This property is evidently important for the construction of the isorep-
resentation of regular isoalgebras used for physical and chemical applica-
tions.

Note that serious inconsistencies occur, at times without their detection by
non-experts, in the event only one single quantity or operation of 20th century
applied mathematics is not subjected to the above non-unitary map.

We should finally indicate that the proof of the EPR argument used in Ref.
[7] is of ’non-unitary’ character, thus implying that the physical conditions
for said proof are outside the class of equivalence of quantum mechanics.

3.9. Invariance of regular isomathematics.
An additional contribution of paper [120] is the proof that the dimension,
shape and density of extended particles and their non-Hamiltonian interactions
are represented by isomathematics in a form invariant over time.

Firstly, Ref. [120] showed that, following the construction of regular
isomathematics via non-unitary transformations (Section 2.2.8), isomath-
ematics is not invariant under additional non-unitary transforms, e.g., be-
cause of the lack of invariance of the basic isounit

Î → Î ′ = WÎW † 6= Î , WW † 6= I, (46)

with consequential physical inconsistencies since any structural change of
the isounit implies the transition to a different physical or chemical sys-
tem.

However, non-unitary transforms can always be identically rewritten
as isounitary isotransforms according to the rule [56]

WW † = Î , W = Ŵ T̂ 1/2, (47)

WW † = Ŵ ? Ŵ † = Ŵ † ? Ŵ = Î , (48)

under which reformulation we have the following invariance of the isounit
of the isotopic element and of the isoproduct of regular isomathematics [120]

Î → Î ′ = Ŵ ? Î ? Ŵ † ≡ Î , (49)

Â ? B̂ → Ŵ ? (Â ? B̂) ? Ŵ † =

= Â′ ? B̂′ = Â′T̂ B̂′,

Â′ = Ŵ ? A ? Ŵ †). B̂′ = Ŵ ? B̂ ? Ŵ †, T̂ = (W † ? Ŵ )−1.

(50)

36

236

Reprinted by permission from Ratio Mathematica, “Studies on A. Einstein, B. Podolsky, and N. Rosen
Prediction that Quantum Mechanics is Not a Complete Theory I: Basic methods”, R. M. Santilli,

Ratio Mathematica (Vol. 38), 5-69, 2020.



Studies on the EPR argument, I: Basic methods

The invariance of the entire isomathematics follows. Note that the in-
variance is ensured by the invariant numeric values of the isounit and therefore,
of the isotopic element under isounitary isotransforms,

Î → Î ′ ≡ Î , (51)

A ? B = AT̂B → A′ ?′ B′ = A′T̂ ′B′

= Â′ ? B̂′ = Â′T̂ B̂′
(52)

T̂ → T̂ ′ ≡ T̂ . (53)

By noting that, as shown in the next section, the time evolution of the
isotopic “completion” of quantum mechanics is an isounitary isotrans-
form, paper [120] established that isomechanics is an axiom-preserving ”com-
pletion” of quantum mechanics capable of representing extended particles under
Hamiltonian as well as non-Hamiltonian interactions in a form invariant over
time.

In closing, we should recall other generalizations of 20th century math-
ematics and their applications, such as the so-called deformations. These
generalizations are mathematically correct, but physically inconsistent be-
cause they violate causality laws (for brevity, see the Theorems of Inconsis-
tency of Non- Unitary Theories in Vol. I of Refs. [61]). These inconsistencies
arise from a structural generalization of Lie’s algebras and other quantum
laws when formulated on conventional spaces over conventional fields,
thus preventing their reformulation as isounitary theories.

Note that the invariance of isomathematics reviewed in this section im-
plies the verification of causality on isospaces over isofields in the same
way as quantum mechanics verify causality laws.

4. LIE-ISOTOPIC “COMPLETION” OF QUANTUM MECHAN-
ICS.
4.1. Foreword.
In this section, we review the foundation of the isotopic branch of hadronic
mechanics, also known as isomechanics, which is used in the proof of the
EPR argument [7].

An important difference between preceding works and the presenta-
tion in this section is that the previous works generally present isome-
chanics in its projection on conventional spaces over conventional fields.

By contrast, in this section we put the emphasis in the full formulation
of isomechanics, that on isospaces over isofields because important to il-
lustrate that, contrary to opposing view (Section 1.1), proof [7] of the EPR
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argument is fully compatible with quantum axioms, only subjected to a
broader realization.

Isomechanics was first introduced via isoproducts defined on conven-
tional spaces over conventional fields in the 1978 papers [16] [17] and in
the 1981 monograph [19]; it first achieved mathematical maturity in the
1996 memoir [115] thanks to the discovery of the isodifferential isocal-
culus; isomechanics was finally presented in a systematic way in mono-
graphs [55] [56] [57] with a 2016 upgrade in Section 2 of memoir [25].

Independent studies are available in Refs. [75] to [83]. A comprehen-
sive list of references up to 2008 is available in Vol. I of Refs. [61] while a
2016 upgrade is available in Ref. [25]. We regret the inability of reviewing
all important contributions on isomechanics to prevent an excessive length
and are forced to outline only the most salient structural contributions.

4.2. Iso-Newton isoequations.
As it is well known, the fundamental equations of mechanics are the his-
torical Newton’s equations, representing systems of point-particles with Ha-
miltonian (that is, variationally selfadjoint, SA [18]) and non-Hamiltonian
(variationally non selfadjoint, NSA [18]) forces [18] defined on a conven-
tional Euclidean space, E(r, δ, I) over the field of real numbersR

mdvak
dt
− F SA

ak (r, v)− FNSA
ak (t, r, v) = 0,

k = 1, 2, 3, a = 1, 2, ..., N, N ≥ 2.
(54)

It is generally believed that Newton’s equations with non-conservative
forces can solely represent open, irreversible systems. In Ref. [19] Section
6.3, Page 236, Santilli introduced closed non-self-adjoint systems, which are
given by systems (54) violating the integrability conditions for their rep-
resentation via Lagrange’s or Hamilton’s equations, yet verifying all ten
conservation laws of Galileo relativity under the conditions∑

akF
NSA
ak = 0,∑

akr · FNSA = 0,∑
akrF

NSA = 0.

(55)

which conditions are evidently applicable only for N ≥ 2, since the case of
one particle N = 1 is trivial.

The fundamental equations of isomechanics are given by the isotopic
“completion” of Eqs. (54) known as iso-Newton isoequations, which were
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first introduced in Ref. [115] immediately following the discovery of the
isodifferential isocalculus, and they are also known as Newton-Santilli isoe-
quations, (see, e.g., Refs. [107] [75] [81]) defined on iso-Euclidean isospaces
Ê(r̂, δ̂, Î) (Section 2.2.5) over isoreal isonumbers R̂ (Section 2.2.3)

m̂a ?
d̂v̂ak

d̂t̂
− F SA

ak (r̂, v̂) = 0. (56)

A first important feature of Eqs. (56) is that of providing the first known
consistent representation of the actual shapes and dimensions of the parti-
cles considered via the isodifferential calculus, with realization of the iso-
topic element of type (16).

A second important feature of Eqs. (56) is that of representing all
potential-(SA) forces via conventional Newtonian forces F SA(r, v) while
representing all non-potential-(NSA) forces via the isodifferential calcu-
lus.

This feature is treated in details in Ref. [115] and can be summarized
as follows.

Note that the basic isounit of Eqs. (56) is the isovelocity isounit, Î = Îv.
Assume for simplicity that the isotime is equal to the conventional time,

t̂ = t Ît = 1. (57)

Consequently, from isoderivative (30), we have

d̂v̂

d̂t̂
= Itdv̂/dt̂ = dv̂/dt. (58)

Consider then the projection of Eqs. (56) in the Euclidean space E(v, δ, I)
and use the various rules of isomathematics (Section 2.2). Then Eqs. (56)
can be written in the projected form (where all multiplications are conven-
tional),

(mÎ)T̂ d̂(vÎ)
dt
− F SAÎ =

= Î[mdv
dt
− F SA] +mvT̂ dÎ

dt
= 0.

(59)

By dividing the above equation with Î > o, one obtains Newton’s equa-
tions with the following realizations of the NSA forces

FNSA(t, r, v) = mvT̂
dÎ

dt
. (60)
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In conclusion, the iso-Newton isoequations (56) embed all NSA forces into
the isoderivatives by therefore allowing the first known consistent operator image
of non-Hamiltonian forces studied in subsequent sections.

4.3. Iso-Lagrangian and iso-Hamiltonian isomechanics.
Iso-Newton isoequations (56) admit a representation in terms of the iso-
Lagrange isoequations first formulated in memoir [115] via the isodifferen-
tial calculus, thus being defined on an iso-Euclidean isospace over the iso-
real isofield

d̂

d̂t̂

∂̂L̂(r̂, v̂)

∂̂v̂ak
− ∂̂L̂(r̂, v̂)

∂̂r̂ak
= 0, (61)

where L̂ = LÎ is an iso-Lagrangian, namely, a conventional Lagrangian
formulated on isospaces over isofields thus being multiplied by the isounit
to be an isoscalar.

Eqs. (56) also admit the isocanonically isoequivalent isorepresentation
in terms of the iso-Hamilton equations first formulated in memoir [115] on
an isophase isospaces over an isoreal isofield and also known as Hamilton-
Santilli isoequations (see, e.g., Ref. [107])

d̂r̂ak
d̂t̂

= ∂̂Ĥ(r̂,p̂)

∂̂p̂ak
,

d̂p̂ak
d̂t̂

= − ∂̂Ĥ(r̂,p̂)

∂̂r̂ak
,

(62)

where Ĥ = HÎ is the iso-Hamiltonian, that is, a conventional Hamiltonian
formulated on an isophase isospace over an isofield.

Note that iso-Hamiltonian isomechanics admits the following time evo-
lution for a quantity Q̂

d̂Q̂

d̂t̂
= [Q̂,̂Ĥ] =

∂̂Â

∂̂r̂ak

∂̂Ĥ

∂̂p̂ak
− ∂̂Ĥ

∂̂p̂ak

∂̂Q̂

∂̂r̂ak
, (63)

where the brackets [Q̂,̂Ĥ] constitute a classical realization of Lie-Santilli
isoalgebras.

4.4. Isovariational isoprinciple.
Another important feature of Eqs. (56) is that of permitting the first known
representation of variationally non- selfadjoint/non-Hamiltonian systems
via an isovariational isoprinciple [115],

δ̂Â = δ̂

∫̂
(p̂ak ? d̂r̂ak − Ĥ ? d̂t̂) = 0, (64)
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which representation is notoriously impossible for NSA Newton’s equa-
tions, with the consequential lack of achievement of consistent operator
forms of nonconservative forces.

In view of the universality of Eqs. (56), the above isovariational iso-
principle is directly universal, that is, capable of representing all infinitely
possible, regular, time reversal invariant Newtonian systems (54) (“uni-
versality”) directly in the coordinates of the experimenter (“direct univer-
sality”).

4.5. Iso-Hamilton-Jacobi isoequations.
Much along conventional analytic procedures, it is easy to prove that iso-
variational isoprinciple (64) implies the following iso-Hamilton-Jacobi isoe-
quations also called Hamilton-Jacobi-Santilli isoequations [115] [25] that are
at the foundation of the isoquantization reviewed in the next section

∂̂Â

∂̂t̂
+ Ĥ = 0, (65)

∂̂Â

∂̂r̂ak
− p̂ak = 0, (66)

∂̂Â

∂̂p̂ak
= 0. (67)

We should recall from Section 2.2.5 that isodynamical isoequations of
classical isomechanics require two different isofields, the first being the
isotime isofield with isounits Ît and the second being the isovelocity isofield
with isounits Îv.

However, the direct universality is already achieved with the sole use
of the isovelocity isounit. Hence, the isotime isounit can be assumed to be
1 without any loss of direct universality.

For non-relativistic formulations, we shall use isotime in the isodynam-
ical equations for completeness, with the tacit understanding that, unless
otherwise specified, isotime will be assumed to be equal to the conven-
tional time.

As it will soon be evident, the Hamilton-Jacobi-Santilli isoequations
(65)-(67) are truly fundamental for the construction of operator isomechan-
ics, as well as for the proof of the EPR argument because said equations
have permitted:

1) The achievement from Eqs. (65) of a unique and unambiguous map
of classical into operator isomechanics;
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2) The achievement from Eqs. (66) of the first known operator form of
the isolinear isomomentum;

3) The achievement, from Eqs. (67) of an operator isomechanics whose
isowave Isofunctions solely depend on local isocoordinates ψ̂(r̂). This fea-
ture is necessary for a consistent isotopic “completion” of quantum me-
chanics since conventional wave functions ψ(t, r) do not depend on lin-
ear momenta p. Hence, any “completion” of quantum mechanics whose
wavefunctions also depend on linear momenta would not be an axiom-
preserving map.

It should be noted that, by comparison, the use of the Birkhoffian me-
chanics would imply broader Hamilton-Jacobi-Santilli isoequations (see
page 205 of Ref. [19]) with ’wave functions’ depending also on isomo-
menta, ψ̂(t̂, r̂, p̂), resulting in an operator mechanics beyond our current
knowledge for quantitative treatments.

4.6. Naive isoquantization.
As it is well known, the conventional “naive quantization” of Hamilto-
nian mechanics into quantum mechanics is based on the following map
generated by the conventional Hamilton-Jacobi equations

A =
∫

(pkdx
k −Hdt)→

→ −i~logψ(t, r),
(68)

that identifies Planck’s constant ~ = 1 as the fundamental unit of the the-
ory.

The isotopic lifting of the naive quantization, called naive isoquantiza-
tion (first identified by A. E. O. Animalu and R. M. Santilli in Ref. [121]),
characterizes the following map of (classical) iso-Hamiltonian mechanics
into (operator) isomechanics via Hamilton-Jacobi-Santilli isoequation (65)
(where the sum over the indices ak is omitted for simplicity)

Â =
∫̂

(p̂ ? d̂r̂ − Ĥ ? d̂t̂) →

→ −iÎLogψ̂,
(69)

with the following fundamental identification of the isolinear isomomentum
from Eq. (66)

p̂ ? ψ = −î ? ∂̂rψ̂, (70)

and the equally fundamental, independence of the isowavefunction from
the isolinear isomomentum from Eq. (67)

∂̂p̂ψ̂ = 0, (71)
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where we use the notion of isolog ˆlogψ̂ = Î logψ (see [55]).
The above naive isoquantization identifies the central assumption of

isomechanics, namely, the map of Planck’s constant ~ into an integro-differential
operator, the isounit Î ,

~→ Î(t, r, p, E, µ, τ, ψ, ∂ψ, ...) > 0. (72)

that, from Section 2.2.8, can be achieved via a non-unitary transform of
Plank’s constant selected in such a way to represent the desired systems,
e.g., as in model (16),

~ = 1 → ~̂ = U~U † = UU † = Î . (73)

The above transform is then restricted by the subsidiary condition that
isomechanics must recover quantum mechanics at mutual distances of
particles bigger than their size d

Limr>d/2Î = 1. (74)

Therefore, the studies herein reported assume that isomechanics is solely
valid within the volume occupied by hadrons, nuclei or stars, while quan-
tum mechanics is assumed to be exactly valid everywhere else (Figure 13).

Note that the structure of the isotopic element (16) permits a smooth
transition from isomechanics to quantum mechanics.

The above condition means that, for the case of the structure of a hadron,
isomechanics is solely valid within a sphere with diameter d ≈ 1fm =
10−15 cn. For the case of the structure of the deuteron, isomechanics is
solely valid within a volume with diameter d ≈ 2.50 fm; and the same
applies for nuclei, stars and black holes.

The main objective of the “completion” of Planck’s constant ~ into the
integro-differential isounit Î is to represent the expected, generalized, en-
ergy exchanges of particles in interior dynamical conditions (as expected
for an electron in the core of a star), which exchanges cannot be the same as
those occurring when particles moves in vacuum due to the surrounding
pressures and other factors (see paper II for details).

4.7. Iso-Hilbert isospaces.
Another basic notion of isomechanics is its formulation on the iso-Hilbert
isospaces Ĥ, also called the Hilbert-Myung-Santilli isospace (HMS isospace)
because first introduced by H.C. Myung and R.M. Santilli in Ref. [122] of
1982 over a conventional field of complex numbers C and then formulated
on an isocomplex isofield Ĉ in Ref. [115].
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Figure 13: An illustration of the central assumption according to which isomechanics
is solely valid within the volume occupied by hadrons, nuclei, stars or black holes, while
quantum mechanics is valid everywhere else thanks to the rapid convergence of isotopic
elements, such as Eq. (16), to the unit value 1.

HMS isospaces are characterized by (see Ref. [55] for details): isostates
ψ̂, with isonormalization

< ψ̂| ? |ψ̂ >= Î , (75)

isoexpectation isovalues of an iso-Hermitean operator Â ,

<̂Â>̂ =< ψ̂| ? Â ? |ψ̂ >, (76)

and basic isoidentity
<̂Î>̂ = Î , (77)

where the ”hat” denotes definition on isospace over isofields.
It should be recalled from Ref. [122] that the condition of iso-Hermiticity

coincides with that of Hermiticity. Therefore, all quantities that are observ-
able in quantum mechanics remain observable in isomechanics (see monograph
[56] for details).

4.8. Iso-Schrödinger isorepresentation.
Recall that the Schrödinger representation is crucially dependent on the
realization of the linear momentum in term of the differential calculus,

pψ(t, r) = −i~∂rψ(t, r). (78)

Consequently, the “completion” of quantum mechanics mandated the
search for the “completion” of the differential calculus [115] to achieve a
consistent formulation of the linear momentum such as that of Eq. (70),
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that we rewrite in the more detailed form on the Hilbert-Myung-Santilli
isospace Ĥ over the isofield of isocomplex isonumbers ı ˆcalC (with ~ = 1)

p̂k ? |ψ̂(t̂, r̂) >= −î ? ∂̂r̂k |ψ̂(t̂, r̂) >=

= −iÎ∂r̂k |ψ̂(t̂, r̂) >,

(79)

where: r̂ = rÎ are the isocoordinates on an iso-Euclidean isospace over
an isofield, from which one can derive the iso-Schrödinger isoequation, also
called Schrödinger-Santilli isoequation [17] [115]

î ? ∂̂t̂|ψ̂(t̂, r̂) >= Ĥ ? |ψ̂(t̂, r̂) >=

= Ĥ(r, p)T̂ (t, r, p, ψ, ∂ψ, ...)|ψ̂(t̂, r̂ >) =

= Ê ? |ψ̂(t̂, r̂) >= E|ψ̂(t̂, r̂) >,

(80)

where Ê = EÎ is an isoeigenvalue defined on the isoreal isofield R̂, and E
is an ordinary eigenvalue defined on the field of real numbers.

The iso-Schrödinger isorepresentation is completed by the isocanonical
isocommutation rules, solely definable thanks to the isodifferential realiza-
tion (79) of the isolinear isomomentum [115]

[r̂î,p̂j]|ψ̂ >= î ? δ̂i.j|ψ̂ >= iδi.j|ψ̂ >, [r̂î,r̂j]|ψ̂ >= [p̂î,p̂j]|ψ̂ >= 0. (81)

Note that the characterization of extended particles at short mutual
distances requires the knowledge of two isoobservables, the conventional
Hamiltonian H for the representation of SA interactions and the isotopic
element T̂ for the representation of dimension, shape, density and NSA
interactions.

On more technical grounds, Eqs. (80) are referred to as regular iso-
Schrödinger equations to emphasize, in the sense of Theorem 3.7.2, the fact
that they can be derived from the conventional Schrödinger equation via
non-unitary transformations. The broader irregular iso-Schrödinger equa-
tion which cannot be derived via non-unitary transformations due to the
addition of strong interactions, are studied in Paper II, Section 4.3., Eqs.
(89).

4.9. Iso-Heisenberg isorepresentation.
Non-relativistic isomechanics is additionally based on the iso-Heisenberg
isoequations, also called Heisenberg-Santilli isoequations (first formulated in
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Eq. (4.15.49), page 752 of the 1978 paper [17] over conventional fields and
formulated via the full use of isomathematics in the 1996 memoir [115]),
here written for the iso infinitesimal isotime evolution of an iso-Hermitean
operator Q̂

î ? d̂Q̂

d̂t̂
= [Q̂,̂Ĥ] = Q̂ ? Ĥ − Ĥ ? Q̂ =

= Q̂T̂ (ψ, ...)Ĥ(r, p)− Ĥ(r, p)T̂ (ψ, ...)Q̂,

(82)

and then in their isoexponentiated form

Q̂(t̂) = êĤ?t̂?̂i ? Q̂(0) ? ê−î?t̂?Ĥ =

= eĤT̂ tiQ(0)e−itT̂ Ĥ ,

(83)

where we have used isoexponentiation (22).
Note the characterization of isoinfinitesimal isoequations (82) via the

Lie-Santilli isoalgebras (Theorem 3.7.2.) and the characterization of their
finite form (83) via the Lie-Santilli isogroups (Theorem 3.7.3).

Note also that the Lie-isotopic equations (82) (83) are a particular case
of the broader Lie-admissible equations (11) (12), respectively.

4.10. Iso-Klein-Gordon isoequation.
The relativistic isoequations of hadronic mechanics are characterized by
the iso-Casimir isoinvariants of the basic symmetry of the iso-Minkowski
isospace-time, the Lorentz-Poincaré-Santilli isosymmetry studied in paper II.

At this stage of our analysis, we merely consider the following isotopic
“completion” of the second order invariant of the Lorentz-Poincaré symme-
try formulated on iso-Minkowskian isospace M̂(x̂, Ω̂, Î over the isoreals R̂
(Section 2.5)

p̂2̂ = p̂µ ? p̂
µ = (M̂ ? Ĉ)2̂ = (mC)2Î , (84)

where
M̂ = mÎ, (85)

is the isomass, and

Ĉ = CÎ =
c

n4

Î , (86)

is the light isospeed from isoinvariant (26).
By using the isolinear isomomentum (79) isoinvariant (84) character-

izes the second order isoequation of isomechanics known as iso-Klein-Gordon
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isoequation [123]

p̂µ ? p̂
µ|ψ̂(x̂) >= Ω̂µν ? p̂µ ? p̂ν |ψ̂(x̂) >=

= η̂µν(−iÎ∂µ)T̂ (−iÎ∂ν)|ψ̂(x̂) >=

= −Î η̂µν∂µ∂ν |ψ̂(x̂) >= Î(mC)2|ψ̂(x̂) >,

(87)

also called Klein-Gordon-Santilli isoequation, first introduced with the isod-
ifferential isocalculus in Chapter 9 of Refs. [56] and in papers [123] [124],
(see also review [25]).

4.11. Iso-Dirac isoequation.
The first-order relativistic isoequation of hadronic mechanics is given by
the isolinearization [124] of isoinvariant (84) and it is called the iso-Dirac
isoequation, or Dirac-Santilli isoequation (see Refs. [115] [56] [123] [124])

[Ω̂µν ? Γ̂µ ? ∂̂ν + M̂ ? Ĉ]|ψ̂(x̂) >=

= (−iÎ η̂µν γ̂µ∂ν +mC)|ψ̂(x̂) >= 0,

(88)

where the Dirac-Santilli isogamma isomatrices Γ̂ = γ̂Î are given by

γ̂k = 1
nk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
n4

(
I2×2 0

0 −I2×2

)
,

(89)

where σ̂k are the regular iso-Pauli isomatrices studied in Section 3.3 of paper
II, with anti-isocommutation rules

{γ̂µ̂,γ̂ν} = γ̂µT̂ γ̂ν + γ̂νT̂ γ̂µ =
= 2η̂µν .

(90)

One should note that the anti isoanticommutators of the Dirac-Santilli
isogamma isomatrices yield the isometric η̂µν of the iso-Minkowski isospace-
time (Section 2.5).

Recall that the iso-Minkowski isospace-time includes as particular cases
all possible, non-singular, symmetric space-times, thus including the Rie-
mannian space-time reformulated with isomathematics. In fact, the iso-
Minkowskian isometric ηµν admits as a particular case the Schwartzchild
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metric via the following simple realization of the isotopic element

T̂kk = 1/(1− 2M/r),

T̂44 = 1− 2M/r.

(91)

Additionally, the iso-Minkowskian isometric admits the following com-
bination of the Schwartzchild metric for exterior gravitational problems
and that for interior problems (see, Eqs. (9.5.18) page 448, Ref. [56]

T̂kk = 1/(1− 2M/r)n2
k,

T̂44 = (1− 2M/r)/n2
4.

(92)

Consequently, the Dirac-Santilli isoequation with realization (91) of the
isotopic element permits the study of an electron in an exterior gravitational
field, while realization (92) permits the study of electrons in interior gravita-
tional fields.

Relativistic isoequations are far from being mere academic curiosities
because, as we shall see in paper II, they have provided the first and only
known relativistic representation of all characteristics of the neutron in its
synthesis from a proton and an electron [124], none of which characteristics
are representable via quantum mechanics. Additional advances permitted
by relativistic isomechanics will be indicated in paper II.

More technically, Eq. (88) is referred to as regular iso-Dirac equations
to emphasize, in the sense of Theorem 3.7.2, the fact that they can be de-
rived from the conventional Dirac equation via non-unitary transforma-
tions. The broader irregular iso-Dirac equation which cannot be derived via
non-unitary transformations due to the addition of strong interactions, are
studied in Paper II, Section 4.4., Eqs. (97).

4.12. Representation of non-linear interactions.
An important insufficiency of quantum mechanics is the inability to char-
acterize individual constituents under non-linear internal forces in view
of the inapplicability of the superposition principle.

In fact, the sole possible, quantum mechanical representation of non-
linear interactions is that via the Hamiltonian

H(r, p, ψ, ...)|ψ(t, r) >= E|ψ(t, r) >, (93)

under which the total state |ψ(t, r) > does not admit a consistent decom-
position into the individual states.
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Figure 14: An illustration on the left of the divergence of the Dirac delta distribution at
its origin caused by the point-like approximation of particles, with ensuing divergencies
in quantum mechanics. An illustration on the right of the removal of said divergencies by
the Dirac-Myung-Santilli isodelta isofunction thanks to the representation of particles as
extended, with ensuing lack of divergencies in isomechanics.

It is easy to see that this insufficiency is resolved by isomechanics thanks
to the embedding of all non-linear forces in the basic invariant of the the-
ory, the isounit (or isotopic element).

In fact, the Schrödinger-Santilli isoequation (80) can be explicitly writ-
ten

Ĥ ? |ψ̂ >= Ĥ(r̂, p̂)T̂ (ψ̂, ...)|ψ̂ >= E|ψ̂ >, (94)

and its total isostate verifies the factorization

ψ̂ = Πkψ̂k, k = 1, 2, ..., N, (95)

called isosuperposition isoprinciple [56].
It is evident that factorization (94) allows the characterization of indi-

vidual constituents under non-linear internal interactions, thus permitting
new structural models of hadrons, nuclei, stars and black holes.

4.13. Isostrong isoconvergence.
In all applications to date, the basic isotopic element (16) resulted to have
a numeric value smaller than one

||T̂ || � 1. (96)

This feature has the important consequence that perturbative and other
series that are slowly convergent or divergent in quantum mechanics become
strongly convergent under their isotopic “completion” [56].

To illustrate this important feature, consider a divergent quantum me-
chanical series, such as the canonical series

A(w) = A(0) + (AH −HA)/1! + .... =→

→∞, w > 1.
(97)
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But the value of the isotopic element is much smaller than the parameter
w. Therefore, the isotopic ”completion” of the above series

A(w) = A(0) + (AT̂H −HT̂A)/1! + ....→

→ N <∞,
(98)

is strongly convergent.
Specific examples of convergence of isoperturbative isoseries much more

rapid than corresponding quantum mechanical series have been provided
in Refs. [103] [104] (see Section 1.6 for additional comments).

4.14. Removal of quantum divergencies.
As it is well known, the divergencies of quantum mechanics originate
from the singularity existing at the origin of the Dirac delta distribution (Fig-
ure 14) which divergence originates from the point-like approximation of
particles.

Another important feature of isomechanics is that of avoiding these
singularities as illustrated by the isotopic image of Dirac’s delta ”distribu-
tion”, known as Dirac-Myung-Santilli isodelta isofunction first introduced in
Ref. [122] (see also Nishioka’s studies [125] to [128])

δ̂(r̂) =

∫̂
êk̂?r̂ ? d̂k̂ =

∫
ek̂T̂ r̂dk̂, (99)

where we have used isoexponentials and isointegrals [56].
As illustrated in Figure 14, the appearance of the isotopic element in

the exponent of the integrant changes a sharp singularity at the origin r = 0
into a bell-shaped function.

In summary, the singularities of quantum mechanics are ultimately due to
the point-like abstraction of particles or equivalently, to the formulation of the
differential calculus at isolated points. Whenever particles are represented with
their actual extended size, and the differential calculus is extended to formulations
over volumes, quantum singularities no longer hold.

4.15. Isoscattering isotheory.
Another important application of isomechanics is the isotopic “comple-
tion” of the conventional, potential, scattering theory into the covering
isoscattering isotheory studied by R. Mignani [129] to [131], A. K. Aringazin
and D. A. Kirukhin [132], A. O. E. Animalu and R. M. Santilli [133] and
others (see Chapter 12 of Ref. [56]).
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Figure 15: The left view illustrates the scattering of point-particles, with ensuing re-
alization of interactions via point-particle exchanges, that have been experimentally es-
tablished for electromagnetic interactions. The right view illustrates the scattering of
extended hadrons at high energy implying the presence of contact, non-linear, non-local
and non-potential interactions in the scattering region. These conditions imply the impos-
sibility of conventional particle exchanges evidently because of the extremely big density
of the scattering regions that may approach the density of black holes, thus requiring
broader scattering theories.

Regrettably, we cannot review these studies to avoid a prohibitive leng-
th. We limit ourselves to recall that the potential scattering theory was
originally conceived by Feynman and others for the electromagnetic inter-
actions of point-like particles in vacuum.

Its dominant notion is the characterization of interactions via the ex-
change of point-like particles.

The historical experimental verifications of the potential scattering the-
ory under the indicated conditions triggered its use for the scattering of
extended hadrons all the way to their recent very high energies.

The studies herein reported on the covering isoscattering isotheory
have indicated that the consistent representation of hadrons as extended,
therefore deformable and hyperdense, implies necessary revisions of hadron
physics beginning with a “completion” of its mathematical foundations,
then passing to the “completion” of quantum laws. These advances then
require, for consistency, the “completion” of the potential scattering theory
into a covering theory in which the hyperdense character of the scattering
region implies the presence of non-linear, non-local and non-potential ef-
fects preventing any consistent representation of interactions via the sole
exchanges of extended hadrons in favor of covering vistas (Figure 15).

It should be stressed that the isoscattering isotheory has a Lie-Santilli
algebraic structure, thus being solely applicable to time reversal invariant
collisions generally given by elastic scattering. The study of inelastic scat-
tering of extended hadrons at high energy requires the broader genoscatter-
ing genotheory with the covering Lie-admissible algebraic structure, which
broader theory cannot be considered here for brevity (see Refs. [56] [133]).
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To avoid major misconceptions, it should be indicated that the isoscat-
tering isotheory cannot change the numeric values of scattering angles, cross sec-
tions and other experimentally measured quantities. However, the isoscatter-
ing isotheory does require serious revisions of the theoretical interpretation
of measured quantities.

In closing, we should recall that rather vast studies have been con-
ducted on non-unitary scattering theories (see, e.g., Ref. [134] and papers
quoted therein).

As it is well known, these studies had to be abandoned because non-
unitary theories violate causality laws. By contrast, the isoscattering isothe-
ory is isounitary on the iso-Hilbert isospace over an isofield, thus restoring
causality (Section 2.9).

This occurrence illustrates again the importance of isomathematics for
the verification of the EPR argument and related applications.

4.16. Geno- and Iso-chemistry.
The Lie-admissible mathematical and physical methods of Section 2 have
allowed the “completion” of quantum chemistry into Lie-admissible hadronic
chemistry, also known as genochemistry [60], which is the first known chem-
ical formulation specifically built for the consistent treatment of chemical
reactions at large and energy releasing chemical processes in particular.

As it is well known but generally ignored, chemical reactions are gen-
erally irreversible over time, while quantum chemistry is strictly reversible.
Hence, the EPR argument on the “lack of completion of quantum mechan-
ics” does indeed apply to quantum chemistry.

In addition to a “completion” for chemical reactions, quantum chem-
istry needs an additional “completion,” this time, for the achievement of
an attractive force between the identical electrons of valence couplings in
molecular structures (Section 1.6).

Since isolated molecules existing in nature are stable, thus being re-
versible— over time, and so are their valence electron bonds, there was
the need of building the Lie-isotopic particularization of the Lie-admissible
hadronic chemistry which became known as isochemistry because based on
the isomathematics of Section 3.

Isochemistry did indeed achieve the first known attractive force be-
tween identical electrons in valence couplings [60] in a form permitting
the exact representation of experimental data on the hydrogen [103] and
the water [104] molecules.

As reviewed in details in Paper II, these studies essentially established
that the contact, non-potential interactions occurring in deep mutual penetra-
tion/entanglement of the wavepackets of particles (Figure 2) are strongly attrac-
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tive, thus being responsible for the neutron and other hadron syntheses (Section
1.4), as well as for the attractive force between identical electrons in valence pairs
(Section 1.6), thus illustrating the truly fundamental character of short range, con-
tact, non-potential interactions in the ultimate structure of nature.

5. CONCLUDING REMARKS.
In 1935, A. Einstein, B. Podolsky and N. Rosen presented the view that
quantum mechanics is not a complete theory [1].

Following decades of preparatory works, R. M. Santilli published in
1998 paper [7] that:

1) Confirmed the validity of the objections against the EPR argument
by Bohr [2], Bell [3], von Neumann [4] and others for point-particles in
vacuum under linear, local and potential/Hamiltoian interactions exterior
dynamical problems;

2) Proved the inapplicability (rather than the violation) of said objec-
tions for extended, thus deformable particles within hyperdense physical
media with ensuing linear and non-linear, local and non-local and poten-
tial as well as non-potential/non-Hamiltonian interactions expected in the
structure of hadrons, nuclei, stars and black holes (interior dynamical sys-
tems);

3) Proved the existence of hidden variables [5] for interior dynamical
systems when represented via the isotopic branch of hadronic mathemat-
ics and mechanics;

4) Achieved a consequential exact representation of nuclear magnetic
moments; and

5) Showed the apparent existence of identical classical counterparts for
extended particles in interior dynamical conditions.

More recently, Santilli completed the above proof in paper [8] by show-
ing that the standard deviations for coordinates ∆r and momenta ∆p ap-
pear to progressively tend to zero for extended particles within hadrons,
nuclei and stars, and appear to be identically null for extended particles
at the limit conditions in the interior of gravitational collapse, essentially
along Einstein’s vision.

In this paper, we have reviewed and upgraded the mathematical, phys-
ical and chemical methods used for proofs [7] [8], with particular reference
to the following aspects:

1) Review and upgrade the Lie-admissible and Lie-isotopic “comple-
tions” of 20th century applied mathematics for the representation of time
irreversible and reversible interior systems, respectively,, which “comple-
tions” were initiated by Santilli in 1978 [16] when at Harvard University
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with DOE support under the names of geno- and iso-mathematics, respec-
tively, and waere subsequently studied by various authors [55];

2) Review and upgrade the “completions” of quantum mechanics and
chemistry into the Lie-admissible and Lie-isotopic branches of hadronic
mechanics and chemistry that were also initiated by Santilli in 1978 [17]
under the names of genotopic and isotopic branches of hadronic mechanics
and chemistry, which “completions” were then studied by various authors
[56];

3) Review and upgrade the main aspect of the studies herein consid-
ered, namely, the “completions” of the Newton-Leibnitz differential cal-
culus into forms applicable to irreversible and reversible interior systems
of extended particles, which “completions” were initiated by Santilli in the
1996 paper [115] under the name of geno- and iso-differential isocalculus and
studied in details by S. Georgiev [83] and other mathematicians [55].

In a second paper of this series, we review and upgrade geno- and iso-
symmetries for interior systems and then review the apparent proofs [7] [8]
of the EPR argument.

In the third paper of this series, we study specific cases of interior dy-
namical systems in particle physics, nuclear physics and chemistry that
progressively approach classical determinism, and present applications to
new clean energies that are prohibited by quantum mechanics, yet fully
admitted by its “completion.”

Acknowledgments. The writing of these papers has been pos-
sible thanks to pioneering contributions by numerous scientists we regret
not having been able to quote in this paper (see Vol. I, Refs. [61] for com-
prehensive literature), including:
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spaces; S. Okubo, for pioneering work in non-associative algebras; N.
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liography on non-associative algebras; R. Ohemke, for advances in Lie-
admissible algebtas; J. V. Kadeisvili, for the initiation of isofunctional iso-
analysis; Chun-Xuan Jiang, for advances in isofield theory; Gr. Tsagas,
for advances in the Lie-Santilli theory; A. U. Klimyk, for the initiation of
Lie-admissible deformations; Raul M. Falcon Ganfornina and Juan Nunez
Valdes, for advances in isomanifolds and isotopology; Svetlin Georgiev,
for advances in the isodifferential isocalculus; A. S. Muktibodh, for ad-
vances in the isorepresentations of Lie-Santilli isoalgebras; Thomas Vou-
giouklis, for advances on Lie-admissible hypermathematics; and numer-
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ous other mathematicians.
The physicists and chemist: A. Jannussis, for the initiation of isocre-

ation and isoannihilation operators; A. O. E. Animalu, for advances in
the Lie-admissible formulation of hadronic mechanics; J. Fronteau, for ad-
vances in the connection between Lie-admissible mechanics and statisti-
cal mechanics; A. K. Aringazin for basic physical and chemical advances;
R. Mignani for the initiation of the isoscattering theory; P. Caldirola, for
advances in isotime; T. Gill, for advances in the isorelativity; J. Dunning
Davies, for the initiation of the connection between irreversible Lie-admissi-
ble mechanics and thermodynamics; A. Kalnay, for the connection be-
tween Lie-admissible mechanics and Nambu mechanics; Yu. Arestov, for
the experimental verification of the iso-Minkowskian structure of hadrons;
A. Ahmar, for experimental verification of the iso-Minkowskian charac-
ter of Earth’s atmosphere; L. Ying, for the experimental verification of
nuclear fusions of light elements without harmful radiation or waste; Y.
Yang, for the experimental confirmation of magnecules; D. D. Shillady, for
the isorepresentation of molecular binding energies; R. L. Norman, for ad-
vances in the laboratory synthesis of the neutron from the hydrogen; I.
Gandzha for important advances on isorelativities; A. A. Bhalekar, for the
exact representation of nuclear spins; Simone Beghella Bartoli important
contributions in experimental verifications of hadronic mechanics; and nu-
merous other physicists.
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Abstract

In 1935, A. Einstein expressed his historical view, jointly with B. Podol-
sky and N. Rosen, that quantum mechanics could be “completed”
into a form recovering classical determinism at least under limit con-
ditions (EPR argument). In the preceding Paper I, we have outlined
the novel methods underlying the “completion” of quantum mechan-
ics into hadronic mechanics for the representation of extended, thus
deformable particles within physical media. In this Paper II, we study
the isosymmetries for interior dynamical systems; we confirm the 1998
apparent proof that interior dynamical systems admit a classical coun-
terpart; we confirm the 2019 apparent proof that Einstein’s determin-
ism is progressively approached for extended particles in the interior
of hadrons, nuclei and stars, while being fully verified in the inte-
rior of gravitational collapse; and we show for the first time that the
recovering of Einstein’s determinism in interior systems implies the
apparent removal of quantum mechanical divergencies. In the sub-
sequent Paper III, we present a number of illustrative examples and
novel applications in mathematics, physics and chemistry.
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1. INTRODUCTION
1.1. The EPR argument.
As it is well known, Albert Einstein did not accept quantum mechanical
uncertainties as being final, for which reason he made his famous quote
“God does not play dice with the universe.”

More particularly, Einstein believed that “quantum mechanics is not a
complete theory,” in the sense that it could be broadened into such a form
to recover classical determinism at least under limit conditions.

Einstein communicated his views to B. Podolsky and N. Rosen and
they jointly published in 1935 the historical paper [1] that became known
as the EPR argument.

In view of the rather widespread belief that quantum mechanics is a fi-
nal theory valid for all conceivable conditions existing in the universe, ob-
jections against the EPR argument have been voiced by numerous schol-
ars, including by N. Bohr [2], J. S. Bell [3] [4], J. von Neumann [5] and
others (see Ref. [6] for a review and comprehensive literature). The field
became known as local realism and included the dismissal of the EPR argu-
ment based on claims that quantum axioms do not admit hidden variables
λ [7] [8].

1.2. Outline of Paper I.
This paper, and the preceding Ref. [9] (hereinafter referred to as Paper I),
are dedicated to the review and upgrade of decades of studies by math-
ematicians, physicists, and chemists (see Refs. [10] to [71] and papers
quoted therein) on the apparent proof of the EPR argument via the “com-
pletion,” also called isotopic lifting, of quantum mechanics into the axiom-
preserving hadronic mechanics (see the 1995 monographs [29] [30] [31] and
literature quoted therein).

More specifically, in Section I-1.1, we have outlined the EPR argument
[1] jointly with representative objections [2] to [6].

In Section I-1.2, we have outlined the apparent proof by R. M. Santilli
[10] (See also the detailed study in monograph [30], particularly Chapter 4
and Appendix 4C, page 166) that interior dynamical systems represented
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Figure 1: In this figure, we present a conceptual rendering of the tacit assumption un-
derlying the objections against the EPR argument [2] - [6], namely, the representation
of particles as being point-like because mandated by the Newton-Leibnitz differential cal-
culus underlying quantum mechanics, namely, the representation of particles as isolated
points in empty space. A first consequence is that, being dimensionless, particles can only
be at a distance, with ensuing Einstein’s argument on the need for superluminal inter-
actions to explain quantum entanglement [1]. A second consequence is that, being at a
distance, the sole possible interactions are of linear, local and potential type, under which
assumptions the objections against the EPR argument are indeed valid.

with hadronic mathematics and mechanics admit classical counterparts.
In the same Section I-1.2, we have outlined the apparent second proof

by Santilli [11] that classical determinism is progressively approached in
the interior of hadrons, nuclei, stars and gravitational collapse as predicted
by Einstein.

In support of the plausibility of the EPR argument, in the subsequent
Sections I-1.3 to I-1.7, we have outlined insufficiencies of quantum me-
chanics for time-irreversible processes, particle physics, nuclear physics,
chemistry, and other fields. We have also provided various references in-
dicating the apparent resolution of said insufficiencies by hadronic me-
chanics.

In Section I-2, we have outlined the Lie-admissible covering of Lie’s the-
ory [12] [13], with ensuing time-irreversible Lie-admissible brach of hadronic
mechanics, also known as genomechanics, [12] [14] allowing studies on the
compatibility of mechanics with thermodynamics, said compatibility be-
ing notoriously impossible for quantum mechanics.

Quantum mechanics and the objections against the EPR argument are
formulated for time-reversal invariant systems of exterior dynamical sys-
tems. Therefore, in preparation for the proof of the EPR argument stud-
ied in Section 3, we have outlined and upgraded in Section I-3 the time-
reversal invariant Lie-isotopic subclass of Lie-admissible mathematics, also
known as isomathematics, [15] [18] which is used for the representation of
time-reversible invariant interior dynamical systems.
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Figure 2: A conceptual rendering of the main assumption of the apparent proofs [10]
[11] of the EPR argument [1], is the representation of particles as extended, deformable
and hyperdense in conditions of mutual overlapping/entanglement with ensuing contin-
uous contact at a distance which eliminates the need for superluminal interactions to
explain quantum entanglement. A first implication is the need, for consistency, of gen-
eralizing Newton-Leibnitz differential calculus from its historical form solely definable
at isolated points, to a covering form definable in volumes [21]. Another implication is
the emergence of contact, non-linear, non-local and non-potential interactions that, being
not representable by Hamiltonians are Lagrangians, require a structural lifting of the Lie
algebra of quantum mechanics under which the objections against the EPR argument are
inapplicable (Section 3). Intriguingly, the “completions” here considered turned out to
be of isotopic/axiom-preserving type, thus being fully admitted by quantum mechanical
axioms, merely subjected to a realization broader than that of the Copenhagen school.
The apparent proofs of the EPR argument [10] [11] become an unavoidable consequence
of the indicated “completions” (Section 3).

In the same Section I-3, we have devoted particular attention to the
“completion” of conventional Hilbert spaces [19], numeric fields [20] and
Newton-Leibnitz differential calculus [21] into forms defined on volumes,
rather than points.

In the same Section I-1.3, we have provided particular attention to the
main methods for the proofs of the EPR argument, namely, the axiom-
preserving, isotopic lifting of Lie’s theory [26], today known as the Lie-Santilli
isotheory [38].

Finally, in Section I-4, we have outlined and upgraded the time-reversal
invariant isotopic branch of hadronic mechanics, also known as isomechanics
[30] which provides the dynamical foundations of the proofs of the EPR
argument [10] [11].

1.3. Basic assumptions.
The most dominant aspects underlying the studies here considered are:
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1) The validity of quantum mechanics for point-like particles in vac-
uum with ensuing linear, local and action-at-a-distance/potential interac-
tions (exterior dynamical problems) occurring in atomic structures, particles
in accelerators, crystals and numerous other systems in nature (Figure 1);

2) The “completion” of quantum mechanics into hadronic mechanics
for the representation of extended, therefore deformable and hyperdense
particles within physical media with ensuing, additional, non-linear, non-
local and contact/non-potential interactions (interior dynamical problems),
occurring in the structure of hadrons, nuclei and stars, with limit condi-
tions occurring in the interior of gravitational collapse where the inappli-
cability (rather than the violation) of quantum mechanics is already ac-
cepted by the majority of serious scholars (Figure 2, 3).

The central assumption of these studies is the axiom-preserving lifting
of the conventional associative product ab = a × b between all possible
quantum mechanical quantities (numbers, functions, matrices, etc.) into
the isoproduct [14] [26] (Section 3)

a ? b = a T̂ b, (1)

where T̂ , called the isotopic element, is restricted to be positive-definite,
T̂ > 0, but possesses otherwise an unrestricted functional dependence on
all needed local variables.

Refs. [14] [26] constructed an axiom-preserving isotopy of the various
branches of Lie’s theory, resulting in a theory today known as the Lie-
Santilli isotheory [38] (Section I-3.7) with isotopic lifting of lie algebras of
the type [10]

[Xî,Xj] = Xi ? Xj −Xj ? Xi = Ck
ijXk. i, j = 1, 2, ..., N. (2)

Following laborious efforts for the achievement of mathematical matu-
rity, Ref. [10] applied the Lie-Santilli isotheory to the isotopy ŜU(2) of the
SU(2) spin with three-dimensional isoalgebras of type (2) and introduced
the realization of hidden variables [7] [8] of the type

T̂ = Diag.(1/λ, λ), DetT̂ = 1. (3)

Ref. [10], therefore establishing that, contrary to objections [2] to [6],
the abstract axioms of quantum mechanics do indeed admit explicit and concrete
realizations of hidden variables.

The proof in Ref. [10] that interior systems admit identical classical
counterparts was consequential (Section 3).
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Figure 3: A conceptual rendering of the central notion used for the study of the EPR
argument, namely, a mathematically consistent representation invariant over time of ex-
tended, deformable and hyperdense particles in interior conditions, such as protons in
the interior of a star, thus being under the most general known (non-singular) non-linear,
non- local and non-potential interactions fully representable via the isotopic element of
isoproduct (1).

Isoproduct (1) also allows a direct and immediate representation of ex-
tended particles in conditions of mutual penetration with realizations of
the type (Figure 3) [33]

T̂ = Πk=1,...,NDiag.(
1
n2
1k
, 1
n2
2k
, 1
n2
3k
, 1
n2
4k

)e−Γ,

k = 1, 2, ..., N, µ = 1, 2, 3, 4,

(4)

where n2
1, n

2
2, n

2
3, (called characteristic quantities) represent the deformable

semi-axes of the particle normalized to the values n2
k = 1, ‘k = 1, 2, 3 for

the sphere; n2
4 represents the density of the particle considered normal-

ized to the value n4 = 1 for the vacuum; and Γ represents non-linear,
non-local and non-Hamiltonian interactions caused by mutual penetra-
tions/entanglement of particles.

The smaller than 1 absolute value of the isotopic element T̂ occurring
in all known applications [26]-[36]

| T̂ | ≤ 1, (5)

permitted Ref. [? ] to show that the standard deviations ∆r and ∆p appear to
progressively tend to zero with the increase of the density of the medium, and ap-
pear to achieve full classical determinism in the interior of gravitational collapse,
as originally conceived by Einstein.
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The initial construction of the isotopies of 20th century applied mathe-
matics with isoproduct (1) defined over conventional numeric fieldsF (n,×,-
1) [26] turned out to be inconsistent because the underlying time evolution
is non-unitary, thus causing the lack of invariance over time of the tradi-
tional basic unit 1, with ensuing inapplicability over time of the entire field
F (n,×, 1).

The above occurrence mandated the construction of isofields F̂ (n̂, ?, Î)
[20] [41](Section I-3.3) with basic isounit

Î = 1/T̂ > 0, (6)

and isonumbers n̂ = nÎ equipped with isoproduct (1).
Ref. [20] essentially established that the abstract axioms of a numeric field

do not require that the multiplicative unit of the field be the trivial number 1, since
said unit can be an arbitrary quantity with an unrestricted functional dependence
on local variables, provided that said multiplicative unit is positive definite and
the field is lifted into a compatible form.

Despite all the above efforts, the ensuing isomathematics was still in-
applicable to the proof of the EPR argument because it lacked the crucial
invariance over time, namely, the prediction of the same interior dynamical
systems under the same conditions but at different times.

The above occurrence forced the construction of the covering of the
Newton-Leibnitz differential calculus into the covering isodifferential iso-
calculus [21] [44] (Section I-3.6) with basic isodifferential (Figure 2) [? ]

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...), (7)

and corresponding isoderivative

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (8)

In essence, Ref. [21] established the inapplicability of the conventional
differential calculus whenever the axioms of numeric fields admit mul-
tiplicative units with a dependence on the differentiation variable, with
ensuing inapplicability of quantum mechanics, as well as of the objections
against the EPR argument, for interior dynamical systems.

The “completion” of the differential calculus into an isotopic form com-
patible with basic isoproduct (1) finally allowed the achievement of invari-
ance over time (Section I-3.9), thus signaling the achievement of maturity
for the apparent proof of the EPR argument reviewed.
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Figure 4: In the l.h.s. of this picture, we present a conceptual rendering of the structure
of nuclei as ideal spheres with isolated point-like particles in their interior. This view is
an inevitable consequence of the elaboration of quantum mechanics via the conventional
differential calculus, resulting in rather serious insufficiencies in nuclear physics outlined
in Section I-1.5. In the r.h.s. of this picture, we present a conceptual rendering of the
representation of nuclei as occurring in the physical reality, namely, as a collection of
extended, therefore deformable charge distributions in condition of partial mutual pene-
tration according to Eq. (4) of isomathematics and related isomechanics, thus permitting
the resolution of at least some of the insufficiencies of quantum mechanics in nuclear
physics reviewed in Section I-1.5.

In Section 2 of this paper, we complete the methodological needs by
outlining and upgrading the time-reversal invariant coverings of conven-
tional spacetime symmetries, known as isosymmetries, for systems of ex-
tended particles in interior conditions; in Section 3, we review and up-
grade the Lie-isotopic SU(2)-spin symmetry and related proofs [10] [11]
of the EPR argument.

A few comments on terminologies appear to be recommendable.
The word “completion” is used in these studies to honor the memory of

Albert Einstein and should not be intended to indicate “final” theories. In
fact, isomathematics and isomechanics admit coverings of Lie-admissible
character [12] (Section I-2) that, in turn, admits coverings of hyperstruc-
tural character [43], with additional coverings remaining possible in due
time.

The terms “non-Hamiltonian interactions” are intended to indicate in-
teractions that are not representable with a Hamiltonian, and are techni-
cally identified as interactions violating the integrability conditions for
the existence of a Hamiltonian, namely, the conditions of variational self-
adjointness [25].

When dealing with stable and isolated interior dynamical systems, the
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terms “non-conservative forces” are strictly referred to internal non-Hamil-
tonian exchanges verifying conditions (1-55) for the verification of the ten
conventional total conservation laws for the total energy, momentum, an-
gular momentum and the uniform motion of the center of mass.

The terms “physical media” refer to media composed by matter in its
various states, and are often referred to as hadronic media, in the sense that
the media are not composed by empty space, thus requiring the use of
hadronic mathematics and mechanics for their quantitative treatment.

The terms “extended particles” refer to: the wavepacket of elementary
particles such as the electron assumed to be of about 1 fm = 10−15 cm;
extended charge distributions for protons and neutrons when members of
a nuclear structure, also assumed to have a diameter of about 1 fm; and
stable nuclei when considering the structure of stars. Due to its crucial
significance for the structure of interior systems, a technical definition of
the notion of ”extended particles” will be given in Section 3 via the notion
of isoparticle as isorepresentations of space-time isosymmetries.

2. ISOSYMMETRIES
2.1. Foreword.
In this section, we study the axiom-preserving “completion” (or isotopic
lifting) of conventional space-time symmetries, known as Lie-isotopic sym-
metries, or isosymmetries for short, which provide the invariance of stable
and isolated (thus time reversible) interior dynamical systems of extended
particles at mutual distances smaller than their size as occurring, e.g., in
nuclear structures (Figure 3).

Lie-isotopic symmetries were first introduced by Santilli in the 1978
Harvard University paper [13] as a particular case of the broader Lie-admi-
sible symmetries for irreversible, non-conservative systems [14]. Isosymme-
tries were then studied in various subsequent works quoted in this section.

The understanding of this section requires a knowledge of the Lie-
Santilli isotheory (Section I-3.7), which was first formulated in monographs
[25] [26] over the field of real numbers. Isosymmetries were then formu-
lated in monographs [29] [30] with the full use of isomathematics, includ-
ing the use isofields [20] [41] and the isodifferential calculus [21] [44] (see
Refs. [38] [46] [47] [48] for works on the Lie-Santilli isotheory, and Ref. [45]
for a general review with applications and experimental verifications).

The assumption at the foundation of isosymmetries is the preservation
of the abstract axioms of 20th century space-time symmetries, and the mere con-
struction of their broadest possible realization permitted by isomathematics.

Consequently, criticisms of isosymmetries and their novel implications
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Figure 5: The l.h.s. of this figure illustrates Keplerian systems for which space-time sym-
metries have been constructed, namely, exterior dynamical systems of point-like masses
orbiting in vacuum around a heavier point-like mass known as the Keplerian center. The
r.h.s. of this figure illustrates interior systems for which isosymmetries have been built,
namely, systems of extended particles in conditions of mutual penetration without any
Keplerian center.

are de facto criticisms on 20th century space-time symmetries and their
implications

2.2. Inapplicability of Lie symmetries for interior systems.
A rather widespread view of 20th century physics is the lack of any differ-
ence between exterior and interior dynamical systems on grounds that the
latter can be reduced to their elementary constituents, by therefore recov-
ering exterior conditions.

The above view was disproved by R. M. Santilli in his Ph. D. thesis (see
the review in Ref. [30]) on numerous grounds, the first being the notori-
ous incompatibility of quantum mechanics with thermodynamics whose
resolution motivated the Lie-admissible generalization of Lie algebras and
related physical theories [29] [30].

The absence of structural differences between exterior and interior sys-
tems was dismissed more directly with the following [26] [28]:

NO REDUCTION THEOREM 2.2.1: A classical dynamical system with non-
conservative interior forces cannot be consistently reduced to a finite number of
isolated particles all in conservative conditions and, vice- versa, the latter system
cannot reproduce the former under the correspondence or other principles.

The first direct consequence of the above No Reduction Theorem is
the “inapplicability” (rather than the “violation”) for interior dynamical
systems of conventional space-time symmetries that have been proved to
be so effective for exterior dynamical systems.

Said inapplicability was also proved [loc. cit.] from the fact that the

81

281

 Reprinted by permission from Ratio Mathematica, “Studies on A. Einstein, B. Podolsky, and N. Rosen
Prediction that Quantum Mechanics is Not a Complete Theory II: Apparent Proof of the EPR Argument”,

R. M. Santilli, Ratio Mathematica (Vol.  38), 71-138, 2020. 



Ruggero Maria Santilli

Galileo and the Lorentz-Poincaré symmetries can only provide a non-relativ-
istic and relativistic characterization, respectively, of Keplerian systems, name-
ly, systems of point-like masses orbiting in vacuum around a heavier mass
called the Keplerian nucleus [26].

However, interior dynamical systems do not admit a Keplerian struc-
ture because nuclei have no nuclei [33] and the same happens for hadrons,
stars and gravitational collapse (Figure 5).

It is then possible to prove, e.g., via the imprimitivity theorem, that the
lack of existence of a Keplerian structure implies the lack of exact validity
of conventional space-time symmetries [26] [30].

On more technical grounds, Lie’s theory is known to be solely applica-
ble to exterior systems of point-like particles in vacuum with ensuing sole
possible, linear, local and Hamiltonian interactions.

Experimental evidence on interior dynamical systems, e.g., on nuclear
volumes compared to the volumes of individual nucleons, establishes that
nuclei are composed of extended charge distributions in conditions of par-
tial mutual penetration/entanglement with the ensuing existence of ad-
ditional, non-linear, non-local and non-Hamiltonian interactions under
which Lie’s theory is inapplicable.

Hence, the transition of particles from exterior to interior conditions
implies the inapplicability of the SU(2)-spin symmetry with consequential
inapplicability of Bell’s inequality [3] and other objections against the EPR
argument [6] in favor of suitable covering vistas [10] [11].

In any case, the SU(2) symmetry, while unquestionable effective for
exterior dynamical systems, has been unable to provide a consistent rep-
resentation of the spin of particles and nuclei, thus warranting the search
for a suitable “completion.”

2.3. The fundamental theorem on isosymmetries.
The construction of isosymmetries requires the full use of isomathemat-
ics with particular reference to the Lie-Santilli isotheory formulated on
isospaces over isofield and elaborated via the isodifferential calculus (Sec-
tion I-2.7).

Said construction can be done with the following theorem (for brevity,
see the proof in Section 1.2 , Vol. I of Refs. [36]):

THEOREM 2.3.1: Let G be an N-dimensional Lie symmetry of the line element of
a k-dimensional metric or pseudo-metric space S(x,m, I) over a numeric field F
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with coordinates x, metric m over a numeric field F with conventional unit I ,

G : x′ = Λ(w)x, y′ = Λ(w)y, x, y ∈ S,

(x′ − y′)†Λ†mΛ(x′ − y′) ≡ (x− y)†m(x− y),

Λ†(w)mΛ(w) ≡ m. w ∈ F.

(9)

Then, all infinitely possible (non-singular) Lie-Santilli isotopies Ĝ of G on
isospace Ŝ(x̂, M̂ , Î) with isocoordinates

x̂ = xI, (10)

isometric
M̂ = m̂Î = (T̂ ki mkj)Î , (11)

and isounit
Î = 1/T̂ > 0, (12)

over an isofield F̂ with isounit vÎ leave invariant the isoline element of the isospace
Ŝ(x̂, M̂ , Î):

Ĝ : x̂′ = Λ̂(ŵ) ? x̂, ŷ′ = Λ̂(ŵ) ? ŷ, x̂, ŷ ∈ Ŝ,

(x̂′ − ŷ′)† ? Λ̂† ? M̂ ? Λ̂ ? (x̂′ − ŷ′) ≡ (x− y)†m̂(x− y),

Λ̂†(ŵ) ? M̂ ? Λ̂(ŵ) ≡ M̂.

(13)

All infinitely possible so constructed isosymmetries Ĝ are locally isomorphic to
the original symmetry G.

The reader should note that, while a given Lie symmetryG is unique as
well known, there can be an infinite number of covering isosymmetries Ĝ
with generally different explicit forms o the isotransformations due to the
infinite number of possible isotopic elements representing the infinitely
different internal interactions of extended particles within physical media.

Note also that all possible isotopic images of a given Lie symmetry
can be explicitly and uniquely constructed via the sole knowledge of the
original Lie symmetry and of the isotopic element T̂ > 0, or of the isounit
Î = 1/T̂ , which property shall be hereon tacitly assumed.

2.4. Isospaces and isogeometries.
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As it is well known, the fundamental representation space of relativistic
space-time symmetries is the conventional Minkowski space M(x, η, I) for-
mulated on the field of real numbersRwith coordinates x = (x1, x2, x3, x4 =
ct), metric η = Diag.(1, 1, 1,−1), unit I = Diag(1, 1, 1, 1) and invariant

x2 = (xµηµνx
ν)I =

= (x2
1 + x2

2 + x3
3 − c2t2)I,

(14)

where the trivial multiplication by the conventional unit I = Diag.(1, 1, 1, 1)
is done for compatibility with isomathematics.

The fundamental isospaces of space-time isosymmetries are given by
the infinite family of iso-Minkowski isospaces, also called Minkowski-Santilli
isospaces, M̂(x̂, Ω̂, Î) formulated on the isofield of isoreal isonumbers R̂.
(Section I-3.9), which isospaces were first introduced by R. M. Santilli in
Ref. [23] of 1983 and then treated in details in works [29] [30].

Iso-Minkowskian isospaces are characterized by space-time isocoordi-
nates x̂ = xÎ ; isounit Î = 1/T̂ , isometric

Γ̂ = (T̂ ρµηρν)Î , (15)

(where one should note the necessary structure of an isomatrix [29]), positive-
definite isotopic element (4) representing a system of extended particles in
interior dynamical conditions with a restricted functional dependence on
local quantities such as coordinates x, momenta p, energy E, frequency
ν, density α, temperature τ , pressure pi, wavefunction ψ, etc., under the
conditions

nµ = nµ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4, (16)

Γ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) ≥ 0, (17)

T̂ = e−Γ � 1. (18)

Iso-Minkowskian isospaces are characterized by the infinite family of
isoinvariants (I-28) with isotopic element (4) that, for the case of one single
extended particle can be written

x̂2̂ = x̂µ ? Ω̂µν ? x̂
ν = (xµη̂µνx

ν)Î =

= (
x21
n2
1

+
x22
n2
2

+
x23
n2
3
− t2 c2

n2
4
)Î ,

(19)

where the exponential exp−Γ has been absorbed in the characteristic quan-
tities nµ, and the final multiplication by the isounit is necessary for the
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isoinvariant to be an isoscalar, namely, an element of the isoreal isofield
[20] (Section I-3-5).

The following aspects treated in Paper I are important for the under-
standing of the apparent proof of the EPR argument:

1. The characteristic quantities n2
1, n

2
2, n

2
3, admit the first interpretation

as representing the deformable semi-axes of elementary or composite par-
ticles normalized to the values for the sphere n2

1 = n2
2,= n2

3 = 1,.

2. The characteristic quantity n2
4 admit the first interpretation as repre-

senting the density of the hadronic medium normalized to the value n4 = 1
for the vacuum.

3. The function Γ ≥ 0 provides an invariant representation (Section
I-3-9) of all non-linear, non-local and non-Hamiltonian interactions.

4. Property (18) is verified for all applications of isosymmetries to date
[10] to [68].

5. The correct elaboration of iso-Minkowskian isospaces requires the
use of the isospherical and isohyperbolic isocoordinates (see Refs. [29] [30]).

6. Isoinvariant (19) provides a unified representation of both exterior
and interior gravitational problems. In fact, K. Schwartzchild wrote in
1916 two important papers, the first paper [49] on the exterior gravitational
problem which became world famous for its initiation of gravitational sin-
gularities, and the second paper [50] in the interior gravitational problem
which has been vastly ignored, except rare studies (such as that in Section
23.2, page 609, Ref. [52]). Such an oblivion is essentially due to the fact
that Schwartzchild’s second paper is not aligned with the widespread ten-
dency of reducing masses to point-like constituents, in which case all dif-
ferences between exterior and interior gravitational problems disappear
to the detriment of the depth of the gravitational analysis. Readers should
keep in mind the full parallelism between exterior and interior dynamical
problems for particles and gravitation.

7. The exterior gravitational interpretation of isoinvariant (19) is given by
the following identical representation of Schwartzchild’s exterior metric
[50]

T̂kk =
1

1− 2M
r

, T̂44 = 1− 2M

r
. (20)

The corresponding interior gravitational representation is given by the fol-
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lowing isotopy of Schwartzchild exterior metric

T̂kk =
1

(1− 2M
r

)n2
k

, T̂44 = (1− 2M

r
)/n2

4. (21)

In view of the arbitrariness of the functional dependence of the character-
istic quantities nµ, it is easy to prove that Schwartzchild’s interior metric
[50] is a particular case of the much broader class of interior gravitational
models (21).

8. The geometry of the iso-Minkowskian isospaces, first presented by
Santilli in Ref. [24] under the name of iso-Minkowskian isogeometry, contains
the machinery of the Riemannian geometry (due to the dependence of the
isometric η̂ on the local coordinates x), although such a machinery is for-
mulated for consistency over isofields [20] and elaborated via the isodiffer-
ential isocalculus [21] (Section I-3.5). Hence, the isominkowskian isogeometry
can unify exterior and interior problems for both particles and gravitation.

9. Recall that iso-Minkowskian isospaces are locally isomorphic to
the conventional Minkowski space (Refs. [23] [24] and Theorem 2.3.1).
Therefore, the iso-Minkowskian isogeometry has a null curvature. This is due
to the fact that, under isotopic lifting, the conventional Minkowski met-
ric η = Diag.(1, 1, 1,−1) is lifted into a coordinate-dependent isometric
T̂ (x)η = η̂(x) which is identical to any given Riemannian metric

η → η̂(x) = T̂ (x)η = g(x). (22)

Jointly, the original unit of the Minkowski space Î = Diag.(1, 1, 1, 1) is
lifted by the inverse amount

I > 0 → Î(x) = 1/T̂ (x) > 0, (23)

resulting in no actual curvature. The above features have suggested the
introduction of the new notion of isoflat isospace, referred to an isospace
that has null curvature when formulated on isofields, while recovering
conventional curvature when formulated on conventional fields. Read-
ers should be aware that the achievement of the universal symmetry of
(non–singular) Riemannian line elements studied in the next sections are
due precisely to the isoflatness of the iso-Minkowski isospace since no
such symmetry is possible for a convemtional Riemannian space, as well
known.

Recall that the fundamental representation space of symmetries in 3-
space dimensions is the conventional Euclidean space E(r,×, I with coor-
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dinates r = (x1, x2, x3), metric δ = Diag.(1, 1, 1) and unit I = Diag.(1, 1, 1)
on the conventional field of real numbers.

Similarly, the fundamental representation space of isosymmetries in 3-
dimensions is the iso-Euclidean isospace Ê(r̂, δ̂, Î), also called Euclid-Santilli
isospace (Refs. [14] [26] [29] and Section I-3.5) which is the space compo-
nent of the iso-Minkowskian isospace. As such, the iso-Euclidean isospace
is hereon tacitly assumed to be known.

2.5. Lorentz-Poincaré-Santilli isosymmetries.
2.5.1. Main references. Following, and only following the construction
of the isotopies of Lie’s theory, Santilli conducted systematic studies on
the isotopies of the various aspects of the Lorentz-Poincaré symmetry for
the achievement of the universal invariance of spacetime isoinvariant (19),
including:

1) The classical isotopies ŜO(3.1) of the Lorentz symmetry SO(3.1) [53];
2) The operator isotopies ŜO(3.1) of the Lorentz symmetry SO(3.1)

[54];
3) The isotopies ŜO(3) of the rotational symmetry SO(3) [55] [56] [57];
4) The isotopies ŜU(2) of the SU(2) spin symmetry [10] [58];
5) The isotopies P̂ (3.1) of the Poincaré symmetry P (3.1) [59] [60], which

included the universal symmetry of (non-singular) Riemannian line ele-
ments;

6) The isotopies P̂(3.1) of the spinorial covering P(3.1) of the Poincaré
symmetry [61] [62];

7) The isotopies M̂(3.1) of the Minkowskian geometry M(3.1) [24].
A general presentation is available in the 1995 monographs [29] [30]

with the full use of isomathematics, including isofields and isodifferential
calculus, with upgrades in the 2008 monographs [36].

The resulting infinite family of isosymmetries ŜO(3.1) are known as the
Lorentz-Santilli (LS) isosymmetries while the broader isosymmetries P̂ (3.1)

and P̂(3.1) are known as Lorentz-Poincaré-Santilli isosymmetries (see Refs.
[37] [42] [45] and papers quoted therein).

Experimental verifications of LPS isosymmetries for interior dynamical
systems are available in monographs [31] and in Section 3 of the more
recent review [63].

In inspecting the subsequent sections, the reader should be aware of
the “direct universality” of the LPS isosymmetries for the considered infi-
nite family of interior dynamical systems [64], including the treatment of
exterior and interior, particle and gravitational problems (Section 4).
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2.5.2. Basic definitions. As it is well known, the conventional Lorentz-
Poincaré (LP) symmetry is the symmetry of line element (14) which we
rewrite in the form

(x− y)2 = (xµ − yµ)ηµν(x
ν − yν)I =

= [(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 − (t1 − t2)2c2)] I,

η = Diag.(1, 1, 1,−c2), , I = Diag.(1, 1, 1, 1),

(24)

where the exponential component exp−Γ is again embedded for simplicity
in the characteristic quantities nµ2.

The LPS isosymmetry is the universal symmetry of the isoline element
(19) in the iso-Minkowski isospace M̂(x̂, Ω̂, Î) over the isoreal isonumbers
R̂ rewritten in the form

(x̂− ŷ)2̂ =
[
(x̂µ − ŷµ) ? Ω̂µν ? (x̂ν − ŷν)

]
=

= [xµ − yµ)η̂µν(x
ν − yν)] Î =

=
[

(x1−y1)2

n2
1

+ (x2−y2)2

n2
2

+ (x3−y3)2

n2
3
− (t1 − t2)2 c2

n2
4

]
Î ,

η̂ = T̂ η, T̂ = Diag(( 1
n2
1
, 1
n2
2
, 1
n2
3
, 1
n2
4
),

nµ = nµ(x, v, a, E, d, ω, τ, ψ, ∂ψ, ...) > O, Î = 1/T̂ > 0.

(25)

2.5.3. Isotransformations. By following Theorem 2.3.1, the isotransforma-
tions of the LPS isosymmetries can be written

x̂′ = Λ̂(ŵ) ? x̂, (26)

where Λ̂(ŵ) = Λ(ŵ)Î , resulting in generally non-linear isotransformations,
including isotranslations of the type

x̂′ = x̂+ Â(x̂, ...), (27)

verifying the following property

Λ̂† ? η̂ ? Λ̂ = Λη̂Λ†. (28)

Under the condition of isomodularity

D̂et (Λ̂) = +Î , (29)
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we have the isoconnected LS isosymmetries ŜO
0
(3.1) and the isoconnected LPS

isosymmetries P̂ 0(3.1).
Consider the conventional generators of the Poincaré symmetry

(Jk) = (Jµν), Pµ, k = 1, 2, 3, 4, 5, 6, µ, ν = 1, 2, 3, 4. (30)

By keeping in mind isoexponentiation (I-16), the isotransformations of
ŜO

0
(3.1) can be written [60]

x̂′ = (êiJkwk) ? x̂ ? (ê−iJkwk) =

=
[
(eiJkT̂wk)x(e−iwkT̂ Jk)

]
Î ,

(31)

and the isotranslations Â(3.1) can be written

x̂′ = (êiPµaµ) ? x̂ ? (ê−iPµaµ) =

=
[
(eiPµT̂ aµ)x(e−iaµT̂ Pµ)

]
Î .

(32)

It is evident that the above isotransformations do constitute Lie-Santilli
isogroups according to Theorem I-2.7.3.

2.5.4. Isocommutation rules. As recalled earlier, the total quantities of an
isolated, stable, interior system must be conserved for consistency.

In order to represent this evidence, the Lie-Santilli isotheory was con-
structed [26] in such a way to preserve conventional generators, because
they represent total conservation laws, and isotopically lift their product.

By expanding the preceding finite isotransforms in terms of the isounit,
the LPS isoalgebra ŝo0(3.1) is characterized by the conventional generators
of the LP algebra and the isocommutation rules [30] [60] (here written in
their projection on conventional spaces over conventional fields)

[Jµν ,̂Jαβ] =

= ı(η̂ναJβµ − η̂µαJβν − η̂νβJαµ + η̂µβJαν),

[Jµν ,̂Pα] = i(η̂µαPν − η̂ναPµ)

(33)

[Pµ̂,Pν ] = 0, (34)

η̂µν = T̂ η = (T̂ ρµηρν). (35)
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where one should note the appearance of the structure functions η̂(x, p,-
E, ν, α, τ, ψ, ....), rather than the traditional structure constants (Theorem
I-2.7.2).

The presence of structure functions η̂ in isocommutation rules (33)-(35),
Theorem I-3.7.2 and the analysis of Section I-3.8 imply the following im-
portant property (Section I-3.8):

LEMMA 2.5.1: LPS isosymmetries cannot be derived via non-unitary transforma-
tions of the conventional LP symmetry.

Despite the above non-equivalence, the property T̂ > 0, the topological
structure (+1,+1,+1,−1) of the isometric η̂ = T̂ η and Theorem 2.3.1 imply
that:

LEMMA 2.5.2. All LPS isosymmetries are locally isomorphic to the conventional
LP symmetry.

Recall from Section I-1 that an important limitation of quantum me-
chanics for the study of the EPR argument is the inability to achieve a
consistent and effective treatment of non-linear interactions that are ex-
pected in the structure of hadrons, nuclei and stars. In Section I-4.12, we
have shown that the isotopic “completion” of quantum mechanics into
hadronic mechanics does indeed allow a consistent and effective treatment
of non-linear interactions via their embedding in the isotopic element T̂ .

Due to the unrestricted functional dependence of the isotopic element
T̂ and, therefore, of the isometric η̂ = T̂ η, it is easy to see that the LPS
isosymmetries are indeed non-linear as a necessary condition to provide
the invariance of non-linear dynamical equations.

Note that isolinear isomomenta P̂µ isocommute on isospaces over isofields,
but they do not commute on conventional spaces over conventional fields, Eqs.
(35), thus confirming that the LPS isosymmetry is isolinear, that is, linear on
isospaces over isofields but generally non-linear in their projection on conven-
tional spaces over conventional fields.

This important property can be illustrated by recalling the isolinear
isomomentum (I-79) on a Hilbert-Myung-Santilli isospace Ĥwith isostates
ψ̂ > over the isocomplex isonumbers Ĉ

P̂µ ? |ψ̂ >= −iÎ∂µ|ψ̂ > . (36)
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Isocommutators (35) on Ĥ over Ĉ can then be explicitly written

[P̂µ,P̂ν ] ? |ψ̂ >= (P̂µ ? P̂ν − P̂ν ? P̂µ) ? |ψ̂ >=

= (−iÎ∂µ)T̂ (−iÎ∂ν)− (−iÎ∂ν)T̂ (−iÎ∂µ)T̂ |ψ̂ >=

= (iÎ∂µ∂ν − iÎ∂ν∂µ)|ψ̂ >= 0.

(37)

By contrast, the projection of the same isocommutators (35) on a con-
ventional Hilbert space H over the field of complex numbers C no longer
commutes,

[P̂µ, P̂ν ]|ψ̂ >= (P̂µP̂ν − P̂νP̂µ)|ψ̂ >=

= (−iÎ∂µ)(−iÎ∂ν)− (−iÎ∂ν)(−iÎ∂µ)|ψ̂ >6= 0.

(38)

because, in general, ∂µÎ 6= ∂ν Î , and this proves the isolinear character of
the isomomentum.

Besides a direct relevance for the structure of hadrons, nuclei and stars,
the above isolinearity has important implications, such as a new consistent
operator form of gravitation, a new grand unification and other advances
[35].

The presence of the structure functions in the isocommutation rules,
the capability to provide the invariance under non-linear interactions and
other features and applications outlined in Section 4 illustrate the non-
triviality of the Lie-Santilli isotheory.

2.5.5. Iso-Casimir Isoinvariants. The simple direct use of isocommutation
rules (33)-(35) establishes that the iso-Casimir-isoinvariants of p̂00(3.1) are
given by [60]

Ĉ1 = Î((t, r, p, E, µ, τ, ψ, ∂ψ, ...) > 0,

Ĉ2 = P̂ 2̂ = P̂µ ? P̂
µ = (η̂µνP

µP ν)Î =

= (
∑

k=1,2,3
1
n2
k
P 2
k − c2

n2
4
p2

4)Î ,

Ĉ3 = Ŵ 2̂ = Ŵµ ? Ŵ
µ, Ŵ = WÎ,

Ŵµ = ε̂µαβρ ? J
αβ ? P ρ,

(39)
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Figure 6: It was generally believed in the 20th century physics that the rotational
symmetry is broken for ellipsoids. Santilli isorotational isosymmetry has restored
the exact character of the rotational symmetry for all possible (topology preserv-
ing) deformations of the sphere [30].

and they are at the foundation of classical and operator relativistic isome-
chanics (Section I-4) with deep implications for structure models of interior
dynamical systems [31].

2.5.6. Isorotations. By using isotransforms (32), the explicit form of the
isorotations ŜO(3), first derived in Refs. [55] [56], can be written in the
isoplane (x̂,1 , x̂2) of iso-Euclidean isospaces Ê(x̂, ∆̂, Î) over the isoreals R̂,
here formulated for simplicity in their projection on the conventional Eu-
clidean space (see Ref. [30] for the general case)

x1′ = x1 cos[θ(n1n2)−1]− x2 n
2
1

n2
2

sin[θ(n1n2)−1],

x2′ = x1 n
2
2

n2
1

sin[θ(n1n2)−1] + x2 cos[θ(n1n2)−1].

(40)

It was generally believed in the 20th century that the SO(3) symmetry
is broken for ellipsoid deformations of the sphere. By contrast, as shown
by isotransforms (40) the ŜO(3) isosymmetry achieves the invariance of el-
lipsoids (Figure 6). But SO(3) and ŜO(3) are locally isomorphic (Theorem
2.3.1). We therefore have the following property [55] [56]:

LEMMA 2.5.3: The Lie-Santilli ŜO(3) isosymmetry restores the exact character
of the rotational symmetry for all ellipsoid deformations of the sphere.

This property is due to the fact that the mutation of the semiaxes of the
sphere occur jointly with the inverse, mutation of the related units, thus
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maintaining the perfect spherical shape in isospaces over isofields

Radius 1k → 1/n2
k, Unit 1k → n2

k. (41)

Note the crucial role of isonumbers for the reconstruction of the ex-
act rotational symmetry because said reconstruction occurs thanks to the
isoinvariant by the isounit.

2.5.7. Lorentz-Santilli isotransforms. The infinite family of isoconnected
Lorentz-Santilli (LS) isotransforms ŜO

0
(3.1) on iso-Minkowskian isospaces

M̂(x̂, Ω̂, Î) over the isoreals R̂, first derived by in Ref. [53] of 1983, can
be written in the (x̂3, x̂4)-isoplane in their projection in the conventional l
Minkowski space M(x, η, I), as follows (see Ref. [30] for the general case):

x1′ = x1, x2′ = x2,

x3′ = γ̂(x3 − β̂ n3

n4
x4),

x4′ = γ̂(x4 − β̂ n4

n3
x3),

(42)

where
β̂ =

v3/n3

c/n4

, γ̂ =
1√

1− β̂2

. (43)

A significant aspect of Ref. [53] is the solution of the historical Lorentz
problem, namely, the invariance of locally varying speeds of light within
physical media

C =
c

n4

. (44)

In fact, Lorentz first attempted the invariance of the speed of light C =
c/n4, but had to restrict his study to the invariance of the constant speed
of light in vacuum c, due to insurmountable technical difficulties. Santilli
has shown that Lorentz’s difficulties were due to the use of Lie’s theory,
because, under the use of the covering Lie-Santilli isotheory, the invariance
of C = c/n4 was achieved in two pages of the 1983 letter [53].

A second significant aspect of Ref. [53] is the achievement of the first
invariant formulation of extended, thus deformable and hyperdense par-
ticles, as stated beginning with the title of the quoted paper.

It was generally believed in the 20th century that the Lorentz symmetry
SO0(3.1) is broken for locally varying speed of light within physical media
represented with the wiggly circle of Figure 7. Ref. [53] proved that the
isosymmetry ŜO

0
(3.1) achieves the invariance of C = c/n4. But SO0(3.1)
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Figure 7: It was generally believed in the 20th century physics that the Lorentz
symmetry is broken for locally varying speeds of light within physical media (here
represented with a wiggly light cone). The Lorentz-Santilli isosymmetry has re-
stored the exact validity of the Lorentz symmetry for interior dynamical problems
[53] [30].

and ŜO
0
(3.1) are locally isomorphic, thus restoring the exact character of

the abstract axioms of the Lorentz for all possible values C = c/n4. We
therefore have the following important property [30]:

LEMMA 2.3.5: The Lie-Santilli ŜO
0
(3.1) isosymmetry restores the exact validity

of Lorentz’s axioms for locally varying speeds of light.

This property is due to the reconstruction of the exact light cone on
the iso-Minkowskian isospace over isofields with maximal causal value c,
called the light isocone,

x̂2̂ = x̂2
3 + x̂2

4 = 0, (45)

while its projection on the conventional Minkowski space over conven-
tional fields represents a locally varying speed

x̂2 = (
x2

3

n2
3

− t2 c
2

n4
)Î = 0. (46)

This property is due to the fact that the mutation of the x̂3 and x̂4 iso-
coordinates occurs jointly with the inverse mutation of the corresponding
isounits, by therefore preserving the original perfect light cone with c as
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the maximal causal speed (see the 1966 monograph [30] for details)

x3 → x3

n3
, I3 = 1 → Î3 = n3

x4 = tc → x4

n4
= t c

n4
, I4 = 1 → Î4 = n4.

(47)

Another significant aspect of Ref. [53] is the achievement of the first
known invariance of non-linear, non-local and non-Hamiltonian interac-
tions thanks to their embedding in the characteristic n-quantities of the
isoinvariant (25).

2.5.8. Isotranslations. In view of their non-linearity, isotranslations in
four parameters aµ can be written in their projection in the conventional
Minkowski space [30]

x′µ = xµ + Aµ(a, x, . . .), (48)

and can be written via a power series expansion of the general expression

Aµ = aµ(n−2
µ + aα[n−2

µ ,̂Pα]/1! + . . .), (49)

The understanding of the isotopic completion of 20th century space-
time symmetries requires the knowledge that, when properly written on
iso-Minkowskian isospace over isofields, isotranslations recover their con-
ventional form . [30].

2.5.9. Isodilatations. Santilli introduced in Ref. [60] a novel one-dimensional
isoinvariance denoted D̂ which is given by the dilatation of the isometric
caused by its multiplication by as parameter w, while the isounit is jointly
subjected to the inverse dilatation

Ω̂ = η̂Î → ŵ ? Ω̂ = wη̂Î ′

Î → Î ′ = 1
w
Î ,

(50)

under which isoinvariant (25) remain manifestly unchanged.
In essence, the new symmetry originates from the fact that, for mathe-

matical consistency, isoinvariants must be elements of t isofields, thus hav-
ing structure (25), namely, isoinvariants must be given by a conventional
invariant multiplied by the isounit.

Ref. [60] showed that, by writing conventional invariants with the mul-
tiplication, in this case, by the trivial unit 1, the new dilatation symmetry
persists for conventional space-time symmetries,

η → η′ = wη, 1 → 1′ =
1

w
1. (51)
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The above properties imply the following:

LEMMA 2.5.5: The conventional Lorentz-Poincaré symmetry is eleven-dimensional
with structure

P 0(3.1) = so0(3.1)× A(3.1)×D, (52)

and, consequently, the Lorentz-Poincaré-Santilli isosymmetry is also eleven-dimen-
sional with the structure

P̂ 0(3.1) = ŝo0(3.1) ? Â(3.1) ? D̂. (53)

The above seemingly trivial property has permitted Santilli the study
of a new grand unification of electroweak and gravitational interactions
based on the embedding of gravitation in the isotopic degree of freedom
of the theory [35].

2.5.10. Isoinversions. The isotopic ”completion” of conventional inversions
has been studied in details in Refs. [30] and consists of the isotime isoinver-
sions

τ̂ t̂ = (τ t̂)Î (54)

plus the isospace isoinversions

π̂r̂ = (πr̂)Î (55)

where τ and π are conventional time and space inversions, respectively.
Despite their simplicity, Santilli has shown in Ref. [30] that not only

continuous, but also discrete space-time symmetries can be reconstructed as be-
ing exact on isospaces over isofields when assumed to be broken on conventional
spaces over conventional fields.

2.5.11. Isospinorial LPS isosymmetry. Recall that the spinorial covering
P0(3.1) of the connected component of the LP symmetry P 0(3.1) is con-
structed via the use of the Dirac gamma matrices. In fact, the conventional
generators are realized via suitable combination of Dirac gamma matrices.

By following the same historical pattern, Santilli proposed in the 1995
communication [61] of the Joint Institute for Nuclear Research, Dubna, Rus-
sia (see also the subsequent paper [62] ) the following eleven-dimensional
isotopic “completion” P̂0(3.1) of P0(3.1)

P̂(3.1) = ŜL(2.Ĉ) ? Â(3.1) ? D̂, (56)
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with realization of the generators in terms of the Dirac-Santilli isogamma
isomatrices Γ̂µ = γ̂µÎ , Eqs. (I-89),

ŜL(2.Ĉ) : R̂k = 1
2
εkijΓ̂i ? Γ̂j, Ŝk = 1

2
Γ̂k ? Γ̂4,

Â(3.1) : P̂µ,

k = 1, 2, 3, 4, 5, 6, µ = 1, 2, 3, 4.

(57)

The verification by the above isogenerators of isocommutation rules
(33)-(35) is an instructive exercise for the interested reader. The proof
that the Dirac-Santilli isoequations (I-88) transform isocovariantly under
P̂0(3.1) is equally instructive.

2.5.12. Galilean isosymmetries.
As it is well known, the Galileo symmetry G(3.1) characterizes the non-
relativistic motion of point particles in vacuum, with consequential ab-
sence of resistive or non-potential forces (see the vertical line of Figure 8).

The isotopies of the Galileo symmetry are intended to characterize the
non-relativistic motion of extended particles within physical media, by
therefore experiencing resistive non-potential forces (see the wiggly line
of Figure 8).

The resulting infinite family of isosymmteries Ĝ(3.1) are here called
Galilean isosymmetries to stress the preservation of the basic axioms of the
Galileo symmetry and the mere construction of the broadest possible real-
izations permitted by isomathematics.

The Lie-isotopic lifting of the Galileo symmetry were introduced by
Santilli in the 1978 paper [12] as a particular case of the covering Lie-
Admissible symmetries, also called genosymmetries, which are intended fo
characterize the time rate of variation of physical quantities.

The first direct study of Galilean isosymmetries was done in Section
5.3, pages 225 on, of the 1981 monograph [26] formulated over conven-
tional fields. These isotopies were then systematically studies and up-
graded in the two 1991 volumes [27] [28]. The formulation of Galilean
isosymmetries with the full use of isomathemaics was done in the 1995
monographs [29] [30] with a final study presented in Ref. [32].

The above studies attracted the attention of Abdus Salam, founder and
president of the International Center for Theoretical Physics (ICTP), Trieste,
Italy, who invited Santilli in 1991 to deliver at his Center a series of lectures
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Figure 8: This figure presents a conceptual rendering of the free fall of point-masses
in vacuum studied by Galileo (represented with a straight line), and the free fall of ex-
tended masses experiencing resistive forces from our atmosphere studied by Santilli (rep-
resented with a wiggling line) [26] [30] [37]. It is symptomatic to note that the achieve-
ment of the symmetry for extended masses required the construction of a covering of the
mathematics used for the point masses with particular reference to the generalization of
Newton-Leibnitz differential calculus, from its historical formulation for isolated point, to
a covering formulation for volumes [21].

in the isotopies of the Galileo symmetry and relativity, said invitation be-
ing apparently the last by Salam prior to his death.

During his visit at the ICTP, Santilli wrote papers [65] through [71]. The
notes from Santilli’s lectures were collected by A. K. Aringazin, A. Jannus-
sis, F. Lopez, M. Nishioka and B. Vel-janosky and published in volume [37]
of 1992.

This work is primarily intended for relativistic isosymmetries. Addi-
tionally, all primary applications require relativistic treatments. Therefore,
we regret to be unable to review Galilean isosymmetries to prevent a pro-
hibitive length.

Nevertheless, the reader should be aware that an introductory knowl-
edge of the Galilean isosymmetries is suggested, e.g., from the reading of
the ICTP papers [65] to [71].

3. APPARENT PROOFS OF THE EPR ARGUMENT
3.1. Foreword.
As it is well known, the conventional Pauli matrices σk, k = 1, 2, 3, are the
fundamental (also called adjoint), irreducible unitary representation of the
SU(2)-spin symmetry and play a crucial role for the objections against the
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EPR argument [2] - [6] .
In this section, we review the isotopic “completion’” of Pauli’s matrices

into isomatrices
Σ̂k = σ̂kÎ (58)

which constitute the isofundamental, isoirreducible, isounitary isorepre-
sentation of the Lie-Santilli ŜU(2) isosymmetry and play a crucial role
in the apparent proof of the EPR argument for extended particles within
physical media studied later on in this section.

By recalling that the SU(2) symmetry characterizes the spin of point-
particles in vacuum, the “completed ŜU(2) isosymmetry is intended to
characterize the spin of extended particles within hyperdense media called
hadronic spin, such as the spin of an electron in the core of a star.

The isotopic “completion” of Pauli’s matrices was introduced by San-
tilli in 1993 while visiting the Joint Institute for Nuclear Research, Dubna,
Russia [58]. Said “completion” was presented systematically in Refs. [29]
[30], used for the apparent proofs of the EPR argument [10] [11], and they
are nowadays known as the Pauli-Santilli isomatrices [45].

In particular, the preceding studies have shown that, unlike the case for
the SU(2) symmetry, the isotopic ŜU(2) isosymmetry admits an explicit
and concrete realization of hidden variables λ [3] [4] via realizations of the
isotopic element of type T̂ = Diag.(1.λ, λ) Eq. (3).

In this section, we shall review the construction of ŜU(2) isosymmetry
and of Pauli-Santilli isomatrices of regular and irregular type with hid-
den variables. We shall then use the methods acquired in this and in the
preceding paper [9], for the proof that interior dynamical systems represented
via isomathematics and isomechanics appear to admit identical classical counter-
parts [10] (Section 3.7), and to progressively approach the classical EPR deter-
minism [1] in the structure of hadrons, nuclei and stars, while achieving the EPR
determinism in the interior of gravitational collapse [11] (Section 3.8).

A first understanding of this section requires a knowledge of the Lie-
Santilli isotheory (Section I-2.7) [26] [30] [38] [46] [47] [49]. A technical
understanding of this section requires a technical knowledge of hadronic
mechanics [29]- [31].

3.2. Pauli matrices.
As it is well known (see, e.g., Ref. [72]), the carrier space of the two-
dimensional group of special unitary transformations SU(2) is the two-
dimensional complex Euclidean spaceE(z, δ, I) with coordinates z = (z1, z2),
metric δ = Diag.(1, 1) and unit I = Diag/(1, 1).

The two-dimensional, fundamental (also called adjoint), irreducible,
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unitary representation of the special unitary Lie algebra su(2) of the SU(2)-
spin symmetry is given by the celebrated Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i1
i1 0

)
, σ3 =

(
1 0
0 −1

)
, (59)

with commutations rules

[σi, σj] = σiσj − σjσi = i2εijkσk, (60)

and eigenvalues on a Hilbert space calH over the field of complex num-
bers C with basis |b >

σ2|b >= (σ1σ1 + σ2σ2 + σ3σ3)|b >= 3|b >,
σ3|b >= ±1|b > .

(61)

Among the various properties of Pauli’s matrices, we should recall
their uniqueness in the sense that their expression is invariant under the
class of equivalence admitted by quantum mechanics, that under unitary
transformation.

We should also recall that Pauli’s matrices are also fundamental for
the structure of Dirac’s equation, Eq. (I-9) since they appear in the very
definition of Dirac’s gamma matrices, Eqs. (I-89).

3.3. Regular Pauli-Santilli isomatrices.
By following Ref. [58], the carrier isospace of the two-dimensional Lie-
Santilli isogroup of isospecial isounitary isotransformations ŜU(2) is the
isocomplex iso-Euclidean isospace Ê(ẑ, ∆̂, Î) with isocoordinates

ẑ = zÎ = (z1, z2) = (z1, z2)Î; (62)

isounit and isotopic element

Î =

(
n2

1 0
0 n2

2

)
= 1/T̂ > o, (63)

T̂ =

(
n−2

1 0
0 n−2

2 ;

)
(64)

isometric

∆̂ = δ̂Î = (T̂ ki δki)Î =

(
n−2

1 0
0 n−2

2

)
Î; (65)
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positive-definite characteristic quantities nk with unrestricted functional
dependence on the variables for interior dynamical problems

nk = nk(z, z̄, E, µ, α, τ, ψ, ∂ψ, ...) > 0, k = 1, 2; (66)

and basic isoinvariant

ẑi ? ∆̂ij ? ˆ̄zj = (ziδ̂ijzj)Î =

= ( z1z̄1
n2
1

+ z2z̄2
n2
2

)Î .
(67)

By also following Refs. [29] [58], the isogroup of regular, isospecial,
isounitary, isotransformations ŜU(2) leaving invariant isoline element (67),
is characterized by the isotransforms

ẑ′ = Û(θ̂) ? z = Û(θ̂)T̂ ẑ, (68)

verifying the following conditions [30]:
1. Isounitarity

Û(θ̂) ? Û †(θ̂) = Û †(θ̂) ? Û(θ̂) = Î; (69)

2. Isogroup isoaxioms

Û(θ̂1) ? Û(θ̂2) = Û(θ̂1 + θ̂2),

Û(θ̂) ? Û(−θ̂) = Û(0) = Î , k = 1, 2, 3;

(70)

and
3. Isospecial isounitarity

IsoDetÛ(θ̂) = Î , Det(UT̂ ) = 1. (71)

The latter condition essentially restricts the isogroup ŜU(2) to its iso-
connected component ŜU

0
(2) , which is hereon tacitly assumed.

The above conditions imply the local isomorphism

ŜU(2) ≈ SU(2), (72)

and the following explicit realization in terms of isoexponential (I-22)

Û(θ̂) = ΠkUk(θk)Î = Πkê
î?Ĵk?θ̂k = Πk(e

iJkT̂ θk)Î ,

Uk(θk) = eiJkT̂ θk , k = 1, 2, 3,

(73)
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where Ĵk represents the isogenerators of the Lie-Santilli isoalgebra ŝu(2)
verifying the conditions

IsoTrĴk = 0, T r(ĴkT̂ ) = 0, (74)

and the isocommutation rules
[Ĵî,Ĵj] = Ĵi ? Ĵj − Ĵj ? Ĵi =

= ĴiT̂ Ĵj − ĴjT̂ Ĵi = εijkĴk.

(75)

Note that, in accordance with Theorem I-2.7.2, the isorepresentations
here considered are called regular because they can be constructed via non-
unitary transformations of the conventional su(2) algebra, resulting in the
preservation of the conventional structure constants εijk.

However, as we shall see in the next section, the isotopies of the su(2)
algebra imply realizations called irregular that cannot be constructed via
non-unitary representations of su(2) [58], in which case the structure con-
stants εijk are replaced by structure functions with an arbitrary (non-singular)
functional dependence on local variables,

Ĉijk = Cijk(z, z̄, E, ν, α, τ, ψ, ∂ψ, ...)Î . (76)

As one can verify, ŝu(2) admits the following iso-Casimir isoinvariant

Ĵ 2̂ = ΣkĴk ? Ĵk =

= Ĵ1T̂ J1 + Ĵ2T̂ J2 + Ĵ3T̂ J3.

(77)

The maximal set of isocommuting isooperators is then given by Ĵ3 and Ĵ 2̂.
By again following Ref. [58], in order to compute the explicit form of

the isorepresentations of ŝu(2), we introduce the Hilbert-Myung-Santilli
isospace Ĥ[19] over the isofield of isocomplex isonumbers Ĉ [20] with d-
dimensional isobasis |b̂dk > verifying isonormalization (I-75),

< b̂dk| ? |b̂dk >=< b̂dk|T̂ |b̂dk >= Î ,

d = 1, 2, 3, ...N, , k = 1, 2, , 3.

(78)

From the local isomorphism ŝu(2) ≈ su(2) we know that the isoeigen-
value equations have the structure

Ĵk ? |b̂dk >= bdk|b̂dk >,

Ĵ 2̂ ? |b̂dk >= Σkb
d
k(b

d
k +W )|b̂dk >

W = DetT̂ = 1/n2
1n

2
2,

, (79)
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where W = 1 for regular isorepresentation, otherwise W is an arbitrary
function of local quantities to be identified via subsidiary constraints from
the medium in which extended particles are immersed.

The explicit form of the isorepresentations of ŝu(2) is then given by the
simple isotopy of the conventional case [72]

Ĵ± = Ĵ1 ± Ĵ2,

(Ĵ1)ij = i1
2
< b̂dk| ? (Ĵ− − Ĵ+) ? |b̂dk >,

(Ĵ2)ij = i1
2
< b̂dk| ? (Ĵ− + Ĵ+) ? |b̂dk >,

(J3)ij =< b̂dk| ? Ĵ3 ? |b̂dk > .

(80)

By continuing to follow Ref. [58], we now restrict our attention to the
two-dimensional isofundamental (isoadjoint) isorepresentation of ŝu(2) oc-
curring for d = 2, in which case we assume

Ĵk =
1

2
σ̂k, k = 1, 2, 3, (81)

and select the basic isounitary isotransform according to Sections I-2.8 and
I-2.9

UU † = f(W ) > 0, W = Det.Î = n2
1n

2
2, (82)

where f(W ) is a smooth function such that f(1) = 1.
By using the above procedure, we have the following regular Pauli-

Santilli isomatrices first introduced by Santilli in Ref. [58], Eqs. (3.2) (where
the isometric elements are denoted gkk = n−2

k , k − 1, 2,

Σ̂k = σ̂kÎ ,

σ̂1 = (n1n2)

(
0 n−2

1

n−2
2 0

)
, σ̂2 = (n1n2)

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 = (n1n2)

(
n−2

2 0
0 −n−2

1 ,

)
.

(83)

with isocommutation rules

[σ̂î,σ̂j] = i2εijkσ̂k, (84)

in which the ’regular’ character of the isomatrices is established by the
presence of the conventional (constant) structure constants.
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We then have the isoeigenvalues isoequations

σ̂3 ? |b̂2
m >= σ̂3T̂ |b̂2

m >= ± 1
n1n2
|b̂2
m >

σ̂2̂ = (σ1T̂ σ̂1 + σ2T̂ σ̂
+
2 σ3T̂ σ̂3)T̂ |b̂2

m >=

= 3 1
n2
1n

2
2
|b̂2
m >,

(85)

showing that the regular Pauli-Santilli isomatrices preserve the conven-
tional structure constants εijk of Pauli matrices, but exhibit structure (84)
with generalized isoeigenvalues containing two characteristic quantities
n2

1, n
2
2.

It is evident that, under isounimodularity condition (71),

DetT̂ = 1, n1 = 1/n2, (86)

isomatrices (83) reduce to

σ̂1 =

(
0 n−2

1

n−2
2 0

)
, σ̂2 =

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 =

(
n−2

2 0
0 −n−2

1

)
,

(87)

by verifying conventional commutation rules (84) and conventional eigen-
values

σ̂3 ? |b̂2
m >= ±|b̂2

m >

σ̂2̂ ? |b̂2
m >= 3|b̂2

m > .

(88)

In order to search for additional realizations of regular Pauli-Santilli
isomatrices, we now assume the following non-unitary transform

U =

(
n1 0
0 n2

)
= U †, (89)

under which we have the following second realization of regular Pauli-
Santilli isomatrices

σ̂k = UσkU
†,

σ̂1 =

(
0 n1n2

n1n2 0

)
, σ̂2 =

(
0 −in1n2

in1n2 0

)
,

σ̂3 =

(
n2

1 0
0 −n2

2

)
.

(90)
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It is an instructive exercise for the interested reader to verify that the
above isomatrices verify the isocommutation rules (84) and conventional
isoeigenvalue (99), namely, the second realization of the Pauli-Santilli isoma-
trices, Eqs. (83), also admit conventional structure constants and eigenvalues de-
spite the degrees of freedom permitted by the two characteristic quantities n2

1, n
2
2.

We now assume the following non-diagonal realization of the non-
unitary transform

U =

 0 n1

n2 0

 , U † =

(
0 n2

n1 0

)
,

UU † = Î = 1/T̂ > 0,

(91)

which characterizes the following third realization of the regular Pauli-
Santilli isomatrices

σ̂1 =

(
0 n1n2

n1n2 0

)
, σ̂2 =

(
0 −in1n2

in1n2 0

)
,

σ̂3 =

(
−n2

1 0
0 n2

2

)
.

(92)

It is easy to see that the above third realization of the regular Pauli-
Santilli isomatrices also verify conventional commutation rules (84) and
eigenvalues (88).

Note that, while Pauli’s matrices are invariant under unitary trans-
forms, there exist a number of Pauli-Santilli isomatrices each of which is
invariant under isounitary isotransforms (Section I-3.9).

3.4. Irregular Pauli-Santilli isomatrices.
3.4.1. Historical notes. One of the most fundamental, yet unresolved pro-
cesses in nature is the synthesis of the neutron from the hydrogen in the
core of stars, which is a pre-requisite for the production of light and, there-
fore, for the existence of life itself.

In this section, we would like to outline the main historical aspects on
the synthesis of the neutron and identify the open problems because truly
fundamental for the construction of the new mathematics needed for their
solution.

Recall that stars initiate their life as an aggregate of hydrogen and grow
via the accretion of hydrogen existing in interstellar spaces.

In 1910, H. Rutherford [73] conjectured that, when the pressure and
temperature at the core of the star reaches certain values, the hydrogen
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atom is “compressed” into a neutral particle n which is called the neutron
according to the reaction (see Section I-4)

e− + p+ → n. (93)

Rutherford hypothesis was experimentally confirmed by J. Chadwick
in 1932 [74], and the neutron became part of scientific history.

Following the experimental verification that the neutron has the same
spin 1/2 of the electron and of the proton, in an attempt at maintaining
the conservation of the angular momentum, E. Fermi [75] suggested that
the synthesis of the neutron occurs with the emission of a hypothetical,
massless and chargeless particle ν with spin 1/2 which he called the neu-
trino (meaning “little neutron” in Italian), according to the reaction widely
accepted by the scientific communioty for about one century

e− + p+ → n+ ν. (94)

After joining Harvard University in September 1977 under DOE sup-
port, R. M. Santilli [15]-[17] noted that, despite the salvaging of space-time
symmetries and related conservation laws, reaction (93) is not compatible
with quantum mechanical laws because the rest energy of the neutron En
is 0.782 MeV bigger than the sum of the rest energies of the proton Ep and
of the electron Ee,

Ep = 938.272 MeV, Ee = 0.511 MeV, En = 939.565 MeV,

En − (Ep + Ee) = 0.782 MeV > 0.
(95)

Therefore, Santilli presented a number of arguments according to which
the synthesis of the neutron is clear evidence of Einstein’s view on the lack
of “completion” of quantum mechanics (see Einstein’s name in the title
of the 1981 paper [17] released from the Department of Mathematics of
Harvard University). Subsequently, Santilli achieved in Ref. [76] (see the
independent review [? ] the non-relativistic representation of all charac-
teristics of the neutron in its synthesis from the hydrogen representation,
with a relativistic representation subsequently achieved in Ref. [62] (see
the independent review in ref. [45]).

The technically most difficult problem of the above representation was
the identification of the spin-orbit coupling for the electron when totally
immersed inside the proton which was first solved non-relativistically in
Ref. [76] and relativistically in Ref. [62] (see the review in Ref. [30], Chap-
ter 6 in particular).
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Figure 9: To illustrate some of isosymmetries for interior systems, in the left we show the
conversion of linear momentum into angular momentum for the case of photons causing
the rotation of a small propeller in a vacuum chamber. In the right, we show the opposite
conversion of angular momentum into linear momentum, as it is the case for the sling
shot. The left view illustrates that the neutrino hypothesis is not necessary for the syn-
thesis of the neutron when particles are represented as being extended. The right view
illustrates that the emission of an antineutrino is not necessary in the neutron decay be-
cause the internal angular momentum of the electron can be converted into its external
linear momentum without any violation of physical laws.

Recall that quantum mechanics has an excellent consistency for bound
states with negative potentials causing a mass defect. Santilli’s first argument
is that a representation of experimental data (95) via quantum mechanics is
impossible because it would require a positive potential capable of produc-
ing a mass excess, which features imply the loss of physical consistency of
Schrödinger equation for bound states (and not for free particles with posi-
tive kinetic energy) because the indicial equation of Schrödinger equation
admits no consistent solutions for positive potential energies, (see Section
I-4).

The inability of Dirac’s and other quantum mechanical equations for
the representation of experimental data (95) then followed.

Various conjectures, aimed at maintaining for the neutron structure the
theory so effective for the hydrogen atom, were proved not to be consis-
tent. For instance, the hypothesis that the missing energy of 0.782 MeV
is provided by the star via a relative energy between the electron and the
proton had to be dismissed because the cross section e− p at 0.782 MeV is
essentially null, thus preventing any fusion between the electron and the
proton.

Similarly, the hypothesis that the missing energy is provided by the
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antineutrino ν̄ via reactions of the type

e− + ν̄ + p+ → n, (96)

had to be equally abandoned because the cross section between neutrinos
or antineutrinos and individual particles is identically null.

As it is well known, the neutrino hypothesis is necessary for the quan-
tum mechanical treatment of synthesis (94), namely, for the point-like char-
acterization of the proton, the electron and the neutron. Ref. [17] indicated
that the neutrino hypothesis cannot any longer be consistently applied
for the neutron synthesis whenever particles are represented as being ex-
tended.

Independently from that, there exist no known conventional possibil-
ity of identifying the energy needed for the creation of the neutrino since
synthesis (94) already misses 0.782 MeV for the synthesis of the neutron.

Another argument of Ref. [17] is that the conservation of the angular
momentum is necessary for the synthesis of bound states with a Keplerian
center under the validity of conventional space-time symmetries, such as
for the synthesis of the hydrogen atom form an electron and a proton.

However, said conservation is no longer necessary for bound states at
short distances without a Keplerian center, since in that case we have the
validity of space-time isosymmetries for which the angular momentum
can be transformed into linear momentum and vice-versa without any vi-
olation of physical laws (see Section 2.2 and Figure 9).

But the neutron has no Keplerian center, with the consequential lack of
applicability of the Lorentz-Poincaré symmetry, and the ensuing lack of
necessary conservation of the angular momentum in favor of alternative
hypotheses.

In view of the above (and other) insufficiencies of the neutrino hypoth-
esis, Santilli suggested in Ref. [78] the introduction in the l.h.s. (rather
than the r.h.s.) of the synthesis of the mass-less, charge-less and spin-less
particle called the etherino and denoted with the symbol a (from the Latin
aether)

p+ + a+ e− → n, (97)

whose scope is to represent the delivery of the missing 0.782 MeV to the
neutron.

An intriguing aspect is that the etherino hypothesis can be shown to be
compatible with the experimental data of the so-called “neutrino experiments,” of
course, under the condition of abandoning point-like abstractions of hadrons and
representing them as they are in the physical reality, i.e., extended, deformable
and hyperdense.
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By recalling that there is no known consistent way of accounting for
the missing 0.782MeV as originating from the star, Ref. [? ] submitted the
hypothesis that the missing energy may originate from the ether as a uni-
versal medium of extremely high energy density for the characterization
and propagation of particles and electromagnetic waves.

However, it should be stressed that the etherino is not intended to be a
particle, but to be an “impulse” representing the mechanism of supplying the
missing 0.782 MeV for the neutron, the origin of the missing energy from the
ether being only one among other possibilities.

In view of the above insufficiencies of quantum mechanics for the syn-
thesis of the neutron, Santilli initiated in Refs. [15] - [17] the search for a
“completion” of quantum mechanics into hadronic mechanics with partic-
ular reference to the “completion”of Lie’s theory at large, and the SU(2)-
spin symmetry in particular, for the characterization of the spin of the elec-
tron when “compressed” inside the hyperdense proton.

It should also be recalled that, during the same period, Santilli con-
ducted a post Ph. D. Seminar Course at the Lyman Laboratory of Physics
of Harvard University with a technical treatment of the insufficiency of
quantum mechanics for the neutron synthesis via the conditions of vari-
ational self-adjointness for the existence of a Lagrangian or a Hamiltonian.
This Seminar Course was eventually published by Springer-Verlag in mono-
graphs [25] [26] whose primary aim is the first known presentation of
the axiom-preserving Lie-Santilli isotheory and the axiom-inducing Lie-
Santilli genotheory.

In fact, possible representations of experimental data (95) for the neu-
tron synthesis violate the conditions of variational self-adjointness, thus
mandating the search for a covering theory.

The subsequent 1995 papers [55] [56] [58] achieved the regular iso-
topies ŜU(2) of the spin symmetry (reviewed in the preceding section).

However, regular isotopies of the SU(2) spin symmetry are insufficient for
the neutron synthesis because it requires alterations (called mutations) of conven-
tional eigenvalues that can be solely represented via irregular isorepresentations.

The irregular isorepresentations of the SU(2)-spin symmetry were iden-
tified, apparently for the first time, by Santilli in the 1990 paper [78] and
used to achieve the non-relativistic representation of all characteristics of
the neutron in its synthesis from the hydrogen.

In the 1995 paper [62], Santilli presented a relativistic study of ŜU(2)
as an isosubalgebra of the irregular isospinorial covering of the Lorentz-
Poincaré symmetry (Section 2.5.11) and used the results to achieve a rela-
tivistic representation of the neutron synthesis.
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The indicated irregular representations of the SU(2)-spin symmetry
were then instrumental for the apparent confirmations of the EPR argu-
ment in Refs.[10] [11] reviewed in this section.

3.4.2. Non-relativistic formulation. The first irregular isotopies of Pauli’s
matrices, today known as irregular Pauli-Santilli isomatrices [45], have been
introduced in Eqs. (2.32) of Ref. [78] via the use of the isorepresentations
of ŜU(2) worked out in the preceding papers [55] [56], and are given by

σ̂1 =

(
0 −n1

n2 0

)
, σ̂2 =

(
0 −in1

in2 0

)
,

σ̂3 = 1
n)1n2

(
n2

1 0
0 −n2

2

)
,

(98)

with irregular isocommutation rules

[σ̂î,σ̂j] = 2i
1

n1n2

εijkσ̂k, i, j, k,= 1, 2, 3 (99)

and isoeigenvalues

σ̂3 ? |û >= ± 1
n1n2
|û >,

σ̂2̂ ? |û >= 1
n1n2

( 1
n1n2

+ 2)|û > .

(100)

It is easy to see that, when the hyperdense medium surrounding the
immersed particle is homogeneous and isotropic, the characteristics quan-
tities can be normalized to the values n1 = n2 = n3 = 1, in which case
isoeigenvalues (100) are conventional. We therefore have the following

LEMMA 3.1: Irregular isorepresentations of the Lie-Santilli isosymmetry ŝu(2)
represent the inhomogeneity and anisotropy of media in which extended particles
are immersed.

Among a number of additional irregular Pauli-Santilli isomatrices with
isotopic element T̂ in Eq. (64) we quote Eqs. (3.2) of Ref. [10]

σ̂1 = n1n2

(
0 n−2

1

n−2
2 0

)
, σ̂2 = n1n2

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 = n1n2

(
n−2

2 0
0 −n−2

1

)
,

(101)
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with irregular isocommutation rules

[σ̂î,σ̂j] = 2i
1

n1n2

σ̂k, (102)

and isoeigenvalues
σ̂3 ? |û >= ± 1

n1n2
|û >,

σ̂2̂ ? |û >= 3 1
n2
1n

2
2
|û >,

(103)

The above isorepresentation appears to be significant when the medium
causes a proportional alteration/mutation of both the third component as
well as the total value of the spin of a particle having the value 1/2 in
vacuum.

Another example of irregular Pauli-Santilli isomatrices is given by Eqs.
(3.7) of Ref. [10]

σ̂1 =

(
0 n2

n1 0

)
, σ̂2 =

(
0 −in2

in1 0

)
,

σ̂3 =

(
n2

1

0 −n2
2

)
,

(104)

with irregular isocommutation rules

[σ̂1̂,σ̂2] = 2i 1
n2
1n

2
2
σ̂3, [σ̂2̂,σ̂3] = 2iσ̂1,

[σ̂3̂,σ̂1] = 2iσ̂2,

(105)

and mutated isoeigenvalues

σ̂3 ? |û >= ±|û >,

σ̂2̂ ? |û >= 2
n2
1n

2
2
|û > .

(106)

The above isorepresentation may be useful when the anisotropy and
inhomogeneity of the medium maintain the spin value 1/2 along the third
axis, yet they are such to deform the remaining components.

Additional example of irregular Pauli-Santilli isomatrices are available
from Refs. [10] and [58], and can be readily constructed by interested read-
ers.
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3.4.3. Relativistic formulation. Consider the iso-Minkowskian isospace
M̂(x̂, Ω̄, Î) with isometric

Ω̂ = η̂Î , η̄ = T̂ η,

T̂ = Diag.( 1
m2

1
, 1
m2

2
, 1
m2

3
, 1
m2

4
),

mµ = mµ(r, p, E, ν, α, τ, π, ψ, ...) > 0. µ = 1, 2, 3, 4,

(107)

where the new characteristic quantities mµ have been introduced to avoid
confusion with the previously used symbols nµ.

The relativistic formulation of the irregular isorepresentation of ŜU(2)
were derived, apparently for the first time, in Eqs. (6.4c)-(6.4d) of Ref. [62],
and can be written

Jk =
1

2
εkij γ̂i ? γj, (108)

where γ̂ are the regular Dirac-Santilli isomatrices (I-89), i.e.,

γ̂k = 1
mk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
m4

(
I2×2 0

0 −I2×2

)
,

(109)

and σ̂k are the regular Pauli-Santilli isomatrices.
The irregular character of isorepresentation (108) is established by the

presence of structure functions in the isocommutation rules, Eqs, (6.4c) of
Ref. [62],

[Jî,Jj] = εijk
1

m2
k

Jk, (110)

and in the irregular isoeigenvalues

J3 ? |ψ̂ >= ±1
2

1
m1m2

|ψ̂ >,

J 2̂ ? |ψ̂ >= 1
4
( 1
m1m2

+ 1
m2m3

+ 1
m3m1

)|ψ̂ >,
(111)

that, as shown in Ref. [62], permit a relativistic representation of the spin
of the neutron in its synthesis from the hydrogen.

Again one should note that, when the medium is homogeneous and
isotropic, isoeigenvalues (101) are conventional.
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Note that the assumption of mutated spin for an extended particle
within a hyperdense medium implies the inapplicability (rather than the vi-
olation) of the Fermi-Dirac statistics, Pauli’s exclusion principle and other quan-
tum mechanical laws with the understanding that said mutations are inter-
nal, thus solely testable under external strong interactions, as indicated be-
ginning with the title of Harvard’s 1978 paper [15].

3.5. Isotopies of hadronic spin and angular momentum.
3.5.1. Historical notes. An electron orbiting in vacuum around the pro-
ton in the hydrogen atom experiences no resistive forces, thus verifying
known symmetries and conservation laws.

When the same electron has been “compressed” inside the proton ac-
cording to Rutherford [73], Santilli [78] argued that the sole possible an-
gular moment is that permitted by constraints exercised on the electron by
the internal medium.

Since the electron is about 2, 000 times lighter than the proton, the most
stable configuration is that for which the electron is “constrained” to orbit with
a value of the angular momentum equal to the proton spin, since any different
configuration would imply big resistive forces (Figure 9).

Needless to say, fractional angular momenta are anathema for the quan-
tum mechanical description of point-particles in vacuum.

However, the angular momentum of extended particles immersed within
hyperdense hadronic media can acquire values other than integers, de-
pending on the local physical conditions of the medium surrounding the
particle, such as pressure, density, anisotropy, inhomogeneity, etc.

The first known quantitative study of constrained angular momenta of ex-
tended particles within hyperdense hadronic media was done at the non-
relativistic level by Santilli in Ref. [78] of 1990 following the preceding
isotopies of the rotational symmetry, Refs. [55] [56]. The study was then
extended to the relativistic level in Ref. [62] of 1990.

These studies are crucial for quantitative representations of the synthe-
sis of hadrons providing apparent verifications of the EPR argument, and
can be summarized as follows.

3.5.2. Non-relativistic representation. Recall the central assumption of isosym-
metries according to which conventional generators are preserved (be-
cause representing conventional total conservation laws), and only their
product is lifted into the isotopic form (1) (to represent the extended char-
acter of the particles and their non-Hamiltonian interactions).

Hence, the definition of the isoangular isomomentum, also called hadronic
angular momentum, on an iso-Euclidean isospace is the same as that of
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quantum mechanics

Lk = εijkr̂i ? p̂j = εijkripj, (112)

although it is defined on a Hilbert-Myung-Santilli isospace Ĥwith isostates
|ψ̂ > on an isocomplex isofield Ĉ, with isolinear isomomentum Eqs, (I-79),
and isocommutation rules are then given by Eqs. (I-81).

It is then easy to verify the following isocommutation rules for the
hadronic angular isomomentum, Eqs. (2.22b) [78]

[Lî,Lj] = iÎεijkLk, (113)

where, as one can see, the characteristics of the medium, represented by
the isounit Î , enter directly in the isocommutation rules.

The use of the isosperical isoharmonic isofunctions (see page 240 of Ref.
[30] for details)

Ŷ`m(θ̂, φ̂) = UY (θ, φ)U † = T̂−1Y`m(θ, φ),

UU † = Î = 1/T̂ 6= I,

(114)

where Y`m(θ, φ are the conventional spherical harmonic functions, yields
the following isoeigenvalues, Eqs. (2.25), Ref. [78],

L3 ? Ŷ`m(θ̂, φ̂) = ÎmŶ`m(θ̂, φ̂),

L2̂ ? Ŷ`m(θ̂, φ̂) = Î`(Î`+ 1)Ŷ`m(θ̂, φ̂),

m = `, `− 1, ....,−`, m = 1, 2, 3, ...

(115)

where one can see again the mutation of the eigenvalues caused by the
surrounding medium.

Applications to particle physics then require specific realizations of the
isounit Î , such as the simple assumption of expressions (4) used in Ref.
[78]

ρ = |Î| =≈ |eγ|, (116)

where ρ is a function of all possible or otherwise needed local variables of
the medium.

3.5.3. Isotopies of non-relativistic spin-orbit coupling. As one can see, isoeigen-
values (115) do not allow a representation of the constrained hadronic an-
gular momentum of the electron when compressed inside the proton (Fig-
ure 9).
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In view of this insufficiency, Santilli conducted in Ref. [76] (see Also
Ref. [30], Chapter 6) a study of the eigenvalues of the combined spin and
angular momentum of the electron in the indicated interior conditions.

We consider then the total hadronic momentum

Jtot = L`⊗̂Js, (117)

with corresponding basis |Ŷ ⊗̂û > and isoexpectation values, Eqs. (2.34),
Ref. [78],

J3,tot|Ŷ ⊗̂û >= (ρm(`)± m(s)
n1n2

)|Ŷ ⊗̂û >

J 2̂
tot ? |Ŷ ⊗̂û >= (ρ`± s

n1n2
)(ρ`± s

n1n2
+ 1)|Ŷ ⊗̂û >

` = 0, 1, 2, 3, ... s = 0, 1
2
1, 3

2
, ...,

m(`) = `, `− 1, ...,−`, m(s) = s, s− 1, ...,−s.

(118)

Following a laborious journey initiated in 1977, isoeigenvalues (118)
finally permitted Santilli to achieve the desired solution for ` = 1 and
s = 1

2
, Eq. (2.36), Ref. [78],

ρ =
1

2

1

n1n2

, (119)

for which the total hadronic angular momentum of the electron in the synthesis
of the neutron is identically null, Jtot = 0, and the spin of the neutron coincides
with that of the proton.

More detailed studies pertaining to electric and magnetic dipoles ex-
cluded the alternative J = 1 of eigenvalues (118), as well as total hadronic
angular momenta of the electron other than zero.

The preceding studies permitted a quantitative non-relativistic repre-
sentation of the spin of the neutron in its synthesis from the hydrogen
atom. A representation of the remaining characteristics of the neutron
(mass, radius, charge, dipole moments, etc.) is reviewed in Section 4.5.

3.5.4. Isotopies of relativistic spin-orbit couplings. The hadronic spin Ŝ =

SÎ is a realization of the ŜU(2) isosubalgebra of P̂(3.1) with generators
(57), while the hadronic angular momentum L̂ = LÎ is a realization of the
isorotational ŜO(3) isosubalgebra. Their relativistic formulation on iso-
Minkowskian isospace (107) has been first derived in Eqs. (6.4a) (6.4b),
Ref. [62] and are given by

Sk = 2εkij γ̂i ? γ̂j,

Lk = εkijri ? pj,
(120)
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where γ̂k are the Dirac-Santilli isomatrices.
We then have the irregularisocommutation rules

[Sî,Sj] = εkijm
2
kŜk,

[Lî,Lj] = εijkm
2
kLk,

(121)

and isoeigenvalues, Eqs, (6.4d) Ref. [62]

Ŝ3 ? |ψ̂ >= ± 1
m1m2

|ψ̂ >,

Ŝ 2̂ ? |ψ̂ >= (m−2
1 m−2

2 +m−2
2 m−2

3 +m−2
3 m−2

1 )|ψ̂ >,

L̂3 ? |ψ̂ >= ±m1m2|ψ̂ >,

L̂2̂ ? |ψ̂ >= (m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)|ψ̂ > .

(122)

The most salient difference between relativistic isoeigenvalues (122)
and their non-relativistic counterparts (155) is that the former admit frac-
tional hadronic angular momenta while the latter do not.

In fact, for the following values admitted by a homogeneous and isotropic
medium [62]

m1 = m2 = m3 =
1√
2
, (123)

isoeigenvalues (122) become

Ŝ3 ? |ψ̂ >= ±1
2
|ψ̂ >,

Ŝ 2̂ ? |ψ̂ >= 3
4
|ψ̂ >,

L̂3 ? |ψ̂ >= ±1
2
|ψ̂ >,

L̂2̂ ? |ψ̂ >= 3
4
|ψ̂ > .

(124)

Consequently, isoeigenvalues (122) permit a quantitative representation of
the hadronic angular momentum of the electron as being constrained to be equal
to the proton spin [61] [62] (Figure zzzz).

In this case too, the total hadronic angular momentum of the electron
is null because the only stable hadronic spin-orbit coupling is in singlet,
and the spin of the electron can be assumed in first good approximation
not to be mutated since the electron is about 2, 000-times lighter than the
proton.
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Hadronic spins, hadronic angular momenta and hadronic spin-orbit
couplings were studied in detail Chapter 6 of Ref. [30] resulting in Lemma
6.12.1 here reproduced without proof:

LEMMA 3.2: When immersed within hadrons or nuclei with spin 1/2, an ele-
mentary particle having spin 1/2 in vacuum can only have a null total hadronic
angular momentum.

As we shall see in Section 4.6, the above configuration of the synthesis
of the neutron from the hydrogen is an apparent verification of the EPR
argument.

3.6. Realization of hidden variables.
As recalled in Section 1.1, the conventional quantum mechanical realiza-
tion of the Lie symmetry SU(2) does not allow a consistent representation
of hidden variables λ [3] [4].

It is easy to see that, despite the local isomorphism ŜU(2) ≈ SU(2), the
Lie-Santilli isosymmetry ŜU(2) does indeed allow explicit and concrete
realizations of hidden variables thanks to the degree of freedom permitted
by the isotopic element (1) in the structure of the Lie-Santilli isoproduct (2)
with realizations of the isotopic element of type (3).

In this section, we review the explicit and concrete realization of regular
hidden variables, namely, realizations that can be derived via non-unitary
transforms of the Lie algebra su(2), and then review irregular hidden vari-
ables, namely, realizations that do not admit such a simple derivation.

Regular and irregular realizations of hidden variables have been first
identified by Santilli in Ref. [58] of 1993, and then used for the proof of the
EPR argument [10] reviewed in Section 3.7.

Realizations of regular hidden variables are easily provided by Pauli-
Santilli isomatrices (83) with the identifications

n2
1 = λ1, n

2
2 = λ2, (125)

yielding the desired realization, Eqs. (3.9), Ref. [58],

σ̂1 = (λ1λ2)

(
0 λ−1

1

λ−1
2 0

)
, σ̂2 = (λ1λ2)

(
0 −iλ−1

1

iλ−1
2 0

)
,

σ̂3 = (λ1λ2)

(
λ−1

2 0
0 −λ−1

1

) (126)

verifying isocommutation rules

[σ̂î,σ̂j] = iεijkσ̂k, (127)
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and isoeigenvalue isoequations

σ̂3 ? |b̂ >= ±(λ1λ2)|b̂ >

σ̂2̂ = 3(λ1λ2)2|b̂ > .

(128)

We consider now the particular case of Eq. (3), i.e.,

Det.T̂ = 1, n2
1 = 1/n2

2 = λ, (129)

derivable via the basic non-unitary transformation

T̂ = (UU †)−1 =

(
λ−1 0
0 λ

)
. (130)

In this case, isomatrices (83) become (Eqs. (3.9) of [58])

σ̂1(λ) =

(
0 λ−1

λ 0

)
, σ̂2(λ) =

(
0 −iλ−1

iλ 0

)
,

σ̂3(λ) =

(
λ 0
0 −λ−1

)
.

(131)

It is an instructive exercise for the interested reader to verify that the
above realization of the regular Pauli-Santilli isomatrices verifies isocom-
mutation rules with the same stricture constants of the SU(2) algebra

[σ̂i(λ)̂,σ̂j(λ)] = i2εijkσ̂k(λ), (132)

and admit conventional eigenvalues

σ̂3(λ) ? |b̂ >= ±|b̂ >

σ̂(λ)2̂ = 3|b̂ > .

(133)

Consequently, we have the following property [58]:

LEMMA 3.3. Regular Pauli-Santilli isomatrices provide an explicit and concrete
realization of regular hidden variables directly in the spin 1/2 algebra.

Note that, besides being positive-definite, hidden variables have an un-
restricted functional dependence on all needed local variables, Eqs. (66).

An example of irregular hidden variables is provided by the ŜU(2)
component of the spinorial covering of the Lorentz-Poincaré-Santilli isosym-
metry.
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To illustrate this realization, introduce three additional hidden vari-
ables for the characterization of isospace (107)

mµ = λµ, µ = 1, 2, 3, 4. (134)

Realization (108) then implies the following irregular Dirac-Santilli isoma-
trices

γ̂k(λ) = 1
γk

(
0 σ̂k(λ)
−σ̂k 0

)
,

γ̂4 = i
m4

(
I2×2 0

0 −I2×2

)
,

(135)

where σ̂k are the regular or irregular Pauli-Santilli isomatrices, with isocom-
mutation rules

[Si(λ)̂,Sj(λ)] = εijk
1

λk
Sk, (136)

and isoeigenvalues

S3 ? |ψ̂ >= ±1
2

1√
λ1λ2
|ψ̂ >,

S 2̂ ? |ψ̂ >= 1
4
( 1√

λ1λ2
+ 1√

λ2λ3
+ 1√

λ3λ1
)|ψ̂ > .

(137)

Consequently, we have the following property [62]

LEMMA 3.4: The axioms of Dirac’s equation admit up to five generally different,
regular or irregular hidden variables.

Additional realizations of irregular hidden variables can be found in
Eqs. (3.11) of Ref. [58] or can be easily derived from the preceding realiza-
tion of the Pauli-Santilli isomatrices.

3.7. Apparent admission of classical counterparts.
As it is well known, Bell’s inequality [3] [4], von Neumann’s theorem [5],
and the theory of local realism at large (see review [6] with a comprehen-
sive literature) are generally assumed to be evidence of the impossibility
of “completing” quantum mechanics into a broader theory, with ensuing
rejection of the EPR argument [1].

Following decades of preparatory works reviewed in Paper I [9] and in
the preceding sections of this paper, Santilli proved in Ref. [10] of 1998 (see
also the detailed study in Ref. [30], particularly Chapter 4 and Appendix
4C, page 166) that:

119

319

 Reprinted by permission from Ratio Mathematica, “Studies on A. Einstein, B. Podolsky, and N. Rosen
Prediction that Quantum Mechanics is Not a Complete Theory II: Apparent Proof of the EPR Argument”,

R. M. Santilli, Ratio Mathematica (Vol.  38), 71-138, 2020. 



Ruggero Maria Santilli

1) Bell’s inequality, von Neumann’s theorem and related studies are
indeed valid, but under the tacit assumption of representing particles as
being point-like, with ensuing sole admission of linear, local and potential
interactions (exterior dynamical problems).

2) Bell’s inequality, von Neumann’s theorem and related studies are in-
applicable (rather than being violated) for extended particles within phys-
ical media, due to the presence of additional non-liner, non-local and non-
potential interactions (interior dynamical systems).

3) The latter systems represented with the axiom-preserving “comple-
tion” of 20th century applied mathematics into isomathematics and the en-
suing “completion” of quantum mechanics into hadronic mechanics [29]-
[31] verify Statement 2 and admit well defined classical counterparts.

To review the preceding advances, consider two quantum mechanical
particles with spin 1/2 denoted 1 and 2 which verify the SU(2) spin sym-
metry.

Assume that, as a result of some interaction, the two particles have
antiparallel spins represented in the Hilbert spaceH over the field of com-
plex numbers C. The total state in ˆcalH is then given by

|S1−2 >=
1√
2

(|S1↑ > ×|S2↓ > −|S1↓ > ×|S2↑ >), (138)

with conventional l normalization

< S1−2|S1−2 >= 1, (139)

where × is the conventional associative product.
Let a1, b1 and a2, b2 be unit vectors along the z-axis of a conventional

Euclidean space E(r, δ, I) for particle 1 and 2, respectively. Introduce the
quantum mechanical probability

P (a1, b1) =< S1−2|(σ1 ⊗ a1)× (σ2 ⊗ b1)|S1−2 >= −a1 ⊗ b1, (140)

where ⊗ is the conventional scalar product.
Then, Bell’s inequality can be written [4] (see Ref. [6] for numerous

equivalent formulations)

DQM
Bell = Max|P (a1, b1)− P (a1, b2) + P (a2, b1) + P (a2, b2)| ≤ 2, (141)

and implies the following property:

LEMMA 3.5: Particles in vacuum verifying the Lie symmetry SU(2) admit no
classical counterparts.
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PROOF: The classical counterpart of Bell’s inequality is given by

DClassical
Max = Max|a1 ⊗ b1 − a1 ⊗ b2|+ |a2 ⊗ b1 + a2 ⊗ b2| = 2

√
2. (142)

But the quantum mechanical value of DQM
Bell is always smaller than its

classical counterpart DClassical
Max ,

DQM
Bell < DClassical

Max , (143)

by therefore establishing the impossibility for an SU(2)-invariant system
to admit identical classical images. Q. E. D.

Santilli [10] has shown that inequality (141) is inapplicable for the same
particles when they are in interior dynamical conditions, e.g., when they
are in the core of a star, or at the limit, when they are in the interior of a
gravitational collapse.

Considers two extended particles also denoted 1 and 2. Suppose that
said particles verify the regular ŜU(2) isosymmetry with spin 1/2 (Section
3.3), thus implying the elaboration via isomathematics (Section I-3) and
the verification of the isotopic branch of hadronic mechanics (Section I-4).

Suppose that the two extended particles with spin 1/2 are character-
ized by the following isotopic elements:

Particle 1 : T̂1 = Diag(λ1, 1/λ1),

Particle 2 : T̂2 = Diag(λ2, 1/λ2),

(144)

with realization (83) of the Pauli-Santilli isomatrices.
Suppose that, due to preceding interactions, the two extended particles

are in single overlapping/entanglement thus having opposite spins.
Let Î1 and Î2 be the isounits for particles 1 and 2, respectively. The

systems of the assumed two isoparticles is then characterized by the total
isounit

Îtot = Î1 × Î2 =
1

T̂tot
=

1

T̂1 × T̂2

. (145)

In this case, the total isostate on the Hilbert-Myung-Santilli isospace Ĥ
[19] over the isofield of isocomplex isonumbers ˆcalC [20] is given by

|Ŝ1−2 >=
1√
2

(|Ŝ1↑ > ×̂|Ŝ2↓ > −|Ŝ1↓ > ×|Ŝ2↑ >). (146)

The lack of validity of inequality (141) for irregular isorepresentations
of ŜU(2) is evident (e.g., because of the anomalous spin isoeigenvalues)
and, as such, it is ignored.
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A significant aspect of Ref. [10] is the proof of the inapplicability of
inequality (141), not only for regular isorepresentation of ŜU(2), but also
when such isorepresentations are isounimodular, Eqs. (144).

Let a1, b1, a2, b2 be unit vectors along the z-axis of an iso-Euclidean isospace.
Introduce the isoprobability (Eq. (32.39), page 99, Ref. [30])

P̂ (a, b) =< Ŝ1−2| ? (Σ̂1⊗̂1a)× (Σ̂2⊗̂2b)|Ŝ1−2 > Îtot =

=< Ŝ1−2| ? (σ̂1 ⊗ a)× (σ̂2 ⊗ b)|Ŝ1−2 > Îtot,

(147)

with isonormalization (here referred to individual diagonal elements of
isotopic elements and isounits)

< Ŝ1−2| ? |Ŝ1−2 >=< Ŝ1−2|T̂tot|Ŝ1−2 >= Îtot (148)

where: ? is the total isoproduct; ⊗̂k, k = 1, 2, is the isoscalar isoproduct;
and we have used simplifications of the type

Σ̂1⊗̂1a = (σ̂1Î1)(T̂1⊗)a = σ̂1 ⊗ a. (149)

An isotopy of the conventional case yields the following isobasis, Eq.
(6.5) of Ref. [10],

|S1−2 >=
1

2

{(
λ
−1/2
1

0

)(
o

λ
1/2
2

)
−
(

0

λ
1/2
2

)(
λ
−1/2
1

0

)}
. (150)

The appropriate use of products and isoproducts then yield expression
(5.6) Ref. [10], i.e.,

< Ŝ1−2|T̂tot(σ̂1 ⊗1 a)× (σ̂2 ⊗2 b)T̂tot|Ŝ1−2 >=

= −axbx − ayby − 1
2
(λ1λ

−1
2 + λ−1

1 λ2)azbz.
(151)

The continuation of the isotopy of the conventional case, yields the
main result, Eq. (5.8) of Ref. [10], which provides the following isotopic
“completion” of Bell’s inequality,

D̂HM
Max = DHM

MaxÎtot =

Max|P̂ (a1, b1)− P̂ (a1, b2) + P̂ (a2, b1) + P̂ (a2, b2)| =

= [1
2
(λ1λ

−1
2 + λ−1

1 λ2)DQM
Bell Îtot,

(152)
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with consequential:

LEMMA 3.6. Extended particles within physical media that are invariant under
the Lie-Santilli isosymmetry ŜU(2) admit identical classical counterparts.

PROOF: Isoinequality (141) establishes the lack of universal validity of
Bell’s inequality (128) because the factor 1

2
(λ1λ

−1
2 + λ−1

1 λ2) can have val-
ues bigger than one, thus implying

DHM
Max ≥ DQM

Bll . (153)

Consider then a classical iso-Euclidean isospace Ê(r̂, δ̂, Î) representing
motion of classical extended particles 1 and 2 within physical media [30]
with isometric elements

δ̂11 = 1, δ̂22 = 1, δ̂33 =
1

2
(λ1λ

−1
2 + λ−1

1 λ2) = 2, (154)

in which case
DHM
Max ≡ htDClassical

Max , (155)

by therefore establishing that systems of extended particles within phys-
ical media verifying the ŜU(2) isosymmetry admits an identical classical
counterpart along the EPR argument. Q.E.D.

It is an instructive exercise for the interested reader to prove that the
above lemma also holds for different isorenormalizations, e.g., Eqs. (171)
of next section, with the understanding that different isorenormalizations
imply different isobasis and different hidden variable terms in Eqs. (151).

Note the crucial role of hidden variables for the proof of Lemma 3.6.
It is an instructive exercise for interested readers to prove that Lemma 3.6
holds for any other regular, isounimodular isorepresentation of the iso-
topic ŜU(2) symmetry in terms of hidden variables presented in Section
3.3.

The proof of the lack of applicability of von Neumann’s theorem [5]
for extended particles in interior conditions is elementary. Recall that von
Neumann’s theorem is based on the uniqueness of the eigenvalues E of a
Hermitean operator H, H|ψ >= E|ψ > under unitary transformation on
H,

UH|ψ > U † = UE|ψ > U † = EU |ψ > U †, UU † = U †U = I, (156)

under the tacit assumption of point particles in vacuum.
By contrast, when the same particles is in interior conditions, it is sub-

jected to an infinite number of different physical different interactions with
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the medium represented by the isotopic element T̂ with ensuing isoeigen-
value equation (Section I-4), [9],

abel1H ? |ψ̂T̂ r >= HT |ψ̂T̂ >= ET̂ |p̂siT̂ >, (157)

thus establishing that a given quantum mechanical operator H represent-
ing the energy of an extended particle in interior conditions has an infinite
number of generally different isoeigenvalues ET̂ depending on the infinite
number of different interior conditions.

Note that, for each given T̂ the isoeigenvalue ET̂ is invariant under
isounitary isotransformations (Section I-3-9).

3.8. Apparent admission of classical determinism.
Consider a point-like particle in empty space represented in the 3-dimensi-
onal Euclidean space E(r, δ, I), where r represents coordinates, δ = Diag.-
(1, 1, 1) represents the Euclidean metric and I = Diag.(1, 1, 1, ) represents
the space unit.

Let the operator representation of said point-like particle be done in a
Hilbert space H over the field of complex numbers C with states ψ(r) and
familiar normalization

< ψ(r)| |ψ(r) >=

∫ +∞

−∞
ψ(r)†ψ(r)dr = 1. (158)

As it is well known, the primary objections against the EPR argument
[2]- [6] were based on Heisenberg uncertainty principle according to which
the position r and the momentum p of said particle cannot both be measured
exactly at the same time.

By introducing the standard deviations ∆r and ∆p, the uncertainty prin-
ciple is generally written in the form

∆r∆p ≥ 1

2
~, (159)

which is easily derivable via the vacuum expectation value of the canoni-
cal commutation rule

∆r∆p ≥ | 1
2i
< ψ| [r, p] |ψ > | = 1

2
~. (160)

Standard deviations have the known form (see, e.g., Ref. [79]) with
~ = 1

∆r =
√
< ψ(r)|[ r − (< ψ(r)| r |ψ(r) >)]2|ψ(r) >,

∆p =
√
< ψ(p)| [p− (< ψ(p)| p |ψ(p) >)]2|ψ(p) >,

(161)
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where ψ(r) and ψ(p) are the wavefunctions in coordinate and momentum
spaces, respectively.

We consider now an extended particle, this time, in interior condi-
tions, e.g., in the core of a star, classically represented by the iso-Euclidean
isospace Ê(r̂, δ̂, Î) with isounit Î = 1/T̂ > 0, isocoordinates r̂ = rÎ , isomet-
ric

δ̂ = T̂ δ, (162)

and isotopic element (4)) under conditions (5).
For simplicity, we assume that the extended particle has no Hamilto-

nian interactions due to the dominance of the latter interactions over the
former.

Consequently, we can represent the extended particle in the isospace Ĥ
over the isofield Ĉ and introduce the time independent isoplanewave [18]

ψ̂(r̂) = ψ̃(r̂)Î =

= N̂ ? (êî?k̂?r̂)Î = N(eikT̂ r̂)Î ,

(163)

where N̂ = NÎ is an isonormalization isoscalar, k̂ = kÎ is the isowavenumber,
and the isoexponentiation is given by Eq. (I-22) [26].

The corresponding representation in isomomentum isospace is given
by

ψ̃(p̂) = M̂ ? êî?n̂?p̂, (164)

where M̂ = MÎ is an isonormalization isoscalar and n̂ = nÎ is the isowave-
number in isomomentum isospace.

The isopropability isofunction is then given by (Ref. [30] page 99)

P̂ = <̂| ? |>̂ =< ψ̂(r̂)| T |ψ̂(r̂) > I, (165)

that, written in terms of isointegrals (Ref. [29] page 354), becomes∫ +∞
−∞ ψ̂(r̂)† ? ψ̂(r̂) ? d̂r̂ =

=
∫ +∞
−∞ ψ̃(r̂)†ψ̃(r̂)(dr + rT̂ dÎ),

(166)

where one should keep in mind that the isodifferential d̂r̂ given by Eqs.
(I-29).
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The isoexpectation isovalues of a Hermitean operator Q̂ are then given
by [30]

<̂| ? Q̂ ? |>̂ =< ψ̂(r̂)| ? Q̂ ? |ψ̂(r̂) >=

=
∫ +∞
−∞ ψ̂(r̂)† ? Q̂ ? ψ̂(r̂)d̂r̂ =

=
∫ +∞
−∞ ψ̃(r̂)†Q̂ψ̃(r̂)d̂r̂,

(167)

with corresponding expressions for the isoexpectation isovalues in isomo-
mentum isospace.

Santilli then introduced apparently for the first time in Ref. [11] the
isotopic operator

T̂ = T̂ Î = I, (168)

that, despite its seemingly irrelevant value, is indeed the correct operator
formulation of the isotopic element for the “completion” of the isoproduct
from its scalar form (1) to the isoscalar form

n̂2̂ = n̂ ? n̂ = n̂ ? T̂ ? n̂ = n2I. (169)

In Sections 3.6, 3.7, we have shown that the Lie-Santilli isosymmetry
ŜU(2) admits an explicit and concrete realization of hidden variables that
allowed the construction of identical classical counterparts for interior dy-
namical systems.

Ref. [11] introduced the isoexpectation isovalue of the isotopic opera-
tor

<̂| ? T̂ ? |>̂ =< ψ̂(r̂)| ? T̂ ? |ψ̂(r̂) > Î =

=
∫ +∞
−∞ ψ̃(r̂)†T̂ ψ̃(r̂)d̂r̂,

(170)

and assumed the isonormalization (again, intended for diagonal matrix
elements)

<̂| ? T̂ ? |>̂ =

=
∫ +∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = T̂ .

(171)

Consider then the isostandard isodeviation for isocoordinates ∆r̂ = ∆rÎ
and isomomenta ∆p̂ = ∆pÎ , where ∆r and ∆p are the standard deviations
in our space.

By using isocanonical isocommutation rules (I-81), we obtain the ex-
pression

∆r̂ ?∆p̂ = ∆r∆pÎ ≈ 1
2
| < ψ̂(r̂)| ? [r̂̂,p̂] ? ψ̂(r̂) > |Î =

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) > Î,

(172)
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One should note the replacement of the symbol ≥ in Eq. (160) with the
symbol ≈ in Eq. (172). This is due to the fact that the historical arguments
applying for a point-like particle in vacuum no longer apply for an inte-
rior system because the pressure exercised by the medium on the particle
(Figure 4) reduce the lower limit of Eq. (160) to the approximate value of
Eq. ( 172).

Under the above assumptions, by eliminating the common isounit Î ,
Ref. [11] achieved the desired result here called isodeterministic isoprinciple

∆r∆p ≈ 1
2
| < ψ̂(r̂)| ? [r̂̂,p̂] ? |ψ̂(r̂) >=

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) >=

1
2

∫ +∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = 1

2
T � 1

(173)

where the property ∆r∆p � 1 follows from the fact that the isotopic
element T̂ has values smaller than 1 in the fitting of all experimental data
dealing with hadronic media such as hadrons, nuclei and stars, and null
value for gravitational collapse [31].

In the event Eq. (35), page 14 of Ref. [11] should be compatible with
Eq. (173) above, it is sufficient to turn into a comma the sign = in the right
of the central expression of Eq. (35), or absorb the factor 1/2 of Eq. (173)
into the isorenormalization.

In this way, thanks to a laborious scientific journey initiated at Harvard
University in late 1977, and thanks to contributions by numerous mathe-
maticians, theoreticians and experimentalists, Santilli reached the follow-
ing verification of the EPR argument [11]:

LEMMA 3.7 (ISODETERMINISTIC PRINCIPLE): The isostandard isodeviations
for isocoordinates ∆r̂ and isomomenta ∆p̂, as well as their product, progressively
approach classical determinism for extended particles in the interior of hadrons,
nuclei, and stars, and achieve classical determinism at the extreme densities in
the interior of gravitational collapse.

PROOF: Define the isostandard isodeviations via the following isotopy
of quantum mechanical expressions (161) (where we ignore the common
multiplication by the isounit)

∆r =

√
< ψ̂(r̂)|[ r̂− < ψ̂(r̂)| ? r̂ ? |ψ̂(r̂) >]2̂̂|ψ(r̂) >,

∆p =

√
< ψ̂(p̂)| [p̂− < ψ̂(p̂)| ? p̂ ? |ψ̂(p̂) >]2̂|ψ̂(p̂) >,

(174)
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where the differentiation between the isotopic elements for isocoordinates
and isomomenta is ignored for simplicity. But the isotopic element repre-
sents the interactions of the particle with the physical medium and tends
toward null values for gravitational collapse, Eqs. (I-91) (I-92). Therefore,
isosquare in expression (171) implies the expressions

∆r =

√
T̂ < ψ̂(r̂)|[ r̂− < ψ̂(r̂)| ? r̂ ? |ψ̂(r̂) >]2|ψ̂(r̂) >,

∆p =

√
T̂ < ψ̂(p̂)| [p̂− < ψ̂(p̂)| ? p̂ ? |ψ̂(p̂) >]2|ψ̂(p̂) >,

(175)

that approach indeed null value under the indicated limit conditions of
gravitational collapse

LimT̂=0∆r = 0,

LimT̂=0∆p = 0,
(176)

Q.E.D.

3.9. Apparent removal of quantum divergencies.
Recall from Section I-4.13 that, under condition (I-96), corresponding to
condition (173), there is a rapid convergence of isoseries (I-97), as well
as the removal of the singularity of Dirac’s delta distribution, Eq. (I-98)
(Figure I-14).

The above properties can be now formalized according to the follow-
ing:

COROLLARY 3.7.1. Einstein’s determinism according to Lemma 3.7 implies the
removal of quantum mechanical divergencies.

PROOF. Lemma 3.7 is based on values of the isotopic element T̂ being
smaller than 1, which values imply in turn the rapid convergence of per-
turbative series without divergencies (Section I-4-13).
Q.E.D.

The removal of quantum divergencies, that have been cause of contro-
versies for about one century, illustrates the far reaching implications of
Einstein’s determinism for interior dynamical systems.

3. CONCLUDING REMARKS.
Following the study of basic methods in Paper I, in this paper we have
provided an apparent confirmation of proofs [10] [11] of the EPR argument
[1] for extended, thus deformable particles within hyperdense media with
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ensuing linear and non-linear, local and non-local and potential as well as
non-potential/non-Hamiltonian interactions.

This study has been conducted via the use of isomathematics and isome-
chanics admitting a conventional Hamiltonian H or Lagrangian L for the
invariant representation of linear, local and potential interactions, plus the
isotopic element T̂ of isoproducts A ? B = AT̂B, Eq. (1), for the invariant
representation of non-linear, non-local and non-Hamiltonian interactions.

Following the outline and upgrade of isosymmetries for time-reversal
invariant interior systems (Section 3), we have apparently confirmed the
proof of Ref. [10] according to which extended particles in interior dynam-
ical conditions admit identical classical counterpart.

We have then apparently confirmed the proof of Ref. [11] according
to which extended particles progressively approach classical determinism
when in the interior of hadrons, nuclei and stars, and achieve full deter-
minism at the limit of gravitational collapse, essentially as predicted by A.
Einstein, B. Podolsky and N. Rosen [1].

To illustrate the far reaching implications of what appears to be Ein-
stein’s most important legacy, we have shown for the first time that the re-
covering of Einstein’s determinism for interior conditions appears to im-
ply the removal of quantum divergencies due to the rapid convergence
of the isoseries of hadronic mechanics, the removal of the singularity in
Dirac’s delta distribution and other features.

A number of illustrations and novel applications in mathematics, physics
and chemistry are presented in the forthcoming Paper III.
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Abstract

In the preceding Papers I and II of this series, we have presented
a review and upgrade of novel mathematical, physical and chemi-
cal methods, and shown their use for a confirmation of the apparent
proof of the EPR argument that extended particles within physical
media admit classical counterparts, while Einstein’s determinism ap-
pears to be progressively verified with the increase of the density of
the medium. In this third paper, we have additionally shown, ap-
parently for the first time, the validity of the EPR final statement to
the effect that the wavefunction [of quantum mechanics] does not pro-
vide a complete description of the physical reality.” In fact, we have stud-
ied the axiom-preserving “completion” of the quantum mechanical
wavefunction due to deep wave-overlapping when represented via
isomathematics, and shown that it permits an otherwise impossible
representation of the attractive force between identical electrons pairs
in valence coupling, as well as the representation of all characteristics
of various physical and chemical systems existing in nature.
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Studies on the EPR argument, I: Basic methods

1. INTRODUCTION.
1.1. The EPR argument.
As it is well known, Albert Einstein did not accept quantum mechanical
uncertainties as being final, for which reason he made his famous quote
“God does not play dice with the universe.”

Einstein communicated his views to B. Podolsky and N. Rosen and
they jointly published in 1935 the historical paper [1] that became known
as the EPR argument.

Objections against the EPR argument have been voiced by numerous
scholars, including by N. Bohr [2], J. S. Bell [3] [4], J. von Neumann [5] and
others (see Ref. [6] for a review and comprehensive literature).

The field became known as local realism and included the dismissal of
the EPR argument based on claims that quantum axioms do not admit
hidden variables λ [7] [8].

1.2. Outline of preceding works.
Following various preparatory works, in Ref. [9] of 1998, R. M. Santilli:

1) Assumed the validity of quantum mechanics, with consequential
validity of the objections against the EPR argument [2] - [6], for point-
like particles in empty space under linear, local and potential interactions
(exterior dynamical problems);

2) Proved the inapplicability (and not their violation) of said objections
for the broader class of extended, deformable and hyperdense particles
within physical media under the most general known linear and non-
linear, local and non-local and potential as well as non-potential interac-
tions (interior dynamical problems); and

3) Provided the apparent proof that interior dynamical systems admit clas-
sical counterparts in full accordance with the EPR argument via the repre-
sentation of interior systems with of isomathematics also called isotopoic
branch of hadronic mathematics, and isomechanics, also called isotopic branch
of hadronic mechanics.

In the 2019 paper [10], Santilli provided the apparent proof that Ein-
stein’s determinism is progressively approached in the interior of hadrons, nuclei
and stars and it is fully achieved in the interior of gravitational collapse.

In Ref. [11], herein referred to as Paper I, we provided a review of
isomathematics and isomechanics.

In the subsequent Ref. [12], hereinafter referred as Paper II, we pro-
vided a review of isosymmetries, with particular reference to the isotopies
of the spin and rotational symmetries, and provided an apparent confir-
mation of the proofs [9] and [10] of the EPR argument.
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Figure 1: In this figure, we present the so-called Schmidt limits essentially representing
the deviations of experimental data on nuclear magnetic moments from the predictions of
quantum mechanics. In Santilli’s view [11], this occurrence is clear evidence on the need
for a “completion” of quantum mechanics along Einstein’s legacy [1], beginning with
a “completion” of applied mathematics into a form suitable to represent extended and
deformable nucleons according to the founders of nuclear physics, such as E. Fermi [13]
and V. F. Weisskopf who states in page 31 of his treatise in nuclear physics with J. M. Blatt
[14]: “ it is possible that the intrinsic magnetism of a nucleon is different when it is in
close proximity to another nucleon. ” For penetrating appraisals of the insufficiencies of
20th century science, one should also see K. R. Popper [15]. J. Dunning-Davies [16], J.
Horgan [17] and others. In this paper, we outline and update the achievement by hadronic
mathematics and mechanics of exact representations of nuclear experimental data along
the indicated historical legacies, and point out important implications for much needed
new, clean energies and fuels (Sections 2.6.5, 2.7.3, 2.8.3).

In this third and final paper of this series: we present apparent exper-
imental verifications of the EPR argument in physics and chemistry; we
outline expected industrial applications; and identify the most salient im-
plications of the EPR argument.

1.3. Basic notions.
The basic assumptions underlying the apparent proofs of the EPR argu-
ment are the following::

1) The axiom-preserving lifting of the conventional associative product
ab = a× b between all possible quantum mechanical quantities (numbers,
functions, matrices, etc.) into the isoproduct, first introduced in the 1978
Harvard university paper [18] (see also Refs. [19] to [23])

a ? b = a T̂ b, (1)

where T̂ , called the isotopic element, is restricted to be positive-definite,
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Studies on the EPR argument, I: Basic methods

T̂ > 0, but possesses otherwise an unrestricted functional dependence on
all needed local variables, including wavefunctions and their derivatives.

20th century applied mathematics and quantum mechanics are refor-
mulated in an axiom-preserving, thus isotopic form, via isoproduct (1)
(Paper I and Section II-2).

3) The axiom-preserving isotopy of the various branches of Lie’s the-
ory, first achieved by Santilli in Refs. [18] [23] and are today known as the
Lie-Santilli isotheory [24] (Section I-3.7) with Lie-Santilli algebras of the type
[9]

[Xî,Xj] = Xi ? Xj −Xj ? Xi = Ck
ijXk. i, j = 1, 2, ..., N. (2)

and ensuing systematic isotopy of space-time and internal symmetries
(Section II-2).

3) Immediate explicit and concrete realizations of “hidden variables”
[7] [8] of the type

T̂ = Diag.(1/λ, λ), DetT̂ = 1. (3)

Ref. [9], therefore establishing that, contrary to objections [2] to [6],
the abstract axioms of quantum mechanics do indeed admit explicit and concrete
realizations of hidden variables.

4) Representation of extended particles in conditions of mutual pene-
tration via realizations of the isotopic element T̂ of isoproduct (1) of the
type [25]

T̂ = Πk=1,...,NDiag.(
1
n2
1k
, 1
n2
2k
, 1
n2
3k
, 1
n2
4k

)e−Γ,

k = 1, 2, ..., N, µ = 1, 2, 3, 4,

(4)

where n2
1, n

2
2, n

2
3, (called characteristic quantities) represent the deformable

semi-axes of the particle normalized to the values n2
k = 1, ‘k = 1, 2, 3 for

the sphere; n2
4 represents the density of the particle considered normal-

ized to the value n4 = 1 for the vacuum; and Γ represents non-linear,
non-local and non-Hamiltonian interactions caused by mutual penetra-
tions/entanglement of particles.

In particular, the isotopic element T̂ has resulted to have numeric val-
ues smaller than 1 in all known applications [23]-

| T̂ | ≤ 1, (5)

which property permitted Ref. [10] to show that the standard deviations ∆r
and ∆p progressively tend to zero with the increase of the density of the medium
of interior problems.

5) Isosymmetries do not preserve over time the basic unit 1 of conven-
tional numeric fields F (n,×, 1) with consequential lack of experimental
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verifications. This occurrence mandated Santilli to formulate isomathe-
matics on isofields F̂ (n̂, ?, Î) [26] [27](Section I-3.3) with isonumbers n̂ = nÎ
equipped with isoproduct (1) and basic isounit

Î = 1/T̂ > 0, (6)

which remains numerically invariant under isosymmetries as necessary
for consistency (Sections I-3.8, I-3.9 and II-2).

5) Recall that the Newton-Leibnitz differential calculus provides the
ultimate characterization of the point-like character of particles admitted
by quantum mechanics due to the known feature that said calculus can be
solely defined as a finite number of isolated points.

This occurrence mandated Santilli to construct the covering of the Newton-
Leibnitz differential calculus into the isodifferential isocalculus (Section I-
3.6) with basic isodifferential [28] [29]

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...), (7)

and corresponding isoderivative

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
, (8)

which are defined on volumes represented by the isotopic element T̂ , rather
than points.

Recall that Bell’s inequality [3] Dqm
Bell does not admit a classical counter-

part Dclass because always smaller than the classical counterpart,

Dqm
Bell < Dclass. (9)

In Ref. [9], Eqs. (5.8), page 189, proved that, thanks to the existence in
hadronic mechanics of hidden variables of type (3), the corresponding in-
equality in hadronic mechanics (hm), Dhm is bigger than Bell’s inequality,
and always admits a classical counterpart

Dhm ≡ Dclass, (10)

resulting in the following:

LEMMA II-3.6 (EXISTENCE OF CLASSICAL COUNTERPART). Extended par-
ticles within physical media that are invariant under the Lie-Santilli isosymmetry
ŜU(2) admit identical classical counterparts.
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The main result of Ref. [10], Eqs. (35), page 14,

∆r∆p ≈ 1
2
| < ψ̂(r̂)| ? [r̂̂,p̂] ? |ψ̂(r̂) >=

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) >=∫ +∞

−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = T � 1,

(11)

verifying Einstein’s determinism, was expressed with the following:

LEMMA II-3.7 (EINSTEIN DETERMINISM): The isostandard isodeviations for
isocoordinates ∆r̂ and isomomenta ∆p̂, as well as their product, progressively
approach classical determinism for extended particles in the interior of hadrons,
nuclei and stars, and achieve classical determinism at the extreme densities in the
interior of gravitational collapse.

By recalling that isoperturbative series of hadronic mechanics has based
on isoproduct (1) (Section I-4),

A(0) = Î + (AT̂H −HT̂A)/1! + ........ (12)

and that T̂ � 1 from Lemma II-3.7, the following consequential property
was introduced, apparently for the first time in Paper II:

COROLLARY 3.7.1 (LACK OF DIVERGENCIES) Einstein’s determinism accord-
ing to Lemma II-3.7 implies the lack of quantum mechanical divergencies in hadronic
mechanics.

It should be indicated that the technical understanding of the verifi-
cations and applications presented in this paper require a knowledge of
isomathematics and isomechanics.

2. VERIFICATIONS AND APPLICATIONS.
2.1. Foreword.
Being dimensionless, Newtonian massive points cannot experience resistive or
contact force of any type. By recalling that Newton’s equation have been
the foundations of physics for the past four centuries, 20th century main-
stream particle physics has been developed without the notion of resistive
force, with ensuing lack of treatment of the pressure exercised by a medium
on a particle in its interior, contrary to clear evidence that a proton in the
core of a star is exposed to extremely big pressures (Figure 1).
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In this section, we shall illustrate the fact that, once admitted, the pres-
sure exercised on extended particles characterizes in their interior charac-
terizes standard deviations ∆r̂ and ∆p̂ that, being constrained by said pres-
sure, verify the isodeterministic principle of Lemma II-3.7 as well as the
rapid convergence of isoperturbative series according to Corollary II-3.7.1,
by progressively approaching classical determinism with the increase of
the pressure, up to the apparent achievement of classical determinism for
the interior of gravitational collapse as predicted by Einstein, Podolsky
and Rosen [1].

A physically important notion emerging from the examples provided
below is that the EPR argument appears to be verified by strong interactions be-
cause, as indicated by Santilli in the 1978 paper [19], contact non-Hamilton-
ian interactions responsible for the synthesis of the neutron and other
hadrons are short range, strongly attractive, charge independent and non-
Hamiltonian (technically identified as variationally non-selfadjoint interac-
tions [22]), thus providing a conceivable, first known, explicit and concrete
representation of strong interactions.

The models outlined in this section were first proposed by Santilli in
Ref. [19] in their time irreversible form, as requested for decaying bound
states, thus being elaborated with Lie-admissible genomathematics, in which
case, the need for a “completion” of quantum mechanics is beyond scien-
tific doubt (Section I-1.3).

However, the objections against the EPR argument [2] - [6] have been
formulated for conventional quantum axioms, thus implying the sole con-
sideration of time-reversal invariant states. In this section, we illustrate
the need for a “completion” of quantum mechanics also for time-reversal
invariant systems of extended particles in interior conditions.

Therefore, unstable strongly interacting particles (hadrons) are hereon
studied for such a small period of time to allow their time-reversal invari-
ant approximation.

2.2. Particles under pressure.
One of the simplest illustrations of Lemma II-3.7 is given by a particle in
the center of a star, thus being under extreme pressures π from the sur-
rounding hadronic medium in all radial directions (Figure 1).

By ignoring particle reactions in first approximation, the conditions
here considered can be rudimentarily represented for very short periods
of time by assuming that the function Γ > 0 in the exponent of the iso-
topic element (4) is linearly dependent on the pressure π, resulting in a

146

346

Reprinted by permission from Ratio Mathematica, “Studies on A. Einstein, B. Podolsky, and N. Rosen
Prediction that Quantum Mechanics is Not a Complete Theory III: Illustrative Examples and

Applications”, R.M. Santilli, Ratio Mathematica (Vol. 38), 139-222, 2020.



Studies on the EPR argument, I: Basic methods

Figure 2: In this figure, we present a conceptual rendering of the central notion used
for the verification of the EPR argument, namely, the pressure experienced by extended
particles immersed in hyperdense media, such as a proton in the core of a star, which
pressure evidently restricts uncertainties in favor of Einstein’s determinism (Lemma II-
3.7). Note that the notion of pressure does not exist in 20th century physics due to the
approximation of particles as being point-like.

realization of the isotopic element of the simple type

T̂ = e−wπ � 1, Î = e+wπ � 1, (13)

where w is a positive constant.
Isodeterministic principle (11) for the considered particle is then given

by

∆r∆p ≈ 1

2
e−wπ � 1, (14)

and tends to null values for diverging pressures.
The above example illustrates the consistency of isorenormalization (II-

171) because a constant isotopic element verifies the isonormalization

<̂ψ̂(r̂)|T̂ |ψ̂(r̂) > Î =

= T < ψ̂(r̂)| |ψ̂(r̂) > Î =

=< ψ̂(r̂)| |ψ̂(r̂) >,

(15)

but not necessarily other isorenormalizations.
Note that we have considered an individual extended particle immersed

in a hadronic medium, rather than the bound state of extended particles
in condition of mutual penetration that are studied in the next sections.
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Consequently, isotopic element (14) represents a subsidiary constraint on
standard deviations caused, as indicated, by the pressure of the surrounding
hadronic medium on the particle considered.

It is easy to see that, since Γ(π) > 0, more complex functional depen-
dence on the pressure π continue to verify Lemma II-3.7 as well as Corol-
lary II-3.7.1.

2.3. Non-relativistic hadronic bound states.
As recalled in Paper I, the dynamical equations of quantum mechanics,
such as the Schrödinger and the Dirac equation, are characterized by the
conventional differential calculus which can solely be defined at a finite
set of isolated points on a given representation space. Consequently, quan-
tum mechanical bound states are solely possible for point-like constituents
under linear, local and potential interactions (technically identified as vari-
ationally self-adjoint interactions [22]). This it is the case for the familiar
Schrödinger equation for the bound state of two point-like particles of
mass m with Coulomb potential V (r) in a Euclidean space E(r, δ, I) for-
mulated on a Hilbert spaceH over the field of complex numbers C

i ∂
∂t
ψ(t, r) = Hψ(t, r) =

[
~2
m

Σkpkpk − V (r)
]
ψ(t, r) =

=
[

1
m

Σk(−i~∂k)(−i~∂k)− V (r)
]
ψ(t, r) =

=
[
−~2
m

∆r − V (r)
]
ψ(t, r) = Eψ(t, r).

(16)

By contrast, hadronic bound states are bound states of extended particles
at mutual distances smaller or equal to the hadronic horizon (Figure I-13)

R =
1

b
≈ 10−13 cm. (17)

In such a region, bound states verify hadronic mechanics, can be rep-
resented with isomathematics (Section I-3) and isomechanics (Section I-4)
for the case of time-reversal invariant bound states (such as the deuteron),
or genomathematics and genomechanics for time irreversible bound states
(such as all hadrons produced in particle physics laboratories).

By using the methods outlined in Paper I and in the preceding sections,
when assumed to be stable in first approximation (thus being time reversal
invariant), hadronic bound states are characterized by the following main
features:
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1) The bound states occur between isoparticles, namely, isoirreducible,
isounitary isorepresentations of the isospinorial covering of the Galileo-
Santilli isosymmetry Ĝ for non-relativistic treatments (Sections II-2.5.1 and
II-3.9) or of the Lorentz-Poincaré-Santilli isosymmetry P̂ for relativistic
treatments (Sections II-2.5.11 and II-3.9) represented by hadronic mechan-
ics including the verification of Einstein’s determinism (Lemma II-3.7) and
the absence of divergencies (Corollary II-3.7.1).

2) The representation of the extended character of the isoparticles is
done with isoproduct (1) and isotopic element (4), resulting in iso-Schrödin-
ger equations of type (I-80), while the deep mutual penetration of the
wavepackets and/or charge distributions of isoparticles generates novel
non-linear, non-local and non-potential interactions represented by the ex-
ponent of the the isotopic element (4) and other means. Note that the latter
interactions are short range, strongly attractive, charge independent, and
non-Hamiltonian according to all studies conducted to date in the field,
thus allowing an initial yet explicit and concrete realization of strong in-
teractions [19].

3) By recalling that isosymmetries Ĝ and P̂ are all irregular realizations
of the Lie-Santilli isotheory (Sections I-2.7 and II-2.5.4), a necessary condi-
tion for the invariance of hadronic dynamical equations under isosymme-
tries is that contact interactions cannot be derived via non-unitary trans-
forms of quantum mechanical potentials, thus being basically new interac-
tions. The physically equivalent property is that, as it is well known, strong
interaction cannot be derived via non-unitary or other known transformations of
electromagnetic interactions, thus confirming the necessary use of the irreg-
ular Lie-Santilli isotheory and hadronic dynamical equations.

The notion of hadronic bound states was proposed, apparently for the
first time, by Santilli in the 1978 Ref. [19] and was extensively studied
hereafter in various works by various authors (see the 2001 monograph
[30], the 2011 review [31], and papers quoted therein).

It is important to review the derivation of the basic non-relativistic and
relativistic isoequations for hadronic bound states to show their apparent
verification of the isodeterministic principle of Lemma 3.7.

The fundamental non-relativistic, irregular isoequation of a time-reversal
invariant hadronic bound state of two isoparticles of mass m at mutual dis-
tances of the order of the hadronic horizonR = 10−13 cm in an iso-Euclidean
isospace Ê(r̂, δ̂, Î) formulated on a Hilbert-Myung-Santilli isospace Ĥ over
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the isofield of isocomplex isonumbers Ĉ can be written

i ∂̂
∂̂t̂
ψ̂(t̂, r̂) =

[
(1̂/̂m̂) ? Σkp̂k ? p̂k ± V̂ (r̂)− Ŝ(ψ̂)

]
? ψ̂(t̂, r̂) =

=
[
(1/m)Σkp̂kT̂ p̂kT̂ ± V (r̂)− S(ψ̂)

]
ψ̂(t̂, r̂) =

Ê ? ψ̂(t̂, r̂) = Eψ̂(t̂, r̂),

(18)

where V̂ (r̂) = V (r̂)Î ; Ŝ(ψ̂) = S(ψ̂)Î represents the novel short range,
strongly attractive force; the value −V̂ (r̂) occurs for bound states with
opposite charge (as it is the case for the synthesis of hadrons reviewed
below); the value +V̂ (r̂) occurs for isoparticles with the same charge (as
occurring for valence electron bonds reviewed below); and one should
note that isoeigenvalues can always be reduced to conventional eigenval-
ues, thus allowing experimental verifications.

Due to the large representational capabilities of isoequations (182), we
use the following simplifying assumptions:

1) The isotime is equal to the conventional time, t̂ = tÎt = t, Ît = 1;
2) Being extremely small, the orbits of the isoparticles are assumed to

be nearly constant circles, thus implying that the nk characteristic quan-
tities of then isotopic element (4) can be normalized to the sphere, nk =
1, k = 1, 2, 3;

3) The isotopic element is assumed to be given by the exponential term
of Eq. (4) with realizations of the non-linear, non-local and non-potential
interactions of the type (Eq. (4.7), page 170 Ref. [30])

T̂ = e−Γ = e−Nψ/ψ̂ ≈ 1−Nψ/ψ̂, (19)

where ψ behaves like the solution of quantum equation (180),

ψ(r) ≈ W1e
−br, (20)

and ψ̂ behaves like the solution of the hadronic equation expected to be of
the type

ψ̂ ≈ W2(1− e
(1−−br)

r , (21)

where W1 and W2 are positive normalization constants.
We therefore have the following explicit form of the isotopic element

T̂ = e
−W2

e−br
(1−e−br)/r ≈ 1−W e−br

(1− e−br)/r
, (22)
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exhibiting the Hulten potential

VHult = W2
e−br

1− e−br
, (23)

directly in the exponent of the isotopic element, where W is normalization
constants.

It should be recalled that Santilli suggested the use of the Hulten po-
tential in the 1978 paper [19], Eq. (5.1.6), page 833, as an initial yet explicit
and concrete representation of strong interactions.

Under the above assumptions, isotopic element (186) verifies the cen-
tral condition for the validity of the isodeterministic principle as well as
the rapid convergence of isoperturbative series inside the hadronic hori-
zon (Lemma II-3.7 and Corollary II-3.7.1), in a way fully compatible with
the validity of conventional uncertainties as well as divergence of pertur-
bative series outside said horizon

|T̂ | � 1,

Limr�RT̂ = 1.

(24)

The use of the isolinear isomomentum (I-79), the projection of isody-
namical equation (II-182) into our Euclidean space can be written in the
form first derived in Eq. (5.1.9), page 833, Ref [19]

i ∂
∂t
ψ̂(t, r) =

[
1
m

Σkp̂k ? p̂k ?±V e2

r
−W e−br

1−e−br

]
ψ̂(t, r) =

=
[

1
m

Σk(−iÎ∂k)(−iÎ∂k)±W1
e2

r
−W2

e−br

1−e−br

]
ψ̂(t, r) =

=
[
− 1
m̄

∆r ± V e2

r
−W e−br

1−e−br

]
ψ̂(t, r) = Eψ̂(t, r),

(25)

where: W ′
1 and W2 are renormalization constants; E is the binding energy

of the hadronic bound state; the total energy Etot is given by

Etot = E1 + E2 +−E, (26)

where Ek, k = 1, 2 are the total energies of particles 1 and 2, respectively,
and

m̄ =
m

Î2
. (27)
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The nonrelativistic expression of the mean-life of the hadronic bound
state can be derived via an isotopy of the quantum mechanical form, yield-
ing the expression (Ref. [19], Eq. (5.1.13), page 835)

τ−1 = 2πλ2|ψ̂(0)|2α
2Ek
~

, k = 1, 2. (28)

The angular component of Eqs. (85) has been studied in detail in Ref.
[33] via the isospherical isoharmonics.

The radial component of the non-relativistic, irregular, hadronic isoe-
quation for the characterization of the total energy Etot, mean life τ and
charge radius R of a time-reversal invariant hadronic bound state can be
written (Ref. [19], Eqs. (5.1.40, page 835)[

1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1e

2
r +W2

e−br

1−e−br )
]

= 0,

Etot = E1 + E2 − E, m̄ = m
I2

τ−1 = 2πλ2|ψ̂(0)|2 α2Ek
~ , k = 1, 2,

R = b−1,

(29)

where the last two equations are subsidiary constraints on the first two.
The analytic solution of the above equations has been studied in detail

in Section 5, Ref. [19], including boundary conditions requested by the
subsidiary constraints, and we cannot review it here for brevity. We merely
limit ourselves to the indication that said analytic solution was reduced to
the solution of the following two algebraic equations on the parameters k1

and k2 (Ref. [19], Eq. (5.1.32), page 840)

k1[k1 − (k2 − 1)3] = 1
2c
EtotR,

(k2−1)3

k1
= 9×106

3πc
R
τ
.

(30)

It is now important to evaluate the numeric value of the binding en-
ergy E in Eq. (198). For this purpose, we recall that the Hulten potential
behaves like the Coulomb potential at short distances

Vhp ≈ K
1

r
, (31)

where K is a positive constant. Consequently, the Hulten potential can ab-
sorb the Coulomb potential resulting in a short range strongly attractive force
irrespective of whether the Coulomb force is attractive or repulsive.
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The radial equation can then be reduced in first approximation to the
expression (Eq. (5.1.14a), page 836, Ref. [19])[

1

r2
(
d

dr
r2 d

dr
) + m̄(E +W2

e−br

1− e−br
)

]
= 0, (32)

and its energy spectrum results to be the typical finite spectrum of the Hul-
ten potential

|Ehp| =
1

4R2m̄
(k2

1

n
− n)2, n = 1, 2, 3, ... (33)

An important feature of hadronic bound states is that, since we can
ignore Coulomb interactions and solely assume contact interactions repre-
sented with the exponent of the isotopic element (4), the value of the binding
energy E is expected to be small or null,

|E| = 1

4R2m̄
(k2

1

n
− n)2 = 0. (34)

This is due to the fact that contact interactions do not carry potential en-
ergy (this is classically the case for a balloon moved by winds in our atmo-
sphere).

Therefore, the Hulten potential for consistent hadronic bound states is ex-
pected to admit one single energy level, the ground state since all possible ex-
cited states imply radial distances bigger than the hadronic horizon R,
with consequential recovering of quantum mechanics.

In particular, property (34) is solely possible for the following values of
the k-[arameters

k1 > 0, k2 ≥ 1. (35)

The absence of a spectrum of energies was called in Section 5 of Ref.
[19] the hadronic suppression of quantum mechanical energy spectra in order
to differentiate the quantum mechanical classification of hadrons into families
(which is characterized by energy spectra) from the structure of individual
hadrons of a given classification family (which is expected to require different
constituents for different particles due to the general difference of sponta-
neous decays with the lowest mode).

2.4. Relativistic hadronic bound states.
The relativistic counterpart of Eqs. (25) was identified, apparently for the
first time, in Refs. [35] [36] and was formulated in the isoproduct of a real-
valued iso-Minkowski isospace for orbital motions and a complex valued
iso-Euclidean isospace for the hadronic spin

Ŝtot = M̂(x̂, η̂, Îorb) ? R̂(ẑδ̂, Îspin), (36)
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resulting in the following irregular extension of the Dirac-Santilli isoequation
(I-88) ,

[Ω̂µν ? Γ̂µ ? ∂̂ν + M̂ ? Ĉ − V̂hp]ψ̂(x̂) =

= (−iÎ η̂µν γ̂µ∂ν +mC − Vhp)ψ̂(x̂) = 0,

(37)

where Ŝ = SÎorb represents strong interactions, and the Dirac-Santilli isogamma
isomatrices Γ̂ = γ̂Î are given by

γ̂k = 1
nk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
n4

(
I2×2 0

0 −I2×2

)
;

(38)

where σ̂k are the irregular Pauli-Santilli isomatrices studied in Section II-3.4
with the following anti-isocommutation rules

{γ̂µ̂,γ̂ν} = γ̂µT̂ γ̂ν + γ̂νT̂ γ̂µ =
= 2η̂µν .

(39)

where η̂ is the isometric of the orbital iso-Minkowskian isospace.

2.5. Einstein’s determinism in the structure of mesons.

2.5.1. Insufficiencies of quark conjectures. While the classification of hadro-
ns into families has received a rather large consensus since its initiation
by M. Gell-Mann in the 1960’s [75], the conjecture that the hypothetical
quarks are the actual physical constituents of hadrons has been controver-
sial since its inception. These problematic aspects were reviewed in detail
in the 1979 paper [20] (written at the Department of Mathematics of Har-
vard University under DOE support), and can be summarized as follows:

1) The quantum mechanical classification of point-like particles per-
mitted by the SU(3) model and, more recently, by the standard model, has
indeed achieved a satisfactory classification of hadrons into families.

2) Quarks are purely mathematical representations of a purely math-
ematical unitary symmetry defined on a purely mathematical complex-
valued internal space and, as such, quarks cannot be the actual physical
constituents of hadrons for numerous insufficiencies or sheer inconsisten-
cies, such as:

2A) By recalling that quarks have to be point-like as a necessary con-
dition to maintain the validity of quantum mechanics in the interior of
hadrons, the ensuing conception of the hyperdense hadrons as ideal spheres
with point-particles in their interior is not realistic;
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2B) Quarks cannot be physical particles in our spacetime, and the same
holds for their masses, because they cannot be defined as unitary irre-
ducible representations of the Lorentz-Poincaré symmetry (Section 3.9);

2C) Quarks cannot be rigorously confined inside hadrons (i.e,. con-
fined with a rigorously proved, identically null probability of tunnel ef-
fect) due to the uncertainty principle;

2D) Quarks have not been directly detected under collisions at the ex-
tremely high energies achieved at CERN and at other particle physics lab-
oratories;

2E) The wavepackets of all particles are of the same order of magnitude
of the size of all hadrons. Hence, the hyperdense character of hadrons
is due to the total mutual penetration of the wavepackets of their con-
stituents, resulting in non-linear, non-local and non-Hamiltonian internal
interactions under which the SU(3) and other symmetries cannot be con-
sistently defined (Sections 3, 4).

3) History has thought that the study of atoms (as well as of other nat-
ural systems) required two different yet compatible models, one for the
classification of atoms into family, and a different model for the structure
of each atom of a given classification family. Particularly significant is the
fact that the classification of atoms could be achieved via the use of pre-
existing mathematics, while the structure of atoms required new mathematics,
such as the Hilbert spaces, that are unnecessary for the classification of
atoms.

In order to resolve the insufficiencies of the conjecture that quarks are
physical particles, Santilli [20] suggested to follow the teaching of the his-
tory of science, and study hadrons via two different models, the standard
model for the classification of hadrons and a different, yet compatible,
model for the structure of individual hadrons of a given classification mul-
tiplet.

In particular, the classification of hadrons can be effectively done via
quantum mechanics because individual hadrons can be well approximated
as being point-like particles in vacuum. By contrast, the structure of hadrons
requires a necessary “completion” of quantum mechanics into a covering
theory suggested beginning with the title of Ref. [20] in view of the un-
avoidable, internal, non-linear, non-local, and non-potential interactions.

2.5.2. Hadronic structure model of mesons. A primary aim of papers [18]
[19] [20] and monographs [22] [23] of 1978-1979 was the “completion”
of quantum mechanics (qm) into the covering hadronic mechanics (hm)
for the specific intent of achieving a representation of all characteristics
of mesons as hadronic bound states of actual, massive, physical particles
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Figure 3: A reproduction of Table 1, page 429, Ref. [20] used to identify the physical
constituents of mesons in the massive particles produced free in the spontaneous decays,
generally those with the lowest mode. The “completion” of quantum mechanics into
hadronic mechanics then becomes recommendable for any quantitative treatment of the
indicated structure model.
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Figure 4: An illustration of the compatibility between the hadronic structure model of
mesons, Eqs. (40)-(45), with physical constituents and the conventional SU(3) classi-
fication. This compatibility is achieved via the identification of the isounits or isotopic
elements per each meson, Eq. (46), and their use as the hyperunit of the S̃U(3) hyper-
symmetry in view of its local isomorphism to the conventional symmetry.

produced free in the spontaneous decays , generally those with the lowest
mode illustrated in Table 1, page 429, Ref. [20] (reproduced in Figure 2).

The above view suggested the following new structure models for the
octet of mesons:

π0 = (ẽ−, ẽ+)hm, (40)

π± = (π̃0, ẽ±)hm, (41)

K0 = (π̃0, π̃0)hm, (42)

K± = (π̃0, π̃±)hm, (43)

KS = (π̃−, π̃+)hm, (44)

KL = (K̃−, π̃+)hm. (45)

In the above models, the role of positrons as physical constituents of
mesons provides the first known numerical representation of their very
short meanlives, while all other characteristics are numerically represented
via the hadronic bound states of Sections 2.3 and 2.4.

Structure models (40) - (45) are incompatible with quantum mechan-
ics because the rest energy of all particles are bigger than the sum of the
rest energies of the constituents (thus requiring positive binding energies,
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with ensuing mass excesses that are anathema for quantum mechanics as
discussed in Section I.3), and for other reasons.

Necessary conditions to prevent misrepresentations is that models (40)
- (45) are treated with hadronic mechanics and their constituents are isopar-
ticles and anti-isoparticles (Section II-3.9) hereon denoted with an upper
tilde.

Therefore, the elementary constituents of the π0 in Eq.(40) are one iso-
electron ẽ− and one isopositron ẽ+ (called eletons in Ref. [19]); the constituents
of the π± , Eq. (51) are one iso-meson π̃0 and one isoelectron or isopositron;
etc.

Following their emission in the spontaneous via isotunnel effects (i.e.,
tunnel effects in the iso-Hilbert isospace), the isoconstituents assume con-
ventional quantum mechanical characteristics plus possible secondary ef-
fects with the emissions of massless particles.

Note that all models (40)-(45) either are or can be reduced to two-body
hadronic bound states, thus admitting analytic solutions in their representa-
tion via Eqs. (29). Note also that models (40)-(45) have a kind of bootstrap
structures, since a given meson appears in the structure of heavier mesons.

Note additionally that models (40)-(45) imply the increase of the number
of ”elementary” constituents with the increase of the rest energy. In fact, the
π0 has only two elementary constituents while KL has eight elementary
constituents.

Note finally that the role of isopositrons as actual physical constituents
of mesons provides the only known mechanism via particle-antiparticle
annihilation for the quantitative representation of the very small mean-lives
of mesons, by keeping in mind that the rest energy of electron-positron
bound states is positive in our world and negative in the antimatter world
(Section 2.5.3).

Since different structure models are characterized by numerically dif-
ferent isounits, the compatibility of the above hadronic structure model of
mesons with their classification is readily achieved at the higher level of
the hyperstructural branch of hadronic mechanics [33] [37], with the following
total multi-valued hyperunit

Îtot = {Îπ0 , Îπ± , ÎK0 , ÎK± , ÎKS , ÎKL}. (46)

2.5.3. Positive energy of particle-antiparticle bound states. The positive total
energy of particle-antiparticle hadronic bound states has been studied in
detail in monograph [38] (see, e.g., Section 2.3.14, page 131), and in various
additional works, including all historical references.
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Figure 5: A reproduction of “gear model“ used in Section 5, page 852, Ref. [19] to
illustrate the strongly attractive character of contact non-Hamiltonian forces when the
constituents are in singlet coupling and their strongly repulsive character when in triplet
couplings.

We cannot possibly review here the underlying isodual theory of antimat-
ter, but an indication of the following main notions appears recommend-
able to avoid basic misconceptions.

Recall that negative energies violate causality, for which reason P. A. M.
Dirac was forced to work out his “hole theory.”

Santilli resolved the problem of causality by referring all physical quan-
tities, thus including energies, to isodual units defined on isodual fields with a
’negative’ unit.

Hence, the terms “negative energy of antiparticles” have no meaning
in the field here considered, because the correct statement is “negative en-
ergies of antiparticles measured to negative units of energy.”

Within the above setting, Ref. [38], Eqs. (2.3.77), page 131, shows that
the total energy of a particle-antiparticle bound state is positive when measured
in our world (with positive units) and negative when measured in the antimatter
word (with negative units).

The above property is truly fundamental for a consistent quantitative
representation of all characteristics of unstable particles.

In fact, the presence of antiparticles in the structure of mesons and (un-
stable) baryons, first proposed by Santilli in 1978 [19], appears to be the
most plausible origin of the extreme instability of mesons and (unstable)
baryons with mean lives such as τ = 10−16 s or less, with no equally effec-
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tive or plausible alternative known to this day.

2.5.4. Hadronic structure model of the π0 meson. The characteristics of the
π0 meson are:

1. Rest energy E = 134.96MeV ,
2) Mean-life τ = 0.828× 10−16 s,
3) Charge radius R = 10−13 cm,
4) Null charge and spin.
5) Null electric and magnetic moments,
6) Negative parity; and
7) Primary decay

π0 → γ + γ, 98.85 %. (47)

The above characteristics are all numerically represented by hadronic
bound state (29) ) as a “compressed” form of the positronium (Pos), re-
sulting in hadronic bound state (40) of one isoelectron and one isopositron
(Ref. [19], Section 5, page 828 on)

Pos = (e−, e+)qm → π0 = (e−, e+)hm, (48)

with hadronic structure equations[
1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1e

2
r +W2

e−br

1−e−br )
]

= 0,

Etot = Eẽ− + Eẽ+ − E = 135 MeV m̄ = m
I2

τ−1 = 2πλ2|ψ̂(0)|2 α2Eẽ
~ = 10−16s

R = b−1 = 10−13 cm = 1 fm,

(49)

and numeric solution

k1 = 0.34, k2 = 1 + 4.27× 10−2, (50)

verifying conditions (35) as expected.
In appraising representation (48), the reader should keep in mind the

assumption of Section 2.3 of ‘constrained, nearly constant and circular orbits
of the constituents’ under which the isounit can be considered independent
from local coordinates.

The above results confirm all expectations indicated in preceding sec-
tions, namely,

1) Hadronic spectrum (33) admits one and only one energy level, the
π0, since all excited states are those of the positronium;
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Figure 6: A conceptual rendering of the structure model of the π0 meson as a hadronic
bound state of one isoelectron ẽ− and one isopositron ẽ+ in singlet coupling with un-
mutated spins s1 = −s2 = 1/2 and orbital hadronic momentum in the ground state
L1−2 = 0. The dashed area represents the contact, non-linear, non-local and non-
potential interactions responsible for the bound state that, being not representable with
a Hamiltonian H , are representable via the isotopic element T̂ in the iso-Schrödinger
equation H ? ψ̂ = HT̂ ψ̂ = Eψ̂.
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Figure 7: To achieve compatibility with the standard model, it is generally believed that
muons are elementary particles in contrast with the experimental evidence that they are
naturally unstable with various decay modes (51) that strongly suggest a composite struc-
ture. In this figure, we present a conceptual rendering of the structure of the µ± leptons
predicted by hadronic mechanics as a three-body of elementary isoconstituents identified
in the muon decay with the lowest mode. The weak interaction character of the parti-
cles is derived from a weak hadronic bound state essentially given by the overlapping of
the classical radius of the constituents indicated by dashed ellipses. By recalling that all
three constituents have a point-like charge, the dimension d of the charge radius of the
two peripheral constituents is purely nominal.
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2) The presence of the antiparticle ẽ+ in the π0 structure (40) explains
its very short mean-life as well as its main decay (47);

3) Isodeterministic conditions (11) are verified by model (40), as a result
of which standard deviations ∆r and ∆p have individual values smaller
than one (Lemma II-3.7) and the isoperturbation series have no diver-
gences (Corollary II-3.7.1).

2.5.5. Hadronic structure model of the remaining mesons. Recall the main
characteristics of the muons µ± are:

1) Rest energy 105, 658 MeV ;
2) Charge radius R = 10−13 cm;
3) Mean-life τ = 2.19703× 10−6 s;
4) Spin 1/2 and elementary charge;
5) Spontaneous decay

µ± → e− + ν + ν̄,

µ± → e− + γ,

µ± → e− + 2γ,

µ± → e− + e± + e+.

(51)

For the intent of achieving compatibility with the standard model, the
µ± leptons are considered to be “elementary particles.” Santilli [19] cannot
accept such a view because in contrast with the experimental evidence that
the muons are naturally unstable particles with decays (51).

Therefore, Ref. [19], Section 5, proposed the structure model of the
muons with the physical constituents identified by the decay mode (51)
with the smallest mode < 10× 10−12 (Figure 5)

µ± = (e−, e±, e+)hm. (52)

The birth of weak interactions was suggested as being due to a weak
form of wave-overlapping essentially that of the classical size of the con-
stituents

Re± = 2.28× 10−13 cm, (53)

which said weak contact interactions can be quantitatively represented by
hadronic mechanics via an isotopic element T̂ with values close to 1.

A main aspect is that there is the birth of strong interactions in model
(52) because we do not have a wave-overlapping inside the hadronic hori-
zon, as it is the case for the π0.
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Figure 8: A conceptual rendering of the structure of the π± mesons as a three-body
hadronic bound states (57) of elementary isoparticles which can be interpreted as a “com-
pressed µ± lepton” (Figure 6). Note that individual pairs of isoconstituents are coupled
in singlet as necessary for consistency. Note also that the isoconstituents have a point-like
charge structure. Therefore, the charge diameter of the structure is given by the distance
between the centers of the two peripheral isoconstituents.
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It is easy to see that model (52) can represent the muon spin 1/2 and
decay (51) with the lowest mode as a tunnel effect of the constituents.

The remaining characteristics can be represented via a direct analytic
solution of model (52) as a restricted three-body problem.

Ref. [19] suggested the approximation of the model into a two-body
structure with weakly bounded constituents and the structure equations[

1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1e

2
r +W2

e−br

1−e−br )
]

= 0,

Etot = E100 Mev + Ee± − E,= 105 MeV m̄ = m
I2

τ−1 = 2πλ2|ψ̂(0)|2 α2Ee
~ = 10−6 s

R = b−1 = 10−13 cm,

(54)

admitting the following values for the the k-parameters

k1 = 0.93, k2 = 1 + 8.47× 10−2, (55)

that also verify conditions (35).
The main characteristics of the π± mesons are:
1) Rest energy 139.570 MeV ;
2) Charge radius R = 10−15 cm;
3) Mean-life τ = 2.603× 10−8 s;
4) Spin J = 0 and elementary charge;
5) Decay with lowest mode < 3.2× 10−9)

π± → e− + e± + e+ + νπ± (56)

.
The above characteristics are all represented by the hadronic structure

model of the π± mesons first proposed in Section 5, Ref. [19]

π± = (ẽ−, ẽ±, ẽ+)hm ≈ (π̃0, ẽ±)hm, (57)

for which, unlike the case of the muons, the constituents are elementary
isoparticles in condition of deep mutual penetration inside the hadronic
horizon (Figure 7).

165

365

Reprinted by permission from Ratio Mathematica, “Studies on A. Einstein, B. Podolsky, and N. Rosen
Prediction that Quantum Mechanics is Not a Complete Theory III: Illustrative Examples and

Applications”, R.M. Santilli, Ratio Mathematica (Vol. 38), 139-222, 2020.



Ruggero Maria Santilli

Figure 9: In this figure we show: 1) At the top left a picture of the Directional Neu-
tron Source (DNS) developed by Santilli at Thunder Energies Corporation, now Hadronic
Technologies Corporation [39] which synthesizes on demand neutral and negatively
charged hadrons from a hydrogen gas with preferred directionality, energy and flux; 2) At
the top right a typical case of neutron CPS; 3) At the bottom left a conceptual rendering of
the ionization of the hydrogen gas by the electric arc during its activation and the proper
axial alignment of the proton and electron with opposite charge and magnetic polarities;
and 4) At the bottom right a conceptual rendering of the “compression” of the electron
inside the proton by the electric arc during its disconnection.
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The rest energy, mean-life and charge radius of the π± are readily rep-
resented by model (57) with the hadronic structure equations[

1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1e

2
r +W2

e−br

1−e−br )
]

= 0,

Etot = Eπ̃± + Eẽ± − E = 139 MeV, m̄ = m
I2

τ−1 = 2πλ2|ψ̂(0)|2 α
2Eẽ±
~ = 2.603× 10−8 s,

R = b−1 = 10−13 cm,

(58)

admitting solutions for the k-parameters

k1 = 0.34, k2 = 1 + 3.67× 10−3, (59)

that again verify conditions (35).
The main recent advance since the above 1978 proposal [19] is the

achievement of a consistent representation of the total angular momentum
J = 0 of the π± meson thanks to the irregular SU(2) isosymmetry (Section
3.5). In essence, when the three isoparticles are all compressed inside the
hadronic horizon, the orbital motion of the two peripheral isoconstituents
L1−2 is constrained, for stability, to be equal to the spin Sẽ± of the cen-
tral isoparticle, thus having value L1−2 = Stildee± = 1/2 with total angular
momentum (Sections II-3.4 and II-3.5, Section II-3.5.3 in particular).

Jtot = s1 + s2 + s3 + L1−2 = −1/2 + 1/2− 1/2− 1/2 = 0. (60)

Note that model (57) can be interpreted as a form of “compressed muons”
(52) (see Figures 6 and 7). The orbital motion of the peripheral electrons
is unrestricted in model (52), yielding a total angular momentum 1/2. By
contrast, the peripheral isoelectrons and isopositron in model (57) are con-
strained to orbit inside the central isoelectron or isopositron, thus being forced
to have the orbital value equal to the spin of the isoparticle. In fact, or-
bital values different than 1/2 would imply extreme resistive forces with
ensuing excessive instabilities.

In Santilli’s view, an important aspect of model (57) is its apparent ver-
ification of the isodeterminism of Lemma II-3.7 as well as of the lack of di-
vergencies in the isoperturbation seres (Corollary II-3.7.1) due to the small
value of the isotopic element assured by values (59).

Interested readers can verify that values (35) remain verified under the
use of more accurate experimental values for the characteristics of muons
and mesons.
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Figure 10: A conceptual rendering of the structure of a particle called the neutroid
ñ = (e−, p+)hm, Eq. (61), with spin J = 1, charge radius R = 10−13 cm, mass essen-
tially that of the proton and mean-life of the order of 5 s which has been undetected in all
experiments to date [I-90]-[I-95] by neutron detectors, yet has caused nuclear transmu-
tations typical of neutron irradiation. The bound state is created by the extremely strong,
r − p Coulomb attraction which is of the order of 1024 N plus weak contact interactions
implying ignorable mutations of the electron and the proton. The e − p singlet coupling
and the orbital motion in the ground state imply the spin J = 1 explaining the lack of de-
tection of neutroids by neutron detectors. Note that the neutroid is impossible for quantum
mechanics.

It is an instructive exercise for the interested reader to work out the
hadronic structure models of the remaining mesons, Eqs. (42)-(45) show-
ing the increase of the k1 value and the decrease of the k2 value with the
increase of the rest energy (see Section 6.2 of Ref. [31] for an independent
review).

2.6. Einstein’s determinism in the structure of baryons.
2.6.1. Structure of the neutroid. Stars initiate their lives as being com-
posed of hydrogen; they grow in time via the accretion of interstellar-
intergalactic hydrogen; and eventually reach such pressures and tempera-
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tures in their core to synthesize the neutron as a ”compressed” hydrogen
atom according to H. Rutherford [40].

A main aspect of the studies herein considered is that, in Santilli’s view
[20], the synthesis of the neutron from the hydrogen in the core of stars is
one of the best illustrations of the validity of the EPR argument [1] because
said synthesis cannot be represented with quantum mechanics for various
technical reasons reviewed in Section I-1, in denial of the experimental
evidence that, having opposite charges, the proton and the electron at mutual
distances of 10−13 cm are attracted to each other with a Coulomb force of about
230 N (See Eq, (107) for its calculation). Such an attractive force is so big for
particle standards to dismiss as inapplicable any theory unable of producing a
bound state under such an anormous attractive force.

Consequently, Santilli dedicated decades of mathematical, theoretical,
experimental and industrial research on the neutron synthesis due to its
truly fundamental character for all quantitative sciences (see Refs. (I-85]
to [I-95] and independent reviews [31] [41]).

Besides a number of preceding attempts without neutron detection, the
first indirect experimental detection of the synthesis of the neutron from
the hydrogen was initiated by in the 1960’s by Don Carlo Borghi [76], con-
firmed in subsequent tests [I-90] - [I-95], and routinely verifiable with the
Directional Neutron Source developed by Hadronic Technologies Corpo-
ration [39] (Figure 8), indicate the existence of an unstable, neutral, inter-
mediate state called neutroid (denoted with the symbol ñ) which is uniden-
tified by neutron detectors, while causing nuclear transmutations typically
triggered by neutron irradiation.

Hadronic mechanics suggests the following representation of the struc-
ture of the neutroid (Figure 9)

ñ = (ẽ−↓ , p
+
↑ )hm, (61)

consisting of an isoelectron ẽ− with spin s1 = 1/2 in singlet contact cou-
pling with a standard proton p+ with spin s2 = 1/2 and orbital motion
L1−2 = 0 in the ground state.

These assumptions suggest the following predicted features of the neu-
troid:

1) Rest energy estimated to be about 940 MeV ,
2) Mean-life estimated to be of at least τ = 5 s,
3) Charge radius estimated to be of about R ≈ 10−13 cm,
4) Spin predicted to be J = 0, and
5) Spontaneous decay

ñ→ e− + p. (62)
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Figure 11: A conceptual rendering of the structure of the neutron as “compressed“ hy-
drogen atoms in the core of stars according to H. Rutherford [40]. When the proton is
represented as an extended particle, there is the emergence of a constrained orbital mo-
tion of the electron inside the proton verifying the isodeterminism of Lemma 3.7, which
allows the first known exact representation of all the characteristics of the neutron at the
nonrelativistic [42] and relativistic [36] levels without need for the neutrino hypothesis.
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The above features can be represented with hadronic bound state (29)
specialized to the indicated values[

1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1

e2

r
+W2

e−br

1−e−br )
]

= 0,

Etot = Eẽ + Ep − E = 940 MeV

τ−1 = 2πλ2|ψ̂(0)|2 α2E1

~ = 5 s

R = b−1 = 10−13 cm,

(63)

with values of the k-parameters

k1 ≈ 1, k2 ≈ 1 + 10−6, (64)

verifying the crucial condition (35).
Once absorbed by a stable nucleus N(A,Z, J), the neutroid is trans-

formed by strong interactions into a neutron plus secondary emissions,
resulting in a generally untabulated unstable nucleus Ñ(A+ 1, Z, J + 1/2)
that decays into stable nuclei plus radiations.

The spin 0 of the neutroid explains the impossibility of its detection via
conventional neutron detectors.

The decay of the nucleus Ñ(A+1, Z, J+1/2) explains the triggering by
undetectable particles of conventional nuclear transmutations normally
triggered by neutron irradiations.

Hadronic bound state (61) is clearly impossible for quantum mechan-
ics, but readily possible for hadronic mechanics via structure model (29)
due to the combination of strongly attractive Coulomb and contact forces
at mutual distances of the order of 10−13 cm with isotopic elements of the
simple type (19) verifying isodeterministic Lemma II-3.7. and the rapid
convergence of isoperturbation series of Corollary II-3.7.1.

2.6.2. Nonrelativistic representation of the neutron synthesis. We consider
now the synthesis of the neutron on demand from a hydrogen gas in the
needed directionality, (low) energy and CPS.

Such a synthesis has been first achieved by the Directional Neutron
Source (DNS) developed by Santilli at Thunder Energies Corporation, now
Hadronic Technologies Corporation [39].

Recall that, when seen in an oscilloscope set for milliseconds, electric
arcs between carbon electrodes, are continuously connected and discon-
nected to seek the shortest distance for the discharge.
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With reference to Figure 9, the electric arc ionizes the hydrogen gas
during its connection and creates an axial alignment along a magnetic line
of electrons and protons with opposite charge and magnetic polarities.

By contrast, during their disconnection electric arcs “compress” the
electron inside the proton by synthesizing in this way the neutron in a way
crucially dependent on the shape of the arc, its power and other factors.

With reference to Figure 11, when compressed inside the hyperdense
proton, the much lighter electron is “constrained” to have an orbital mo-
tion equal to the proton spin so as to avoid extreme resistive forces with
ensuing high instabilities.

Note that the neutroid (figure 10) appears to be an unavoidable inter-
mediate step prior to the full synthesis of the neutron (Figure 11).

The well known main characteristics of the neutron are the following:
1) Rest energy 939.565 MeV ;
2) Charge radius R = 1.73× 10−13 cm;
3) Mean-life τ = 881 s(about 15 m);
4) Spin 1/2;
5) Charge ;0
6) Anomalous magnetic moment µn = −1.9 e

2mpc
and null electric dipole

moment;
7) Decay

n → p+ + e− + ν̄. (65)

The nonrelativistic representation of all— characteristics of the neutron
in its synthesis from the hydrogen was first achieved by Santilli in the 1990
paper [43] via hadronic bound state

n = (ẽ−↓ , p̃
+
↑ )hm, (66)

where one should note that, unlike the case of the neutroid (61), both the
electron and the proton are mutated into isoparticles.

Note also that model (66) represents a compressed neutroid in a way
much similar to the structure of the π± mesons as compressed muons , µ±

(Section 2.5.4).
The representation of the rest energy, charge radius, mean-life, charge,

parity and tunnel effect decay of the neutron have been first achieved in
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Ref. [43] Eqs. (2.19), page 521, via hadronic two-body bound state[
1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1

e2

r
+W2

e−br

1−e−br )
]

= 0,

Etot = Eẽ + Ep̃ − E = 939 MeV

τ−1 = 2πλ2|ψ̂(0)|2 α2Eẽ
~ = 881 s (about15m)

R = b−1 = 10−13cm,

(67)

with values of the k-parameters

k1 = 2.6, k2 = 1 + 0.81× 10−8, (68)

verifying conditions (35) for the validity of isodeterminism inside the neu-
tron and the validity of conventional uncertainties in its outside.

The representation of the spin 1/2 of the neutron was also achieved for
the first time in Ref. [43], Eqs. (2.22)-(2.37), thanks to the appearance of
a constrained orbital motion of the isoelectron when totally “compressed”
inside the proton (which orbital motion is completely non-existent for quan-
tum mechanics).

The representation of the spin 1/2 is additionally permitted by the iso-
topies of spin-orbit couplings (see Chapter 6, page 209 on, Ref. [33], for a
detailed treatment), which the hadronic angular momentum of the isoelec-
tron is constrained to be equal to the spin of the isoproton, as a necessary
condition to avoid big instabilities according to Eqs. (iI-118) under con-
straint (II-119). Hence, Jntot = sp + se + Le = 1/2, namely, the spin of the
neutron coincides with that of the proton.

Recall the following experimental values of magnetic moments in nu-
clear units µN = e

2mpc

µexpn = −1.91 µN

µexpp = 2.7 µN

µexpe = 1 µB = 5× 10−4 µN ,

(69)

where one can see that the magnetic moment of the neutron is “anoma-
lous” because outside the prediction of quantum mechanics both in its
direction and numeric value.

The first known exact representation of the anomalous magnetic mo-
ment of the neutron was achieved in Ref. [43], Eqs. (2.39)-(2.41), page 526,
via the novel contribution of the internal orbital motion of the isoelectron.
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By noting from values (233) that the magnetic moment of the electron
is very small for nuclear standard, thus being ignorable in first approx-
imation, the main assumption of Ref. [43] is that the magnetic moment of
the neutron of model (66) is given by the magnetic moment of the proton plus the
orbital magnetic moment ot the isoelectron inside the proton.

Note that said contribution is completely absent in quantum mechanics
due to its point-like approximation of particles as being point-like when at
mutual distances smaller than their charge diameter.

Note that the electron is negatively charged and, consequently, the con-
tribution to the magnetic moment of the neutron from its rotation inside
the proton in the direction of the proton spin is negative, thus providing the
first known representation of the anomalous direction of the neutron mag-
netic moment.

Calculations done in Ref. [43] for the magnetic moment of the isoelec-
tron orbiting inside the proton yield the value µorbẽ ≈ −4.6 µN , by therefore
reaching the first known representation of the anomalous value of the neu-
tron magnetic moment (Eqs. (2.40), page 526, Ref. [43], see also Ref. [31],
Section 6.3.D and paper [41], Section 4, page 41)

µn = µp̃ + µorbẽ + µintrẽ ≈

≈ µp̃ + µorbẽ =

= 2.7 µN − 4.6 µN = −1.91 µN = µexpn .

(70)

Note that the negative sign of the neutron magnetic moment can be consid-
ered as direct evidence of the presence of an electron in singlet internal coupling
in the proton, since no other known particle besides the electron can provide
the internal, rather large contribution µorbẽ = −4.6 µN .

In Santilli’s view, the inability by quantum mechanics to represent both the
anomalous direction and value of the neutron magnetic moment constitutes an
additional evidence beyond scientific doubt supporting Einstein’s vision on the
lack of “completion” of quantum mechanics.

Furthermore, the impossibility for quantum mechanics to characterize the
motion of the electron compressed inside the proton, constitutes evidence that the
most important “completion” of quantum mechanics needed to represent exper-
imental values is the characterization of particles with their actual shape and
density.

The parity and null value of the electric dipole moment were repre-
sented via a isotopy of conventional lines.

For historical comments on the birth of the neutrino hypothesis in quan-
tum mechanics [13] and its possible replacement with the etherino hypoth-
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esis [42] in hadronic mechanics, one may consult Section II-3.4.1 on Irreg-
ular Pauli-Santilli isomatrices.

The reader should keep in mind that the neutron is naturally unsta-
ble (when isolated). Consequently, the synthesis of the neutron is a time-
irreversible process. It then follows that the Lie-isotopic isomechanical
treatment presented in this section is an approximation of the broader
treatment via the covering Lie-admissible genomechanics outlined in Sec-
tion 1-2 (see Refs. [32] [33] for extensive treatments).

With reference to the geno-Schrödinger and geno-Heisenberg equa-
tions (I-10) and (I-11), respectively, the genomechanical treatment can be
studied via the extension of isotopic element (19) into a time-dependent
form characterizing the genotopic elements for motions forward and back-
ward in time.

2.6.3. Relativistic representation of the neutron synthesis. The relativistic
representation of all characteristics of the neutron in synthesis (66) was
first achieved by Santilli in Refs. [35] [36] (see independent review [31],
Section 6.3, page 342 on) via the isosymmetry of the irregular Dirac-Santilli
isoequation (37), namely, the isotopy P̂(3.1) of the spinorial covering of the
Poincaré symmetry (Section 2.5.11) and can be outlined as follows.

Recall that the non-potential hadronic representation of strong interac-
tions via the isotopic element (1) (Section 2.3) implies the “absorption” of
the Coulomb potential by the Hulten potential, as essentially implied by
the charge independence of strong interactions.

This feature permits to ignore Coulomb binding energies in first ap-
proximation, resulting in a weakly bounded relativistic hadronic structure
of the neutron, namely, a state with a small binding energy typical of all
non-potential interactions.

Consider first synthesis (61) of the neutroid, and assume its represen-
tation in the iso-Minkowski isospace M̂(x̂, η̂, Î) with isospacetime (II-19).
Assume in first approximation that the proton is perfectly spherical for
which n1 = n2 = n3 = 1 and assume that the density of the region of
neutroid-proton overlapping is close to that of the vacuum, thus implying
the value n4 = 1 . These assumptions imply the simplified isometric

η̂ = Diag.(1, 1, 1,−1)e−K , K > 0. (71)

The relativistic version of the synthesis (61) with the representation of
all characteristics of the neutroid then follows via a simply isotopy of the
relativistic treatment of the hydrogen atom.

In the transition to the relativistic treatment of the structure of the neu-
tron, Eq. (66), the isoproton cannot any longer be assumed to be perfectly
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spherical and the density of the overlapping region becomes dominant,
resulting in values of the characteristic quantities nµ 6= 1, µ = 1, 2, 3, 4.

In Refs. [35] [36], Santilli assumes that the value of the characteristic
quantity n4 representing the density of the neutron is equal to the density
of the proton-antiproton fireball of the Bose-Einstein correlation [46] [47],
resulting in the values

n4 = 0.62, b4 =
1

n4

= 1.62, (72)

where b4 = 1/n4 is the notation used in Ref. [36].
The Lorentz-Santilli isotransforms (II-42) then imply the following isore-

normalization of the rest energy of the electron, namely a renormalization
caused by non-potential interactions (Ref. [36], Eqs. (7.1), page 191)

Ee = mec
2 = 0.511 MeV → Eẽ = me

c2

n2
4

= 1.341 MeV. (73)

As one can see, the above isorenormalization removes the problem of
the missing 0.782 MeV energy in the neutron synthesis when represented
on the iso-Minkowskian isospace over an isofield, thus rendering consis-
tent the needed isorelativistic isoequations.

It should be stressed that the above isorenormalization continues to be
based on the etherino mechanism for the delivery of the missing energy to
the neutron [42].

The relativistic representation of the spin of the neutron in synthesis
(66) was first achieved in Refs. [35] [36]. Recall from Figure 10 that the
spin S1 of isoelectron is opposite to the spin S2 of the isoproton. The rel-
ativistic spin-orbit coupling implies the constraint that the orbital angular
momentum L1 of the isoelectron inside the isoproton be equal to the iso-
proton spin,

L1 = S2. (74)

The above identity is manifestly impossible for the spinorial covering
of the Poincaré symmetry P(3.1) and relativistic quantum mechanics, but
it is indeed possible for the covering isosymmetry P̂(3.1). In fact, with
reference to Section II-3.5.3, Eqs. (II-122), identity (II- 241) implies the con-
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Figure 12: An illustration of the compatibility of the quantum mechanical SU(3)

and subsequent classifications of baryons unto families, and the structure of individual
baryons as a hadronic bound state with physical constituents generally emitted free in
the spontaneous decays with the lowest mode, Eqs. (241). Said compatibility is achieved
via the multi-valued hyperunit characterized by the isounits or isotopic elements of the
individual baryons, Eqs. (242), and its use to build the hyperstructural image of the ap-
plicable Lie symmetry that turns out to be locally isomorphic to the original symmetry
due to the positive-definite character of the isounit.

ditions (Ref. [36], Eqs. (7.2), page 192)

L̂3 ? |ψ̂ >= ±n1n2|ψ̂ >=

= Ŝ3 ? |ψ̂ >= 1
2

1
n1n2
|ψ̂ >,

L̂2̂ ? |ψ̂ >= (n2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1)|ψ̂ >=

= Ŝ 2̂ ? |ψ̂ >= 1
4
(n−2

1 n−2
2 + n−2

2 n−2
3 + n−2

3 n−2
1 )|ψ̂ >,

(75)

admitting the simple solution

n2
k = 1√

2
= 0.706,

b2
k = 1

n2
k

=
√

2 = 1.415, k = 1, 2, 3,
(76)

where b2
k = 1/n2

k in the notation of Ref. [36].
The relativistic representation of the anomalous magnetic moment of

the neutron was also achieved for the first time in Ref. [36], Eqs. (7.4),
page 192. The representation is again permitted by the contribution from
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the orbital motion of the isoelectron inside the isoproton, and it is given
by non-relativistic expression (234) with a more accurate representation of
the orbital contribution.

It should be indicated that the non-relativistic and relativistic structure
models of the neutron outlined in this section are mere approximation of a
much more complex reality in which all characteristics of the constituents
are mutated, thus including the charge.

2.6.4. Remaining baryons. A central requirement for the consistency of
model (66) is that the excited states of the neutron are the conventional states of
the hydrogen atom. This illustrates again the hadronic suppression of quan-
tum mechanical energy spectra, since the latter are typical for the classifi-
cation, rather than the structure of hadrons.

By recalling the condition that the number of elementary constituents
of hadrons increases with the increase of the rest energy, the hadronic
structure of the remaining baryons is reducible to two isoparticle struc-
tures derived from the spontaneous decays generally those with the low-
est mode, much along the structure of mesons [21] (see [31], Section 6.3.J,
page 366 for an independent review)

p+(938 MeV ) = stable,

n(940 MeV ) = (p̃+, ẽ−)hm,

Λ(1115 MeV ) = (p̃+, π̃−)hm,

Σ+(1189 MeV ) = (p̃+, π̃0)hm,

Σ0(1192 MeV ) = (ñ, π̃0)hm,

Σ−(1197 MeV ) = (ñ, π̃−)hm,

Σ0(1314 MeV ) = (Λ̃, π̃0,

Ξ−(1321 MeV ) = (Λ̃, π̃−)hm,

(77)

by keeping in mind that numerous alternative internal exchanges of isopar-
ticles do indeed occur while keeping constant the total characteristics.

It is an instructive exercise for the interested reader to see that all the
above models verify condition (II-199) on the lack of hadronic excited
states, as well as conditions (II-188) for the validity of isodeterministic
Lemma II-3.7 and related rapid convergence of isoseries.
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Figure 13: A conceptual rendering of the protoid as weakly bounded electron and neutron
in singlet contact coupling, resulting in a negatively charged hadron with spin S = 0 with
intriguing applications.

The compatibility of hadronic structure models (77) with the SU(3)-
color or more recent classifications is achieved at the hyperstructural level
[33] [37] with the following ordered hyperunit [21] (Figure 11)

Îtot = {Îp, În, ÎΛ, ÎΣ+ , ÎΣ0 , Îσ− , ÎΞ0 , ÎΞ−} (78)

Said compatibility is ultimately due to the positive-definiteness of the
individual isounits that, in turn, implies the local isomorphism between
the hypersymmetry S̃U(3) and the conventional SU(3) symmetry.

2.6.5. Industrial applications. There is no doubt that the “completion” of
quantum mechanics is, by far, Einstein’s most important legacy because of
its basic implications for mathematics, physics, chemistry and other quan-
titative sciences, with expected industrial applications generally beyond
our expectation at this writing.

As an illustration, we outline in this section the industrial applica-
tions expected from the technology underlying the synthesis of the neu-
tron from the hydrogen which technology has been possible thanks to the
“completion” of quantum into hadronic mechanics.

Besides the synthesis of neutroids (Figure 10) and neutrons (11), the
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Directional Neutron Source (DNS) [39] (Figure 9) permits the study of the
synthesis of a negatively charged, strongly interacting particles [48] (patent
pending) with rest energy of about 940 MeV , spin 0, charge radius R =
1 fm, and mean-life of about 3 s which is called the protoid, and denoted
p̂1 (Figure 13).

Recall that contact non-Hamiltonian interactions solely depend on wave-
overlapping, thus being charge independent. The protoid is predicted to
be given by a singlet coupling of an electron essentially at contact with
a neutron, thus yielding total angular momentum 0, with the following
structure model:

p̂1 = (e−↓ , n↑)hm. (79)

Hadronic mechanics predicts a second negatively charged proton called
pseudo-proton, and denoted p̂2, with essentially the same rest energy, charge
radius and mean-life of the neutroid but with spin 1 (Figure 14).

Recall that an electric arc submerged within a hydrogen gas creates a
plasma in its surrounding comprising: protons, electrons, neutrons and
valence electron pairs in singlet couplings known as isoelectronia with rest
energy of about 1 MeV , null spin and magnetic moment, and a mean-life
expected to be of the order of 1 s or fractions thereof (Section 2.8.3).

Following the synthesis of the neutron via the “compression” of an
electron inside the proton (Section 2.6.2), the pseudo-proton is predicted
to be generated by a “compression” of an electron, this time, inside the
neutron, or equivalently, by the “compression” of an isoelectronium inside
the proton, with structure model

p̂2 = (ẽ, ñ)hm ≈ [p̃, (ẽ−↑ , ẽ
−
↓ )]hm. (80)

The spin §p̂2 = 1 is due to the sum of the proton spin Sp = 1/2 plus
the constrained orbital motion of the electron pair along the proton spin
L1,2 = 1/2.

Recall that protons are repelled by nuclei. Hence, the industrially sig-
nificant feature of negatively charged hadrons is that they are attracted by
nuclei, thus initiating a basically new approach toward the controlled nu-
clear fusions that resolves the extremely large Coulomb repulsion that has
opposed nuclear fusions to date.

In view of the above features, the technologies that can be developed
with the DNS are the following:

1. The detection of fissionable nuclear material that can be concealed
in suitcases, containers or underground, since the neutron irradiation of
fissionable material under controlled directionality, energy and flux, trig-
gers the decay of some of the nuclei with a shower of clearly detectable
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Figure 14: A conceptual rendering of the pseudo-proton created by the “compression”
of an electron, this time, inside a neutron, or equivalently, of a valence electron pair in
singlet coupling, resulting in a negatively charged hadron with spin 1.
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radiations. By comparison, most nuclear material are detected as ordinary
metals under currently available X-ray, microwave and other scans.

2. The detection of the presence and concentration of precious metals in
mining operations, since the neutron irradiation, for instance, of the walls
of mining tunnel triggers known nuclear transmutations with the emis-
sion of sharp, clearly detectable photons, while statistical data identify the
concentration.

3. The control of large metal welds in civilian and military naval con-
struction, which control is rendered particularly effective by the easy mo-
bility of the DNS.

4. Cancer treatments via pseudo-proton irradiation which is expected
to be less invasive and more localized than currently available proton irra-
diation since, in the former case, pseudo-protons are attracted by cancerous
nuclei, while, in the latter case, protons are repelled.

5. Initiation of the much overdue research and development toward
the recycling of nuclear waste via its stimulated decay while delivering
energy, which recycling is possible in a number of ways, including the irra-
diation of nuclear waste pellets with a sufficiently intense pseudo-proton
flux resulting in a deficiency of the nuclear charge Z for a given atomic
number A and ensuing decay.

Note that the above applications are possible thanks to the mean-life of
DNS synthesized particle of the order of seconds or fractions thereof, which are
quite large for particle standard.

By comparison, negatively charged strongly interacting particles syn-
thesized in contemporary physics laboratory with mean-lives of the order
of 10−30 s or so have no known industrial or medical applications.

2.7. Einstein’s determinism in nuclear structures.
2.7.1. Historical notes. As it is well known, nuclei were first assumed to
be bound states of protons and electrons under their mutual Coulomb
attraction which force, being inversely proportional to the square of the
distance, is extremely big at nuclear distances.

This assumption was soon dismissed because it was considered in-
consistent with quantum mechanics and unable to represent experimental
data.

Consequently, nuclei were assumed to be bound states of protons and
neutrons under a strong nuclear force that remains unknown to this day.

In reality, nuclei provide additional, rather clear evidence on the “lack
of completeness“ of quantum mechanics beyond scientific doubt, due to

182

382

Reprinted by permission from Ratio Mathematica, “Studies on A. Einstein, B. Podolsky, and N. Rosen
Prediction that Quantum Mechanics is Not a Complete Theory III: Illustrative Examples and

Applications”, R.M. Santilli, Ratio Mathematica (Vol. 38), 139-222, 2020.



Studies on the EPR argument, I: Basic methods

the well known inability by quantum mechanics to achieve an exact rep-
resentation of nuclear experimental data.

As an illustration, in about one century of efforts and the use of large
public funds, quantum mechanics has been unable to achieve a represen-
tation of the characteristics of the simplest nucleus, the deuteron, with em-
barrassing deviations between the prediction of the theory and the exper-
imental data for heavier nuclei such as the Zirconium [25] (see also K. R.
Popper [15], J. Dunning-Davies [16], J. Horgan [17] and quoted literature):

1. Quantum mechanics has been unable to represent the spin J = 1 of
the deuteron in its ground state L = 0. This is due to the fact that the sole
stable quantum mechanical bound state of two particles with spin 1/2 is
the singlet state, in which case the spin of the deuteron should be J = 0.
For the intent of preserving the validity of quantum mechanics in nuclear
physics, the spin J = 1 of the deuteron is represented via the assumption
of a combination of excited orbital spaces, L = 0, 1, 2 contrary to the evidence
that isolated deuterons are in their ground state, with the consequential
inability to represent the deuteron positive parity P = (−1)L − 0, and
other insufficiencies.

2. Quantum mechanics has been unable to achieve an exact represen-
tation of the deuteron magnetic moment, because the representation of
about 1% of the experimental value is still missing despite all possible
relativistic (as well as quark-inspired) corrections, with large deviations
occurring for heavier nuclei.

3. Quantum mechanics has been unable to represent the stability of the
deuteron, since neutrons are well know to be naturally unstable, thus man-
dating a quantitative representation of the mechanism turning the neutron
into a permanently stable particle when bonded to a proton.

4. Quantum mechanics has been unable to represent the proton-neutron
exchange in the deuteron structure.

5. Quantum mechanics has been unable to achieve an explicit and con-
crete representation of the attractive strong nuclear force bonding together
the proton and the neutron. Due to the intent of preserving the exact va-
lidity of quantum mechanics in nuclear physics, with the consequential
sole representation of strong interactions via a potential in a Hamiltonian,
the representation of strong nuclear forces has been attempted by adding
potentials in the Hamiltonian, up to fifty additive potentials (sic) without
the achievement of the needed representation of experimental data.

In a variety of works outlined in these papers (see monograph [25] and
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Figure 15: The “gear model” used by Santilli [25], page 180, to illustrate the prediction
from the spin JD = 1 that the deuteron is a three-body hadronic bound state of one
isoelectron and two isoprotons, with the individual couplings p − e and e − p being in
singlet as necessary for stability. The spin JD = 1 is then achieved from the “constrained
angular momentum” of the bound state studied in Sections II-3.5.3 and II-3.5.4.

papers quoted therein), Santilli has expressed the view that the “comple-
tion” of quantum into hadronic mechanics permits the apparent resolution
of the above insufficiencies or sheer inconsistencies via a return to the orig-
inal conception of nuclei as bound state of electrons and protons, although
under non-linear, non-local and non-potential interactions caused by deep
mutual overlapping.

2.7.2. Deuteron three-body model. Following the achievement of math-
ematical, theoretical, experimental and industrial advances in structure
model (66) of the neutron as a hadronic bound state of one isoelectron
and one isoproton, Santilli proposed in Section IV of Ref. [25], page 143
on (see also independent reviews [31] and [49]), the structure model of the
deuteronD as a restricted three-body hadronic bound state of two isoprotons and
one isoelectron (Figures 13, 14) which can be reduced in first approximation
to a two-body hadronic bound state of one isoproton and one isoneutron

D = (p̃+
↑ , ẽ↓, p̃

+
↑ )hm ≈ (p̃↑, ñ↑)hm. (81)

Ref. [25] then presented various arguments showing that model (81)
apparently resolves quantum mechanical insufficiencies (1 - 5) of the pre-
ceding section.

The analysis of model (81) was conducted in the 1999 monograph [25]
following the publication in 1998 of the first proof of the EPR argument [9],
as well as its detailed study in the 1995 monograph [33], Chapter 4, partic-
ularly Appendix 4C, page 166. Therefore, Santilli was aware that, unlike
the case for atomic structures, deuteron model (81) does admit a classical
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counterpart (Section II-3.7) due to the inapplicability of Bell’s inequality
(9) [3] in favor of isoidentity (10).

However, at the time of writing the 1999 monograph [25], Santilli was
unaware of the additional apparent proof of the progressive validity of
Einstein’s determinism in the interior of hadrons, nuclei and stars [10],
and its apparent full achievement in the interior of gravitational collapse.

It is, therefore, important to review the main aspects of model (81) to
indicate, apparently for the first time, its verification of Einstein’s deter-
minism we have called isodeterministic according to Lemma II-3.7 and
Corollary II-3.7.1, and verify the apparent resolution of historical prob-
lems (1 - 5) of the preceding section.

1. NONRELATIVISTIC REPRESENTATION OF THE SPIN JD = 1 IN THE GROUND
STATE LD = 0. With reference to Figure 24, model (81) includes five angular
momenta: 1) The parallel spins S1 and S2 of the isoprotons; 2) The angular
momentum L1−2 of the two isoprotons; 3) The spin of the isoelectron S3;
and 4) The angular momentum L3 of the isoelectron inside one of the two
isoprotons.

Recall that, according to experimental data on nuclear dimensions, the
isoproton and the isoneutron are expected to have a diameter of 1.73 fm,
while the diameter of the deuteron is 4, 26 fm.

Consequently, the two isoprotons are separated by about 0.886 fm. In
model (81), this space is occupied by the isoelectron acting like a “gluon”
of the two isoprotons, while permitting their triplet alignment necessary
for the spin JD = 1.

In fact, the isoelectron is in the singlet coupling with each of the two
isoprotons necessary for stability according to hadronic mechanics (Figure
14).

Recall also that, in semiclassical approximation, the wavepacket of the
electron is of the order of 2.2 fm.

The above data provide not only a considerable synchronicity in model
(81), but also a rather strong bond caused by the nuclear forces, the Coulomb
attraction between the isoelectron and the isoprotons, as well as the strong
attractive force originating from deep wave-overlapping in singlet cou-
pling.

Recall finally that the diameter of the horizon for the full applicability
of hadronic mechanics has been selected in Paper I to be d = 2×10−13 cm =
2fm, while the deuteron is about double that size.

The above data on dimensions suggest the use of the following isosym-
metries for the characterization of the angular momentum and spin of the
deuteron:
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Use the regular isosymmetries Ô(3) and ŜU(2) for the characterization of the
angular momentum and spin outside the hadronic horizon. We are here refer-
ring to isosymmetries which can be constructed via a non-unitary trans-
form of the corresponding Lie symmetries, thus preserving conventional
eigenvalues for angular momentum and spin (Section I-3.8 and I-3.9).

Use the irrreegular isosymmetries Ô(3) and ŜU(2) for the characterization of
the angular momentum and spin inside the hadronic horizon. We are here refer-
ring to isosymmetries which cannot be constructed via non-unitary trans-
forms o the corresponding Lie symmetries, by therefore having anomalous
values of the angular momentum and spin (Section II-3.4).

It is then easy to see that the diameter D = 2.59 fm of the orbital mo-
tion of the two isoprotons is close to, but bigger than the hadronic horizon
d = 2 fm. We can therefore see the regular isorotational symmetry Ô3) ad-
mitting conventional angular momentum eigenvalues with ground state
L1−2 = 0.

By contrast we have to use the irregular Ô(3) isosymmetry for the ro-
tation of the isoelectron in the interior of the isoproton, resulting in the
constrained value L3 = 1/2 for the neutron (Sections 2.6.2 and 2.6.3).

In this way, Ref. [25] achieved the first known representation of the
spin of the deuteron in its true ground state according to values:

JD = S1 + S2 + S3 + L1−2 + L3 =

= 1
2

+ 1
2
− 1

2
+ 0 + 1

2
= 1.

(82)

By comparing the hadronic structure model of the neutron, Figure 10,
and that of the deuteron, Figure 15, it is evident that the isoelectron is
entirely compressed inside the isoproton in the former case, but only par-
tially compressed in the latter case.

This occurrence is expected due to the presence in model (81) of the sec-
ond isoproton with ensuing strongly attractive Coulomb force responsible
for the partial extraction of the isoelectron from the isoproton, although
this possibility has not been investigated to date.

Similarly, structure (81) appears to be particularly suited for the rep-
resentation of the proton-neutron exchange in the deuteron structure, al-
though this possibility has also not been subjected to a quantitative study
to our best knowledge.

2. RELATIVISTIC REPRESENTATION OF THE SPIN JD = 1 IN THE GROUND STATE
LD = 0. Ref. [25] was written following the 1995 publication of Elements
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of Hadronic Mechanics, Vols. I [32] and II [33]. Therefore, Ref. [25] studied
model (81) with the entire sue of said Volumes whose knowledge, partic-
ularly that reviewed in Section II-3, is herein tacitly assumed.

The study of model (81) was done in Ref. [25], Section IV-2.3.4, page
161, via the use of the irregular iso-Dirac equation (II-201) defined on iso-
semi-product (II-200) of an iso-Minkowskian space M̂(x̂, η̂, Îorb) for the rel-
ativistic description of the hadronic orbital motion, multiplied by a three-
dimensional complex-valued isounitary isospace for the characterization
of the hadronic spin Ê(ẑ, η̂, Îspin.

It should be recalled that, in principle, all conventional intrinsic char-
acteristics of the proton and the electron, including their charges, are ex-
pected to be mutated when said particles are in conditions of total mu-
tual penetration. These mutations are quantitatively represented by the
Lorentz-Poincaré-Santilli isosymmetry of the irregular iso-Dirac equation
(Section II-2.5.11) and its irregular Pauli-Santilli isomatrices (Section II-
3.4).

However, Ref. [25], Section 2.3.5, page 162, has shown that, for the
case of the deuteron (but not necessarily so for heavier nuclei), the spins
and changes of the isoprotons and of the isoelectron can be assumed in
first approximation to have conventional values. In this case, the sole mu-
tations achieving the representation of experimental data of the deuteron
are those for shapes and constrained angular momenta.

The first known relativistic representation of the spin JD = 1 of the
deuteron in its ground state LD−0 was achieved in Ref. [25], Section 3.5.6,
thanks to constrained spin-orbit coupling inside the isoneutron of model
(81).

The latter coupling has been reviewed at the non-relativistic level in
Section II-3.5.3 and at the relativistic level in Section II-3.5.4, see in par-
ticular Eqs. (II-118), (II-119), with a detailed description available in Ref.
[33], Chapter 6.

The resulting relativistic characterization of hadronic angular momenta
and spins is given by

Skα = εkij γ̂iα ? γ̂jα, α = p̃1, p̃2, ẽ,

Lk,p1−p2 = εkijri,p1−p2 ? pj,p1−p2,
(83)

where γ̂k are the irregular Dirac-Santilli isomatrices.
We then have the irregular isocommutation rules Ref. [36], Eqs. (6.4),
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Figure 16: A conceptual rendering of the deuteron model (91) illustrating the represen-
tation for the first time of spin JD = 1 with angular momentum LD = 0, where: the
two isoprotons have the charge diameter Dp̃ = 1.73 fm; the deuteron has the charge
diameter DD = 4.26 fm; the interspace between the isoprotons is then of 0.86 fm; the
isoelectron has a point-like charge, the hadronic diameter Dhm

ẽ = 1 fm, and a semi-
classical wavepacket with Dcl

ẽ = 2.2 fm. The above data illustrate the stability of model
(81) with the central isoelectron allowing the isoprotons in the triplet coupling needed to
achieve the spin JD = 1 in the true ground state (Figure 14). The doughnuts around the
two isoprotons are used to represent the proton-neutron exchange forces.
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page 190,
[Si,α ,̂Sjα] = 2εkijm

2
kαŜkα,

[Li,1−2̂,Lj,1−2] = εijkm
2
k,1−2Lk,1−2,

(84)

and isoeigenvalues, Eqs, [36], Eqs. (6.4d), page 190,

Ŝ3α ? |ψ̂ >= ± 1
m1αm2α

|ψ̂ >,

Ŝ 2̂
α ? |ψ̂ >= (m−2

1αm
−2
2α +m−2

2αm
−2
3α +m−2

3αm
−2
1α )|ψ̂ >,

L̂3,1−2 ? |ψ̂ >= ±m1,1−2m2,1−2|ψ̂ >,

L̂2̂
β1− 2 ? |ψ̂ >= (m2

1,1−2m
2
2,1−2 +m2

2,1−2m
2
3,1−2 +m2

3,1−2m
2
1,1−2)|ψ̂ > .

(85)
Under the assumption that the hadronic medium in the interior of the

proton is homogeneous, we can assume the values [36]

m1α = m1,1−2 = m2α = m2,1−2 = m3α = m3,1−2 =
1√
2

= 0.842, (86)

under which the isoeigenvalues become

Ŝ3α ? |ψ̂ >= ±1
2
|ψ̂ >,

Ŝ 2̂
α ? |ψ̂ >= 3

4
|ψ̂ >,

L̂3,1−2 ? |ψ̂ >= ±1
2
|ψ̂ >,

L̂2̂
1−2 ? |ψ̂ >= 3

4
|ψ̂ > .

(87)

It then follows that the total angular momentum of the isoneutron is
given by

Jñ = S2 + Sspinẽ + Lorbẽ =
1

2
+

1

2
− 1

2
=

1

2
. (88)

The total value of the deuteron spin JD = 1 in its ground state LD =
0 then follows from the fact indicated above that the orbital diameter is
bigger than the hadronic horizon.

3. REPRESENTATION OF THE DEUTERON REST ENERGY, STABILITY AND SIZE.
The hadronic representation of the rest energy, stability and charge radius
of the deuteron were first achieved in Ref. [25], Eqs. (5.2.16), page 179,
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via the use of structural equations (29) (see also independent reviews [31],
[49]) [

1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1e

2
r +W2

e−br

1−e−br )
]

= 0,

Etot = E1 + E2 − E = 1875.7 MeV, m̄ = m
I2

τ−1 = 2πλ2|ψ̂(0)|2 α2E1

~ =∞,

R = b−1 = 2.13× 10−13 cm = 2.13 fm,

(89)

with solutions for the k-parameters

k1 = 1 k2 = 2.5. (90)

The total mass/rest energy of the deuteron is then given by

MD = Mp +Mn − E = 1875.7 MeV, (91)

where the binding energy is given by E = 2.2 MeV .
Value (90) should be compared to the corresponding values for the neu-

tron, Eqs. (69). As one can see, values (90) verify conditions (35) on the
validity of the isodeterminism of Lemma II-3.7 as well as with the increase
of the rapid convergence of isopperturbative series of Corollary II-3.7.1.

Note that, according to our assumption, values (81) verify the crucial
condition (35) for the lack of existence of excited states, because excited
states would imply the existing of the deuteron constituents out of the
hadronic horizon with its consequential disintegration.

Note also that the stability of the deuteron is intrinsic in model (81)
since the deuteron is reduced to the only known, massive, permanently
stable particles existing in the universe, the proton and the electron.

Needless to say, the above representation should be considered as a
first approximation, with a number of improvements being possible such
as the inclusion of Coulomb interactions with possible excited states within
the hadronic horizon.

4. REPRESENTATION OF THE DEUTERON MAGNETIC MOMENT. As it is well
known, the experimental value of the deuteron magnetic moment is given
by [13] [14]

µexpD = 0.857 µN . (92)

For the quantum mechanical ground state with LD = 0, in case consis-
tent, one would obtains

µqmD =
1

2
(gSp + gSn ) = 2.792− 1.913 = 0.879 µN , (93)
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(where the g’s are tabulated g-factors), by therefore missing about 3% of
experimental value (256), which deviation cannot be entirely resolved via
relativistic or other corrections.

The first, exact, non-relativistic representation of the deuteron mag-
netic moment was achieved by Santilli for the approximate two-body ver-
sion of model (81) in paper [50] of 1994 (written at the Joint Institute for
Nuclear Research, Dubna, Russia) under the sole assumption that the charge
distributions of protons and neutrons are deformed under strong nuclear
forces, resulting in a corresponding mutation of their intrinsic magnetic
moment as predicted by E. Fermi [13], J.M. Blatt and V. F. Weisskopf [14],
and other founders of nuclear physics (see their recollection in Ref. [25],
page 158-159, Section IV-2.3.1, under the title The Historical Hypothesis).

Santilli achieved the first, exact, relativistic representation of magnetic
moment of the two-body deuteron model in paper [51] of 1996 via the use
of the iso-Dirac equation.

The 1998 Ref. [25], Section IV-2.3.6, page 163, presents the first known
exact representation of the deuteron magnetic moment for the full three-
body model (81).

It is important to review and upgrade the latter representation to show
its compatibility with Einstein’s determinism according to Lemma II-3.7
and rapid convergence according to Corollary II-3.7.1.

Assume, in first approximation, that the isoparticles of model (81) have
the same spheroidal shape with semiaxes n2

1, n
2
2, n

2
3 under the condition

of preserving the volume of the original particles assumed for simplicity
to be normalized to 1

n2
1 × n2

2 × n2
3 = 1. (94)

Represents with n2
4 the density of the two isoprotons (denoted with the

subindeces 1 and 2), resulting in the isotopic element for the two isopro-
tons

T̂1,2 = Diag.(n2
1, n

2
2, n

2
3, n

2
4). (95)

Then, the Lorentz-Santilli isotransforms (II-42) imply the following mu-
tation of the intrinsic magnetic moment of the proton (see Ref. [36], page
190 for a detailed derivation with the notation bµ = 1/nµ, µ = 1, 2, 3, 4)

µqm1,2 → µ̃hm1,2 = n4

n3
µqm1,2 = g̃SµN ,

g̃ = n4

n3
g.

(96)

Recall that the isoprotons have Spin S1,2 = 1/2 and LD = 0.
In order to compute the magnetic moment of the three-body model

(81), we first compute the intrinsic and orbital contributions of the isoprotons
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via a simple isotopy of the corresponding quantum mechanical expression
[45]

µ̃hmk =

1
J+1

< ŶL,S|12 g̃
S
kS + 1

2
g̃LkL)|Ŷ (L, S) >=

= 1
2(J+1)

g̃Sk [J(J + 1)− L(L+ 1) + S(S + 1), ] , k = p̃1, p̃2,

(97)

where ŶL,S are the isospherical isoharmonics (Ref. [33], Section 6.4, page
240) and Jk = Sk + Lk, k = 1, 2 is the total angular momentum.

Simple calculations show that, for Lk = 0 and µexpp = 2.79 µN , expres-
sion (261) yields the value

µ̃hmk =

= 1
2
g̃sk = n4

2n3
gSk = n4

n3
2.79 µN .

(98)

To compute the intrinsic and orbital contribution from the isoelectron, we
recall from Eq. (69) that its intrinsic value is ignorable in first approxima-
tion, the sole expected contribution being that from its constrained orbital
motion inside the proton.

By recalling that the electron has a point-like charge which cannot be
mutated by isotopies, then the density of the electron remains the conven-
tional one for the vacuum with n4,ẽ = 1.

Under the approximation that the deformation of the isoelectron is the
same as those of the two isoprotons, we have the mutation of the value
(70) for the neutron,

µhmẽ,orb = − 1

n3

µorbẽ = − 1

n3

4.6 µN . (99)

The quantum mechanical magnetic moment of the three-body model
(81) of the deuteron, in case consistent, would be given by

µqmD = 2µp + µe = 2× 2.79− 4.6 µN = 0.98µN , (100)

thus lacking an exact representation of value (92) because in excess for
about 8%.

By comparison, the magnetic moment for model (81) according to hadronic
mechanics is given by

µhmD = 2
n4

n3

µp̃ +
1

n3

µẽ =
n4

n3

5.78− 1

n3

4.6 µN = 0.857 µN . (101)
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By assuming the value n4 = 0.62 from the density of the proton-antipro-
ton fireball in the Bose-Einstein correlation [46] [47], we can write the
hadronic representation of the deuteron magnetic moment

µD =
0.62× 5.78

n3

− 4.6

n3

= 0.857 µN , (102)

which is verified for
n3 = 1.20. (103)

The use of the volume-preserving condition (94) then yields the re-
maining ellipsoidal values

n1 = n2 = 0.91. (104)

The above values imply that the shape deformation of the deuteron
constituents caused by the internal strong nuclear force turns charge dis-
tributions and/or wavepackets from a spherical to a prolate spheroidal el-
lipsoid with semiaxes

n2
1 = n2

2 = 0.83, n2
3 = 1.44, (105)

which prolate deformation was predicted by all preceding works by San-
tilli in the field.

Note that the magnetic moment of the deuteron is represented exactly not
only in its value, but also in its sign, that of being parallel to the spins of the
isoprotons.

It then follows that representation (101) can be construed as evidence on
the presence of two protons with parallel spins inside the deuteron, which pres-
ence mandates three-body model (81) with a central exchanged electron
for stability (Figures 14, 15).

Note also that the prolate deformation of shape is necessary because
the quantum mechanical expression (93) is in excess of experimental value
(92). By comparison, an oblate deformation would increase said excess
value due to the increase of the rotating charge distribution at the equator.

Almost needless to say, representation (101) is intended to illustrate the
capability by hadronic mechanics to achieve an exact representation of the
deuteron magnetic moment.

A number of improvement of representation (101) are possible, among
which we mention a more accurate value of the density n4 of the proton, a
more accurate value of the orbital contribution of the isoelectron due to its
geometric difference with that for the neutron indicated above, and other
improvements.
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Figure 17: An illustration of the negatively charged pseudo-deuteron predicted by
hadronic mechanics via the use of a deuterium gas in the Directional Neutron Source of
Figure 8. Due to its negative charge, the pseudo-deuteron can potentially initiate a basi-
cally new type of nuclear fusions, here called hyperfusions, based on the natural attraction
of the pseudo-deuteron by natural deuteron resulting in the helium without production of
harmful radiations or release of radioactive waste.
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5. REPRESENTATION OF NUCLEAR FORCES. Hadronic structure model
(81) achieves the first known explicit concrete representation of strong nu-
clear forces thanks to the structural lifting of the mathematics underlying
quantum mechanics into the covering isomathematics.

Such a generalization resulted to be necessary due to the non-Hamilto-
nian character of strong interactions, with particular reference to the gen-
eralization of the associative product into isoproduct (1) and the represen-
tation of strong nuclear forces via isotopic element (4), with ensuing lifting
of the Schrödinger equation, from its historical form Hψ = Eψ, into the
isotopic form

H ? ψ = H(r, p)T̂ (ψ, ...)ψ̂ = Eψ̂. (106)

6. REDUCTION OF STABLE NUCLEI TO ISOELECTRONS AND ISOPRO-
TONS. The reduction of neutrons to isoprotons and isoelectrons clearly
implies the possible reduction of all stable matter in the universe to the
only known, massive and stable particles, protons and electrons [52].

This important possibility has been confirmed by the reduction of the
deuteron to isoprotons and isoelectrons [25], and it is under study by A.
A. Bhalekar and R. M. Santilli [54].

2.7.3. Industrial applications. In Section I-1.4 we have indicated the societal
duty of seeking basically new forms of clean energies, while continuing
research along conventional lines.

This is due to the inability of identifying industrially viable nuclear
fusions in about three quarters of a century and the investment of billions
of dollars of public funds.

Recall that the primary obstacle opposing the achievement of the con-
trolled nuclear fusion of two deuteronsD(1, 2, 1) into the HeliumHe(2.4.0)
is the extreme repulsive Coulomb force between nuclei that, the distance of
1 fm = 10−15 m needed to activate strong nuclear forces is given by

F = k e
2

r2
=

= (8.99× 109) (1.60×10−19)2

(10−15)2
= 230 N,

(107)

which force is extremely large for nuclear standards.
As it is well known, the efforts done to date for overcoming such a large

repulsive force have been the use of high energies resulting, as expected,
in uncontrollable instabilities at the initiation of the fusion itself.

Another problem that has prevented the achievement of the controlled
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Figure 18: An illustration of the helium nucleus as predicted by hadronic mechanics and
consisting of four isoprotons and two isoelectrons. Note that the illustration depicts the
conventional conception of the Helium as being composed by two protons and two neu-
trons, with the sole replacement of the neutrons with their physical constituents permitted
by hadronic mechanics, the proton and the electron. Note finally that the uncertainties of
the constituents of the helium follow Einstein’s determinism per Lemma II-3.7 and Corol-
lary II-3.7.1.
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fusion of deuterons into helium is the need for their singlet coupling

D(1, 2, 1↓) +D(1, 2, 1↑) → He(2, 4, 0), (108)

which is of extremely difficult engineering realization at low energies, and
virtually impossible at high energies, resulting in nuclear fusions that can
at best be at random.

For additional technical requirements needed to achieve the fusion of
deuterons into helium, interested readers may consult the hadronic laws
for nuclear fusions, which have been systematically studied in Ref. [25],
Chapter 4 and Section 4.2, page 188, in particular.

The Directional Neutron Source (DNS, Figure 8) is produced and sold
by Thunder Energies Corporation, now called Hadronic Technologies Cor-
poration, for the synthesis of neutrons (Section 2.6.3) and pseudo-protons
(Section 2.6.5) from a commercially available hydrogen gas.

However, the same DNS is produced for the use, without any mod-
ification, of a commercially available deuterium gas as a basic feedstock,
in which case, hadronic mechanics predicts the synthesis of a negatively
charged deuteron called pseudo-deuteron [48] (patent pending) which is pre-
dicted to have a structure of the type (Figure 17)

D̂ =
[
p̃↑, (ẽ

−
↑ , ẽ

−
↓ ), ñ↑)

]
hm
. (109)

The mechanism for the synthesis of the pseudo-deuteron (which we
write with nuclear symbols D(−1, 2, 1)) from a deuterium gas stems from
the main feature of the DNS, that of actually “compressing” electrons in
the interior hadrons (Figure 9) thanks to a specially conceived electric arc
and other engineering features. Consequently, pseudo-deuteria are ex-
pected to be synthesized in the DNF operating on deuterium gas, follow-
ing molecular separation with the ensuing presence of valence electron
pairs called isoelectronia (Section 2.8.2 and Figure 20), of course, in a way
dependent on power, pressure, flow, and other factors.

Preliminary calculations via hadronic mechanics indicate that the pseudo-
deuteron should have a mean-life of the order of a second, thus being suf-
ficient for industrial applications.

The importance of the research under consideration is that, contrary
to current trends, pseudo-deuterons are attracted, rather than being repelled by
natural deuterons.

This basic feature provides plausible means to search for basically new
nuclear fusions called hyper-fusions, here referred to fusions of natural, pos-
itively charged nuclei and synthesized negatively charged nuclei, such as
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the hyper-fusion of a pseudo-deuteron and a deuteron into the helium

D̂(−1, 2, 1↑) +D(1, 2, 1↓) → He(2, 4, 0) + 2e−, (110)

where the singlet coupling is naturally achieved because the pseudo-deute-
ron has not only the charge, but also the magnetic moment opposite that
of the natural deuteron.

The energy expected to be released by each hyperfusion (110) is given
by

∆E = EHe − (ED̃ + ED) == 23.8 MeV = 3.81× 10−12 J, (111)

and occurs without any emission of harmful radiation (since electrons can be
stopped with a metal shield), and without the release of radioactive waste.

As an illustration, the possible achievement of the rather realistic num-
ber of 1018 controlled fusions (110) per hour would yield the significant
release of about 106 J of clean energy per hour without harmful radiations
or waste.

In regard to the possible achievement of controlled hyper-fusions, we
should mention that the DNS is considered in this section for the mere
intent of achieving experimental measurements on the sole existence of
pseudo-deuterons. Their production in the needed number and energy,
and the hadronic reactor needed for the utilization of the produced heat,
evidently require specialized equipment under proper funding.

By recalling that conventional nuclear fusions have requested billions
of dollars of investments of public funds without any industrially viable
result to date, readers should be warned against any expectation prior to
the investment of equally large funds

2.8. Einstein’s determinism in molecular structures.
2.8.1. Insufficiencies of quantum chemistry. There is no doubt that quan-
tum chemistry has permitted truly historical advances in the 20th century.
However, as it is the case for nuclear physics, serious scholars are expected
to admit that quantum chemistry cannot be exactly valid for chemical struc-
tures and processes because of a number of insufficiencies, such as [30] (for
dissident views, see also Refs. [15] [16] [17]):

1. Even though possessing excellent practical values, the quantum chem-
ical notion of valence is a ’nomenclature’ without quantitative treatment because,
due to their equal charge, the Schrödinger equation predicts that valence electron
pairs ’repel’ (rather than attract) each other, due to the necessary sign + of
the Coulomb potential in the equation for the electron pair

i
∂

∂t
ψ(t, r) =

[
−~2

m
∆r +

e2

r

]
ψ(t, r). (112)
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Figure 19: Lectures in hadronic chemistry are generally initiated by showing a ball in
representation of a hydrogen atom with the recollection that quantum mechanics achieved
an exact representation of all its experimental data. The speaker then shows two joined
balls representing a hydrogen molecule, with the recollection that, this time, quantum
mechanics and chemistry have not achieved an exact representation of molecular data.
The reason indicated for this dichotomy is that mutual distances in the atomic structure,
that are of the order of 10−8 cm, are such to allow an effective point-like approximation
of the constituents. By contrast, mutual distances for valence electron pairs in molecular
structures, which are of the order of 10−13 cm, are smaller than the size of the electron
wavepackets, which is of about 2.2 × 10−13 cm, thus prohibiting an effective point-like
approximation of particles in favor of the representation of their actual size and as well
as of the ensuing contact non-potential interactions due to deep wave overlapping.

In particular, the repulsive force between the two identical valence electrons
has the extremely big value of 230N at mutual distances of 1 fm, Eq. (107),
with repulsive values remaining big at atomic distances. Consequently,
quantum chemistry misses a quantitative model of molecular structures.

2. According to quantum chemistry (see, e.g., Ref. [55]), valence elec-
tron bonds between two atoms are created by the overlap of atomic or-
bitals. Even though approximately valid, such a model is “incomplete”
because, due to the point-like approximation of the electrons, said orbitals
remain mostly independent, thus allowing their polarizations under a suf-
ficiently strong electric or magnetic field, with the consequential predic-
tion that substances are generally ferromagnetic.

3. Quantum mechanics has achieved an exact representation of all ex-
perimental data of the hydrogen atom H , but in the transition to the hydro-
gen molecule H2 = H − H (where − represents valence bond), quantum
mechanics and chemistry still miss 1 % of the H2 binding energy which
corresponds to the rather significant value of 950 BTU .

4. Quantum chemistry still misses to this day the quantitative identi-
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Figure 20: According to the basic principles of quantum mechanics and chemistry, elec-
tron valence pairs in molecular structures should “repel” (rather than “attract”) each
other with a force of the order of 230 N , Eq. (107), which is extremely big for particle
standards. Hadronic mathematics, mechanics and chemistry have achieved an attractive
force between valence electron pairs so strong to turn them into a quasi-stable particle
called the isoelectronium [30], that allowed the first known achievement of exact repre-
sentation of experimental data on the hydrogen [52] and water [53] molecules that are not
possible with quantum chemistry. In Santilli’s view, the impossibility in quantum chem-
istry to achieve an attractive force between valence electron pairs as occurring in nature,
is additional evidence supporting the need for the “completion” of quantum principles
into covering vistas according to Einstein’s legacy.
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fication of the attractive force bonding together neutral, dielectric and dia-
magnetic molecules in their liquid state, with ensuing lack of quantitative
representation of the liquid state for fuels.

5. The basic axioms of quantum chemistry are reversible over time.
Consequently, quantum chemistry is structurally unable to provide an ex-
act representation of combustion, as well as all energy-releasing processes
with ensuing implications for the solution of problems of large societal
values, such as the improvement of fossil fuel combustion.

We cannot possibly review in this paper the ongoing process toward
the solution of the above insufficiencies of quantum chemistry via the cov-
ering hadronic chemistry [30]. Nevertheless, we believe it is important to
indicate the main evidence supporting the validity for molecular struc-
tures of the ”completion” of quantum chemistry into a suitable covering
theory according to Einstein-Podolsky-Rosen argument [1].

Insufficiencies (1 - 5) above are known to chemists, as attested by the
widespread distribution of works in the field by Santilli and other scholars.
For this reason, said insufficiencies are referred to as the best kept secrets in
the best Ph. D. courses in chemistry around the world.

2.8.2. Attractive force in valence electron bonds. Recall that in the 1978 pa-
per [19], Santilli: 1) Identified the non-potential, strongly attractive force
created by the deep overlapping of the wavepackets of particles in sin-
glet coupling; 2) Constructed the foundations of hadronic mechanics with
particular reference to the iso-Schrödinger equation for quantitative treat-
ments of non-potential interactions; and 3) Applied the emerging new
methods to achieve an exact representation of all characteristics of mesons
as bound states of electrons and positrons (Sections 2.5.3 to 2.5.5).

In the 1995 paper [95], A. O. E. Animalu and R. M. Santilli showed that
the indicated non-potential force is essentially charge independent since it
remains strongly attractive also for electron-electron pairs in superconduc-
tivity thanks to the “absorption” of the Coulomb potential by the Hulten
potential irrespective of its sign, Eq. (5.1.15), page 836, Ref. [19] (reviewed
in Eq. (31) above).

Thanks to the “completion” of quantum into hadronic chemistry (hc),
in the 2001 monograph [30] Santilli worked out a new notion of valence
bonds, today known as strong valence bond, which consists of valence iso-
electron pairs, known as isoelectronium and denoted I, with a fully iden-
tified attractive force with the structure (see the independent reviews [31]
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[96] [97])

I = (ẽ↑, ẽ↓)hc. (113)

The achievement of the attractive force between the identical valence
electrons, apparently done for the first time in Ref. [30], Chapter 4, is de-
scribed in detail in Section 2.3, and it is essentially based on the ”comple-
tion” of all products into isoproducts (1) with consequential ”completion”
of the local Newton’s differential calculus into the non-local isodifferential
calculus (7) (8), resulting in the iso-Schrödinger equation

i ∂
∂t
ψ(t, r) =

[
−~2
m

∆r + e2

r

]
ψ(t, r) →

→ i ∂̂
∂̂t
ψ(t, r) =

[
−~2
m

∆̂r + e2

r

]
T̂ (ψ, ψ̂, ...)ψ̂(t, r) ≈

≈ i ∂̂
∂̂t
ψ̂(t, r) =

[
−~2
m

∆̂r −W e−br

1−e−br

]
T̂ (ψ, ψ̂, ...)ψ̂(t, r),

(114)

with a strong attraction characterized by the Hulten potential.

In Santilli’s view, the achievement of an attractive force in valence electron
pairs via the ”completion” of the quantum wavefunction ψ(t, r) into the hadronic
isowavefunction ψ̂(t, r) is a strong confirmation of the final statement by Einstein,
Podolski and Rosen [1] according to which quantum wavefunctions do not repre-
sent the entire physical or chemical reality.

The strength of the internal bond allows the reduction of four-body
molecules, such as the hydrogen H2 = H − H , down to a restricted three-
body system that, as such, admit full analytic solutions with major simplifi-
cation of otherwise notoriously complex elaborations.

It should be noted that, besides the existence of molecules, the biggest
evidence on the existence of the isoelectronium as a particle is provided
by experimental data on the photoionization of the hydrogen and helium
molecules (see, e.g., Ref. [56]) in which bonded electron pairs in singlet
have been systematically detected to survive molecular separation.

For comparison with preceding hadronic structures, let us recall that
Ref. [30], Eqs. (4.5) to (4.23), pages 169 to 173, provided the following
representation via model (29) of the rest energy E = 1 MeV and change
radiusR = 6.84×10−11 cm of the isoelectronium for the case of full stability

202

402

Reprinted by permission from Ratio Mathematica, “Studies on A. Einstein, B. Podolsky, and N. Rosen
Prediction that Quantum Mechanics is Not a Complete Theory III: Illustrative Examples and

Applications”, R.M. Santilli, Ratio Mathematica (Vol. 38), 139-222, 2020.



Studies on the EPR argument, I: Basic methods

Figure 21: An illustration of the isochemical model of the hydrogen molecule achieved by
R. M. Santilli and D. D. Shillady [52] with the following main features: 1) Valence elec-
tron pairs are bonded into isoelectronia according to the principles of hadronic chemistry;
2) Due to their strong internal forces, isoelectronia are forced to have oo orbits around
corresponding nuclei resulting in opposite angular momenta that represent the diamag-
netic character of the hydrogen and other molecules; 3) The conventional four-body equa-
tions for the hydrogen molecule are reduced to a restricted three-body form admitting a
full analytic solution.

τ =∞ [
1
r2

( d
dr
r2 d

dr
) + m̄(E ±W1e

2
r +W2

e−br

1−e−br )
]

= 0,

Etot = E1 + E2 − E = 1 MeV, m̄ = m
I2

τ−1 = 2πλ2|ψ̂(0)|2 α2E1

~ =∞,

R = b−1 = 6.84× 10−11 cm,

(115)

with solutions for the k-parameters

k1 = 0.19 k2 = 1, (116)

for which the binding energy is null (in first approximation) as expected
from the sole use of contact non-potential interactions, resulting in the to-
tal energy of the isoelectronium E = E1 + E2 = 1.022 MeV .

Note that, as expected from the charge independence of contact inter-
actions, values (114) for the isoelectronium (ẽ1, ẽ2)hc are rather close to the
corresponding values (50) for f the π0 meson (ẽ−, ẽ+)hm.

Interested readers should meditate a moment on the capability of con-
tact interactions to achieve a strongly attractive force by overcoming the
extremely big repulsive Coulomb force of 230 N .

This occurrence emphasizes the need in hadronic structure models such
as (112) of the notion of isoparticles in which all intrinsic characteristics are
mutated, thus including the charge.
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This occurrence also suggests the study of structure models of the elemen-
tary charge, such as that of Ref. [44], capable of such a mutation in condi-
tion of deep mutual overlapping to represent the physical evidence of a
strong attraction in singlet valence couplings.

In 1999, D. D. Shillady and R. M. Santilli proved that the isotopic branch
of hadronic chemistry achieves the first known, numerically exact repre-
sentation of the binding energy and other characteristics of the hydrogen
[52] (Figure 23) and water [53] (Figure 24) molecules via isoperturbative
isoseries (namely isoseries based on isoproduct AT̂B with T̂ � 1) whose
convergence is at least one thousand times faster than the convergence of
conventional quantum chemical series, thus providing an important ex-
perimental confirmation in molecular structures of both Einstein’s deter-
minism per Lemma II-3.7 as well as Corollary II-3.7.1.

In regard to the rather complex case in which the isoelectronium is par-
tially unstable, the numerically exact representation of H2 and H2O data,
and other aspects, we refer the interested reader to the above quoted liter-
ature.

The strong valence bond of isoelectronia evidently resolves Insufficien-
cies 1) and 2) of the preceding section.

Insufficiency 3) is resolved by the fact that, due to the strength of its
bond, isoelectronium (112) is forced to have an oo-orbit around the re-
spective nuclei (Figure 22) with ensuing opposite angular momenta and
opposite magnetic polarities that permit a quantitative representation of
the diamagnetic character of the hydrogen, water and other molecules.

The apparent resolution of Insufficiency 4) was provided by the new
chemical species of magnecules [30] (see the U. S. patent [57], the latest ex-
perimental verification [58] and Figure 25) that allowed the identification
of an actual attractive force between water molecules in their liquid state
[98].

The resolution of Insufficiency 5) can be studied via the Lie-admissible
branch of hadronic chemistry, also called genochemistry [30], although it does
not appear that, at this writing, a consistent representation of energy re-
leasing processes is of interest to contemporary chemists at large.

2.8.3. Industrial applications. It is a truism to state that the combustion of
fossil fuels occurring in the ongoing disproportionate number of civilian,
industrial and military vehicles is the same as it was at the dawn of our
civilization some 50, 000 years ago because, in all cases, we strike a spark
and lit the fuel.

To be “True Researchers” in Einstein’s words, it is our societal duty to
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Figure 22: A reproduction of Table 4.2 of Ref. [52] presenting the first known exact
representation of the experimental data of the hydrogen molecule via isomathematics
and isochemistry, by providing an experimental confirmation of the validity in molecu-
lar structres of Einstein’s determinism according Lemma II-3.7, with a convergence of
the isoperturbative series at least one thousand times faster than conventional series, by
therefore providing an experimental confirmation of Corollary II-3.7.1.
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initiate the laborious process of trial and errors in seeking a clean combus-
tion of fossil fuels that, to be as such, as to be new, namely based on new
mathematical, physical and chemical principles.

In the hope of initiating the expectedly long and laborious process of
trials and errors, Santilli has submitted in Ref. [59] the study of the new
form of combustion of carbon and oxygen, known as hypercombustion, in-
tended to achieve the full combustion of fossil fuels via a small percentage
of nuclear fusions of the novel magnecular forms of 6−C−12 and 8−O−16
into the stable 14−Si−28, thus without the emission of harmful radiations
and without the release of radioactive waste [69] [70] (Figure 24).

We should mention in this respect the gaseous fuel magnegas [30] which
is synthesized by hadronic reactors from a mixture of oil and water, in pro-
duction and sale world wide by Magnegas Corporation, now called Taro-
nis Corporation, whose combustion in air shows no appreciable carbon
monoxide CO and hydrocarbons (HC) (Figure 25).

This environmental result was achieved via a combustion temperature
more than double that of commercially available fuels, which temperature
is permitted by magnecular bonds that are weaker than molecular bonds,
and at which temperature CO and HC cannot remain unburned.

HyerCombustion aims at achieving the needed higher combustion tem-
perature of petroleum fuels via the use of the indicated nuclear processes
that are solely possible under the“completion” of quantum into hadronic
mechanics.

It appears advisable to indicate that, besides the expected environmen-
tal advances, the new chemical species of magnecules appears to have sig-
nificant medical applications, such as the possible killing of the corona
virus in lungs (and other organs) of patients via ventilators releasing the
new polarized species of magneoxygen, rather than conventional oxygen
[62] - [65].

2.9. Einstein’s determinism in gravitational collapse.
In the recent paper [10], Santilli recalls that iso-space-time metrics contain
as particular cases all possible symmetric metrics in (3 + 1)-dimensions,
thus including the Riemannian metric.

Ref. [10] then factorizes the space component of the Schwartzchild
metric gs(r) according to isotopic rule introduced in Refs. [66] [67]

gs(r) = T̂ (r)δ, (117)

where δ is the Euclidean metric.
In this way, Santilli reaches the following realization of the isotopic
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Figure 23: A reproduction of Table 5.1. of Ref. [53] presenting the first exact represen-
tation of the experimental data of the water molecule, including its electric and magnetic
moments, via isomathematics and isochemistry, by therefore providing a second experi-
mental confirmation of the validity in molecular structures of Einstein’s determinism ac-
cording to Lemma II-3.7, with a convergence of the isoperturbative series at least one
thousand time faster than conventional series, thus providing an experimental confirma-
tion of Corollary II-3.7.1.

element
T̂ =

1

1− 2M
r

=
r

r − 2M
, (118)

where M is the gravitational mass of the body considered with ensuing
isodeterministic isoprinciple, Ref. [10], Eq. (46), page 16,

∆r̂∆p̂ ≈ T̂ =
r

r − 2M
⇒r→0= 0, (119)

which confirms the possible recovering of full classical determinism in the
interior of gravitational collapse essentially as predicted by Einstein (see
Ref. [16], Chapter 6 in particular, for a critical analysis of black holes).

It should perhaps be indicated that the 1993 paper [100] identified the
universal isosymmetry of all possible (non-singular) Riemannian line el-
ements in 3 + 1)-dimensions formulated on iso-Minkowskian isospaces
[78] over isofields. Papers [66] [67] introduced the factorization of a full
Riemannian metric g(x), x = (r, t) in (3 + 1)-dimensions

g(x) = T̂gr(x)η, (120)

where T̂gr is the gravitational isotopic element, and η is the Minkowski metric
η = Diag.(1, 1, 1,−1).
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Figure 24: In this figure, we present a conceptual rendering of the new chemical species
of Santilli magnecules [30] for the case of the elementary hydrogen magnecules H̃2 =

H × H (where × denotes magnecular bond). The species is obtained via the use of
special electric arcs producing electric and magnetic fields over certain minimum values
[? ], which arcs ionize the hydrogen molecule and polarize the electron orbits into toroids
by therefore creating a new magnetic dipole moment which does not exist in the natural
state. Polarized atoms bond together in the configuration of the figure which is stable at
ambient temperatures by creating the new species of magnehydrogen (see Refs. [62] to
[65]). It should be indicated that elementary magnecules between other selected atoms
verify all hadronic laws for controlled nuclear fusions ([25], Section 4), for instance, of
C̃O = 6 − C − 12 × 8 − O − 16 into 14 − Si − 28 without the emission of harmful
radiations and without the release of radioactive waste [69] [70].

Refs. [66] [67] then reformulated the Riemannian geometry via the
transition from a formulation over the field of real numbersR to that over
the isofield of isoreal isonumbers R̂ where the gravitational isounit is evi-
dently given by

Îgr(x) = 1/T̂gr(x). (121)

The above reformulation turns the Riemannian geometry into a new
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geometry called iso-Minkowskian isogeometry [78] which is locally iso-
morphic to the Minkowskian geometry, while maintaining the mathemati-
cal machinery of the Riemannian geometry (covariant derivative, connec-
tion, geodesics, etc.) although reformulated in terms of the isodifferential
isocalculus.

The following advantages should be mentioned for the identical iso-
Minkowskian reformulation of general relativity, including Einstein’s field
equations, known as isogravitation [83]:

1) The achievement of a consistent operator form of gravity via the
axiom-preserving embedding of the gravitational isounit Îgr(x) in the unit
of relativistic quantum mechanics [33] [21];

2) The achievement of the universal LPS isosymmetry of all non-singular
Riemannian metrics [100], which symmetry is locally isomorphic to the LP
symmetry, (Section II-2), while being notoriously impossible in a conven-
tional Riemannian space over the reals;

3) The achievement of clear compatibility, actually a true isounification,
of general and special relativity since the latter can be identically recovered
with the simple limit

Îgr → I = Diag.(1, 1, 1, 1), (122)

implying the transition from the universal LPS isosymmetry to the LP
symmetry of special relativity with ensuing recovering of conservation
and other special relativity laws;

4) The possibility of initiating systematic studies on interior gravitational
problems along the forgotten Schwartzchild’s second paper [73];

5) The achievement of axiomatic compatibility between gravitation and
electroweak interactions thanks to the replacement of curvature into the
covering notion of isoflatness, while offering realistic hopes to achieve a
grand unification [38]; and other intriguing advances.

3. CONCLUDING REMARKS.
At the end of their historical paper [1], Einstein, Podolsky and Rosen state:

While we have thus shown that the wavefunction [of quantum mechanic] does not
provide a complete description of the physical reality, we left open the question of
whether or not such a description exists. We believe, however, that such a theory
is possible.

In the preceding Papers I and II we have provided a review and up-
grade of the apparent proof of the existence of classical counterparts for
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Figure 25: A picture of the 300 kW mobile magnegas refinery built by Santilli when
Chief Scientist of Magnegas Corporation (now Taronis Corporation) to process a mixture
of fossil oil and water into magnegas whose combustion with the proper stochiometric
oxygen has no detectable CO or HC [57]. The oxygen content of magnegas appears to
have special polarizations [62] - [65] deserving tests for its possible use in ventilators to
kill Corona viruses due to the emission of strong UV light in its depolarization in human
lungs.
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extended particles within physical media [9] (Section II-3.7), and of the
apparent progressive verification of Einstein determinism in the interior
of hadrons, nuclei and stars [10] (Section II-3.8).

In this third paper, it appears we have additionally proved, apparently
for the first time, the above quoted, concluding EPR statement. In fact,
the “completion” of the quantum wavefunction ψ(t, r) of the Schrödinger
equation into the hadronic isowavefunction ψ̂(t̂, r̂) of the Schrödinger-Sant-
illi isoequation allows the achievement, otherwise impossible via quan-
tum mechanics, of an exact representation of all characteristics of: the neu-
tron in its synthesis from the hydrogen atom (Section 2.6); the deuteron
(Section 2.7); the attractive force between the identical electrons in valence
couplings (Section2.8); and the progressive achievement of Einstein’s de-
terminism in interior dynamical conditions (Section 2.9).
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Abstract: 

In this teleconference, we have debated whether high energy scattering regions 
should be re-inspected under the historical 1935 argument by A. Einstein, B. 
Podolsky and N. Rosen [10] that "quantum mechanics is not a complete theory" in 
view of the apparent proofs by R. M. Santilli, especifically, for high density regions 
suggesting the "completion" the quantum mechanical scattering theory into the iso-
and geno-scattering theories of hadronic mechanics. The non-unitary Lie isotopic 
and Lie-admissible scattering theories of hadronic mechanics, also known as iso- and 
geno-scattering theories, respectively, were first systematically studied in R. 
M.Santilli's volumes [11]-[14], particularly in Chapter 12 of Vol. II. In Ref. [27], A. 
O. E. Animalu and R.M. Santilli continued these studies by developing a 
generalization of the Feynman graph method for the computation of the S matrix for 
high density scattering regions that cannot be consistently decomposed into a finite 
number of isolated point-particles according to various "no-decomposition theorems" 
[22]. More recently, by using Myung’s nonlinear-Riccati differential realization of 
Santilli's Lie-admissible equation of motion to characterize the generalized structure 
functions, A.O. E. Animalu [32] has extended the results of Paper [27] to the geno-
scattering theory of deep inelastic, thus irreversible electron-positron and electron-
proton scattering processes, and obtained  a good agreement between the geno-theory 
and the experimental data, which are presented and discussed in relation to the EPR 
argument..  
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 1. IMPLICATIONS OF THE EPR ARGUMENT ON HIGH ENERGY 
SCATTERING EXPERIMENTS 

1.1 The EPR argument.  
 A most mysterious experimental evidence in nature is the capability of 
particles to influence each other instantly at a distance. The scientific community of the 
early 1900 assumed that such an effect is predicted by quantum mechanics, for which 

reason the effect was called and continue to be called to this day quantum entanglement 

as charaterized in Fig.1 below. By contrast, Albert Einstein noted that quantum 
mechanics can only represent point-like particles isolated in vacuum, thus being 
unable to predict their entanglement, in which case the sole possible representation of 
the entanglement is that via superluminal communications that would violate special 
relativity. To avoid such a violation, Einstein published in 1935 a historical paper 
jointly with his graduate students, Boris Podolsky and Nathan Rosen arguing that 
”quantum mechanics is not a complete theory” (EPR argument) [1], in the sense that 
quantum mechanics is valid for the atomic structure and other systems, but there may 
exist more complex systems in nature requiring a suitable ”completion” for their 
consistent treatment, as it is the case for particle entanglement, thus including the 
possible recovering of classical determinism at least under limit conditions. 

Immediately following the appearance of paper [1], Niels Bohr [2] voiced strong 
opposition to the EPR Argument essentially on grounds that complex systems can be 
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reduced to their elementary constituents, thus being fully treatable with quantum 
mechanics. Subsequently, J. S. Bell [3] proved a theorem essentially stating that a 

quantum mechanical system of particles with 2
1spin  cannot admit a classical 

counterpart, and therefore prevents the achievement of Einstein’s determinism, and de 
facto confirms the view that quantum mechanics is valid for all possible conditions 
existing in the universe (see, Ref.[4] for a vast  bibliography). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1; Schematic elaboration of quantum entanglement 

 

 Since coordinates,  potentials, differential calculus and wavefunctions can only be defined 
at isolated points, quantum mechanics can only represent particles as being isolated in 
vacuum (top view), thus requiring superluminal speeds for their instantaneous 
entanglement at a distance, as pointed out by A. Einstein, B. Podolsky and N. Rosen (EPR 
argument) [1]. Beginning with his Ph. D. studies  in the 1960s, R. M. Santilli and a number 
of scholars [8-31] have:  pointed out that the wavepacket of particles fills up the entire 
universe; the interactions caused by their overlapping/entanglement (bottom view) is not 
representable via a Hamiltonian; constructed an axiom-preserving completion of quantum 
mechanics into hadronic mechanics which represents  particles as extended in permanent 
and continuous overlapping by therefore avoiding any need for superluminal speeds; 
provided a number of proofs, applications and experimental verifications of  the EPR 
argument  
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1.2 Earlier EPR verifications.  
 Despite authoritative opposing views, the search for a completion of quantum 
mechanics was continued by several authors, among whom we recall: 

1) A completion of quantum mechanics by W. Heisenberg [5], hereon referred to as 
Heisenberg’s non-linear theory, includes interactions non-linear in the wave functions as 
expected, for instance, in nuclear structures. Heisenberg’s non-linear theory is based 
on the only possible quantum mechanical representation, in the Hamiltonian form  

)()(),( rErprH    that, unfortunately, violates the superposition principle 

,)()(
,...,2,1 


Nk k rr   and, therefore, prevents a quantitative representation of the 

individual constituents )(rk . 

2) A non-local completion of quantum mechanics by D. Bohm and L. de Broglie [6], 
hereon referred to as the Bohm-de Broglie non-local theory, includes non-local interactions 
that are also expected in the nuclear and other structures, which completion appears to be 
the first attempt of achieving Einstein’s determinism in scientific records. Unfortunately, 
the Bohm-de Broglie non-local theory is semi-classical and, as such, cannot be considered   
a completion of quantum mechanics according to the ERP argument [1]. Additionally, 
interactions occurring over a volume cannot be reduced to a finite number of isolated 
points and, therefore, they cannot be represented with a Hamiltonian. 

3) D. Bohm hypothesis of hidden variables [6] has realization expected to void Bell’s 
theorem[3], with ensuing genuine broadening of quantum mechanics. Unfortunately, 
under the use of 20th century applied mathematics, Bell’s inequality [3] prevents 
hidden variables to have concrete and explicit realizations because the said inequality 
applies for the infinite family of unitary equivalence of quantum mechanics. 

 

1.3. EPR verification with energy-releasing processes. 
An international teleconference was held on September 1 to 5, 2020 [7], to discuss 

available studies on the completion of quantum mechanics according to the EPR argument, 
including the studies of the preceding section and the lifetime research by R. M. Santilli  on 
the proof of the EPR argument [8-27], and others. 

In his Ph. D. thesis in the mid-1960s [8,9] at the University of Torino, Italy, , R. M. 
Santilli noted that Heisenberg’s equations for the time evolution of an observable A  in  
the infinitesimal and finite forms, 

 
 

 
are invariant under anti-Hermiticity, thus are unable to represent time-irreversible 
processes such as combustion or nuclear fusions. Additionally, Santilli proved a theorem 
establishing that a macroscopic time-irreversible system cannot be consistently 
decomposed into a finite number of quantum mechanical particles, thus establishing that 
macroscopic irreversibility originates at the level of elementary particles, as confirmed 
experimentally by the clear irreversibility of high energy scattering experiments at 
CERN,. FER- MILAB and other particle physics laboratories. Hence, Santilli concluded that 

(2)                                )0()(

(1)                        ],[

itHHti eAetA

HAAHHA
dt
dAi
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− 

the inability to provide a consistent representation of irreversible processes is a first clear 

evidence of its lack of completion of quantum mechanics according to the EPR argument [1]. 
To initiate the identification of an appropriate completion for irreversible processes, 

Santilli proposed in 1967 a completion of quantum mechanics for time-irreversible 
processes characterized by brackets ),( HA  that are no longer invariant under anti-

Hermiticity. Following an extensive search in mathematical libraries, Santilli selected 
brackets ),( HA  that are Lie-admissible according to  A. A. Albert [10] in the sense that 

the attached anti-symmetric brackets ),(),(]*,[ ABBABA   are Lie. Therefore, Santilli 

proposed in 1967 the completion of Heisenberg’s time evolution into a Lie-admissible 
form for the consistent representation of irreversible processes [8,9], which he 
subsequently finalized in the infinitesimal and finite form [11,12] 

(4)                                                                   )0()(                     

(3)                                                   ),(

itRHHSti eAetA

AHHAHSAARHHA
dt
dAi




 

with corresponding completion of Schrö dinger equation [13-15] 
 

(6)                                                                            ˆˆˆ
(5)                                                                            ˆˆˆ





ESHSH

ERRHH




 

where: R  is generally assumed to have unit value, HFSR /1;1   with ensuing 

Eq. (3) AFHAAHdtidA /  , is an operator representing the external terms F  in 
Lagrange’s and Hamilton’s analytic equations; and ̂  is the completed wavefunction 

under irreversibility. Note that irreversibility is assured because SR  .  

       The mathematics underlying the Lie-admissible dynamical equations, known as Lie- 
admissible mathematics or genomathematics for short, was subsequently developed in  
collaboration with a number of mathematicians (see the general review [13-15]) and 
Tutoring Lecture IV of Ref. [7]). Applications of the Lie-admissible treatment of 
irreversible processes, including nuclear fusions, are reviewed in Ref. [15]. 
 

1.4. EPR verification with the neutron synthesis.  
  late 1977, when at Harvard University under DOE support, Santilli [16] was 
requested to study the synthesis of the neutron from the hydrogen atom in the core of 
stars. He discovered in this way that quantum mechanics is completely inapplicable to 
the moist fundamental synthesis in nature because of various technical reasons, 

including the fact that the mass of the neutron is 0.782 MeV bigger than the sum of the 
masses of the proton and  of  the  electron.   Under  these  conditions  the  Schrö dinger  

equation  of  quantum  mechanics would require a positive potential energy resulting in a 

mass excess that are outside scientific boundaries. Santilli noted that,  despite the clear 
evidence of the synthesis of the neutron in the   core of stars, quantum mechanics admits 
no bound state at short distance between a pro- ton and an electron despite the fact that , at 

1 fm mutual distance, they experience the Coulomb attraction 

(7)                                   230
)10(

)1060.1()1099.8( 215

219
9

2

2

N
r
ekF 








 

which is astronomically big for particle standards. Consequently, the synthesis of the 
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neutron in the core of stars is a second clear evidence of the lack of completion of quantum 

mechanics according to the EPR argument [1]. In Table V of Ref. [16] of 1978, Santilli noted 
that, when mesons were assumed to be bound states of elementary particles produced 
free in their spontaneous decays, there was a systematic appearance of a ’mass excess’ 
similar to that of the neutron.   

To initiate these studies, Santilli suggested the completion of quantum mechanics 
into the covering hadronic mechanics [11-12] with general Lie-admissible dynamical 

equations (3)-(5) and their particularization for R = S = T̂ in the infinitesimal form and 
finite form 

(8)                              **   ]*,[ AHHAHTAATHHA
dt
dAi   

and finite form          (9)                                                            )0()(    ˆˆ HTittiTH eAetA   

with completion of the Schrö dinger equation 
 

(10)                                                                 ˆˆˆ*  ETHTH   

The mathematics and mechanics underlying the above equations are known as 
Lie-isotopic mathematics and mechanics, and characterize branches of hadronic 
mechanics also known as isomathematics and isomechanics, (see Refs. [13-15] and 
Tutoring Lecture I  of Refs. [7]). 

It should be noted that isoeigenvalue equation (10) verifies the superposition 
principle, by therefore admits the decomposition of the isowavefunction into those of 

the constituents  of  the  hadronic  bound  state ,ˆˆ
,...,2,1 


Nk k Hence,  isomathematics   

resolves the limitation of Heisenberg’s non-linear theory [5] indicated in Section 1.2 via 

the embedding of all non-linear terms in the isotopic element  
isospaces.on linearity  tingreconstruc and  )ˆ,...,ˆ,ˆ(ˆˆ

21 NTT   
Note that Eqs. (8)-(10) are also invariant under anti-Hermiticity as it is the case 

for Eqs.(1), (2), thus solely able to represent time reversal invariant systems. However, the 

representation of systems requires the knowledge of two operators, namely the 

conventional Hamiltonian H and the isotopic element T̂ representing extended, thus 
deformable and hyperdense constituents in conditions of mutual 
penetration/entanglement with ensuing non-linear, non-local and non-potential 
interactions. Hence, Eqs.(8)-(10)) are particularly suitable for the representation of the 
entanglement of particles (see Figure 1 for details) and its application to stable nuclei as 
established by experimental evidence, namely, composed of extended nucleons in partial 
mutual penetration. 

Under the approximation that the considered two-body hadronic bound states 
are stable, the neutron synthesis was studied with realizations of the isotopic operator 
T̂ of the type [15] 
 

  (11)            ,0,...)ˆ,(exp)/1,/1,/1,/1.(ˆ 2
4

2
3

2
22,1

2
1  

kkkk k nnnnDiagT
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2 

normalized to the values 12 kn , for the sphere; 2
kn represents the density of the exponent 

is a positive-normalized to the value 12
4 n  for the vacuum; and the exponent is a positive 

definite function representing non-linear, non-local and non-potential interactions caused 
by mutual overlapping/entanglement of the particles considered with realizations of the 
type 

    (12)                                1ˆˆˆ/exp,...)ˆ,(exp 3
21  
 rd  

where    is  a  quantum  mechanical  wave  function,  and ̂  is  the  completed  wave 

function under isotopy. Note the recovering of quantum mechanics identically and 
uniquely whenever the overlapping of the wavepackets is ignorable and the integral of 
realization (12) can be assumed to be null. 

It should be note that the representation (11), (12) of non-local interactions      
characterizes a full operator theory, by therefore resolving the semi-classical limitation of 
the Bohm-de Broglie non-local theory [6] indicated in Section 1.2. 

In order to achieve a consistent representation of the neutron synthesis, Santilli      
assumed that the integral in Eq. (12) is a constant and introduced the following simple 
realization of the isotopic element [16]  

(13)                                                                                  1ˆ                     
Q

HV
V

V
V

eT Q

H




 

where QV  is the quantum mechanical Coulomb potential reVQ /2  for the proton- 

electron system at short distances, and HV  is the strongly attractive hadronic potential 

caused by the mutual penetration of the wavepackets which can be represented by the 
Hulten potential, 

(14)                                                                                         
1

                      kr

kr

H e
eWV






  

But the Hulten potential behaves like the Coulomb potential at short distances. Therefore, 
Santilli absorbed the latter in the former (except for a  renormalization  of  W  which  is here 
ignored), and reached the following eigenvalue equation for the two-body hadronic bound 
state of a proton and an electron at 1 fm mutual distances (Table V of Ref. [16]) 

(15)                                                                  )(ˆE )(ˆ
1

1            rr
e

eW
m kr

kr

 















i.  

where m is renormalization of the reuced mass caused by wave overlapping identified more details in 
Section 1.9 

Under the above formalism, the Lie-isotopic branch of hadronic mechanics was able 

to achieve an exact representation of a- ll characteristics of the neutron in its synthesis from 
the hydrogen at the non-relativistic and relativistic levels (see the review in Ref. [15] and 
Ref. [25] ). 

In paper [17] of 1995, A. O. E. Animalu and R. M. Santilli noted that hadronic bound 
state (15) holds with a strongly attractive Hulten potential irrespective of whether the 
Coulomb potential is attractive or repulsive, thereby reaching in this way the first known 
attractive force between the identical electrons of the Cooper pair in superconductivity and, 

therefore, confirming Animalu’s isosuperconductivity [18]. 
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1.5 EPR verification with classical images.  

In Ref. [19] of 1998, Santilli  confirmed  the  validity  of  Bell’s  inequality  for  point-like  
particles  with  spin  1/2 under potential interactions, but indicated its inapplicability 
(rather than violation) un- der extended, therefore deformable particles in conditions 
of mutual entanglement with ensuing non-linear, non-local and non-potential 
interactions. 

By using the Lie-isotopic SU (2)-spin symmetry (see the review in Ref. [24]) with 
the explicit and concrete realization of Bohm’s hidden variables 

(16)                                                                        ,1ˆ  ),/1,.(ˆ  TDetDiagT   

Santilli proved that systems of extended, deformable and hyperdense particles with 2
1spin  

in conditions of deep mutual entanglement do indeed admit classical counterparts, and 
provided specific examples (see the review in Tutoring Lecture II of Ref. [7]). 

Thanks to the deformability of neutrons according to Eq. (11), with consequential 
alteration of their magnetic moments, the above verification if the EPR argument was then 
used in Ref.  [19] for the first known numerically exact and time invariant representation    
of nuclear magnetic moments (see the review in Ref. ]25]). 

1.6. EPR verification with Einstein’s determinism.  

 The recovering of classical images in Ref. [19] evidently established the 
foundations for the achievement of Einstein’s determinism [1]. 

In fact, in paper [20] of 2019, Santilli proved that, under the standard isonormalization 

(17)                                                                                      ˆˆ*ˆ*ˆ TT   

Heisenberg’s uncertainties are completed into the form 

  (18)                                                 1ˆ
2
1 )(ˆ*,*)(ˆ

2
1

 Trprrpr   

(18) where the very small value of T̂  is established by structure (12) as well as by all fits of 
experimental data to date [15] [23]. 

Isodeterministic principle (18) establishes the progressive validity of Einstein’s de- 
terminism in the interior of hadrons, nuclei and stars, and its full achievement in the interior 
of gravitational collapse. The latter result is due to the fact that the isotopic element admits 
a realization in terms of the space component of Schwartzchild’s metric with 

Mr
rT

r
M 21

1ˆ
2 




  

in ensuing full achievement of Einstein’s determinism,  
 

 (19)                                                    ˆ
2

ˆ
0 U

Mr
rTpr r 


   

 
in the interior of a black hole whose center of gravity verifies full classical determinism. 
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1.7. EPR verification with valence bonds.  

  One of the biggest insufficiencies of quantum mechanics and chemistry discussed 
at the teleconference [7] is the lack of a consistent representation of valence electron bonds 
in molecular structures.   In fact, quantum mechanics and chemistry predict that, due to 
their equal elementary charge, the identical electrons in valence bonds experience a 

Coulomb repulsion that, ac- cording to Eq.   (7),  has the value of 230 N  which is so 
enormous for particle standards     to prevent any possibility that current quantum 
chemical models if valence boinds may achieve the needed attraction. 

The lack if a quantitative model of molecular structure has then implied the 
inabil- ity by quantum chemistry to achieve an exact representation of molecular 
binding ener- gies and other experimental data from unadulterated first principles, with 
deviations for the binding energies of about 2% that, rather than being small, are 
equivalent to about 950 BTU . 

Following the joint work with A. O. E. Animalu for the identical electrons of the 
Cooper pairs in superconductivity [17], Santilli confronted the above limitations with 
systematic studies presented in monograph [24] and, via a procedure similar to that of 
Eqs. (11)-(15), did achieve the first and only known attractive force between valence       

electron pairs in molecular structures. In particular, the hadronic force resulted to be so 

strong that valence electron pairs bond into a quasi-particle called isoelectronium (see 
Chapter 4 of Ref. [24]). The alteration of the structure of the valence electrons to achieve 
an attraction when in total mutual overlapping is studied in Ref. [23] via the notion of 
isoparticle as a representation of the applicable symmetry indicated in Section 1.9. 

In joint works with the chemist D. D. Shillady, Santilli proved that the notion of strong 
valence bond of hadronic chemistry achieves exact representations from unadulterated first 
principles of experimental data of the Hydrogen [25] and water [26] molecules.  
 

1.8. EPR verification with the removal of quantum  
divergencies.  
 

Recall the necessary condition for the completion of quantum mechan- ics and 
chemistry into isomechanics and isochemistry, respectively, according to which the 

isotopic product BTABA ˆ*   must be applied to the totality of the products,  thus 

including all products appearing in perturbative series.   But the isotopic element  ̂ T̂    
has very small values in all known applications. Consequently, perturbative series that 
are generally divergent in quantum mechanics and chemistry are turned under isotopy 
into strongly convergent series, as illustrated by the strong convergence of the series 

(20)                               .1   ,.... !1/)()0()(  TKHTAATHAtA  

Consequently, the validity of Einstein’s determinism per Section 1.6 implies the 
removal of quantum mechanical divergencies (see Corollary 3.7.1, page 128, Ref. [22]). 
The actual verification of the above important property has been provided by D. D. 
Shillady and R. M. Santilli in papers [25] [26] with the proof that the perturbative series of 
hadronic chemistry converge at least one thousand times faster than the corresponding 
quantum chemical series. 
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P 

1.9. Implications for high energy scattering experiments  
 Note that the validity of relativistic quantum mechanics for particles in the 
vacuum of accelerators is beyond scientific doubt because particles can be well approxi- 
mated as being point-like, the sole possible interactions being at a distance, thus derivable 
from a potential. Equally beyond scientific doubts are the numeric values of quantities 
actually measured, such as scattering angles, cross sections, etc. 

The verifications of the EPR argument outlined in Sections 1.2 to 1.8 imply that 
rel- ativistic quantum mechanics is inapplicable (rather than being violated) for the interior of 
the scattering region due to its density so big to approach that of black holes, with ensuing 
general lack of validity of the characteristics of intermediate particles predicted by quantum 
mechanics, such as mass, spin, etc.,. 

In the authors’ view, the most important experimental evidence is that high 
energy inelastic scattering events are strictly irreversible over time, thus requiring the Lie-
admissible branch of hadronic mechanics and its related scattering theory (Section 1.3), while 
high energy elastic, thus time- reversible scattering events require the use of the Lie-isotopic 
branch of hadronic mechanics and related scattering theory (Section 1.4), see Refs. [15] [27] 
and more detailed presentation in the subsequent sections. 

To illustrate the alteration, originally called mutation [16] and now called 

isorenormal- ization [14] of the rest energy and spin of intermediate particles for high 
energy elastic scattering events, recall that the scattering region is represented by the 

iso-Minkowskian isospace )ˆ,ˆ,ˆ(ˆ IxM   with isounit TI ˆ/1ˆ  , isometric  Îˆ   ,  were   is 

the Minkowskian metric, Ixx ˆˆ   where x  represents the Minkowskian spacetime 
coordinates, and isotopic line element [28] 

  (22)                                         0,,,ˆ/1ˆ                         

isounitwith 

(21)             ,ˆ)()()()()ˆˆ(
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where exponential (12) is incorporated in the n- characteristic quantities. The universal 

symmetry  of line  element  (21)  is the  Lorentz-Poincaré-Santilli  isosymmetry  ∧(3.1) [29]. 
The isorelativistic equation characterized by the second order iso-Casimir invariant (Eq. 
(39), page 91, Ref. [22]) is given by 

 

(23)                                                       ,0ˆˆ  


  PPP  

, 
which, under the approximation of a spherical scattering region 12

3
2
2

2
1  nnn  and the 

time isounit 1ˆ tI , yields the iso-Klein-Gordon equation (for 1 ) 

(24)                                                                 0ˆ)( 2  cm  

where
2
4/ nmm   and m  is the value  predicted by relativistic quantum mechanics. To 

appreciate the value of the isorenormalization, mm  , we assume that the 
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density of the scattering region is the same as  that of the fireball of the Bose-Einstein  

correlation, in  which case the fit of the experimental data yields the value 429.02
4 n  

[30] [31], resulting in the isorenormalized mass  

(25)                                                                          331.2
429.0

mmmm   

Note the general increase of the rest energies of intermediate particles compared to    the 
value predicted by quantum mechanics.  
 

2. OUTLINE OF THE PRESENTATION  
 

The presentation is based on  A.O.E. Animalu’s_ personal knowledge of P.A.M. Dirac (as 
a post-graduate student at Cavendish Lab, Cambridge, UK ) and R. P. Feynman (briefly at UK 
and subsequently through interaction with his former student, R.Oakes, as post-doctoral research 
associate staff at W.W.Hansen Lab, Stanford University, Calif. USA) in the 1960s. Thereafter, 
Animalu was involved at Chapel Hill, NC, as theoretician in experimental measurement of 
angular distribution of photons from positron annihilation with valence electrons in metals using 
[geno-dual model] pseudo-potential theory... 

The foundation for comparison of numerical values predicted by the iso- and/or geno-
scattering theory of HM with those of the conventional QM scattering theory was laid while 
Animalu was working at M.I.T. Lincoln Lab and later (with R.M.Santilli & others) in a paper 
entitled[32], "Iso-Feynman Propagator and Iso-Matrix of Hadronic Mechanics“  ,  published in 
the Hadronic Journal Vol.31, p.317-350(2008). with the following partial abstract : 

In this paper, we present in the framework of the Feynman space-time picture of quantum 
electrodynamics (QED) a systemic method, based on non-linear, non-unitary transformation of 
Feynman’s propagator and S-matrix into the corresponding iso-propagator and iso-S-matrix in 
hadronic mechanics (HM) for  eliminating three basis of divergences  in contemporary physical 
theories [of quantum mechanics (QM)]. (1) Arbitrariness of the (external) boundary conditions 
on the quantization volume for normalizations  and associated differences in the quantum 
[Bose-Einstein(BE) and Fermi-Dirac (FD) statistics;(ii) the singularities in the Lorentz 
transformation and the theorem of addition of addition of two velocities, and (3) the 
singularities arising from the assumption that particles are point-like and the interaction 
between them long-range in character  which calls for arbitrary cut-off of divergent  
integrals….. We wish, in this paper, to investigate the scattering processes of such non-
conservative time-irreversible systems, under the name genoscattering theory, as exemplified 
by deep-inelastic electron-proton scattering, and electron-positron annihilation into two photons. 

At Chapel-Hill, North Carolina, Animalu had reported (see, page 51 of  Animalu’s 1977 Prentice-Hall 
published book)[33]  that experimental measurement of angular distribution of photons from positron 

annihilation with valence electrons into two γ -rays in metals, is given, for a single plane wave state, 
by the distribution function(at K00 ): 










)(           0
)(            1

F

F
k kk

kk
n  
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where  Fk  is the Fermi wave number that is determined, in accordance with Fermi-Dirac 
statistics, by the electron density (  ) via the relation, 3/12 )3( Fk . The quantity measured by 
positron annihilation is 








  







 )(for                     0
)(for       )(

)(
22

Fz

FzzF
yxkz kk

kkkk
dkdknkN


 

which represents the area of a cross-section of the Fermi surface at zkk   as shown in Fig. 2.(a) 
and )( zkN versus zk  is an inverted parabola as shown in Fig2(b).  
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Bearing the insight from the above results in mind, let us turn next to the use of the 
Feynman space-time picture of quantum electrodynamics (QED) in terms of the Feynman 
propagator and the S-matrix method for characterizing the following unitary time-reversible 
processes: 





eeoπee

     γee   ,  ,  p  p   

and non-unitary time-irreversible processes: 

                                   

          
dγγee

Xeresonancepepe





 

Before going to detailed review in Sec.2, we summarize in Fig.3a the three sources of 
divergences in contemporary physical theories of quantum mechanics  (QM) and how they are 
eliminated by “lifting” (non-unitary transformation) into the corresponding iso-propagator and 
iso-S-matrix of hadronic mechanics (HM). 

.. 
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 The characterization of the transition from the classical (Coulomb vertex) (
0

A ) to quantum 

(approximately Yukawa vertex,
0

Â ) is shown in Fig. 3b. Further generalization involves non-
linear processes typified by the existence of current loops as shown in Fig. 4, and the progressive 
characterization of the Lie-isotopic and Lie-admissible regimes of scattering processes in Fig. 5; 
the characterization of the internal cube-hexagon (geno-dual) symmetry and existence of current 
loop in the Lie-Admissible geno-scattering processes in Fig.6; and the hyperspace geometry of 
current loop(~Kepler vortex) system in Fig. 7.  
 
  
 
  
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 

Fig.3b:  The classical (Coulomb vertex) ( ) and its quantum (approximately Yukawa vertex,)
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Let me underscore the question that led the presenter to the above scenario of cube-

hexagon (geno-dual) metric tensor principle in three-dimensional projective geometry in the era 
of search for a unified field theory of gravity and electromagnetism from my interaction in 1968 
with P.A.M. Dirac while he was searching for a Maxwell-like (dual) gauge principle to relate 
electric charge and magnetic charge in projective geometric terms. Following treatment of the 
Lorentz force and the linear Dirac (negative) energy relativistic wave equation for electric charge 
on the same footing as a corresponding dual of Lorentz force and a positive energy relativistic 
wave equation for magnetic charge and non-negative mass  (represented by a current loop). 
Dirac’s way of thinking led me (as summarized below) to a correspondence principle  

   
Such a correspondence principle implies geometric characterization of conventional 
electrodynamics and an analogous so-called e-magnetodynamics of current loop and to the 
Feynman space-time diagrammatic approach based on 10x10 representations of the dynamical 
group unifying strong interaction with electromagnetism and space-time geometry and violations 
of the discrete symmetries – parity, charge conjugation, time-reversal and spin-parity: 

)2,4()2,4()1()1()3()3(   OOUUSUSU  
This defines the SO(2N)xSO(2N) group-theoretic approach to scattering of N-particle (N=5) 
systems which we proceed next to review and compare with experiment .in section.3. Discussion 
of results and conclusions will be presented in Sec.4. 
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3.  PRESENTATION OF RESULTS 

3.1 Feynman Graphs for Scattering Cross-Section 

 
In an article entitled: Review of Deep-inelastic e-p Scattering: A hadronic 

mechanics Viewpoint by A.O.E. Animalu & C.E. Ekuma published in African 
Journal of Physics Vol.1, p.133-153 (2008) cited in 2011 ref. [27]: 

 www.santilli-foundation.org/docs/Isoscattering-V.pdf 
we have exhibited the Feynman graph (shown below in Fig. 8 ) and summarized the 
conventional quantum mechanical (QM) and the corresponding hadronic mechanics (HM) 
expressions for the electron-proton scattering cross-section.  
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We summarize next in Fig.10 the characterization of isoscattering  
and genoscattering theories without divergences in hadronic mechanics. 
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3.2 Comparison of Non-Unitary Geno-Sacttering Theory with Experiment 

(ref.[27]) 
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A question may be raised as to the fact that the data  we have presented are consistent with 
hadronic mechanics, whereas  the proton deep inelastic scattering data are expected to  have 2-3 
bumps due to high density situations with two bumps for e-p and three bumps for quarks in the 
standard model and similarly for mesons.  An answer is that in the (Bjorken) limit of scale-
invariance, the good agreement can only be considered preliminary, in view of the vast amount 
of available data that need to be analyzed based on the theory. 
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4 .DISCUSSION AND CONCLUSION  

 
 In view of the linguistic challenges of hadronic mechanics, and for ease in 
translation into other languages, we have done linguistic geometric elaboration of the EPR 
argument in analogue/digital SO(10) characterization as shown below  
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Abstract	
In this paper, we present studies on the most fundamental nuclear fusion in nature, the 
synthesis of the neutron from the hydrogen atom in the core of stars which literally 
allows stars to “turn on”. Such a synthesis is an important confirmation of the EPR 
argument on the lack of completeness of quantum mechanics (and of its wave-
function) due to impossibility by quantum mechanics to describe the synthesis of the 
neutron, since the mass of the neutron is “bigger” than the sum of the masses of the 
proton and of the electron, as well as for other technical insufficiencies. For this 
reason, R. M. Santilli [1] proposed in April 1978 the “completion” of quantum 
mechanics into an axiom-preserving but non-unitary form which he called hadronic 
mechanics. Via hadronic mechanics it was possible to achieve a numerically exact 
representation of “all” characteristics of the neutron in its synthesis from the hydrogen 
at the non-relativistic and relativistic levels. This representation is a fundamental 
starting point for the description of other syntheses which are again impossible to be 
correctly represented by quantum mechanics, such as the compression of an electron 
inside a neutron to synthesize a “pseudo-proton” and of an electron pair in singlet 
coupling inside a natural deuteron to synthesize a “pseudo-deuteron”. The importance 
of such particles is given by their natural ability to win the Coulomb barrier and be 
attracted instead of being repelled by positively charged nuclei. Considering that at the 
mutual distance of 1 fm two deuterons experience a repulsive force of 230 N, turning 
this repulsive force into an attractive one has enormous implications, such as the 
realization of the fusion of two deuterons into a Helium nucleus without the need to 
supply any energy in order to win the Coulomb barrier. Santilli has additionally shown 
that, as it is the case for the neutron, negatively charged pseudo-proton and pseudo-
deuteron are evidently unstable, yet they have mean lives of the order of seconds, thus 
being sufficient for industrial applications. It is evident that that the synthesis of 
pseudo-protons and pseudo-deuterons is prohibited by quantum mechanics, while 
being allowed by its “completion” into hadronic mechanics, thus showing the 
importance of the original argument by Einstein, Podolsky and Rosen. See [2], [3] and 
[4] for an extensive treatment of the problem. 
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1. Historical notes 

Stars initiate their lives as being composed of hydrogen. They grow in time via the 
accretion of interstellar-intergalactic hydrogen, and eventually reach such pressures 
and temperatures in their core to synthesize the neutron as a “compressed” hydrogen 
atom according to the model proposed by H. Rutherford. 
 
In Santilli’s view, the synthesis of the neutron from the hydrogen in the core of stars is 
one of the best illustrations of the validity of the EPR argument because said synthesis 
cannot be represented with quantum mechanics for numerous reasons. 
 
First of all, there is the positive binding energy required by the proton and electron in 
order to synthesize a neutron, that has an excess mass with respect to the sum of the 
masses of proton and electron.  Second, the contact interaction of the two particles 
implies a situation of mutual overlapping of their wavepackets, which is deeply non-
local and non-Hamiltonian, therefore can NOT be represented by a potential, making 
Quantum Mechanics inapplicable in these conditions. 
 
Dr. Ernest J. Sternglass was the first known performer of a synthesis of the neutron 
from hydrogen gas, during his Master’s thesis at Cornell University, NY, in 1951 
using an electric arc running through an X-ray tube filled with hydrogen. He was in 
contact with the late Einstein, who showed great interest in this kind of experiments, 
and encouraged him to pursue his research. The experiment was repeated 
independently by Edward Trounson, a physicist at the Naval Ordinance Laboratory in 
1952 with similar results. Then again the Italian priest physicist don Carlo Borghi 
repeated similar experiments in Brazil in the 60's. [5] 
 
These early tests on the neutron synthesis were rejected by the scientific community, 
namely, for the impossibility of deriving strong interactions from a bound state 
between the electron and the proton. Those researchers experienced indifference and 
ostracism from the academic community, and none of them ever tried to publish 
papers on their experiments, we only have private correspondence or diary entries as 
an historical proof of their existence.  The lack of clear neutron detections, due to the 
lack of proper technical instruments at the time, contributed to the dismissal of the 
experiments. 
 
2. Hadronic Mechanics 

In September 1977 soon after joining Harvard University, R M Santilli was requested 
by the DOE to study possible new approaches to the controlled nuclear fusion. He 
accepted under the condition that he could study first the most important fusion in 
nature, that of the neutron from the hydrogen in the core of stars. 
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He soon discovered the impossibility of describing this phenomenon via conventional 
Quantum Mechanics, for the above stated reasons, and he understood that he needed 
to get back to the bases if he wanted to treat this problem seriously.  
 
He understood that the above insufficiencies originate from the theory at the 
foundation of Quantum Mechanics, Lie’s theory, because said theory solely admits 
Hamiltonian linear interactions, which cannot possibly happen in conditions of mutual 
overlapping. 
 
By recalling the fundamental character of Lie’s theory, it follows that the mathematics 
itself underlying quantum mechanics does not allow a consistent representation of 
nuclear fusions and other physical or chemical energy releasing processes, due to their 
known irreversibility over time. 
 
Santilli had therefore to conceive a new mathematics, which he called isomathematics, 
that is able to achieve a “completion” of 20th century mathematical and physical 
methods for extended, deformable and hyperdense particles in interior dynamical 
conditions. 
 
This allowed him to propose in April 1978 the “completion” of quantum mechanics 
into an axiom preserving but non unitary form which he called hadronic mechanics 
with the first known formulation of the “operator" from the Lie admissible 
“completion” of Heisenberg's equation [1]. 
 
The need to verify Pauli's principle in the interior of hadrons expressed in the title of 
Harvard’s paper [1] originated from the prediction, implied by the EPR argument, that 
hyperdense hadronic matter alter the conventional spin of particles. In fact, the spin of 
an electron in the core of stars is expected to be different than its value in vacuum due 
to the extreme pressures in all directions, provided that the electrons is represented as 
an extended wavepackets via the isotopic element T of Eqs. (4.15.49) because, when 
particles are represented as point-like, no resistance can possibly be experienced. 
Note the suggestion, also in the title of paper [1] to verify the validity of special 
relativity in the interior of hadrons because a “completion” of relativistic quantum 
mechanics for the structure of hadrons implies the “necessary” completion of special 
relativity into a covering form which were studied in the monographs written at 
Harvard University [6], [7]. 
 
Ref. [1] achieved a representation of all characteristics of mesons as hadronic bound 
states electrons and positrons, but in 1978 Santilli could not achieve a quantitative 
representation of the spin of the neutron in its synthesis from the hydrogen due to the 
need for a detailed study of the isotopies of spin 1/2 which he did in subsequent years. 
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Following the study of the isotopies of spin and angular momentum in various papers, 
[8], [9], [10], Santilli was finally able to achieve an exact representation of all 
characteristics of the neutron in its synthesis from the hydrogen both at the 
nonrelativistic [11], [12] and at the relativistic level [13], [14]. 
 
3. The synthesis of the neutron 

Following, and only following a theoretical understanding of the neutron synthesis, 
Santilli initiated systematic experimental tests, which achieved the first known actual 
detection of neutrons synthesized from the hydrogen, thanks to the availability of 
various neutron detectors. [15], [16], [17] 
 
The synthesis of the neutron in a submerged electric arc, according to Hadronic 
Mechanics, starts with the separation of the hydrogen molecule into H atoms, followed 
by the ionization of the H atoms and the consequential creation of a plasma composed 
by protons and electrons. Then said protons and electrons are aligned along the 
tangent to a local magnetic line with opposite charges, opposing magnetic polarities 
and opposing spins. This condition is followed by Rutherford’s “compression” of 
protons and electrons, one against the other, caused by the disconnection of the rapid 
DC discharge that generated the indicated plasma of protons and electrons. If the 
energy provided by the arc is enough to supply the missing 0.782 MeV, we obtain an 
actual Neutron. A specific reactor was built by Thunder Energies Corporation (now 
Hadronic Technologies Inc.) for industrial applications of this process. See [18] for 
more details. 
 
More systematic tests were then conducted, with the participation of other scientists, 
that confirmed the possibility of achieving this synthesis in a laboratory, and produced 
more interesting data [19].  See also lecture [20] for more details. 
 
4. The pseudoproton and its applications 

With the same mechanism as the synthesis of the neutron, Hadronic Mechanics 
predicts the possibility of synthesizing other particles. One of the most interesting is 
the negatively charged pseudoproton. The pseudoproton is predicted to be generated 
by the “compression” of an electron, this time, inside the neutron.  
 
The particle so generated has, among its most noticeable characteristics, similar rest 
energy as the neutron, spin 1/2 and of course negative charge. The industrially 
significant feature of negatively charged hadrons is that they are attracted by normal 
nuclei, instead of being repelled. Although it is not possible at the present moment to 
have a direct experimental verification of the existence of the pseudoproton, mainly 
because there are no specifically designed detectors available, it is still possible to 
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have a very significative indirect verification via nuclear transmutations of elements. 
After many tests, using a modified General Motors 14 kW Electric Generator (in order 
to reduce the neutron interferences and achieve higher pressures in the ignition 
chambers), Santilli managed to achieve such a verification from two different 
laboratories that analyzed irradiated and non-irradiated silver samples. [21] 
 
Besides the great scientific interest, these pseudoprotons have also possible industrial 
applications, for example in the medical field for the treatment of cancer. Currently 
some tumors are treated with proton irradiation, but the protons are rejected by the 
atomic nuclei, so this treatment is invasive and with a low efficiency. The irradiation 
of tumors with pseudoproton rays would have clear advantages because, unlike 
protons, pseudoprotons are attracted by tumor nuclei, thus requiring low irradiation 
energies as well as focusing the treatment only in the tumor area reducing collateral 
damage. 
 
5. The pseudodeuteron and its applications 

Another even more interesting product of these syntheses is the pseudo-deuteron. It 
can be obtained from a deuterium gas, with the “compression” of two electrons inside 
a normal deuterium nucleus, or deuteron. When the electric discharge happens, a local 
plasma of deuterium nuclei and electrons is created, especially in singlet coupling 
form.  When the spark is disconnected, some of the deuterons and of the electron 
valence pairs are compressed one inside the other, forming an isodeuteron nucleus 
with expected mean life around 1 s. This isodeuteron nucleus is then naturally 
attracted by the other normal deuterons, with an attractive force that is inversely 
proportional to the square of the distance, making nuclear fusion simply unavoidable. 
This process is known as Santilli Hyperfusion. 
 
Calculations show that at 1 fm distance two deuterium nuclei experience a repulsive 
force of about 230 N. This repulsion is called Coulomb barrier, and it's the main 
reason why, after decades of studies (and billions of dollars of investments) using 
Quantum Mechanics and the Standard Model to find an efficient way to bring two 
deuterons one close to the other and make fusion happen, we still have no clear results 
of a reaction with positive energetic balance, meaning that the energy spent to make 
the fusion happen has always been bigger than the energy obtained by the fusion itself. 
The isodeuteron, being negatively charged, is able to turn that repulsive force into an 
attractive one, with consequences of enormous scientific and industrial importance. 
 
Besides, having opposite magnetic moments with the deuterons, pseudodeuterons are 
predicted to be able to naturally achieve a singlet coupling configuration, fundamental 
for the fusion to happen properly, while with normal deuterons this condition happens 
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at random, limiting even more the efficiency of the process. See lecture [22] for more 
details 

6. Conclusions

The synthesis of the neutron achieved by the Directional Neutron Source (DNS) 
developed by Hadronic Technologies and R. M. Santilli is by itself a big proof of the 
inability of Quantum Mechanics to provide a complete description of the physical 
reality, along the objections posed by A. Einstein B. Podolsky and N. Rosen. 

The synthesis of negatively charged particles is yet another confirmation of the EPR 
argument, that has enormous implications for mankind and shows the importance of 
looking beyond the applicability conditions of QM and investigating reality with 
basically new perspectives. 

Hadronic Mechanics proves to be a valid completion of the quantum mechanical 
wavefunction into the isowavefunction permitted by the admission of contact non-
Hamiltonian interactions due to deep wave overlapping. 

This completion, which is only one of the possible completions of commonly accepted 
Physics, opens the door to applications beyond our present imagination and deserves 
to be studied for all the possible benefits that it could bring to our society. 
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Completeness is Unfalsifiable: Gödel and Popper for

the EPR Debate / Kuhn and the Standard Model

E. T. D. Boney∗

We first discuss the relevance of Gödelian incompleteness to the standard of com-

pleteness in the EPR argument, following similar arguments as prior work. We note

that Einstein was not a dispassionate observer of the developments in Quantum Me-

chanics when he made his pronouncement about God and dice: he had tiffs with

Schrödinger and Hilbert in the development of General Relativity.

We suggest that completeness is unfalsifiable, while incompleteness is falsifiable.

Thus while new variables can be considered within varied theoretical frameworks,

searching for ‘completeness’ itself would always suggest additional variables, even

when data suggest none. We consider the ramifications for ideas of completeness in

Popperian epistemology.

Then turning to Kuhn, we consider the nature of the paradigm shift about to

take place in the Standard Model of quantum physics by examining current failings

from within the paradigm. We suggest the solution can be found in negative mass

antimatter, following prior work. We note that negative mass antimatter (with

positive Energy and no symmetry breaking) resolves many of the concerns with the

Standard Model, most notably dark matter and dark energy, but including also a

reformulation of the CKM model of quarks and an update to the arrow of time for

antimatter in Feynman diagrams. We examine several candidates for the crucial

experiment that will cause this paradigm shift, primarily at CERN.

∗ boneye@alum.mit.edu
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I. INTRODUCTION

Completeness is at issue in the EPR paper, indeed from the very

title.[1] However, it is unclear the motivation one has for completeness.

One has the historically well-known result about Heisenberg uncertainty,[2]

to which most of the completionist arguments have been posed, but we

explore in this paper two more important challenges to Einstein’s famous

concerns: what about Gödelian incompleteness, and is completeness fal-

sifiable?

II. GÖDELIAN INCOMPLETENESS

One imagines along with Einstein a situation where, through addi-

tional variables, it is possible to ‘complete’ quantum mechanics, i.e. to

eliminate Heisenberg uncertainty. This still leaves the greater concern of

Gödelian incompleteness.[3] If we have used both algebra and Boolean

algebra, we have the possibility of statements such as ‘this statement is

false’, which are undecidable, rendering the space of statements incom-

plete (not all of them are true or false).

It appears this issue is being name-checked by Einstein in the paper,

but is never seriously addressed. Even his supposed completion of quan-

tum mechanics would remain incomplete in its logic, unless this concern

is addressed.
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III. COMPLETENESS IS UNFALSIFIABLE

Falsifiability is the bedrock of scientific epistemology, particularly as

understood by Popper.[4] This is the main concern with completeness as

a motivation for further examination: it never ends.

There is no amount of evident incompleteness that would satisfy a

person ideologically committed to completeness. Every failed attempt at

completion only changes the parameters necessary. For instance, the

Standard Model currently predicts a neutron electric dipole moment

(EDM) too small to measured.[5] However, this was not the case ini-

tially, with 90 percent of theoreticans predicting it should have been

measured,[6] and then shifting their theories when it was not observed.

Expectations shifting past experimental goalposts is the trademark of an

unfalsifiable theory, and yet most people persist in the pretense that the

Standard Model is falsifiable, despite its history.

One wonders where Einstein has not: is completeness falsifiable?

What would such evidence look like, that could not be handled by shift-

ing goalposts, or inventing new ones? Perhaps as much as we as humans

enjoy control over every variable, completeness is not a part of nature.

It seems this is suggested by the Gödelian nature of logic systems.

But moreover, we must consider the Popperian view of completeness.

Theories can only be part of the scientific universe if they pass this

basic muster. As unfalsifiable, completeness is a philosophical longing

of humankind, not a scientific hypothesis. A muse for our most creative

minds. An inspiration. But not a hypothesis. Not a theory.
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IV. INCOMPLETENESS IS FALSIFIABLE

This point is considerably more subtle, and we had not thought of

it by the time of the lecture, initially granting that my point of view

(incompleteness is ok) was also unfalsifiable, rendering completeness a

matter of philosophical choice.

However, we have come to the conclusion that this is not correct.

Incompleteness can be disproven by a correct and complete theory.

Take for instance Gödelian Incompleteness. One could imagine build-

ing a logic system without such concerns, with a series of rules perhaps.

That would be a falsification of Gödel, and a limiting of its domain of

application. However such constraints are unknown to the author.

Similarly for uncertainty in position, momentum, energy or time. We

have precise lab equipment. We are able to measure these well. If the

uncertainty principle has been breached, it would be easy to tell.

That’s part of what made uncertainty such a strong hypothesis in the

first place: it was not expected.

Incompleteness is both falsifiable and generally where we have been

forced because complete theories, with predictions within the realm of

experiment, have been falsified, morphing into complete theories with

predictions just out of reach of experiment (since the core program of

completeness-insistence is beyond question).

We suggest that, because of its falsifiability status, incompleteness

is the only hypothesis (between completeness and incompleteness) that

meets the criteria of scientific. That this is so because completeness

disproves incompleteness seems trivial until one considers that incom-
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pleteness does not disprove completeness. Perhaps it seems unfair, like

we are holding completeness to a higher standard, but falsifiability is the

standard we accept regardless of modern epistemology choice.

V. AFTER FALSIFICATION: PARADIGMS SHIFTING

Another way one can view the falsification of a major theory is through

the lens of Kuhn.[7] As the theory is falsified, the paradigm must shift.

This proceeds eventually through a crucial experiment, but before that,

through the breakdown of the paradigm.

The crucial experiment is meant to be the one that no one can explain

and forces the paradigm to shift. But here we are a decade after the

Wilkinson Microwave Anisotropy Probe (WMAP) first suggested it,[8]

and instead of a new theory, we are just making up dark matter and dark

energy to plug our 96 percent empty understanding of the universe. But

when a theory does as poorly as ours does, we suggest even naming these

things relative to the current theory can be a mistake. We have suggested

calling these ‘two pieces of evidence of the failure of the Standard Model’,

since the vacuum catastrophe renders the current model ridiculous for

even the dark energy / cosmological constant piece.

Beyond dark matter and dark energy, we have more evidence that the

Standard Model has failed, but it has all been bent by human willpower

into one standard theory (whose claim to fame is not being falsifiable,

but being ‘consistent with observation’, an unscientific measure). Other

evidence of failure:

The lack of symmetry breaking in nearly all of observed re-
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ality. With the exception of meson CP violation, we do not observe the

preferential creation of matter over antimatter. Symmetry breaking is

another unfalsifiable hypothesis designed to patch the Standard Model.

And why exactly are we making the entire universe match our local mat-

ter antimatter ratio? We have called this the Anthropic Principle, but

we would suggest instead calling it the Myopic Principle (or Heliocentric

Universe). We do not need to insist the entire universe be like it is here

in order for us to exist!

Hyperinflation. Besides dark energy, besides dark matter, we need

still another patch to deal with the very early universe. That patch is

neat, but unmotivated. Three strikes... and the Standard Model some-

how remains at bat!

CP violation / strong CP problem. Even if we wanted to cling to

the wild idea that all the matter in the universe were created by the CP

violation asymmetry in mesons, we would then be confronted with a huge

issue: the lack of quark oscillations in the nucleus. Another falsification

requiring another patch to remain intact.

Antimatter moving backwards in time. Feynman had a beautiful

mind. Nobody would question this, least of all me. But the idea of

antimatter moving backwards in time is wild and does not pass basic

Ockam’s razor muster. It would be quite surprising to a layman that

the Standard Model contains lots of stuff moving backwards in time.

No, there’s never been an experimental observation of this, nor is there

a falsifiable aspect of the proposal, why do you ask? (Remember that

the requirement is a result of assumptions about the energy and mass of

antimatter, which just may not hold).[9]

472https://doi.org/10.52202/059404-0003

https://doi.org/10.52202/059404-0003


7

Gravitons Not Normallizable. Unlike some, we are not comfort-

able living with infinites.[10] Wavefunctions must be normallized, includ-

ing that of the graviton.

VI. NEW PARADIGM: NEGATIVE MASS ANTIMATTER

As a brief aside, we think it’s incredible that the Standard Model

predicts the exact same energy levels for antimatter molecules as for

matter molecules (and this has been experimentally confirmed for anti-

Hydrogen). [11] Completely incredible.

However, this suggests the light from far away stars cannot be taken

as evidence of the matter or antimatter content of those stars without

further corroborating evidence. This suggests we can only take our ma-

terial adventures as a species for this evidence of matter antimatter ratio,

which are needless to say much more limited. To be specific, we’ve been

about 70 or so Astronomical Units from here (69 times the distance from

the Earth to the Sun!). And immediately after leaving our solar system...

Voyager terminated transmission.

Let’s take a step back and marvel at the heft of this assumption! We

have only been less than 100 times as far from Earth as the Earth is

from the Sun, but what is that in real astronomically relevant units?

Well, galaxy clusters are typically 1-10 Mpc diameter (and, given the

clustering, might be taken as the largest gravitationally bound units).

Otherwise our galaxy is about 30 kpc in diameter, so beyond there we

can’t really say for sure.

So, how far is the 70 Astronomical Units travelled by Voyager 1. rela-
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tive to these galactic and cluster diameters? 0.00000034 kpc. And from

that experience, we have chosen to extrapolate, not just to the 30 kpc of

our galaxy, not just to the Mpc of our cluster, but to the hundreds of Mpc

of the entire universe?! (An aside on neutrinos from nearby supernovae,

which one could argue extend this knowledge to around 1Mpc,[12] but

this would require them to be Dirac not Majorana, in which case they

also would be indistinguishable.)

And so we have found the culprit at the core of our assumptions:

that symmetry must be broken and antimatter must have positive grav-

itational mass like matter. It is simply ridiculous to require all of the

universe to be like it is so close to here.

This then suggests a pretty obvious candidate for dark matter and

dark energy: negative mass antimatter. By this we mean that, relative to

our commonly observed matter, antimatter repulses, rather than attracts,

matter. For this author, this idea was suggested by combining the above

idea about light from antimatter galaxies being indistinguishable with

the suggestion from Feynman that this is the behavior expected to be

mediated by the Graviton (where its spin-2 nature suggests opposites

repel).[13]

It is quite remarkable that such a small change to the Standard Model

can account for ALL of the concerns in the prior section! Let us review

them one by one:

Dark Energy This is no longer some mysterious cosmological con-

stant or contemptible absolute field, but rather a result of the gravita-

tional repulsion of the rest of the universe which, since it is far away, is

roughly constant over galactic distances. Notably, no vacuum catastro-
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phe either.

Dark Matter This is the result of misinterpretation of current data

assuming only positive mass allowed. The lumpiness is roughly the pro-

jection of the rest of the universe onto our galaxy.

Symmetry Unbroken We no longer have the problem of pair cre-

ation and annihilation, because we instead suppose no net Mass to the

universe. Symmetry forever unbroken. Every galaxy cluster a hole in the

universe compensated by the rest.

Hyperinflation This is the result of protoclusters being closer in

the past than they are now. So in the past they were flung apart at

first very rapidly (as soon as whatever force holding them together was

overwhelmed), since the force goes inversely with distance apart.

CP Violation / strong CP problem This is particularly interest-

ing, since we have a paper from ML Good that actually predicted CP

violation in the K meson if its antimatter quark had negative mass![14]

Years before it was observed! So why did the hypothesis never receive

serious consideration, instead leading to the development of CKM the-

ory? ML Good did not have the astronomical model, and so was forced

to introduce an absolute gravitational field, which had not been en vogue

since Einstein called it his greatest embarassment. Of course we do not

form it as an absolute field, and note that the ultrafine splitting suggested

by ML Good would be due instead to the sign of the mass of the rest of

the universe outside our cluster (which is the same as the antiquark, but

opposite of the quark).

Antimatter moves forward in time Since negative mass changes

the relationship between energy and time,[9] Feynman diagrams no longer
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require antimatter to move backwards in time for a consistent propagator.

Gravitons Normallizable. Now that we have added the assumption

that there is no net mass to the universe, we can define for any galaxy or

cluster a radius of zero net mass. The integral around this surface then

allows the normallization of the graviton, which in turn makes Quantum

Field Theory a Grand Unified Theory. Hooray!

Unfortunately so far few are celebrating. But we do have a surprising

number of experiments that should be able to distinguish the matter

in the next few years,[15–17] and some dozens of theorists that have

independently introduced models containing the idea (see my talk slides

for a more comprehensive list).[18–23]

Even though WMAP failed to be a crucial experiment despite find-

ing the Standard Model 96 percent wrong, we suggest that antimatter

falling up is too far outside the Standard Model to receive the kid glove

treatment of dark energy (which has led a renaissance of interest into

the cosmological constant, despite Einstein’s own embarrassment at the

idea). One notes Einstein even originally described his cosmological con-

stant as a uniform background of negative mass density, in response to

a concern of Schrödinger’s... almost 20 years before the EPR paper and

decade before the famous God and dice comment!

Maybe Einstein wasn’t mad at God playing dice, so much as who he

was playing with.
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VII. CONCLUSIONS

We have examined completeness, the idea at the core of the EPR

concern, and suggested that as a hypothesis it is unfalsifiable. We have

noted that incompleteness and uncertainty seem to be the empirical result

as well, in addition to being plainly falsifiable.

We have then considered the ramifications of a paradigm shift in the

Standard Model, and why we think negative mass antimatter will be

the new paradigm. I am currently placing an open wager on the result

of these CERN experiments. When at least one reports a gravitational

mass of antimatter to 5 sigmas, I would like to have some nice scotch, or

owe somebody a nice scotch. Any takers, just email boneye at alum dot

mit dot edu .
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From the EPR prediction, the nonlocality and entangled state become the 
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transformation (GLT) with superluminal in the complete special relativity, we 
propose that the entangled states must obey GLT because of they possess 
the superluminal and some characters as the spacelike vectors. Further, it 
changes the phase of the entangled field, whose phase particle (phason) has 
some characters and corresponding equations. It is tachyon, and assume that 
it is similar to photon and J=1 and m=0 or mass is very small as similar 
neutrino, and may show the action at a distance. We research that this field as 
wave has some characters. Third, we discuss the superluminal quantum 
communication by a pair of entangled states is generated on both positions, or 
by preparing and transmitting a pair of entangled instruments, so the 
superluminal quantum communication. Manipulation for one position can pass 
the same message or information to the other, so we may implement the 
superluminal communication. Finally, assume that the entangled field has a 
similar magnetic theory, which may be a quantum cosmic field, or be the 
extensive quantum theory, or God or the Buddha-fields and so on. These are 
all macroscopic fields, which correspond to de Broglie-Bohm nonlinear “hidden 
variable” theory, but it is microscopic. In a word, study and application of 
nonlocality and entangled field have important scientific and social significance. 
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I. Introduction  
Based on the Einstein-Podolsky-Rosen (EPR) correlations and Bell 

inequalities, current new experiments validated that quantum mechanics 
possesses the nonlocality and entangled state, etc. 

First, Aspect, et al., realized EPR experiment by the measure on the 
linear-polarization correlation of pairs of photons emitted in a radiative 
cascade of calcium and time-varying analyzers, and it agrees with the 
quantum mechanical predictions and the greatest violation of generalized Bell 
inequalities [1,2]. Ghosh and Mandel demonstrated the existence of 
nonclassical effects in the interference of two photons [3]. Further, the 
entangled state evolves a great hotspot in physics. Kavassalis and Noolandi 
discussed a new view of entanglements in dense polymer systems, which 
predict a geometrical transition from the entangled to the unentangled state in 
agreement with experimental data [4]. Horne, et al., discussed two-particle 
interferometry, which employs spatially separated, quantum mechanically 
entangled two-particle states [5]. Mermin discussed extreme quantum 
entanglement in a superposition of macroscopically distinct states [6]. Hardy 
investigated nonlocality for two particles without using inequalities for all 
entangled states except maximally entangled states such as the singlet state 
[7]. Goldstein provided a proof on Hardy theorem [8]. Kwiat, et al., reported 
new high-intensity source of polarization-entangled photon pairs with high 
momentum definition [9]. Strekalov, et al., reported a two-photon interference 
experiment that realizes a postselection-free test of Bell inequality based on 
energy-time entanglement [10]. 

In 1998 Santilli published a paper showing that the objections against the 
EPR argument are valid for point-like particles in vacuum (exterior dynamical 
systems), but the same objections are inapplicable (rather than being violated) 
for extended particles within hyperdense physical media (interior dynamical 
systems) because the latter systems appear to admit an identical classical 
counterpart when treated with the isotopic branch of hadronic mathematics 
and mechanics. Now Santilli reviewed, upgraded and specialized the basic 
mathematical, physical and chemical methods for the study of the EPR 
prediction that quantum mechanics is not a complete theory. This includes 
basic methods [11], apparent proof of the EPR argument [12], and examples 
and applications, in which the validity of the EPR final statement is the effect 
that the wavefunction of quantum mechanics does not provide a complete 
description of the physical reality. The axiom-preserving “completion” of the 
quantum mechanical wavefunction due to deep wave-overlapping when 
represented via isomathematics, and shown that it permits an otherwise 
impossible representation of the attractive force between identical electrons 
pairs in valence coupling, as well as the representation of all characteristics of 
various physical and chemical systems existing in nature [13]. Moreover, 
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Santill studied the classical determinism of EPR prediction by isomathematics 
[14]. 

Pan, et al., reported experimental test of quantum nonlocality in three-
photon Greenberger-Horne-Zeilinger (GHZ) entanglement, and three specific 
experiments, involving measurements of polarization correlations between 
three photons, lead to predictions for a fourth experiment, and found the fourth 
experiment is agreement with the quantum prediction [15]. Stefanov, et al., 
investigated the quantum correlations with spacelike separated beam splitters 
in motion and experimental test of multisimultaneity [16]. Pan, et al., 
demonstrated experimental entanglement purification for general mixed states 
of polarization-entangled photons and arbitrary unknown states [17]. Yu, et al., 
discussed a test of entanglement for two-level systems via the indeterminacy 
relationship [18]. Zhao, et al., used two entangled photon pairs to generate a 
four-photon entangled state, which is then combined with a single-photon state, 
and reported experimental demonstration of five-photon entanglement and 
open- destination teleportation (for N = 3) [19]. 

Amico, et al., reviewed the properties of the entanglement in many-body 
systems [20]. Korbicz, et al., shown structural approximations of positive maps 
and entanglement-breaking channels [21]. Orus discussed geometric 
entanglement in a one-dimensional valence-bond solid state [22]. Schmidt, et 
al., detected entanglement of a mechanical resonator and a qubit in the 
nanoelectromechanical systems [23]. Thomale, et al., investigated the 
entanglement gap separating low-energy in the entanglement spectrum of 
fractional quantum Hall states, and a new principle of adiabatic continuity [24]. 
Salart, et al., reported the first experiment where single-photon entanglement 
is purified with a simple linear-optics based protocol [25]. Chavez, et al., 
observed entangled polymer melt dynamics [26]. Jungnitsch, et al., provided a 
way to develop entanglement tests with high statistical significance [27]. Huber, 
et al., detected high-dimensional genuine multipartite entanglement of mixed 
states [28]. Sponar, et al., discussed the geometric phase in entangled 
systems for a single-neutron interferometer experiment [29]. Friis, et al., 
investigated relativistic entanglement of two massive particles [30]. Jack, et al., 
measured correlations between arbitrary superpositions of orbital angular 
momentum states generated by spontaneous parametric down-conversion, 
and quantified the entanglement of modes within two-dimensional orbital 
angular momentum state spaces [31]. Bussieres, et al., tested nonlocality over 
12.4 km of underground fiber with universal time-bin qubit analyzers [32]. 
Mazzola, et al., investigate the dynamical relations among entanglement, 
mixedness, and nonlocality in a dynamical context [33]. Miao, et al., discussed 
universal quantum entanglement between an oscillator and continuous fields 
[34]. Chitambar, et al., considered multipartite-to-bipartite entanglement 
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transformations and polynomial identity testing [35]. Carmele, et al., discussed 
the formation dynamics of an entangled photon pair [36]. 

Many experiments on the quantum entangled state shown some new 
characteristics: 1). The coherency. 2). The nonlocality [7,13,16,32-34]. 3). The 
quantum teleportation [17,19]. 4). The superluminal [16]. In this paper, we 
propose that the entangled states must obey relativity with the superluminal 
and its quantum theory, and discuss some predictions and the superluminal 
quantum communication, etc. 
 

2. Complete Special Relativity  
Based on the basic principles of the special relativity, according to the 

constancy of the velocity of light in the vacuum principle, it implies the 
invariance of the squared interval: 

        2222
mnmn tcrs  .                                    (1) 

From this we derived necessarily two symmetrical types of topological 
separated structures, i.e., the classification of the timelike and the spacelike 
intervals, and obtained simultaneously the Lorentz transformation (LT) with 
smaller velocity v<c and the generalized Lorentz transformation (GLT) with 
larger velocity v >c [37-39]. 

It is well-known that the Lorentz transformation (LT) is: 
              )/('),(' 2

111 cvxttvtxx   ,           (2) 

where 2)/(1/1 cv . GLT is [37-39]: 

)/('),/(' 1
2

11 vxttvtcxx   ,       (3) 

where 2)/(1/1 vc . 
In deriving LT, an additional independent hypothesis has been used, thus 

the values of velocity are restricted absolutely, and the spacelike interval is 
excluded. LT and GLT are connected by the de Broglie relation 2cvv  . 

Further, based on the special relativity principle, an invariant speed hc  is 
necessarily obtained. Therefore, the exact basic principles of the special 
relativity should be redefined as: I. The special relativity principle, which 
derives necessarily an invariant speed hc . II. Suppose that the invariant speed 

hc  in the theory is the speed of light in the vacuum c. If the second principle 
does not hold, for example, the superluminal motions exist, the theory will be 
still the extensive special relativity, in which the formulations are the same, 
only c is replaced by the invariant speed c hc . The fundamental properties of 
any four-vector and the strange characteristic of these tachyons are described. 
We discussed various other superluminal transformations and their mistakes. 

484https://doi.org/10.52202/059404-0004

https://doi.org/10.52202/059404-0004


We think that LT is unsuitable for photon and neutrino, the photon 
transformation (PT) is unified for space ctrx '  and time )/(' crtt  . It 
may reasonably overcome some existing difficulties, and cannot restrict that 
the rest mass of photon and neutrino must be zero. LT, GLT and PT together 
form a complete structure of the Lorentz group. If the invariant speed hc  are 
various invariant velocities, the diversity of space-time will correspond to many 
worlds [37,39]. Moreover, it may prove [39] that the local Lorentz 
transformations for different systems cannot derive the varying speed of light 
(VSL) theory searched warmly [40-42]. VSL is probably connected only with 
the general relativity. 
 

3. Entangled Field and Its Predictions   
The earliest entangled state originated from the induction and unification 

between men and nature in the Chinese traditional culture. Now we research 
some possible theories of the entangled states and corresponding predictions. 
3.1. Entangled Relativity and Predictions 

Since the quantum entangled state possesses some characters, for 
example, coherency, nonlocality and superluminal, etc., we propose that it 
may and must apply the complete special relativity (CSR) and GLT. 

From Eq.(1) we derive 2222
mnmn tcrs  >0 for the spacelike interval, the 

speed defined as |/||| mnmn trv  >c is always superluminal. We may choose an 
inertial frame that 0' mnt  (the simultaneity), so that calibration time. In this 
case || v , i.e., the action at a distance. But 0' mnr  (at the same space 

position) cannot be obtained [37-39]. Its mass should be 2
0 )/(1/ vcmm  . 

Further, the quantum entangled states are related with space-time, which 
form the entangled fields. Their chance are the superluminal phase velocities, 
and as the spacelike vectors possess some fundamental characteristics in any 
four-vectors [37,39]: 

(P; E/c) ( cj; ) (A; ) (k; /c) (dk; d /c) 
(

dt

d

c
w

dt

vd

c
w


  02

;
)( )

P=mv>E/c  cvj   A  ck /  dk>d /c 
0ww   

Here P is momentum, and E is energy, etc. Because vk /  is phase 
velocity, (k; /c) is usually a timelike vector with v >c. While d /d k=v is 
group velocity, so (dk; d /c) is usually a spacelike vector with c>v. Usual the 
timelike and spacelike intervals are two topological separated parts by the 
light-cone. 
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In the timelike vectors, only x, p, j, A, k, dk and w  can be zero, and then 
LT is derived. In the spacelike vectors, only t, E,  d,,,  and 0w  can be 
zero, then GLT is derived. In this case  =0, but A≠0; 0 , but 0j , etc. 
These are some predictions based on CSR. Mariwalla [43] let E=0, so GLT of 
the four-vector (p; E/c) was derived. 

For any four-vector ( 0; AA


), its LT is 
               )/('),/(' 100011 cvAAAcvAAA   ,               (4) 
and GLT is 
               )/('),/(' 100011 vcAAAvcAAA   .              (5) 
Both possess the most perfect symmetrical form. Only 01, AA  interchange 
each other between 1A  and 0A  representations, and LT (4) and GLT (5) also 
interchange from v/c to c/v . 

The entangled field is in the spacelike interval, so the area is larger and 
the possibility is more. 
3.2. Entangled Quantum Theory and Predictions 

The quantum representations on the entangled fields are known, in which 

two basic spin states are quantized 
2

1
|  and 

2

1
| , and group of two 

particles are ( BA ss , ), so there are four eigen-states: 
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2
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|

2
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2
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2
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|
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2

1
|
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While the coupling represents are: 
)( BA

SMSM ssSMXSX  .                                                      (7) 
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1000 , XX  are two entangled states. 1111 , XX  carry through equal weight 
superposition, it may compose four entangled states: 
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]
2

1
|

2

1
|

2

1
|

2

1
[|

2

1
| BABAAB  .                      (9) 

This derives the non-locality, and is similar to the Bell basis in quantum 
mechanics. It is the entangled state of quantum theory, and may describe 
quantum teleportation [44]. 

The entanglement is probably a new field, and exchanges tachyon or 
phase particle (phason), which corresponds to change of phase. They each 
other are the phase velocities. Its character is tachyon, and assume that it is 
similar to photon and J=1 and m=0 or mass is very small as similar neutrino. It 
shows the action at a distance. 

Assume that the entangled field has the wave-particle duality, from which 
we propose its quantum theory: They are bosons, and based on the same 
energy-momentum relation: 

42222 cmcpE  ,                                     (10) 
we derive Klein-Gordon equation of quantum mechanics: 

       0
2

22

2

2







 

cm

x
.                                   (11) 

When 0m =0, it is Maxwell equation. The Schrödinger equation is: 
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It agrees with the complete relativity, and is a quantum theory of the 
complete relativity. 

Quantum entanglement corresponds possibly to the nonlinear 
superposition principle [35,45]. These are also some predictions based on the 
similar quantum theory of entangled fields. 

Maudlin researched the quantum nonlocal entanglement and special 
relativity in modern physics [46,47]. 
3.3. Entangled Waves and Predictions 

The entangled fields possess the wave property. It is known that two 
entangled fields can interference each other. They should diffract from each 
other, or even reflect. Especially combined quantum theory it will have the 
barrier penetration. 

At the same time, wave may further develop to the field. It may combine 
the mechanical wave theory [48]. Such Schrödinger equation may develop to 
following nonlinear equations: 
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and a similar KdV equation: 
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From Boussinesq equation and Klein-Gordon equation we may develop 
similarly to the nonlinear equation: 
              xxxxxxxxtt   )( 2 .                          (15) 

Further, many phase spaces exist probably in our world, for example, 
body-mind-spirit and they are entangled each other. The extensive quantum 
entanglement is a real “spooky action at a distance” (Einstein). Entangled 
states in parapsychology can explain synchronization, telepathy as resonance 
of the thought field [37,49]., and the unification of men and nature, etc. In 
quantum mechanics, the participant in the Wheeler interpretation is the 
unification of men and nature. Combined animism, it can be further explained 
prediction, premonition and other phenomena of parapsychology. The same 
frequency of the thought field is easy to synchronize. Quantum entanglement 
among living things produces their synchronization and magic special 
functions. 

 
4. Superluminal Quantum Communication  

First, Bernett, et al., proposed the quantum teleportion via dual classical 
information and nonclassical EPR channels [50]. Then Bouwmeester, et al., 
investigated experimental quantum teleportation [44]. Pan, et al., realized 
experimentally entangled freely propagating particles that never physically 
interacted with one another or which have never been dynamically coupled by 
any other means. It demonstrates that quantum entanglement requires the 
entangled particles neither to come from a common source nor to have 
interacted in the past [51]. 

Raimond, et al., performed manipulating quantum entanglement 
experiments with Rydberg atoms and microwave photons in a cavity, and 
investigated entanglement as a resource for the processing of quantum 
information, and operated a quantum gate and applied it to the generation of a 
complex three-particle entangled state [52]. Pan, et al., experimentally 
demonstrated observation of highly pure four-photon GHZ entanglement. Their 
technique can, in principle, be used to produce entanglement of arbitrarily high 
order or, equivalently, teleportation and entanglement swapping over multiple 
stages [53]. Zbinden, et al., reported an experimental test of nonlocal quantum 
correlation in relativistic configurations, in which entangled photons are sent 
via an optical fiber network to two villages near Geneva, separated by more 
than 10 km where they are analyzed by interferometers [54]. 

It already is widely applied, for example, quantum information [52], 
quantum swapping [53], quantum non-cloning and so on. Energy-time 
entangled photon pairs violate Bell inequalities by photons more than 10.9 km 
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[54] and 12.4 km [51]. At present, some physicists proposed that their 
entangled distance is infinite, and even is an action at a distance. I think, the 
quantum entangled state is probably a new fifth interaction [39]. Its strength 
seems to obey neither the Newtonian long-range gravitational law nor the 
short-range strong-weak interactions. 

Cocciaro, et al., searched superluminal quantum communications on 
recent experiments and possible improvements. Some physicists (Bell, 
Eberhard, Bohm and Hiley) suggested that quantum correlations could be due 
to superluminal communications (tachyons) that propagate isotropically with 
velocity v>c. For finite values of v, quantum mechanics and superluminal 
models lead to different predictions. Some years ago a Geneva group and 
Cocciaro group did experiments on entangled photons to evidence possible 
discrepancies between experimental results and quantum predictions [55]. But, 
so far, no evidence for these superluminal communications has been obtained 
and only lower bounds for the superluminal velocities have been established. 
Cocciaro, et al., described an improved experiment that increases by about 
two orders of magnitude the maximum detectable superluminal velocities. No 
evidence for superluminal communications has been found and a higher lower 
bound for their velocities has been established [56]. 

Gao Shan analyzed the relation between quantum collapse, 
consciousness and superluminal communication. Quantum collapse as result 
of quantum nonlocality may permit the realization of quantum superluminal 
communication (QSC). He demonstrated that the combination of quantum 
collapse and the consciousness of the observer will permit the observer to 
distinguish nonorthogonal states in principle. This provides a possible way to 
realize QSC [57]. He introduced a possible mechanism of nonlinear quantum 
evolution and investigated its implications for quantum communication, so it is 
shown that the distinguishability of nonorthogonal states can be used to 
achieve quantum superluminal communication, which must exist based on the 
quantum nonlocal influence [58]. Reversely, Zhang analyzed the relation and 
the difference between the quantum correlation of two points in space and the 
communication between them, and proved the impossibility of the 
superluminal quantum communication from statistical separability [59]. 

Walleczek, et al., discussed the apparent conflict between quantum 
mechanics and the theory of special relativity, and nonlocal quantum 
information transfer without superluminal signalling and communication [60]. 

So far, it is generally believed that the entangled states do not transmit 
information, but affect each other instantly. We suppose that it is similar to 
electromagnetic field, and may apply to the superluminal communication. In a 
word, entanglement seems to be a particular synchronism. 

A pair of entangled states is generated on both positions, or preparing 
and transmitting a pair of entangled instruments, so the superluminal quantum 
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communication can be realized. Thus encoding the states (different phases) to 
form two codes: yes or no, ↑ (positive) or ↓ (opposite), both correspond to 1 or 
0. Manipulation for one position can pass the same message or information to 
the other, so we may implement the superluminal communication. Further, it 
develops to the corresponding information theory. 

Its important basis is that Enrique Galvez, et al., proposed a complete set 
of instruments to generate entangled photons in the laboratory, and the 
experimental process into a manual placed on the network [61]. 

Moreover, the exact quantum communication seems to be inconsistencies 
with the quantum non-cloning theorem [62]. Further, Barnum, et al., proposed 
the quantum non-broadcasting theorem [63]. 
 

5. Applications, Tests and Other Predictions 
Musser searched the spooky action at a distance as the phenomenon that 

reimagines space and time, and what it means for black holes, the Big Bang 
and theories of everything [64]. He proposed that the nonlocality exists widely 
in black holes, the cosmic macrostructure and particle collisions [64]. 
Jacques, Kaiser and Peruzzo, et al., realized delayed-choice experiments [65-
67]. 

Quantum theory is reversible and localized. Reversible black holes have 
radiation, so entropy decrease [68-71]. The nonlocal black holes have 
information overflow. General black holes are only come into and no leave to 
all v<c material. But, for v >c black holes may generate information. Both are 
linked by 2cvv  . Giddings, et al., discussed black holes, quantum information, 
unitary evolution and observables in effective gravity [72,73]. 

We propose that the entangled fields may be developed by a similar 
magnetic field. 

First, the magnetic induction seems to be transient transmission, in which 
A≠0, but  =0. It presupposes that there should be a large external field 
similar to the geomagnetic field. This may be a quantum cosmic field, whose 
wave function of Universe obeys the Wheeler-de Witt equation: 

0)()( 32  gRG
gg

G
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ijkl 







 .                   (16) 
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G
G  . This may also be the extensive 

quantum theory [74-76], the mysterious natural field on the induction between 
men and nature, God or the Buddha-fields [77,78] which correspond to real 
world is computer simulation or computational universe [79,80], three 
dimensional truth-goodness-beauty space [81] or body-mind-spirit space [82] 
and so on. These are all macroscopic fields, which corresponds to the Gaia 
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hypothesis as a intertwined complex whole, and to de Broglie-Bohm nonlinear 
“hidden variable” theory [83,84], but it is microscopic. In fact, any order society 
can form a gauge field with customs and law to regulate standards of conduct 
for all. 

If a similar magnetic field exists, it will be the rotation field, whose 
equations are: 

     0
S

BdS , and 0B .                                           (17) 

Such it may be used and analogous to communication. Probably, these fields 
are the origin of the entangled field, the entanglement is only a result. 

Further, we should try to find a magnetic monopole. If we find a similar 
charge, the theory will be developed to the similar electrodynamics, in which 
Maxwell equations are: 
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Lorentz equation is: 
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Third, we may develop a similar magnetohydrodynamics. Fourth, 
combining quantum mechanics, it derives a similar quantum electrodynamics 
(QED). Fifth, combining general relativity, it derives the electromagnetic 
general relativity [85]. 

Discover these fields and their corollaries are also our predictions. The 
general predictions include the telepathy and the induction between men and 
nature, etc. 

In a word, study and application of nonlocality and entangled field have 
important scientific and social significance. 
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Abstract.  
Modern day demand of clean, cheap and abundant energy gets fulfilled by 
the novel fuels that have been developed through hadronic mechanics / 
chemistry. In the present paper, a short review of Hadronic nuclear energy 
by intermediate controlled nuclear synthesis and comparison with other 
fusion reactions has been presented.  
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Introduction 
Atomic nucleus and sub-nuclear particles have always been considered an 
unlimited source of energy. The discovery of nuclear fission by Otto Hahn and 
Fritz Strassmann paved the way for conventional nuclear energy. However, 
nuclear fission generates large amount of nuclear waste that risks ecosystem 
whereas nuclear synthesis is known to create much less pollution, thus is green. 
It is also comparatively more inexhaustible energy source. Hence, harnessing 
energy through nuclear synthesis reactions has been so far the Holy Grail. With 
the discovery of stellar nucleo-synthesis by Hans Bethe paved the way for 
nuclear synthesis of two or more light nuclei into a heavier nucleus. Of course, 
the energy released in this process could be harnessed.  
The energy conversion from thermonuclear fusion reaction is marred by 
very low energy gains of the thermonuclear reactions. The energy input was 
larger than output obtained, hence was not economically feasible. Cold 
fusion on the other hand does not have sufficient energy to bring about 
fusion reaction in a sustained way.  
With advent of ultra-short pulse laser technology, low temperature initiation 
of fusion even at the high plasma density can be materialized. This 
technology has allowed fusion of hydrogen-boron for low-cost fusion 
energy. However, amongst them ICNF does have an upper-edge as with the 
Hadronic mechanics, the processes taking place are easier to understand and 
hence more reproducible. Hadronic mechanics is of paramount importance 
for understanding nuclear synthesis as in this case nucleus cannot be 
considered as point mass.  

 
Intermediate Controlled Nuclear Fusion (ICNF) 
Intermediate Controlled Nuclear Fusion (ICNF) as proposed by Prof. Santilli 
are systematic energy releasing nuclear syntheses. The reaction rate is 
controllable via one or more mechanisms capable of performing the 
engineering optimization of the applicable laws.  
Basic assumptions of Hadronic mechanics as proposed by Prof. Santilli are- 

i) Nuclear force: Nuclear force is partly represented by a Hamiltonian and 
partly by the non-potential type terms that is the latter cannot be 
represented with a Hamiltonian. 

ii) Stable nuclei: According to Heisenberg-Santilli Lie-isotopic equations 
the sub-nuclear particles are in contact with each other (technically, in 
conditions of mutual penetration of about 10-3 of their charge 
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distributions). Consequently, the nuclear force is expected to be 
partially of potential and partially of nonpotential type, with ensuing 
nonunitary character of the theory, and related applicability of hadronic 
mechanics. 

iii) Unstable nuclei and nuclear fusion: In case of Heisenberg-Santilli Lie-
admissible equation (1) for the time evolution of a Hermitean operator 
A, in their infinitesimal and finite forms 

(1)                                          ),( ^ HSAARHHA
dt
dAi −==         

where Hermitean, H represents non-conserved total energy; the 
genotopic elements R and S represent non-potential interactions. Thus, 
irreversibility is assured.  
Irreversibility is assured in this case by the different values of the 
genounit for forward (f) and backward (b) motions in time by equation 
(2) 

(2)                                                                1/SI1/RI ==   

Lie-admissible branch of hadronic mechanics is ideally suited to 
represent the decay of unstable nuclei and also nuclear synthesis, since 
both are irreversible over time. 

iv) Neutron synthesis: Neutron is assumed to be compressed hydrogen 
atom (as originally conjectured by Rutherford) as shown by reaction (i).  

(i)                            n         eap →++ −+   
where ‘a’ is Santilli’s etherino (It represents in a conventional Hilbert 
space transfer of 0.782 MeV and spin ½ missing in the synthesis of 
neutron from the environment to the neutron structure.) 

Don Borghi’s experiment and Santilli’s hadronic mechanics appropriately 
explains the Rutherford’s conjecture of neutron as a compressed hydrogen 
atom. 
Thus, the CNF is governed by Santilli's laws of controlled nuclear synthesis: 
➢ The orbitals of peripheral atomic electrons are controlled such that 

nuclei are systematically exposed.  
➢ CNF occurs when nuclei spins are either in singlet planar coupling or 

triplet axial coupling. 
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➢ The most probable CNF is those occurring at threshold energies and 
without the release of massive particles. 

➢ CNF requires trigger, an external mechanism that forces exposed nuclei 
to come in femto-meter range. 

The CNF has been realized using magnecules. The magnecules have 
systematic and controlled exposure of nuclei which have singlet planar or 
triplet axial coupling. In case of ICNF, proposed by Prof. Santilli energy 
supplied is of threshold value just sufficient to expose the atomic nuclei from 
within the electron cloud. Since the energy is not very high the production of 
ionizing radiations or sub-nuclear particles are avoided. The reaction is carried 
out in sealed tanks called hadronic reactors.  
HyperCombustion 
Hypercombustion is combination of Magnecular Combustion and controlled 
nuclear fusion. Initially the fossil fuels are ignited with a series of rapid DC 
discharges, each having at least 100 kV and at least 100 J known as 
HyperSparks. This convert fossil fuels from their natural molecular to a 
magnecular form which enhances the combustion temperature, magnecular 
conversion and the energy output via the fusion of Carbon-12 and Oxygen-
16 into Silicon-28. This reduces emission of carbondioxide (green house 
gas) and also enhances energy output due to additional fusion reaction as 
compared to only the chemical energy released in case of molecular 
combustion. Since the fusion is ICNF there is release of no radioactive 
contaminants either, making the process green. 
HyperFusion 
Pseudo-protoid, an intermediate state prior to the full synthesis of the 
pseudo-proton is given by a bound state in singlet coupling of an electron 
and a neutron under the strongly attractive contact interactions of iso-
mechanics, this is given by the equation- 

n↑ + 𝑒↓−  → p̃ 

HyperFusions are fusions of natural, positively charged nuclei and 
synthesized negatively charged nuclei. 
E.g. pseudo-deuteron and a deuteron into the helium  

𝐷 ̂ (−1, 2, 1↑) + D (1, 2, 1↓) → He (2, 4, 0) + 2e−  
The energy released by each hyperfusion is  
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∆E = EHe − (E 𝐷 ̂  + ED) = 23.8 MeV = 3.81 × 10−12 J 
It is estimated that 1018 controlled fusions per hour would yield the 
significant release of about 106 J of clean energy per hour without harmful 
radiations or waste. 
Low Energy Fusion 
It was first reported by Fleishmann, Pons and Hawkins in 1989, popularly 
called as cold fusion as it takes place at room temperature. The major 
drawback was non-reproducibility by other laboratories. This could be due 
to insufficient energy required to expose the atomic nuclei from within the 
covering atomic electron cloud. Difficulty in obtaining required triggering 
mechanism within the lattice of the metal crystal structure may have been 
encountered. 
High Energy Fusion 
It is reported by various laboratories, basically trying to mimic 
thermonuclear reactions taking place in stars. Hence popularly called as hot 
fusion. The reactions are not self-sustaining and compound nucleus 
undergoes fission leading to formation radioactive wastes. Atomic electron 
clouds are completely stripped off. Kinetic energy of the nuclei is increased 
to overcome coulombic barrier and the energy attained by the compound 
nucleus is generally higher than the fission barrier which results in fission 
reaction or nuclear decay as prominent exit channels. 
The advantages of Hadronic fusions are- 

1. Aneutronicity of the reaction: Aneutronic fusion is a nuclear 
fusion reaction without formation of neutrons. The majority of the 
energy released is released in form of charged particles. The charged 
particles like protons or alpha particles are easy to handle and can be 
directly used to convert to electricity. This reduces problem related 
to neutron radiation such as ionizing damage, neutron activation and 
requirements for biological shielding, remote handling and safety. 
E.g:  

C(12,6,0+,12.0000) + D(2,1,1+,2.0141)+TR→N(14,7,1+,14.0030) + Heat 
ΔE = 0.0111 amu = 0.339 MeV 

where TR is trigger mechanism (high voltage DC arc). 
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2. Hybridization with conventional molecular combustion: ICNF 
can be amalgamated with the conventional molecular combustion by 
using engineering innovations ‘Hyper Combustion’. These can be 
realized by using ‘Hyper Furnaces’ which is advanced version of 
Hadronic Reactors. This would drastically decrease the 
environmental impact as the combustion would be more complete. 
The global warming is more problematic due to hydrocarbons 
formed on incomplete combustion of fossil fuels. Also the amount of 
CO2 generated per unit energy output would be less. Moreover 
magnecular combustion by itself is known to have better energy 
output as compared to conventional molecular combustion. 

 

Conclusions 

ICNF and HyperFusions are more promising than hot or cold fusion in 
terms of reproducibility and energy input to output ratio. The successful 
achievement of ICNF with industrial relevance depends on the proper selection 
of the hadronic fuel. The original and final nuclides are light, natural and stable 
isotope. The nuclear fusion causes no emission of ionizing radiations. The 
energy produced ΔE is much bigger than the total energy used by the 
equipment for its production. ICNF relies on magnetic properties of the 
precursor where as HyperFusion relies on the overcoming the coulombic 
barrier by the opposite electrical charge. Production of negatively charged 
nuclei holds promising applications in other fields such as medicines, etc. 
Thus, it can be concluded that hadronic nuclear energy is truly green. 
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Abstract. 

This opening lecture for this very important conference is intended to 
describe very briefly the background to the major topic to be discussed, as 
well as both highlighting the possibly changing scientific times in which we 
find ourselves and raising one or two speculative thoughts which might lead 
to further work in the not too distant future. There can be little doubt in the 
minds of most open-minded scientists that science in general and physical 
science in particular face several problems which are normally hidden from 
view. Many of these, but by no means all, are involved with the issue of 
uncertainty and it is this which forms the basis for the larger part of what 
will follow in these proceedings. The well-known Einstein-Podolsky-Rosen 
article will be central as will the, until now, little known resolution of the 
problems raised by that article for the world of science. It will be shown 
how recent events might indicate a possible change in the attitude towards 
criticism of some widely accepted results as well as towards some slightly 
more unconventional explanations for phenomena which have not, in 
reality, been afforded truly watertight explanations up to the present. As far 
as this latter point is concerned, the possibly provocative idea of openly 
reintroducing an aether into the physical description of events will be 
mooted. 
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Ladies and Gentlemen, 

May I first express my sincere thanks for the generous invitation to present 
this opening talk for this somewhat unusual conference – unusual because of 
its format caused by the coronavirus outbreak. However, although the 
format may be unusual, that cannot detract from the extreme importance of 
the contents of what is to follow these general opening remarks. There can 
be little doubt to all open-minded people that science in general, and 
physical science in particular, faces several oft hidden problems. Many of 
these, although by no means all, are involved with issues of uncertainty and 
it is with this issue that the larger part of this conference will be concerned. 
In a totally unrelated area of physics, changes seem to have occurred 
recently which might indicate some hope that more open-mindedness has 
entered into that area and, therefore, the possibility of a change of attitude in 
other spheres of endeavour might have arisen also.  

In 1988, together with a colleague, I published a letter in a well-respected 
journal in which the validity of the Bekenstein-Hawking expression for the 
entropy of a black hole was questioned. The follow-up article detailing the 
entire argument was, however, rejected and subsequently my colleague and 
I encountered real difficulties in having articles accepted for publication in 
front line journals. However, thirty years later, shortly after Hawking’s 
death, I was contacted by that same original journal to referee an article. I 
did so, as much out of curiosity than anything and found it to be a piece of 
work dealing, amongst other things, with the aforementioned entropy 
expression. Consequently, I roundly criticised the submitted article in my 
report – not out of any sense of pique but because I genuinely believed it to 
be incorrect. The article was rejected for publication. Shortly afterwards I 
was asked, by the same journal, to referee another paper on a totally 
different topic. Again I did so and my recommendations were accepted and 
followed through exactly. The end result was that a few months later I 
received an award as a Referee of the Year! Was it a coincidence that, after 
thirty years, but following Hawking’s death, I seemed to have been accepted 
back into the fold? I accept that all this could be an almost unbelievable 
coincidence but is it just possible that it is an indicator of a change in 
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philosophy of at least some in the hierarchy that appears to control so much 
in the physics community? If so, now could well be exactly the right time to 
push for a true open-minded examination of at least some of the major 
problems facing modern day science and which are the fundamental topics 
of this conference. 

The question of uncertainty affects many areas, including my own special 
interest of thermodynamics, although, in that case, the affect may be felt 
indirect. For a moment consider the situation in thermodynamics. In 
traditional classical thermodynamics there are no uncertainties; all the 
variables, for example the internal energy and total number of particles, 
possess definite values. However, when systems composed of a large 
number of particles are to be considered, the methods of statistical 
mechanics have to be employed due to our present state of knowledge. As a 
consequence, when incorporated into thermodynamics, the realm known as 
statistical thermodynamics is entered. This is, in some crucial ways, totally 
different from classical thermodynamics because the introduction of 
statistical techniques has introduced uncertainty into the picture. No longer 
are there definite values for the internal energy or total number of particles; 
rather average values are considered. These average values, as with the 
average values of other thermodynamic variables, can fluctuate in this new 
regime. Hence, a degree of uncertainty is introduced which leads to the 
derivation of thermodynamic uncertainty relations. It is important to note, 
though, that these relations have been introduced via the recourse to 
statistical methods to describe details of the system under consideration. 
They have been introduced because, in a system composed of a large 
number of particles, it is not possible to write down all the equations of 
motion of the individual particles, let alone solve the resulting set of 
simultaneous equations. The uncertainty, therefore, has been introduced as a 
result of our inability to solve the exact problem; there is no inherent 
uncertainty in the original system. This reasoning follows for all statistical 
thermodynamic theories and indicates a very real difference between 
classical and statistical thermodynamics. 
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Indeed, the same reasoning may be seen to apply to many, if not all, 
problems considered utilising probability theory. For example, in 
introducing probability, it is popular to consider the tossing of a coin. If the 
coin is simply tossed, the outcome when it lands – head or tails – is totally 
uncertain. However, this is not so if someone is in possession of all the 
initial conditions pertaining to the toss. If the initial speed is known, the 
height to which the coin rises may be found, as may the time taken to reach 
that height. Similarly, the time taken to fall back to a given level may be 
found. If the rate of rotation is also known, that, together with the total time 
of flight, should enable the state of the coin on reaching the desired final 
level to be ascertained. Hence, the uncertainty associated with this problem 
really arises through a lack of knowledge of the initial conditions in the 
problem; it is not an inherent property of the actual system. 

It may be seen, therefore, that neither statistical thermodynamics nor 
probability may be termed complete theories in the sense that neither 
provides exact solutions to problems. In both, uncertainty is introduced as a 
result of the inability to write down and solve a set of exact equations and/or 
a lack of knowledge of initial conditions.  

Recent rereading of some books on quantum mechanics would seem to 
indicate a similar situation existing in that branch of physics as well. For 
example, in Heisenberg’s well-known book The Physical Principles of the 
Quantum Theory, the initial derivation of the uncertainty relations relies on 
an obvious approximation which might raise a few minor queries but the 
slightly later, more rigorous, derivation draws on notions from probability. 
Indeed the ideas of probability are closely associated with the wave function 
as is seen from discussions of Schrodinger’s equation and its wave function. 
Once probability enters any discussion an element of uncertainty must 
follow in the subsequent theory. Hence, one must wonder if the uncertainty 
relations of quantum mechanics are a product of the theory rather than a 
natural property of the systems the theory is purporting to portray? This, of 
course, is highly reminiscent of the situation already mentioned as occurring 
in statistical thermodynamics. However, the very fact that probabilistic ideas 
enter the subject at all must surely indicate that the theory cannot be 
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complete? Here the idea of a theory being complete is intended to indicate 
that the theory is capable of describing any relevant physical system exactly 
without any degree, however slight, of uncertainty. That may, or may not, 
be the precise notion put forward in the famous Einstein-Podolsky-Rosen 
article but that is the meaning adopted here so far and, in that sense, neither 
statistical thermodynamics nor quantum theory may be adjudged complete. 

Some might well feel that at least some of my comments so far – if not all of 
them – are a little naïve, even childlike. However, I would remind everyone 
that two quotations from the Bible might seem appropriate at this juncture. 
We might be reminded of the quote from St. Paul’s Epistle to the 
Corinthians where he says ‘when I became a man, I put away childish 
things’. However, it seems we might take note also of Jesus’s comment that 
one needs to become like a little child if one wishes to enter the Kingdom of 
Heaven It seems to me that it’s just possible that scientists could learn 
something from these two quotes if taken together. Over the years, science 
has become more and more dependent on more and more advanced abstruse 
mathematics and maybe all scientists should stand back a little and reflect, 
rather than rushing blindly on using methods and results authenticated by 
‘conventional wisdom’ but not necessarily by common sense. Maybe we 
should return to some childlike thinking. I would say I don’t feel this mild 
criticism applies to the methods of Hadronic Mechanics, although there is a 
huge amount of new mathematics to absorb in that field but, when you 
become used to the new notation, that mathematics is not too difficult to 
comprehend; - unlike some of the modern additions to accepted 
conventional theory, several of which seem to be attempting to transport us 
to some mythical land of make-believe! 

As far as the Einstein-Podolsky-Rosen, or EPR, ideas are concerned, it is 
worth noting that questions about the completeness of quantum mechanics 
as a physical theory have been discussed at length ever since that famous, 
some might be tempted to say infamous, paper first appeared. Many 
experiments were carried out in attempts to both prove and disprove the 
assertions contained therein and a great deal of thought went into the 
theoretical investigations of such as Bell. All the references to this work 
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may be found in the collected papers by Bell on quantum philosophy, which 
may found in Speakable and Unspeakable in Quantum Mechanics as 
published by Cambridge University Press. Less well-known is the resolution 
of the paradox advanced by Santilli in 1998 and it is the lack of publicity for 
this work which poses a significant question for the scientific community. 
Although, when you read even just the abstract for that paper, maybe some 
answers become apparent. With talk of such concepts as nonlinear, 
nonlocal, non-canonical, axiom-preserving isotopies and spin-isospin 
symmetry and iso-spaces, some will be put off by the implied effort to 
understand properly what follows in the body of the paper, while others will 
dismiss the work out-of-hand because it depends crucially on concepts 
unfamiliar to them. This may be a totally improper attitude towards 
proposed new science but many will have forged impressive curricula vitae 
based on what they regard as well-established concepts and procedures and 
will be reluctant to jeopardise their personal positions. Hence, the huge 
question for the scientific community - when do we agree to examine with a 
truly open mind, radical new proposals for help in solving age-old 
problems? It seems there was no difficulty in examining and accepting a 
wide range of results from Riemannian geometry, as well as the 
uncertainties introduced by quantum mechanics, into physics and chemistry 
some one hundred years ago, so why not afford the same respect to 
Hadronic Mechanics or are the fundamental results of quantum mechanics 
to remain sacrosanct even when they don’t answer all the important 
questions facing the scientific community? 

These are vitally important questions in general but are particularly apposite 
when considering the so-called EPR paradox and work related to it. 
Basically, the EPR claims that quantum mechanics is an incomplete theory 
because its description of physical reality does not include all elements of 
reality, while every element of physical reality should be precisely 
represented in a complete theory. Santilli’s new approach has important 
consequences as far as the EPR argument is concerned. Traditionally, 
commuting quantities are believed to be independent but, in the so-called 
iso-topic completion of quantum mechanics, iso-commuting quantities can 
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be mutually interacting, although it should be understood that such 
interactions are structurally different from those of action-at-a-
distance/potential type. Fundamentally, quantum mechanics may be 
considered an incomplete theory in that it does not contain the element of 
reality given by the nonlocal structure of interactions expected from the 
mutual wave overlapping. Hadronic mechanics overcomes this problem. 

It is important to realise though that, as Santilli himself points out, hadronic 
mechanics is not intended to represent all elements of reality; it is not meant 
to be a final theory. Physics is, after all, a discipline which will never admit 
final theories. Hadronic mechanics simply provides one type of completion 
of quantum mechanics – that of axiom preserving type. It might also be 
noted at this point that Santilli has also shown via his new mathematics that 
von Neumann’s theorem on hidden variables is quite simply inapplicable 
under isotopies – note, not violated, but inapplicable! He has also 
established that the oft-quoted Bell’s inequality is not valid universally but 
holds for the conventional form of quantum mechanics specifically.  

Recently, of course, the matter has resurfaced with the announcement of 
experimental results supporting the EPR assertions at Basel. This has 
provoked further contemplation of this whole issue of completeness and just 
what it really means. The Basel team noted that the phenomenon dated back 
to thought experiment of 1935 and that it allowed measurement results to be 
predicted precisely but, of course, it must be remembered always that 
thought experiments are just that – thought experiments – and such are very 
difficult to interpret due to the assumptions made not always being totally 
clear, possibly not even to the originators themselves. In fact, in a purely 
thought experiment, it is easy to imagine a situation where a fundamental 
assumption is made with no-one realising that has occurred. Remember that 
we all indulge in thought experiments – some even when we are asleep – 
but their true validity only becomes apparent when we have ceased our 
contemplation and committed our thoughts to paper and resulting concrete 
scrutiny. Supposedly, the essence of a good practical experiment is that it 
should be readily repeatable. It is relatively easy to see how this could be 
true, but could equally well be untrue, of any thought experiment. Hence, in 
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my personal view, important results derived via thought experiments should 
always be treated with extreme care. Nevertheless, as far as the thought 
experiment leading to the EPR paradox is concerned, it is one which has 
been viewed and examined over a large number of years and, seemingly, 
has always led to a genuine paradox in physics.  

Basically, via a thought experiment, Einstein, Podolsky and Rosen showed 
that precise predictions are possible theoretically in certain circumstances. 
Briefly, such a notion may be explained as follows:- they considered two 
systems in an entangled state in which their properties are strongly 
correlated. In this case, the results of measurements on one system may be 
used to predict the results of corresponding measurements on the second 
system with arbitrary precision in principle. It was also the case that the two 
systems could be separated spatially. The resulting paradox is that an 
observer may use measurements on the first system to make more precise 
statements about the second system than an observer who has direct access 
to that second system but not the first.     

The Basel team used lasers to cool atoms to a small fraction of a degree 
above the absolute zero of temperature. At such low temperatures, the atoms 
are thought to behave completely according to the rules of quantum 
mechanics and form a Bose-Einstein condensate. In this ultra-cold cloud, 
the atoms collide with one another constantly, causing their spins to become 
entangled. The researchers involved then took measurements of the spin in 
spatially separated regions of the condensate. By using high-resolution 
imaging, they were able to measure the spin correlations between the 
separate regions directly and simultaneously localise the atoms in precisely 
defined positions. Hence, in this experiment, the researchers seem to have 
succeeded in using measurements in a given region to predict precisely the 
results for another region.   

Experimental physics is certainly not my forte; in fact, I’ve not been directly 
involved in that area since my undergraduate days. Hence, I don’t know if 
any serious objections to this work by the Basel team have surfaced since I 
read of their claims. If such have emerged, the argument over the validity of 
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the EPR paradox will, no doubt, rumble on. If none has, or does, emerge 
than it is conceivable that a new era for physics might be opening up since it 
is surely the case that applications will follow which we all hope will be of 
benefit to mankind rather than the opposite.   

As a follow-up to these comments, it might be worth raising the question of 
the presumed boundary between classical and quantum mechanics. Precisely 
when is something small enough to warrant the use of quantum mechanics 
to describe it? Is this boundary clear cut or does the transition evolve over 
what might be thought of as a blurred region in which either or both apply? I 
confess this seemingly simple point is one I have never seen discussed but is 
one that has preyed on my mind for years with no apparent resolution in the 
offing. It might be wondered if the reintroduction of an aether could help in 
the resolution of this and possibly many other difficulties encountered in 
modern physics. For example, the uncertainty in the position and speed of a 
very small particle could be accounted for by the presence of a boundary 
layer between the said small particle and the aether. It is certain that, if the 
existence of an aether is true, then such a boundary layer must exist and, if 
the ideas put forward by C. Kenneth Thornhill concerning an aether are 
valid, then the size of aether particles would be extremely small and small in 
comparison with the size of recognised elementary particles. Obviously this 
situation would not apply so obviously to macroscopic bodies because their 
individual size would far outweigh that of the proposed aether particles. The 
notion of reintroducing the idea of an aether receives some support these 
days with the renewed interest in some quarters in the work of Nikola Tesla. 
His writings, as well as those of the myriad major scientists working on 
problems of, or at least involving, electromagnetic ideas towards the end of 
the nineteenth century, contain constant references to this medium. It seems 
we should all be approaching problems with much more open minds and not 
be guided too rigidly by conventional wisdom. As the saying goes – think 
outside the box!  

These latter points are all speculative thoughts but, nevertheless, thoughts 
which have materialised over years and lead to questions, at least, which I 
feel need carefully considered answers in order to serve the cause of the 
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advancement of scientific knowledge well. At this point, at the very 
beginning of this conference, it might be remembered also that this event, 
which could prove vitally important to the future in physical science, has 
come about due to one person – Ruggero Santilli. Most of us know the 
enormous contribution he has made, a contribution far too extensive to even 
begin to summarise here. However, one example which has been totally 
ignored by those in authority deserves mention and that is his proposal of a 
method for disposing of nuclear waste safely and on site. This proposal 
needed to be checked independently by approximately three relatively small 
experiments. Request after request was made for these to be carried out but 
to no avail. I myself drew attention to this in 2008 at a conference in Monza 
which included in the audience the then European Commissioner dealing 
with energy matters. Again nothing transpired. This is just one example of 
Ruggero Santilli’s work but one which, since it has been ignored, could 
prove costly to mankind. Before closing, I would like to draw your attention 
to one other small, but I feelsignificant, point he raised many years ago and 
which serves to illustrate the point I was making earlier about the 
assumptions we all make in physics. I drew attention to the difficulty all 
must really experience in thought experiments in remaining totally aware of 
any, and all, assumptions made at the outset. As I said also, when one comes 
to write down thoughts on paper, the assumptions made and their 
consequences, become somewhat clearer but they may never be forgotten. 
When Einstein proposed his special theory of relativity many years ago, he 
made an assumption concerning the constancy of the speed of light. Today it 
is commonplace both in the media and, crucially, in scientific circles as well 
to hear people claim that ‘Einstein said the speed of light is constant’; this is 
almost a basic statement of modern physics to some. All have forgotten that, 
as Ruggero Santilli pointed out so clearly several years ago, Einstein’s 
assumption was that the speed of light remained constant in a vacuum. Here 
Ruggero stressed, via a popular example, a vitally important scientific truth 
– when you are using, or quoting, a previously derived result in science, 
check diligently to see what precise assumptions have been made in 
deriving the said result. Many errors could be avoided so easily if this 
simple procedure was adhered to strictly.   
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May I close by expressing the sincere hope that this proves to be an 
enormously successful conference and one which leads to a more open-
minded approach to the solution of the important problems facing twenty-
first century science. Finally, on behalf of all participating in this event, I 
should like to thank Ruggero Santilli, his wife Carla and all his colleagues, 
working unnamed and unrecognised behind the scenes, for organising it! 

Thank you.     
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ZUR THEORIE DER q, ω-LIESCHEN MATRIXGRUPPEN

THOMAS ERNST

Abstract. Based on the three papers by Hahn 1949, Annaby et. al.
2012 and Varma et. al. 2018, we introduce the matrix of multiplicative
q, ω-polynomials of order M ∈ Z with the corresponding q-addition.
We prove that this constitutes a so-called q, ω-Lie group with two dual
q, ω-multiplications. We also show that the corresponding q, ω-Bernoulli
and q, ω-Euler matrices form q, ω-Lie subgroups. In the limit ω → 0 we
obtain corresponding formulas for q-Appell polynomial matrices.

Primary 17B37; Secondary 11B68, 33D15
Keywords— q, ω-Lie group; multiplicative q-Appell polynomial matrix;

Hahn–Pascal matrix

Zusammenfassung. Basierend auf den drei Veröffentlichungen von
Hahn 1949, Annaby et. al. 2012 und Varma et. al. 2018, führen wir
die multiplikative q, ω-Polynommatrix der Ordnung M ∈ Z ein, mit
der entsprechenden q-Addition. Wir beweisen, dass dies eine sogenannte
q, ω-Liesche Gruppe mit zwei dualen q, ω-Multiplikationen darstellt. Wir
zeigen auch, dass die entsprechenden q, ω-Bernoulli und q, ω-Euler Ma-
trizen q, ω-Liesche Untergruppen bilden. Im Grenzwert ω → 0 erhalten
wir entsprechende Formeln für q-Appell-Polynommatrizen.
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1. Einführung
2. Die q, ω-Liesche Gruppe von q, ω-Appellschen Polynommatrizen
3. Der Matrixansatz
3.1. Multiplikative q, ω-Appellsche Polynommatrizen
3.2. q, ω-Bernoulli und q, ω-Eulersche Polynome
4. Schlussfolgerung
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1. Einführung

Wir stellen einige neue Konzepte für q, ω Polynommatrizen vor, von de-
nen einige vorher nur im q-Fall aus den Artikeln des Autors bekannt waren.
Durch die logarithmische Methode für q-Analysis erfolgt dieser Übergang
fast automatisch, weil die Addition durch die q, ω-Addition ersetzt wird. In
dem Artikel [8] wurden Matrixgruppen mit zwei dualen Multiplikationen
eingeführt. Später in [10] wurde bewiesen, dass die sogenannte q-Appell-
Polynommatrix-Gruppe ein erstes konkretes Beispiel von q-Lie-Gruppen
war. Obwohl wir die q, ω-Addition verwenden, werden die q-Binomialkoeffi-
zienten beibehalten. Stattdessen wird die Potenz von x zu den zwei Haupt-
folgen geändert.
In diesem Artikel werden die vorherigen Formeln mit q-Pascal-Matrizen

einfach zu sogenannten q, ω-Pascal-Matrizen erweitert. Summenformeln mit
der neuen q, ω-Addition können dabei in Matrixform umgeschrieben werden.
Dieser Artikel ist wie folgt organisiert: Im Abschnitt 1 werden die Haupt-

definitionen angegeben.
Der Hauptzweck des Abschnitts 2 ist die Einführung der q, ω-Addition

und der multiplikativen q, ω-Appellschen Polynome und Zahlen. Das Um-
bral-Kalkül wird immer implizit angenommen. Im Abschnitt 3 werden die
relevanten Matrizen und die Hauptmatrix q, ω-Differenzengleichung ein-
geführt. Im Unterabschnitt 3.1 werden die multiplikativen q, ω-Polynom-
matrizen zur Vorbereitung für die q, ω-Liesche Gruppe, den Hauptzweck
dieses Artikels, eingeführt.
Im Unterabschnitt 3.2 wiederholen wir zunächst die Matrixformen der

q, ω-Bernoulli und q, ω-Eulerschen Polynome aus [9] zur Vorbereitung für
die Berechnung ihrer Zahleninverse.
Sei ω ∈ R, ω > 0. Man setze ω0 ≡ ω

1−q
, 0 < q < 1. Sei I ein Intervall,

das ω0 enthält. Wir gehen davon aus, dass die Variable x zu I gehört.

Definition 1. Der Endomorphismus ǫ im Vektorraum der Polynome wird
definiert durch

(1) ǫf(x) ≡ f(qx+ ω).
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Dieser Endomorphismus ist eine Verallgemeinerung des Operators mit
demselben Namen im q-Kalkül [5]. In [3, S. 136] ist bewiesen, dass

(2) ǫkf(x) = f(qkx+ ω{k}q), k ∈ N.

Definition 2. [11] Sei ϕ eine stetige reelle Funktion von x. Wir definieren
den q, ω-Differenzenoperator Dq,ω wie folgt:

(3) Dq,ω (ϕ) (x) ≡

{

ϕ(qx+ω)−ϕ(x)
(q−1)x+ω

, if x 6= ω0;
dϕ

dx
(x) if x = ω0.

Eine Funktion f(x) ist n Mal q, ω-differenzierbar, wenn Dn
q,ωf(x) vorhan-

den ist. Wenn wir darauf hinweisen möchten, dass dieser Operator auf der
Variable x operiert, werden wir Dq,ω,x für den Operator schreiben. Weiter-
hin, Dq,ω(K) = 0, wie für die Ableitung.
Dieser Operator interpoliert zwischen zwei bekannten Operatoren, dem

Nørlundschen Differenzenoperator

(4) △ω[f(x)] ≡
f(x+ ω)− f(x)

ω
,

und der Jacksonschen q-Ableitung

(5) (Dqϕ) (x) ≡

{

ϕ(x)−ϕ(qx)
(1−q)x

, if q ∈ C\{1}, x 6= 0;
dϕ

dx
(x) if q = 1;

Die folgende Definition erscheint zum ersten Mal.

Definition 3. Ein q, ω-Analogon des mathematischen Objekts G ist eine
mathematische Funktion F (q, ω) mit der Eigenschaft limω→0 F (q, ω) = Gq,
das q-Analogon von G. Sowohl F als auch G können Funktionen von mehre-
ren Variablen sein. Sie können auch Operatoren sein. Die Funktion F (q, ω)
wird ω-Analogon von Gq genannt.

Satz 1.1. [3, (16), S. 137] Der q, ω-Differenzenoperator für ein Produkt von
Funktionen.

(6) Dq,ω (fg) (x) = Dq,ω (f) (x)g(x) + f(qx+ ω)Dq,ω (g) (x).

Bemerkung 1. Diese Formel wird zum Nachweis von (28) verwendet.
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Wir führen nun zwei Hauptfolgen ein, die die Ciglerschen Polynome in
[5, 5.5] verallgemeinern.

Definition 4.

(7) [13, (15)] [x]kq,ω ≡

k−1
∏

m=0

(qmx+ ω{m}q).

(8) [13, (16)] (x)kq,ω ≡

k−1
∏

m=0

(x− ω{m}q),

wobei {m}q das q-Analogon von m bezeichnet.

Die beiden folgenden Formeln entsprechen der Formel Dxn = nxn−1:

(9) [12, 2.5], [13, (17)] Dq,ω(x)
n
q,ω = {n}q(x)

n−1
q,ω .

(10) [13, (18)] Dq,ω[x]
n
q,ω = {n}q[qx+ ω]n−1

q,ω .

Als nächstes führen wir zwei q, ω-Analoga der Exponentialfunktion ein:

Definition 5. Die q, ω-Exponentialfunktion Eq,ω(z) [13, (21)] wird definiert
durch

(11) Eq,ω(z) ≡
∞
∑

k=0

(z)kq,ω
{k}q!

, |(1− q)z − ω| < 1.

Die komplementäre q, ω-Exponentialfunktion E 1

q
,ω(z) [13, (26)] wird defi-

niert durch

(12) E 1

q
,ω(z) ≡

∞
∑

k=0

[z]kq,ω
{k}q!

, |ω| < 1.

Wir haben den Namen geändert zu E 1

q
,ω(z), weil E 1

q
,0(z) = E 1

q
(z) [5].

Satz 1.2. [13, (19)] Die q, ω-Exponentialfunktion ist die einzigartige Lösung
der q, ω-Differenzengleichung

(13) Dq,ωf(z) = f(z), f(0) = 1.

[13, (24)] Die komplementäre q, ω-Exponentialfunktion ist die einzigartige
Lösung der q, ω-Differenzengleichung

(14) Dq,ωf(z) = f(qz + ω), f(0) = 1.
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Satz 1.3. [13, (21)] Die meromorphe Fortsetzung der q, ω-Exponential-
funktion Eq,ω(z) ist gegeben durch

(15) Eq,ω(z) =
(−ω; q)∞

((1− q)z − ω; q)∞
.

[13, (26)] Die meromorphe Fortsetzung der komplementären q, ω-Exponen-
tialfunktion E 1

q
,ω(z) ist gegeben durch

(16) E 1

q
,ω(z) =

((q − 1)z + ω; q)∞
(ω; q)∞

.

Korollarium 1.4.

(17) Eq,ω(z)E 1

q
,−ω(−z) = 1

2. Die q, ω-Liesche Gruppe von q, ω-Appellschen

Polynommatrizen

Wir erweitern zunächst einige Definitionen von [8].

Definition 6. Eine q, ω-Liesche Gruppe (Gn,q,ω,·,·q,ω, Ig) ⊇ Eq,ω(gq) ist eine
möglicherweise unendliche Menge von Matrizen ∈ GL(n,R) und eine Man-
nigfaltigkeit mit zwei Multiplikationen: ·, der üblichen Matrixmultiplikation
und der verdrehten Matrixmultiplikation ·q,ω, die separat definiert wird.
Jede q, ω-Liesche Gruppe hat eine Einheit, die für beide Multiplikationen

mit Ig bezeichnet wird. Jedes Element Φ ∈ Gn,q,ω hat eine Inverse Φ−1 mit
der Eigenschaft Φ ·q,ω Φ−1 = Ig.

Definition 7. Angenommen, (G1, ·1, ·1:q,ω) und (G2, ·2, ·2:q,ω) sind zwei q, ω-
Liesche Gruppen, dann ist (G1 × G2, ·, ·q,ω) eine q, ω-Liesche Gruppe mit
dem Namen Produkt-q, ω-Liesche Gruppe. Diese Gruppe hat Gruppenope-
rationen definiert durch

(18) (g11, g21) · (g12, g22) = (g11 ·1 g12, g21 ·2 g22),

und

(19) (g11, g21) ·q,ω (g12, g22) = (g11 ·1:q,ω g12, g21 ·2:q,ω g22).

Definition 8. Wenn (Gn,q,ω, ·, ·q,ω) eine q, ω-Liesche Gruppe ist und Hn,q,ω

eine nichtleere Teilmenge von Gn,q,ω ist, dann wird (Hn,q,ω, ·, ·q,ω) eine q, ω-
Liesche Untergruppe von (Gn,q,ω, ·, ·q,ω) genannt, falls
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(1)

(20) Φ ·Ψ ∈ Hn,q,ω und Φ ·q,ω Ψ ∈ Hn,q,ω for all Φ,Ψ ∈ Hn,q,ω.

(2)

(21) Φ−1 ∈ Hn,q,ω for all Φ ∈ Hn,q,ω.

(3) Hn,q,ω eine Untermannigfaltigkeit von Gn,q,ω ist.

Um die folgenden Polynome verwenden zu können, müssen wir die q-
Addition verallgemeinern. Die gewöhnliche q-Addition ist der Sonderfall
ω = 0. Genau wie bei der q-Addition verwenden wir Buchstaben in einem
Alphabet für die q, ω-Additionen. Die Gleichheit der Buchstaben wird mit
∼ bezeichnet. Man beachte im Folgenden die Tatsache, dass jeweils die
Variable x in (x)νq,ω oder in [x]νq,ω durch die Konstante a multipliziert wird,
müssen wir auch ω mit a multiplizieren.

Definition 9. Die NWA q, ω-Addition wird wie folgt definiert:

(22) (x⊕q,ω y)n ≡
n

∑

k=0

(

n

k

)

q

(x)n−k
q,ω (y)kq,ω.

Die NWA q, ω-Subtraktion wird wie folgt definiert:

(23) (x⊖q,ω y)n ≡
n

∑

k=0

(

n

k

)

q

(x)n−k
q,ω (−y)kq,−ω.

Die JHC q, ω-Addition wird wie folgt definiert:

(x⊞q,ω y)n ≡
n

∑

k=0

(

n

k

)

q

(x)n−k
q,ω [y]kq,ω.(24)

Die JHC q, ω-Subtraktion wird wie folgt definiert:

(x⊟q,ω y)n ≡
n

∑

k=0

(

n

k

)

q

(x)n−k
q,ω [−y]kq,−ω.(25)

Korollarium 2.1. Eine Erweiterung der Formel [5, 4.29]

(26) Dq,ω,x(x⊕q,ω y)n = {n}q(x⊕q,ω y)n−1, ⊕q,ω ≡ ⊕q,ω ∨⊞q,ω.
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Beweis.

Dq,ω,x(x⊕q,ω y)n =
n−1
∑

k=0

(

n

k

)

q

{n− k}q(x)
n−k−1
q,ω (y)kq,ω = RS.(27)

�

Satz 2.2. Die Kettenregel für den q, ω-Differenzenoperator.

(28) Dq,ω

(

(ax)nq,aω
)

= a{n}q(ax)
n−1
q,aω.

(29) Dq,ω

(

[ax]nq,aω
)

= a{n}q[aqx+ aω]n−1
q,aω.

Beweis. Wir beweisen (28) durch Induktion. Die Formel (28) gilt für n =
1, 2. Angenommen, sie gilt für n− 1. Dann haben wir

Dq,ω

[

(ax)n−1
q,aω(ax− {n− 1}qaω)

]

durch(6)
= a(ax)n−1

q,aω + a2 [qx+ ω − {n− 1}q] {n− 1}q(ax)
n−2
q,aω

= a(ax)n−1
q,aω [1 + q{n− 1}q] = RS.

(30)

Die Formel (29) wird in ähnlicher Weise bewiesen. �

Korollarium 2.3. Vier q, ω-Additionen für die q, ω-Exponentialfunktion.

(31) Eq,ω(x⊕q,ω y) ≡ Eq,ω(x)Eq,ω(y).

(32) Eq,ω(x⊖q,ω y) ≡ Eq,ω(x)Eq,−ω(−y).

Eq,ω(x⊞q,ω y) ≡ Eq,ω(x)E 1
q
,ω
(y).(33)

Eq,ω(x⊟q,ω y) ≡ Eq,ω(x)E 1
q
,−ω

(−y).(34)

Beweis. Man verwende die Formeln (22) und (24). �

Satz 2.4. Die q, ω-Differenzen für die q, ω-Exponentialfunktionen sind:

(35) Dq,ω Eq,aω(ax) = a Eq,aω(ax),

(36) Dq,ω E1
q
,aω

(ax) = a E1
q
,aω

(aqx+ aω),

Beweis. Dies ergibt sich aus der Kettenregel (28) und (29). �

Satz 2.5. Die NWA q, ω-Addition ist kommutativ und assoziativ.
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Beweis. Ähnlich dem Nachweis für NWA q-Addition. �

Satz 2.6. Die JHC q, ω-Addition ist assoziativ. Wir nehmen an, dass alle
JHC q, ω-Additionen ganz rechts im Funktionsargument stehen.

Beweis. Dies ergibt sich aus der Assoziativität der Multiplikation. �

Definition 10. Die Ward-ω-Zahl nq,ω wird definiert durch

(37) nq,ω ∼ 1⊕q,ω 1⊕q,ω . . .⊕q,ω 1,

wobei die Anzahl der Summanden auf der rechten Seite n ist.

Definition 11. Die Jacksonsche ω-Zahl ñq,ω wird definiert durch

(38) ñq,ω ∼ 1⊞q,ω 1⊞q,ω . . .⊞q,ω 1,

wobei die Anzahl der Summanden auf der rechten Seite n ist.

Die allgemeinste Form von Polynom in diesem Artikel ist das q, ω-Appell-
Polynom, das wir nun definieren werden.

Definition 12. Sei Aq,ω die reelle Zahlenfolgen {uν,q}
∞
ν=0, so dass

(39)

∞
∑

ν=0

|uν,q|
rν

{ν}q!
< ∞,

für einen q, ω-abhängiger Konvergenzradius r = r(q) > 0, wobei 0 < q < 1.

Die q, ω-Appellsche Zahlenfolge wird mit {Φ
(n)
ν,q,ω}∞ν=0 bezeichnet.

Definition 13. Sei h(t, q, ω), h(t, q, ω)−1 ∈ R[[t]]. Für fn(t, q, ω) = h(t, q, ω)n

werden die multiplikativen q, ω-Appellschen Zahlen von Grad ν und Ord-
nung n, Φν,q,ω ∈ Aq,ω durch die folgende erzeugende Funktion gegeben:

fn(t, q, ω) =
∞
∑

ν=0

tν

{ν}q!
Φ(n)

ν,q,ω, Φ
(n)
0,q,ω = 1.(40)

Der Bequemlichkeit halber fixieren wir den Wert für n = 0 und n = 1:

(41) Φ(0)
ν,q,ω ≡ δ0,ν , Φ(1)

ν,q,ω ≡ Φν,q,ω.

Definition 14. Man vergleiche mit [13, (31)]. Für fn(t, q, ω) ∈ R[[t]] wie

oben wird die multiplikative q, ω-Appellsche Polynomfolge {Φ
(n)
ν;q,ω(x)}∞ν=0

von Grad ν und Ordnung n durch die folgende erzeugende Funktion gege-
ben:
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fn(t, q, ω)Eq,ωt(xt) =
∞
∑

ν=0

tν

{ν}q!
Φ(n)

ν;q,ω(x).(42)

Definition 15. Der Bequemlichkeit halber fixieren wir wieder den Wert für
n = 0 und n = 1:

(43) Φ(0)
ν,q,ω(x) = (x)νq,ω, Φ(1)

ν,q,ω(x) ≡ Φν,q,ω(x).

Motivation: Die erste Definition folgt, weil die zwei Hauptfolgen die Po-
tenzfunktion ersetzen.
Als nächstes werden Verallgemeinerungen der beiden Formeln [5, 4.107,

4.111] vorgestellt.

Satz 2.7.

(44) Dq,ωΦν;q,ω(x) = {ν}qΦν−1;q,ω(x).

Die Formel [13, (30)]in Umbralform:

(45) Φν;q,ω(x) =̈ (Φq,ω ⊕q,ω x)ν .

Definition 16. Man vergleiche mit [13, (31)]. Für fn(t, q, ω) ∈ R[[t]] wie

oben wird die komplementäre q, ω-Appellsche Polynomfolge {Φ
(n)

ν;
1
q
,ω
(x)}∞ν=0

von Grad ν und Ordnung n durch die folgende erzeugende Funktion defi-
niert:

fn(t, q, ω)E1
q
,ωt
(xt) =

∞
∑

ν=0

tν

{ν}q!
Φ

(n)

ν;
1
q
,ω
(x).(46)

Bemerkung 2. Diese Definition wird in der Formel (49) verwendet.

Satz 2.8. Angenommen, M und K sind die x-Ordnung bzw. y-Ordnung.
Dann haben wir ein ω-Analogon von [10, (43)]:

(47) Φ(M+K)
ν,q,ω (x⊕q,ω y) =

ν
∑

k=0

(

ν

k

)

q

Φ
(M)
k,q,ω(x)Φ

(K)
ν−k,q,ω(y).
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Beweis. Wir zeigen, dass beide Seiten von (47) dieselbe erzeugende Funktion
haben.

fM+K(t, q, ω)Eq,ωt((x⊕q,ω y)t)
durch(22)

= fM(t, q, ω)Eq,ωt(xt)

fK(t, q, ω)Eq,ωt(yt)
durch(42)

=
∞
∑

k=0

tk

{k}q!
Φ

(M)
k;q,ω(x)

∞
∑

l=0

tl

{l}q!
Φ

(K)
l;q,ω(y)

=
∞
∑

ν=0

tν

{ν}q!

ν
∑

k=0

(

ν

k

)

q

Φ
(M)
k,q,ω(x)Φ

(K)
ν−k,q,ω(y).

(48)

�

Bemerkung 3. Die Formel (47) definiert Φ
(M+K)
ν,q,ω (x⊕q,ω y) als rechte Seite

der Formel. Es gibt keine andere Definition von dieser Funktion.

Satz 2.9. Angenommen, M und K sind die x-Ordnung bzw. y-Ordnung.
Dann haben wir:

(49) Φ(M+K)
ν,q,ω (x⊞q,ω y) =

ν
∑

k=0

(

ν

k

)

q

Φ
(M)
k,q,ω(x)Φ

(K)

ν−k,
1
q
,ω
(y).

Beweis. Wir zeigen, dass beide Seiten von (49) dieselbe erzeugende Funktion
haben.

fM+K(t, q, ω)Eq,ωt((x⊞q,ω y)t)
durch(24)

= fM(t, q, ω)Eq,ωt(xt)fK(t,
1
q
,−ω)

E1
q
,ωt
(yt)

durch(42),(46)
=

∞
∑

k=0

tk

{k}q!
Φ

(M)
k;q,ω(x)

∞
∑

l=0

tl

{l}q!
Φ

(K)

l;
1
q
,ω
(y)

=

∞
∑

ν=0

tν

{ν}q!

ν
∑

k=0

(

ν

k

)

q

Φ
(M)
k,q,ω(x)Φ

(K)

ν−k,
1
q
,ω
(y).

(50)

�

3. Der Matrixansatz

In diesem Abschnitt verallgemeinern wir Resultate aus [9] und [10] durch
die Einführung der Variable ω.
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Definition 17. [6], [9] Ein q-Analogon der Polya-Veinschen Matrix. Die
n× n Matrix Dn,q ist gegeben durch

Dn,q(i, i− 1) ≡ {i}q, i = 1, . . . , n− 1,

Dn,q(i, j) ≡ 0, j 6= i− 1.
(51)

Die folgende Vektorform für q, ω-Appellsche Polynome und Zahlen wird
in den Formeln (69), (89), (90), (108) und (109) verwendet.

(52) φn,q,ω(x) ≡ (Φ0,q,ω(x),Φ1,q,ω(x), . . . ,Φn−1,q,ω(x))
T
,

(53) φn,q,ω ≡ φn,q,ω(0).

Definition 18. Die folgende Abkürzung wird verwendet.

ξn,q,ω(x) ≡ ((x)0q,ω, (x)
1
q,ω, (x)

2
q,ω, . . . , (x)

n−1
q,ω )T .(54)

Definition 19. Man definiere die q, ω-Appellsche Polynommatrix durch

Φn,q,ω(x)(i, j) ≡

(

i

j

)

q

Φi−j,q,ω(x), 0 ≤ i, j ≤ n− 1.(55)

Definition 20. Die q, ω-Appellsche Zahlenmmatrix wird definiert durch

Φn,q,ω(i, j) ≡ Φn,q,ω(0)(i, j), 0 ≤ i, j ≤ n− 1.(56)

Satz 3.1. Die Formel (44) kann in Matrixform geschrieben werden. Ver-
gleiche mit [6, (83)].

(57) Dq,ωφn,q,ω(x) = Dn,qφn,q,ω(x).

Angenommen, y(t) ist ein Vektor der Länge n, ist die folgende q, ω-
Differenzengleichung in Rn von grundlegender Bedeutung:

(58) Dq,ωy(t) = Dn,qy(t), y(0) = y0, −∞ < t < ∞.

Gemäß der Formel (57), ist die allgemeine Lösung von (58) der q, ω-Appell-
Polynomvektor von Grad ν und Ordnung m. Die Anfangswerte sind dann
der Vektor von q, ω-Appellschen Zahlen der Ordnung m u.s.w.. Der An-
fangswert kann auch die Vektorfunktion e0 sein. Die Lösung ist dann die
Vektorfunktion ξn,q,ω(x).
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Definition 21. Die q, ω-Pascalsche Matrix Pn,q,ω(x) ist gegeben durch

(59) Pn,q,ω(i, j)(x) ≡

{

(

i

j

)

q
(x)i−j

q,ω , i ≥ j

0, sonst

Diese Matrix wird in der Formel (71) verwendet.

Satz 3.2. Die allgemeine Lösung von (58) kann auch geschrieben werden:
y(t) = Eq,ω(Dn,qt)y0. Dies ist eigentlich eine endliche Reihe, die sich in der
folgenden Form ausdrücken lässt:

(60)

n−1
∑

k=0

(Dn,qt)
k
q,ω

{k}q!
≡ Pn,q,ω(t).

Der folgende Sonderfall wird häufig verwendet.

Definition 22. Die q, ω-Pascalsche Matrix Pn,q,ω ist gegeben durch

(61) Pn,q,ω(i, j) ≡ Pn,q(i, j)(1) =

(

i

j

)

q

(1)i−j
q,ω , i, j = 0, . . . , n− 1.

Des Weiteren haben wir das folgende q, ω-Analogon von [1, S. 233 (7)],
was daraus folgt, dass Pn,q,ω(t) eine q, ω-Exponentialfunktion ist.

(62) Pn,q,ω(s⊕q,ω t) = Pn,q,ω(s)Pn,q,ω(t), s, t ∈ C.

Das impliziert

(63) Pk
n,q,ω = Pn,q,ω(kq,ω).

Durch (62) erhalten wir viele kombinatorische Identitäten. Einige davon
sind

(64)

i
∑

k=j

(

i

k

)

q

(

k

j

)

q

(1)i−k
q,ω [−1]k−j

q,ω = δi,j

und

(65)

i
∑

k=j

(

i

k

)

q

(

k

j

)

q

(1)i−k
q,ω (1)

k−j
q,ω = (2q,ω)

i−j

(

i

j

)

q

, i ≥ j.
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3.1. Multiplikative q, ω-Appellsche Polynommatrizen.

Definition 23. Ein ω-Analogon von [10, (47)]. Die multiplikativen q, ω-

Appell-Polynommatrizen (Mx,q,ω) mit Elementen Φ
(M)

n,q,ω(x) der Ordnung
M ∈ Z sind definiert durch

Φ
(M)

n,q,ω(x)(i, j) ≡

(

i

j

)

q

Φ
(M)
i−j,q,ω(x), 0 ≤ i, j ≤ n− 1.(66)

Definition 24. Die multiplikativen q, ω-Appell Zahlenmatrizen oder die

q, ω-Übertragung-Matrizen (Mq,ω) mit Elementen Φ
(M)

n,q,ω der Order M ∈ Z

sind definiert durch

Φ
(M)

n,q,ω(i, j) ≡ Φ
(M)

n,q,ω(0)(i, j), 0 ≤ i, j ≤ n− 1.(67)

Satz 3.3. Eine Formel für die q, ω-Übertragung-Matrix

(68) Φn,q,ω = fn(t, q, ω)Dn,q,

wobei fn(t, q, ω) durch (42) definiert wird.

Beweis. Dies ist ähnlich wie bei der Formel [9, (79)]. �

Satz 3.4. Der q, ω-Appell-Polynomvektor von x kann als Produkt der q, ω-
Appellzahlen-Matrix mal ξn,q,ω(x) ausgedrückt werden. Ein q, ω-Analogon
von [2, (3.9), S. 432] und ein ω-Analogon von [10, (49)].

(69) φn,q,ω(x) = Φn,q,ωξn,q,ω(x).

Beweis. Dies ist die Formel (45) in Matrixform.
�

Satz 3.5. Der q, ω-Appell-Polynomvektor von x ⊕q,ω y kann als Produkt
der q, ω-Appellschen Matrix von x mal der q, ω-Appellschen Vektor von y

ausgedrückt werden. Ein q, ω-Analogon von [2, (4.1), S. 436].

(70) φn,q,ω(x⊕q,ω y) = Φn,q,ω(x)φn,q,ω(y).

Beweis. Dies ist die Formel (47) in Matrixform. �

Satz 3.6. Ein q, ω-Analogon von [2, S. 436].

(71) ξn,q,ω(x⊕q y) = Pn,q,ω(x)ξn,q,ω(y).
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Beweis. Wir haben durch [12, 2.3]

ξn,q,ω(x⊕q y)(i) = (x⊕q y)
i
q,ω

=

i
∑

k=0

(

i

k

)

q

(x)i−k
q,ω (y)

k
q,ω

durch(59)
= (Pn,q,ω(x)ξn,q,ω(y))(i).

(72)

�

Satz 3.7. Ein q, ω-Analogon von [2, S. 436].

(73) Φ
(M+K)

n,q,ω ξn,q,ω(x⊕q,ω y) = Φ
(K)

n,q,ωΦ
(M)

n,q,ω(x)ξn,q,ω(y).

Beweis. Die beiden Matrizen Φ
(M)

n,q,ω(x) und Φ
(K)

n,q,ω sind Potenzreihen in Dn,q

und wir haben

Φ
(M)

n,q,ω(x)φ
(K)
n,q,ω(y)

durch(69)
= Φ

(M)

n,q,ω(x)Φ
(K)

n,q,ωξn,q,ω(y) = Φ
(K)

n,q,ωΦ
(M)

n,q,ω(x)ξn,q,ω(y).
(74)

Andererseits gemäß der Formel (47) ist dies gleich

(75) φ(M+K)
n,q,ω (x⊕q,ω y)

durch(69)
= Φ

(M+K)

n,q,ω ξn,q,ω(x⊕q,ω y).

Die Formel (73) folgt, indem die letzten Ausdrücke von (74) und (75) gleich-
gesetzt werden. �

Bemerkung 4. Die Formel (73) ergibt eine implizite Definition der Funk-
tion ξn,q,ω(x⊕q,ω y).

Satz 3.8. Ein ω-Analogon von [10, (55)]. Wir gehen davon aus, dass M

und K die x-Ordnung bzw. y-Ordnung sind. Die Formel (47) kann in der
folgenden Matrixform umgeschrieben werden, wobei · auf der rechten Seite
eine Matrixmultiplikation bezeichnet.

(76) Φ
(M+K)

n,q,ω (x⊕q,ω y) = Φ
(M)

n,q,ω(x) · Φ
(K)

n,q,ω(y).
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Beweis. Wir berechnen das Matrixelement (i, j) der Matrixmultiplikation
auf der rechten Seite.

i
∑

k=j

(

i

k

)

q

Φ
(M)
i−k,q,ω(x)

(

k

j

)

q

Φ
(K)
k−j,q,ω(y)

=

(

i

j

)

q

i
∑

k=j

(

i− j

k − j

)

q

Φ
(M)
i−k,q,ω(x)Φ

(K)
k−j,q,ω(y)

=

(

i

j

)

q

i−j
∑

k=0

(

i− j

k

)

q

Φ
(M)
i−j−k,q,ω(x)Φ

(K)
k,q,ω(y)

durch(47)
=

(

i

j

)

q

Φ
(M+K)
i−j,q,ω (x⊕q,ω y) = LS.

(77)

�

Durch die Formel (66) sind die Φ
(M)

n,q (x)-Matrizen mit Matrixelementen
q, ω-Appellsche Polynome multipliziert mit q-Binomial-Koeffizienten, und
wir gelangen zur nächsten wichtigen Definition.

Definition 25. Ein ω-Analogon von [10, (57)]. Wir definieren die zweite
Matrixmultiplikation ·q,ω durch

(78) Φ
(M)

n,q,ω(x) ·q,ω Φ
(K)

n,q,ω(y) ≡ Φ
(M+K)

n,q,ω (x⊞q,ω y),

wobei Φ
(M+K)

n,q,ω (x⊞q y) durch die Formel (49) definiert wird.

Satz 3.9. Die Menge (Mx,q,ω, ·, ·q,ω, In) mit Multiplikationen gegeben durch

(76) und (78), und Inverse Φ
(−M)

n,q,ω (−x) ist eine q, ω-Liesche Gruppe. Das
Einheitselement ist die Einheitsmatrix In und das assoziative Gesetz gilt
wie für Gruppen.

Wir geben eine vereinfachte Version des entsprechenden Nachweises.

Beweis. Mx,q,ω ist geschlossen unter den beiden Operationen durch (76) und
(78). Durch (78) haben wir

(79) Φ
(M)

n,q,ω(x) ·q Φ
(−M)

n,q,ω (−x) = Φ
(0)

n,q,ω(θ) = In,

das die Existenz eines inversen Elements und einer Einheit beweist.
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Zur Vereinfachung der Notation wird der letzte Teil in einem Spezialfall
angegeben, das leicht zu verallgemeinern ist. Das assoziative Gesetz lautet:

(80)
(

Φ
(M)

n,q,ω(x) · Φ
(K)

n,q,ω(y)
)

·qΦ
(J)

n,q,ω(z) = Φ
(M)

n,q,ω(x) ·
(

Φ
(K)

n,q,ω(y) ·q Φ
(J)

n,q,ω(z)
)

,

das äquivalent zu

(81) Φ
(M+K+J)

n,q,ω ((x⊕q,ω y)⊞q,ω z) = Φ
(M+K+J)

n,q,ω (x⊕q,ω (y ⊞q,ω z))

ist. Die Formel (81) folgt jedoch aus der Assoziativität der beiden q, ω-
Additionen. �

Sei

(82)
(

Φ
(M)

n,q,ω(x)
)k

≡ Φ
(M)

n,q,ω(x) · Φ
(M)

n,q,ω(x) · · · · · Φ
(M)

n,q,ω(x).

Dabei steht auf der rechten Seite das Produkt von k gleichen Matrizen

Φ
(M)

n,q (x).
Die Formel (63) kann zu

(83)
(

Φ
(M)

n,q,ω(x)
)k

= Φ
(kM)

n,q,ω(kq,ωx)

verallgemeinert werden.

3.2. q, ω-Bernoulli und q, ω-Eulersche Polynome. Wir betrachten auch
die besonderen Fälle q, ω-Bernoulli- und q, ω-Eulersche Polynome.

Definition 26. Es gibt zwei q, ω-Bernoulli-Polynome BNWA,ν,q,ω(x), NWA
q, ω-Bernoulli-Polynome, und BJHC,ν,q,ω(x), JHC q, ω-Bernoulli-Polynome.
Sie sind definiert durch die beiden erzeugenden Funktionen

(84)
t

(Eq,ω(t)− 1)
Eq,ωt(xt) =

∞
∑

ν=0

tνBNWA,ν,q(x)

{ν}q!
, |t| < 2π.

und

(85)
t

(E 1

q
,ω(t)− 1)

Eq,ωt(xt) =
∞
∑

ν=0

tνBJHC,ν,q(x)

{ν}q!
, |t| < 2π.

Definition 27. Die Ward q, ω-Bernoullischen Zahlen sind gegeben durch

(86) BNWA,n,q,ω ≡ BNWA,n,q,ω(0).
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Die Jackson q, ω-Bernoullischen Zahlen sind gegeben durch

(87) BJHC,n,q,ω ≡ BJHC,n,q,ω(0).

Um Platz zu sparen, verwenden wir die folgende Abkürzung in den Glei-
chungen (89) - (93), (96), (97), (100), (104), (105), (108)-(112), (115)-(116),
(119)-(120). Für den JHC-Fall ändern wir gegebenenfalls ⊕q,ω zu ⊞q,ω.

(88) NWA = NWA ∨ JHC.

Wir werden die folgenden Vektorformen für die q, ω-Bernoulli-Polynome
verwenden, die q, ω-Analoga von [1, S. 239] entsprechen.

(89) bNWA,n,q,ω(x) ≡ (BNWA,0,q,ω(x),BNWA,1,q,ω(x), . . . ,BNWA,n−1,q,ω(x))
T
.

Die entsprechenden Vektorformen für Zahlen sind

(90) bNWA,n,q,ω ≡ (BNWA,0,q,ω,BNWA,1,q,ω, . . . ,BNWA,n−1,q,ω)
T
.

Wir stellen die NWA und JHC verschobenen, q, ω-Bernoulli-Matrizen vor.

Definition 28. Ein ω-Analogon von [9, (54)].

BNWA,n,q,ω(x)

≡(bNWA,q,ω(x) E(⊕q,ω)bNWA,q,ω(x) · · · E(⊕q,ω)
n−1q,ωbNWA,q,ω(x)),

(91)

wobei E(⊕q,ω)
kq,ω((x)nq,ω) ≡ (x⊕q,ω kq,ω)

n, 0 ≤ k ≤ n− 1.

Wir benötigen zwei ähnliche Matrizen basierend auf den BNWA und BJHC-
Polynomen und Zahlen.

Definition 29. Zwei ω-Analoga von [9, (58),(67)] und zwei q, ω-Analoga
von [4, S. 193]. Die NWA und JHC q, ω-Bernoulli-Matrizen sind definiert
durch

BNWA,n,q,ω(x)(i, j) ≡

(

i

j

)

q

BNWA,i−j,q,ω(x), 0 ≤ i, j ≤ n− 1.(92)

Definition 30. Ein ω-Analogon von [10, 84]. Die NWA und JHC q, ω-
Bernoulli-Zahlenmatrizen sind definiert durch

BNWA,n,q,ω(i, j) ≡

(

i

j

)

q

BNWA,i−j,q,ω, 0 ≤ i, j ≤ n− 1.(93)
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Definition 31. Ein ω-Analogon von [10, 85]. Die Matrix DNWA,n,q,ω hat
Matrixelemente

(94) dNWA,i,j ≡

{

1
{i−j+1}q

(

i

j

)

q
(1)i−j+1

q,ω if i ≥ j,

0 sonst.

Definition 32. Ein ω-Analogon von [10, 86]. Die Matrix DJHC,n,q,ω hat
Matrixelemente

(95) dJHC,i,j ≡

{

1
{i−j+1}q

(

i

j

)

q
[1]i−j+1

q,ω if i ≥ j,

0 sonst.

Satz 3.10. Ein ω-Analogon von [10, 87]. Die Inversen der q, ω-Bernoulli-
Zahlenmatrizen sind gegeben durch

(96)
(

BNWA,n,q,ω

)−1
= DNWA,n,q,ω,

(

BJHC,n,q,ω

)−1
= DJHC,n,q,ω.

Dies impliziert, dass

(97) B
−k

NWA,n,q,ω = D
k
NWA,n,q,ω.

Beweis. Wir betrachten nur den NWA-Fall, für JHC, ändere man zu [1]i−j+1
q,ω .

Wir zeigen, dass BNWA,n,q,ωDNWA,n,q,ω gleich der Einheitsmatrix ist. Wir wis-
sen, dass

(98)

n
∑

k=0

1

{k + 1}q

(

n

k

)

q

BNWA,n−k,q,ω(1)
k+1
q,ω = δn,0.

Dann haben wir

i
∑

k=j

1

{k + 1− j}q

(

i

k

)

q

BNWA,i−k,q,ω

(

k

j

)

q

(1)k+1−j
q,ω

=

(

i

j

)

q

i
∑

k=j

1

{k + 1− j}q

(

i− j

k − j

)

q

BNWA,i−k,q,ω(1)
k+1−j
q,ω

=

(

i

j

)

q

i−j
∑

k=0

1

{k + 1}q

(

i− j

k

)

q

BNWA,i−j−k,q,ω(1)
k+1
q,ω

durch(98)
=

(

i

j

)

q

δi−j,0.

(99)

�
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In [9] haben wir die folgenden Formeln betrachtet.

(100) BNWA,n,q(x⊕q y) = Pn,q(x)BNWA,n,q(y).

Diese Formeln können verallgemeinert werden zu

Satz 3.11. Ein ω-Analogon von [10, 92].

(101) Φn,q,ω(x⊕q,ω y) = Pn,q,ω(x)Φn,q,ω(y).

Insbesondere haben wir

(102) Φn,q,ω(x) = Pn,q,ω(x)Φn,q,ω.

Beweis.

RS =
i

∑

k=j

(

i

k

)

q

(x)i−k
q,ω

(

k

j

)

q

Φk−j,q,ω(y)

=

(

i

j

)

q

i
∑

k=j

(

i− j

k − j

)

q

(x)i−k
q,ω Φk−j,q,ω(y)

=

(

i

j

)

q

i−j
∑

k=0

(

i− j

k

)

q

(x)i−j−k
q,ω (x)Φk,q,ω(y)

durch(43),(47)
=

(

i

j

)

q

Φi−j,q,ω(x⊕q,ω y) = LS.

(103)

�

Satz 3.12. Ein ω-Analogon von [10, 95]. Die Inversen der q, ω-Bernoulli-
Polynommatrizen sind gegeben durch
(104)
(

BNWA,n,q,ω(x)
)−1

=
(

BNWA,n,q,ω

)−1
Pn,q,ω(x)

−1 = DNWA,n,q,ωPn,q,ω(x)
−1.

Wenn die Ordnung erhöht wird, für y = 0 in (76), multiplizieren wir die

q, ω-Übertragung-Matrix mit Φ
(M)

n,q,ω(x). Wenn die Ordnung konstant ist, in

(102), multiplizieren wir die q, ω-Übertragung-Matrix mit der q, ω-Pascal-
Matrix.
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Satz 3.13. Die Funktionen der q, ω-Bernoulli Polynommatrizen
(BNWA,q,ω, ·, ·q, In) und (BJHC,q,ω, ·, ·q, In) mit Elementen

(105) BNWA,n,q,ω(x)

sind q, ω-Liesche Untergruppen von Mx,q.

Beweis. Die Mengen B sind geschlossen unter den beiden Operationen durch
(76) und (78). Die Existenz von Inversen folgt wie für Mx,q.

�

Wir wenden uns nun den q, ω-Euler-Polynomen zu.

Definition 33. Es gibt zwei Arten von q, ω-Euler-Polynomen, FNWA,ν,q,ω(x),
NWA q, ω-Euler-Polynomen, und FJHC,ν,q,ω(x), JHC q, ω-Euler-Polynomen.
Sie sind definiert durch die folgenden zwei erzeugenden Funktionen:

(106)
2Eq,ωt(xt)

Eq,ω(t) + 1
=

∞
∑

ν=0

tν

{ν}q!
FNWA,ν,q,ω(x), |t| < π,

und

(107)
2Eq,ωt(xt)

E 1

q
,ω(t) + 1

=
∞
∑

ν=0

tν

{ν}q!
FJHC,ν,q,ω(x), |t| < π.

Definition 34. Wir werden die folgenden Vektorformen für diese Polynome
benutzen.

(108) fNWA,n,q,ω(x) ≡ (FNWA,0,q,ω(x),FNWA,1,q,ω(x), . . . ,FNWA,n−1,q,ω(x))
T
.

Die entsprechenden q, ω-Euler-Zahlvektoren sind

(109) fNWA,n,q,ω ≡ (FNWA,0,q,ω,FNWA,1,q,ω, . . . ,FNWA,n−1,q,ω)
T
.

Wir stellen die NWA und JHC verschobenen, q, ω-Eulerschen Matrizen
vor.

Definition 35. Ein ω-Analogon von [10, 103].

FNWA,n,q,ω(x)

≡ (fNWA,q,ω(x) E(⊕q,ω)fNWA,q,ω(x) · · · E(⊕q,ω)
n−1q,ωfNWA,q,ω(x)).

(110)
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Wir benötigen zwei ähnliche Matrizen, basierend auf den FNWA-Poly-
nomen.

Definition 36. Die beiden q, ω-Eulerschen Polynommatrizen sind definiert
durch

FNWA,n,q,ω(x)(i, j) ≡

(

i

j

)

q

fNWA,i−j,q,ω(x).(111)

Definition 37. Ein ω-Analogon von [10, 105]. Die NWA und JHC q, ω-
Eulerschen Matrizen sind definiert durch

FNWA,n,q,ω(i, j) ≡

(

i

j

)

q

FNWA,i−j,q,ω, 0 ≤ i, j ≤ n− 1.(112)

Definition 38. Ein ω-Analogon von [10, 106]. Die Matrix CNWA,n,q,ω hat
Matrixelemente

(113) cNWA,i,j ≡

{

(1)i−j+1
q,ω +δi−j,0

2

(

i

j

)

q
if i ≥ j,

0 sonst.

Definition 39. Ein ω-Analogon von [10, 107]. Die Matrix CJHC,n,q,ω hat
Matrixelemente

(114) cJHC,i,j ≡

{

[1]i−j+1
q,ω +δi−j,0

2

(

i

j

)

q
if i ≥ j,

0 sonst.

Satz 3.14. Ein ω-Analogon von [10, 108]. Die Inversen der q, ω-Euler-
Zahlenmatrizen sind gegeben durch

(115)
(

FNWA,n,q,ω

)−1
= CNWA,n,q,ω.

Dies impliziert, dass

(116) F
−k

NWA,n,q,ω = C
k
NWA,n,q,ω.

Beweis. Wir betrachten nur den NWA-Fall, für JHC, ändere man zu [1]i−j+1
q,ω .

Wir zeigen, dass FNWA,n,q,ωCNWA,n,q,ω gleich der Einheitsmatrix ist. Wir wis-
sen, dass

(117)

n
∑

k=0

(1)kq,ω

(

n

k

)

q

FNWA,n−k,q + FNWA,n,q = 2δn,0.
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Man führe eine Funktion G(k) ein. Dann haben wir

i
∑

k=j

(

i

k

)

q

FNWA,i−k,q,ωG(k − j)

(

k

j

)

q

=

(

i

j

)

q

i
∑

k=j

(

i− j

k − j

)

q

FNWA,i−k,q,ωG(k − j)

=

(

i

j

)

q

i−j
∑

k=0

(

i− j

k

)

q

FNWA,i−j−k,q,ωG(k)
durch(117)

=

(

i

j

)

q

δi−j,0.

(118)

Es ist jetzt offensichtlich, dass G(k) = 1
2

[

(1)kq,ω + δk,0
]

diese Gleichung für
NWA löst, und dass der JHC-Fall ähnlich gelöst wird. �

Die letzten beiden Sätze werden auf ähnliche Weise belegt.

Satz 3.15. Die Inversen der q, ω-Eulerschen Polynommatrizen sind gegeben
durch

(119)
(

FNWA,n,q(x)
)−1

=
(

FNWA,n,q

)−1
Pn,q,ω(x)

−1 = CNWA,n,qPn,q,ω(x)
−1.

Satz 3.16. Ein ω-Analogon von [10, 114]. Die q, ω-Eulerschen Polynom-
matrizen (FNWA,q, ·, ·q, In) und (FJHC,q, ·, ·q, In) mit Elementen

(120) FNWA,n,q(x)

sind q, ω-Lieschen Untergruppen von Mx,q.

4. Schlussfolgerung

Wir haben Formeln aus Arbeiten von Arponen [4], Aceto et al. [2], Ernst
[8], [9], [10], vereinigt und q, ω-deformiert, um eine erste Synthese von q, ω-
Appell-Polynommatrizen vorzustellen. Einige Formeln für q-Pascal
-Matrizen sowie Formeln für q-Bernoulli- und q-Eulerschen Matrizen wer-

den verallgemeinert. Wir haben die ersten konkreten Beispiele von q, ω-
Lieschen Untergruppen angegeben. Wir glauben, dass es keine weitere Ana-
loga gibt, die q, ω-Analoga sind trotzdem sehr interessant.
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[6] T.Ernst, An umbral approach to find q-analogues of matrix formulas. Linear Alge-

bra Appl. 439, 1167–1182 (2013)
[7] T.Ernst, Faktorisierungen von q-Pascalmatrizen (Factorizations of q-Pascal matri-

ces). Algebras Groups Geom. 31 no. 4, ,387-405 (2014)
[8] T.Ernst, On the q-exponential of matrix q-Lie algebras. Spec. Matrices 5, 36-50

(2017)
[9] T.Ernst, On several q-special matrices, including the q-Bernoulli and q-Euler ma-

trices. Linear Algebra Appl. 542 , 422-440 (2018)
[10] T.Ernst, On the q-Lie group of q-Appell polynomial matrices and related factori-

zations Spec. Matrices 6, 93-109 (2018)
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Abstract

In this paper we define bi-α(multiplicative) iso-derivative for iso-
functions of first, second, third, fourth and fifth kind. They are de-
ducted the main properties of the multiplicative iso-derivative. They
are deducted and proved mean value theorems for multiplicative iso-
differentiable functions, criteria for increasing and decreasing of mul-
tiplicative iso-differentiable functions, criteria for concavity and con-
vexity of multiplicative iso-differentiable functions. In the paper it
is introduced the concept for multiplicative iso-integral and they are
deducted the main properties. As applications of multiplicative iso-
derivative and multiplicative iso-integral we consider some classes
multiplicative iso-differential equations.
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1 Introduction

As it is well known, Isaac Newton had to develop the differential calculus,
(jointly with Gottfried Leibniz), with particular reference to the historical
definition of velocities as the time derivative of the coordinates, v = dr/dt,
in order to write his celebrated equation ma = F (t, r, v), where a = dv/dt is
the acceleration and F (t, r, v) is the Newtonian force acting on the mass m.
Being local, the differential calculus solely admitted the characterization of
massive points. The differential calculus and the notion of massive points
were adopted by Galileo Galilei and Albert Einstein for the formulation of
their relativities, thus acquiring a fundamental role in 20th century sciences.

In his Ph. D. thesis of 1966 at the University of Turin, Italy, the
Italian-American scientist Ruggero Maria Santilli1 pointed out that Newto-
nian forces are the most widely known in dynamics, including action-at-a-
distance forces derivable derivable from a potential, thus representable with
a Hamiltonian, and other forces that are not derivable from a potential or a
Hamiltonian, since they are contact dissipative and non-conservative forces
caused by the motion of the mass m within a physical medium. Santilli
pointed out that, due to their lack of dimensions, massive points can solely
experience action-at-a-distance Hamiltonian forces.

On this ground, Santilli initiated a long scientific journey for the gen-
eralization of Newton’s equation into a form permitting the representation
of the actual extended character of massive bodies whenever moving within
physical media, as a condition to admit non-Hamiltonian forces. Being a
theoretical physicist, Santilli had a number of severe physical conditions for
the needed representation. One of them was the need for a representation
of extended bodies and their non-Hamiltonian forces to be invariant over
time as a condition to predict the same numerical values under the same
conditions but at different times.

The resulting new calculus, today known as Santilli IsoDifferential Cal-
culus, or IDC for short, stimulated a further layer of studies that finally sig-
naled the achievement of mathematical and physical maturity. In particular,
we note: the isotopies of Euclidean, Minkowskian, Riemannian and sym-
plectic geometries; the isotopies of classical Hamiltonian mechanics, today
known as the Hamilton-Santilli isomechanics;and the isotopies of quantum

1Prof. Santilli’s curriculum is available in from the link http://www.world-lecture-
series.org/santilli-cv
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mechanics, today known as the isotopic branch of Hadronic mechanics.
In this paper we define bi-α(multiplicative) iso-derivative for iso-functions

of first, second, third, fourth and fifth kind. They are deducted the main
properties of the multiplicative iso-derivative. They are deducted and proved
mean value theorems for multiplicative iso-differentiable functions, criteria
for increasing and decreasing of multiplicative iso-differentiable functions,
criteria for concavity and convexity of multiplicative iso-differentiable func-
tions. In the paper it is introduced the concept for multiplicative iso-integral
and they are deducted the main properties. As applications of multiplica-
tive iso-derivative and multiplicative iso-integral we consider some classes
multiplicative iso-differential equations.

2 Definition for Multiplicative Iso-Derivative

Suppose that A ⊂ R, f, T̂ : A → (0,∞) be enough times differentiable
functions. If it is necessary, we suppose that x

T̂ (x)
∈ A or xT̂ (x) ∈ A for any

x ∈ A so that to be defined the iso-functions of the second, third, fourth
and fifth kind. With f̃ we will denote the corresponding iso-function of the
first, second, third, fourth and fifth kind.

Definition 2.1. Define the multiplicative iso-derivative of f̃ as

f̃ ∗~(x) = ef̃
~(x)if̃(x), x ∈ A.

1. Iso-functions of the first kind.

f̂∧∧∗~(x) = e

1
f(x)(T̂ (x))2

f ′(x)T̂ (x)−f(x)T̂ ′(x)

1−x
T̂ ′(x)
T̂ (x) .

2. Iso-functions of the second kind.

f̂∧∗~(x) = e

1
f(xT̂ (x))(T̂ (x))2

f ′(xT̂ (x))(T̂2(x)+xT̂ (x)T̂ ′(x))−f(xT̂ (x))T̂ ′(x)

1−x
T̂ ′(x)
T̂ (x) .

3. Iso-functions of the third kind.

ˆ̂
f ∗~(x) = e

1

f

(
x

T̂ (x)

)
(T̂ (x))2

f ′

(
x

T̂ (x)

)
T̂ (x)−xT̂ ′(x)

T̂ (x)
−f

(
x

T̂ (x)

)
T̂ ′(x)

1−x
T̂ ′(x)
T̂ (x) .

3
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4. Iso-functions of the fourth kind.

f∧∗~(x) = e

f ′(xT̂ (x))T̂ (x)(T̂ (x)+xT̂ ′(x))

T̂ (x)f(xT̂ (x))

(
1−x

T̂ ′(x)
T̂ (x)

)
.

5. Iso-functions of the fifth kind.

f∨∗~(x) = e

f ′
(

x
T̂ (x)

)
T̂ (x)f

(
x

T̂ (x)

)
.

Example 2.2. Let A = [0,∞), T̂ (x) = 1 + x, f(x) = 1 + x2, x ∈ A. Then

f̂∧∧(x) =
f(x)

T̂ (x)
=

1 + x2

1 + x
,

f ′(x) = 2x,

T̂ ′(x) = 1, x ∈ A.

Hence, the iso-derivative of the iso-function f̂∧∧ is given by

f̂∧∧~(x) =
−1 + 2x+ x2

1 + x
, x ∈ A,

and its multiplicative iso-derivative is given by

f̂∧∧∗~(x) = e
−1+2x+x2

(1+x)(1+x2) , x ∈ A.

3 Properties of the Multiplicative Iso-Derivative

In this section, we will deduct some of the properties of the multiplicative
iso-derivative.

Theorem 3.1. Let f̂ , ĝ : A → R be iso-differentiable functions. Then for
any a, b ∈ R, we have(

af̂ + bĝ
)∗~

=

((
f̂ ∗~
) af̂

af̂+bĝ

)(
(ĝ∗~)

bĝ

af̂+bĝ

)
.

4
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Proof. We have

(
af̂ + bĝ

)∗~
= e(af̂+bĝ)∗~i(af̂+bĝ)

= e
af̂~+bĝ~

T̂ (af̂+bĝ)

= e
a f̂~

T̂ (af̂+bĝ)
+b ĝ~

T̂ (af̂+bĝ)

=

(
e(

f̂~if̂) af̂

af̂+bĝ

)
(
e(

ĝ~iĝ) bĝ

af̂+bĝ

)
=

((
f̂ ∗~
) af̂

af̂+bĝ

)(
(ĝ∗~)

bĝ

af̂+bĝ

)
.

This completes the proof.

Theorem 3.2. Let f̂ , ĝ : A→ (0,∞) be iso-differentiable functions. Then

(
f̂×̂ĝ

)∗~
= f̂ ∗~ĝ∗~e

T̂ ′
T̂ (T̂−xT̂ ′) .

Proof. By the properties of the iso-derivative, we have

(
f̂×̂ĝ

)~
= ĝ×̂f̂~ + f̂×̂ĝ~

+f̂ ĝ
T̂ T̂ ′

T̂ − xT̂ ′
.

5
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Then

(f̂×̂ĝ)~ i (f̂×̂ĝ) =
1

f̂ ĝT̂ 2

(
ĝT̂ f̂~ + f̂ T̂ ĝ~

+f̂ ĝ
T̂ T̂ ′

T̂ − xT̂ ′

)
=

(
f̂~ i f̂

)
+ (ĝ~ i ĝ)

+
T̂ ′

T̂ (T̂ − xT̂ ′)
.

Hence, (
f̂×̂ĝ

)∗~
= e(f̂×̂ĝ)

~i(f̂×̂ĝ)

= e
(f̂~if̂)+(ĝ~iĝ)+ T̂ ′

T̂ (T̂−xT̂ ′)

= ef̂
~if̂eĝ

~iĝe
T̂ ′

T̂ (T̂−xT̂ ′)

= f̂ ∗~ĝ∗~e
T̂ ′

T̂ (T̂−xT̂ ′) .

This completes the proof.

Theorem 3.3. Let f̂ , ĝ : A→ (0,∞) be iso-differentiable functions. Then

(f̂ ĝ)∗~ = f̂ ∗~ĝ∗~.

Proof. By the properties of the iso-derivative, we have

(f̂ ĝ)~ = f̂~ĝ + ĝf̂~.

Hence,

(f̂ ĝ)~ i (f̂ ĝ) =
1

T̂ f̂ ĝ

(
f̂~ĝ + f̂ ĝ~

)
= f̂~ i f̂ + ĝ~ i ĝ.

6
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Therefore

(f̂ ĝ)∗~ = e(f̂ ĝ)
~i(f̂ ĝ)

= ef̂
~if̂+ĝ~iĝ

= ef̂
~if̂eĝ

~iĝ

= f̂ ∗~ĝ∗~.

This completes the proof.

Theorem 3.4. Let f̂ , ĝ : A → (0,∞) be iso-differentiable functions and
ĝ 6= 0 on A. Then (

f̂ i ĝ
)∗~

=
f̂ ∗~

(ĝ∗~)
1
T̂2

e
− f̂ T̂ ′

T̂2ĝ(T̂−xT̂ ′) .

Proof. We have

f̂ i ĝ =
f̂

T̂ ĝ

and by the properties of the iso-derivative, we get(
f̂(x) i ĝ(x)

)~
=

1(
T̂ (x)

)2
(ĝ(x))2

(
ĝ(x)×̂

(
f̂(x)

)~
− f̂(x)×̂ (ĝ(x))~

−f̂(x)ĝ(x)
T̂ (x)T̂ ′(x)

T̂ (x)− xT̂ ′(x)

)
=

1

T̂ 2ĝ2

(
T̂ ĝf̂~ − T̂ f̂ ĝ~

−f̂ ĝ T̂ T̂ ′

T̂ − xT̂ ′

)
=

1

ĝT̂
f̂~ − 1

T̂ f̂ ĝ

(
ĝ~

ĝ

)

− f̂

T̂ 2ĝ
· T̂ ′

T̂ − xT̂ ′
.

7
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Hence, (
f̂ i ĝ

)~
i (f̂ i ĝ) =

ĝ

f̂

(
1

ĝT̂
f̂~ − 1

T̂ f̂ ĝ

(
ĝ~

ĝ

)

− f̂

T̂ 2ĝ
· T̂ ′

T̂ − xT̂ ′

)
= f̂~ i f̂ − 1

f̂ 2
(ĝ~ i ĝ)

− f̂ T̂ ′

T̂ 2ĝ(T̂ − xT̂ ′)

and

e(f̂iĝ)
~
i(f̂iĝ) = e

f̂~if̂− 1

f̂2
(ĝ~iĝ)− f̂ T̂ ′

T̂2ĝ(T̂−xT̂ ′)

= ef̂
~if̂e

− 1

f̂2
(ĝ~iĝ)e

− f̂ T̂ ′

T̂2ĝ(T̂−xT̂ ′)

=
f̂ ∗~

(ĝ∗~)
1
T̂2

e
− f̂ T̂ ′

T̂2ĝ(T̂−xT̂ ′) .

This completes the proof.

4 Monotonicity

Theorem 4.1. Let f̂ : A→ (0,∞) be iso-differentiable function and

T̂ ′(x) > 0, T̂ (x)− xT̂ ′(x) > 0, x ∈ A. (4.1)

If f̂∧∧∗~ > 1 on A, then f∨ is an increasing function.

Proof. Since f̂∧∧∗~ > 1 on A, we have that

f ′(x)T̂ (x)− f(x)T̂ ′(x)

T̂ (x)− xT̂ ′(x)
> 0, x ∈ A.

8
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By the last inequality and by the second inequality of (4.1), we get

f ′(x)T̂ (x)− f(x)T̂ ′(x) > 0, x ∈ A.

Hence, using the first inequality of (4.1), we arrive at

f ′(x)T̂ (x) > f(x)T̂ ′(x) > 0, x ∈ A.

Therefore f ′(x) > 0, x ∈ A. Because Id

T̂
is an increasing function, we find

that f∨ is an increasing function. This completes the proof.

Theorem 4.2. Let f̂ : A→ (0,∞) be an iso-differentiable function and

T̂ ′(x) > 0, T̂ (x)− xT̂ ′(x) < 0, x ∈ A. (4.2)

If f̂∧∧∗~ < 1 on A, then f∨ is a decreasing function.

Proof. By the definition of multiplicative iso-derivative and f̂∧∧∗~ < 1, it
follows that

f ′(x)T̂ (x)− f(x)T̂ ′(x)

T̂ (x)− xT̂ ′(x)
< 0, x ∈ A.

Hence and the second inequality of (4.2), we conclude that

f ′(x)T̂ (x)− f(x)T̂ ′(x) > 0, x ∈ A.

Now, applying the first inequality of (4.2), we get

f ′(x)T̂ (x) > f(x)T̂ ′(x) > 0, x ∈ A.

Therefore f ′(x) > 0 for x ∈ A and f is an increasing function on A. By the
second inequality of (4.2), we find

x

T̂ (x)
<

y

T̂ (y)
, x, y ∈ A, x > y.

Hence,

f∨(x) = f

(
x

T̂ (x)

)

< f

(
y

T̂ (y)

)

= f∨(y), x, y ∈ A, x > y.

Thus, f∨ is a decreasing function on A. This completes the proof.

9
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Theorem 4.3. Let f̂ : A→ (0,∞) be an iso-differentiable function and

T̂ ′(x) > 0, T̂ (x)− xT̂ ′(x) > 0, x ∈ A. (4.3)

If f̂∧∗~ > 1 on A, then f∧ is an increasing function on A.

Proof. By the definition of the multiplicative iso-derivative and by the con-
dition f∨∗~ > 1 on A, we get

f ′(xT̂ (x))T̂ (x)(T̂ (x) + xT̂ ′(x))

f(xT̂ (x))(T̂ (x)− xT̂ ′(x))
> 0, x ∈ A,

Applying (4.4), we find

f ′(xT̂ (x)) > 0, x ∈ A.

Thus, f is an increasing function on A. Since T̂ ′(x) > 0, x ∈ A, we get that

xT̂ (x) > yT̂ (y), x, y ∈ A, x > y.

Hence, using that f is an increasing function on A, we find

f∧(x) = f(xT̂ (x))

< f(yT̂ (y))

= f∧(y), x, y ∈ A, x < y.

Therefore f∧ is an increasing function on A. This completes the proof.

Theorem 4.4. Let f̂ : A→ (0,∞) be an iso-differentiable function and

T̂ ′(x) > 0, T̂ (x)− xT̂ ′(x) > 0, x ∈ A. (4.4)

If f̂∧∗~ < 1 on A, then f∧ is a decreasing function on A.

Proof. Applying the multiplicative iso-derivative and the condition f∨∗~ >
1 on A, we find

f ′(xT̂ (x))T̂ (x)(T̂ (x) + xT̂ ′(x))

f(xT̂ (x))(T̂ (x)− xT̂ ′(x))
<, x ∈ A,

10
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Employing (??), we arrive at

f ′(xT̂ (x)) < 0, x ∈ A.

Thus, f is a decreasing function on A. Since T̂ ′(x) > 0, x ∈ A, we find that

xT̂ (x) > yT̂ (y), x, y ∈ A, x > y.

From here and from the fact that f is an increasing function on A, we find

f∧(x) = f(xT̂ (x))

> f(yT̂ (y))

= f∧(y), x, y ∈ A, x < y.

Consequently f∧ is a decreasing function on A. This completes the proof.

Theorem 4.5. Let f̂ : A → (0,∞) be an iso-differentiable function on
Aand T̂ ′(x) < 0, x ∈ A. If f∨∗~(x) > 1, x ∈ A, then f∨ is an increasing
function on A.

Proof. By the definition of the multiplicative iso-derivative and by the con-
dition f∨∗~(x) > 1, x ∈ A, we find

f∨∗~(x) = e

f ′
(

x
T̂ (x)

)
T̂ (x)f

(
x

T̂ (x)

)

> 1, x ∈ A.

Hence,

f ′
(

x

T̂ (x)

)
T̂ (x)f

(
x

T̂ (x)

) > 0, x ∈ A.

Therefore

f ′

(
x

T̂ (x)

)
> 0, x ∈ A,
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and f is an increasing function on A. Since T̂ ′(x) < 0, x ∈ A, we get

T̂ (x) > T̂ (y), x, y ∈ A, x < y.

Then
x

T̂ (x)
<

y

T̂ (y)
, x, y ∈ A, x < y.

From here, we arrive at

f∨(x) = f

(
x

T̂ (x)

)

< f

(
y

T̂ (y)

)

= f∨(y), x, y ∈ A, x < y.

Consequently f∨ is an increasing function on A. This completes the proof.

Theorem 4.6. Let f̂ : A → (0,∞) be an iso-differentiable function on
Aand T̂ ′(x) < 0, x ∈ A. If f∨∗~(x) < 1, x ∈ A, then f∨ is a decreasing
function on A.

Proof. Applying the definition of the multiplicative iso-derivative and the
condition f∨∗~(x) > 1, x ∈ A, we arrive at

f∨∗~(x) = e

f ′
(

x
T̂ (x)

)
T̂ (x)f

(
x

T̂ (x)

)

< 1, x ∈ A,

whereupon

f ′
(

x

T̂ (x)

)
T̂ (x)f

(
x

T̂ (x)

) < 0, x ∈ A,

and

f ′

(
x

T̂ (x)

)
< 0, x ∈ A.

12
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So, f is a decreasing function on A. Because T̂ ′(x) < 0, x ∈ A, we find

T̂ (x) > T̂ (y), x, y ∈ A, x < y.

Thus,

x

T̂ (x)
<

y

T̂ (y)
, x, y ∈ A, x < y,

and

f∨(x) = f

(
x

T̂ (x)

)

> f

(
y

T̂ (y)

)

= f∨(y), x, y ∈ A, x < y.

Consequently f∨ is a decreasing function on A. This completes the proof.

5 Definition for Multiplicative Iso-Integral.

Properties

Definition 5.1. Suppose that T̂ (x)− xT̂ ′(x) > 0, x ∈ A. Define indefinite
multiplicative iso-integral for the iso-function of the first kind f̂∧∧ as follows

∫̂
f̂∧∧(x)×̂d̂x̂ = e

∫̂
log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx. (5.1)

13
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By (5.1), it follows∫̂
f̂∧∧∗~(x)×̂d̂x̂ = e

∫̂
log(f̂∧∧∗~(x))(T̂ (x)−xT̂ ′(x))×̂dx

= e

∫
1

f(x)(T̂ (x))2
f ′(x)T̂ (x)−f(x)T̂ ′(x)

T̂ (x)−xT̂ ′(x)
T̂ (x)

(T̂ (x)−xT̂ ′(x))dx

= e

∫
1

f(x)

T̂ (x)

f ′(x)T̂ (x)−f(x)T̂ ′(x)
(T̂ (x))2

dx

= e

∫ ( f

T̂
)
′
(x)

f(x)

T̂ (x)

dx

= e
log

f(x)

T̂ (x)

=
f(x)

T̂ (x)

= f̂∧∧(x).

Suppose that [a, b] ⊂ R.

Definition 5.2. Suppose that T̂ (x)− xT̂ ′(x) > 0, x ∈ A. Define indefinite
multiplicative iso-integral for the iso-function of the first kind f̂∧∧ as follows∫̂ b

a

f̂∧∧(x)×̂d̂x̂ = e
∫̂ b

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx. (5.2)

In this case, we say that f̂∧∧ is multiplicative iso-integrable on [a, b]

Below, we will deduct some of the properties of the multiplicative iso-
integral.

Theorem 5.3. Let f̂∧∧ is multiplicative iso-integrable on [a, b]. Then∫̂ a

a

f̂∧∧(x)×̂d̂x̂ = 1.

14
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Proof. We have

∫̂ a

a

f̂∧∧(x)×̂d̂x̂ = e
∫̂ a

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

= 1.

This completes the proof.

Theorem 5.4. Let c ∈ [a, b] and f̂∧∧ is multiplicative iso-integrable on
[a, b]. Then

∫̂ b

a

f̂∧∧(x)×̂d̂x̂ =

(∫̂ c

a

f̂∧∧(x)×̂d̂x̂

)(∫̂ c

b

f̂∧∧(x)×̂d̂x̂

)
.

Proof. We have

∫̂ b

a

f̂∧∧(x)×̂d̂x̂ = e
∫̂ b

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

= e
∫̂ c

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx+
∫̂ c

b log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

= e
∫̂ c

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dxe
∫̂ c

b log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

=

(∫̂ c

a

f̂∧∧(x)×̂d̂x̂

)(∫̂ c

b

f̂∧∧(x)×̂d̂x̂

)
.

This completes the proof.

Theorem 5.5. Let f̂∧∧, ĝ∧∧ be multiplicative iso-integrable on [a, b]. Then

∫̂ b

a

(
f̂∧∧(x)ĝ∧∧

)×̂d̂x̂
=

(∫̂ b

a

f̂∧∧(x)×̂d̂x̂

)(∫̂ b

a

ĝ∧∧(x)×̂d̂x̂

)
.
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Proof. By the definition for multiplicative iso-integral, we get∫̂ b

a

(
f̂∧∧(x)ĝ∧∧(x)

)×̂d̂x̂
= e

∫̂ b

a log
(

f̂∧∧(x)
ĝ∧∧(x)

)
(T̂ (x)−xT̂ ′(x))×̂dx

= e
∫̂ b

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx+
∫̂ b

a log(ĝ∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

= e
∫̂ b

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dxe
∫̂ b

a log(ĝ∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

=

(∫̂ b

a

f̂∧∧(x)×̂d̂x̂

)(∫̂ b

a

ĝ∧∧(x)×̂d̂x̂

)
..

This completes the proof.

Theorem 5.6. Let f̂∧∧, ĝ∧∧ be multiplicative iso-integrable on [a, b] and

ĝ∧∧(x) 6= 0,

∫̂ b

a

ĝ∧∧(x)×̂d̂x̂ 6= 0.

Then ∫̂ b

a

(
f̂∧∧(x)

ĝ∧∧(x)

)×̂d̂x̂
=

(∫̂ b

a
f̂∧∧(x)×̂d̂x̂

)
(∫̂ b

a
ĝ∧∧(x)×̂d̂x̂

) .
Proof. Using the definition for multiplicative iso-integral, we find∫̂ b

a

(
f̂∧∧(x)

ĝ∧∧(x)

)×̂d̂x̂
= e

∫̂ b

a log
(

f̂∧∧(x)
ĝ∧∧(x)

)
(T̂ (x)−xT̂ ′(x))×̂dx

= e
∫̂ b

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx−
∫̂ b

a log(ĝ∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

=
e
∫̂ b

a log(f̂∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

e
∫̂ b

a log(ĝ∧∧(x))(T̂ (x)−xT̂ ′(x))×̂dx

=

(∫̂ b

a
f̂∧∧(x)×̂d̂x̂

)
(∫̂ b

a
ĝ∧∧(x)×̂d̂x̂

) .
16
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This completes the proof.

6 Linear Homogeneous Multiplicative 
Iso-Differential Equations 

 Consider the 

equation

(
f̂∧∧
)~

(x) = a(x)×̂f̂∧∧(x).

Hence, (
f̂∧∧
)~

(x) i f̂∧∧(x) = a(x)

and

f̂∧∧∗~(x) = e(f̂
∧∧)

~
(x)if̂∧∧(x)

= ea(x).

Then the solution of the considered iso-differential equation can be repre-
sented in the form

f̂∧∧(x) =

∫̂
ea(x)×̂d̂x̂.
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Bi-α Iso-Differential Inequalities and
Applications
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Abstract

In this lecture, firstly we deduct some multiplicative iso-differential
inequalities for multiplicative iso-functions of first, second, third,
fourth and fifth kind. Then they are deducted and proved some
bi-α-multiplicative iso-differential inequalities. As applications, in
the lecture are deducted some uniqueness results for some classes
multiplicative iso-differential equations and bi-α-multiplicative iso-
differential equations.
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1 Multiplicative iso-Differential Inequalities

Let D is a domain in R2, a > 0, x0 ∈ R, J = [x0, x0 + a), T̂ ∈ C1(J),
T̂ (x) > 0 in J , f ∈ C(D).

Definition 1.1. (solution of multiplicative iso-differential inequality) A
function y(x) is said to be a solution of the multiplicative iso-differential
inequality

(1′)
(
ŷ∧(x̂)

)~
> f̂∧(x̂, ŷ∧(x̂))

or

(1) y′(x) > y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

in J if

1. y′(x) exists for all x ∈ J ,

2. for all x ∈ J the points (x, y(x)) ∈ D,

3. y′(x) > y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
for all x ∈ J .

The solutions of the multiplicative iso-differential inequalities

y′(x) ≥ y(x)
T̂ ′(x)

T̂ (x)
+ f(x, y(x))

T̂ (x)− xT̂ ′(x)

T̂ (x)
,

y′(x) < y(x)
T̂ ′(x)

T̂ (x)
+ f(x, y(x))

T̂ (x)− xT̂ ′(x)

T̂ (x)
,

y′(x) ≤ y(x)
T̂ ′(x)

T̂ (x)
+ f(x, y(x))

T̂ (x)− xT̂ ′(x)

T̂ (x)
,

are defined analogously. Our first result for multiplicative iso-differential
inequalities is stated in the following theorem.

Theorem 1.2. (basic theorem for the multiplicative iso-differential inequal-
ities) Let T̂ (x)−xT̂ ′(x) ≥ 0 for every x ∈ J , y1(x) and y2(x) be the solutions
of the multiplicative iso-differential inequalities

(2) y′1(x) ≤ y1(x) T̂
′(x)

T̂ (x)
+ f(x, y1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
,
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(3) y′2(x) > y2(x) T̂
′(x)

T̂ (x)
+ f(x, y2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

on J , respectively. Then the inequality

y1(x0) < y2(x0)

implies that

(4) y1(x) < y2(x) for ∀x ∈ J.

Proof. We suppose that (4) is not true. Then we define the set

A = {x : x ∈ J, y1(x) ≥ y2(x)}.

From our assumption it follows that A 6= Ø.
Let x∗ be the greatest lower bound of the set A. Then x0 < x∗ and

y1(x
∗) ≥ y2(x

∗).

Let us assume that
y1(x

∗) > y2(x
∗).

Because y1(x) and y2(x) are continuous functions in J then there exists a
ε > 0 such that

y1(x
∗ − ε) ≥ y2(x

∗ − ε),
which is a contradiction with the definition of x∗. Consequently

y1(x
∗) = y2(x

∗).

Let h < 0. We have

y1(x
∗ + h) < y2(x

∗ + h),

and hence
y′1(x

∗ − 0) = limh−→0
y1(x∗+h)−y1(x∗)

h

= limh−→0
y1(x∗+h)−y2(x∗)

h

≥ limh−→0
y2(x∗+h)−y2(x∗)

h

= y′2(x
∗ − 0),

3
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i.e.,

(5) y′1(x
∗ − 0) ≥ y′2(x

∗ − 0).

From (2) we get

y′1(x
∗) ≤ y1(x

∗)
T̂ ′(x∗)

T̂ (x∗)
+ f(x∗, y1(x

∗))
T̂ (x∗)− x∗T̂ ′(x∗)

T̂ (x∗)
,

from where, using (5),

(6) y1(x
∗) T̂

′(x∗)

T̂ (x∗)
+ f(x∗, y1(x

∗)) T̂ (x
∗)−x∗T̂ ′(x∗)
T̂ (x∗)

≥ y′2(x
∗ − 0).

On the other hand, from (3) we have

y′2(x
∗ − 0) > y2(x

∗)
T̂ ′(x∗)

T̂ (x∗)
+ f(x∗, y2(x

∗))
T̂ (x∗)− x∗T̂ ′(x∗)

T̂ (x∗)
,

whereupon, using (6),

y2(x
∗) T̂

′(x∗)

T̂ (x∗)
+ f(x∗, y2(x

∗)) T̂ (x
∗)−x∗T̂ ′(x∗)
T̂ (x∗)

< y1(x
∗) T̂

′(x∗)

T̂ (x∗)
+ f(x∗, y1(x

∗)) T̂ (x
∗)−x∗T̂ ′(x∗)
T̂ (x∗)

= y2(x
∗) T̂

′(x∗)

T̂ (x∗)
+ f(x∗, y2(x

∗)) T̂ (x
∗)−x∗T̂ ′(x∗)
T̂ (x∗)

,

and since T̂ (x∗)− x∗T̂ ′(x∗) ≥ 0 we get the contradiction

f(x∗, y2(x
∗)) < f(x∗, y2(x

∗)).

Consequently
A = Ø,

from where we conclude that

y1(x) < y2(x) in J.

4
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Corollary 1.3. Let T̂ (x)− xT̂ ′(x) ≥ 0 in the interval J . Let also,

(i) y(x) be a solution of the initial value problem

(6)
y′(x) = −y(x) T̂

′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
in (x0, x0 + a),

y(x0) = y0,

(ii) y1(x) and y2(x) be the solutions of the multiplicative iso-differential
inequalities

(7) y′1(x) < y1(x) T̂
′(x)

T̂ (x)
+ f(x, y1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
,

(8) y′2(x) > y2(x) T̂
′(x)

T̂ (x)
+ f(x, y2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

in J , respectively,

(iii) y1(x0) ≤ y0 ≤ y2(x0).

Then

y1(x) < y(x) < y2(x)

for all x ∈ (x0, x0 + a).

Proof. We shall prove that

y(x) < y2(x) for ∀x ∈ (x0, x0 + a).

1. case y0 < y2(x0). Then from the last theorem we have that

y(x) < y2(x) in (x0, x0 + a).

2. case y0 = y2(x0).

Let

z(x) = y2(x)− y(x).

5
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Then
z(x0) = y2(x0)− y(x0) = 0,

z′(x) = y′2(x)− y′(x),

z′(x0) = y′2(x0)− y′(x0)

> y2(x0)
T̂ ′(x0)

T̂ (x0)
+ f(x0, y2(x0))

T̂ (x0)−x0T̂ ′(x0)
T̂ (x0)

−y(x0)
T̂ ′(x0)

T̂ (x0)
− f(x0, y(x0))

T̂ (x0)−x0T̂ ′(x0)
T̂ (x0)

= 0,

therefore the function z is an increasing function to the right of x0 in
a sufficiently small interval [x0, x0 + δ]. Consequently y(x) < y2(x) for
all x ∈ (x0, x0 + δ], from where

y(x0 + δ) < y2(x0 + δ).

Now the last theorem gives that

y(x) < y2(x) in [x0 + δ, x0 + a).

Since δ can be chosen sufficiently small, then

y(x) < y2(x) in (x0, x0 + a).

Theorem 1.4. Let T̂ (x)− xT̂ ′(x) ≥ 0, T̂ ′(x) ≤ 0, T̂ (x)−xT̂ ′(x)
T̂ (x)

≤ P in J for

some positive constant P , and for all (x, y), (x, z) ∈ D such that x ≥ x0,
y ≥ z, we have

f(x, y)− f(x, z) ≤ L(y − z),

for some positive constant L. Let also,

(i) y(x) be a solution to the initial value problem (6),

(ii) y1(x) and y2(x) be solutions to the multiplicative iso-differential in-
equalities (2) and (3) on J , respectively.
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(iii) y1(x0) ≤ y0 ≤ y2(x0).

Then

y1(x) ≤ y(x) ≤ y2(x) for ∀x ∈ J.

Proof. Let ε > 0, λ > LP . Let also,

z1(x) = y1(x)− εeλ(x−x0), x ∈ J.

Then

z1(x0) = y1(x0)− ε < y1(x0)

and

(9)

z′1(x) = y′1(x)− ελeλ(x−x0)

≤ y1(x) T̂
′(x)

T̂ (x)
+ f(x, y1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
− ελeλ(x−x0).

On the other hand, from the definition of the function z1(x) we have

z1(x) ≤ y1(x) in J.

Then

f(x, y1(x))− f(x, z1(x)) ≤ L(y1(x)− z1(x))

or

f(x, y1(x)) ≤ f(x, z1(x)) + L(y1(x)− z1(x)) in J.

From the last inequality and (9) we become

z′1(x) ≤ z1(x) T̂
′(x)

T̂ (x)
+ (f(x, z1(x)) + L(y1(x)− z1(x))) T̂ (x)−xT̂

′(x)

T̂ (x)
− ελeλ(x−x0)

= z1(x) T̂
′(x)

T̂ (x)
+ f(x, z1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ Lεeλ(x−x0) T̂ (x)−xT̂

′(x)

T̂ (x)
− ελeλ(x−x0)

≤ z1(x) T̂
′(x)

T̂ (x)
+ f(x, z1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ LPeε(x−x0) − ελeλ(x−x0)

< z1(x) T̂
′(x)

T̂ (x)
+ f(x, z1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
,

7
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i.e.,

(10)
z′1(x) < z1(x) T̂

′(x)

T̂ (x)
+ f(x, z1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
in J,

z1(x0) < y(x0).

Let now
z2(x) = y2(x) + εeλ(x−x0), x ∈ J.

Then
z2(x) > y2(x) in J.

Therefore

f(x, z2(x))− f(x, y2(x)) ≤ L(z2(x)− y2(x)) in J,

from where

f(x, y2(x)) ≥ f(x, z2(x)) + L(y2(x)− z2(x)) in J.

Also, using the last inequality,

z′2(x) = y′2(x) + ελeλ(x−x0)

> y2(x) T̂
′(x)

T̂ (x)
+ f(x, y2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ελeλ(x−x0)

≥ y2(x) T̂
′(x)

T̂ (x)
+ (f(x, z2(x)) + L(y2(x)− z2(x))) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ελeλ(x−x0)

≥ z2(x) T̂
′(x)

T̂ (x)
+ f(x, z2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
− Lεeλ(x−x0) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ελeλ(x−x0)

≥ z2(x) T̂
′(x)

T̂ (x)
+ f(x, z2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
− LεPeλ(x−x0) + ελeλ(x−x0)

> z2(x) T̂
′(x)

T̂ (x)
+ f(x, z2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
,

i.e.,

(11)
z′2(x) > z2(x) T̂

′(x)

T̂ (x)
+ f(x, z2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
in J,

z2(x0) > y2(x0).
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From (10) and (11) it follows that the functions z1(x) and z2(x) satisfy
all conditions of the basic theorem for the multiplicative iso-differential in-
equalities. Therefore

z1(x) < y(x) < z2(x) in (x0, x0 + a),

i.e.

y1(x)− εeλ(x−x0) < y(x) < y2(x) + εeλ(x−x0) in (x0, x0 + a),

from here, when ε −→ 0,

y1(x) ≤ y(x) ≤ y2(x) in J.

Corollary 1.5. Let for every points (x, y), (x, z) ∈ D such that x ≥ x0, we
have

(12) |f(x, y)− f(x, z)| ≤ L|y − z|

for some positive constant L, −P ≤ T̂ ′(x)

T̂ (x)
≤ 0, 0 ≤ T̂ (x)−xT̂ ′(x)

T̂ (x)
≤ P in J for

some positive constant P .
Let also,

(i) y be a solution to the initial value problem (6),

(ii) y1(x) and y2(x) be solutions to the multiplicative iso-differential in-
equalities (2) and (3) on J , respectively,

(iii) y1(x0) = y0 = y2(x0).

Then for every x1 ∈ J , x1 > x0, either y1(x1) < y(x1) (y(x1) < y2(x1)) or
y1(x) = y(x) (y2(x) = y(x)) for ∀x ∈ [x0, x1].

Proof. From (12) we have that if y ≥ z then

−L(y − z) ≤ f(x, y)− f(x, z) ≤ L(y − z).

Therefore all conditions of the last theorem are fulfilled. Consequently

y1(x) ≤ y(x) ≤ y2(x) for ∀x ∈ J.

9
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Also, we have

y′(x)− y′1(x) = y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
− y′1(x)

≥ y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

−y′1(x) T̂
′(x)

T̂ (x)
− f(x, y1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

= (y(x)− y1(x)) T̂
′(x)

T̂ (x)
+ (f(x, y(x))− f(x, y1(x))) T̂ (x)−xT̂

′(x)

T̂ (x)

≥ −(y(x)− y1(x))P − LP (y(x)− y1(x))

= −P (1 + L)(y(x)− y1(x)),

from where

(y(x)− y1(x))′ + P (1 + L)(y(x)− y1(x)) ≥ 0,

and (
eP (1+L)x(y(x)

)′
≥ 0,

From the last inequality, when x ≤ x1, we get∫ x

x1

(
eP (1+L)x(y(x)

)′
dx ≤ 0,

or

(13) eP (1+L)x(y(x)− y1(x)) ≤ eP (1+L)x1(y(x1)− y1(x1)).

Then, if y(x1) = y1(x1), using (13), we have that for every x ∈ [x0, x1]

y(x) ≤ y1(x),

whereupon

y(x) = y1(x) for ∀x ∈ [x0, x1].

10
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Definition 1.6. A solution r(x) (ρ(x)) of the initial value problem (6) which
exists in J = [x0, x0 + a) is said to be maximal(minimal) if for an arbitrary
solution y(x) of (6) existing in J , the inequality y(x) ≤ r(x) (ρ(x) ≤ y(x))
holds for all x ∈ J .

Theorem 1.7. Let f(x, y) be continuous in S+ = {(x, y) : x0 ≤ x ≤
x0+a, |y−y0| ≤ b} and hence there exists a M > 0 such that |f(x, y)| ≤M

for all (x, y) ∈ S+. Let also, T̂ (x)− xT̂ ′(x) ≥ 0 in [x0, x0 + a), |T̂
′(x)|
T̂ (x)

≤ P ,

T̂ (x)−xT̂ ′(x)
T̂ (x)

≤ P in [x0, x0 + a). Then there exists a maximal solution r(x)

and a minimal solution ρ(x) of the initial value problem (6) in the interval
[x0, x0 + α), where

α =
{
a,

2b

2P (b+ |y0|+M) + b

}
.

Proof. We will prove the existence of a maximal solution.
Let

0 < ε ≤ b

2
.

Let us consider the initial value problem

(14)
y′(x) = y(x) T̂

′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ε in [x0, x0 + a),

y(x0) = y0.

We define

Sε = {(x, y) ∈ R2 : x0 ≤ x ≤ x0 + a, |y − (y0 + ε)| ≤ b

2
}.

We have that
Sε ⊂ S+,

because
b
2
≥ |y − (y0 + ε)|

= |y − y0 − ε|

≥ |y − y0| − ε,
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or
|y − y0| ≤ b

2
+ ε

≤ b
2

+ b
2

= b.

Also, for every (x, y) ∈ S+ we have∣∣∣y(x) T̂
′(x)

T̂ (x)
+ f(x, y) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ε
∣∣∣ ≤ |y(x)| |T̂

′(x)|
T̂ (x)

+ |f(x, y)| |T̂ (x)−xT̂
′(x)|

T̂ (x)
+ ε

≤ P (b+ |y0|) +MP + ε

≤ P (b+ |y0|+M) + b
2
.

From here and from the multiplicative iso-Cauchy-Peano’s existence theo-
rem it follows that the problem (14) has a solution y(x, ε) which is defined
in [x0, x0 + α).

Let now
0 < ε2 < ε1 < ε.

We have

y(x0, ε2) = y0 + ε2 < y0 + ε1 = y(x0, ε1),

y′(x, ε2) = y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ε2,

y′(x, ε1) = y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ε1

> y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ε2.

From here and from the basic theorem for the multiplicative iso-differential
inequalities it follows that

y(x, ε2) < y(x, ε1) for ∀x ∈ [x0, x0 + α).

Using the proof of the multiplicative iso-Cauchy-Peano’s existence theorem
we have that the sequence {y(x, ε)}ε>0 is equip-continuous and uniformly
bounded.

12
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Let {εn}∞n=1 be a sequence of positive real numbers such that

lim
n−→∞

εn = 0

and the corresponding sequence {y(x, εn)}∞n=1 of solutions of (14) is defined
in [x0, x0 + α).

We have

y(x, εn) = y0 + εn +
∫ x
x0

(
y(t) T̂

′(t)

T̂ (t)
+ f(t, y(t)) T̂ (t)−tT̂

′(t)

T̂ (t)

)
dt,

y0 = y(x0, 0) < y0 + εn,

y′(x, εn) = y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ εn

> y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
.

From here and from the basic theorem for the multiplicative iso-differential
inequalities it follows that

y(x) < y(x, εn) in [x0, x0 + α).

Consequently

y(x) ≤ lim
n−→∞

y(x, εn) := r(x) for ∀x ∈ [x0, x0 + α).

Theorem 1.8. Let r(x) be a maximal solution to the initial value problem
(6) in J , J = [x0, x0 + a). Let also, y(x) be a solution to the multiplicative
iso-differential inequality (2) in J . If

y(x0) ≤ y0

then
y(x) ≤ r(x) in J.

Proof. Let x1 ∈ [x0, x0 + a). Let also ε > 0 be chosen enough small. We
consider the problem

(15)
y′(x) = y(x) T̂

′(x)

T̂ (x)
+ f(x, y(x)) + ε in J,

y(x0) = y0.
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Let r(x, ε) be a maximal solution of the problem (15) in the interval J . We
have that

lim
ε−→0

r(x, ε) = r(x)

uniformly in [x0, x1].
Since

y(x0) ≤ y0 < y0 + ε,

y′(x) ≤ y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

< y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
+ ε

and

r′(x, ε) = r(x, ε)
T̂ ′(x)

T̂ (x)
+ f(x, r(x, ε))

T̂ (x)− xT̂ ′(x)

T̂ (x)
,

then from the basic theorem for the multiplicative iso-differential inequali-
ties it follows that

y(x) < r(x, ε) in [x0, x1],

whereupon
y(x) ≤ lim

ε−→0
r(x, ε) = r(x).

2 Existence and Uniqueness of Solutions

In this chapter (x0, y0) ∈ R2, D is a domain in R2 containing the point
(x0, y0), J is an interval in R containing x0, T̂ (x) ∈ C1(J), T̂ (x) > 0 for
every x ∈ J .

We begin to develop the theory of existence and uniqueness of solutions
of the initial value problem

(1′)
(
ŷ∧(x̂)

)~
= f̂∧(x̂, ŷ∧(x̂)), x ∈ J,

(2) y(x0) = y0,
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where f will be assumed to be continuous in the domain D.
The equation (1′) can be rewritten in the following form

y′(x)T̂ (x)−y(x)T̂ ′(x)

T̂ (x)

(
T̂ (x)−xT̂ ′(x)

) = f(x,y(x))

T̂ (x)
, x ∈ J,

or

y′(x)T̂ (x)− y(x)T̂ ′(x) = f(x, y(x))
(
T̂ (x)− xT̂ ′(x)

)
, x ∈ J,

or

(1) y′(x) = y(x) T̂
′(x)

T̂ (x)
+ f(x, y) T̂ (x)−xT̂

′(x)

T̂ (x)
, x ∈ J.

Definition 2.1. We will say that a function y(x) is a solution to the initial
value problem (1), (2) if

1. y(x0) = y0,

2. y′(x) exists for all x ∈ J ,

3. for all x ∈ J the points (x, y(x)) ∈ D,

4. y′(x) = y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
for all x ∈ J .

If f(x, y(x)) is not continuous, then the nature of the solutions of (1) is
quite arbitrary. For example, let

f(x, y(x)) =
4(y(x)− 2)

x(1− x)
− y(x)

1− x
, T̂ (x) = ex,

and (x0, y(x0)) = (0, 0). Then the equation (1) admits the representation

y′(x) = y(x) +
(

4(y(x)−2)
x(1−x) −

y(x)
1−x

)
(1− x)

= y(x) + 4y(x)−2
x
− y(x)

= 4
x
(y(x)− 2),
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its general solution is

(3) y(x) = 2 + Cx4,

where C is a constant. From here, we conclude that

y(0) = 2 6= 0,

therefore the considered initial value problem has no any solution. If we
take (x0, y(x0)) = (0, 2), then every function (2) will be a solution of the
considered initial value problem.

We shall need the following result to prove existence, uniqueness, and
several other properties of the solutions of the initial value problem (1), (2).

Theorem 2.2. Let f(x, y(x)) be continuous function in the domain D, then
any solution of the initial value problem (1), (2) is also a solution of the
integral equation

(4) y(x) = y0 +
∫ x
x0

(
y(t) T̂

′(t)

T̂ (t)
+ f(t, y(t)) T̂ (t)−tT̂

′(t)

T̂ (t)

)
dt

and conversely.

Proof. An integration of the equation (1) yields

y(x)− y(x0) =

∫ x

x0

(
y(t)

T̂ ′(t)

T̂ (t)
+ f(t, y(t))

T̂ (t)− tT̂ ′(t)
T̂ (t)

)
dt.

Conversely, if y(x) is any solution of (4), then

y(x0) = y0,

and since f(x, y(x)) is a continuous function in D and T̂ is a continuous
function in J , then y(x) is a continuous function in J and we can differentiate
(4), from where we find

y′(x) = y(x)
T̂ ′(x)

T̂ (x)
+ f(x, y(x))

T̂ (x)− xT̂ ′(x)

T̂ (x)
.
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We shall solve the integral equation (4) by using the method of suc-
cessive approximations due to Picard. For this reason, let y0(x) be any
continuous function, we often take y0(x) ≡ y0, which we will suppose to be
initial approximation of the unknown solution of (4), then we define y1(x)
as follows

y1(x) = y0 +

∫ x

x0

(
y0(t)

T̂ ′(t)

T̂ (t)
+ f(t, y0(t))

T̂ (t)− tT̂ ′(t)
T̂ (t)

)
dt.

We pick this y1(x) as our next approximation and substitute this for y(x)
in the right side of (4) and call it y2(x),

y2(x) = y0 +

∫ x

x0

(
y1(t)

T̂ ′(t)

T̂ (t)
+ f(t, y1(t))

T̂ (t)− tT̂ ′(t)
T̂ (t)

)
dt.

Continuing in this way, the (m + 1)st approximation ym+1(x) is obtained
from ym(x) by means of the relation

(5) ym+1(x) = y0 +
∫ x
x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t)) T̂ (t)−tT̂

′(t)

T̂ (t)

)
dt, m = 0, 1, 2, . . . .

If the sequence {ym(x)}∞m=1 converges uniformly to a continuous function
y(x) in the interval J and for all x ∈ J the points (x, ym(x)) ∈ D, then we
may pass to the limit in both sides of (5), to obtain

y(x) = limm−→∞ ym+1(x)

= y0 + limm−→∞
∫ x
x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t)) T̂ (t)−tT̂

′(t)

T̂ (t)

)
dt

= y0 +
∫ x
x0

(
y(t) T̂

′(t)

T̂ (t)
+ f(t, y(t)) T̂ (t)−tT̂

′(t)

T̂ (t)

)
dt,

so that y(x) is the desired solution. Below we will suppose that a and b are
positive real numbers. Let P be positive real number such that

|T̂ ′(x)|
T̂ (x)

≤ P,
|T̂ (x)− xT̂ ′(x)|

T̂ (x)
≤ P for ∀x ∈ [x0 − a, x0 + a].

Theorem 2.3. Let the following conditions be satisfied
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(i) f(x, y) is continuous in the closed rectangle S : |x−x0| ≤ a, |y−y0| ≤ b
and hence there exists a M > 0 such that |f(x, y)| ≤M for all (x, y) ∈
S,

(ii) f(x, y) satisfies a uniform Lipschitz condition

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

for all (x, y1), (x, y2) in the closed rectangle S,

(iii) y0(x) is continuous in |x− x0| ≤ a, and |y0(x)− y0| ≤ b.

Then the sequence {ym(x)}∞m=1 generated by Picard iterative scheme (5) con-
verges to the unique solution y(x) of the initial value problem (1), (2). This

solution is valid in the interval Jh : |x−x0| ≤ h, where h = min
{
a, b

P (b+|y0|+M)

}
.

Further, for all x ∈ Jh the following error estimate holds

(6) |y(x)− ym(x)| ≤ Ne(P+PL)h min
{

1, ((P+PL)h)m

m!

}
, m = 0, 1, 2, . . . ,

where

max
x∈Jh
|y1(x)− y0(x)| ≤ N.

Remark 2.4. This Theorem is called a local existence theorem since it
guarantees a solution only in the neighborhood of the point (x0, y0).

Proof. We will show that the successive approximations ym(x) defined by
(5) exist as continuous function in Jh and (x, ym(x)) ∈ S for all x ∈ Jh.
Since y0(x) is a continuous function for all x such that |x − x0| ≤ a, the
function F0(x) = f(x, y0(x)) is continuous function in Jh, and hence y1(x)
is continuous in Jh.
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Also,

|y1(x)− y0| =
∣∣∣∫ xx0(y0(t) T̂ ′(t)T̂ (t)

+ f(t, y0(t))
T̂ (t)−tT̂ ′(t)

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(|y0(t)| |T̂ ′(t)|T̂ (t)

+ |f(t, y0(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0((b+ |y0|)P +MP

)
dt
∣∣∣

= P (b+ |y0|+M)|x− x0|

≤ P (b+ |y0|+M)h

≤ b.

Assuming that the assertion is true for ym(x), m ≥ 1, then it is sufficient
to prove that it is also true for ym+1(x). For this, since ym(x) is continuous
in Jh, the function Fm(x) = f(x, ym(x)) is also continuous function in Jh.
Moreover,

|ym+1(x)− y0| =
∣∣∣∫ xx0(ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t)) T̂ (t)−tT̂

′(t)

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(|ym(t)| |T̂

′(t)|
T̂ (t)

+ |f(t, ym(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0((b+ |y0|)P +MP

)
dt
∣∣∣

≤ P (b+ |y0|+M)|x− x0|

≤ P (b+ |y0|+M)h

≤ b.

Now we will prove that the sequence {ym(x)}∞m=1 converges uniformly in Jh.
Since y1(x) and y0(x) are continuous in Jh, there exists a constant N > 0
such that

|y1(x)− y0(x)| ≤ N for ∀x ∈ Jh.
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Also, for every x ∈ Jh, we have

|y2(x)− y1(x)| =
∣∣∣∫ xx0((y1(t)− y0(t)) T̂

′(t)

T̂ (t)
+ (f(t, y1(t))− f(t, y0(t)))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(|y1(t)− y0(t)| |T̂ ′(t)|T̂ (t)

+ |f(t, y1(t))− f(t, y0(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(|y1(t)− y0(t)| |T̂ ′(t)|T̂ (t)

+ L|y1(t)− y0(t)| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(NP + LNP )dt

∣∣∣
= NP (1 + L)|x− x0|.

Supposing that

(7) |ym(x)− ym−1(x)| ≤ N

(
(P+LP )|x−x0|

)m−1

(m−1)! , x ∈ Jh,

for some m ∈ N.

We will prove that

|ym+1(x)− ym(x)| ≤ N

(
(P + LP )|x− x0|

)m
m!

, x ∈ Jh.
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Really,

|ym+1(x)− ym(x)|

=
∣∣∣∫ xx0((ym(t)− ym−1(t)) T̂

′(t)

T̂ (t)
+ (f(t, ym(t))− f(t, ym−1(t)))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(|ym(t)− ym−1(t)| |T̂

′(t)|
T̂ (t)

+ |f(t, ym(t))− f(t, ym−1(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(|ym(t)− ym−1(t)| |T̂

′(t)|
T̂ (t)

+ L|ym(t)− ym−1(t)| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(P + PL)|ym(t)− ym−1(t)|dt

∣∣∣
≤ N(P + PL)m+1

∣∣∣∫ xx0 (t−x0)m
m!

dt
∣∣∣

= N(P + PL)m+1 |x−x0|m+1

(m+1)!
.

Thus inequality (7) is true for all m ∈ N.
Next, since

N
∑∞

m=1

(
(P+PL)|x−x0|

)m−1

(m−1)! ≤ N
∑∞

m=0

(
(P+PL)h

)m

m!

= Ne(P+PL)h <∞,

we have that the series

y0(x) +
∞∑
m=1

(ym(x)− ym−1(x))

converges absolutely and uniformly in the interval Jh, and hence its partial
sums

y1(x), y2(x), . . . , ym(x), . . .

converge to a continuous function in this interval, i.e.,

y(x) = lim
m−→∞

ym(x).
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As we have seen above we have that y(x) is a solution to the problem (1),
(2).

To prove that y(x) is the only solution, we assume that z(x) is also a
solution to the initial value problem (1), (2) which exists in the interval Jh
and (x, z(x)) ∈ S for all x ∈ Jh. The hypothesis (ii) is applicable and we
have

|y(x)− z(x)| ≤
∣∣∣∫ xx0(|y(t)− z(t)| T̂

′(t)

T̂ (t)
+ |f(t, y(t))− f(t, z(t))| |T̂ (t)−tT̂

′(t)|
T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(P |y(t)− z(t)|+ LP |y(t)− z(t)|

)
dt
∣∣∣

= (P + LP )
∣∣∣∫ xx0 |y(t)− z(t)|dt

∣∣∣, x ∈ Jh.

Consequently

|y(x)− z(x)| = 0

for all x ∈ Jh.

Finally, we will obtain the error bound (6).
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For n > m the inequality (7) gives

(8)

|yn(x)− ym(x)| = |yn(x)− yn−1(x) + yn−1(x)− yn−2(x) + · · ·+ ym+1(x)− ym(x)|

≤
∑n−1

k=m |yk+1(x)− yk(x)|

≤ N
∑n−1

k=m

(
(P+LP )|x−x0|

)k

k!

≤ N
∑n−1

k=m

(
(P+PL)h

)k

k!

= N
(

(P + PL)h
)m∑n−−m−1

k=0

(
(P+PL)h

)k

(m+k)!

(
1

(m+k)!
≤ 1

m!k!

)

≤ N

(
(P+PL)h

)m

m!

∑n−m−1
k=0

(
(P+PL)h

)k

k!

≤ N

(
(P+PL)h

)m

m!
e(P+PL)h,

and hence as n −→∞, we get

|y(x)− ym(x)| ≤ N

(
(P + PL)h

)m
m!

e(P+PL)h

in Jh.
The inequality (8) provides

|yn(x)− ym(x)| ≤ N
∑n−1

k=m

(
(P+PL)h

)k

k!

≤ N
∑∞

k=0

(
(P+PL)h

)k

k!

= Ne(P+PL)h,

and as n −→∞, we find

|y(x)− ym(x)| ≤ Ne(P+PL)h
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in Jh.

Definition 2.5. If the solution of the initial value problem (1), (2) exists
in the entire interval |x− x0| ≤ a, we say that the solution exists globally.

The next result is called a global existence theorem.

Theorem 2.6. Let the following conditions be satisfied

(i) f(x, y) is continuous in the strip T : |x− x0| ≤ a, |y| <∞,

(ii) f(x, y) satisfies a uniform Lipschitz condition in T ,

(iii) y0(x) is continuous in |x− x0| ≤ a.

Then the sequence {ym(x)}∞m=1 generated by Picard iterative scheme exists
in the entire interval |x−x0| ≤ a, and converges to the unique solution y(x)
of the initial value problem (1), (2).

Proof. For any continuous function y0(x) in |x − x0| ≤ a, as in the proof
of the local existence Theorem, can be established the existence of each
ym(x) in |x − x0| ≤ a satisfying |ym(x)| < ∞. Also, as in the proof of the
previous Theorem we have that the sequence {ym(x)(}∞m=1 converges to y(x)
in |x − x0| ≤ a, replacing h by a throughout the proof and recalling that
the function f(x, y) satisfies the Lipschitz condition in the strip T .

Corollary 2.7. Let f(x, y) be continuous in R2 and satisfies a uniform
Lipschitz condition in each strip Ta : |x| ≤ a, |y| < ∞, with the Lipschitz
constant La. Then the initial value problem (1), (2) has a unique solution
which exists for all x.

Proof. For any x there exists an a > 0 such that |x−x0| ≤ a. From here and
from T ⊂ Ta+|x0|, it follows that the function f(x, y) satisfies the conditions
of the previous Theorem in the strip T . Hence, the result follows for any
x.

We will note that there exist positive constants M1 and M2 such that∣∣∣ T̂ ′(x)

T̂ (x)

∣∣∣ ≤M1,
∣∣∣1− xT̂ ′(x)

T̂ (x)

∣∣∣ ≤M2 for x ∈ [x0 − a, x0 + a].
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Theorem 2.8. (multiplicative iso-Peano’s existence theorem) Let f is de-
fined, continuous and bounded function on the strip T = {(x, y) ∈ R2 :
|x − x0| ≤ a, |y| < ∞}. Then the Cauchy problem (1), (2) has a bounded
solution y(x) which is defined on |x− x0| ≤ a and

|y(x)| ≤
(

1 + eaM1

)
(|y0|+ sup

(x,y)∈V
|f(x, y)|M2a) for ∀x ∈ [x0 − a, x0 + a].

Remark 2.9. We can consider our main result as a continuation of the
well - known Peano’s Theorem.

If we put

g(x, y) = y(x)
T̂ ′(x)

T̂ (x)
+ f(x, y(x))

(
1− xT̂

′(x)

T̂ (x)

)
,

then g is unbounded function on the strip T . Therefore we can not apply
the classical Peano’s Theorem for the Cauchy problem (1), (2), because g
has to be bounded on T .

Proof. Since f is a bounded function on T then there exists a positive
constant M such that

|f(x, y)| ≤M for (x, y) ∈ T.

We will prove our main result for x ∈ [x0, x0 + a]. In the same way one can
prove the main result for x ∈ [x0 − a, x0].

For x ∈ [x0, x0 + a] we define the sequence {ym(x)}∞m=1 as follows

ym(x) = y0 for x ∈
[
x0, x0 + a

m

]
,

ym(x) = y0 +
∫ x− a

m

x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt for

x ∈
[
x0 + k a

m
, x0 + (k + 1) a

m

]
, k = 1, 2, . . . ,m− 1.

For this sequence we have

1. Let m ∈ N is arbitrary chosen.

25

583 https://doi.org/10.52202/059404-0009

https://doi.org/10.52202/059404-0009


If x ∈
[
x0, x0 + a

m

]
then

|ym(x)| = |y0|.

If x /∈
[
x0, x0 + a

m

]
and x ∈

[
x0 + k a

m
, x0 + (k + 1) a

m

]
for some

k = 1, 2, . . . ,m− 1, then

|ym(x)| =
∣∣∣y0 +

∫ x− a
m

x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt
∣∣∣

≤ |y0|+
∫ x− a

m

x0

(
|ym(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ |f(t, ym(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt
≤ |y0|+

∫ x− a
m

x0
(M1|ym(t)|+MM2)dt

= |y0|+M1

∫ x− a
m

x0
|ym(t)|dt+MM2

(
x− a

m
− x0

)
≤ |y0|+M1

∫ x− a
m

x0
|ym(t)|dt+MM2

(
x0 + (k + 1) a

m
− a

m
− x0

)
≤ |y0|+MM2a+M1

∫ x− a
m

x0
|ym(t)|dt,

i.e. for x ∈
[
x0 + k a

m
, x0 + (k + 1) a

m

]
we have

|ym(x)| ≤ |y0|+MM2a+M1

∫ x− a
m

x0
|ym(t)|dt

≤ |y0|+MM2a+M1

∫ x
x0
|ym(t)|dt.
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From here and the Gronwall’s inequality we get

|ym(x)| ≤ |y0|+MM2a+M1

∫ x
x0

(|y0|+MM2a)eM1(x−t)dt

= |y0|+MM2a+ eM1xM1(|y0|+MM2a)
∫ x
x0
e−M1tdt

= |y0|+MM2a+ eM1x(|y0|+MM2a)
(
e−M1x0 − e−M1x

)
≤ |y0|+MM2a+ eM1(x−x0)(|y0|+MM2a)

≤ |y0|+MM2a+ eaM1(|y0|+MM2a)

= (1 + eaM1)(|y0|+MM2a) =: M3 for x ∈
[
x0 + k a

m
, x0 + (k + 1) a

m

]
,

for some k = 1, 2, . . . ,m− 1.

Consequently for every x ∈ [x0, x0 + a] we have

(9) |ym(x)| ≤M3

for every m ∈ N.

Therefore the sequence {ym(x)}∞m=1 is uniformly bounded on [x0, x0 +
a].

2. Let x1, x2 ∈ [x0, x0 + a] and m ∈ N is arbitrarily chosen. Then

1. case. x1, x2 ∈
[
x0, x0 + a

m

]
. Then

ym(x1) = ym(x2) = y0,

and therefore
|ym(x2)− ym(x1)| = 0.

2. case. Let x1 ∈
[
x0, x0 + a

m

]
, x2 /∈

[
x0, x0 + a

m

]
. Then there exists

k ∈ {1, 2, . . . ,
m− 1}, such that x2 ∈

[
x0 + k a

m
, x0 + (k + 1) a

m

]
and

ym(x1) = y0,

ym(x2) = y0 +
∫ x2− a

m

x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt,
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from here,

|ym(x2)− ym(x1)| =
∣∣∣∫ x2− a

m

x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt
∣∣∣

≤
∫ x2− a

m

x0

(
|ym(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ |f(t, ym(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt
≤MM2

(
x2 − a

m
− x0

)
+M1

∫ x2− a
m

x0
|ym(t)|dt

now we use that x1 ∈
[
x0, x0 + a

m

]

≤MM2(x2 − x1) +M1

∫ x2− a
m

x0

|ym(t)|dt,

i.e.

|ym(x2)− ym(x1)| ≤MM2(x2 − x1) +M1

∫ x2− a
m

x0

|ym(t)|dt.

From here and (9) we obtain

|ym(x2)− ym(x1)| ≤MM2(x2 − x1) +M1M3

∫ x2− a
m

x0
dt

= MM2(x2 − x1) +M1M3

(
x2 − a

m
− x0

)
≤ (MM2 +M1M3)(x2 − x1).

3. case. Let x1, x2 /∈
[
x0, x0 + a

m

]
. Without loss of generality we can

suppose that x1 ≤ x2. Let

x1 ∈
[
x0+k

a

m
, x0+(k+1)

a

m

]
, x2 ∈

[
x0+i

a

m
, x0+(i+1)

a

m

]
, k ≤ i,

k, i ∈ {1, 2, . . . ,m− 1}.
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Then

ym(x2) = y0 +
∫ x2− a

m

x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt,

ym(x1) = y0 +
∫ x1− a

m

x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt,

ym(x2)− ym(x1) =
∫ x2− a

m

x1− a
m

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt,

|ym(x2)− ym(x1)| =
∣∣∣∫ x2− a

m

x1− a
m

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt
∣∣∣

≤
∫ x2− a

m

x1− a
m

(
|ym(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ |f(t, ym(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt
≤M1

∫ x2− a
m

x1− a
m
|ym(t)|dt+MM2

∫ x2− a
m

x1− a
m
dt

= M1

∫ x2− a
m

x1− a
m
|ym(t)|dt+MM2(x2 − x1)

now we apply (9)

≤M1M3

∫ x2− a
m

x1− a
m
dt+MM2(x2 − x1)

= (M1M3 +MM2)(x2 − x1).

From 1, 2, and 3 cases follows that for every x1, x2 ∈ [x0, x0 + a] we have

(10) |ym(x2)− ym(x1)| ≤ (M1M3 +MM2)|x2 − x1| for ∀m ∈ N.

Let ε > 0 is arbitrary chosen and fixed. Let δ = ε
MM2+M1M3

. Then if
x1, x2 ∈ [x0, x0 + a], |x1 − x2| < δ, using (10), we get

|ym(x2)− ym(x1)| ≤ (M1M3 +MM2)|x2 − x1|

< (M1M3 +MM2)δ = ε.

Consequently {ym(x)}∞m=1 is equip-continuous family on [x0, x0 + a].
Therefore there exists a subsequence {ymp(x)}∞p=1 of the sequence {ym(x)}∞m=1

which is uniformly convergent to y(x) on [x0, x0 + a].
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For ymp(x), x ∈ [x0, x0 + a], we have

(11)

ymp(x) = y0 +
∫ x− a

mp
x0

(
ymp(t) T̂

′(t)

T̂ (t)
+ f(t, ymp(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt

= y0 +
∫ x
x0

(
ymp(t) T̂

′(t)

T̂ (t)
+ f(t, ymp(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt

+
∫ x− a

mp
x

(
ymp(t) T̂

′(t)

T̂ (t)
+ f(t, ymp(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt.

Since f is a continuous and bounded function on T we have

(12)

limp−→∞
∫ x
x0

(
ymp(t) T̂

′(t)

T̂ (t)
+ f(t, ymp(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt

=
∫ x
x0

(
y(t) T̂

′(t)

T̂ (t)
+ f(t, y(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt.

Also, ∣∣∣∫ x− a
mp

x

(
ymp(t) T̂

′(t)

T̂ (t)
+ f(t, ymp(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt
∣∣∣

≤
∫ x
x− a

mp

(
|ymp(t)|

∣∣∣ T̂ ′(t)
T̂ (t)

∣∣∣+ |f(t, ymp(t))|
∣∣∣1− t T̂ ′(t)

T̂ (t)

∣∣∣)dt
≤M1

∫ x
x− a

mp

|ymp(t)|dt+MM2
a
mp

now we use (9)

≤ (M1M3 +MM2)
a

mp

−→p−→∞ 0.

From here and (11), (12), when p −→∞, we get

y(x) = y0 +

∫ x

x0

(
y(t)

T̂ ′(t)

T̂ (t)
+ f(t, y(t))

(
1− t T̂

′(t)

T̂ (t)

))
dt

for every x ∈ [x0, x0 + a]. Therefore y is a solution of the Cauchy problem
(1), (2) which is defined on [x0, x0 + a]. From (9) follows that |y(x)| ≤ M3

for every x ∈ [x0, x0 + a].

Corollary 2.10. Let f(x, y) be continuous in S, and hence there exists a
M > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ S. Then the initial value
problem (1), (2) has at least one solution in Jh.
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Proof. The proof is the same as that of the proof of multiplicative iso-
Peano’s existence theorem with some obvious changes.

Definition 2.11. (ε-approximate solution) A function y(x) defined in J
is said to be an ε-approximate solution of the multiplicative iso-differential
equation (1) if

1. y(x) is continuous for all x ∈ J ,

2. for all x ∈ J the points (x, y(x)) ∈ D,

3. y(x) has piecewise continuous derivative in J which may fail to be defined
only for a finite number of points, say x1, x2, . . ., xk,

4.
∣∣∣y′(x) − y(x) T̂

′(x)

T̂ (x)
− f(x, y) T̂ (x)−xT̂

′(x)

T̂ (x)

∣∣∣ ≤ ε for all x ∈ J , x 6= xi, i =

1, 2, . . . , k.

The existence of an ε-approximate solution is provided in the following
theorem.

Theorem 2.12. Let f(x, y) be continuous in S and hence there exists
a M > 0 such that |f(x, y)| ≤ M for every (x, y) ∈ S. Then for all
ε > 0, there exists an ε-approximate solution y(x) of the multiplicative iso-
differential equation (1) in the interval Jh such that y(x0) = y0.

Proof. Because the function f(x, y) is a continuous function in the closed
rectangle S, it is uniformly continuous in this rectangle. Thus, for a given
ε > 0 there exists δ = δ(ε) > 0 so that

|f(x, y)− f(x1, y1)| ≤ ε,∣∣∣y T̂ ′(x)
T̂ (x)

+ f(x, y) T̂ (x)−xT̂
′(x)

T̂ (x)
− y1 T̂

′(x1)

T̂ (x1)
− f(x1, y1)

T̂ (x1)−x1T̂ ′(x1)
T̂ (x1)

∣∣∣ ≤ ε

for all (x, y), (x1, y1) ∈ S such that

|x− x1| ≤ δ and |y − y1| ≤ δ.

We shall construct an ε-approximate solution in the interval [x0, x0 + h]. A
similar process will define it in the interval [x0 − h, x0].
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For this aim, we divide the interval [x0, x0 + h] into m parts

x0 < x1 < x2 . . . < xm = x0 + h

such that

(13) xi − xi−1 ≤ min
{
δ, δ

P (|y0|+b+M)

}
, i = 1, 2, . . . ,m.

Now we define a function y(x) in the interval [x0, x0 + h] in the following
manner

(14)
y(x) = y(xi−1) + (x− xi−1)

(
y(xi−1)

T̂ ′(xi−1)

T̂ (xi−1)
+ f(xi−1, y(xi−1))

T̂ (xi−1)−xi−1T̂
′(xi−1)

T̂ (xi−1)

)
,

xi−1 ≤ x ≤ xi, i = 1, 2, . . . ,m.

Obviously, this function y(x) is continuous and has a piecewise contin-
uous derivative

y′(x) = y(xi−1)
T̂ ′(xi−1)

T̂ (xi−1)
+ f(xi−1, y(xi−1)

T̂ (xi−1)− xi−1T̂ ′(xi−1)
T̂ (xi−1)

,

xi−1 < x < xi, i = 1, 2, . . . ,m, which fails to be defined only at the points
xi, i = 1, 2, . . . ,m − 1. Since in each subinterval [xi−1, xi], i = 1, 2, . . . ,m,
the function y(x) is a straight line, to prove that (x, y(x)) ∈ S it suffices to
show that

|y(xi)− y0| ≤ b

for all i = 1, 2, . . . ,m.

32

590https://doi.org/10.52202/059404-0009

https://doi.org/10.52202/059404-0009


For this reason, in (14) let i = 1 and x = x1 to obtain

y(x1) = y0 + (x− x1)
(
y0

T̂ ′(x0)

T̂ (x0)
+ f(x0, y0)

T̂ (x0)−x0T̂ ′(x0)
T̂ (x0)

)
,

|y(x1)− y0| =
∣∣∣(x− x1)(y0 T̂ ′(x0)T̂ (x0)

+ f(x0, y0)
T̂ (x0)−x0T̂ ′(x0)

T̂ (x0)

)∣∣∣
≤ (x1 − x0)

(
|y0| |T̂

′(x0)|
T̂ (x0)

+ |f(x0, y0)| |T̂ (x0)−x0T̂
′(x0)|

T̂ (x0)

)
≤ (x1 − x0)(P |y0|+MP )

≤ hP (M + |y0|)

≤ hP (b+ |y0|+M)

≤ b
P (b+|y0|+M)

P (b+ |y0|+M)

= b.

Now let the assertion be true for i = 1, 2, . . . , k− 1 < m− 1, then from (14)

y(x1)− y0 = (x1 − x0)
(
y0

T̂ ′(x0)

T̂ (x0)
+ f(x0, y0)

T̂ (x0)−x0T̂ ′(x0)
T̂ (x0)

)
,

y(x2)− y(x1) = (x2 − x1)
(
y(x1)

T̂ ′(x1)

T̂ (x1)
+ f(x1, y(x1))

T̂ (x1)−x1T̂ ′(x1)
T̂ (x1)

,

· · ·

y(xk)− y(xk−1) = (xk − xk−1)
(
y(xk−1)

T̂ ′(xk−1)

T̂ (xk−1)
+ f(xk−1, y(xk−1))

T̂ (xk−1)−xk−1T̂
′(xk−1)

T̂ (xk−1)

)
.

From here,

y(xk)− y0 =
∑k

l=1(xl − xl−1)
(
y(xl−1)

T̂ ′(xl−1)

T̂ (xl−1)
+ f(xl−1, y(xl−1))

T̂ (xl−1)−xl−1T̂
′(xl−1)

T̂ (xl−1)

)
,
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which gives

|y(xk)− y0| ≤
∑k

l=1(xl − xl−1)
(
|y(xl−1)| |T̂

′(xl−1)|
T̂ (xl−1)

+ |f(xl−1, y(xl−1))| |T̂ (xl−1)−xl−1T̂
′(xl−1)|

T̂ (xl−1)

)
≤
∑k

l=1(xl − xl−1)
(

(b+ |y0|)P +MP
)

= P (M + b+ |y0|)
∑k

l=1(xl − xl−1)

= P (M + b+ |y0|)(xk − x0)

≤ P (M + b+ |y0|)h

≤ P (M + b+ |y0|) b
P (M+b+|y0|)

= b.

Finally, if xi−1 < x < xi, then from (13) and (14)

|y(x)− y(xi−1)| = (x− xi)
∣∣∣y(xi−1)

T̂ ′(xi−1)

T̂ (xi−1)
+ f(xi−1), y(xi−1))

T̂ (xi−1)−xi−1T̂
′(xi−1)

T̂ (xi−1)

∣∣∣
≤ (x− xi)

(
|y(xi−1)| |T̂

′(xi−1)|
T̂ (xi−1)

+ |f(xi−1), y(xi−1))| |T̂ (xi−1)−xi−1T̂
′(xi−1)|

T̂ (xi−1)

)
≤ (xi − xi−1)

(
(|y0|+ b)P +MP

)
≤ δ

P (|y0|+b+M)
P (M + |y0|+ b)

= δ.

Therefore∣∣∣y′(x)− y(x) T̂
′(x)

T̂ (x)
− f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

∣∣∣
=
∣∣∣y(xi−1)

T̂ ′(xi−1)

T̂ (xi−1)
+ f(xi−1, y(xi−1))

T̂ (xi−1)−xi−1T̂
′(xi−1)

T̂ (xi−1)
− y(x) T̂

′(x)

T̂ (x)
− f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

∣∣∣
≤ ε
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for all x ∈ Jh, x 6= xi, i = 1, 2, . . . ,m−1. This completes the proof that y(x)
is an ε-approximate solution of the multiplicative iso-differential equation
(1).

This method of constructing an approximate solution is said to be mul-
tiplicative iso-Cauchy-Euler method.

Theorem 2.13. (multiplicative iso-Cauchy-Peano’s existence theorem) Let
f(x, y) be continuous in S and hence there exists a M > 0 such that
|f(x, y)| ≤ M for every (x, y) ∈ S. Then the initial value problem (1),
(2) has at least one solution in Jh.

Proof. We shall prove the assertion for the interval [x0, x0 + h].
Let {εm}∞m=1 be a monotonically decreasing sequence of positive numbers

such that
lim

m−→∞
εm = 0.

For each εm we construct an εm-approximate solution ym(x).
As in the proof of the theorem for existence of ε-approximate solutions

we have
|ym(x)| ≤ b+ |y0|

for every m ∈ N and for every x ∈ Jh. In other words, the sequence
{ym(x)}∞m=1 is uniformly bounded in Jh.

Let x, x∗ ∈ [x0, x0 + h]. Then

|ym(x)− ym(x∗)| ≤
∣∣∣∫ x∗x (|ym(t)| |T̂

′(t)|
T̂ (t)

+ |f(t, ym(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ x∗x (P (|y0|+ b) +MP

)
dt
∣∣∣

≤ P (M + b+ |y0|)|x− x∗|
and from this it follows that the sequence {ym(x)}∞m=1 is equip-continuous.

Consequently the sequence {ym(x)}∞m=1 contains a subsequence {ymp(x)}∞p=1

which converges uniformly in [x0, x0 +h] to a continuous function y(x). We
define

em(x) =


y′m(x)− ym(x) T̂

′(x)

T̂ (x)
− f(x, ym(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

at the points where y′m(x) exists

0 otherwise.
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Then

(15) ym(x) = y0 +
∫ x
x0

(
ym(t) T̂

′(t)

T̂ (t)
+ f(t, ym(t)) + em(t)

)
dt

and
|em(x)| ≤ εm.

Since f(x, y) is continuous in S and ymp(x) converges to y(x) uniformly in
[x0, x0 + h], the function f(x, ymp(x)) converges to f(x, y(x)) uniformly in
[x0, x0 + h]. Thus, by replacing m by mp in (15) and letting p −→ ∞, we
become that y(x) is a solution to the integral equation (4).

Remark 2.14. We suppose that all conditions of the multiplicative iso-
Cauchy-Peano’s existence theorem are satisfied. Further, let the initial value
problem (1), (2) has a solution y(x) in an interval J = (α, β). We have

|y(x2)− y(x1)| ≤ P (M + |y0|+ b)|x2 − x1|

for every x1, x2 ∈ J . Therefore

y(x2)− y(x1) −→ 0

as x1, x2 −→ α+. Thus, by the Cauchy criterion of convergence we have
that

lim
x−→α+

y(x)

exists.
A similar argument holds for

lim
x−→β−

y(x).

Theorem 2.15. Let all conditions of the multiplicative iso-Cauchy-Peano’s
existence theorem be satisfied. Let also, y(x) be a solution of the initial value
problem (1), (2) in the interval J = (α, β). Then y(x) can be extended over
the interval (α, β + γ] ([α− γ, β)) for some γ > 0.

Proof. We define the function y1(x) as follows.

y1(x) = y(x) for x ∈ (α, β),

y1(β) = y(β − 0).
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We observe that for all x ∈ (α, β] we have

y1(x) = y(β − 0) +
∫ x
β

(
y1(t)

T̂ ′(t)

T̂ (t)
+ f(t, y1(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

= y(x0) +
∫ β
x0

(
y1(t)

T̂ ′(t)

T̂ (t)
+ f(t, y1(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

+
∫ x
β

(
y1(t)

T̂ ′(t)

T̂ (t)
+ f(t, y1(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

= y(x0) +
∫ x
x0

(
y1(t)

T̂ ′(t)

T̂ (t)
+ f(t, y1(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt.

Therefore the left-hand derivative y′1(β − 0) exists and

y′1(β − 0) = y1(β)
T̂ ′(β)

T̂ (β)
+ f(β, y1(β))

T̂ (β)− βT̂ ′(β)

T̂ (β)
.

Thus, y1(x) is a continuation of y(x) in the interval (α, β].

Let y2(x) be a solution to the problem

y′(x) = y(x) T̂
′(x)

T̂ (x)
+ f(x, y(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
,

y(β) = y1(β),

existing in the interval [β, β + γ] for some γ > 0.

We define the function

y3(x) =


y1(x) x ∈ (α, β],

y2(x) x ∈ [β, β + γ],

which is a continuation of y(x) in the interval (α, β + γ].

Also,

y3(x) = y0 +

∫ x

x0

(
y3(t)

T̂ ′(t)

T̂ (t)
+ f(t, y3(t))

T̂ (t)− tT̂ ′(t)
T̂ (t)

)
dt

37

595 https://doi.org/10.52202/059404-0009

https://doi.org/10.52202/059404-0009


for every x ∈ (α, β + γ], because for all x ∈ [β, β + γ] we have

y3(x) = y(β − 0) +
∫ x
β

(
y3(t)

T̂ ′(t)

T̂ (t)
+ f(t, y3(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

= y0 +
∫ β
x0

(
y3(t)

T̂ ′(t)

T̂ (t)
+ f(t, y3(t))

T̂ (t)−tT̂ ′(t)
T̂ x(t)

)
dt

+
∫ x
β

(
y3(t)

T̂ ′(t)

T̂ (t)
+ f(t, y3(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt

= y0 +
∫ x
x0

(
y3(t)

T̂ ′(t)

T̂ (t)
+ f(t, y3(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt.

Theorem 2.16. (multiplicative iso-Lipschitz uniqueness theorem) Let f(x, y)
be continuous and satisfies a uniform Lipschitz condition in S with a Lip-
schitz constant L. Then the problem (1), (2) has at most one solution in
|x− x0| ≤ a.

Proof. We suppose that the problem (1), (2) has two solutions y1(x) and
y2(x), x ∈ [x0 − a, x0 + a]. Then

y1(x) = y0 +
∫ x
x0

(
y1(t)

T̂ ′(t)

T̂ (t)
+ f(t, y1(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt,

y2(x) = y0 +
∫ x
x0

(
y2(t)

T̂ ′(t)

T̂ (t)
+ f(t, y2(t))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt,

whereupon

y1(x)−y2(x) =

∫ x

x0

(
(y1(t)−y2(t))

T̂ ′(t)

T̂ (t)
+(f(t, y1(t))−f(t, y2(t)))

T̂ (t)− tT̂ ′(t)
T̂ (t)

)
dt,

and

|y1(x)− y2(x)| ≤
∣∣∣∫ xx0(|y1(t)− y2(t)| |T̂ ′(t)|T̂ (t)

+ |f(t, y1(t))− f(t, y2(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt
∣∣∣

≤
∣∣∣∫ xx0(P |y1(t)− y2(t)|+ LP |y1(t)− y2(t)|

)
dt

= P (1 + L)
∣∣∣∫ xx0 |y1(t)− y2(t)|dt∣∣∣.
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From the last inequality and Gronwall’s type inequality we conclude that

|y1(x)− y2(x)| = 0 in [x0 − a, x0 + a].

Theorem 2.17. (multiplicative iso-Peano’s uniqueness theorem) Let f(x, y)
be continuous in

S+ = {(x, y) ∈ R2 : x0 ≤ x ≤ x0 + a, |y − y0| ≤ b}

and nonincreasing in y for all [x0, x0 + a]. Let also,

T̂ ′(x) ≤ 0, T̂ (x)− xT̂ ′(x) ≥ 0 for ∀x ∈ [x0, x0 + a].

Then the problem (1), (2) has at most one solution in [x0, x0 + a].

Proof. Let the problem (1), (2) has two solutions y1(x) and y2(x) in [x0, x0+
a] which differ in [x0, x0 + a]. We assume that

y2(x) > y1(x) in (x1, x1 + ε) ⊂ [x0, x0 + a],

while y1(x) = y2(x) for x ∈ [x0, x1], i.e., x1 is the greatest lower bound of
the set A consisting of those x for which y2(x) > y1(x). This greatest lower
bound of the set A exists because the set A is bounded below by x0 at least.
Thus for every x ∈ (x1, x1 + ε) we have

f(x, y1(x)) ≥ f(x, y2(x)),

f(x, y1(x)) T̂ (x)−xT̂
′(x)

T̂ (x)
≥ f(x, y2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
,

y1(x) T̂
′(x)

T̂ (x)
≥ y2(x) T̂

′(x)

T̂ (x)
,

whereupon

y1(x) T̂
′(x)

T̂ (x)
+ f(x, y1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

≥ y2(x) T̂
′(x)

T̂ (x)
+ f(x, y2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

for all x ∈ (x1, x1 + ε), and from here

y′1(x) ≥ y′2(x) for ∀x ∈ (x1, x1 + ε).
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Hence the function
z(x) = y2(x)− y1(x)

is nonincreasing function in (x1, x1 + ε).
Because

z(x1) = y2(x1)− y1(x1) = 0

we obtain
z(x) ≤ z(x1) = 0 in (x1, x1 + ε)

or
y2(x) ≤ y1(x) in (x1, x1 + ε).

This contradiction proves that

y1(x) = y2(x) for ∀x ∈ [x0, x0 + a].

Theorem 2.18. (multiplicative iso-Peano’s uniqueness theorem) Let f(x, y)
be continuous in S+ and nondecreasing in y for every x ∈ [x0, x0 + a]. Let
also,

T̂ ′(x) ≤ 0, T̂ (x)− xT̂ ′(x) ≤ 0 for ∀x ∈ [x0, x0 + a].

Then the problem (1), (2) has at most one solution in [x0, x0 + a].

Proof. Let the problem (1), (2) has two solutions y1(x) and y2(x) in [x0, x0+
a] which differ in [x0, x0 + a]. Let

y2(x) > y1(x) in (x1, x1 + ε) ⊂ [x0, x0 + a],

and
y2(x) = y1(x) for ∀x ∈ [x0, x1].

Therefore for every x ∈ (x1, x1 + ε) we have

f(x, y2(x)) ≥ f(x, y1(x)),

f(x, y1(x)) T̂ (x)−xT̂
′(x)

T̂ (x)
≥ f(x, y2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)
,

y1(x) T̂
′(x)

T̂ (x)
≥ y2(x) T̂

′(x)

T̂ (x)
,
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whereupon

y1(x) T̂
′(x)

T̂ (x)
+ f(x, y1(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

≥ y2(x) T̂
′(x)

T̂ (x)
+ f(x, y2(x)) T̂ (x)−xT̂

′(x)

T̂ (x)

for every x ∈ (x1, x1 + ε). Consequently

y′1(x) ≥ y′2(x) for ∀x ∈ (x1, x1 + ε)

and then the function
z(x) = y2(x)− y1(x)

is nonincreasing function in (x1, x1 + ε), therefore

y2(x)− y1(x) ≤ y2(x1)− y1(x1) = 0 for ∀x ∈ (x1, x1 + ε),

which is a contradiction. From here we conclude that y1(x) = y2(x) for
every x ∈ [x0, x0 + a].

Lemma 2.19. (multiplicative iso-Osgood’s lemma) Let w(z) be continuous
function in [0,∞), w(0) = 0, z+w(z) > 0 in (0,∞), z+w(z) be increasing
function in [0,∞), and

(16) limε−→0+
∫ a
ε

dz
z+w(z)

=∞.

Let u(x) be a nonnegative continuous function in [0, a]. Then the inequality

(17) u(x) ≤ P
∫ x
0

(u(t) + w(u(t)))dt, 0 < x ≤ a,

implies that u(x) ≡ 0 in [0, a].

Proof. We define the function

v(x) = max
0≤t≤x

u(t)

and assume that v(x) > 0 for 0 < x ≤ a. Then

u(t) ≤ v(x) for ∀t ∈ [0, x].

Because u(x) is a continuous function in [0, a] then there exists x1 ∈ [0, x]
such that

v(x) = u(x1).
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Therefore, using that z + w(z) is an increasing function in [0,∞),

v(x) = u(x1) ≤ P
∫ x1
0

(u(t) + w(u(t)))dt

≤ P
∫ x1
0

(v(t) + w(v(t)))dt

≤ P
∫ x
0

(v(t) + w(v(t)))dt.

Let

v(x) = P

∫ x

0

(v(t) + w(v(t)))dt.

We have
v(x) ≥ 0, v(x) ≤ v(x),

and
v′(x) = P (v(x) + w(v(x)))

≤ P (v(x) + w(v(x))),

and since
v(x) + w(v(x)) ≥ 0,

then
v′(x)

P (v(x) + w(v(x)))
.

Consequently for 0 < δ < a we have∫ a

δ

dv(x)

P (v(x) + w(v(x)))
≤
∫ a

δ

dx,

whereupon

limδ−→0+
∫ a
δ

dv(x)
P (v(x)+w(v(x)))

= limδ−→0+
∫ v(a)
v(δ)

dy
P (y+w(y))

≤ a,

which contradicts with (16). Consequently u(x) ≡ 0 in [0, a].

Theorem 2.20. (multiplicative iso-Osgood’s uniqueness theorem) Let f(x, y)
be continuous in S+ and for all (x, y1), (x, y2) ∈ S+ it satisfies

|f(x, y1)− f(x, y2)| ≤ w(|y1 − y2|),

where w(z) satisfies all conditions of the multiplicative iso-Osgood’s lemma.
Then the problem (1), (2) has at most one solution in [x0, x0 + a].
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Proof. Let y1(x) and y2(x) are two solutions of the problem (1), (2) in
[x0, x0 + a]. Then, if

z(x) = |y1(x)− y2(x)|, x ∈ [x0, x0 + a],

we have

z(x) =
∣∣∣∫ xx0((y1(t)− y2(t)) T̂

′(t)

T̂ (t)
+ (f(t, y1(t))− f(t, y2(t)))

T̂ (t)−tT̂ ′(t)
T̂ (t)

)
dt
∣∣∣

≤
∫ x
x0

(
|y1(t)− y2(t)| |T̂

′(t)|
T̂ (t)

+ |f(t, y1(t))− f(t, y2(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt

≤
∫
x0

(P |y1(t)− y2(t)|+ Pw(|y1(t)− y2(t)|))dt

= P
∫ x
x0

(z(t) + w(z(t)))dt.

Let
u(x) = z(x0 + x).

Therefore
u(x) ≤ P

∫ x0+x
x0

(z(t) + w(z(t)))dt

= P
∫ x
0

(z(x0 + t) + w(z(x0 + t)))dt

= P
∫ x
0

(u(t) + w(u(t)))dt.

Consequently u(x) satisfies the multiplicative iso-Osgood’s lemma, from
where u(x) ≡ 0 in [0, a], i.e., y1(x) = y2(x) in [x0, x0 + a].

Lemma 2.21. (multiplicative iso-Nagumo’s lemma) Let u(x) be nonneg-
ative continuous function in [x0, x0 + a] and u(x0) = 0, and let u(x) be
differentiable at x = x0 with u′(x0) = 0. Then∫ x

x0

u(t)dt ≤ a

∫ x

x0

u(t)

t− x0
dt, x ∈ [x0, x0 + a],

and the inequality

u(x) ≤
∫ x

x0

u(t)

t− x0
dt, x ∈ [x0, x0 + a],

implies that u(x) = 0 in [x0, x0 + a].
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Proof. Let

g(x) =

∫ x

x0

u(t)dt− a
∫ x

x0

u(t)

t− x0
dt, x ∈ [x0, x0 + a].

Since

lim
x−→x0

u(x)

x− x0
= u′(x0) = 0,

then the integral ∫ x

x0

u(t)

t− x0
dt

exists for x ∈ [x0, x0 + a].
Also,

g′(x) = u(x)− a u(x)

x− x0
= u(x)

x− x0 − a
x− x0

≤ 0

for every x ∈ [x0, x0+a]. Therefore g is a nonincreasing function in [x0, x0+
a], whereupon

g(x) ≤ g(x0) for ∀x ∈ [x0, x0 + a],

or ∫ x

x0

u(t)dt ≤ a

∫ x

x)

u(t)

t− x0
dt

for every x ∈ [x0, x0 + a].
Let now

v(x) =

∫ x

x0

u(t)

t− x0
dt, x ∈ [x0, x0 + a].

Then
u(x) ≤ v(x), x ∈ [x0, x0 + a],

and
v′(x) = u(x)

x−x0

≤ v(x)
x−x0 , x ∈ [x0, x0 + a].

Consequently
d
dx

(
v(x)
x−x0

)
= v′(x)(x−x0)−v(x)

(x−x0)2

≤ 0
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or the function

l(x) =
v(x)

x− x0
is a nonincreasing function in [x0, x0 + a] and since l(x0) = 0, we have that

v(x) ≤ 0 in [x0, x0 + a],

from where

v(x) = 0 in [x0, x0 + a].

Consequently u(x) = 0 in [x0, x0 + a].

Theorem 2.22. (multiplicative iso-Nagumo’s theorem) Let P (a+ 1) ≤ 1,
f(x, y) be continuous in S+ and for all (x, y1), (x, y2) ∈ S+ it satisfies

|f(x, y1)− f(x, y2)| ≤ k|x− x0|−1|y1 − y2|, x 6= x0. k ≤ 1.

Then the problem (1), (2) has at most one solution in [x0, x0 + a].

Proof. Let y1(x) and y2(x) are two solutions of the problem (1), (2) in
[x0, x0 + a]. Then for x ∈ [x0, x0 + a] we have

|y1(x)− y2(x)| ≤
∫ x
x0

(
|y1(t)− y2(t)| |T̂

′(t)|
T̂ (t)

+ |f(t, y1(t))− f(t, y2(t))| |T̂ (t)−tT̂
′(t)|

T̂ (t)

)
dt

≤
∫ x
x0

(
P |y1(t)− y2(t)|+ k(t− y0)−1|y1(t)− y2(t)|P

)
dt

≤ P
∫ x
x0
|y1(t)− y2(t)|dt+ P

∫ x
x0

|y1(t)−y2(t)|
t−x0 dt

≤ aP
∫ x
x0

|y1(t)−y2(t)|
t−x0 dt+ P

∫ x
x0

|y1(t)−y2(t)|
t−x0 dt

= (a+ 1)P
∫ x
x0

|y1(t)−y2(t)|
t−x0 dt

≤
∫ x
x0

|y1(t)−y2(t)|
t−x0 dt.

Let

u(x) = |y1(x)− y2(x)|, x ∈ [x0, x0 + a].

45

603 https://doi.org/10.52202/059404-0009

https://doi.org/10.52202/059404-0009


Then u(x0) = 0 and from the mean value theorem we have

u′(x0) = limh−→0
u(x0+h)−u(x0)

h

= limh−→0
|y1(x0)+hy′1(x0+θ1h)+y2(x0)−hy′2(x0+θ2h)|

h

= (sgnh) limh−→0 |y′1(x0 + θ1h)− y′2(x0 + θ2h)|

= 0, 0 < θ1, θ2 < 1.

Then the conditions of multiplicative iso-Nagumo’s lemma are satisfied and
u(x) = 0, i.e., y1(x) = y2(x) in [x0, x0 + a].
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Abstract 

 
According to the causality theory presented in the differential ontology and 
epistemology of Johansen (2008), concepts of randomness and probability are 
(i) built on fundamental types of causality, and (ii) represent themselves 
particular, elaborated types of causality. Hence, it is argued that Einstein vas 
basically correct in insisting on preserving the causality principle against the 
Copenhagen interpretation of quantum mechanics which he considered to be an 
incomplete theory. Adequate philosophical interpretations of quantum 
mechanics and of further developments into hadronic mechanics require concise 
differentiations and combinations of various types of causality, including 
chance causality. This is argued to be in agreement with some crucial results 
from the mathematical physics of David Bohm as well as of Ruggero Maria 
Santilli in relation to upgraded discussions of the Einstein-Podolsky-Rosen 
paradox. 

Keywords: Einstein; Bohr; Bohm; Santilli; Popper: Einstein-Podolsky-Rosen; 
differential ontology; differential epistemology; causality; probability; 
randomness; chance; hadronic mechanics; Fibonacci algorithm; qualitative 
informatics. 
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I have mentioned Santilli, and I should like to say that he – one who belongs to 
a new generation –  seems to me to move on a different path. Far be it from me 
to belittle the giants who founded quantum mechanics under the leadership of 
Planck, Einstein, Bohr, Born, Heisenberg, de Broglie, Schrodinger, and Dirac. 
Santilli too makes it very clear how greatly he appreciates the work of these 
men. But in his approach he distinguishes the region of the ‘arena of 
incontrovertible applicability’ of quantum mechanics (he calls it ‘atomic 
mechanics’) from nuclear mechanics and hadronics, and his most fascinating 
arguments in support of the view that quantum mechanics should not, without 
new tests, be regarded as valid in nuclear and Hadronic mechanics, seem to me 
to augur a return to sanity: to that realism and objectivism for which Einstein 
stood, and which had been abandoned by those two very great physicists, 
Heisenberg and Bohr.    (Karl Popper 1982:14) 

 
Die Quantenmechanik ist sehr achtung-gebietend. Aber eine innere Stimme sagt 
mir, daß das doch nicht der wahre Jakob ist. Die Theorie liefert viel, aber dem 
Geheimnis des Alten bringt sie uns kaum näher. Jedenfalls bin ich überzeugt, 
daß der nicht würfelt.  

(Einstein 1926: Letter to Max Born) 
 
(Quantum mechanics is very imposing. But an inner voice tells me that this is 
still not the true Jacob. The theory delivers much, but it barely brings us closer 
to the secret of The Old One. In any case, I am convinced that He does not 
throw dice.) 

 
 
What is in the notion of “throwing a dice” ?  
 

Let us inspect and unfold what logical operations that reside enfolded in 
the notion of throwing dices as an exemplar of randomness and probability 
distributions. There are six classes of possible results for every event, the top 
face of the cube ending up as 1, 2, 3, 4, 5 or 6. When we consider the total result 
of many such events, we can group these results into six classes of results Ej 
where index j varies from 1 to 6.  
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In each particular event the individual effect is uniquely determined by 
physical laws and the initial conditions for the particular throw of the dice, such 
as gravitation, the force and direction of the throw, inertia and texture of the 
table, shape and texture of the dice etc. Thus, each individual effect is de facto 
uniquely determined by its corresponding and preceding individual cause, with 
the effect resulting from the cause by physical causality. If we specify and 
compare the individual causes in sufficient detail to pinpoint the decisive 
physical differences between causes that result in the physical differences 
between effects, the six classes of effects are also to be regarded as the result of 
six corresponding and preceding classes of causes Ci, where index i varies from 
1 to 6. Thus, also the six classes of effects would result from six classes of 
causes by physical causality. 

In the case of throwing dice it is difficult to specify and compare the 
individual causes in sufficient detail to establish the six classes of causes. It is 
hard to see that any easy attempt to specify significant variation in attributes 
between individual causes would favor one class of effects towards the other 
classes of effects. This consideration becomes reinforced when our empirical 
experience indicates that the six classes of effects occur almost equally often, 
and the more equal the more events of throwing the dice we consider. Hence, 
we find it adequate to regard the result of throwing dice as if it was random 
which class of effect the dice ended up into. This does not imply that we really 
mean that each individual effect is not uniquely determined from each 
individual cause, or that the six classes of effects are not uniquely determined 
from six imagined classes of causes, or that we will deny that both these 
determinations happen by physical causality if we investigated the events in 
sufficient microscopic physical detail. It only means that such an investigation 
is not worth the effort and trouble for our purpose at hand. It represents a huge 
advantage in thought economy for description and explanation when we 
radically simplify the whole constellation of physical events by applying the 
simile category of randomness instead of remaining (solely) at the physical level 
for description and explanation. 

When it is considered random which class of effect the throw of the dice 
ends up into, this implies that the result can be considered random in relation to 
both the individual physical cause and to the classes of physical causes. 
Compared to description and explanation by merely physical causality, this 
represents a radical simplification at the cause side of the logical expression. 
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The concept of randomness ignores and deletes all internal distinctions at the 
side of the cause, regarding them as if they were irrelevant for the effect. 
However, this does not imply any annihilation of cause. Now the form of the  
logical expression becomes: 
 

Exp1:  IF [cause] a dice is thrown as an individual event, with a resulting 
individual effect belonging to six possible classes of Ej;  
THEN [effect] it is considered random which class of Ej that will be the 
effect of the individual event  
 
Thus, introduction of the concept of randomness does no way contradict 

causality as such, but makes possible a novel type of causality which we denote 
randomness causality. By adding this novel type of causality, including the 
according type of simile, the universe of causal relations becomes expanded, not 
restricted. 

We realize that randomness causality represents a certain, novel type of 
causality built on the preexisting causality type of physical causality, and – 
further – that the adequacy of randomness causality is underpinned by certain 
relations of physical causality. Thus, it represents a philosophical mistake of 
category, i.e. a mistake in consistent meta-thinking, to consider randomness 
causality to contradict or undermine physical causality. 

This is with respect to the very category of randomness causality as 
regarded from conceptual logic. In order for this novel causality type to become 
adequately mobilized and applied, in partial substitution of underpinning 
relations of physical causality, certain requirements from said underpinning 
physical relations must be met. These requirements fall into two classes, 
depending on whether the physical requirements for randomness are considered 
ad negativo vs. ad positivo: 

Ad negativo:  The totality of external physical relations existing together 
with the cause in Exp1 and with the physical underpinnings of individual causes, 
or during the time span from cause to effect, is considered irrelevant for the 
relation between cause and effect at the level of physical causality. When 
already having established the concept of randomness, this means that these 
external physical relations are regarded as random and as cancelling out in 
relation to the cause in Exp1 and to the physical underpinnings of individual 
causes. Thus, the exclusion of these external physical relations expresses the 
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relevance of the concept of randomness for excluding purposes. We denote this 
as negative randomness. 

Ad positivo: Exp1 expresses positive randomness, i.e. the application of 
randomness causality after irrelevant externalities have become excluded by 
negative randomness. In order for this (positive) causality type to become 
adequate, it is required, as already stated, that the differences in individual 
physical causes really do result in a an (approximately) equal – i.e. random – 
distribution between the six possible classes of physical effects. In order for this 
to happen, it must also be the case that the individual cases of physical causes 
are distributed (approximately) equally between six imagined classes of 
physical causes Ci preceding and corresponding to their respective six classes 
of Ej.  

That these said (approximately) equal distributions really are the case 
we discover by solely investigating the distribution of individual effects among 
the six classes of Ej. It is this discovery from inspecting the distribution of 
physical effects from physical causality that makes it adequate to ignore any 
inspection of the differences between individual physical causes, and thus also 
to ignore the make-up and internal differences between the imagined six classes 
of physical causes Ci.  

When we from our scientific thinking do not see any obvious reason for 
one Ej to occur more often than another one, it is adequate to consider it random 
which Ej an individual physical effect will show to belong to. In the next step, 
though, it makes a big difference whether our hypotheses from thinking 
becomes supported or not, through experimental evidence. In the case of 
throwing dices it does become supported from our observation of the 
distribution of individual physical effects. It is our discovery from observation 
of the individual physical effects that makes it adequate to regard any difference 
between physical causes as if they were random.  

Thus, the positive randomness causality of Exp1 does not contradict 
physical causality, but presupposes physical causality by observing a certain 
pattern in the distribution of physical effects, i.e. of physical effects by physical 
causality from physical causes.  

Thus, before establishing Exp1, and especially after observation from 
experiment, there is another cognitive operator in place, stating that because it 
is regarded as random what Ej the dice ends up into, the application of Exp1 is 
regarded as an adequate consequence.  
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Obviously, observations of a random pattern in the distribution of 
individual physical effects between the classes Ej will not happen if the physical 
system is characterized by deviations from an idealized situation of throwing a 
dice, e.g. if the dice is thrown a very short distance, if the dice is not a regular 
cube, if the eyes of the dice are magnetic and the dice is thrown at a magnetic 
table, etc. Thus, there exist obvious constraints for which physical systems that 
can be adequately described or explained with good approximation by 
randomness causality. Only certain physical systems can be adequately 
approached by means of randomness causality. 

When it is regarded as random which Ej a throw of a dice ends up with 
as physical effect, this means that the six different classes of effects are regarded 
as non-differentiated with respect to probability. However, in next steps of 
thought the considered randomness between each six classes, rather 
automatically leads to various cases of non-randomness and differentiations 
with respect to probability. As trivial examples, the probability of effect E1 OR 
E2 from one throw of the dice will be twice the probability of effect E3, and the 
probability of effect E1 to occur twice from throwing the dice two times will be 
1/6 x 1/6 = 1/36. The laws of probability distributions and mathematical 
probability theory as a whole emerges from systematic unfoldments of what 
resides enfolded in the very concepts of randomness and probability.  

Since the concept of probability both presupposes and follows rather 
directly from the concept of randomness, we realize that probability causality 
also presupposes and follows rather directly from randomness causality as a 
novel and somewhat more elaborated type of causality than randomness 
causality. Because classes of physical effects are regarded as random compared 
to each other, more elaborated regroupings and sequences of these classes of 
effects must be non-random and differ in probability by exact mathematical 
laws. Thus, explanation of a physical system by means of probability causality 
will essentially relate to physical causality the same way as explanation of a 
physical system by means of randomness causality relates to physical causality 
in manners we already have clarified. We apply the broader term chance 
causality to cover both randomness causality and probability causality.  

To sum up we realize that:  
(i) randomness does not contradict causality, but implies a certain type of  
causality as expressed by Exp1;  
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(ii) randomness causality does not eliminate physical causality, but represents 
a more elaborated type of causality (by adding a certain simile) which 
presupposes physical causality;  
(iii) randomness causality represents an adequate wrapping with (formally 
regarded) partial substitution of physical causality only when being 
underpinned by certain cases of physical systems already characterized by 
physical causality. 

(From the above it should be clear that what here is stated with respect 
to randomness and randomness causality, also holds for probability causality 
and thus for chance causality as a whole.) 

It follows from (i) that the very question of whether the universe is based 
on random events or causality does not make any good sense, and even less to 
claim the first alternative. It follows from (ii) that the very question of whether 
the universe is based on chance causality or physical causality does not make 
any good sense, and even less to claim the first alternative. These conclusions 
follow from strict philosophical reasons without respect to the scientific theory 
under consideration. For theories in mathematical physics to reach adequate and 
fully mature expressions, they should be consistent with points (i), (ii) and (iii), 
and theoretical developments might benefit from deeper and more detailed 
reflections on their scientific material in relation to these points. 

In theories of mathematical physics interpretations and discussions with 
respect to the role of causality, tend to consider causality only in the sense of 
physical causality. In our philosophical treatise Outline of Differential 
Epistemology (Johansen 2008), we pretended to have presented a rather 
complete systematic development and exhibition of the whole nexus of causality 
types (cf. Johansen 2008: ch.3, 113-194; 248-9). It was disclosed and explained 
that the nexus included several types of causality, classified into ten 
fundamental types and ten elaborated types. Chance causality was presented as 
one among the ten elaborated types (cf. Johansen 2008: 165-175), while 
physical causality was presented as the least fundamental among the ten 
fundamental type (cf. Johansen 2008: 155-157). Above we have sought to 
clarify that chance causality for strict reasons of conceptual logic can not 
constitute any fundamental causality type on an equal footing with physical 
causality. However, even physical causality can not adequately be considered 
that fundamental as usually regarded in theoretical physics. In the following we 
will present some clarification of why this must be the case, in order to 
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contribute to some according clarification when contemplating the role of 
causality in theoretical physics. (For further discussion of various aspects, see 
Johansen 2008a, 2008b, 2008c, 2013, 2017.) 
 
Abstract causality vs. formal-logical causality  
 

When throwing a dice is considered a physical event implying physical 
causality between individual cause and individual effect, there already reside 
more fundamental types of causality enfolded in the very notion of physical 
causality.  

Before differentiating between types of causality there already must exist 
a universal and abstract concept of causality as such in cognition, namely the 
concept of the relation between two relata where a logically proceeding relatum 
denoted ‘effect’, with logical necessity follows from a logically preceding 
relatum denoted ‘cause’. In conventional formal logic causality is approached 
by the notion material implication where binary truth values of cause and effect 
in a logical expression first are assumed (or determined) independently of each 
other, whereafter material implication is defined as a certain truth function of 
the four pairs of said truth values, more specifically that the material implication 
is decided as true iff the pair (cause is true; effect is false) does not show up. 
While highly useful for many purposes, e.g. computer electronics, this approach 
to define causality is too shallow to hit the mark of that which it attempts to 
target and catch the essence of.  

From the definition of material implication the following expressions 
will be decided as true: 
(1) p => (q => p) 
           -p => (p => q) 
           (p => q) v (q => p) 
 

However, the claimed truths of such expressions are rather contra-
intuitive and not aligned with the concept of the relation IF…THEN… that 
tacitly is de facto operative in our ordinary cognition. The modus operandi of 
our innate, subconscious (or rather supraconscious) category of ‘causality’ does 
not start out with first separating and establishing candidates to cause and effect, 
for next comparing pairs of their truth values, and thereafter deciding one pair 
as a causal relation in distinction to the three other pairs. Our innate category 
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starts out with a logical entity of truth (cause) which unfolds organically into 
another logical entity of truth (effect) as its logically necessary result or fruit in 
a relation which we are not able to reflect upon before after the unfoldment has 
taken place. (And if performing such a reflection we will remobilize the same 
innate category of causality at a meta-level.)  

To hit the mark of the implicate, innate cognitive category of causality 
an adequate approach has to be much more abstract, deeper and accurate than 
what was the case for establishing the concept of material implication in 
conventional formal logic. In our treatise (Johansen 2008) we presented a novel 
– and tentatively completed – theory in order to cover and solve core issues of 
philosophy. We denoted our philosophical theory differential ontology, 
including differential epistemology as the more sophisticated “head” unfolded 
from and (next) into the ontological “body”. Our philosophy presented a 
systematic unfoldment of categories residing enfolded inside information as 
such, i.e. inside something being, whatever it might be, conceived in its most 
elementary, abstract and universal sense.  

The starting point for our systematic philosophical exhibition and 
successive unfoldments of categories, was information as such. The concept of 
information in the most abstracted qualitative sense, was established as close to 
Gregory Bateson’s famous definition of information as a difference that makes 
a difference for something/someone. (Our relatively minor and subtle deviations 
from the definition by Bateson do not matter much for the present text.) This 
definition can be reformulated as an input-difference making an output-
difference for a subject. (If the subject is not a human, or not even a living being, 
when e.g. one billiard ball receives – and reacts to – an input-difference from 
being hit by another billiard ball, the category of subject is operative by a 
minimum of anthropomorphic projection applied as an adequate simile. Already 
our grammar, with classes of subjects, verbs and objects, applies a minimum of 
such a simile.) Thus, the category of subject, whether in the emphatic sense or 
in the simile sense, is with necessity implied in the very definition of 
information in the most abstract sense. One striking illustration of the tacit de 
facto inclusion of the subject may be the notion of “rock hard reality”, not 
possible to deny for anyone with their senses intact, applying as exemplar the 
situation of a heavy stone falling on the toes of a human. Here we notice that a 
preferred exemplar of “rock hard reality” depends on the inclusion of the 
subject, i.e. of one emphatic subject showing (strong) emotion. In the most 
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abstract concept of information the input-difference makes an output-difference 
for a third entity which is considered a subject by having emotion (in the most 
abstract sense), and – as already stated – with pseudo-subjects not considered as 
having emotions treated with a minimum of anthropomorphic projection from 
the analyzing human subject.  

When starting out with this most abstract definition of information as 
such, the very act of the input-difference making (or better: unfolding into) the 
output-difference, can be adequately conceived as the causal relation between 
input-difference and output-difference, when this act of making, or unfoldment 
into, is cognitively regarded as logically necessary. In order to conceive this 
relation as solely logically necessary, we have to conceive the input-difference 
unfolding into an output-difference as abstracted into an imagined pure and 
free-standing thought universe of solely logical relations without regard to any 
connection to a physical input-difference and a physical output-difference.  

It is inside this imagined pure and free-standing universe of thought, 
without regard to correlations to physical input-differences and output-
differences, we can conceive causality, in its most abstract sense, as the relation 
from an input-difference unfolding into an output-difference. The cognitive 
category of causality must be grasped in its purest and most abstract sense before 
we can study how the category is universally implied in various types of 
causality such as e.g. physical causality. 

In our philosophical treatise we explained how the most abstract notion 
of causality as organically unfolding the input-difference into an output-
difference, could be adequately back-reflected by a certain formal 
representation achieved by means of set theory when placing and relating 
elements and classes at concisely differentiated ontological levels of thought 
inside a freestanding thought universe. The differentiations in ontological levels 
was presented as unfolding with necessity from consistent reflection from and 
upon the thought of information as such, in some distinction to modal logic 
which have tried to overcome – with some success – shortcomings in the notion 
of material implication by adding various logical operators while still not 
acknowledging the necessity of developing differentiations in ontological levels 
of thought in an organic, strict and systematic way quite different from “freely” 
playing around with voluntaristic constructions inside a logical toy universe.   

In the present context it would take too much space to try to represent 
our formal expressions and according philosophical reasoning. The main point 
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is that we found it possible and adequate to express the most abstract notion of 
causality by means of formal logic, so that abstract causality could be renamed 
formal-logical causality presupposing that this refers to the particular formal 
expression presented in our treatise.  
 
Projective causality 
 

Let us take a look at sensory perception. Neuroscience has shown that 
perception has a stepwise constitution, so that there is a lot going on from the 
subject receives an initial recept, defined as the first and most elementary kind 
of sensory information objectively possible to register for a subject, say a 
human, until the subject sense a percept available for its consciousness. The 
subject will consider its percept, say a flash of light, as residing outside the 
boundary represented by the skin of the subject, while in reality the percept 
occurs inside the boundary of the subject, with the preceding recept occurring 
at the immediate inside. Thus the subject performs an outward and backward 
projection of the real location of its perceived input-difference. Further, what 
sensory input the subject perceives, both in quality and in quantities of the 
quality, depends on the algorithms (including their semantics) constituting the 
sensory apparatus of the subject. During the perception these algorithms are 
hidden for the subject who de facto applies a projection outwards and backwards 
also of these subject-internal algorithms and their related subject-internal 
differences. Such projection of one causal relation between input-difference and 
output-difference to another causal relation between input-difference and 
output-difference, we denote as projective causality. 

By applying technical instruments more sensitive than our (direct) 
perception, another subject can research the exact relations between input- and 
output-differences constituting sensory perception, e.g. when studying how 
inputs of volumes and frequencies of sound from an external source become 
perceived by a human subject as corresponding but different volumes and 
frequencies. The researcher will tend to find that such relations between input- 
and output-differences follow the Weber-Fechner law for sensory perception. 
The Weber-Fechner relation implies that: 
(i) Input-differences are represented logarithmically as the output-differences 
registered by the subject. (If the volume of a sound increases with a factor of 8, 
the human ear will perceive this as increase with a factor of 3 due to 23=8.)  
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(ii) Input-differences below the lowest threshold and above the highest threshold 
for reception by the subject will not be represented as output-differences at all. 
(Frequencies too high or too low will not be heard by the human ear.)  
(iii) Since the resolution of input-differences is higher than the resolution of 
output-differences, any output-difference will cover plural preceding input-
differences which hence becomes conflated into the same output-difference. (If 
the difference between two frequencies are too small, the human ear will not 
perceive any difference.) 

With regard to perception we thus see that many input-differences do not 
unfold into any output-difference, and therefore they do not constitute any 
information for the perceiving subject (only for the external researcher). Also, 
we see that when the subject projects his percept (with implied subject-internal 
algorithms) outwards, there is implied a quantitative (logarithmic) 
transformation between the “real” external input-difference (as measured by the 
researcher) and the input-difference as perceived by the subject. The qualitative 
incongruence is even more radical since the perceiving subject does not have 
any access to the quality of any external difference. The first input-difference 
that constitutes information is the recept located at the immediate inside of the 
subject. Thus, the external input-difference is better considered as a pre-input-
difference. 

When we move from perception to proceeding information processing 
by the subject, projective causality must still be involved in every step of 
thought, although the implied incongruences (at least the qualitative ones) will 
be less radical in most cases. The tacit continued presence of projective causality 
is due to the fact that the subject can not process or reflect upon its distinctions 
before it has manifested them, and during the act of manifestation the distinction 
is hidden for the subject. Thus, the subject is always processing information one 
step ahead (when observed by the meta-subject of an external researcher) of 
what itself can be able to conceive. 

If, say, you make a distinction between yellow and green in an observed 
rainbow, there is not inserted any physical border between yellow and green as 
when children draw a line between objects by a black pencil. The border 
between the two colors is invisible at the perceived physical level, while the 
border still has a real existence as a mental category in the inherent make-up of 
the subject. It is the tacit projection of the border category, residing in the mental 
domain, onto the conceived physical domain, that constitutes the difference 
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between yellow and green in the object perceived by the subject. The subject 
perceives the difference in color after the category of border has become 
projected outwards. What the subject perceives as an input-difference from the 
physical domain is, when regarded from an external subject with imagined 
access to the inside of the subject, to be regarded as an output-difference where 
the inside category of border becomes projected. In general, since the criterion 
for classification always is hidden (while at the same time expressed) in the 
classification, the subject will always consider the level of being/reality it 
operates on (at least) one step lower than what is the case if regarded from an 
advanced external subject. Thus, projective causality, with this objectively 
implied simile of unidirectional level substitution, is with necessity tacitly 
present in all information processing and thus also tacitly enfolded in all (other) 
types of causality. 

In sensory perception the internal classifications that are projected 
remain hidden for the subject itself. We denote such as traceless classifications 
which yields trackless representations and processing of information. In more 
conscious information processing the projected internal classifications can 
become preserved and reflected upon, and we denote such as reflexive 
classifications. 

We may consider, as an example from more refined thought, a logician 
wrapping his head around whether the expression “I am always lying” (E) is 
true or false. This seems tricky to decide when he has only one out of two binary 
truth values to his disposition and the assumption of each of them leads to a 
contradiction. The contradictions arise when expression E is applied self-
referentially to also include itself as something to be true vs. false about, as 
indicated by the term ‘always’ interpreted as expanded without contextual 
limitation. Thus, the logician realizes that his trouble originates from that E 
conflates two different levels or logical types of expressions. In order to seek 
clarification he has to add a meta-level where E can be regarded to also be about 
itself. The logician unfolds a differentiation already residing enfolded in 
expression E as soon as he experienced some trouble, so that his reflexive 
classification into two levels arrives after the more immediate manifestation of 
expression E in the mind of the logician. 

The logician’s adequate differentiation into two levels of ontological 
being residing inside a considered freestanding logical universe of logical 
categories of thought, must be considered to have physical correlates in his 
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corresponding brain chemistry, and the logician will seek to express the two 
levels and the relation between them by physical means as drawings of 
classification schemes or written logical operators. In general, zero information 
can exist without being manifested by a physical expression and carrier 
(“physical” as regarded relatively to the ontological level of information) as the 
lower side of the “coin” of the information “atom”, whatever minimal (as 
software or net bank money expressed by pixels at a computer screen). Here, 
information represents the upper side of the coin and the physical 
manifestation/carrier the lower side, as far as the physical manifestation is 
regarded as expressing the information. The information of the same amount of 
money can be expressed by plural alternative physical carriers (coins, bills, net 
bank pixels), as well as the same universal Turing machine can be expressed by 
plural kinds of computer hardware. Thus, it can not be a 1:1 relation between 
information and its physical manifestation and carrier, and in this relation 
information represents the upper and most significant side of the coin vis-à-vis 
the lower side of the coin that represents the substance which incarnate the 
information. There is no information without substance, and thus without a 
differentiation (and relation) between two different ontological levels; and the 
substance is significant only insofar it manifests and carries the information. 
 
The triad of Truth, truth and false 
 

Back to our logician contemplating expression E. Before starting out to 
decide the truth value of the expression, he has first to receive and get the 
immediate meaning of the expression from possessing ordinary skills of 
language. Thereafter he starts out to reflect upon the truth vs. not of the 
expression from applying formal logic. Thus, he can not question the truth of 
the verbal expression E as being exposed to and received by him in the first 
place, i.e. the reality (inside a thought universe) of his initial thought object 
which only later on becomes reflected upon by his logical contemplations. To 
judge by logic whether an expression is true or not, it is presupposed (somewhat 
pre-meta) that the logician in the first place did receive and conceive the 
expression itself, i.e. the very thought object for his logical reflections, as taken 
for true. This can be denoted the prior truth of expression E without which the 
following logical investigation of whether E is true vs. false can not happen or 
have any meaning.  
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Thus, conventional formal logics is not restricted only be some 
shortcomings shortly indicated previously in this text, but also by ignoring the 
arrival of the initial expressions of the thought objects for exercises of formal 
logics; where these initial expressions are a priori to be regarded as prior truths 
qua stated. If we denote the prior truth with capital letter as Truth, the truth 
values of true and false become assigned afterwards as statements about the 
Truth expression. Without Truth there would not exist any thought object to 
think about as true vs. false, so that Truth must have logical priority to both true 
and false. It is not possible to start out with False as category, since the truth 
value false only can be about Truth and in this sense must be logically secondary 
and parasitic on the category of Truth. Conventional formal logic is constructed 
as if truth and non-truth are existing at (only) an equal footing, while from an 
extended contemplation there is always a triad involved in logical reflection, 
where Truth becomes differentiated into being true or false when Truth becomes 
reflected upon. In much human thinking Truth is not reflected upon, but unfolds 
organically into another Truth by mostly unconscious types of causality. It is 
due to ignoring this circumstance that conventional formal logic includes as true 
various expressions where claimed truthfulness appear contra-intuitively 
inadequate, as the examples we gave in (1). 

When a newborn baby opens its eyes, it will be confused and perhaps 
start wondering whether it is true or false that it is not dreaming. But in the first 
place, before the baby starts wondering about truth values and strives to place 
its novel visual experience ontologically, the baby can not question the fact of 
its visual experience as such. Thus, the triad of Truth and truth vs. false is 
operative in real life phenomena also outside the free-standing thought universe 
of formal logics.  

By analogy, it is mistaken to conceive the categories of creation and 
destruction as existing (only) at an equal ontological footing. It is not possible 
to destroy anything that is not already created; thus the prior category is 
Creation that next differentiates into being treated by (further) creation vs. 
destruction. It may be reason to question the adequacy of considering the 
category entropy that fundamental as in most theoretical physics. From a 
consistent triadic approach it may seem most reasonable to consider Syntropy 
as the prior category which becomes differentiated into negentropy vs. entropy. 
In the present context, however, it will lead way too far to attempt to lift and 
reinterpret the laws of thermodynamics from a triadic approach. 
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(As an aside with respect to moral philosophy: From analogous triadic 
reflections we might find that nor do the categories of good and evil exist (only) 
at an equal ontological footing. The category evil (vs. good) has to be about 
something, and if this prior something was not Good it is hard to see how the 
category of evil can have any meaning as negation of anything.) 
 
The profound ontological significance of the Fibonacci algorithm 
 

Already from our reflections above concerning abstract causality and 
projective causality it is indicated that when information is constituted as an 
input-difference unfolding into an output-difference for a subject, this happens 
by (i) the subject projecting subject-internal difference onto an ontological level 
residing below the ontological level where the subject-internal differences 
reside themselves, so that this projection is implied in the constitution of the 
input-difference; and by (ii) the subject unfolding the input-difference by means 
of its inherent causal operator(s) into the output-difference. When regarded 
formally as abstract, universal and elementary as possible, this has the form of 
the Fibonacci algorithm where the subject processes its preceding state by 
tacitly combining it with a projection of its present state, whereafter the next, 
proceeding state of the same subject unfolds by causal necessity. This means 
that the Fibonacci algorithm is tacitly residing inside information as such, when 
information is considered in its most abstract qualitative sense. Consequently, 
the Fibonacci algorithm must constitute the fundamental bridge between the 
qualitative and quantitative aspects of nature (cf. also Johansen 2006, 2008a, 
2014b). 

A radical implication from this apparent philosophical result was that 
even the field of natural numbers, as a distinguished part of (cognitively 
conceived) nature, should be possible to unfold from systematic reflection on 
the Fibonacci algorithm. In our treatise Fibonacci generation of natural 
numbers and prime numbers (Johansen 2011) the field of natural numbers 
became established as a supra-structure generated uniquely from the Fibonacci 
algorithm by successive alternations between ordinal and cardinal aspects of 
Fibonacci entities/numbers. Thus, while the Fibonacci series trivially is a subset 
of natural numbers, from this deeper contemplation, representing some 
Copernican turn, the natural numbers themselves emerged as generated from 
the Fibonacci algorithm (cf. also Johansen 2014a).  
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Our mathematical results connected to this refoundation of number 
theory may suggest that profound and concise reflections on information and 
causality categories hold a potential for catalyzing clarification and progress 
also in topics of theoretical physics. 
 
The nexus of causality types 
 

In our philosophical treatise different ontological levels and dimensions 
are systematically developed from successive reflections on categories residing 
tacitly enfolded in the very concept of information as such. Our causality theory 
does not hold any autonomous position towards ontology in general, but are 
anchored in this differential ontology and epistemology. Our development and 
differentiations between various causality types are, more accurately expressed, 
presented as integral and crucial aspects, unfolding more organically, inside the 
development of our differential ontology. 

As a whole this causality theory is too extensive and complex to become 
much presented in this text, but at least we can provide a condensed – and by 
necessity rather cryptical – description in order to give some idea about the 
nature of the fundamental causality types and of the relations between them: (cf. 
Johansen 2017) 
 
Fig. I: Illustration of the causality nexus anchored in the three dimensions physical 
(horizontal in black; 3 + 1D compressed as 1D time), algorithmic (vertical in yellow), 
and transalgorithmic (depth in red). Description of first-order alternates between 
process (black) and transfiguration (yellow), second-order between blue and orange. 
Higher orders activate from emergence (red) and unfold as structural change in process 
(light blue) or innovative change in transfiguration (dark green), with the possibility of 
the last being retroactive (purple). Whatever degree of order and systemic complexity, 
the illustrated conglomerate of causality types and arrows constitutes a completed 
nexus of information flows. 
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Formal logical causality: this category is universal for all thinkable 
information, i.e., for any information flow in any described information matrix, 
i.e., in the imagination of a pure and free-standing logical universe. Formal 
logical causality is deduced in its precise form from specified classification 
logic between the thinkable classes and elements from ontology differentiated 
vertically. All other causality types are subtypes and “clothes” of this abstract 
one, which is what qualify them as causality types. They unfold from specified 
additions of different similes, necessary in any dynamic system description, 
explicitly stated or not.  

Algorithmic causality: this is the causal relation from an input-value to 
an output-value inside the algorithm. 

Intra-physical causality: this is the causal relation from start point to end 
point of a process. 

Dynamic causality: this is the causal relation with the two subclasses: a) 
from end point of a process to start point in an algorithm; b) from end point of 
an algorithm to start point in a process. 

Projective causality: this is the causal relation from the meta-subject to 
the thought object as a whole; the potential inner classifications and causal 
relations being actualized in this projection (including formal logical causality). 
In fig. 1, the arrow of projective causality originates from the field (in green) of 
an enfolded nexus of causality types, denoting a segment inside the thinking 
meta-subject that makes the description, and manifests as the field (in indigo) 
of an unfolded nexus of causality types. The frame of the originating field is 
marked with broken white lines in order to distinguish its ontological status from 
the nexus projected into the derived field. 

Structural causality: this is the meta-algorithmic causality relation 
directing the process-output from an algorithm to the process-input for another 
algorithm and hence positioning all algorithms in a structure. 

Inter-algorithmic causality: this is the causal relation from an 
algorithmic output to the algorithmic input for another algorithm, hence 
ignoring the intermediary physical process by a projection to the vertical 
algorithmic axis. 

Emergent causality: this is the causal relation from an algorithm to a 
meta-algorithm. 

Innovative causality: this is the causal relation from a meta-algorithm to 
a first-order algorithm. An important subtype of innovative causality is the 
retroactive causal relation from a meta-algorithm to a first-order algorithm 
earlier connected to the meta-algorithm by emergent causality. 
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Diasynchronic causality: this is the causal relation made up by a circuit 
of algorithmic, physical, intraphysical, dynamic, projective, emergent, 
structural, and retroactive innovative causality. 

Physical causality: this is the physical relation from a process output to 
the process input of the next process; hence, ignoring all intermediary 
algorithmic and transalgorithmic transfigurations by a projection from the 
vertical axis or the depth axis to the horizontal axis. 

It follows from the illustration of the causality nexus in fig.1, that, e.g., 
the conventional notion of physical causality is far from constituting the most 
fundamental causality type. It is also far from any trivial causality types, due to 
its condensation of many involved causality paths through plural shortcuts and 
similes. Thus, it follows from strict and consistent philosophical-ontological 
reflection on the nexus of causality types which constitutes the reality of 
information in the cosmos, that ideas about cosmos as fundamentally physical 
or—even worse—only physical, are basically radically amputated and 
illusionary as judged by strict standards of scientifically informed and informing 
philosophy/meta-science.  

From these fundamental causality types, various elaborated causality 
types constituted by combinations of fundamental causality types were 
exhibited by Johansen (2008: ch. 3.2); among these are: randomness causality, 
probability causality, stochastic causality, intentional causality, selective 
causality, and imagined causality. Thus, more elaborated and epistemologically 
refined causality types, crucial in human and social systems, were understood 
inside the causality nexus anchored in the three ontological dimensions (see 
Johansen 2008a and 2008c for specified applications of this causality theory).
 It follows from our philosophical work that without a sufficiently 
differentiated and concise ontology, it becomes difficult and in part impossible 
to discover, differentiate and adequately place and relate several types of 
causality. Far most of theoretical physics is not much sophisticated in 
ontological differentiations, which leads – more or less – to corresponding 
restrictions in reflections on causality in general and on various causality types. 
Still, the most common “folk ontology” among physicists is limited to the 
simple binary distinction between the physical world and the mental world, for 
next to consider the physical world as the primary world or even as the only 
“real” world. We may take even Einstein as an example expressing a rather 
naïve ontology subscribing to philosophical materialism, although without the 
conventional notion of ‘matter’, expressing support to the tradition from Hume 
and Mach (cf. Einstein 2000 [1954]:81). 
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For many – not to say far most – purposes of physics, say, engineering 
by Newtonian mechanics, shortcomings in more or less subtle ontological 
differentiations do not matter much – if at all –, nor do shortcomings with regard 
to understanding the rather intricate relations between more fundamental 
causality types that reside enfolded in the conflated notion of physical causality. 
Extensive philosophical meta-reflections will in most cases show contra-
productive with respect to solving the task at hand, and the required implied 
relations between cognitive categories are best delegated to the wisdom, speed 
and precision performed by unconscious algorithms.  

However, in order to adequately approach and treat more fundamental 
issues in theoretical physics, which present crucial paradigmatic challenges, 
more abstract differentiations and meta-reflections may make a constructive 
difference. With respect to quantum physics more tricky philosophical issues 
became actualized as soon as the role of the observer had to be included into a 
broader perspective in order to understand what real entity that manifests 
through quantum measurements targeting the wave function.  
 
Approaching the Einstein-Podolsky-Rosen paradox 
 

When approaching the Einstein-Podolsky-Rosen paradox (Einstein et al. 
1935) in theoretical physics it is not adequate to consider the (mathematical) 
chance distribution as an attribute by the (physical) wave function, as opposed 
to causality (which tacitly is considered as physical causality). We have clarified 
that as located inside our theory of causality, anchored in our ontological 
framework, this can not with logical consistency be considered as an absolute 
opposition, in the sense of representing two opposing categories in their 
ontological basis. Firstly, physical causality does not represent the most 
fundamental type of causality, but enfolds and is internally built from more 
fundamental types of causality. Secondly, the concept of chance (including the 
concepts of randomness and probability) does itself represent a certain type of 
causality. Thirdly, chance causality does not represent any fundamental 
causality type, but one among several elaborated types of causality. Fourthly, 
chance causality, as when applied in explanation of a physical system, 
presupposes physical causality as one among the causality types chance 
causality is made-up by and from by addition and inclusion of certain simile 
operators. 
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When not being consistent with the four points above, theoretical 
discussion of EPR will contain some categorical conflations and inaccuracies. 
This does not implicate, however, that the discussion is without intellectual 
merit or importance, but it does implicate that more basic and consistent 
categorical differentiations and relations might catalyze further clarification of 
the issues discussed. 

Our differential philosophy might be characterized as a systematic 
qualitative informatics, i.e. that unfoldment into qualitative differentiations and 
categories precedes related quantifications of the unfolded qualities, as already 
indicated by the significance of the Fibonacci algorithm for refoundation of 
number theory as a whole (and in next steps catalyzing certain novel 
mathematical results more technically regarded), or by the significance of the 
Weber-Fechner logarithm in constitution of recepts. 

We may contrast this to the quantitative informatics presented by 
Shannon&Weaver (1949) where the concept of information was defined (1949: 
103f) from the concept of probability when contemplating signal to noise ratios 
and applying entropy formulas from theoretical physics. Their approach was 
technically sophisticated and showed highly fruitful, e.g. for developments of 
telecommunications. However, their quantitative “definition” of information 
appears as a second-hand pseudo-definition, since it already tacitly presupposed 
the very quality of ‘information’ to have become established (and thereafter 
becoming differentiated qualitatively into the concept of ‘signal’ as input-
difference at the sender side and an output-difference at the receiving side) 
before it became quantified for practical purposes. 

Later on both Chaitin and Kolmogoroff presented theories of 
quantitative informatics which were basically complementary to 
Shannon&Weaver, and Zurek presented a reasonable synthesis of Shannon vs. 
Chaitin/Kolmogoroff. In any case these potent developments of quantitative 
informatics, based on i.a. the notion of chance causality, has to be regarded as 
second-hand as compared to the qualitative informatics represented by our 
differential philosophy where the very category of chance causality does not 
occur before rather late in our systematic unfoldment of causality types. Thus, 
from a more profound and basically qualitative approach it is not adequate to 
refer to the quantitative second-hand definition of information applied in the 
information theory of Shannon (or others), with the according fundamental role 

628https://doi.org/10.52202/059404-0010

https://doi.org/10.52202/059404-0010


played by chance causality, in order to approach the deeper issues of theoretical 
physics as e.g. addressed by the EPR paradox. 

The abstract, while concise, definition by Turing (1935) of information 
as computation, connected to his astonishing invention of the Universal Turing 
Machine, is definitely more qualitative (in the first place) and independent of 
probability reflections than the definitions of information referred above. Still 
though, our definition is more qualitative, abstract and universal than Turing’s, 
with according possible robustness towards more fundamental progresses in 
informatics (e.g. Deutsch, Diaz/Rowlands, Bohm; cf. Johansen 2008:260f for a 
short discussion). 
 
Einstein, Podolsky and Rosen (1935) argued quantum mechanics to not 
represent a complete (physical) theory because the description of (physical) 
reality by the wave function in quantum mechanics was judged as not being 
complete. 
  They stated as a necessary condition for a complete theory that “every 
element of the physical reality must have a counterpart in the physical theory” 
(ibid.: 777). (We apply symbol ER to denote the first kind of element, and 
symbol ET to denote the second kind of element.) They stated as a sufficient 
condition for the occurrence of ER that the “value of a physical quantity” can be 
predicted with certainty, i.e. with probability=1 (ibid.). Next, from performing 
a certain thought experiment, consistent with quantum mechanics and its 
mathematical transformation theorems, they argued the occurrences of certain 
ERs that were not possible to describe by a corresponding counterpart of ET. 
Consequently, quantum mechanics could not be considered a complete theory.  

It was concluded as an open question whether a complete theory, 
overcoming their argued limitations of quantum mechanics, could be achieved, 
but the authors stated their belief in such a more advanced and general theory to 
be possible. 

Their thought experiment (ibid.: 779f) considered two (physical) 
systems interacting for some time, after which system I and system II are 
separated. The initial states of the two systems when they start to interact, are 
assumed as known. Then, from the Schrödinger equation with the wave function 
we can calculate the state of the combined system I&II at any time, including 
after the two systems separate. However, we can not calculate the state of each 
system after their interaction has become terminated. According to quantum 
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mechanics, such calculation is only possible from a measurement executing 
reduction of the wave packet. It is assumed that measurement only takes place 
in system I, either of coordinate(s) (position), thus being considered as ER, or 
of momentum considered as ER. Depending on which of the two binary 
alternatives for measurement that is chosen, the inferred wave function for 
system II, after the two systems have been separated, will look different. It does 
not appear consistent that the same system II, after separation, can be assigned 
with two different wave functions. 

Next, their thought experiment assumed two ER candidates, namely two 
particles P and Q with corresponding eigenfunctions of two non-commuting 
operators with respective eigenvalues. They presented a technical proof, 
concluded in their eq. (18), that the two different eigenfunctions, depending on 
starting out with measurement of the momentum of P vs. with of the 
coordinate(s) of P, represent alternative expressions of the same reality, and 
thus that both of the two non-commuting P and Q should be considered 
simultaneously as ER.  

Since the measurement process in system I is considered to not have any 
possible influence on the state of system II after the two systems have become 
separated, so that the measurement process in system I is irrelevant for the state 
of system II, it does not seem to make sense that the objective ER status of 
something residing in system II after the separation should depend on whether 
the measurement procedure in system I targeted position vs. momentum of a 
particle residing merely in system I, i.e. excluded from system II.  

The authors concluded that quantum mechanics offers a non-complete 
description of objectively existing ERs residing in system II since a calculation 
of both ERs residing simultaneously in system II is impossible to achieve 
(predict) from a definite measurement in system I, because such a measurement 
has to exclude one calculation on behalf of the other. 
 
Niels Bohr (1935) replied to this critique by pointing out that the very access to 
receive any experimental data about what was going on at the quantum level 
required experimental apparatus and procedures at the classical level. From the 
freely chosen specifics of the experimental design at the classical level it would 
be uniquely determined whether the position or the momentum of an elementary 
particle became targeted and measured. Consequently, it was not empirically 
possible to avoid that measurement of position vs. momentum of an elementary 
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particle had to be binary. Thus, it did not make sense to criticize quantum 
mechanics for not being “complete” in its description since the very access to 
the quantum level presupposed such incompleteness. Further, without such 
access to the quantum level, with said according narrowing constraints, zero 
predictions or possible assignments of values of ER, or indicating any existence 
of ER at all, would not be possible. Thus, Bohr argued that you could not criticize 
quantum mechanics for shortcomings with respect to not achieving complete 
descriptions at the quantum level when these shortcomings with necessity was 
entailed in the classical apparatus and procedures to get any access to the 
quantum level at all.  

Bohr presented the principle of complementarity, with respect to the 
quantum level, in order to account for the fact that even if it was not possible by 
experimental apparatus to measure (and calculate from) position and 
momentum of an elementary particle simultaneously, both approaches, 
corresponding to according measuring devices, should at the quantum  level be 
regarded as contributing to physical knowledge at an equal footing. Although 
not referred to by Bohr, this appears basically similar to the gestalt switch in 
psychology of perception, where, say, the alternation between rabbit and duck 
gives more complete information about the whole object for perception than 
each of the two perspectives. With respect to natural philosophy, regarded more 
in general, Bohr’s consideration implied that the complementarity principle had 
to be applied with more strict and basic necessity at the quantum level than at 
the classical level. 

Further, Bohr addressed some possible self-referential inconsistencies in 
the argument by Einstein et al. by clarifying that their critical conclusion was 
based on applying the transformation theorems developed inside the 
mathematics of quantum mechanics – and thus, at least to some extent, 
subscribing to the paradigmatic framework of quantum theory. Bohr also 
pointed out that quantum mechanics involved exchange of energy at the 
quantum level so that time and energy variables should be regarded as 
conjugates, rather analogous to position vs. momentum, and that this 
conjugation had an interesting similarity to a certain paradox in Einstein’s 
relativity theory. In order to perform experiments to test predictions from 
relativity theory, highly accurate assignments of time and space coordinates are 
required, as determined at the classical level, despite that relativity theory, 
especially the general theory of relativity, implies a novel theory about the very 
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relation between the coordinates of space and time where these coordinates can 
not be determined independently of each other. Thus, one crucial point from 
Bohr’s anti-critique is that we can not require from an advanced theory of 
physics that such paradoxes can be completely avoided; thus the question is how 
they are next treated and attempted reconciled from firstly acknowledging the 
necessity of the involved theoretical paradox.  

In the proceeding discussions in theoretical physics about the EPR 
paradox, Bohr’s anti-critique tended to be judged as satisfactory. There should 
be no doubt that Bohr clarified some key issues in a rather concise as well as in 
a creatively interesting manner. On the other hand, there might be that the 
arguments by Einstein et al. addressing possible limitations by quantum 
mechanics, compared to an imagined more advanced theory of physics, 
enfolded some rather deep and relevant points, despite that the philosophical 
clarity in presenting the argument was not that impressing and that the 
mathematical dressing of the argument did not support the basic argument that 
much, as much clarified by Bohr’s anti-critique. The more subtle and 
challenging request might be to attempt to access the possibly brilliant intuition 
by Einstein, never mind shortcomings in the published presentation of 1935 
from the intuition. 
 
David Bohm (1951) supported the anti-critique by Bohr (cf. ibid.: 611), while 
on the other hand Bohm followed Einstein by arguing that quantum theory 
should not imply denial or downplaying of causal laws. Bohm’s rather profound 
and constructive discussion of the EPR paradox might thus be said to represent 
some complementary superposition of both Bohr and Einstein.  

With respect to causality Bohm pointed out “the role of causal laws in 
making possible the identification of an object, whether it changes or not” (ibid.: 
163). In general “an object is identified by the way it reacts to forces of various 
kinds…Since the statement than an object reacts in a definite way to forces 
implies that it obeys causal laws, we conclude that no object can even be 
identified as such unless it obeys causal laws” (ibid.:163f; italics by me).  

Elementary particles as protons and electrons do not represent any 
exception in this regard: “It is from the reaction to electric and magnetic forces, 
and from the ionization of other atoms by the electric forces produced by a 
charged particle, that an electron or proton is identified” (ibid.:163; italics by 
me). 
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Bohm noted “that this criterion also includes seeing the object with the 
aid of light” (ibid.: 163; italics by me). Since causal laws are involved in all 
perception (cf. our previous discussion of projective causality and constitution 
of percepts), and there are no observations without perception, all observations 
must obey causal laws. 

According to Bohm the role of causal laws in order to identify an object 
was “certainly no less important” (ibid.: 163) in quantum physics than at the 
classical level. At the same time Bohm acknowledged Bohr’s complementarity 
principle for the quantum level, connected to Heisenberg’s uncertainty relation, 
and did not find it possible to interpret the non-commuting variables of 
momentum and position as separately and simultaneously existing and precisely 
defined elements of reality (cf. ibid.: 622f). And “exact causal laws would be 
meaningless in a context in which there were no precisely defined variables to 
which they could apply” (ibid.: 625; italics by me). Bohm interpreted the wave 
function as describing “the propagation of correlated potentialities” (ibid.: 621; 
italics by me), so that the quantum concept of a potentiality became more 
fundamental than the notions of momentum and position. 

In his general ontology Bohm (1987, 1993) regarded borders 
distinguishing physical objects not as totally absolute, but more – or less – as 
dotted lines. While the ontological assumption of complete separation between 
independent physical objects obviously represented an adequate approximation 
for theoretical physics at the classical level, Bohm argued that this assumption 
had to be relaxed with respect to certain phenomena occurring from the quantum 
level. 

Bohm (1951: 624-628) sought to clarify the interrelation between the 
classical and quantum level, as well as between their respective theoretical 
concepts. Rather than viewing the classical level as some special case from a 
generalized quantum theory, Bohm argued that the quantum world and the 
classical world should be understood complementary as mutually dependent. 
One of his points was that quantum theory presupposes the classical level 
because “the last stages of a measuring apparatus are always classically 
describable” (ibid.: 625). Without such measurements, quantum theory can 
hardly be said to have any meaning at all. And, if we look at the uncertainty 
relation between position and momentum, and the related complementarity 
between wave and particle, this relation does not manifest before in interaction 
with a classical system of measuring devices (cf. ibid.: 625, 627). 
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If we reflect a bit on the very concept of a physical wave, it is implied 
that the form of a wave as a mathematical concept must have a physical 
manifestation and carrier, as e.g. sound waves carried by molecules in the air 
or ocean waves carried by water molecules. Thus, a physical wave must be 
carried by a huge number of physical particles (or at least by something 
physical as in contrast to the information of the wave pattern itself). Here, the 
form of the wave appears at a much larger scale than each of the physical 
particles that make up the physical wave. If we consider a physical wave to 
have a complementary state as a particle at the same scale as itself, the concept 
of a physical wave will then tacitly (by transitivity) imply a relation between 
the large-scale particle and the small-scale particles. The wave-particle duality 
at the quantum level is well known, but transformations between the physical 
state and the wave state have also been documented as possible at the 
molecular level where (more or less) the same information of the molecule is 
preserved during the transformation to its specific frequency constellation (cf. 
i.a. Gariaev et al. 2000, 2011; Montagnier et al. 2011, 2014; Marvi&Ghadiri 
2020; Brand et al. 2020). The philosophical point here, of some possible 
relevance for theoretical physics, is that the conceptual contrast between a 
physical wave and a physical particle is not an absolute opposition, but 
relative to the scales considered adequate for description of the involved 
phenomena.  

Then one may ask: When describing a quantum phenomenon as a wave, 
and consider the wave to be a physical wave and not only a pure mathematical 
notion, what are the physical sub-entities that make up the wave? If such sub-
entities are imagined to exist, then the application of chance causality in 
describing measurement probabilities in quantum mechanics might not be that 
completely different, after all, from applying chance causality when throwing 
dices.  

In his work Causality and Chance in Modern Physics (Bohm 1984; first 
ed. 1957), Bohm presented a sophisticated reflection on the philosophical 
categories of causality vs. chance. There are significant overlaps between some 
key points in Bohm’s treatment and our own treatment of chance vs. causality 
(originally presented in a publication from 1991 and developed without 
knowledge about Bohm’s work), especially where he discusses “chance and 
necessary causal interconnections” (ibid.: 139-146). In his last work, The 
Undivided Universe. An Ontological Interpretation of Quantum Theory (Bohm 
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1993), Bohm stated: “To sum up then…in no sense is probability being regarded 
as a fundamental concept. Rather the properties of the individual system are 
taken as primary, and probabilities are interpreted in terms of these”.  

In his works Bohm presented various causal interpretations of physical 
phenomena and theories often opinioned not to be causal, with related 
discussions of causality in different aspects. In the present context we have 
focused mostly on his basic points about the role of causality as expressed in 
more direct relation to his discussion of the EPR paradox. 

Bohm followed Einstein in demanding that principle(s) of causality 
should prevail also in interpretation of and further development of quantum 
theory. However, Bohm found Einstein’s requirement of one-to-one 
correspondence between any conceivable ER with a counterpart ET to be too 
strong, and he did not share Einstein’s optimistic belief that a complete 
(physical) theory should be possible to achieve. Bohm wrote:  
 

A complete theory will always require concepts that are more general 
than that of analysis into precisely defined elements. We may probably 
expect that even the more general types of concepts provided by the 
present quantum theory will also ultimately be found to provide only a 
partial reflection of the infinitely complex and subtle structure of the 
world. As science develops, we may therefore look forward to the 
appearance of still never concepts, which are only faintly foreshadowed 
at present (Bohm 1951: 622) 

 
The last words by Bohm may be taken as rather prophetic when 

reflecting upon the immense contributions to progress in theories of physics, as 
well as to related progress in mathematics, chemistry, biology and technology, 
achieved by Ruggero Maria Santilli.  
 
Some basics about the hadronic sciences initiated by Santilli 
 

Santilli initiated the establishment of vast new fields of scientific theory 
and discovery denoted by the umbrella term hadronic science(s) covering 
hadronic mathematics, hadronic mechanics, hadronic chemistry, hadronic 
biology, and hadronic technology. The main reason for the choice of the term 
‘hadronic’ was that Santilli initially approached the hadrons in the nucleus by 
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regarding elementary particles as extended particles, in distinction to 
conventional quantum mechanics treating elementary particles more 
simplistically as if they were point particles, and found it necessary to develop 
novel mathematics in order to adequately analyze extended particles. Next, this 
mathematics and related development of novel physical theory showed both 
potent and rather necessary when also addressing plural issues of physics 
outside nuclear physics. Hadronic mathematics was structured by a layered 
architecture where a novel layer of isonumbers emerged as a “second floor” 
above natural numbers where the “elevator” (these metaphors are mine, not 
Santilli’s) between the two floors was constituted by the isotopic element which 
indicated the transform of the conventional unit, represented by the natural 
number 1, to another (arbitrary) unit whereby a whole field of novel numbers 
emerged from the basic relation between the two units. A further layer of 
genonumbers emerged as a “third floor” of non-commuting numbers accounting 
more directly for irreversibility as category. An even further layer of 
hyperstructural numbers emerged as a “fourth floor” of numbers themselves 
having an intrinsic layered structuring, somewhat similar to one hand possessing 
plural fingers and thus being multi-valued. 

In the architecture of hadronic number theory the numbers residing at 
each level were included as a sub-set of the numbers residing at the level above 
(that is, when taking the “elevator” down again and performing downwards 
degeneration as the opposite transform of upwards lifting). Further, in the 
architecture of hadronic number theory each level in the number landscape had 
a “mirrored twin landscape” of numbers, denoted its isodual.  

In hadronic mathematics hadronic geometry corresponds isomorphically 
to the architecture of hadronic number theory. Although Santilli by far has been 
the most innovative and important scientist contributing to the development of 
the hadronic sciences, by a rough estimate some 2-300 scientists world wide 
have also published contributions in more or less specialized fields inside the 
hadronic sciences. Some obviously important contributions have been T. 
Vougiouklis creating much of the sufficiently abstract hyperstructures to inspire 
Santilli’s mathematical inventions; S. Georgiev lifting the ordinary calculus to 
the more complex isocalculus published in voluminous detail; J. Dunning-
Davis lifting the laws of thermodynamics to a more general formulation by 
isomathematics; A. Animalu pioneering the field of iso-superconductivity (along 
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with Santilli himself); and C. Illert pioneering hadronic biology (along with 
Santilli himself).  

With regard to hadronic geometry the achievements by Illert (1995; cf. 
also Johansen 2008a, 2008b, 2008c) hold extraordinary significance. Illert 
wanted to find a universal formula to describe the growth pattern of sea shells, 
with as few variables as possible, compared with a data base covering some 
100 000 empirical cases of sea shell growth. This showed not to be possible by 
applying Euclidian geometry, nor with the geometries of Minkowski (applied 
in Einstein SR) or of Riemann (applied in Einstein GR), while it did show 
possible by applying hadronic geometry. Further, formulated by the 
mathematical concepts of hadronic geometry, the universal formula showed to 
be surprisingly simple, entailing only two basic variables, while at the same 
time, for certain particular species of sea shells, the growth pattern, as described 
by hadronic geometry, included non-trivial information flows jumping forwards 
and backwards as perceived from our ordinary experience of Euclidian time.  
This circumstance could be interpreted as further support for the adequacy and 
potency of hadronic geometry, since such non-trivial time flows were included 
as possible at the genotypic level of hadronic geometry, and also – before Illert’s 
discovery – had been predicted by Santilli to later become discovered in 
empirical systems! 

Santilli himself presented results in nuclear physics providing further 
support to the relevance and potency of hadronic geometry. The discovery by 
Illert stands out as rather spectacular since it provided crucial support to 
hadronic geometry from an extensive study at the classical level involving much 
more complex entities (sea shells) than elementary particles. More generally 
regarded, this was not that much of a surprise from hadronic mathematics, since 
higher and more complex levels of hadronic geometry, in this case: the level of 
genotopic geometry, were assumed to become more relevant for analysis the 
more complex the targeted empirical system was assumed to be. 

When it showed not possible to find a universal formula for sea shell 
growth at the classical level by means of the Minkowski geometry of Einstein 
SR, nor by means of the Riemann geometry of Einstein GR, while it did show 
possible to find by hadronic geometry, it ought to suffice to give Santilli, the 
main inventor of hadronic mathematics and geometry, a very strong voice with 
regard to an adequate hadronic reconsideration of the EPR paradox and the 
implied relations between the classical and the quantum level. 
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(For an introductory overview of the hadronic sciences, see Gandzha and 
Kadeisvili (2011). For a general bibliography per 2008, see Institute for Basic 
Research (2008). For some key publications, see Santilli 1994, 2001, 2003, 
2006, 2008.) 
 
Santilli’s reconsideration of the EPR discussion from achievements in 
hadronic mechanics 
 

From the very onset of developing hadronic mechanics the whole body 
of conventional quantum mechanics, addressing elementary particles as 
idealized point particles instead of as extended particles, had to be considered a 
sub-set of, and explained from, the lifted and broader theory of hadronic 
mechanics, due to being based on simplified assumptions and thereby 
scientifically limited. Quite recently, Santilli (2019, 2020) has directly 
addressed and provided a rather extensive reconsideration of the EPR 
discussion, based on achievements by hadronic mechanics. Although he also 
previously has given substantial comments to the EPR discussion (cf. Santilli 
1998), the recent publications of Santilli offer much more and sharpened foods 
for thought.  

In his publications Santilli has often displayed a humble attitude with 
respect to (anyone) ever achieving a complete or final theory about 
physical/empirical systems, much aligned with the attitude displayed by Bohm 
in the quotation we referred above before as a transition to introducing Santilli. 
Santilli (2019) states that “ ‘completion of quantum mechanics’ is used in 
Einstein’s sense for the intent of honoring his memory”, and Santilli (2020) 
claims “there is no doubt that the ‘completion’ of quantum mechanics is, by far, 
Einstein’s most important legacy”. Taken together, we may interpret this as 
Santilli regarding development towards a complete theory in the sense of 
Einstein as adequate and highly important, and that various achievements of 
hadronic mechanics as a matter of fact have provided important results along 
that line. 

Let us shortly address at least a few key points in Santilli’s 
reconsideration of the EPR discussion from achievements by hadronic 
mechanics. 

Reversible vs. irreversible time. Some of the objections against the EPR 
argument had as necessary condition the conventional axiom of quantum theory 
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where time was considered invariant with respect to time-reversal, i.e. that time 
at the quantum level could flow backwards with the same probability as 
forwards as conceived in Euclidian time. The obvious incompatibility between 
this axiom and the arrow of thermodynamics at the classical level, became 
resolved by hadronic mechanics lifting both classical descriptions and quantum 
descriptions to a genotypic level of description which basically accounted for 
irreversibility of time across the distinction between the classical and quantum 
level (while at the same time allowing three novel and non-trivial categories of 
time as necessarily “attached”, categorically more secondary, to this 
irreversibility). It may be of some interest to note this theoretical achievements 
being somewhat foreshadowed by Bohm’s closing note in his thick book 
Quantum Theory: 
 

We propose also that irreversible processes taking place in the large 
scale environment may also have to appear explicitly in the fundamental 
equations describing phenomena at the nuclear level.  

(Bohm 1951: 628) 
 

Radical shrinking of the span of the insecurity relation. The isotopic 
elements required for adequate descriptions by iso-mechanics (or geno-
mechanics) of coordinates and momenta for particles within hyperdense media 
(as the interior of hadrons, nuclei, or stars), have showed to always be very 
small. This reduces rather radically, and proportional to the density of the non-
empty medium, the span of the insecurity relation between position and 
momentum when an adequate description by means of hadronic mechanics are 
being applied. This shrinking could not be discovered by treating elementary 
particles as point particles instead of as extended particles. From this discovery 
Santilli provided a mathematical formulation of the so-called iso-deterministic 
iso-principle, implying that the product of (iso)standard (iso)deviations for 
(iso)coordinates and (iso)momenta progressively approaches a classical 
description for extended particles with the increase in density of the medium. 

Generalized lifting and revision of the conventional wave function.  By 
lifting the description of the conventional wave function to a more generalized 
description by iso-mechanics, Santilli argued that it was possible to include a 
representation of the attractive force between identical electron pairs in valence 
coupling (the so-called fifth force, or contact force, connected to the notion of 
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the iso-electron, with related orbit and magnetic polarization, in hadronic 
chemistry). This more advanced description of the wave function in quantum 
mechanics gave support to Einstein’s suspicion that the wave function as 
described in conventional quantum mechanics did not represent a final or 
complete description.  

It should be indicated already from these few key points that a 
scientifically competent discussion of EPR today, both philosophically and 
more directly related to theoretical physics, needs to be upgraded to the present 
state of de facto forefront theoretical physics. 
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Abstract:  
A general relativistic theory of electromagnetic (EM) field is 
developed by constructing an EM tensor which is an outer product 
of EM vector potentials. The Einstein’s equations are modified 
using this EM tensor and the coupling constant is found to be 
inversely proportional to Planck’s constant. Maxwell’s equations, in 
their current form, do not provide equations of motion; equations of 
motions are provided by Lorentz force equations which do not 
follow from Maxwell’s equations. However, with the proposed 
theory of EM field, the modified Maxwell’s equations lead to 
Lorentz force equations. The derived wavefunction for photons may 
be interpreted deterministically as the slowly varying envelope of 
the EM potential or statistically as the absolute square of the 
wavefunction is the probability density of photons.   
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1. Introduction  
     The problems of classical electrodynamics can be divided into two classes. (i) 
The charge and current distributions are known and the resulting electromagnetic 
(EM) fields are calculated, and (ii) the external EM fields are specified and the 
motion of charged particles under the influence of EM fields are calculated [1]. 
When these two problems are combined as in the case of bremsstrahlung, the 
classical treatment is a two-step process: (i) the motion of charged particle in the 
external field is determined ignoring the emission of radiation by the charged 
particles, and then (ii) Maxwell’s equations are solved to find the EM fields taking 
into account the trajectory of the moving charges. As pointed by Jackson [1], this 
way of handling problems in electrodynamics is of approximate validity since the 
emitted radiation due to accelerating charges carries off energy and momentum, 
and so must influence the subsequent motion of charged particles. A correct 
treatment must include the reaction of radiation on the motion of sources. A 
classical treatment of reactive effects of the radiation does not exist [1].  However, 
a semiclassical theory in which the field is treated classically and the charged matter 
is treated quantum mechanically, contain the back-action of the radiation field on 
the charge [2]. In Maxwell’s theory (classical theory), the field equations do not 
provide the equations of motion for charged particles; equations of motion are given 
separately by Lorentz force equations. In contrast, in the theory of gravitation, the 
equation of motion of mass points follow from Einstein’s field equations [3]. 
Bergmann [4] attributed this to the fact that the field equations of gravitation satisfy 
four identities, while Maxwell’s equations satisfy only one. Another important 
difference is that Maxwell’s equations, in the current form, are linear for vacuum. 
If solutions are obtained by the linear combinations, charged particles will not 
interact with each other. In contrast, Einstein’s field equations are nonlinear; even 
the classical interaction of mass points is brought about by the nonlinear terms in 
the field equations [5,6]. Bergmann pointed out that a field theory can lead to laws 
of motion only if the (i) field equations satisfy at least four identities, and (ii) they 
are nonlinear [4]. In this paper, four identities that are satisfied by the EM vector 
potentials are first derived and then a general relativistic theory of EM field is 
developed. The resulting EM field equations are nonlinear and the equations of 
motion that resemble the Lorentz force equations follow from these nonlinear EM 
field equations.    
 
       Tolman, Ehrenfest, and Podolsky [7] investigated the gravitational interaction 
between two electromagnetic waves in vacuum and showed that the “test rays of 
light” in the neighborhood of an intense electromagnetic pulse are not deflected 
when the test ray is propagating parallel with the intense pulse. Later, Scully [8] 
showed that when a probe pulse and an intense laser pulse are propagating parallel 
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with their velocities less than the speed of light in vacuum, interesting gravitational 
interaction between them can occur. For example, when an intense laser pulse 
propagates in a dielectric waveguide and the probe pulse propagates in the bulk 
dielectric (i.e. outside the waveguide) in the same direction as that of intense pulse, 
the probe pulse undergoes a small shift (towards the intense pulse) due to 
gravitational interaction between them. There have been many attempts to combine 
the theory of gravitation and electromagnetesim, which is summarized by Santilli 
[9].  Kaluza combined electromagnetism with gravitation in 5 D [10] and Klein 
applied this idea to quantum theory [11], laying a basis for various versions of string 
theory [12]. As in the Kaluza-Klein theory, the tensor formed by the outer product 
of electromagnetic vector potentials plays an important role in our approach. 
 
     Although Einstein’s general theory of relativity (GR) is well accepted, 
alternative theories and modified GR theories have drawn significant interest [10-
14]. The GR has been verified for masses on length scales of the solar system, but 
it faces challenges on quantum and cosmological scales [14]. In this paper, we 
retain the structure of GR theory, but introduce a novel electromagnetic tensor as 
an additional source term in Einstein’s equations. Without this term, the modified 
Maxwell-Einstein equations do not lead to Lorentz Force equations.  The relation 
between matter and EM field can be interpreted from two different standpoints [13]. 
The first is the unitarian standpoint which assumes only one entity, the EM field. 
The particles of matter are considered as singularities of EM field and mass is a 
derived notion to be expressed by EM field energy (or EM mass). The second is the 
dualistic standpoint which takes particles and fields as two different entities. The 
particles are the sources of the field, but are not a part of the field [13].   In classical 
electrodynamics, charged particles (the cause) are distinguished from EM field (the 
effect). The charged particles are considered as the sources for the EM field 
corresponding to dualistic standpoint. In this paper, it is postulated that the cause 
and effect are inseparable and the charge is embedded in the field itself. Using this 
idea, an electromagnetic tensor which is an outer product of EM vector potentials 
is constructed and the divergence of this tensor satisfies four identities. In the theory 
of gravitation, the constant appearing in Einstein’s field equations is connected to 
the gravitational constant. Similarly, in the proposed theory, the coupling constant 
(κ ) is connected to Planck’s constant. Under the slowly varying envelope 
approximations, it is shown that the nonlinear EM field equations reduce to 
Schrodinger equation with one of the potential terms being the self-trapping 
potential. It is also shown that the rate of change of mean momentum of the EM 
wave packet is given by Newton’s laws with one of the forces being Lorentz force.  
Using a weak field approximation for the metric tensor, modified Manakov 
equations are derived for orthogonal polarization components of electromagnetic 
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fields. Manakov equations have been used to describe the evolution of orthogonal 
polarization components in a nonlinear fiber [15]. 
 
       The modified Maxwell-Einstein equations lead to a wavefunction φ  for 
photons, which can be interpreted in two different ways: (i) deterministic 
interpretation - φ  is the slowly varying envelope of EM potential and momentum 

density of the EM wave is Im[ *] / 2ω φ φ∇  , where ω is 

the mean frequency of the EM field, (ii) statistical interpretation -  |φ
(𝑥𝑥,𝑦𝑦, 𝑧𝑧)|2dxdydz represents the probability that a photon is present in the region 
between (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and (𝑥𝑥 + 𝑑𝑑𝑥𝑥,𝑦𝑦 + 𝑑𝑑𝑦𝑦, 𝑧𝑧 + 𝑑𝑑𝑧𝑧), and the  probability current density 

is ( , ) Im[ *]
2

r t
m

φ φ= ∇j    . In the classical limit, Schrodinger equation leads to 

Lorentz force equations.                      

       Next, by treating the nonlinear effects (i.e. spacetime curvature) as a small 
perturbation on the linear fundamental mode of a rectangular cavity resonator, a 
dispersion relation is derived. It is found that the resonant frequency of the cavity 
is shifted by an amount proportional to the square of the EM energy stored in the 
cavity, due to spacetime curvature. The dispersion relation is expressed as a special 
relativistic equation describing the relation between the EM energy, the EM 
momentum and rest mass, from which it is found that the coupling constant is 
inversely proportional to Planck’s constant.  

     This paper is organized as follows. In Section 2, an EM tensor which is an outer 
product of EM vector potentials is constructed and the EM energy-momentum 
tensor appearing in Einstein’s equations is modified using this tensor.  The field 
equations are solved under the weak field approximations in Section 3 and it is 
shown that the modified Maxwell’s equations reduce to modified nonlinear 
Schrodinger equation or modified Manakov equations, which lead to Lorentz force 
equations. Section 4 deals with the analysis of rectangular cavity resonator under 
the weak field approximation and the impact of spacetime curvature on the resonant 
frequency of the cavity is investigated.  
 
2. Electromagnetic Tensor and Field Equations 

  The electromagnetic potential Aµ may be written as  

                                          
,dxA U

d

µ
µ µη η

λ
= =                                                      (1) 
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where η is a scalar similar to charge (although of different dimension), λ is a 
parameter along the world line, and U µ  are the components of 4-velocity. Consider 
a locally inertial frame O. We follow the notations of [16]. Let  

                                                                
0 1 2 3( , , , ).

O
U U U U→U


                              (2) 

In the frame O, the components of U


are constants along the worldline at a point 
P, i.e.,   

                                                             
  ,

0,  

or  
 0.

d
d

dU dxU
d d

α β
α
β

λ

λ λ

=

= =

U


                                 (3)           

In the frame O, the Lorentz gauge condition is 

                                                                                          , 0.Aµ
µ =                          (4) 

With the definition of Eq. (1), the Lorentz condition is nothing but the conservation 
of η . Using Eq. (1) in Eq. (4) and using   , 0U µ

µ = , we find 

                                                          

 0.d
d
η
λ
=                                                        (5) 

Using Eqs. (5) and (3), we find 

                                                       
   0.dA d dUU
d d d

α α
αη η

λ λ λ
= + =                          (6) 

From Eq. (6), we have 

                                                        

  ,

  ,

 0,

or
0.

dA A U
d

A A

α
α β
β

α β
β

λ
= =

=

                                         (7)                                      

Using Eqs. (7) and (4), we find the conservation relation 

                                                         ,   ,   ,( ) 0.A A A A A Aα β α β α β
β β β= + =                   (8) 
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Since (8) is a tensor equation, it is valid in any coordinate frame. So, we have 

                                                                                ;( ) 0,A Aα β
β =                         (9) 

where semicolon denotes the covariant derivative. We define an electromagnetic 
tensor 

                                                                                ,T A Aαβ α β=                         (10) 

with the conservation relation 

                                                                                  ; 0.T αβ
β =                                  (11) 

To the best of our knowledge, the conservation relation (8) is not known in the 
literature. We choose the unit of Aα as /J m so that the unit of energy density, 

2 2( ) / 2E H+  is 3/J m and the dimension of T αβ is /J m . Hence, T αβ  may be 
termed as power-force tensor.  

In fact, the tensor T αβ  is similar to stress-energy tensor for ‘dust’, which is given 
by [4,15,16] 

                                                                   ,dustT U Uαβ α βρ=                                    (12) 

where ρ is the energy density. Eq. (10) may also be written as 

                                                                                                                                                                                           
2 ,T U Uαβ α βη=                                           (13)  

with 2η playing the role of ρ , although their dimensions are different.                                                                           

To verify the validity of Eq. (8), consider a forward propagating plane wave 

                                                                                           
exp[ ( )],       1, 2.j jA D i k x jν

ν= =                          (14)                                                                                                                          

Using the Lorentz gauge conditions, we find 

                                                                    1 2
1 2 .k D k D= −                                            (15)                                                                                                                                                  

Using Eq. (15), we find that Eq. (8) is automatically satisfied for a forward 
propagating plane wave. To verify if Eq. (8) is satisfied when the EM field is 
confined, we solved Maxwell’s equations using the finite difference time domain 
(FDTD) technique for a rectangular cavity resonator, which is a rectangular 
metallic waveguide that is closed off at both ends by metallic walls (see Fig. 1). 
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The length of the cavity is Lj in xj direction and for simplicity, we assumed that 
Lj=L. The walls of the cavity are assumed to be a perfect conductor so that the 
tangential component of the electric field is zero at the conducting walls. We 
excited this cavity on the left side with a propagating plane wave given by Eq. (14) 
and the constants jD  satisfy Eq. (15) (for example, there is an antenna on the left 
wall which emits the EM field of the form given by Eq. (14)).  Numerical solution 
of the Maxwell’s equations showed that the Lorentz gauge condition, Eq. (4) and 
conservation relations, Eq. (8) are satisfied at each point in the cavity for t >= 0.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A rectangular cavity resonator. 

2.1. Einstein’s Field Equations  
    Einstein’s field equations are given by [4,9,17] 

                                          
4

1 8 [ ],
2

mat emGG R g R g T T
cµν µν µν µν µν µν
π

≡ − −Λ = − +      (16) 

where  matTµν  and emTµν  are the energy-momentum tensors of matter and 
electromagnetic field, respectively. For “dust”, we have 

                                                                                ,matT V Vµν µ νρ=                        (17) 

where ρ is the energy density of the matter and Vµ  is its four-velocity. Santilli [9] 
has analyzed the gravitational field of partons under the assumptions that (i) 
gravitational field of any massive body is partially due to the EM fields of its 
charged basic constituents (weak assumption) and (ii) gravitation field is entirely 
due to the EM fields (strong assumption).  

L
 

L
 

L
 

Metallic Walls  
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    When only the electromagnetic field is present (i.e. 0ρ = ), Einstein’s field 
equations are given by [4,17] 

4

1 8 ,
2

emGG R g R g T
cµν µν µν µν µν
π

≡ − −Λ = −             (18) 

where the EM energy-momentum tensor is given by 

                                                                    

 

, ,

1 ,
4
,

emT F F g F F

F A A

γ γδ
µν µγ ν µν γδ

γδ δ γ γ δ

= −

= −
      (19)                          

and 

         ;( ) 0.em
vT µν =                               (20) 

  According to the GR with the EM tensor given by Eq. (19), there is no 
gravitational interaction between two EM fields propagating in parallel in vacuum 
[7]. In this paper, we modify the EM tensor as 

' ,em emT A A Tµν µ ν µνα= +                     (21)                                                                                           

where α is a constant. Since A Aµ ν  is the power-force tensor, α  has a dimension 
of 1/ 2m .Using Eqs. (11) and (20), we find this new tensor to be divergence-free, 
i.e. 

                       
'

     ;( ) 0.em
vT µν =                                  (22)                                                                                          

Since     ; 0Gµν
ν = , using 'emT µν instead of emTµν in Eq. (18), we find 

4

1 8
2

emGR g R g A A T
cµν µν µν µ ν µν
πκ− −Λ = − ,                                      (23) 

where 48 / .G cκ πα= −   Since we chose the unit of Aµ  to be /J m , κ   has the 
dimension of 1/ ( )Jm , which is the same as that of 1/ ( )hc , where h is Planck’s 
constant. Santlli [18] discusses in detail the importance of the forgotten Freud 
identity [19] of Riemannian geometry that requires a first order source on the right 
hand side of Einstein’s equations, as in Eq. (23).  
Equation (23) may also be derived using the following Lagrangian density for the 
electromagnetic field, 

ℒ 4

82 | |GA A F F g
c

µ µν
µ µν

πκ = −  
,              (24)                                                                                        

where g is the determinant of the matrix of metric components. The effect of the 
last term on the right hand side (RHS) of Eq. (23) on the evolution of 
electromagnetic field is already studied in Refs. [7-8]. While studying the evolution 
of electromagnetic field, we expect that the impact of the term with cosmological 
constant Λ is negligible and hence, we set Λ  = 0. In this paper, we focus only on 
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the impact of the first term on the right hand side of Eq. (23) on the spacetime 
curvature and the subsequent changes in the evolution of electromagnetic field. 
2.2 Maxwell’s Equations in Curved Spacetime 
   In a locally inertial frame, Maxwell’s equations are given by 

2

    0,Aν
αβ

α βη
ξ ξ
∂

=
∂ ∂

                                (25) 

where     
αβη  is the Minkowski metric.  The Lorentz gauge conditions are 

0.Aν

νξ
∂

=
∂

                           (26) 

Using the transformation, 

' ,xA A
µ

µ ν
νξ

∂
=
∂

                  (27) 

where 'A µ  is the electromagnetic potential in the new coordinates { }xµ . 
Substituting Eq. (27) in Eqs. (25) and (26) and with 'A Aµ µ→ , we find 

 , , ,  ,

 ,

[ 2

    ( )] 0,

g A A A

A A A

µν α α σ α σ
µ ν µσ ν µσ ν

α σ ρ σ α α ρ
νσ µρ µν σ σρ

+ Γ + Γ

+Γ Γ −Γ +Γ =
             (28)          

 , 0,A Aν µ σ
ν µσ+ Γ =                                         (29)                                                                                     

.x xg
µ ν

µν αβ
α βη

ξ ξ
∂ ∂

=
∂ ∂

                                  (30)                                                                                         

It may be noted that Eqs. (26) and (27) could as well be obtained using Einstein’s 
principle of equivalence (comma-goes-to-semicolon rule [16]). In fact, Eqs. (28) 
and (29) describe the Maxwell’s equations in curvilinear coordinates whether or 
not the spacetime is flat.  For example, in a flat spacetime with spherical 
coordinates, we have 

2 2 2
00 1,   1,  ,  sin ,rrg g g r g rθθ φφ θ= − = = =          (31)                                                                           

and rest of the metric coefficients are zero.  If 0( ,0,0,0)
O

A→A


, Eq. (26) reduces to 
0 0

2
2 2

2 0 2 0

2 2 2 2 2

1 1 sin
sin

1 1 0,
sin

A Ar
r r r r

A A
r c t

θ
θ θ θ

θ φ

   ∂ ∂ ∂ ∂
+ +   ∂ ∂ ∂ ∂   

∂ ∂
− =

∂ ∂

           (32)    

which is nothing but Maxwell’s equations in spherical coordinates. However, as the 
magnitude of A


increases, metric coefficients deviate from Eq. (31). Now, they are 

determined by Einstein’s equation (23), and Eq. (28) provides the evolution of EM 
field. Equations (23) and (28) form a coupled system of equations that govern the 
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evolution of metric coefficients and EM field, respectively, with the conservation 
relations (22) and (29). In the next Section, we solve this system of equations under 
the weak field approximations. 
3. Weak field approximations  
   We use a first order perturbation theory and assume that 

,g hµν µν µνη κ= +                           (33) 

where| | 1hµνκ << , and  µνη is the Minkowski metric. We use a harmonic coordinate 
system, for which 

0.g µν λ
µνΓ =                                   (34) 

Using Eq. (33) and Eq. (34) in Eq. (23) and ignoring the terms proportional to 2κ
and higher, we obtain [17] 

  
12 ,
2

h T T µ
µν µν µν µη = − 

 
                        (35) 

where  is the four-dimensional Laplacian operator and .T A Aµν µ ν=  
3.1 1A only: 
    We consider the case for which 2 3 0 0,A A A= = = corresponding to an 
electromagnetic wave with the electric field in x1-direction and  the magnetic field 
in x2-direction.  For this case, Eq. (35) reduces to 

2
00 1

11 00 33 22 00

( ) ,
,  .

h A
h h h h h

=
= = = −


              (36) 

Ignoring the terms proportional to 2κ and higher, Maxwell’s equations (26) and 
Lorentz gauge condition (29) become  

1 3
1 1

11, ,
( ) ,

2
AA h Aµν

µ νκ η
 

= − + 
 

              (37) 

1 1
,1 11,1 0.A h A− =                                        (38) 

where 
,  and .h h A Aµν µα νβ α

αβ µ µαη η η= =            (39) 
It may be noted that Eqs. (36)-(38) are Lorentz invariant. Using Eqs. (34) and (38), 
we find 

1
,1 11,10    and 0.A h= =                       (40) 

The first term on the right hand side of Eq. (37) has the form of third order nonlinear 
effect in nonlinear optics, which is responsible for Kerr effect or self-phase 
modulation (SPM) and four wave mixing (FWM) [20-21]. Hence, the effect of 
spacetime curvature may be interpreted as the nonlinear change in refractive index. 
Let 
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1 1 ( , ) . . .
2

i tA t e c cωφ − = + r             (41) 

Using Eq. (1), let the envelope 1 be ,Uφ η   where η and 1U  are the envelopes of   η
and 1,U respectively. Using the slowly varying envelope approximation, we ignore 

the second order derivative of φ  with respect to t and now, Eq. (37) reduces to a 
modified nonlinear Schrodinger equation (NLSE), 

2 2
11, , 11,02

1 3 | | .
2 16 2

jk
j k

i h i h
c t
ω φ κ κφ φ φ η φ ω φ∂  + ∇ + = − + ∂


                              (42) 

In deriving Eq. (42), we have ignored the third harmonic component proportional 
to 3i te ω− . In nonlinear optics, while deriving the nonlinear Schrodinger equation 
(NLSE) from the nonlinear wave equation, the third harmonic component is 
ignored [21]. Unless there is a special phase matching, the growth of third harmonic 
component is small. The second and third terms in Eq. (42) denote diffraction and 
Kerr effect, respectively. When the diffraction/dispersion balances the Kerr effect, 
a spatial/temporal pulse propagates without pulse broadening and such a pulse is 
called soliton [22,23]. Hence, κ  may be interpreted as the nonlinear coefficient of 
vacuum. In the absence of the terms on the right hand side, Eq. (42) represents the 
three-dimensional (3-D) NLSE. In the 1-D case, NLSE admits the well-known 
soliton solutions [21-23]. Interestingly, in the 1-D case, the terms on the right hand 
side of Eq. (42) have the forms similar to self-steepening and Raman effects in 
nonlinear fiber optics [21].  

3.1.1. Lorentz Force 
  Electric field intensity 1E  and magnetic field intensity 2H  are related to the vector 
potential 1A  by 

1 1
1  ,0 2  ,3 and .E A H A= − =                            (43) 

Let 
                                               

1 1

2 2

1 . . ,
2
1 . . .
2

i t

i t

E E e c c

H H e c c

ω

ω

−

−

 = + 

 = + 




                (44)                                            

Using Eqs. (41), (43) and (44), and using the slowly varying envelope 
approximation, we find 

1 2 ,3  and .iE H
c
ωφ φ= =


                             (45) 

Using Eq. (44), electromagnetic momentum density may be written as [1] 
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3 * *
1 2   ,3

1 Re Im ,
2 2

p E H
c
ω φφ−   = =   

           (46) 

and the energy density is [1] 
2 21

1 24 | | | | .E H Ε = + 
                   (47) 

We multiply Eq. (40) by *
  ,3φ , add its complex conjugate and integrate over the 

volume 1 2 3.dV dx dx dx=  First, consider the first term of Eq. (42): 
* * *

,0 ,3 ,0 ,3 ,30

3

0

[ ] Im( ) ,

                                  =2 .

i ddV dV
c c dx

d p
dx

ω ωφ φ φ φ φφ−
− =∫ ∫     

      (48)                              

Next consider the third term: 
2 * 2 1 *

,3 2

3

6 6Re | | ( ) Re | | ,
16 16

                                     = 2 Re ( *) ,

dV U H dV

dV

κ κφ φφ φ η

ρ

− −
=

×

∫ ∫
∫ U H

     

 
                       (49) 

where 
23 | | ,

16
κρ φ η−

=                                               (50)                                                    

and η is the complex envelope of η . ρ may be interpreted as the density of the 
embedded charge. Now Eq. (42) leads to 

  

3
3

3 00,3 33,00 Re ( *) ,
d p

h h p
dx

ρ= × − Ε +U H                          (51) 

where the subscript 3 on the first term on the RHS refers to the z-component of 
*×U H  . The first term on the RHS of Eq. (51) represents the Lorentz force on the 

embedded charge. It can be shown that in this simple case of transverse 
electromagnetic wave, the expectation of the Lorentz force is zero. Nevertheless, 
Eq. (51) shows that the equation of motion is built into Einstein-Maxwell’s 
equations. In contrast, the conventional Maxwell’s equations in vacuum do not 
provide the equations of motion for the charged particle; it has to be supplemented 
with Lorentz force equations to describe the interaction of charge and 
electromagnetic field. It may be possible that the time-independent solutions of Eqs. 
(23) and (28) correspond to elementary electric charges and their interactions would 
have the form similar to Eq. (51). The second and third terms on the right hand side 
of Eq. (51) are similar to those present in the Einstein’s theory of gravitation under 
the weak field approximations, except that Eq. (51) has expectation operators. 
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3.1.2 Interpretation of φ :  

     In Section 4.3, it will be shown that  

            
3/22(2 )

c
πκ =


                               (52) 

and using Eq. (52), Eq. (42) may be rewritten as 

            
2

2 0,
2 eff

i V
t m
φ φ φ∂
+ ∇ + =

∂

            (53) 

where 

             2
11, , 11,0

3 | | / ,
8

jk
j kV h i hφ η φ φ ω = + + 

        (54) 

and 

                  2effm
c
ω

=
                                     (55) 

is the effective mass of the wave packet. The potential V consists of self-trapping 
potential (the first term on the RHS of Eq. (54)) and the other terms are due to 
spacetime curvature. φ  

could be interpreted in two different ways.  

(i)Deterministic interpretation : φ  is the slowly varying envelope of EM 
potential 𝐴𝐴1 and  the momentum density  is given by the Poynting vector, 

* Im[ *] / (2 ).cω φ φ× = − ∇E H     

(ii)Statistical interpretation: |φ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)|2dxdydz represents the probability that 
a photon is present in the region between (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and (𝑥𝑥 + 𝑑𝑑𝑥𝑥,𝑦𝑦 + 𝑑𝑑𝑦𝑦, 𝑧𝑧 + 𝑑𝑑𝑧𝑧), 
and the  probability current density is 

( , ) Im[ *]
2

r t
m

φ φ= ∇j    .     (56)                                      
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Using Ehrenfest’s theorem, Eq. (51) can be retrieved, i.e.       

   

3
3

0

3
3 00,3 33,0

( )

           = Re ( *) .

d p V
dx c

h h pρ

∇
= −

× − Ε +U H 

                         (57) 

3.2 1 2   A Aand only: 
  In this section, we assume that 3 0 0A A= = . Using 

2 2
11 1 22 2 12 1 2( ) , ( ) ,T A T A T A A= = = and the rest of Tµν being zero, Equation (35) 

becomes 
2 2

00 1 2( ) ( ) ,h A A= +                          (58) 
2 2

11 1 2( ) ( ) ,h A A= −                          (59) 

12 1 22 ,h A A=                                     (60) 

     11 22 00 33  and h h h h= − = − ,                   (61) 
and the rest of hµν are zero. The Maxwell’s equations (28) take the following form 

1 2 2 2
1 1 1 1

11, , , ,

2 2
11,2,1 12,2,2 12,1,1

2 2 2 2
11,2 ,1 11,1 12,2 ,2 12,3 ,3 12,0 ,0

( ) ( )
2

1         ( )
2

         ( 2 ) ,

A AA A h A h A

h A h h A

h A h h A h A h A

µν µν
µ ν µ νκ η

κ

κ

 +
= − − + 

 
 − + − 
 
 − + + + − 



        (62)    

1 2 2 2
2 2 2 2

22, , , ,

1 1
22,2,1 12,1,1 12,2,2

1 1 1 1
22,1 ,2 22,2 12,1 ,1 12,3 ,3 12,0 ,0

( ) ( )
2

1          ( )          
2

           ( 2 ) ,

A AA A h A h A

h A h h A

h A h h A h A h A

µν µν
µ ν µ νκ η

κ

κ

 +
= − − + 

 
 − + − 
 
 − + + + − 



           (63)  

 with the Lorentz gauge condition 
1 2 1 2
,1 ,2 00,1 00,2 0.A A h A h A+ − − =                            (64)                                           

The first term on the right hand side of Eq. (62) or Eq. (63) leads to the phase 
modulation proportional to the magnitude square of A


. Eqs. (62) and (64) reduce 

to Eq. (37) when A2 is zero.  Let 
1 ( , ) . . ,  1, 2.
2

j j i tA t e c c jωφ − = + = r          (65)                                                     
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   Using the slowly varying envelope approximations and in the absence of terms 
with hµν  and their first order derivatives, Eqs. (62) and (63) reduce to the three-
dimensional Manakov equations 

2 1 2 2 2
2

1 3 [| | | | ] 0,  1, 2.
2 16

j
j ji j

c t
ω φ κφ φ φ φ∂

+ ∇ + + = =
∂


            (66)        

One-dimensional Manakov equations describe the evolutions of two polarization 
components in nonlinear optics [15,21].  From the third term of Eq. (66), it follows 
that the phase of the polarization component A1 (or A2) is modulated not only by its 
intensity, but also by the intensity of A2 (or A1), which is known as cross-phase 
modulation (XPM). Proceeding as in Section 3.1.1, it can be shown that the 
following Lorentz force equation can be obtained  

                                             

3

30 Re ( *) ,
d p

dx
ρ= ×U H                   (67) 

                                                   where 
3 * * 1 1 * 2 2 *

1 2 2 1   ,3   ,3
1 Re Im ( ) ( ) ,
2 2

p E H E H
c
ω φ φ φ φ−   = − = +   

                             (68) 

1 2 2 23 [| | | | ] ,
16
κρ φ φ η−

= +             (69)                                                     

 ,0 , 1, 2,j
jE A j= − =                             (70)                                                                    

       
1 2

2  ,3 1  ,3,  and .H A H A= = −                    (71)    
                                                 

 3.3 Rectangular cavity resonator 
   We consider a closed cubicle cavity of dimension 3L with perfectly conducting 
walls located at planes ( / 2) , , , ,  L j j x y z± =


  

1 2 3where { , , } { , , }x x x x y z→  (See Fig. 1). Without the loss of generality, we 
assume that z is the direction of propagation. The electromagnetic field in the cavity 
are divided into two types – (i) transverse electric (TE) for which the electrical field 
component Ez = 0 and (ii) transverse magnetic (TM) for which the magnetic field 
component Hz = 0. In this paper, we focus only the TE modes for which  

3 0 0A A= = . The linear modes (TEmn) (i.e. the right hand sides of Eqs. (62) and 
(63) are zero) are given by [24,25] 
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1

2

1 2

( , ) cos( )[ exp( ) . .] / 2,   =1,2,
( , ) cos[ ( / 2)]sin( ( / 2)],
( , ) sin[ ( / 2)]cos( ( / 2)],

0,

j
j j z

x y

x y

x y

A g x y t D ik z c c j
g x y k x L k y L
g x y k x L k y L
D k D k

ω= +

= + +

= + +

+ =

                       (72) 

where 
/ ,  / ,   and   are integers,x yk m L k n L m nπ π= =  and ( , )jg x y represents the 

transverse mode distributions and zk is the propagation constant. The requirement 
that the tangential component of the electric field intensity should be zero at the 
planes z=-L/2 and L/2 leads to 

2 2 2 2 2 2

/ ,   is an odd integer,
/ .

z

x y z

k j L j
k k k k c

π

ω

=

= + + =
           (73)                                                                                              

   In this Section, we focus on the fundamental TE01 mode, 

 
1

1

2

cos( ) cos( ) cos( ),

0,
/ , 0.

y z

y z x

A D k y k z t

A
k k L k

ω

π

=

=
= = =

                                               (74)                                                                                           

 
We wish to find the quasi-linear modes of the cavity under the weak field 
approximations satisfying the boundary condition that the tangential components 
of the electric field intensity are zero at the conducting walls. The evolution of 

1
00 and A h  in the cavity are given by Eqs. (37) and (36), respectively. 

1 3
1 1

00, ,
( ) ,

2
AA h Aµν

µ νκ η
 

= − + 
 

   (75)                                                                               

1 2
00 ( ) .h A=                                              (76)                                                                                                                                     

Let  
1 ( , ) exp( ) . .A y z i t c cψ ω= +                      (77)                                                                                                   

Squaring Eq. (77) and substituting it in Eq. (76), we find that the excitation is at 
frequencies 0 and 2ω . Hence, let the response be 

00 1 2[ ( , ) exp( 2 ) . .] ( , ).h h y z i t c c h y zω= + + (78)                                                                 
Substituting Eq. (78) in Eq. (75) and ignoring third harmonic components, we find 
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2
2 2 *

,2,2 ,3,3 1

* *
2,2 ,2 2,3 ,3 1,2 ,2 1,3 ,3

3 | | 2
2

                                  ( ),

k k h

h h h h

ψ ψψ ψ ψ κ ψ

κ ψ ψ ψ ψ

 
+ + = − − 

 
− + + +

       (79)                                                                                  

2 2
1,2,2 1,3,3 14 ,h h k h ψ+ + =                                (80)                                                                                                                                                                

2
2,2,2 2,3,3 2 | | .h h ψ+ =                                   (81)                                                                                    

To further simplify Eqs. (79)-(81), let 
( , ) cos( ) ( ),yy z k y g zψ =                    (82)                                                                            

We assume that ( )g z is real, which reduces to cos( )zk z  as 0.hµν →   
Substituting Eq. (82) in Eqs. (80) and (81), and separating components at the spatial 
frequencies 0 and 2 yk , we find 

1

2

( ) ( ) cos(2 ),
( ) ( ) cos(2 ),

y

y

h B z C z k y
h D z F z k y
= +

= +
                       (83)                                                                                        

2 2
, ,

2 2 2
, ,

2
, ,

2 2
, ,

4 ( ) ( ) / 2,

4( ) ( ) ( ) / 2,

( ),

4 ( ) ( ).

z z

y z z

z z

y z z

B z k B g z

k k C z C g z

D g z

k F z F g z

+ =

− + =

=

− + =

       (84)       

Substituting Eqs. (83) and (84) in Eq. (79), we obtain

 

3 3
2 2 2

, ,

2

2

2

, ,

3cos ( )
[( / ) ( ) ]cos( )

2

2 [ cos(2 )cos( )]

+  2 sin(2 )sin( )( )

cos( ) ( ) ( ) cos(2 ) .                                  

       

y
y z z y

y y

y y y

z y y z

k y g
c k g z g k y

g B C k y k y
c

g k k y k y C F

g k y B D C F k y

ω κ

κω

κ

κ

 
− + = −   

 

− −

 + 
 − + − + 

                                              

             (85) 

    In this Section, our objective is to find g(z) which becomes zero at / 2z L= ± so 
that the boundary condition is satisfied. In order to accomplish this, we follow the 
approach typically used to derive the nonlinear Schrodinger equation (NLSE) from 
the nonlinear Maxwell’s equation [26,21]. In Refs. [26,21], fiber nonlinearity is 
treated as a small perturbation on the fundamental transverse mode (HE11) and the 
NLSE is derived to describe the evolution of the mode weight of the fundamental 
transverse mode as a function of the propagation distance, z, by multiplying the 
nonlinear wave equation by the transverse mode distribution and integrating over 
the transverse dimensions x and y. Here, we follow the same approach. We assume 
that the field in the transverse direction is the same as that of a linear mode and the 
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nonlinear terms appearing on the RHS of Eq. (85) cause a small perturbation to this 
linear mode. Multiplying Eq. (85) by cos( )yk y  and integrating from –L/2 to L/2 
with respect to y, we obtain 

( )

2 3 2
, ,

2
, ,

9 (2 )
8

                 [ ( ) ( ) / 2 ],

z z

y z z

g g g k B C

k g C F g B D C F

β κ

κ

 + = − + +  
− + + + + +

            (86) 

where 2 2( / ) yc kβ ω= − is the eigenvalue to be determined under the condition 
that g(z) becomes zero at / 2L± .  For the linear case (i.e. κ  = 0), from Eqs. (86) 
and (74), we have / .zk Lβ π= =  In a general case, Eq. (86) provides the evolution 
of a quasi-linear mode (in z-direction) with the transverse mode distribution being 
proportional to cos( / )y Lπ . From the right hand side of Eq. (85), we see that there 
are excitations proportional to cos(3 / )y Lπ and one should expect the generation 
of such higher order modes due to nonlinear effects. However, when Eq. (85) is 
multiplied by cos( / )y Lπ  and integrated over y, higher order transverse modes do 
not contribute and Eq. (86) may be interpreted as the equation that provides the 
weight of the fundamental transverse mode distribution  ( cos( / )y Lπ ). As the 
amplitude of A1 becomes larger, there could be a nonlinear coupling between the 
fundamental transverse mode ( cos( / )y Lπ∝ ) and the higher order mode (

cos(3 / )y Lπ∝ ) . However, such nonlinear interactions are not captured in Eq. 
(86). 
Equations (86) and (84) form a coupled nonlinear differential system of equations 
which are solved using an explicit Runge-Kutta method (Matlab built-in function 
ode45). We look for a solution that is symmetric with respect to z=0. The problem 
can be formulated in two ways (i) For the given initial condition 

0(0) , and g '(0) 0g g= = where '  denotes differentiation with respect to z, the 
propagation constant β  is found such that the boundary condition ( / 2) 0g L = is 
satisfied (i.e. the tangential component of the electric field is zero at the walls)  (ii) 
For the given  β  (or equivalently for the given ω ), find (0)g such that the boundary 
condition ( / 2) 0g L =  is satisfied. We follow the latter approach. Note that in the 
absence of nonlinearity (κ  = 0), , =zk ckβ ω=  and the  amplitude (0)g  is arbitrary. 
Let  

2 2res
ck cf

Lπ
= =                                          (87) 

be the resonant frequency of the cavity when κ  = 0 for the fundamental mode. In 
the presence of nonlinearity (κ ≠ 0), as the frequency of the EM field deviates from 
the resonant frequency, the initial amplitude  (0)g  (equivalently energy of the EM 
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field) should be changed to satisfy the boundary condition at z=L/2. Due to 
nonlinear effects (which is the signature of spacetime curvature), let the frequency 
detuning be 

resf f f∆ = −                            (88) 
where f is the frequency of the EM field.  Figure 2 shows the evolution of the field 
g(z) as a function of distance z. As the frequency detuning increases, the amplitude 
of the field at z=0 increases and hence, the EM energy stored in the cavity increases. 
If the frequency detuning f∆  is negative, we found that the boundary condition that 

( / 2) 0g L = cannot be satisfied. If Eq. (86) is solved with κ =0, one finds that f∆  
should be zero so as to satisfy the boundary condition ( / 2) 0g L =  (unless f∆  is so 
large that f coincides with the higher order resonant frequencies) and the amplitude 
of the field at z=0 is arbitrary. 
To verify the validity of Eqs. (84) and (86), the coupled partial differential 
equations (73)-(75) are numerically solved using the FDTD technique with the 
boundary condition that the tangential components of the electric field intensity are 
zero at the metallic walls. In the numerical solution, the growth of higher order 
mode ( cos(3 / )y Lπ∝ ) was observed. To be consistent with the semi-analytical 
approach, the numerical solution of Eq. (79) is multiplied by cos( / )y Lπ  and 
integrated from –L/2 to L/2 to obtain the mode weight of the fundamental mode. 
‘+’ in Fig. 2 show the numerical solutions obtained by the FDTD technique and as 
can be seen, the agreement between the semi-analytical approach and numerical 
approach is quite good. 

 
Figure 2. Plot of g(z) of electromagnetic vector potential A1 vs distance, z for 
frequency detuning factors, f∆ = 4.77 kHz, 47.7 kHz and 477 kHz. L = 1 m, 
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resonant frequency, resf = 211.98 MHz ; num = numerical, and semi-anl = semi-
analytical. 
 
The small discrepancy is attributed to the fact that semi-analytical approach does 
not take into account the coupling between the fundamental and higher order 
transverse mode.     
We define the rest mass of the EM field confined to the cavity as 

2( ) / ,e mm c= Ε +Ε                         (89) 
where eΕ and  mΕ are the mean energy stored in electric and magnetic fields 
respectively,   

2 2 2, ( ) .e x m y zE dV H H dVΕ = Ε = +∫ ∫   (90)                 
1 1 1
 ,0  ,  ,,  ,  and .x y z z yE A H A H A= − = = −      (91)               

   For the given frequency f, the field ( )g z  is calculated by solving Eqs. (86) and 
(84) numerically, and using Eq. (91), electric and magnetic field intensities are 
calculated. Using Eqs. (89) and (90), the rest mass is calculated for the given 
frequency f and plotted in Fig. 3. The line with ‘+’ shows the mass calculated semi-
analytically using the above procedure and the solid line shows the curve fitting. A 
good fit was found by using 

2 2 2

3

8 2 ( )resf f
m

c
π π

κ
−

=  .             (92)                                            

 Equation (92) may be rewritten as the following dispersion relation 
2 6 2

2 2
3( ) ,

32
m ckc κω

π
= +        (93)                                                    

where the wave number at the resonant frequency is 
2 2 (2 ) /y z resk k k f cπ= + =  .         (94)                                  

By setting E ω=  and p k=  , and if  
3/22(2 )

c
πκ =


,         

(95)                                                           
Equation (93) could be rewritten as a special relativistic relation relating the energy, 
momentum and rest mass of a particle,  

2 2 2 2 4E p c m c= +  .           (96)                                                   
   As the amplitude of A1 goes to zero, 0m → , and hence, kcω = is correct only for 
the EM field with vanishing amplitude. In the absence of spacetime curvature (κ
=0), the EM field is governed by the linear Maxwell’s equations and in this case, 
E pc= even if the field is confined to a localized region.  The relation between κ  
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and  given by Eq. (95) may be off by a scaling factor of O(1) due to 
approximations made in the derivation of Eq. (86).  We have considered the impact 
of spacetime curvature only on the fundamental mode TE01 and as the mode order 
increases, the dependence of the frequency detuning on the field intensity is 
expected to be given by a formula similar to Eq. (93), but there could be an 
additional constant in Eq. (93) that may depend on the mode order.   
 

 
Figure 3. Plot of the rest mass as a function of the frequency of the electromagnetic 
field. L = 1 m, resonant frequency, fres = 211.98 MHz. 
Conclusions 
An electromagnetic (EM) tensor which is an outer product of EM vector potential 
is used to modify Einstein-Maxwell equations. In Einstein’s theory of gravitation, 
the coupling constant connecting Einstein tensor and stress-energy tensor is 
proportional to gravitational constant. Similarly, we find that the coupling constant 
connecting Einstein tensor and electromagnetic tensor is inversely proportional to 
Planck’s constant. In classical electrodynamics, Maxwell’s equations do not 
provide the equations of motion for charged particles; they are provided separately 
by Lorentz force equations. However, Einstein-Maxwell equations with the new 
EM tensor derived in this paper lead to equations of motion that resemble Lorentz 
force equations. Using slowly varying envelope approximation, these equations 
reduce to Schrodinger equation with a self-trapping potential.   
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Abstract

In 1935, A. Einstein stated, in a historical paper with B. Podolsky
and N. Rosen [1] that ”quantum mechanics is not a complete theory”
and that determinism could be recovered at least under limit condi-
tions (EPR argument). In 1964, J. S. Bell [2] proved a theorem accord-
ing to which a system of quantum mechanical particles with spin 1/2
with SU(2) Lie algebra [σi, σj ] = 2εi,j,kσk, where the σs are the Pauli
matrices, cannot admit a classical counterpart, thus appearing to dis-
prove the EPR argument. In 1978, R. M. Santilli [3] discovered the
axiom-preserving generalization-”completion” of the various branches
of Lie’s theory (universal enveloping algebras, Lie algebras, and Lie
groups) based on the isoassociative product Xi ?Xj = XiT̂Xj , T̂ > 0,
with Lie-Santilli isoalgebras [Xi, Xj ]

∗ = Xi ?Xj −Xj ?Xi = Ci,j,k,Xk

classified into regular (irregular) when the C-quantities are constant
(functions). In 1998 [4] Santilli proved that Bell’s theorem is valid
for point-particles, but it is inapplicable for systems of extended par-
ticles with spin 1/2 under deep mutual entanglement, and that said
systems do admit classical counterparts when represented with the iso-
topic SU(2) Lie-Santilli isoalgebars [Σi,Σj ]

∗ = 2εi,j,kΣk, where Σk are
the new Pauli-Santilli isomatrices, with realization of the isotopic ele-
ment T̂ = Diag.(1/λ, λ), det T̂ = 1 providing a concrete and explicit
realization of ”hidden variables” under the full validity of quantum
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axioms. Subsequently, Santilli [5] proved that Einstein’s determinism
is progressively approached in the structure of hadrons, nuclei and

stars and it is fully recovered at the limit of gravitational collapse
(see Refs. [6] for a detailed presentation). In this lecture, by following
our recent paper [7], we outline the aspects of the Lie-Santilli isotheory
which are essential for Santilli’s proofs of the EPR argument.
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1 Introduction

The well known EPR argument was proposed by A. Einstein, B. Podolsky
and N.Rosen in 1935 [1] implies that; Quantum mechanics is not a complete
theory but should be supplemented by additional variables. i.e. Quantum
mechanics has to be deterministic. In this regard Einstein has made a famous
statement that ”God doesn’t play dice with the universe.”
In other words, Einstein believed that quantum mechanics is not a complete
theory, in the sense that it could be broadened to recover classical determin-
ism at least under limiting conditions.
Numerous objections against EPR argument have been raised by scholars in-
cluding N.Bohr [8], S.Bell [2, 9], J.Von Neumann [10]. Till date, it is widely
believed that Quantum mechanics is the final theory for all conceivable con-
ditions existing in the universe.
Any Physical Theory operates with physical concepts which correspond with
the objective reality. Success of a physical theory depends on;

• Correctness

• Completeness

Correctness is judged by the degree of agreement between theoretical con-
clusions and human experience.
Completeness of a Physical Theory Requires;

• Every element of the physical reality must have a corresponding concept
in the physical theory.

• Elements of physical reality must be experiments and measurements.

Scientifically, a reasonable interpretation of physical reality would be; if,
without in any way disturbing a system, we can predict with certainty
(i.e.with probability unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity.
If we start with the assumption that wave function does give a complete
description of the physical reality, we arrive at the conclusion that two phys-
ical quantities with non commuting operators can have simultaneous reality.
This implies that quantum mechanical description of physical reality given
by wave function is not complete. i.e. quantum axioms do not admit hidden
variables (Local Realism), [2]. So, quantum mechanics can not be described
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by local hidden variables. For that matter, assuming the validity of Bell’s
theorem, any deterministic hidden-variable theory that is consistent with
quantum mechanics would be non-local. Hence, dismissal of EPR argument.
Following decades of research since 1998, R.M.santilli, assuming the validity
of quantum mechanics, with consequential validity of the objections against
the EPR argument[11],[12] for point-like particles in empty space under lin-
ear, local and potential interactions (exterior dynamical problems); proved
the inapplicability (and not their violation) of said objections for the broader
class of extended, deformable and hyperdense particles within physical media
under the most general known linear and nonlinear, local and non- local and
potential as well as non- potential interactions (interior dynamical problems).
Santilli’s Contribution also provided the apparent proof that interior dynam-
ical systems admit classical counter- parts in full accordance with the EPR
argument via the representation of interior systems with of isomathematics,
also called isotopic branch of hadronic mathematics, and isomechanics, also
called isotopic branch of hadronic mechanics.
The main assumption of apparent proof of EPR argument is; particles can be
represented as extended, deformable and hyperdense under the conditions of
mutual overlapping/entanglement with ensuing contact at a distance. This
eliminates objection ’quantum entanglement’ regarding non-locality of quan-
tum mechanics.

In the 2019 paper [5], Santilli provided the apparent proof (of ’comple-
tion’ of quantum mechanics as isotopic/axiom-preserving type, being fully
admitted by quantum mechanics merely subjected to a broader realization
than that of Copenhegen school) that Einstein’s determinism is progressively
approached in the interior of hadrons, nuclei and stars and it is fully achieved
in the interior of gravitational collapse.

Thus, inapplicability of 20th century ’applied mathematics’ in general and
of Lie’s theory in particular to the interior dynamical systems led Santilli to
construct a new mathematics, known as isomathematics exactly applicable to
the interior dynamical systems. In particular, Lie-algebra structure required
in quantum mechanics was lifted structurally to show that objections against
EPR argument are inapplicable.

Appropriate lifting of conventional Lie theory applicable to exterior dy-
namical systems to Lie-Santilli isotheory applicable to interior dynamical
systems was achieved by Santilli [13].
The Lie-Santilli isoalgebras and isogroups were elaborated with the conven-
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tional mathematics of Lie’s theory via conventional functional analysis and
differential calculus on conventional space such as original Hilbert space H
over conventional field F (n,×, 1).

2 Isomathematics

The basic multiplicative unit 1 is replaced by an arbitrary, positive definite
quantity Î = 1

T̂
whether or not element of the original field. T̂ is called the

isotopic element and

Î =
1

T̂
(1)

is called the isounit, and all possible associative products are lifted via

Xi×̂Xj = Xi × T̂ ×Xj (2)

with Î being the correct left and right multiplicative unit for all the ele-
ments of the set considered such that

Î×̂X = X×̂Î = X̂ (3)

for all X in the resulting new field called as Santilli Isofield. The new numbers
X̂ in the isofield are called as isonumbers
This new field is denoted by F̂ (n̂, ×̂, Î).

3 Lie-Santilli isotheory

It is well known that Lie’s theory is at the true structural foundation of
quantum mechanics via celebrated product;

[A,B] = A×B −B × A (4)

where A×B = AB is the conventional associative product.
Today, by Lie-Santilli isotheory we mean the infinite family of iso-

topies of Lie’s theory formulated on an iso-Hilbert space Ĥ defined over an
isofield F̂ generated by iso-Hremitean generators Xk, k = 1, 2, 3, ....., N with
all possible products lifted into the isoassociative form (2) and multiplicative
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isounit Î = 1

T̂
, [14].

Generalization of Lie’s theory by Santilli [15]in 1978 under the name Lie-
isotopic theory with the basic product;

[A,̂B] = A×̂B −B×̂A
= A× T̂ ×B −B × T̂ × A
= AT̂ (t, x, ẋ, ẍ, ψ, ψ†, ∂ψ, ∂ψ†, µ, τ, η, ...)B
−BT̂ (t, x, ẋ, ẍ, ψ, ψ†, ∂ψ, ∂ψ†, µ, τ, η, ...)A

(5)

Lie-isotopic theory is also called as Lie-Santilli isotheory.

1. Lie-Santilli isotheory is based on isotopic product [A,̂B] = AT̂B−BT̂A
where T̂ is a hermitean matrix or operator with T̂ = T̂ †.

2. Lie-admissible theory, also called as Lie-Santilli genotheory, is based
on the product (A,B) = AT̂B − BT̂ †A = AR̂B − BŜA where T̂ is a
nonhermitean matrix or operator with T̂ = R̂ 6= T̂ † = Ŝ.

3. Hypertheory, the most general formulation of hyperstructural character
[16] is based on the product of type A ⊗ B = AR̂B − BŜA where R̂
and Ŝ are sets.

4 Lie Algebra

Let L be an N-dimensional Lie algebra over a field F (n,×, 1) of char-
acteristic zero and associative product nm = n ×m ∈ F and multiplicative
unit 1.
Let the generators of L are the Hermitean operators Xk, k = 1, 2, .....n,
on a Hilbert space H over F .
Let ξ(L) be the universal enveloping associative algebra of ordered
monomials based on the associative product;

Xi ×Xj (6)

Let the Lie algebra L be isomorphic to the anti-symmetric algebra at-
tached to the enveloping algebra L ≈ [ξ(L)]− with ensuing Lie’s theo-
rems and and commutation rules;
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[Xi, Xj] = Xi ×Xj −Xj ×Xi = Ck
ij ×Xk (7)

4.1 Isotopies of Lie Algebra

• the isotopy of the associative product

Xi×̂Xj = Xi × T̂ ×Xj (8)

where T̂ (the isotopic element)is a fixed positive-definite operator with
an arbitrary functional dependence on local variables;

• the isotopy of the enveloping algebra ξ̂(L̂) characterized by or-
dered monomials of the Poincare-Birkhoff-Witt-Santill is a theorem
based on isoproduct (2);

• the isotopies of Lie algebras , today called the Lie-Santilli isoal-
gebra L̂ as the anti-symmetric algebra attached to the isoenvelope

L̂ ≈ [ξ̂(L̂)]− (9)

with Lie-Santilli isocommutation rules

[Xî,Xj] = Xi×̂Xj −Xj×̂Xi = Ĉk
ij×̂Xk (10)

• the isotopies of Lie groups today known as the Lie-Santilli isogroups;
and

• the isorepresentation theory .

4.2 Lie-Santilli Isoalgebra

Definition 4.1 A (finite-dimensional) isospace L̂ over an isofield F̂ (â,+, ×̂)
of isoreal numbers R̂(n̂,+, ×̂), isocomplex numbers Ĉ(ĉ,+, ×̂) or isoquater-
nions Q̂(q̂,+, ×̂) with isotopic element T̂ and isounit Î = T̂−1 is called a
”Lie-Santilli isoalgebra” over F̂ when there is a composition [Â,̂ B̂] in L̂,
called ”isocommutator”, which verifies the following ”isolinear and isodiffer-
ential rules” for all â, b̂ ∈ F̂ and Â, B̂, Ĉ ∈ L̂
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[â×̂Â+ b̂×̂B̂,̂ , Ĉ] = â×̂[Â,̂ , Ĉ] + b̂×̂[B̂,̂ Ĉ] (11)

[Â×̂B̂,̂ Ĉ] = Â×̂[B̂,̂ Ĉ] + [Â,̂ Ĉ]×̂B̂ (12)

and ”Lie-Santilli isoaxioms”

[Â,̂ B̂] = −[B̂,̂ Â] (13)

[Â,̂ [B̂,̂ Ĉ]] + [B̂,̂ [Ĉ,̂ Â]] + [Ĉ,̂ [Â,̂ B̂]] = 0 (14)

It is important to note that the associative character of the underlying
envelope is preserved while using isoreals, isocomplexes and isoquaternions.
Consistent isotopic generalization of celebrated Lie’s First, Second and Third
theorems has been proved by Santilli in [17].

4.3 Isorepresentations of Lie-Santilli isoalgebras

Isorepresentations of Lie-Santilli isoalgebras is classified into;

1. Regular isorepresentations which occur due to C’s of the rules (10)
are constants; and

2. Irregular isorepresentation occurring when the C’s of the rules (10)
are functions of the local variables (an occurrence solely possible for the
Lie-Santill isotheory).

5 Construction of Regular Isorepresentations

General Construction: Regular isorepresentation of Lie-Santilli isoal-
gebras L̂ over an isofield of characteristic zero can be constructed
via non-unitary transformations of the conventional representa-
tions of the conventional Lie algebra L.

The general rule for mapping Lie algebras into regular Lie-Santilli isoal-

gebras were identified for the first time by Santilli in [18] and then studied
systematically in monographs [14]. They can be written as follows;

8

676https://doi.org/10.52202/059404-0012

https://doi.org/10.52202/059404-0012


U × U † = Î 6= I (15)

This non-unitary transformation is applied to the entire mathemat-
ics of Lie’s theory leading to Santilli’s isomathematics. We get the
following important fundamental transformations;

I −→ Î = U × I × U † =
1

T̂
, (16)

a −→ â = U × a× U † = a× U × U † = a× Î ∈ F̂ , a ∈ F (17)

eA −→ U × eA × U † = Î × eT̂×Â = (eÂ×T̂ )× Î (18)

A×B −→ U × (A×B)× U † = (U × A× U †)× (U × U †)−1 × (U ×B × U †)
= Â×̂B̂ (19)

[Xi, Xj] −→ U × [Xi, Xj]× U † = [X̂î,X̂j] = U × (Ck
ij ×Xk)× U †

= Ck
ij × X̂k (20)

< ψ | × | ψ >−→ U× < ψ | × | ψ > ×U † = < ψ | ×U † × (U × U †)−1 × U× | ψ > ×(U × U †)
= < ψ̂ | ×̂ | ψ̂ > ×Î , (21)

H× | ψ >−→ U × (H× | ψ >)U † = (U ×H × U †)× (U × U †)−1 × (U× | ψ >)

= Ĥ×̂ | ψ̂ > (22)

etc.

6 Classification of regular isounitary isoirre-

ducible isorepresentations of the Lie-Santilli

ŜU(2) isoalgebras over isofields of charac-

teristic zero

Santilli [21, 22] identified and constructed the following regular isorep-

resentation of Lie-Santilli isoalgebra ŜU(2), from the conventional
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two-dimensional irreducible representation of the SU(2) Lie algebra
defined by the well known Pauli’s matrices.
This Classification is merely given by either the nonunitary transform U −
Diag(n1, n2), nk real > 0, or by U −OffDiag(n1, n2).
Conventional Paulli matrices σk [19, 20] satisfy the rules σiσj =
iεijk, i, j, k = 1, 2, 3. We present the identification and classification

ref.[21, 22] of these matrices due to isoalgebra SÛQ(2).

In general Lie-isotopic algebras are the image of Lie algebras
under nonunitary transformations [23, 24]. Under the transfor-
mation UU † = Î 6= I a Lie commutator among the matrices acquires
the Lie-isotopic form

U(AB −BA)U † = A′QB′ −B′QA′,
A′ = UAU †, B′ = UBU †, Q = (UU †)−1 = Q† (23)

As a result, a first class of fundamental (adjoint) isorepresenta-
tions called as regular adjoint isorepresentations are characterized
by the maps Jk = 1

2
σk → Ĵk = UJkU

†, UU †Î 6= I with isotopic con-
tributions that are factorizable in the spectra, ±1

2
→ +1

2
f(∆), 3

4
→

(3
4
f 2(∆)) where ∆ = detQ and f(∆) is a smooth nowhere-null func-

tion such that f(1) = 1.

7 Iso-Pauli matrices

Santilli constructed the following example of regular iso-Pauli ma-
trices.

σ̂1 = ∆−
1
2

(
0 g11
g22 0

)
, σ̂2 = ∆−

1
2

(
0 −ig11
ig22 0

)
σ̂3 = ∆−

1
2

(
g22 0
0 −g11

)
(24)

where ∆ = detQ = g11g22 > 0.

10
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These representations verify the isotopic rules σ̂iQσ̂j = i∆
1
2 εijkσ̂k,

and consequently the following isocommutator rules and general-
ized isoeigenvalues for f(∆) = ∆

1
2 and

[σ̂1 ,̂ σ̂j] = σ̂iQσ̂j − σ̂jQσ̂i = 2i∆
1
2
ijkσ̂k (25)

σ̂3∗ | b̂2i 〉 = ±∆
1
2 | b̂2i 〉 (26)

σ̂2̂∗ | b̂2i 〉 = 3∆ | b̂2i 〉, i = 1, 2 (27)

This confirms the ’regular’ character of the generalization con-
sidered here. The isonormalized isobasis is then given by a trivial
extension of the conventional basis | b̂〉 = Q−

1
2 | b〉.

In fact, regular iso-Pauli matrices (24) admit the conventional
eigenvalues 1

2
and 3

4
for ∆ = 1 which can be verified by putting

g11 = g−122 = λ.
It is important to emphasize the condition of isounitarity, i.e. UU † =
Î 6= I for which n1

2 = 1/n2
2 = λ > 0. Thus, realization of isotopic el-

ement T̂ = Diag.(1/λ, λ) with detQ provides a concrete and explicit
realization of ”hidden variable” under full validity of quantum
axioms.

Remarks:- This degree of freedom has major fundamental im-
plications presented in [22] as well as for the spin component of the
first known representation of nuclear magnetic moments presented
in the papers [25, 26].
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Abstract

Since the discovery of antimatter it has only been treated at the
level of second quantization, where as, matter is treated at all levels
of study, from Newtonian mechanics to quantum field theory. To re-
solve this scientific imbalance of 20th century, Santilli in 1993 [1],[2],[3]
took up to study antimatter at all levels. In this paper we present the
classical representation of antimatter at Newtonian level and emerg-
ing images at subsequent levels. The most appropriate theory of an-
timatter as proposed by Santilli [4] is based on a new map called
isoduality which is applicable at the Newtonian level and all the sub-
sequent levels of study of antimatter. Santilli also formulated the new
anti-isomorphic isodual images of the Galilean, special and general
relativities compatible with the experimental knowledge on electro-
magnetic interactions. Antigravity for antimatter [6] (and vice versa)
is a natural consequence of this study and awaits validity due to lack
of sufficient experimental evidence.
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1 Introduction

Scientific studies have come a long way from Newtons equations, Galilios
relativity and Einsteins special and general relativities. Existence of anti-
matter asteroids and cosmic rays in the universe has already been suggested
by phenomena like; 1) Catastrophic explosion in Tunguska in Siberia in 1908
of the power of thousand Hiroshima bombs with devastating effect and to-
tal absence of any debris and crater. Surprisingly, entire Earths atmosphere
was charged for some days so much so that people in Sydney could read
news papers without any artificial light. Such a large excitation of the at-
mosphere can only be explained by annihilation of matter by antimatter. 2)
NASA has recently reported explosions in our upper atmosphere which can
be caused only by small antimatter asteroids annihilating the upper portion
of our atmosphere while coming in contact with it and 3) Astronauts and
cosmonauts have observed flashes of light in the upper atmosphere which can
only be interpreted as being due to antimatter cosmic rays coming in contact
with our atmosphere. In short, the evidences of existence of antimatter as-
teroids hitting our earth has become a major threat to humanity and hence
warrants a serious study of antimatter in general and antimatter asteroids,
comets and galaxies in particular. We know that matter is described at all
levels of study from Newtonian mechanics to Quantum field theory but an-
timatter is solely treated at the level of second quantization; as antimatter
particles with negative-energy do not behave in a physical way. Thus, New-
ton, Galileo and Einstein’s theories were solely describing matter and not
antimatter. A. Schuster in 1898 conjectured existence of antimatter. It was
discovered by Dirac [5] in 1920, fourteen years following the formulation of
general relativity. He even submitted hole theory for the study of antimat-
ter at the level of second quantization. Today, the stand adopted in general
is that; As Einsteins special and general relativity do not provide a proper
description of antimatter, it does not exist in the universe in appreciable
amount; the sole exception being that of a man made antiparticles created
in the laboratory. The above scientific imbalance was for the first time iden-
tified by Italian- American scientist Ruggero Maria Santilli who decided to
ascertain whether a far away star or galaxy is made up of matter or anti-
matter. Santilli soon discovered the entire body of mathematical, theoretical
and experimental formulation [6, 1, 7, 8] applicable to his aim as his previous
knowledge at the graduate studies was insufficient. Santilli first took up to
formulate the mathematics needed for classical and operator representation
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either neutral or charged antimatter. Secondly, a reformulation of Newton’s,
Galileo’s and Einstein’s theories suitable for the study of neutral or charged
antimatter at all possible levels and thirdly, the formulation of experiments
to ascertain, in due time, whether far away stars or galaxies are made up
of matter or antimatter. Antimatter asteroids must be treated as as they
are isolated in space. Also, they are too large for the treatment via opera-
tor theories. Hence, scientific studies in the detection of antimatter requires
physical theories for classical treatment of antimatter. Santillis mathemati-
cal and theoretical studies in antimatter are unique in a way being capable
of classical representation of neutral antimatter. In his writings, Santilli has
specifically mentioned that A protracted lack of solution of physical prob-
lems is generally due to the use of insufficient or inadequate mathematics
[6]. Moreover, he says that There can not exist a really new physical theory
without a new mathematics, and there can not exist a really new mathemat-
ics without new numbers. Santilli spent decades of exhaustive research in
developing new numbers; subsequently new mathemetics sufficient to treat
neutral or charged antimatter. Santilli introduced new numbers called iso-
dual numbers [9] where the prefix iso was introduced in the Greek sense
meaning preserving the conventional axioms used for matter. The term dual
indicates the map from matter to antimatter. Santilli’s entire theory for
of antimatter is called Isodual due to predominant role and importance of
Santillis isodual numbers. Subsequently, in 1993 [1] Santilli constructed the
isodualities of Euclidean and Minkowskian spaces, evidently needed for pos-
sible physical applications. He then proceeded to construct the isodual image
of Lies theory [2] needed for the construction of basic symmetries for anti-
matter viz. isodual images of the Galileo and Lorentz symmetries. Second
landmark discovery was a new formulation of differential calculus which was
crucial for the achievement of the first ever known formulation of Newtons
equation for neutral or charged antiparticles. Readers can find the complete
formulation of isodual mathematics in the monograph [11] of 1994 and with
more updation in [8]. Thereafter, Santill initiated his physical studies in the
paper [12] of 1993 written on his original aim of possible detection of anti-
matter stars and galaxies. Subsequently, Santilli wrote an important paper
[16] on all important classical representation of neutral antimatter; the sub-
mission of experiment in paper [7] of 1994 to test the gravity of positrons
and paper [14] of 1994 on the causal space-time machine i.e. the capability
of moving as desired in space and time without violation of causality which
is an invertible consequence of gravitational repulsion between matter and
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antimatter. A.P.Mills, an experimentalist established that Santillis gravity
experiment [15] is resolutory because displacement due to gravity of very low
energy positrons on a scintillator at the end of a flight in a super-cooled,
supervacuum tube is visible to the naked eye. Paper [16] of 1997 included
the first isodualities of Galileo and Einstein’s relativities; another basic phys-
ical discovery has been discussed in paper [17] of 1997 via the prediction that
light emitted by antimatter is repelled by the matter gravitational field. This
prediction is an invertible consequence of the main feature of the studies re-
viewed here, namely, the classical conjugation from neutral matter to neutral
antimatter that evidently also applied to light. The prediction can mainly
be used to ascertain whether a faraway galaxy is made up of matter or anti-
matter. One of the best papers of Santilli [1] in 1998 achieves the first ever
known representation of the gravitational field of antimatter which serves in
and sets the foundation for the first known grand unification of electroweak
and gravitational integration including antigravity, developed in details in
[6] of 2001. The first quantitative study of thermodynamics of antimatter
is available in the paper [18] of 1999 written by J. Dunning Davis. Also,
the treatment of matter and antimatter under the general conditions of ir-
reversibility over time over classical operator level has been discussed in [19]
of 2006 by Santilli. In his paper [20] in 2011, Santilli finally acquires the
position to address his main objective namely To identify experimentally the
existence of stars and galaxies, and detections of asteroids. The conformation
that Santillis experiment in [7] on gravity of positrons in horizontal flight on
earth is resolutory came via paper [21] of 2011 by the experimentalist V. de.
Haan by confirming Mills results [15]. In this direction, the paper by Santilli
with the mathematicians B. Davaas and T. Vougiouklis is completely the
most advanced paper because it establishes that the universe is multi-valued
and not multi-dimensional, as matter and antimatter co-exist in physically
distinct space-times implies multivaluedness. Subsequently, Santillis studies
on antimatter at three successive levels of study, including ; 1) Single-valued
reversible 2) Single-valued irreversible and 3) Multi-valued irreversible con-
ditions, are provided in monograph [22] of 2011 by theoretical physicists I.
Gandzha and J.V. Kadieisvilli. Reference [23] in 2013 by A.A.Bhalekar is an
excellent account of the basic mathematics behind the above subject matter.
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2 Santillis Isodual mathematics

Inapplicability of 20th century mathematics for consistent representation of
antimatter led to decades of rigorous studies of suitable formulation for quan-
titative representation of matter-antimatter annihilation. As such, applica-
tion of the same (existing ) mathematics for matter and antimatter proved to
be incompatible due to matter-antimatter annihilation. Santilli found that
the matter-antimatter annihilation could only be represented by the use of
mathematics that is anti-homomorphic to each at all their levels. In fact,
the mathematics anti-homomorphic to 20th century mathematics did not
exist in 1980s. Physical theories describing antimatter at all the levels asked
for construction of entirely new mathematics that would allow classical treat-
ment of neutral or charged antimatter. While at Department of mathematics
Harvard University in 1980s, under DOE support Santilli constructed the re-
quired new mathematics for the exact representation of antimatter, today
known as Santilli isodual mathematics [2, 16, 10](monograph [6] for compre-
hensive presentation). This new mathematics is anti-homomorphic to the
conventional mathematics. We outline the main branches of Santillis isodual
mathematics;

2.1 Isodual Map

Note that the term isodual denotes a conjugation characterized by the word
dual under the preservation of the axioms of conventional mathematics de-
noted by the Greek prefix ”iso”.

2.2 Isodual numbers

Isodual numbers are characterized via new basic isodual unit 1d defined as;

1d = (−1)† = −1 (1)

with resulting isodual real, complex and quaternion numbers;

nd = n1d = (−n)† (2)

and isodual multiplication defined as;

nddmd = −ndmd (3)
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with ensuing isodual operations of division power, square root e.t.c. under
which 1d is the basic unit of new theory. Also,

1ddnd = ndd1d = nd (4)

As numeric field does not necessarily require that the basic unit be pos-
itive, it can indeed be taken as negative, and all the operations can be re-
formulated accordingly. This fact is the ultimate basis of the new theory of
antimatter and the resulting new era of cosmology.

Lemma 2.1 All quantities which are positive-definite when referred to fields(
such as mass,energy, angular momentum,density, temperature, time etc.) be-
came negative-definite when referred to isodual fields.

Positive-definite quantities referred to positive-definite units characterize mat-
ter, and negative-definite quantities referred to negative definite units, char-
acterize antimatter.
These characterizations lead to subsequent levels of representation of matter
and antimatter.

Definition 2.1 A quantity is called isoselfdual when it is invariant under
isoduality.

2.3 Isodual functional Analysis:

Functional analysis at large was subjected to isoduality with consistent ap-
plications of isodual theories resulting in a simple, unique and significant
isodual functional analysis by Kadeisvili [24].

Isodual functions are defined as;

fd(rd) = −f †(−r)† (5)

is called the isodual image of the conventional function,

2.4 Isodual differential calculus

This is the isodual image of the conventional differential calculus and re-
lated isodual derivative. Isodual differential coincides with the conventional
differential by Santilli conception,

ddrd ≡ dr (6)

Actually, because of this the new isodual calculus was not discovered since
Newton’s time till 1996.
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2.5 Isodual Lie theory

Let L be an n-dimensional Lie algebra with universal enveloping associative
algebra ξ(L), [ξ(L)]− ≈ L n-dimensional unit I = diag(1, 1, ....1) for the reg-
ular representation, ordered set of Hermitean generators X = X† = {Xk} ,
conventional associative product Xi×Xj , and familiar Lie’s Theorems over
a field F (a,+,×).

The isodual universal associative algebra [ξ(L)]d is characterized by the
isodual unit Id, isodual generators Xd = −X and isodual associative product
;

Xi
d ×d Xj

d = −Xi ×Xj (7)

with corresponding infinite-dimensional basis(isodual version of conventional
Poincare- Birkhoff-Witt theorem) characterizing the isodual exponentiation
of a generic quantity A

ed
A

= Id + Ad/d1!d + Ad ×d Ad/d2!d + · · · = −eA†
(8)

where e is the conventional exponentiation.

The attached isodual Lie algebra Ld ≈ (ξd) over the isodual field F d(ad,+d,×d)
is characterized by the isodual commutators ;

[Xd
i , X

d
j ]
d

= −[Xi, Xj] = Ckd
ij ×d Xd

k (9)

with a classical realization.

Let G be the conventional, connected, n-dimensional Lie transformation
group on S(x, g, F ) admitting L as the Lie algebra in the neighbourhood of
the identity, with generators Xk and parameters ω = {ωk}. The isodual Lie
group Gd admitting the isodual Lie algebra Ld in the neighborhood of the
isodual identity Id is the n-dimensional group with generators Xd = {−Xk}
and the parameters ωd = {ωk} over the isodual field F d with generic element

Ud(ωd) = ei
d×dωd×dXd

= −ei(−ω)X = −U(−ω) (10)

The isodual symmetries are then defined accordingly via the use of the
isodual groups and they are ant-isomorphic to the corresponding conven-
tional symmetries, as desired ref.[26] for additional details. Conventional Lie
symmetries are used for the characterization of matter where as Isodual Lie
symmetries are used for the characterization of antimatter.
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2.6 Isodual Euclidean Geometry

Let S = S(x, g, R) be a conventional N-dimensional metric space with local
coordinates x = {xk}, k = 1, 2, ...N , nowhere degenerate, sufficiently smooth,
real valued and symmetric metric g(x, ...),and related invariant

x2 = xigijx
j (11)

over the reals R. The isodual spaces are the spaces Sd(xd, gd, Rd) of S(x, g, R)
with isodual coordinates xd = x× Id , isodual metric

gd(xd, ...) = −g†(−x, ...) = −g(−x, ...) (12)

and isodual interval

(x−y)d2d = [(x−y)id×dgdij×d(x−y)jd]d = [(x−y)i×gdij×(x−y)jd]×Id (13)

defined over the isodual field Rd = Rd(nd,+d,×d) with the same isodual
isounit Id. The three dimensional isodual Euclidean space is defined as;

Ed(rd, δd, Rd) : rd = {rkd} = {−rk} = {−x,−y,−z} (14)

with
δd = −δ = diag(−1,−1,−1), Id = −I = diag(−1,−1,−1) (15)

Thus, the isodual Euclidean geometry is the geometry of the isodual space
Ed over Rd which is given by step-by-step isoduality of the various aspects
of conventional geometry.

Lemma 2.2 The isoeuclidean geometry on Ed over Rd is anti-isomorphic
to the conventional geometry on E over R.

Isodual sphere is the perfect sphere in Ed over Rd with negative radius;

Rd2d = [xd2d + yd2d + zd2d]× Id (16)

2.7 Isodual Minkowski space

This new space Md(xd, ηd, Id) is characterized by the isodual image of the
conventional Minkowski space for matter M(x; η, I) where x denotes space-
time coordinates, η = Diag(1, 1, 1, 1) denotes the Minkowski metric [25], and
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I = Diag(1, 1, 1, 1) is the basic unit. Now the isodual line element is given
by

xd2d = (xd ×d ηd ×d xd)1d ≡ x2 (17)

where the multiplication by 1d is necessary for the isodual line element to
have values in the isodual field. Note that the above isodual line element
coincides with the conventional line element also by Santilli conception
It is important to note that Santilli’s studies on antimatter requires a knowl-
edge of the fact that representation space of antimatter coexists with
that of matter while being totally different from the latter.

2.8 Isodual Riemannian geometry

Let R(x, g, R) be a 3 + 1 dimensional Riemannian space with basic unit
I = diag(1, 1, 1, 1) and related Riemannian geometry in local formulation.
Then the isodual Riemannian spaces are given by

xd = {−x̂µ}
Rd(xd, gd, Rd) : gd = −g = {x}, g ∈ R(x, g, R) (18)

Id = diag(−1,−1,−1,−1)

with interval x2d = [xdt ×d gd(xd)×d xd]× Id = [xt × gd(xd)× x]× Id on Rd,
where t stands for transposed.
The isodual Riemannian geometry is the geometry of spaces Rd over Rd,
and is also obtained by taking step-by-step isodualities of the conventional
geometry, including, most importantly, the isoduality of the differential and
exterior calculus.

2.9 Isodual Lie theory and symmetries

These are characterized by Hermitean generators X† = X verifying Lie-
Santilli isodual product

[Xd, Y d]d = Y d ×d Xd −Xd ×d Y d ≡ [X, Y ] (19)

and related Lie-Santilli isodual theory formulated on isodual spaces over an
isodual numeric field and elaborated via the isodual functional analysis and
isodual differential calculus.
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It is important to note that the above isodual product coincides with the con-
ventional Lie bracket also by Santillis conception; this identifies the deep
meaning of the term isoduality. This new symmetry called as IsoSelfDuality
(ISD) [3, 6, 1]is simply given by the invariance under isoduality. It can be
verified that P d(3.1) does not verify ISD where as P (3.1) × P d(3.1) does
verify ISD as each symmetry is transformed in to other, resulting in a total
invariance.

2.10 Isodual Lorentz-Poincare - Santilli symmetry

Santilli constructed isoduality of the Lie theory. He achieved this by way
of the isodual rotational symmetry SOd(3), the isodual symmetry SUd(2) ,
the isodual Lorentz symmetry SOd(3 : 1) and finally, the isodual Lorentz-
Poincare symmetry P d(3 : 1) which is the fundamental symmetry of the new
theory of antimatter. Here it is important to note that isodual mathematics
is solely applicable to point-like abstraction of antimatter masses or parti-
cles.
Here it is important to note that Isodual mathematics is solely applicable
to point-like abstraction of antimatter masses or particles. Covering isodual
isomathematics is required for the representation of time reversal invariant
systems of extended antimatter particles. Also, representation of their coun-
terparts requires isodual genomathematics
The most general conceivable mathematics for antimatter is given by San-
tilli isodual hypermathematics which is particularly suited for multi-valued
(rather than multi dimensional) formulations [27, 28].

2.11 Representation of antimatter at Newtonian level

As we know, Newtonian treatment of antimatter consisting of N point-like
particles is based on a 7-dimensional representation space which is a Kro-
necker products of the Euclidean spaces of time t, coordinates r, and veloci-
ties v as;

S(t, r, v) = E(t, Rt)× E(r, δ, Rr)E(v, δ, Rv) (20)

where
r = (rka) = (ra1, r

2
a, r

3
a) = (xa, ya, za) (21)

v = (vka) = (v1a, v2a, v3a) = (vxa, vya, vza) =
dr

dt
(22)
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δ = Diag : (1, 1, 1), k = 1, 2, 3, a = 1, 2, 3, ...N (23)

where the base fields Rt, Rr and Rv are trivially identical all having trivial
units +1, resulting in the trivial total unit

ITot = It × Ir × Iv = 1× 1× 1 = 1 (24)

Newtons celebrated equations of motion for point-like particles are;

ma ×
dvka
dt

= Fka(t, r, v), k = 1, 2, 3, a = 1, 2, 3, ...N (25)

For the isodual treatment of antiparticles basic space is 7N-dimensional
isodual space given by,

Sd(td, rd, vd) = Ed(td, Rd
t , )× Ed(rd; δd, Rd)× Ed(vd, δd, Rd) (26)

with isodual unit and isodual metric

IdTot = Idt × Idr × Idv (27)

Idt = −1, Idr = Idv = Diag : (−1,−1,−1) (28)

δd = Diag(1d, 1d, 1d) = Diag(−1,−1,−1) (29)

This transformation results into celebrated Newton-Santilli isodual equa-
tions for point-like antiparticles first introduced by Santilli [6] as,

md
a ×d dvkad/dddtd = F d

ka(t
drdvd), k = x, y, z, a = 1, 2, 3, ...n (30)

which has been experimentally verified. It is important to note that the above
isodual equations are anti-isomorphic to the conventional forms.

2.12 Implications of Newton-Santilli isodual equations

Antimatter exists in a spacetime, co-existing, yet different than our own. As
such, isodual Euclidean space Ed(rd, δd, Rd) co-exist within, but is physically
distinct from Euclidean space E(r, δ, R) and same occurs for full representa-
tion spaces Sd(td, rd, vd) and S(t, r, v).
Antimatter moves backward in time in a way as causal as the motion of
matter forward. In fact, Newton-Santillis isodual equations provide the only
known causal description of particles moving backward in time.
Antimatter is characterized by negative mass, negative energy and negative
magnitudes of other physical quantities.
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3 Isodual Relativities

3.1 Isodual Galilean Relativity

First we introduce isodual Galilean symmetry Gd(3.1) as isodual image of the
conventional symmetry G(3.1). For the Galilean symmetry of a system of N
particles with non-null masses

ma, a = 1, 2, ...N,Gd(3.1) has isodual parameters and generators defined
as;

wd = (θdk, r
kd
0 , v

kd
0 , t

kd
0 ) = −w jdk =

∑
aijk

rdja ×d pkja = −Jk, P d
k = −Pk (31)

and

Gd
k =

∑
a

(md
a×drdak−td×pdak), Hd =

1

2

d

×d
∑
a

pdak×dpkda +V d(rd) = −H (32)

with isodual commutator defined as

[Ad, Bd]d =
∑
a,k

[(∂dAd/d∂drkda )×d(∂dBd/d∂dpdak)−(∂dBd/d∂drkda )×d(∂dAd/d∂dpdak) = −[A,B]

(33)
The structure constants and Casimir invariants of the isodual Lie algebra

Gd(3.1) are negative-definite. If g(w) is an element of the connected
component of the Galilei group G(3.1) then its isodual is defined as

gd(wd) = e−i
d×dwd×dXd

= ei×(−w)X = −g(−w) ∈ Gd(3, 1) (34)

The isodual Galilean transformations are then given by the following;

td → t′
d

= td + td0 = −t, rd → r′
d

= rd + rd0 = −r′ (35)

rd → r′
d

= rd + vd0 ×d td0 = −r′, rd → r′d = Rd(θd)×d rd = −R(−θ) (36)

where Rd(θd) is an element of the isodual rotational symmetry. The above
isodual representation of antimatter is truly consistent with available classical
experimental knowledge for matter [6]. The situation in isodual space is
described by the following Lemma.

Lemma 3.1 The trajectories under the same magnetic field of a charged
particle in Euclidean space and the corresponding antiparticle in the isodual
Euclidean space coincide.
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Proof 3.1 Consider a particle with charge −e in the Euclidean space E(r, δ, R)
i.e. the value −e with respect to positive unit +1 of the underlying field of
real numbers R(n,+,×). Suppose the particle is under the influence of the
magnetic field B.
The corresponding antiparticle via isoduality changes the sign (reversal of
sign) of all physical quantities resulting in the charge (−e)d = +e in the cor-
responding isodual Euclidean spaceEd(rd, δd, Rd) simultaneously reversing the
magnetic field Bd = −B defined with respect to the negative unit (+1)d = −1.
This establishes the fact that the trajectory of the particle with charge −e in
the field B defined with respect to the unit +1 in the Euclidean space and
that for the antiparticle in the field −B defined with respect to the unit −1in
the isodual Euclidean space coincide.

Corollary 3.1 Antiparticles reverse their trajectories when projected from
their own isodual space into our own space.

3.2 Isodual Special Relativity

Classical relativistic treatment of point-like antiparticles can best be done via
isodual special relativity . Conventional special relativity [29] is constructed
with the 4-dimensional unit of the Minkowski space, I = Diag.(1, 1, 1, 1)
which represents dimensionless units of space {+1,+1,+1} and the dimen-
sionless unit of time +1, and is the unit of Poincare symmetry P (3.1). The
isodual special relativity is defined by the map

I = Diag({1, 1, 1}, 1) > 0→ Id = −Diag({1, 1, 1}, 1) < 0 (37)

It is based on negative units of space and time.
The isodual special relativity is expressed by the isodual image of all

mathematical and physical aspects of conventional relativity in such a way as
to admit the negative definite unit Id as the correct left and right unit,including:
the isodual Minkowski spacetime Md(xd, ηd, Rd) with isodual coordinates
xd = x× Id, isodual metric ηd = −η and basic invariant over Rd

(x− y)d2d = [(xµ − yµ)× ηdµν × (xν − yν)]× Id ∈ Rd (38)

and fundamental isodual Poincare symmetry [12]

P d(3.1) = Ld(3.1)×d T d(3.1) (39)
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where Ld(3.1) is the Lorentz-Santilli symmetry, ×d is the isodual direct
product and T d(3, 1) represents isodual translations. The algebra of the
connected component P ↑d+ of P d(3, 1) can be constructed in terms of the
isodual parameters wd = {−wk} = {−θ,−v,−a} and isodual generators
Xd = −X = {−Mµν ,−Pµ}, where the factorization by the 4-dimensional
unit I is understood.

Also, the isodual commutator rules are given by;

[Md
µν ,M

d
αβ]d = id×d(ηdνα×dMd

µβ−ηdµα×dMd
νβ−ηdνβ×dMd

µα+ηdµβ)×dM̂d
αν (40)

[Md
µν , p

d
α]d = id ×d (ηdµα ×d pdν − ηdνα ×d pdµ)[pdα, p

d
β] = 0 (41)

The basic postulates of isodual special relativity are simple isodual image of
the conventional postulates.
Isodual inversions and spacetime inversions are equivalent.

3.3 Isodual General Relativity

The most effective gravitational characterization of antimatter is isodual gen-
eral relativity obtained by isodual map of all the aspects of conventional rel-
ativity. This is defined on the isodual Riemannian spaces Rd(xd, gd, Rd) .
Isodual Riemannian geometry is defined on the isodual field of real numbers
Rd(nd,+d,×d) for which the norm is negative-definite. As a result, all quan-
tities which are positive in Riemannian geometry become negative under
isoduality, including the energy-momentum tensor. Explicitly, the electro-
magnetic field follows the simple rule under isoduality

F d
µν = ∂dAdµ/

d∂dxνd − ∂dAdν/d∂dxµd = −Fµν (42)

and for the energy-momentum tensor we have

T dµν = (4m)−1d×d (F d
µα×dF d

αν+(1/4)−1d×dgdµν×dF d
αβ×dF dαβ) = −Tµν (43)

In fact, isodual Riemannian geometry has negative-definite energy-momentum
tensor and other physical quantities which open up new possibilities for at-
tempting a grand unified theory.
Reader should note that the universal symmetry of the isodual
general relativity, the isodual isoPoincare symmetry P̂ d(3.1)P d(3.1)
has been introduced at the operator level in [10].
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4 Antigravity

In the words of Santilli ”Isodual theory of antimatter predicts the existence of
antigravity (here defined as the reversal of the sign of the curvature tensor in
our space-time) for antimatter in the field of matter or vice-versa” As such,
the isodual theory of antimatter predicts in a consistent and systematic way
at all levels of study, from Newtonian mechanics to Riemannian geometry,
that matter and antimatter must experience gravitational repulsions ref [7,
30] and monograph [6]

We may summarize above results as; classical representation of an-
tiparticles via isoduality renders gravitational interactions equiv-
alent to the electromagnetic ones, in the sense that the Newtonian
gravitational law becomes equivalent to the Coulombs law.

These results could not have been achieved without isoduality.
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Abstract 
 

The purpose of this lecture is to show that no theory can be regarded 
as a complete one and this leads to indeterminism. This can be proved by 
means of a theorem which can show that the logical communication system, 
through which all theories are stated, is contradictory. According to the 
present point of view any uncertainty-incompleteness derives from the 
logical communication system itself and not from empirical principles 
which cannot be proven as valid. On this basis can be proved that space time 
is matter itself, Schrödinger’s relativistic equation is valid and that the Ψ 
wave function is a complex space time function described in a Hypothetical 
Measuring Field (HMF). Thus, a Space Time Quantum Mechanics-Quantum 
Gravity  can be stated and this is a Minimum Contradictions Theory of Everything. 
According to the present point of view, new phenomena and technologies, related 
to free energy and reactionless propulsion, can be explained and this reinforces the 
credibility of this theory.  
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1. LOGIC ANALYSIS 

If  we denote by    a logic consisting of the Classical Logic denoted 
as IP   and the Sufficient Reason Principle regarded as a Complete Proof 

Principle denoted as IIP , we will have [1, 2]: 

 

I IIP P    

 
where IIP  is defined as: 

 
Complete Proof Principle - IIP : “No statement is valid if  there is not a 

complete logical proof of the statement, through valid statements different 
from it. 
 
           ”On this basis Theorem I can be derived i.e.: 

 
Theorem I:  "Any system that includes logic    and a statement that is not 
theorem of logic    leads to contradiction" [1, 2]. 

 
We name ‘0’ the state before our communication and ‘1’, ‘2’, ‘3’  

the sequent states of this communication. ‘0’ corresponds to the non-
existence of any communication symbol while ‘1’ to some symbol 
existence.  From the non-existence of something cannot derive logically its 
existence.  Working in the same way we have that a “posterior” does not 
derive logically from its “anterior”.  Therefore the Anterior – Posterior 
Axiom is not theorem of . Applying Theorem I we obtain Statement I        
[1, 2]:  

 
Statement I: "Any system that includes logic     and the anterior-

posterior axiom leads to contradiction."  
 

where the anterior – posterior axiom is stated as follows: 
 
Anterior – Posterior Axiom (A-P Axiom): “There is anterior-posterior 
everywhere in communication.” 
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Kantian 3rd antinomy has similarities with statement I [3, 4]; Kant’s 
3rd antinomy proof requires that a transcendental causality can exist a priori 
in contrast to theorem I. 

Gödel and Rosser theorems [5, 6] could lead to same results as 
theorem I [1, 2]; however as H. Putnam [7] in his critic to R. Penrose’s 
Shadows of the Mind [8] has noticed, they are restricted to computational 
well defined processes, not to logical communication  in general [9]. 

Based on Theorem I and Statement I, we conclude that a system 
including the principles of logical communication leads to contradiction. 
This leads to the silence, and therefore when communicating logically it 
means that we decide to break the silence by avoiding contradictions on 
purpose [1, 2].  

Despite statement I, we do communicate in a way we consider 
logical avoiding contradictions on purpose. Since contradictions are never 
vanished, we try to understand things through minimum possible 
contradictions.  On this basis we can state [1, 2]: 

 
Statement II - The Claim for Minimum Contradictions: "What includes 
the minimum possible contradictions is accepted as valid." 

 
According to this claim we obtain a logical and an illogical 

dimension.  In fact, through this claim we try to approach logic (minimum 
possible contradictions), but at the same time we expect something illogical 
since the contradictions cannot be vanished.  

All axioms mentioned, the claim for minimum contradictions 
included, constitute the principles of the active logical language; when we 
speak we persist in logic despite of the existing contradictions.  

Every theory includes at least the axioms mentioned; therefore no 
theory can be complete since it includes contradictions. On this basis, a 
minimum contradictions physics can derive where the physical laws are the 
principles of the active logical language; this physics is a stochastic matter-
space-time QM  implying a quantum gravity [1]. 
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COMMON ROOTS OF RELATIVITY THEORY AND QM 

2.1 General 

According to theorem I, further axioms beyond the ones of logical 
communication must be avoided since they can cause further contradictions. 
The systems of axioms we use in physics include the logical communication 
and, therefore, their contradictions are minimized when they are reduced to 
the logical communication itself.  

At first sight, for a minimum contradictions physics we can make the 
following statement [1, 2]: 

 
Statement IΙI:  In a minimum contradictions physics everything is described 
in anterior–posterior terms. 
 

If there is space-time then there is anterior posterior so that space-
time can be measured and denoted through the communication (language). 
Inversely, if there is anterior-posterior in communication then there is space-
time. In fact, in order to write something we need space; also we need time 
since we cannot write in a simultaneous way. Thus, because of Statement 
III we can state the following [1, 2]: 

 
Statement IV:  In a minimum contradictions physics everything is described 
in space-time terms.   
 

Since everywhere there is space-time and not something else, space-
time can be regarded as the matter itself.  A matter system, in general, has 
differences within its various areas.  This means that a matter system, in 
general, is characterized by different rates of anterior - posterior (space-
time) within its various points.  This means that time can be regarded as a 
4th dimension which is compatible to Lorentz’ transformations and in 
extension to a relativistic theory [1].   

2.2. Hypothetical Measuring Field 

Basic tool of this work is the Hypothetical Measuring Field (HMF) 
[1].  

As Hypothetical Measuring Field (HMF) is defined a hypothetical 
field, which consists of a Euclidean reference space-time, in which at each 
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point 0A  the real characteristics of the corresponding, through the 

transformations of deformity, point A of the real field exist.  
 
In the HMF, it is defined as a relative space time magnitude sr , the 

ratio of the real infinitesimal space time magnitude ds  to the corresponding, 
through the deformity transformations, infinitesimal magnitude 0ds  of the 

reference space- time, i.e. 0/sr ds ds .  This can apply to relative time

0/tr dt dt , to relative length in a direction n  0/lr dl dln n n   and to a relative 

volume   0/vr dv dv . 

2.3 Equivalence of Energy and Time  

In a space-time description we don’t know a priori what energy is. 
We define energy dE of an infinitesimal space-time element its ‘ability to 
exist’. We may notice that an infinitesimal space-time element with energy 
dE exists on condition that some corresponding ‘anterior-posterior’ exist 
too.  With respect to the HMF a space-time element is observed during a 
time dt that is different from the time 0dt  of the corresponding reference 

space-time element.  Various space-time elements in the HMF have 
different dt for the same 0dt . Thus, dt  measures the duration i.e. the ability 

of a space-time element to exist; this ability, by definition is energy; when

0dtdt  , this ability is 0dE . Thus, we can write [1]: 

 

                            dtdE ~     and     00 // dtdtdEdE                           (1) 

 
which is a relativistic relation. Relations (1) show the equivalence of a 
space-time element energy to the time flow rate within this element. When  
dt is a constant period of time in the HMF, then Eq. (1) can be written in the 
form:  

 

                    vvvfvfdtdtdEdE /)//()/(// 0000                   (2) 

 
where v is the frequency of a periodic phenomenon of comparison and f an 
arbitrarily constant factor through which we can change the scale of time.  
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If 1v , 0v  must be different in various points ( )tr,  of the HMF. If this is 

the case Eq. (2) can be written in the form:   
 

                                                 0 0/ ( , )dE dE v t r                                           (3) 

 
Thus, for the same equation we have the following versions [1]: 
                 

                00 // dtdtdEdE   observation   (relativity theory)              (4) 

                  0 0/ ( , )dE dE v t r  action   (quantum mechanics)                  (5)

             
Thus, at a first sight relativity theory and QM have common roots 

[1]. On this basis, we can reach the basic De Broglie’s principle for a particle 
energy;  in fact   for  hE 0   we have (arithmetically) that:  

 

            E hv             (6) 
        

3. STOHASTIC SPACE TIME 

3.1 General 

At  second sight, taking into account the above mentioned and 
applying the claim of the minimum contradictions, we conclude that matter-
space-time  has  logical and contradictory behavior at the same time;  this 
can be valid when space time exists and not exists at the same time (illogical 
behavior) while it implies the existence of logic. This can be approached by 
the aid of a hypothetical measuring field HMF.  If this is the case we can 
say that space-time has a probability to exist and to correspond to an 
infinitesimal area around a point ( )tr,  of the HMF. Thus we can state the 
following:  

 
Statement V: Minimum Contradictions Physics can be described by 

Stochastic Space-Time. 
 
However physics describes any matter system i.e. matter, anti-

matter, mass and charge.  On this basis statement V has sense if there are 
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various kinds of space time corresponding to the various forms of matter.  
Thus we can use signs +1, -1, +i, -i  for various states.  For the purposes of 
stochastic space-time description, the following definition is useful [1]:  
              In a HMF, we define as mean relative space time magnitude sr the 
ratio of the mean real infinitesimal space time magnitude ds  to the 
corresponding infinitesimal magnitude 0ds  of the reference space- time  i.e. 

0/ dsdssr  . Thus, for mean relative time we obtain:  0/ dtdttr  . The 

relative space-time magnitudes mentioned above, are denoted by ,SR TR ,.. 
when they refer to mean values of a particle space-time field. 
 

4. EQUATIONS OF  MINIMUM CONTRADICTIONS PHYSICS 

The minimum contradictions equations  are here mentioned in order 
that a general idea on the results of the minimum contradictions physics 
might be introduced. 

The electromagnetic (em) space-time, is a space-time whose all 
magnitudes are considered imaginary and behave exactly like the 
gravitational (g) space-time.  Electromagnetic (em) space-time is described 
by means of space-time wave functions such that [1]: 

  

( ) ( )g
em em em emt t r , r,                       (7) 

 
where Eq. (7) has meaning due to the coexistence of (g) and (em) space-
time under a scale which appears to be equal to the fine structure constant 
 [1].   

According to the spirit of this paper there is not potential acting at 
a distance since space time is matter itself. By the aid of Fourier analysis 
and without any other physical principles the following can be obtained [1]:  

 
a. Relative Space-Time Operators (Relative Time, Volume, Length in a 

direction n ) 
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b. Particle Schrödinger’s Relativistic  Equation (Klein–Gordon) for (g) 

and for (em)  Space-Time: 
 

          

2
2

2 0
2 2( ) ( ) ( / ) ( )t c t m c t
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r, r, r,                 (9)

            
c. Many body Schrödinger’s Relativistic  Equations  for (g) and for (em)  

space time: 
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d. Energy Conservation: 
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r, r,                   (12) 

                
e. Momentum Conservation: 
 

      

( ) ( )

( ) ( )
( ) 0

g
g em

t g

g em

t t

t t


 

 

 
  

r, r,

r, r,       (13) 

 
f. Geometry of  (g) or (em) Space-Time i.e. Mean Relative Time and Mean 

Relative Length in a Direction n  at a Point ( )tr, : 
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                                                                                           (15) 
 

The above equations cannot describe a unified field on the basis of 
common boundary conditions; they need to be self determined [1]. This 
implies the existence of incompleteness-volition (Free Will) and Indeter-  
minism.  These equations imply a statistical interpretation and a distribution 
of matter space-time according to Schrödinger Relativistic  Equation   
probability density  
 

                  0
2, ( / 2 )P t i m c t t      r                    (16)                

                                                                    
In this case,   function locally is described by an equivalent local 

space-time particle field wave function i , where this field is regarded as 
extended to infinity. This can occur when  equations (10 to 13) have constant 
values of  0gm  or  0emm  only in the vicinity of various ( , )tr  of the (HMF).  

 

5. QUANTUM GRAVITY  

The gravitational acceleration ( , )tg r  represents the force that must 
be applied to a unit of mass at every point ( , )tr  in order that energy will be 
distributed according to the probability density function  ,P tr . It can be 

proven that [1]: 
 

 ( , )
2 2

( , ) ( , )
( , ) ( , )

t
c c

t P tr t
P t tr t

   rg r r
r r          (17)                                                        
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From equation (17) for a particle field, because of equation (16) it holds: 
 

 

 
 

2

( , )
c t t

t
t t

 

 

     
     

rg
                      (18)                                                        

       
Equations (17, 18) describe a unified relationship which is valid 

everywhere. Under certain simplifications it can be proven that equation 
(17) is compatible to Newton and to Coulomb law as well as to the 
relativistic formula for gravity [1]. This implies a convergence of a 
Deterministic with an Indeterministic point of view. 

 

6.     POSSIBILITY TO VERIFICATION OF (G) AND (EM) 
INTERACTION 

6.1 General 

According to the present point of view new phenomena and 
technologies, related to free energy and reactionless propulsion, can be 
explained and this reinforces its credibility. There have been made many 
devices to produce  energy or to create propulsion through the vacuum [15-
24]. In the present paper the effects - devices we use to possibly verify the 
(g) and (em) interaction are the following: 

6.2 Santilli’s Etherino 

The neutron was conceived by H. Rutherford as a "compressed 
hydrogen atom" in the core of a star. Don Borghi claimed the laboratory 
synthesis of the neutron from protons and electrons; this experiment 
remained unverified for decades due to the lack of theoretical understanding 
of the results. R.M. Santilli has verified and theoretically explained this 
experiment by the aid of a particle process which he called as etherino (from 
ether) on the basis of Hadronic Mechanics [10, 11]. The Etherino Process 
has been found to be compatible to ‘Minimum Contradictions Physics’ 
which implies that space time is matter itself and consists of gravitational 
(g) and electromagnetic (em) space time which are interconnected and 
communicate through photons (particles with zero rest mass). A basic 
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consequence of this, is the Statement: “During the approach of an electron 
to a proton there is absorption of gravitational space time energy” [1, 12].  

6.3 U.S. Patent No. 8,952,773 

The device of the U.S. Patent No. 8,952,773 [13] is illustrated in fig. 
1; this device consists of a superconducting nozzle connected at its narrow 
end with a permanent magnet, which can create propulsion without any 
external energy source but only in the direction South to North. 
Experimental verification was carried out both at the Technological Institute 
of Thessaly (now the University of Thessaly) in the Laboratory of 
Renewable Energy and in the Solid State Physics Laboratory of the National 
Kapodistrian University of Athens.  

6.4 PCT/GR2020/000040-Priority GR 20190100373 patent application 

The device of the PCT/GR2020/000040 patent application [14] is 
illustrated in fig. 2 and fig.3 and consists of a soft  iron core, of constant or 
changing axis of symmetry and constant or  changing cross sectional area, 
which is surrounded by a REBCO tape solenoid producing DC or AC 
magnetic field and a magnetic shield which does not permit the magnetic 
field to penetrate it; this device can create a propulsive force upwards. 
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Abstract: 

Quantum scale “uncertainty” effects limiting measurement accuracy appear 

to reflect the actual properties of quantum particles as has been well 

substantiated in numerous experimental examples.  However, the concept of 

uncertainty appears to lack any clear physical basis and stands as an effects 

descriptor, not as a causal description of actual particulate physical 

properties.  The famous EPR paradox is examined, assessed and placed into 

current perspective then new theory is presented defining the functional 

causal basis of observed uncertainty effects.  Lastly, experimental evidence 

will be presented in support of this new model. 

 

 
"When we see probability we do not see causality, we see the limits placed upon our ability 

to observe overcome by way of an ingenious guess at the result. In this clever approach 

where cause is neglected for the prediction of outcome, we must not forget it is we who can 

not see. Physical systems are not guessing 

at themselves." 

––R.N. 
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Introduction. 
 

To many the whole notion of uncertainty, as discussed in quantum 

mechanics, comes as something of anathema; the whole idea seems to 

contradict commonsense. It would appear, therefore, sensible to examine 

this apparent basis for much of modern physics again and in some detail. At 

the same time it would seem appropriate to examine other uncertainty 

relations which come into modern physics. Amongst these must be the idea 

of uncertainty relations in thermodynamics and it is an examination of these 

which could lead to an understanding of the entire issue, including possibly 

a further consideration of the question of the completeness of quantum 

mechanics as a theory and, therefore, of the validity of the claims of 

Einstein, Podolsky and Rosen
1
. There are no uncertainty relations in 

classical thermodynamics where, almost by definition, all physical 

quantities are taken to have quite definite values. However, for example 

when systems composed of a large number of particles are to be 

investigated, statistical methods have to be employed since it is impossible, 

at least at present, to evaluate exactly the behavior of each and every 

individual particle. Hence, the subject ‘statistical mechanics’ came into 

being. By its reliance on statistical methods and, therefore, the idea of 

probability, the outcome of investigations becomes less definite and 

uncertainties creep in. This is the source of the so-called thermodynamic 

uncertainty relations which are considered in many texts
2
. Note though that 

these uncertainty relations arise out of the introduction of uncertainty into 

the theory by investigators; they do not appear purely as a result of the 

physical situation being discussed. Hence, such relations and any deductions 

made using them must be viewed with a degree of skepticism and treated 

accordingly since it is not at all obvious that any such deductions are 

physically realistic. It might be wondered if the same could be true of the 

uncertainty relations of quantum mechanics. In his seminal book
3
, 

Heisenberg first introduces his relations via a quite simple but definitely 

approximate method using a wave picture. He then proceeds to derive them 

also without explicit use of the wave picture but then obtains from them the 

mathematical scheme of quantum theory and its physical interpretation. 

However, at the basis of much of the mathematics associated with quantum 

theory is the wave equation with the so-called wave function associated with 

a probability. Once probability comes into things, uncertainties in measured 

quantities must necessarily follow. Hence, the question must be raised as to 

whether, or not, the uncertainties associated with quantum theory are real 
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physical uncertainties or uncertainties introduced surreptitiously by 

theoreticians, just as occurs in statistical thermodynamics?   

 

All the work that follows is really an extension of earlier work which 

appeared in the Hadronic Journal and is available online
4
. Any reader of the 

current work is encouraged to read the full work mentioned here first in 

order to grasp more easily that which follows. 

 

Some Preliminaries. 

 

To begin with, the original paper by Einstein, Podolsky and Rosen
1
 should 

be examined. It may be noted that several important points concerning the 

thought experiment are proposed: 

 

" ...every element of the physical reality must have a counterpart in the 

physical theory." 

 

"The elements of the physical reality cannot be determined by a priori 

philosophical considerations, but must be found by an appeal to results of 

experiments and measurements." 

 

"More generally, it is shown in quantum mechanics that, if the operators 

corresponding to two physical quantities, say A and B, do not commute, that 

is, if AB≠BA, then the precise knowledge of one of them precludes such a 

knowledge of the other. Furthermore, any attempt to determine the latter 

experimentally will alter the state of the system in such a way as to destroy 

the knowledge of the first. From this follows that either (1) the quantum 

mechanical description of reality given by the wave function is not complete 

or (2) when the operators corresponding to two physical quantities do not 

commute the two quantities cannot have simultaneous reality. For if both of 

them had simultaneous reality-and thus definite values-these values would 

enter into the complete description, according to the condition of 

completeness." 

 

"Thus, by measuring either A or B we are in a position to predict with 

certainty, and without in any way disturbing the second system, either the 

value of the quantity P (that is pk) or the value of the quantity Q (that is qr)." 

 

"Previously we proved that either (1) the quantum-mechanical description of 
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reality given by the wave function is not complete or (2) when the operators 

corresponding to two physical quantities do not commute the two quantities 

cannot have simultaneous reality. Starting then with the assumption that the 

wave function does give a complete description of the physical reality, we 

arrived at the conclusion that two physical quantities, with noncommuting 

operators, can have simultaneous reality. Thus the negation of (1) leads to 

the negation of the only other alternative (2). We are thus forced to conclude 

that the quantum-mechanical description of physical reality given by wave 

functions is not complete." 

 

Two primary elements of the EPR argument may now be noted separately: 

 

    1. It is possible to define both position and momentum of two previously 

interacting quantum particles/systems.  

    2. Measurement may not (non locally) disturb system two if system one is 

measured, unless a hidden variable not yet defined within the context of 

wave function is identified.  

 

Point two is clearly implied from the last sentence in the paper: 

"We believe, however, that such a theory is possible." 

and the aforementioned sentence: 

"...every element of the physical reality must have a counterpart in the 

physical theory." 

 

It is important to note at this juncture, the concerns of Heisenberg regarding 

such fanciful methods of deduction and exploration as thought experiment 

and human imagining alone, which appear to closely parallel Einstein's 

views of the same, as already noted above. 

 

From Heisenberg's book
3
, p. 15, concerning the reality of uncertainty as per 

his equations in physical systems, he states that 

 

"In this connection one should particularly remember that the human 

language permits the construction of sentences which do not involve any 

consequence and which therefore have no content at all––in spite of the fact 

that these sentences produce some kind of picture in our imagination."  

 

The reader of this present article should note this point as it is important in 

what follows. 

718https://doi.org/10.52202/059404-0015

https://doi.org/10.52202/059404-0015


 

 

 

Analysis of EPR feasibility. 

 

If the notion of the EPR argument is sound, one would expect the scheme to 

be used in some sort of demonstrable way. If the idea is good and leads to 

accurate measurement, some practical usage must have been made of it after 

all these years.  Entangled science aside, is the basic notion in point one 

above actually demonstrable?   

 

Let us bring forward the usual interpretations of the EPR ideas, and imagine two 

quantum particles which have interacted, and are now moving directly away 

from each other at a 180 degree relation.   This is the interpretation most used, 

that akin to the thinking of Kumar
5
 which defines the EPR idea as "two 

particles, A and B, [that] interact briefly and then move off in opposite 

directions."  

 

Is this scheme actually able to measure anything, and is it used?  Seemingly 

yes.  Positron Emission Tomography scanning (the PET scan) appears to 

use this idea to measure biological processes and define the locations 

thereof. A PET scanner is essentially a gamma ray detector. In PET scans, 

Blood Oxygenation Level-Dependent relations indicative of tissue oxygen 

metabolism are detected through positron/electron annihilations created by 

way of an injected radioactive oxygen tracer such as 
15

O, which has a half 

life of 123 seconds.  As the unstable nucleus of a 
15

O atom decays having 

been absorbed by dynamic oxygen using tissues such as neurons, it emits a 

positron.  The positron annihilates when brought in contact with an electron, 

emitting 2 (gamma) annihilation photons which travel in exactly opposite 

directions, a 180 degree relation of two quantum particles moving at a 

constant mutual speed, allowing accurate measurement of the location of the 

source interaction in space, and also, inference could easily be drawn from 

one particle measurement to the values of the other. 
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PET scan schematic representation. 

 

It may be concluded that the basic notion is in fact quite functional as a 

system of measurement when used in a general way.   It is clear also that 

scientific observers could easily infer the position and momentum of one 

particle from measurement of the other, which travels in mirror opposite, 

both at a known speed. 

 

It seems the EPR scheme does allow actual measurement as it should in 

reality, and is not just a fanciful idea one may draw up to form a picture in 

one's head, and so, answers in this one aspect at least, Heisenberg's and also 

Einstein's standards of a workable theory as represented in good science. 

 

Next, we move to the nonlocal aspects of the EPR theory and assess the 

outcome of experiments.  Local realism insists that measurement of one 

separated system part could not ever superluminally affect the other 

separated parts of the system (presumably unless some missing, hidden 

variable is in play).  Recall that, in the Copenhagen interpretation of QM, 

the wave function is entirely a probabilistic entity! However, it is found that 
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nonlocal measurement effects moving well in excess of light speed are 

evidenced and those results then repeated in experiments involving 

entanglement.   

 

In an article by Yin, et al.
6
, it may be read 

 
"In the well-known EPR paper, Einstein et al. called the nonlocal correlation in 

quantum entanglement as `spooky action at a distance'. If the spooky action does 

exist, what is its speed? All previous experiments along this direction have locality 

and freedom-of-choice loopholes. Here, we strictly closed the loopholes by 

observing a 12-hour continuous violation of Bell inequality and concluded that the 

lower bound speed of `spooky action' was four orders of magnitude of the speed of 

light if the Earth's speed in any inertial reference frame was less than 10
-3

 times of 

the speed of light." 

 

Here, the new theories come good and the matter may be resolved in favor 

of a hidden variable: the scalar wave within the aether. See reference 4. Of 

course, in any modern discussion of the EPR paradox, it must never be 

forgotten that a resolution was presented in 1998 by Ruggero Santilli
7
 and 

this has, as far as is known, never been discredited. Hence, it appears that, 

when the whole question of the EPR paradox comes under discussion, 

reference should be made to this work. 

 

Cause of quantum uncertainty effects. 

 

Again the reader should remember of the cautionary words of Heisenberg: 

 

"In this connection one should particularly remember that the human 

language permits the construction of sentences which do not involve 

any consequence and which therefore have no content at all––in 

spite of the fact that these sentences produce some kind of picture in 

our imagination."   

 

It might be postulated that the notion of "uncertainty" itself is exactly such 

an error as Heisenberg himself cautions against!  This property is particulate 

anthropomorphism...we assign a human quality, uncertainty, a kind of 

affective and logical confusion, to a physical particle.  Yes; humans can 

form this idea, an idea of a particle which is somehow confused as they are, 

but that is a human idea, not a physical idea.  Although it may be pictured, it 

has no actual physical content. 
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What could actually be causing the observed measurement results of 

quantum experiments? If not uncertainty, what is the physical cause of the 

measurement problem and seeming duality between particle and wave?  

Duality is always the mark of confused thinking, as are most if not all 

paradoxes. What could be causing the plainly available "uncertain" 

experimental effects.  It must be a real physical object, and not some 

confused human imagining! 

 

In truth, Heisenberg’s uncertainty relation ∆𝑥∆𝑝𝑥 ≥ ℎ 
describes effects, not causes.  There seems to be no physics in this!  What 

actual object could cause these measurement and other "uncertain" quantum 

effects?  

 

There is a hidden variable; that is, the aether and the longitudinal pressure 

waves (scalar waves) which form up "force carrier," entangled and 

gravitational effects. See reference 4. 

 

Now recall boundary layer theory as applied to the aether; that is, the 

boundary between the aether itself and any body passing through it or over 

which it passes. Details of the theory of the boundary layer, due initially to 

Prandtl
8
, may be found in most books on fluid mechanics such as that by 

Cole
9
.   

 

Imagine an aetherial boundary layer around a particle. The original 

uncertainty equation is missing the basis - there is no basis to the physics - it 

describes only effects.  The boundary layer as a particle-surrounding scalar 

wave accounts for the causal mechanism of uncertainty effects, (as well as, 

possibly, nuclear decay and fusion as will be discussed in future work) - the 

measurement uncertainty is then caused by an actual wave surrounding the 

actual particle; not a wave-like particle duality. Physics has left out the 

aether and, hence, the wave around each quantum particle. The “uncertain” 

momentum and x component of velocity in the Heisenberg equations are 

themselves caused by this wave obscuring those aspects of the particle. The 

overall change as diffusion then refers to the heat within the scalar wave and 

hence its initial (quantum) size, delta in the Heisenberg equations then 

referring to the amount of change in temperature above absolute zero, in a 

causal analysis and proper treatment
3
. That wave is the source of “diffusion” 
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effects.  Note how in the paper, Entropy of a column of gas under 

gravity
10

, heat first added to the system creates gravitational potential (in 

part) and not only increase in temperature. That gravitational potential is, by 

our present theories, the creation of the scalar waves which create a 

gravitational field. See reference 4. 

 

If this is so, and our theory correct, a violation of measurement 

"uncertainty" should be observed in experiments if the scalar waves around 

the particles are deprived of heat.  Indeed, this is exactly what is seen in 

experiments.  The back action limit, the quantum limit on measurement 

precision bounded by uncertainty, is violated, and now, just as might be 

expected, absolute zero may be approached arbitrarily close to deprive the 

actual source of uncertainty effects of the heat needed to create them. As 

Clark and colleagues have pointed out recently
11

:  

 

"Here we propose and experimentally demonstrate that squeezed 

light can be used to cool the motion of a macroscopic mechanical 

object below the quantum backaction limit. We first cool a 

microwave cavity optomechanical system using a coherent state of 

light to within 15 per cent of this limit. We then cool the system to 

more than two decibels below the quantum backaction limit using a 

squeezed microwave field generated by a Josephson parametric 

amplifier." 

 

Uncertainty is experimentally demonstrable as a function of heat 

instantiated within the boundary scalar wave surrounding the particle. It 

appears likely that, as heat is further reduced as absolute zero is approached 

more closely, the cause of quantum uncertainty and fluctuation which is the 

omnidirectional motion of aether particles within the particle boundary 

scalar wave is then reduced, perhaps by way of energy  reduction of the 

aether particle itself and/or alignment of said omnidirectional particle 

motions, leading to the absence of any wave-forming particulate energy 

value at absolute zero temperature.  

 

Quantum fluctuation effects and related uncertainty are caused by 

omnidirectional aether particle motion.  Uncertainty itself within quantum 

particulate measurement dynamics is actually caused by the boundary 

wave, surrounding a quantum particle as a function of heat. 
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Uncertainty effects emerge as a function of quantum scale, as the aether 

particle size is more closely approached.  

 

 Lastly, new experiments are seen where, as might be expected, heat is 

reduced to permit the proliferation of related condensate and EPR effects to 

emerge. Note, for example the paper by Fadel, et al
12

 in which it is stated 

that 

 

"While spin-squeezed and other nonclassical states of atomic ensembles 

were used to enhance measurement precision in quantum metrology, 

the notion of entanglement in these systems remained controversial 

because the correlations between the indistinguishable atoms were 

witnessed by collective measurements only. Here we use highresolution 

imaging to directly measure the spin correlations between spatially 

separated parts of a spin-squeezed Bose-Einstein condensate. We 

observe entanglement that is strong enough for Einstein-Podolsky-

Rosen steering: we can predict measurement outcomes for non-

commuting observables in one spatial region based on a corresponding 

measurement in another region with an inferred uncertainty product 

below the Heisenberg relation." 

 

Uncertainty within internal and external dynamical systems. 
 

Clearly the ideas within this brief work refer only to uncertainty effects 

within the external dynamical problem, that of particulate interactions and 

not to the internal dynamical problem of hadronic construction which is that 

of non-potential contact interactions, meaning non-Hamiltonian systems 

(that is, variationally nonself-adjoint systems not representable with a 

Hamiltonian).  Those hadronic and other like systems then, may be rightly 

understood without erroneous reference to uncertainty by way of the 

mathematics of Santilli.   

 

These topics are discussed in detail at: 

http://www.galileoprincipia.org/santilli-confirmation-of-the-epr-

argument.php 

 

Briefly, as derived from the web reference above: 

Extended and hyperdense protons and neutrons in conditions of partial 

mutual penetration as occurring in a nuclear structure demonstrate 
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nonHamiltonian forces. The assumption of the exact validity of 

Heisenberg's uncertainty in the interior of a nucleus is non-scientific.  The 

hadronic isomomentum is uniquely defined by 

 

p' * ψ'(t', r') = - i ∂' ψ'(t', r') = - i U ∂ ψ'(t', r')      (1) 

 

It is then plain that isolinear momenta isocommute on isospace over 

isofields by therefore confirming the principle of isotopies 

 

[p'i, p'j]' = p'i * p'j - p'j * p'i = 0       (2) 

 

This occurs because the isotopic element T of the isoproduct "*" , cancels 

out with its inverse, the isounit U =1/T. However, isomomenta no longer 

commute in our spacetime, 

 

[p'i, p'j] = p'i p'j - p'j p'i ≠ 0       (3) 

 

because, in the absence of the isotopic product, the derivative does act non-

trivially on the isounit U due to its general dependence on local coordinates, 

and this eliminates Heisenberg's uncertainty principle for the study of 

interior problems and actually replaces it with a much more general 

principle. 

 

Some Final Thoughts on the Aether. 

 

Before concluding, it might be appropriate to reflect on the demise of the 

aether theories over the last hundred years and more. In the intervening 

time, several people have doggedly pursued investigations into theories 

involving the aether concept, often at personal cost. Among those was 

Kenneth Thornhill and it might benefit many to read his work which is 

readily available on the internet.
13

 In the cited article, he starts by showing 
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that Planck’s energy distribution for a black body radiation field may be 

derived for a gas-like aether with Maxwellian statistics. The gas consists of 

an infinite variety of particles whose masses are integral multiples of the 

mass of the unit particle. Also the frequency of electromagnetic waves 

correlates with the energy per unit mass of the particles, not with their 

energy, thus differing from Planck’s quantum hypothesis. Identifying the 

special wave-speed, usually called the speed of light, with the wave-speed in 

the 2.7
0
K background radiation field, leads to a mass of 0.5  10

-39
kg for the 

unit aether particle. Interestingly, in this article he also shows that the speed 

of light should vary with the square root of the background temperature. It is 

not without interest to note that this suggestion by Thornhill would obviate 

any need for introducing theories of inflation to protect the Big Bang notion.  

More may be found on the whole question of the constancy, or otherwise, of 

the speed of light in the article by Farrell and Dunning-Davies
14

. 

Also, before ending this section, attention should be drawn to a companion 

paper by Thornhill
15

 in which he discusses in detail the fact that, in a gas-

like aether, the duality between the oscillating electric and magnetic fields, 

which are transverse to the direction of propagation of electromagnetic 

waves, becomes a triality with the longitudinal oscillations of the motion of 

the aether if electric field, magnetic field and motion are coexistent and 

mutually perpendicular. He points out that it must be shown that, if 

electromagnetic waves also comprise longitudinal condensational 

oscillations of a gas-like aether, analogous to sound waves in a material gas, 

then all three aspects of such waves must propagate together along identical 

wave fronts. This he shows to be the case. Further he finds that the 

equations governing the motion and the electric and magnetic field strengths 

in such an aether, together with their common characteristic hyperconoid, 

are all invariant under Galilean transformation.   

 

Conclusion. 

 

The notion of "uncertainty" within physical systems is only an 

anthropomorphic effects descriptor, not a causal description of physics.  

Fluctuation effects in quantum systems and uncertain measurement effects 

are in fact caused by a real object and not probability: the aether and the 

scalar waves within it.  Quantum mechanics as interpreted by the 

Copenhagen interpretation is in point of fact: incomplete.  The wave 

function must be augmented in its interpretation to represent aetherial and 

scalar wave dynamics, at which point the adjusted theory would in fact 
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satisfy Einstein's highest standards as a physical theory. 
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1.Introduction  Interpretation of quantum mechanics means here an 

explanation of strange features of its mathematical formalism (“copenhagen” 

interpretation) with the help of notions from everyday life (physical model). 

Attempts to find such explanation started just after the creation of quantum 

mechanics and this problem is still considered by many physicians as actual.  

For example, V.Ginsburg considered interpretation of quantum mechanics as 

the one of three great problems  of modern physics (as the problem of 

appearance of life and the problem of irreversibility of time) [1]. The problem 

of interpretation of quantum mechanics was investigated for many years by 

t’Hooft [2] (here is a detailed list of references on the problem). . But why any 

interpretation is needed for mathematical formalism if it is in a good 

agreement with experiment?  One of reasons is the fact that new physical 

models open new opportunities for development of theories.  For example, 

many attempts (Einstein Weyl, Calutza and others) have been made for this 

reason to find geometrical interpretation of classical electrodynamics, 

although it is in a very good agreement with experiment [3,4]. In addition, the 

quantum theory cannot be considered as the final one. Another, more concrete,  

reason—the contradiction between Bohr and Einstein regarding the 

completeness of quantum mechanics which did not  resolved until now [5,6]. 

In contrast to Bohr, Einstein thought that the quantum mechanics is not a 

complete theory because   it  says nothing about physical reality, responsible 

for statistical character of the theory (so called “hidden variables” [2,7,8]), and 

the answer to this question is, may be, the main result of this work. As for 

physical models, author knows two interpretations of quantum mechanics 

where mathematical formalism of quantum mechanics is not questioned. One 

730https://doi.org/10.52202/059404-0016

https://doi.org/10.52202/059404-0016


is the Everett’s “Many Universes Intеrpretation”, where statistical character of 

quantum theory is explained by existence of infinite number of Universes, 

corresponding to various realizations of reality [9], This interpretation has its 

supporters in spite of exotic character and serious criticism [10]. Another 

interpretation is the ‘t Hooft’s “ The Cellular Automaton Interpretation of 

Quantum Mechanics”, where a very special set of mutually orthogonal sates 

in Hilbert space is considered [2]. This approach is now under development.  

Among the works where the apparatus of quantum physics is undergoing 

serious changes we can mention the string theory (see, e.g. [11]) and Santlli’s 

investigations [12]. The possibility is shown in this work to interpret the 

quantum mechanical wave function for free particle as a description of 

microscopic distortion of the space-time geometry. Some characteristics of 

this geometrical object play the role of “hidden variables” responsible for 

stochastic behavior of quantum particle, and these characteristics are the 

physical reality that exists before measurement. Other characteristics explain 

wave-corpuscular properties of the particle. It may be said that quantum 

mechanics within suggested interpretation satisfies the completeness criterion 

formulated by Einstein. Preliminary results see [13-17]. 

2.  Quantum particle as the microscopic distortion of the space-tome 
geometry 

Let’s consider the free neutral particle with mass 𝑚𝑚 and spin 0.  It will be 
shown that wave function of such particle can be interpreted as a mathematical 
description of some geometrical object. This scalar wave function is the 
solution of the Klein-Fock-Gordon equation, and it has the form [18,19]  

      Ψ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑖𝑖
ℏ

(𝐸𝐸𝑐𝑐 − 𝒑𝒑𝒑𝒑)�.                                       (1) 
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This function describes within existing interpretation the particle’s state with 
definite energy 𝐸𝐸 and definite momentum 𝒑𝒑.  The particle’s position before 
measurements is unknown – it may be observed in any point with equal 
probability. This fact reflects statistical character of quantum mechanics – 
unusual property within classical representations. Another unusual property – 
wave-corpuscular dualism of quantum particles that is defined by phase of the 
wave function and by wavelength and frequency, connecting with the 
particle’s energy and momentum by known relations [18,19] 

                              𝜆𝜆𝑖𝑖 = ℏ
𝑝𝑝𝑖𝑖

, 𝜔𝜔 = 𝐸𝐸
ℏ

, 𝑖𝑖 = 𝑒𝑒,𝑦𝑦, 𝑧𝑧.                             (2) 

Substituting (2) in (1), we have  

                      Ψ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝜔𝜔𝑐𝑐 + 𝑖𝑖𝒌𝒌𝒑𝒑),  𝑘𝑘𝑖𝑖 =2π𝜆𝜆𝑖𝑖            (3)  This type 
of functions (plane wave) is often used in classical physics (for example, for 
description of plane running sound wave). Within existing interpretation of 
quantum mechanics, the origin of periodical dependence of wave function is 
not discussing.  

    Let us rewrite the function (2) not with space-time coordinates 𝑒𝑒, 𝑦𝑦, 𝑧𝑧, 𝑐𝑐, but 
with only space coordinates  𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4of the space of events of the special 
theory of relativity – four dimensional pseudo Euclidean space of index 1(the 
Minkowski space [20]). Time, multiplied by light velocity, plays in this space 
the role of fourth space coordinate (𝑐𝑐𝑐𝑐 = 𝑒𝑒4). Let us rewrite (3), using 
relativistic designations where  

Ψ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑖𝑖𝑒𝑒𝜇𝜇𝑒𝑒𝜇𝜇�.                                     (4) 

Here 𝑒𝑒𝜇𝜇 – the particle’s 4-momentum (𝑒𝑒1 = 𝐸𝐸,𝑒𝑒2,3,4 = 𝑒𝑒𝑥𝑥,𝑦𝑦,𝑧𝑧). Summation 
over repeating indexes is suggested in (4) with signature ( ). In 
relativistic case [18.19]  

                      𝑒𝑒12 − 𝑒𝑒22 − 𝑒𝑒32 − 𝑒𝑒42 = 𝑚𝑚2                                  (5) 

1= = c

+ − − −
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where  𝑚𝑚 – the particle’s mass. Let’s write down (4) in such a way that it 
contains only values with dimensionality of length 

Ψ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒�−2𝜋𝜋𝑖𝑖𝑒𝑒𝜇𝜇𝜆𝜆𝜇𝜇−1�,                             (6) 

where 

         (7) 

In contrast to (1,3) function (6) does not look as a plane wave - it represent 
periodical function of four space coordinates in the Minkowski space.  

    Function (6) may be considered as a function realizing representation of the 
group whose elements are discrete translations along four coordinates axes in 
the Minkowski space. Indeed, function (6) goes into itself at translations 

𝑒𝑒𝜇𝜇 → 𝑒𝑒𝜇𝜇′ + 𝑐𝑐𝜇𝜇𝜆𝜆𝜇𝜇,                                                      (8) 

where 𝑐𝑐𝜇𝜇 −  integers  (𝜇𝜇 = 1,2.3.4). This group is isomorphic to the group ℤ4, 
whose elements are products of integers 𝑐𝑐𝜇𝜇   In turn, the group ℤ4  is 
isomorphic to the fundamental group of closed 4-manifold that is 
homeomorphic to the foir dimensional torus 𝑇𝑇4 [21,22]. Now we nay 
formulate the main hypostasis: quantum particle, described by the wave 
function (6), can be considered as a closed space-time manifold that is 
homeomorphic to the four dimensional torus imbedded into five dimensional 
pseudo Euclidean space of index 1. Relation (7) imposes a metric restriction 
on the acceptable under deformations path lengths 𝜆𝜆𝑖𝑖 (𝑖𝑖 = 1,2,3,4). Thus, the 
relation (7) defines also the geometrical interpretation of the particle’s mass 
and 4-momentum. It will be shown in the next Section that such geometrical 
object looks in three dimensional Euclidian space as moving topological 
defect of this space having stochastic and wave-corpuscular properties of 
quantum particle.  

    Representation of particle as a closed manifold means that this particle 
before measurement may be considered as a “mixture” of its all possible 

2 2 2 2 2 1 1
1 2 3 4 , 2 , 2 .− − − − − − −

µ µλ − λ − λ − λ = λ λ = π λ = πm mp m
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geometrical representations (homeomorphisms), and only interaction with 
device fixes one of them. This means that wave function describes not an 
individual particle, but statistical ensemble of all its possible geometrical 
representations, and this explains statistical character of quantum mechanics. 
Thus, ensemble of all possible homeomorphisms plays the role of “hidden 
variables,” responsible for stochastic behavior of particles.  

3. Quantum particle as a topological defect of Euclidean space. 

Let’s proceed to decoding of the representation of quantum particle as a closed 
4-manifold, that is let’s show how such object looks from the point of view of 
the observer in Euclidian space. But the important notice should be made 
before going to this problem. The geometry of four-dimensional closed 
manifolds is now under development: the full recognition algorithm is not now 
known even for three dimensional closed manifolds [22]. Therefore the only 
way to establish what the representation of quantum particle as a closed 4-
manifold means from the point of view of the observer in Euclidtan space is 
to use low dimensional analogies. Having this in mind let’s consider closed 
manifold homeomorphic to the two dimensional torus embedded into three 
dimensional pseudo Euclidean space of index 1.  To obtain concrete result 
only one of infinite number of possible homeomorphisms of this manifold will 
be considered, namely  usual two dimensional torus 𝑇𝑇2 = 𝑆𝑆1 × 𝑆𝑆1, where 𝑆𝑆1 
– a circle. Such torus may be considered in three-dimensional Euclidean space 
as a surface obtained by rotation of a circle around vertical axis lying in the 
plain of this circle (Fig.1a). In pseudo Euclidean three-dimensional space this 
circle is located in pseudo Euclidean plane and it looks on Euclidean plane of 
Fig1b as a isosceles hyperbola [23]. That is two dimensional torus, 
representing particle, looks in three dimensional Euclidean space as a 
hyperboloid (Fig.1b). Within considered low dimensional analogy physical   
space-time (space of events) is a two dimensional pseudo Euclidean space, 
and the particle’s positions in different moments of time in the Euclidean (one 
dimensional) space are defined by points of intersection with this space of the 
projections of the hyperboloid’s temporary cross-sections. These cross-
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sections look as expanding circles in two-dimensional Euclidean plane XY 
(Fig.2a). 

                               

                                          a                           b 

Fig 1.. Two-dimensional torus embedded into three-dimensional Euclidean 
and pseudo Euclidean spaces.  

These circles can be considered as moving topological defect of one 
dimensional physical space.  It is the fact that intersection point belongs to 
topological defect that distinguishes this point   at Fig.2a from neighboring 
points of one dimensional Euclidean space, turning it into a physical “material 
point”.  

                                

                                             a                                       b                                                                                                        

Fig.2. Topological defect of one dimensional Euclidean space (X-axis). 

The particle’s positions in Euclidean (one dimensional) space are defined by 
points of its intersection with the circle, corresponding to the only one of the 
torus possible homeomorphisms. Accounting for all possible 
homeomorphisms leads, obviously, to “blurring” of this circle and so leads to 
transformation of the one intersection point in finite region of Euclidean space 
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(this region is indicated at Fig.2b by a bold line segment on X-axis).  This 
region has at every moment of time a finite size because the range of all 
possible homeomorphisms is limited by metric condition (7) that restrict the 
maximum possible dimensions of closed manifold. As a result, the observer in 
Euclidean space will detect the particle with equal probability in one of points 
of above mentioned region. This means that wave function describes not a 
position of separate particle but the ensemble of its possible positions, and this 
explains statistical character of quantum mechanics. It is obvious that all 
possible homeomorphisms of the closed manifold, representing this particle, 
play the role of “hidden variables”, responsible for the particle’s stochastic 
behavior: each homeomorphism corresponds to the one particle’s possible 
position in Euclidean space.  The points of the intersection region have 
different velocities. This means that the intersection region at Fig. 2b are 
moving expanding, and finally it will fill all Euclidean (one dimensional) 
space. In result the probability to observe the particle in any point of space 
will be the same, as it should be according to laws of quantum mechanics for 
free particle, described by wave function (1).  

    The fact that the particle can be represented in physical Euclidean space as 
a part of topological defect allows to explain the particle’s wave properties. It 
is sufficient for this to suppose  that the defect’s position in the external five 
dimensional Euclidean space relative to the three dimensional space changes 
according to periodical low described by wave function (1) (a rigorous proof 
of this assumption is not possible within the framework of low dimensional 
analogy). It can be said that the phase of the defect’s periodical movement is 
an additional degree of freedom on which the effect of the particle on the 
device depends. The particle’s corpuscular properties (4-momentum) are 
defined through parameters of above periodical movement of defect by 
relations 

                                                            𝑒𝑒𝜇𝜇 = 2𝜋𝜋𝜆𝜆𝜇𝜇.                              (9) 

These relations are identical to the definition (2) of the particle’s wave length 
through its momentum within existing interpretation [19] ,but now they have  
the “reverse” meaning of definition of momentum through the wave length, as 
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it should be in the consistent theory where less general concepts (classical 
momentum) are defined through more fundamental  ones (wave length of the 
defect’s periodical movement).  

Conclusion. The wave function plays a dual role within suggested 
interpretation. First, it is a function, realizing the representation of the 
fundamental group for a closed 4-manifold, representing a free particle. 
Second, this function describes periodical movement of topological defect in 
the external space, and intersection of this defect with physical space defines   
the possible particle’s positions. These properties of the wave function make 
it possible to explain the stochastic behavior of the particle and its wave-
corpuscular dualism. The role of “hidden variables”, responsible for the 
particle’s stochastic behavior, is played by all possible homeomorphisms of 
the closed 4-manifold, representing the particle. Notice in conclusion that 
relation (7) defines geometrical interpretation of the particle’s mass as a 
characteristic of some fundamental length 𝜆𝜆𝑚𝑚. Geometrical interpretation   of 
elementary electrical charge and the particle’s spin will be considered in 
subsequent publications.  
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Abstract 
Recent studies have confirmed Einstein’s 1935 legacy implying that quantum 
mechanics and chemistry are “incomplete” theories in the sense of being 
excellent for the description of systems composed by point-like constituents 
under potential interactions (such as the atomic structure), but said theories are 
“incomplete” for the description of complex time-irreversible systems of 
extended constituents with internal non-potential interactions (as expected in a 
cell). Sadi verifications were achieved thanks to the prior “completion” over the 
past half a century of quantum theories into the covering hadronic mechanics 
and chemistry with a time irreversible Lie-admissible structure. In this paper we 
present, apparently for the first time, a new conception of living organisms, 
solely permitted by the verifications of Einstein’s legacy, composed by a very 
large number of extended wavepackets in conditions of continuous mutual 
penetration/entanglement and, therefore, of continuous communications via 
contact non-potential interactions. Due to the extremely large number of 
constituents and the extreme complexity of the multi-valued internal 
communications, in this paper we introduce, also apparently for the first time, 
the representation of the indicated new conception of living organisms via two 
hyperbimodular, Lie-admissible Hv-hyperstructures, the first with all 
hyperoperations (‘hope’) ordered to the right and the second with all hopes 
ordered to the left. The irreversibility of living organisms is represented by the 
inequivalence of the left and right hopes. The extremely large number of internal 
communications is represented by the extremely large number of solutions of the 
indicated hopes. We close the paper with the indication that new medical 
diagnostics and treatments are expected in the transition from the current 
quantum chemical conception of living organisms as collections of isolated 
point-like constituents to the indicated new conception. 
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1.  INTRODUCTION ON HYPERSTRUCTURES 
 
The largest class of hyperstructures are called Hv-structures and introduced in 
1990 [33], [34]. These satisfy the weak axioms where the non-empty intersection 
replaces the equality. Some basic definitions are the following:   
In a set H equipped with a hyperoperation (abbreviation hyperoperation=hope) 

: HH → P(H)-{}, 

we abbreviate by WASS the weak associativity: (xy)zx(yz)  , x,y,zH and 
by COW  the weak commutativity:  xyyx  , x,yH.   

The hyperstructure (H,) is called Hv-semigroup if it is WASS, it is called Hv-
group if it is reproductive Hv-semigroup, i.e.   xH = Hx = H, xH. 
Motivation. I the classical theory the quotient of a group with respect to an 
invariant subgroup is a group. F. Marty from 1934, states that, the quotient of a 
group with respect to any subgroup is a hypergroup. Finally, the quotient of a 
group with respect to any partition is an Hv-group [34].  

Τhe powers of an element hH are: h1={h}, h2=hh, …, hn=h…h, where () 
is the n-ary circle hope: the union of hyperproducts, n times, with all patterns of 
parentheses put on them. An Hv-semigroup (H,) is a cyclic of period s, if there 
is a generator g, and a natural n, such that H=h1…hs.  If there is an h and s, 
such that H=hs, then (H,) is called single-power cyclic of period s. 

In a similar way more complicated hyperstructures can be defined:  
(R,+,) is Hv-ring if (+) and () are WASS, the reproduction axiom is valid for (+) 
and () is  weak distributive  with respect to (+):     

x(y+z)(xy+xz),    (x+y)z(xz+yz),   x,y,zR. 

Let (R,+,) Hv-ring, (M,+) COW Hv-group and there exists an external hope 

 :  RM → P(M): (a,x) → ax 

such that, a,bR and  x,yM,  we have 

a(x+y)(ax+ay)  ,     (a+b)x(ax+bx)  ,     (ab)xa(bx)  , 
then M is an Hv-module over F. In the case of an Hv-field F instead of an Hv-ring 
R, then the Hv-vector space is defined. 

For more definitions and applications on Hv-structures one can see the books 
[2], [4], [5], [8], [31], [32], [34], [35], [38], [40], [45], [52].  
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Definition 1.1 The fundamental relations β*, γ* and ε*, are defined, in Hv-
groups, Hv-rings and Hv-vector spaces, respectively, as the smallest equivalences 
so that the quotient would be group, ring and vector spaces, respectively [33], 
[34], [35], [50], [51].  

The way to find the fundamental classes is given by the following:  
Theorems 1.2 Let (H,) be Hv-group and denote by U the set of finite products 
of elements of H. We define the relation β in H by setting  xβy iff {x,y}u  where 
uU.  Then β* is the transitive closure of β. 
Let (R,+,) be Hv-ring. Denote by U the set of finite polynomials of elements of 
R. We define the relation γ in R as follows:  xγy iff {x,y}u  where uU. Then 
the relation γ* is the transitive closure of the relation γ.  

An element is called single if its fundamental class is singleton. 
Fundamental relations are used for general definitions. Thus, an Hv-ring 

(R,+,) is called Hv-field if  R/γ*  is a field.  
Let (H,), (H,*) be Hv-semigroups defined on the same set H. () is called 

smaller than (*), and (*) greater than (), iff there exists an  

fAut(H,*)   such that   xyf(x*y), x,yH. 

Then we say that (H,*) contains (H,). If (H,) is a structure then it is called basic 
structure and (H,*) is called Hb-structure. 
Theorem 1.3 (The Little Theorem). Greater hopes than the ones which are WASS 
or COW, are also WASS or COW, respectively. 

This Theorem leads to a partial order on Hv-structures.  
A very interesting class of Hv-structures, is the following [9], [32]: 

An Hv-structure is called very thin iff all hopes are operations except one, which 
has all hyperproducts singletons except only one, which is a subset of cardinality 
more than one.  

A large class of Hv-structures is the following [9], [41]: 
Let (G,) be groupoid (resp., hypergroupoid) and f:G→G be a map. We define a 
hope (), called theta-hope, we write -hope, on G as follows 

xy = {f(x)y, xf(y)},  x,yG.  (resp.  xy= (f(x)y)(xf(y), x,yG) 

If () is commutative then  is commutative. If () is COW, then  is COW. 
Let (G,) be groupoid (or hypergroupoid) and f:G→P(G)-{} be multivalued 

map. We define the (), on G as follows  xy = (f(x)y)(xf(y),  x,yG. 
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Motivation for the -hope is the map derivative where only the multiplication 
of functions can be used. Basic property: if (G,) is a semigroup then f, the () 
is WASS.  

Another well known and large class of hopes is given as follows [9], [31], 
[47]: 

Let (G,) be groupoid, then PG, P, we define the following hopes 
called P-hopes:  x,yG 

P: xPy= (xP)yx(Py),  Pr: xPry= (xy)Px(yP),  Pl: xPly= (Px)yP(xy). 

The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures. If (G,) is semigroup, 
then  xPy=(xP)yx(Py)=xPy  and (G,P) is a semihypergroup but we do not know 
about (G,Pr) and (G,Pl). In some cases, depending on the choice of P, the (G,Pr) 
and (G,Pl) can be associative or WASS.  

A generalization of P-hopes is the following [6], [9]:   
Construction 1.4 Let (G,) be an abelian group and P any subset of G. We define 
the hope P as follows: 

   xPy =  xPy = {xhyhP}  if  xe and ce 

       xy              if   x=e   or  y=e 

we call this hope Pe-hope. The hyperstructure (G,P) is an abelian Hv-group. 
Hv-structures are used in Representation Theory of Hv-groups which can be 

achieved by generalized permutations or by Hv-matrices [34], [38], [49]. Hv-
matrix is called a matrix if has entries from an Hv-ring. The hyperproduct of Hv-
matrices is defined in a usual manner. The problem of the Hv-matrix 
representations is the following: 
Definition 1.5  Let (H,) be an Hv-group, find an Hv-ring (R,+,),  a set    
MR={(aij )aijR} and a map     

T: H→ MR: hT(h)  such that  T(h1h2)T(h1)T(h2), h1,h2H. 

Then T is Hv-matrix representation. If  T(h1h2)T(h1)(h2), h1,h2H  is valid, 
then T is an inclusion representation.  If  T(h1h2) = T(h1)(h2) = {T(h)hh1h2}, 
h1,h2H,  then T is a good representation.   

Hopes on any type of ordinary matrices can be defined [8], [49], [53] they are 
called helix hopes. 
Definition 1.6 Let A=(aij)Mmn be matrix and s,tN, with 1sm, 1tn. The 
helix-projection is a map st:Mmn→Mst:A→Ast=(aij), where Ast has entries 
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aij = { ai+s,j+t 1is, 1jt  and  ,N, i+sm, j+tn } 

Let  A=(aij)Mmn, B=(bij)Muv  be matrices and  s=min(m,u), t=min(n,v).  We 
define a hyper-addition, called helix-sum, by 

 : MmnMuv→P(Mst):(A,B)→AB=Ast+Bst=(aij)+(bij)Mst 

where  (aij)+(bij)= {(cij)=(aij+bij) aijaij  and  bijbij)}. 
Let A=(aij)Mmn, B=(bij)Muv and s=min(n,u). Define the helix-product, by 

: MmnMuv→P(Mmv): (A,B)→AB=AmsBsv=(aij)(bij)Mmv 

where   (aij)(bij)= {(cij)=(aitbtj) aijaij  and  bijbij)}. 
The helix-sum is commutative, WASS, not associative. The helix-product is 

WASS, not associative and not distributive to the helix-addition.  
Using several classes of Hv-structures one can face several representations 

[48].  
Definition 1.7 Let M=Mmn be module of mn matrices over a ring R and 
P={Pi:iI}M. We define, a kind of, a P-hope P on M as follows 

P : MM → P(M): (A,B) → APB = { APt
iB: iI } M 

where Pt denotes the transpose of the matrix P.   
We present a proof for the fundamental relation analogous to Theorem 1.2 in 

the case of an Hv-module: 
Theorem 1.8 Let (M,+) be Hv-module over R. Denote U the set of expressions 
of finite hopes either on R and M or the external hope applied on finite sets of 
elements of R and M.  We define the relation ε in M by:  xεy iff  {x,y}u, uU.  
Then the relation ε* is the transitive closure of the relation ε.  
Proof. Let ε be the transitive closure of ε, and denote by ε(x) the class of the 
element x.  First, we prove that the quotient set M/ε is a module over R/γ*.  
In M/ε the sum () and the external product (), using the γ* classes in R, are 
defined in the usual manner:  

ε(x)ε(y) = {ε(z):  z ε(x)+ε(y)}, 

γ*(a)ε(x) = {ε(z):  z γ*(a)ε(x)},   aR, x,yM. 

Take xε(x), yε(y). Then xεx iff x1,…,xm+1 with x1=x, xm+1=x, u1,…,umU  
such that {xi, xi+1}ui, i=1,…,m, and yεy iff y1,…,yn+1 with y1=y, yn+1=y and   
v1,…,vnU  such that  {yj,yj+1}vj,  j=1,…,n.   From the above we obtain  

{xi, xi+1}+ y1  u1+v1,  i=1,…,m-1,   xm+1 +{yj, yj+1}  um+vj,  j=1,…,n. 
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The ui+v1=ti, i=1,..,m-1, um+vj =tm+j-1, j=1,..,nU, so tkU, k{1,..,m+n-1}.  
Take z1,…,zm+n with zixi+y1, i=1,…,n and zm+jxm+1+yj+1, j=1,…,n, thus, 
{zk,zk+1}tk, k=1,…,m+n-1. Therefore, z1x1+y1=x+y is ε equivalent to 
zm+nxm+1+yn+1=x+y. Thus, ε(x)ε(y) is a singleton so we can write 
ε(x)ε(y)=ε(z), zε(x)+ε(y).  Similarly, using the properties of γ* in R, we 
prove that  γ*(a)ε(x)=ε(z), zγ*(a)ε(x). 

The WASS and the weak distributivity on R and M guarantee that the 
associativities and the distributivity are valid for M/ε over R/γ*. Therefore, M/ε 
is a module over R/γ*. 

Now let σ equivalence relation in M such that M/σ is module on R/γ*.  Denote 
σ(x) the class of x. Then σ(x)σ(y) and γ*(a)σ(x) are singletons aR and 
x,yM, i.e. 

σ(x)σ(y)=σ(z),  zσ(x)+σ(y),    γ*(a)σ(x)=σ(z),  z γ*(a)σ(x). 

Thus we write, aR, x,yM  and Aγ*(a), Xσ(x), Yσ(x) 

σ(x)σ(y)=σ(x+y)=σ(X+Y),   γ*(a)σ(x)=σ(ax)=σ(AX). 
By induction, extend these relations on finite sums and external products. 

Thus, uU, we have  σ(x)=σ(u), xu. Consequently xε(x) implies xσ(x), 
xM. 

But σ is transitively closed, so we obtain:  xε(x) implies xσ(x). 
Thus, ε is the smallest equivalence on M such that M/ε is a module on R/γ*, 

i.e. ε=ε*.    ■ 
The general definition of an Hv-Lie algebra was given as follows [30], [44]:  

Definition 1.9 Let (L,+) Hv-vector space on (F,+,), φ:F→F/γ* canonical, 
ωF={xF:φ(x)=0}, where 0 is zero of F/γ*. Let ωL the core of  φ:L→L/ε*  and 
denote 0 the zero of L/ε*. Consider the bracket (commutator) hope: 

[ , ]: LL → P(L): (x,y) → [x,y] 
then L is an Hv-Lie algebra over F if the following axioms are satisfied: 
(L1)  The bracket hope is bilinear, i.e. 

         [λ1x1+λ2x2,y](λ1[x1,y]+λ2[x2,y])    

         [x,λ1y1+λ2y2](λ1[x,y1]+λ2[x,y2])  ,  x,x1,x2,y,y1,y2L, λ1,λ2F 

(L2)  [x,x]ωL  ,  xL 

(L3)  ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])ωL  ,  x,yL 
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Τhe enlargement or reduction of hyperstructures are examined in the sense 
that an extra element appears in one result or we take out an element. In both 
directions most useful in representation theory, are those Hv-structures with the 
same fundamental structure [36], [37]:  

Let (H,) be HV-semigroup and vH. Extend () into the H=H{v} as follows: 
xv=vx=v, xH, and vv=H. The (H,) is an h/v-group where (H,)/β*Z2 and 
v is a single element. We call (H,) the attach h/v-group of (H,).  

Let (G,) be semigroup and vG be an element appearing in a product ab, 
where a,bG, thus the result becomes a hyperproduct ab={ab,v}. Then the 
minimal hope () extended in G΄=G{v} such that () contains () in the 
restriction on G, and such that (G΄,) is a minimal Hv-semigroup which has 
fundamental structure isomorphic to (G,),  is defined as follows: 

ab={ab,v},   xy=xy,  ( x,y)G2-{(a,b)} 

vv=abab,   xv=xab   and   vx=abx,  xG.     

(G΄,) is very thin Hv-semigroup. If (G,) is commutative then the (G΄,) is 
strongly commutative. 

Let (H,) be hypergroupoid. We say that remove hH, if we consider the 
restriction of () on H-{h}. We say hH absorbs hH if we replace h by h. We 
say hH merges with hH, if we take as product of xH by h, the union of the 
results of x with both h, h and consider h and h as one class.   

The uniting elements method, introduced by Corsini & Vougiouklis [3], is 
the following: Let G be algebraic structure and let d be a property, which is not 
valid and it is described by a set of equations; then, consider the partition in G 
for which it is put together, in the same class, every pair that causes the non-
validity of d. The quotient G/d is an Hv-structure. Then, quotient out the G/d by 
β*, a stricter structure (G/d)/β* for which the property d is valid, is obtained. 

An application of the uniting elements is when more than one property is 
desired. The following Theorem is valid [3], [34]. 
Theorem 1.10 Let (G,) be a groupoid, F={f1,…,fm,fm+1,…, fm+n} be system of 
equations on G consisting of two subsystems Fm={f1,…,fm}, Fn={fm+1,…, fm+n}. 
Let σ, σm the equivalence relations defined by the uniting elements procedure 
using the systems F and Fm, and let σn be the equivalence relation defined using 
the induced equations of Fn on the grupoid Gm= (G/σm)/β*.  Then   

(G/σ)/β*  (Gm/σn)/β*. 
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In the paper [42], there is a first description on how Santilli’s theories effect 
in hyperstructures and how new theories in Mathematics can be appeared by 
Santilli’s pioneer research.  

Hyperstructures have applications in mathematics and in other sciences. 
These applications range from biomathematics -conchology, inheritance- and 
hadronic physics or on leptons, in the Santilli’s iso-theory, to mention but a few. 
The hyperstructure theory is closely related to fuzzy theory; consequently, can 
be widely applicable in linguistic, in sociology, in industry and production, too. 
For these applications the largest class of the hyperstructures, the class Hv-
structures, is used, they satisfy the weak axioms where the non-empty 
intersection replaces the equality. The main tools of this theory are the 
fundamental relations which connect, by quotients, the Hv-structures with the 
corresponding classical ones. These relations are used to define hyperstructures 
as Hv-fields, Hv-vector spaces and so on, as well. The definition of the general 
hyperfield was not possible without the Hv-structures and their fundamental 
relations. Hypernumbers or Hv-numbers are called the elements of Hv-fields and 
they are important for the representation theory [6], [7], [29], [30], [39], [46].  

The problem of enumeration and classification of hyperstructures, was started 
from the beginning, it is complicate in Hv-structures because we have very great 
numbers. The number of Hv-groups with three elements, up to isomorphism, is 
1.026.462. There are 7.926 abelian; the 1.013.598 are cyclic. The partial order 
in Hv-structures and the Little Theorem, transfers and restrict the problem in 
finding the minimal, up to isomorphisms, Hv-structures.  
 

2.  LIE-SANTILLI ADMISSIBILITY IN HYPERSTRUCTURES 
 
The isofields needed in the theory of isotopies correspond into the 
hyperstructures were introduced by Santilli & Vougiouklis in 1999 [6], [7], [29] 
and they are called e-hyperfields. The Hv-fields can give e-hyperfields which can 
be used in the isotopy theory in applications as in physics or biology. We present 
in the following the main definitions and results restricted in the Hv-structures.  
Definitions 2.1 A hyperstructure (H,) which contain a unique scalar unit e, is 
called e-hyperstructure. In an e-hyperstructure, we assume that for every element 
x, there exists an inverse  x-1, i.e.  exx-1x-1x.  Remark that the inverses are 
not necessarily unique.      

A hyperstructure (F,+,), where (+) is an operation and () is a hope, is called 
e-hyperfield if the following axioms are valid:  
1.  (F,+) is an abelian group with the additive unit 0, 
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2.  () is WASS, 
3.  () is weak distributive with respect to (+), 
4.  0 is absorbing element:  0x = x0 = 0, xF, 
5.  exist a multiplicative scalar unit 1, i.e.  1x =x1 = x, xF, 
6.  for every xF there exists a unique inverse x-1, such that  1xx-1x-1x.  

The elements of an e-hyperfield are called e-hypernumbers. If the the relation: 
1=xx-1=x-1x,  is valid, then we say that we have a strong e-hyperfield.  
Definition 2.2 [6], [7], [43]. The Main e-Construction. Given a group (G,), 
where e is the unit, then we define in G, a large number of hopes () as follows:   

xy = {xy, g1, g2,…}, x,yG-{e},  g1, g2,…G-{e} 

g1, g2,… are not the same for each pair (x,y). Then (G,) becomes an Hv-group, 
because it contains the (G,). The Hv-group (G,) is an e-hypergroup. Moreover, 
if for each x,y such that  xy=e, so we have  xy=xy, then (G,) becomes a strong 
e-hypergroup.  

Another important new field in hypermathematics comes straightforward 
from Santilli’s Admissibility. We can transfer Santilli’s theory in admissibility 
for representations in two ways: using either, the ordinary matrices and a hope 
on them, or using hypermatrices and ordinary operations on them [13], [15], 
[42], [43], [44], [47], [48]. 

The general definition is the following: 
Definition 2.3 Let L be Hv-vector space over the Hv-field (F,+,), φ:F→F/γ*, the 
canonical map and ωF={xF:φ(x)=0}, where 0 is the zero of the fundamental 
field F/γ*. Let ωL be the core of the canonical map φ:L→L/ε* and denote by the 
same symbol 0 the zero of L/ε*. Take two subsets R, SL then a Lie-Santilli 
admissible hyperalgebra is obtained by taking the Lie bracket, which is a hope:  

[ , ] RS : LL→P(L): [x,y]RS= xRy–ySx= {xry–ysxrR, sS} 
Special cases, but not degenerate, are the ‘small’ and ‘strict’ ones:   

(a)  When only S is considered, then  [x,y]S= xy–ySx= {xy–ysxsS}  

(b)  When only R is considered, then  [x,y]R= xRy–yx= {xry–yxrR}  
(c)  When R={r1,r2} and S={s1,s2} then   

[x,y]RS= xRy–ySx= {xr1y–ys1x, xr1y–ys2x, xr2y–ys1x, xr2y–ys2x}. 
(d)  When S={s1,s2} then  [x,y]S= xy–ySx= {xy–ys1x, xy–ys2x}. 
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(e)  When R={r1,r2} then  [x,y]R= xRy–yx= {xr1y–yx, xr2y–yx}. 

(f)  We have one case which is ‘like’ P-hope for any subset SL:  

 [x,y]S =  {xsy–ysx sS}. 
On non square matrices we can define admissibility, as well: 

Construction 2.4 Let (L=Mmn,+) be Hv-vector space of mn hyper-matrices on 
the Hv-field (F,+,), φ:F→F/γ*, canonical map and ωF={xF:φ(x)=0}, where 0 
is the zero of the field F/γ*. Similarly, let ωL be the core of φ:L→L/ε* and denote 
by the same symbol 0 the zero of L/ε*. Take any two subsets R,SL then a 
Santilli’s Lie-admissible hyperalgebra is obtained by taking the Lie bracket, 
which is a hope:     

[ , ] RS: LL→P(L): [x,y]RS=xRty–yStx. 

Notice that    [x,y]RS=xRty–yStx={xrty–ystxrR and sS}. 
Special cases, but not degenerate, are the ‘small’ and ‘strict’ ones:   

(a)  R={e}  then  [x,y]RS = xy–yStx = {xy–ystxsS} 

(b)  S={e}  then   [x,y]RS = xRty–yx = {xrty–yxrR} 
(c)  R={r1,r2} and  S={s1,s2} then  

[x,y]RS=xRty–yStx={xr1
ty–ys1

tx,xr1
ty–ys2

tx,xr2
ty–ys1

tx,xr2
ty–ys2

tx} 
According to Santilli’s iso-theory [9], [11], [13], [15], [22], [24], [25], [26], 

[27], [28], [39], [42], [46], [50], on a field F=(F,+,), a general isofield �̂�= 
�̂�(�̂�,+̂,×̂) is defined to be a field with elements �̂�=a1̂, called isonumbers, 
where aF, and 1̂ is a positive-defined element generally outside F, equipped 
with two operations +̂ and ×̂ where +̂ is the sum with the conventional additive 
unit 0, and ×̂ is a new multiplication 

�̂� ×̂ �̂�: = �̂��̂��̂�,   with  1̂ = �̂�-1,  �̂�, �̂��̂�         (i)  

called iso-multiplication, for which 1̂  is the left and right unit of F, 

1̂ ×̂ �̂� = �̂�1̂ = �̂� , �̂��̂�            (ii) 
called iso-unit. The rest properties of a field are reformulated analogously. 

In order to transfer this theory into the hyperstructure case we generalize only 
the new multiplication ×̂ from (i), by replacing with a hope including the old 
one. We introduce two general constructions on this direction as follows: 

750https://doi.org/10.52202/059404-0017

https://doi.org/10.52202/059404-0017


Construction 2.5 General enlargement. On a field F=(F,+,) and on the isofield  
�̂�=�̂�(�̂�,+̂,×̂)  we replace in the results of the iso-product 

�̂� ×̂ �̂�=   �̂��̂��̂�,     with  1̂ = �̂�-1 

of the element �̂� by a set of elements �̂�ab={�̂�,�̂�1,�̂�2,…} where �̂�1,�̂�2,…�̂�,  
containing �̂�, for all  �̂� ×̂ �̂� for which  �̂�,�̂�{0̂,1̂} and  �̂�1,�̂�2,…�̂�-{0̂,1̂}. If one 
of  �̂�, �̂�, or both, is equal to 0̂ or 1̂, then �̂�ab={�̂�}. Thus, the new iso-hope is 

�̂� ×̂ �̂� = �̂��̂�ab�̂�= �̂�{�̂�,�̂�1,�̂�2,…}�̂�, �̂�,�̂��̂�         (iii) 

�̂�=�̂�(�̂�,+̂,×̂) becomes isoHv-field. The elements of �̂� are called isoHv-numbers 
or isonumbers. 
Remarks 2.6 More important hopes, of the above construction, are the ones 
where only for few ordered pairs (�̂�,�̂�) the result is enlarged, even more, the extra 
elements x̂i, are only few, preferable exactly one. Thus, this special case is if 
there exists only one pair (�̂�,�̂�) for which    

�̂� ×̂ �̂�=  �̂�{�̂�,�̂�}�̂�,   �̂�,�̂��̂� 

and the rest are ordinary results, then we have a hyperstructure called very thin 
isoHv-field. 

The assumption that �̂�ab={�̂�,�̂�1,�̂�2,…}, �̂� or �̂�, is equal to 0̂ or 1̂, with that �̂�i, 
are not 0̂ or 1̂, give that the isoHv-field has one scalar absorbing 0̂, one scalar 1̂, 
and �̂��̂�,  has one inverse.   
Construction 2.7 The P-hope. Consider an isofield �̂�=�̂�(�̂�,+̂,×̂) with �̂�=a1̂, 
the isonumbers, where aF, and 1̂ is a positive-defined element generally 
outside F, with two operations +̂ and ×̂, where +̂ is the sum with the 
conventional unit 0, and ×̂ is the iso-multiplication 

�̂� ×̂ �̂� : =   �̂��̂��̂�,   with  1̂ = �̂�-1,  �̂�,�̂�  �̂�.                          

Take a set �̂�={�̂�,�̂�1,…,�̂�s}, with �̂�1,…, �̂�s�̂�-{0̂,1̂}, define the isoP-Hv-field, 
�̂�=�̂�(â,+̂,×̂P), where the hope ×̂P as follows: 
 

            �̂��̂�^�̂� = {�̂�ℎ̂^�̂�ℎ̂^�̂�^}  if   �̂�  1̂  and  �̂�  1̂    
   �̂� ×̂P �̂�:=                (iv) 
                   �̂��̂�^�̂�                                    if   �̂� = 1̂  or  �̂� = 1̂ 

 
The elements of  �̂� are called isoP-Hv-numbers.  
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Remark. If  𝑃 ̂= {�̂�,�̂�}, that is that �̂� contains only one �̂� except �̂�. The inverses 
in isoP-Hv-fields, are not necessarily unique.  
Example 2.8 In order to define a generalized P-hope on �̂�7 = �̂�7(�̂�,+̂,×̂), where 
we take �̂�={1̂,5̂}, the weak associative multiplicative hope is described by the 
table: 

 
×̂ �̂� �̂� �̂� �̂� �̂� �̂� �̂� 
�̂� 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 
�̂� 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 
�̂� 0̂ 2̂ 4̂,6̂ 6̂,2̂ 1̂,5̂ 3̂,1̂ 5̂,3̂ 
�̂� 0̂ 3̂ 6̂,2̂ 2̂,3̂ 5̂,4̂ 1̂,5̂ 4̂,6̂ 
�̂� 0̂ 4̂ 1̂,5̂ 5̂,4̂ 2̂,3̂ 6̂,2̂ 3̂,1̂ 
�̂� 0̂ 5̂ 3̂,1̂ 1̂,5̂ 6̂,2̂ 4̂,6̂ 2̂,3̂ 
�̂� 0̂ 6̂ 5̂,3̂ 4̂,6̂ 3̂,1̂ 2̂,3̂ 1̂,5̂ 

 
The hyperstructure �̂�7= 𝑍7(�̂�,+̂,×̂), is commutative and associative on the 

multiplication hope. 
Consruction 2.9 The generalized P-construction can be applied on rings to 
obtain Hv-fields. Thus for, �̂�10 = 𝑍10(�̂�,+̂,×̂), and if we take  �̂�={2̂,7̂}, then we 
have the table 

 
×̂ �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 

�̂� 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 
�̂� 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 
�̂� 0̂ 2̂ 8̂ 2̂ 6̂ 0̂ 4̂ 8̂ 2̂ 6̂ 
�̂� 0̂ 3̂ 2̂ 3̂,8̂ 4̂ 0̂,5̂ 6̂ 2̂,7̂ 8̂ 4̂,9̂ 
�̂� 0̂ 4̂ 6̂ 4̂ 2̂ 0̂ 8̂ 6̂ 4̂ 2̂ 
�̂� 0̂ 5̂ 0̂ 0̂,5̂ 0̂ 0̂,5̂ 0̂ 0̂,5̂ 0̂ 0̂,5̂ 
�̂� 0̂ 6̂ 4̂ 6̂ 8̂ 0̂ 2̂ 4̂ 6̂ 8̂ 
�̂� 0̂ 7̂ 8̂ 2̂,7̂ 6̂ 0̂,5̂ 4̂ 3̂,8̂ 2̂ 1̂,6̂ 
�̂� 0̂ 8̂ 2̂ 8̂ 4̂ 0̂ 6̂ 2̂ 8̂ 4̂ 
�̂� 0̂ 9̂ 6̂ 4̂,9̂ 2̂ 0̂,5̂ 8̂ 1̂,6̂ 4̂ 2̂,7̂ 

 
Then the fundamental classes are    
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(0)={0̂,5̂},   (1)={1̂,6̂},   (2)={2̂,7̂},   (3)={3̂,8̂},  (4)={4̂,9̂}, 
and the multiplicative table is the following 
 

 (0) (1) (2) (3) (4) 
(0) (0) (0) (0) (0) (0) 
(1) (0) (1),(2) (2),(4) (3),(1) (4),(3) 
(2) (0) (2),(4) (3) (2) (1) 
(3) (0) (3),(1) (2) (3) (4) 
(4) (0) (4),(3) (1) (4) (2) 

 
Consequently,  �̂�10 = 𝑍10(�̂�,+̂,×̂), is an Hv-field. 
 

3. APPLICATIONS TO A NEW CONCEPTION 
OF LIVING ORGANISMS 

 
3.1 Einstein’s argument that ‘quantum mechanics is not a complete theory.’  
As it is well know, Einstein accepted the validity of quantum mechanics for the 
representation of the atomic structure and other systems, but never accepted 
quantum mechanics as being a final theory capable of representing all possible 
elements of reality.  

For this reason, Einstein expressed the view in 1935, jointly with his students 
Boris Podolsky and Nathan Rosen, that ‘Quantum mechanics is not a complete 
theory’ (EPR argument) [10], in the sense that quantum mechanics (and we add 
nowadays quantum chemistry) could admit suitable enlargements for the 
representations of more complex systems.  

Additionally, Einstein never accepted the uncertainties of quantum mechanics 
as being final in the sense that they are indeed valid for point-particles in vacuum 
but there could exist conditions in the universe recovering classical determinism. 
For this reason, Einstein’s made his famous quote: ‘God does not play dice with 
the universe.’  
3.2 Verification of Einstein’s legacy by irreversible systems.  
The most evident illustration if the validity of the lack of ‘completeness’ of 
quantum mechanics (and, therefore, of quantum chemistry) is given by the fact 
that quantum mechanics and chemistry can only represent systems of point-like 
particles that are invariant under time-reversal, such as the atomic structure. 
This is due to the invariance under anti-Hermiticity of the quantum mechanical 
Lie product between Hermitean operators  
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[A,B] = AB − BA =  −[A,B]†, 
where AB is the conventional classical associative product. In fact, the Lie 
product characterizes Heisenberg’s time evolution of an observable A in terms 
of the Hamiltonian H,  

idA/dt = [A,H] = AH − HA. 
However, physical, chemical and biological processes such as nuclear fusion, 

combustion and living organisms, are irreversible over time.  
The verification of Einstein’s legacy via irreversible processes was first 

identified by R. M. Santilli during his Ph. D. Studies at the University of Torino, 
Italy, in the mid 1960s.  

In fact, Santilli’s Ph.D. thesis, published in the 1967 paper [13], provided the 
first known confirmation of the EPR argument (see also Ref. [13] of 1968) via 
the following Lie-admissible ‘completion’ of quantum mechanical Lie algebras 
for the representation of irreversible processes  

(A,B) = ARB−BSA = (ATB−BTA)+(AJB+BJA),  R=T−J, S=T+J   0, 
where the new product (A,B) is Lie-admissible according to A.A. Albert [1] 
when the attached antisymmetric product  

[A,B]∗ = (A,B) − (B,A) = ATB − BTA 
verifies the Lie axioms whenever T is nowhere singular. Also, according to 
Albert [1] the product (A,B) is called Jordan-admissible when the attached 
symmetric product  

{A,B}∗ = (A,B) + (B,A) = AJB + BJA 
verifies the axioms of Jordan algebras.  

Santilli called hadronic mechanics [19] and hadronic chemistry [22] the 
‘completion’ of quantum mechanics and chemistry, respectively, with a Lie-
admissible structure for the representation of irreversible structures and 
processes.  
3.3 Lie-admissible genomathematics  
The mathematics underlying Lie-admissible formulations, collectively known as 
genomathematics [16], [17], [20], [23], can be summarized as follows. A 
generally tacit assumption of conventional, classical, numeric fields underlying 
Lie’s theory is that the multiplication of two numbers to the right n−−>3 is equal 
to the multiplication of the same numbers to the left, 2<−−3 = 2−−>3. 
Consequently, the indicated order of the multiplication is ignored in classical 
number theory, and we merely write 2×3 = 6.  
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In the transition from Lie theory to the covering Lie-admissible theory, the 
above ordering of the multiplication is no longer ignorable because the 
multiplication to the right 2>3 = 2S3 is no longer equal to the multiplication to 
the left  2<3 = 2R3  2>3.  This occurrence has permitted the identification of 
two, classical, numeric fields underlying Lie-admissible formulations [16]:  

1) The forward genofields F>(n>,>,I>) with forward genounit I>=1/S, 
forward genonumbers n>= nI>, and forward genoproduct n>>m> = n>Sm>, 
where n, m represent ordinary numbers; and  

2) The backward genofields F<(n<,<,I<) with backward genounit I<=1/R, 
backward genonumbers n< = I<n, and backward genoproduct  n<< m< = n<Rm<.   

Recall that Lie algebras can be constructed via the universal enveloping 
associative algebras ξ with classical, associative, modular product AB. The 
indicated inequivalence of the multiplications to the right and to the left implies 
the existence for Lie-admissible theories of two universal, enveloping, 
genoassociative genoalgebars, that to the right ξ> (left ξ<) with genoassociative 
genoproduct to the right A>B (left A<B), resulting in a non-trivial bimodular 
formulation.  

The indicated bimodular formulations characterize the time-irreversible, Lie-
admissible, Heisenberg-Santilli genoequation [13], [19] 

idA/dt = (A, H) = ARH − HSA = A < H − H > A. 
Recall that, in quantum mechanics, the modular associative multiplication to 

the right of an operator H to a Hilbert stat, Hψ(t,r) = Eψ(t,r) yields the same 
eigenvalues E for the modular associative multiplication to the left ψ(t,r)H = 
ψ(t,r)E.  

The Lie-admissible ‘completion’ of the above Schrödinger’s equation yields 
the non-trivial bimodular structure:  

1) The modular genoassociative action to the right representing the time 
evolution forward in time via the Schrödinger-Santilli genoequation to the right 
[19]  

H(r,p) > ψ>(t>,r>) = H(r,p)S(ψ>,...)ψ(t,r) = E>ψ>(t>,r>)>, 
and  

2) The modular genoassociative action to the left representing motion 
backward in time via Schrödinger-Santilli genoequation to the left  

ψ<(t<,r<) <  H(r,p) = ψ<R(ψ<,…)H(r,p) = ψ<(t<,r<)E<    

where E>  E<. 
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The representation of irreversible processes from first axiomatic principles 
is then evident whenever R S. 
3.4 Verifications of Einstein’s legacy.  
Following the above mathematical studies, Santilli dedicated decades to 
experimental and industrial verifications of hadronic mechanics and chemistry. 
Following the achieved of such a mathematical and applied maturity, Santilli 
proved Einstein’s legacy that ‘quantum mechanics is not a complete theory’ as 
well as the progressive recovering of Einstein’s determinism in the interior of 
hadrons, nuclei and stars and its full recovering in the interior of gravitational 
collapse [21], [25], [26], [27], [28]. These results were achieved via the 
representation of the extended and overlapping character of the constituents of 
irreversible systems in terms of the forward genotopic element with realizations 
of the type 

�̂� = Πk=1,...,N Diag.(1/ 𝑛1𝑘
2 , 1/ 𝑛2𝑘

2 , 1/ 𝑛3𝑘
2 , 1/ 𝑛4𝑘

2  )e −Γ(ψ,∂ψ,...) , 

where 𝑛1𝑘
2 , 𝑛2𝑘

2 , 𝑛3𝑘
2 , (called characteristic quantities) represent the deformable 

semi-axes of the k-particle normalized to the values 𝑛𝜇𝑘
2 =1, µ=1, 2, 3 for the 

sphere; 𝑛4𝑘
2  represents the density of the k-particle considered normalized to the 

value 𝑛4𝑘 = 1 for the vacuum; and Γ(ψ,∂ψ) represents non-linear, non-local and 
non-potential interactions caused by mutual overlapping/entanglement of the 
particles considered. 

The aspects of studies [21], [25], [26], [27], [28] important for this paper are 
the following. Recall that particles originally in conditions of mutual 
overlapping/entanglement of their wave packets and then separated, have been 
experimentally proved to instantly influence each other at a distance, by 
therefore requiring superluminal communications that would violate special 
relativity. This is the very feature that prompted Einstein the argument that 
‘quantum mechanics is not a complete theory.’ Santilli has achieved a 
quantitative representation of the indicated instantaneous communication at a 
distance via the representation of the extended character of the wavepacket of 
particles resulting in their continuous mutual penetration/entanglement at a 
distance of their center of mass, by therefore eliminating the need for 
superluminal communications. Above all, studies [21], [25], [26], [27], [28] have 
established that the instantaneous communication of entangle particles at a 
distance occurs without any use of energy because the interaction are not 
derivable from a potential by basic assumptions. 
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3.5 Application to a new conception of living organisms.  
Note that all biological structures, including cells, viruses and large living 
organisms, are irreversible over time because they are born, grow and then die. 
Santilli introduced in monograph [18] of 1994 the representation of biological 
structures via classical, multivalued, Lie-admissible formulations on a 3-
dimensional Euclidean space, namely, Lie-admissible formulations 
characterized by genounits, called classical hyperunits, with an ordered number 
of values all defined in the Euclidean space of our sensory perception 

I> = (I1, I2, ..., In) = 1/T = (1/T1, 1/T2, ...1/Tn) = 1/S. 
Correspondently, the product of generic non-singular quantities a, b (such as 

numbers, functions, matrices, etc.), called classical hyperproducts, are equally 
multivalued, yet defined in our 3-dimensional Euclidean space  

a > b = aSb = aT1b + aT2b + ... + aTnb  
in which all individual products are classical.  

Correspondently, Ref. [18] introduced the notion of classical hyperfields, 
namely, sets of multi-valued elements, products and units which verify the 
axioms of numeric fields.  

The transition from the classical, single-valued, Lie-admissible formulations 
outline in Section 3.3 to their multi-valued extension of was indicated in Ref. 
[18] as being necessary for the representation of the complexity of biological 
structures.  

Note the fundamental character of the classical hyperunits and related 
hyperfields because the entire new formalism, including classical hyperalgebras, 
hyperspaces and hypertopology, are constructed via mere compatibility 
arguments with the base classical hyperfield.  

In 1995, the Australian conchologist Chris Illert (see Part I of Ref. [12]) 
showed via computer simulations and direct calculations that the growth of 
seashells over time cannot be consistently represented in a classical, 3-
dimensional, single-valued Euclidean space E(r,δ,1) with classical coordinates 
r=(x,y,z) metric δ=Diag.(1,1,1) and unit 1 over the field of real numbers 
(R,n,×,1), because, in said space, seashell grow irregularly and then crack. Illert 
then showed a consistent representation of seashell growth via the use of a 3-
dimensional, two-valued Euclidean space (Ê, ȓ, δ, 1) where  

ȓ  = {(x1,x2), (y1,y2), (z1,z2)} 
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Santilli (see Part II of Ref. [18]) indicated that Illert’s discovery confirms the 
need for hyperstructures in the representation of living organisms. In fact, the 
representation space used by Illert can be more accurately written as a classical, 
3-dimensional, two-valued, forward hyperspace (E>,r>,δ>,I>), over the forward, 
classical hyperfield (R>, n>, >, I>) with classical forward hyperunit  

I> = {(I1x, I2x), (I1y, I2y), (I1z, I2z)} = 1/T> = 
= {(1/T1x, 1/T2x), (1/T1y, 1/T2y), (1/T1z, 1/T2z)} 

and classical, 3-dimensional but two-valued products between arbitrary 
quantities a, b [18]  

a > b = aT>b = (axT1xbx+axT2xbx)+(ayT1yby+ayT2yby)+(azT1zbz+azT2zbz), 

The Lie-admissible character of the representation and, therefore, its 
irreversibility, are assured when the backward hyperunit and, therefore, the 
hyperproducts, are different than the corresponding backward values.  

A central notion of the above classical 2-valued, hyperstructural 
representation of seashells growth is the 3-dimensional character of the 
representation space, which is independent from the multi-valued character of 
each axis. Such a structure is necessary, on one side, to achieve compatibility of 
the mathematical representation with our sensory perceptions, while at the same 
time allowing an unlimited number if hidden degrees of freedom needed for a 
quantitative representation of the complexity of seashells. In fact, we inspect 
seashell growth with our three Eustachian tubes. Consequently, any multi-
dimensional representation, such as the use of a 6-dimensional space, would not 
be compatible with our sensory perception and, as such, not being 
experimentally verifiable.  

A major advance in the hyperstructural representation if biological structures 
was initiated by T. Vougiouklis in 1999 [39] with the lifting of the classical 
hyperstructures of 5 Ref. [18] to Vougiouklis Hv-structures (see also Ref. [42] 
and subsequent papers) which are formulated via hyperoperations (nicknamed 
‘hopes’) including weak associativity (nicknamed ‘WASS’), weak commutativity 
(nicknamed ‘COW’) and other hyperoperations.  

The advantages of lifting the classical hyperstructures of Ref. [18] to 
Vougiouklis Hv-structures are several. The first advantage is a large increase of 
the representational capabilities which is necessary for a representation of 
biological structures such as the DNA, via a formulation that, at the abstract 
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realization-free level, is compatible with the three-dimensional space of our 
sensory perception.  

Other advantages are due to rather unique capabilities by Vougiouklis Hv- 
structures to characterize bona fide hyperfields on which the rest of the Lie-
admissible formulation is expected to be built (see, e.g., Ref. [46]).  

In this paper we introduce, apparently for the first time, a new conception of 
living organisms permitted by verifications [21], [25], [26], [27], [28] of the EPR 
argument according to which a living organism, such as a cell, a virus or a 
human person, is composed by a very large number of extended constituents in 
conditions of continuous mutual entanglement of their wavepackets and, 
therefore, in continuous mutual communications.  

In view of the complexity and very large number of multi-valued internal 
communications, the best representation of the above conception of living 
organisms known to the authors, is given by two, hyperbimodular, Lie-
admissible, Hv-structures, one for the representation of growth in time via hope, 
WASS and COW for ordered hypermodular hope to the right, and a second for 
the representation backward in time with hope, WASS and COW for ordered 
hypermodular hope to the left.  
3.6 A specific hyperstructure formalism of living organisms.  
As we present in section 3.3, in the transition from Lie theory to the covering 
Lie-admissible theory, we must specify an element S on the right and an element 
R to the left. In hyperstructure realization we can use as S and R, sets instead of 
elements. But in this case, we have hopes of constant length and the living 
organisms are not the case. Therefore, we suggest the use of a special case of the 
main e-construction to face the problem. Our construction equips the main 
product with an e-hope where the hyperproduct of two elements depend of those 
two elements. In fact, we keep the product and enlarge all the appropriate results.    
Construction 3.1 The Living Organism Construction. In a set G equipped with 
several operations we take one product (), where (G,) is a group. Suppose that 
e is the unit, then we define in G, a large number of hopes () as follows:  

ex = xe = x, xG, 

xy = {xy, gxy1, gxy2,…}, x,yG-{e}, where  gxy1, gxy1,…G-{e} 

gxy1, gxy2,… depend on the pair (x,y). Then (G,) becomes an Hv-group, because 
it contains the (G,). The Hv-group (G,) is an e-hypergroup. Moreover, if for 
each x,y such that  xy=e, so we have  xy=xy, then (G,) becomes a strong e-
hypergroup.  
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Remarks. 1. In the Hv-group (G,) the hope () is WASS and if the (G,) is 
commutative, then the hope () is COW.  
2. The Living Organism Construction can be used as S or R in forward genofields 
or backward genofields, respectively, according to section 3.3.  
 

Recall that, according to the Schrödinger equation of quantum chemistry, 
living organisms are composed by a collection of isolated points. By contrast, 
according to the Schrödienger-Santilli genoequation of hadronic chemistry, 
living organisms are composed by the indicated large number of extended 
constituents in conditions of continuous entanglement and communication.  

It is hoped that the proposed new conception of living organisms may allow 
new diagnostics, e.g., via the identification of possible miscommunications 
between different constituents, as well as new treatments, e.g., via the disruption 
of selected communications. 
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Abstract. The revolutionary tenet in Marius Sophus Lie’s 1871 Norwegian Ph.D. 
dissertation Over en Classe Geometriske Transformationer - and nowhere else or since 
so clearly expressed - is that while “Descartes…has chosen the point as the element of 
the geometry of the plane”, its “geometrical transformation…can be perceived as 
consisting of a transition from a point to a straight line as element”, and more 
particularly “the straight line of length equal to zero”. In that and its exploration he 
stands forth in the history of mathematics as the true founder of linear algebra (together 
with Grassmann), differential equations, continuous transformation groups, spherical 
geometry, and indeed the standard model by Gell-Mann’s per se mistaken Lie 
supermultiplet adoption; and thus reaching over all dimensions and numerical systems, 
fundamentally including the real. This is the terra firma of my back to the future return 
to Lie and the ordinary three-dimensional Euclidean space in Cartesian extension that 
he primarily inhabited from nil by spanning there a tangential “line-complex” system 
instead of a swarm of particle points. The resulting straight “curve-net” is the 
infinitesimal generator realization of the instantaneous phase transition “between the 
Plücker line-geometry and a geometry whose elements are the space’s spheres” in the 
form of a universally extending isotropic vector matrix (IVM) lattice embedded and 
distributed in chaperoning Cartesian coordinate cages filling space by hierarchical 
piling of the direct structural hybrid R3×SO(3) wave-packets so constituted, and which 
by cellular automaton iterations in whole or parts exactly replicate the elementary 
particle, atomic and periodic table spectroscopy. Moreover, since the R3×SO(3) curve-
net is timeless, all lines there, e.g. those occupied by coherently superposed photon 
pairs, are everlasting, hence solving all dilemmas and paradoxes of entanglement.   
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Introduction  
Initially highly debated as such and analytically1-3, entanglement with its from 
Schrödinger’s Verschrenkung3 imported bearings also on budding, branching, 
catenating, gluing etc., has over the years stood the tests to its now generally 
acknowledged designation as a special kind of nature’s way of compounding 
physical reality and realization from the ground and onwards, namely, 
superposition. Elementary particles and waves, atoms, the periodic table, 
molecules and their combinations all submit to this fundamental both classical 
and quantum mechanical principle of joining together in matching 
constellations into larger states. These are then direct sum congregations of 
their irreducible ingredients and in subtraction thus release them in their 
accommodated postures so that, nothing else interfering, they still appear 
matched when measured along different paths after the separation.  
But entangled states are coherent superpositions where each as a rule pair 
occupies one geodesics where it avoids forbidden collisions either by 
intertwining or more often diverging, with the counter-intuitive consequence of 
interdependence/identity of synchronized measurements between them over 
distances of any length; either according to the Einstein-Podolsky-Rosen (EPR) 
argument1 by some shared internal mathematical algorithm ensuring equal 
evolution of the two, or according to the Copenhagen school2 as a primary 
constitution of unknown kind.  
As first resolved in the thought experiment Bell theorem in 19644, and 1999 in 
a laboratory replication by Aspect5, and in both tested by a real world outcome, 
the evidence as accumulating in a legion of further investigations more and 
more favors the latter case. This has inspired a veritable panorama, not to say 
Pandora box of freely extrapolated macroworld realizations and applications 
which have reached cosmological dimensions with time travels, teleportation, 
wormholes, branes, multiverses and “connected spacetimes by entangling”6 as 
almost everyday routine events, albeit so far totally unseen in practice. Yet, 
massive funding is directed to this novel utopia which of course has immense 
appeal and at least engenders a cornucopia of innovative mathematical, 
computer and animation techniques, theoretical insights and philosophical, 
epistemological, ontological and information science developments.    
However, the alternative that there may be a an almost trivial, quite mundane 
combination of local gearing and remote coherence has not been investigated 
before but is an inherent feature of the three-dimensional space-filling lattice 
model in close compliance with Marius Sophus Lie’s geometriske 
transformationer7,8 here reported with special entanglement reference. 
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Methods and Results 
Marius Sophus Lie’s groundbreaking Ph.D. thesis Over en classe geometriske 
transformationerIb.  from 1871 (and thus due for a most deserved 150-year 
anniversary) was in fact not well understood in the defence9, and soon went 
down to oblivion in the faculty archives. When a hundred years later I as a 
budding cardiologist (see https://www.ncbi.nlm.nih.gov/pubmed/?term=trell+e) 
in search of clues on rotational transformations for electrocardiographic (ECG) 
applications obtained a photocopy of it from the Oslo University library I soon 
realized what a treasure it was; not directly to ECG of course but the very roots 
of linear algebra, differential equations and both the philosophical and structural 
“nature of Cartesian geometry”.7,8 With pivotal help and support from the 
inventor of Lie-admissible algebra10,11, Professor Ruggero Maria Santilli, I 
made an English translation of it (now open access available)8, expressing its 
crucial tenet that while “Descartes…has chosen the point as the element of the 
geometry of the plane”, its “geometrical transformation…can be perceived as 
consisting of a transition from a point to a straight line as element”, and more 
particularly “the straight line of length equal to zero”.7,8  Equally small as an 
infinitesimal point the difference is that as a linkable line it is in effect a partial 
derivative building unit filling both its space and path by its coherent steps as a 
virtual cellular automaton12 (Figure 1) so as to crystalize a real form  R3×SO(3) 
 

        
Figure 1. a-d) Killing A3 root space diagram knits a hexagonal SO(3) 
infinitesimal generator lattice, e,f) globally distributed in space-filling 
parallelepiped R3 chaperon enclosures to form a real space cellular automaton 
which in repeated steps of itself in parts or whole carries out a structural 
replication of the elementary particle, atomic and periodic table spectroscopies.  
 
wave-packet  compound  which  can  structurally  rewrite  the  elementary 
particle13-21, atomic and periodic table spectroscopies. Previous reports on the 
latter22-28 will here be complemented with the completion of the system with 

e
a 

f
a 
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special emphasis on entanglement both in a classical and quantum mechanical 
classification, generator and computation  regard. 
Figure 2 summarizes how the charged t isospin root vectors can be  linked  to  a  
coherent triple helix in  a continuous  cloverleaf  ‘singlet coil’  sequence  of 12 
unit steps – equally many as the edges of the parallelepiped – into the only 
other space-filling regular solid convolution,  namely,  a  complex  of  one  
octahedron  and  two  tetrahedrons (Figure 2a), which in iteration  (Figure 2b)  
forms an important nanotechnology structure, i.e. an ordinary space frame, alias 

                                       
Figure 2. Linking of charged t isospin root vectors to an outwards connected  
lattice, iterating to  space  frame  of  isotropic vector  matrix (IVM) constitution.  
 
octahedron-tetrahedron, or octet truss29 whose modular building  blocks  and  
their superposition can thus be realized from  the  ground  of  material  
organization. Figure 3 shows how the per se space-filling universal  IVM lattice 

                      
 
Figure 3.  2+8+18+32+32+32+18+8+2 = 152-step coherent chaperon sequence 
into a trapezoid bottom module of palindromic Bohr orbital distribution whose 
inner continuous 152×12-step SO(3) wave filament outlines the electron  
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is continuously distributed in Euclidean space by chaperoning R3 encasements 
which in the first superposition period form a sideways tileable flat-bottomed 
neutron ground module which for vertical packing needs a reciprocal flat-
roofed cap  (Figure 4) so that each half of the combined ‘transition apparatus’ 
comprises 153×12 unit steps  = 1836 = proton/electron relative  inertial  ratio.  
There  is  one  square  and  one  diagonal alternative of realization, of which the 

    
Figure 4. Hopefully self-explaining miniature illustrations (enlargeable in the 
screen) of square and twisted space-filling R3×SO(3) wave-packet module  
alternatives.                                      Colors refer to the noble gas in each period 
 
former obliterates space by its extra step but the latter (Figure 5) can continue 
the  tessellation  over   it  in  exact  replication  of  the   atomic   nucleosynthesis  
 

     
 
Figure 5. a) Nucleosynthesis of Deuterium from Neutron and Protium, and 
further to Tritium, 2Helium3 and 2Helium4. b) Same in Lithium to Beryllium. 
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Abstract 

Hypergoup is a set equipped with a hyperoperation which is associative and 
reproductive. The fundamental relation β* was introduced in 1970, which is the 
main tool in hyperstructures because it connects them with the corresponding 
classical structures. In 1990, Vougiouklis introduced the Hv-structures, by 
defining the weak axioms where the non-empty intersection replaces the 
equality. The quotient of a group by a partition is an Hv-group, so it is the largest 
class of hypergroups. The number of Hv-structures defined on a set is extremely 
greater than the number of the classical hyperstructures defined on the same set.  
Hyperstructures, especially the Hv-structures, have applications in many 
sciences including  biomathematics, hadronic physics, lepton physics, and 
Santilli’s iso-theory, to mention but a few. The hyperstructure theory is closely 
related to fuzzy theory; consequently, it can be applied in linguistic, sociology, 
industry and manugfacturing. In this paper, we focus on Lie-Santilli’s theory 
especially on the Hypernumbers or Hv-numbers needed for the mathematical 
representation. The e-hyperfields, can be used as isofields, in such way to cover 
additional properties. Large classes of Hv-structures can be used in the Lie-
Santilli theory especially when multivalued problems appeared, in finite or 
infinite case.  
 
Key words: hyperstructures, hope, Hv-structures, Hv-fields, Lie-Santilli iso-
theory. 
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1.  HYPERSTRUCTURES 
 

The largest class of hyperstructures, called Hv-structures, were introduced by 
the author in 1990 [19], [22]. These hyperstructures satisfy the weak axioms 
where the non-empty intersection replaces the equality. Some basic definitions 
are the following:   
Definition 1.1 In a set H equipped with the hyperoperation (abbreviation: 
hyperoperation= hope) 

: HH → P(H)-{}, 
we abbreviate with WASS the weak associativity: (xy)zx(yz)  , x,y,zH 
and with COW  the weak commutativity:  xyyx  , x,yH.   

The hyperstructure (H,) is called Hv-semigroup if it is WASS, it is called Hv-
group if it is a reproductive Hv-semigroup, i.e.   xH = Hx = H, xH. 

In the classical theory, the quotient of a group with respect to an invariant 
subgroup is a group. F. Marty stated in 1934 that, the quotient of a group with 
respect to any subgroup is a hypergroup. Finally, the quotient of a group with 
respect to any partition is an Hv-group [22].  

Τhe powers of an element hH are: h1={h}, h2=hh, …, hn=h…h, where () 
is the n-ary circle hope: the union of hyperproducts, n times, with all patterns of 
parentheses put on them. An Hv-semigroup (H,) is a cyclic of period s, if there 
is a generator g, and a natural n, such that H=h1…hs.  If there is an h and s, 
such that H=hs, then (H,) is called single-power cyclic of period s. 

In a similar way, more complicated hyperstructures can be defined:  
Definitions 1.2 The (R,+,) is an Hv-ring if (+) and () are WASS, the reproduction 
axiom is valid for (+) and () is  weak distributive  with respect to (+):     

x(y+z)(xy+xz),    (x+y)z(xz+yz),   x,y,zR. 

Let (R,+,) be Hv-ring, (M,+) be COW Hv-group and let there exist an external 
hope 

 :  RM → P(M): (a,x) → ax 

such that, a,bR and  x,yM,  then we have 

a(x+y)(ax+ay)  ,     (a+b)x(ax+bx)  ,     (ab)xa(bx)  , 
then M is an Hv-module over F. In the case of an Hv-field F instead of an Hv-
ring R, then the Hv-vector space is defined. 
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For more definitions and applications on Hv-structures one can see the books 
[1], [3], [4], [7], [9], [16], [22], [23], [28], [29], [32], [33].  
Definition 1.3 The fundamental relations β*, γ* and ε*, are defined, in Hv-
groups, Hv-rings and Hv-vector spaces, respectively, as the smallest equivalences 
so that the quotient would be group, ring and vector spaces, respectively  [19], 
[21], [22], [23], [31], [33].  

The way to find the fundamental classes is given by the following:  
Theorems 1.4 Let (H,) be Hv-group and U be the set of finite products of 
elements of H. We define the relation β in H by setting  xβy iff {x,y}u  where 
uU.  Then β* is the transitive closure of β. 
Let (R,+,) be Hv-ring and U the set of finite polynomials of elements of R. We 
define the relation γ in R by:  xγy iff {x,y}u  where uU. Then γ* is the 
transitive closure of γ.  

An element is called single if its fundamental class is singleton. 
Definition 1.5 The fundamental relations are used for general definitions. Thus, 
an Hv-ring (R,+,) is called Hv-field if  R/γ*  is a field.  
Definition 1.6 Let (H,), (H,*) be Hv-semigroups defined on the same set H. () 
is called smaller than (*), and (*) greater than (), iff there exists an  

fAut(H,*)   such that   xyf(x*y), x,yH. 

Then we say that (H,*) contains (H,). If (H,) is a classical structure then it is 
called basic structure and (H,*) is called Hb-structure. 
The Little Theorem. Greater hopes than the ones which are WASS or COW, are 
WASS or COW, respectively. 

This Theorem leads to a partial order, posets, on Hv-structures [28], [35], [9].  
Definition 1.7 The Hv-semigroup (H,) is called h/v-group if the quotient H/β* 
is a group.    

The h/v-groups are a generalization of the Hv-groups since in h/v-groups the 
reproductivity of classes is valid. This leads the quotient to be reproductive. In a 
similar way the h/v-rings, h/v-fields, h/v-vector spaces etc, are defined.  
Definition 1.7 [18], [21], [22]. An Hv-structure is called very thin iff all hopes 
are operations except one, which has all hyperproducts singletons except only 
one, which is a subset of cardinality more than one.  
Definition 1.8 [29], [32]. Let (G,) be groupoid (resp., hypergroupoid) and 
f:G→G be a map. We define a hope (), called theta-hope, we write -hope, on 
G as follows 

xy = {f(x)y, xf(y)},  x,yG.  (resp.  xy= (f(x)y)(xf(y), x,yG) 
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If () is commutative then  is commutative. If () is COW, then  is COW. 
Let (G,) be groupoid (or hypergroupoid) and f:G→P(G)-{} be multivalued 

map. We define the (), on G as follows   

xy = (f(x)y)(xf(y),  x,yG. 
Motivation for the theta-hope is the map derivative where only the 

multiplication of functions can be used. Basic property: if (G,) is a semigroup 
then f, the () is WASS.  
Definition 1.9 [17],[32]. Let (G,) be groupoid, then PG, P we define the 
following hopes called P-hopes:  x,yG 

P: xPy= (xP)yx(Py),   Pr: xPry= (xy)Px(yP),   Pl: xPly= (Px)yP(xy). 

The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures. If (G,) is semigroup, 
then  xPy=(xP)yx(Py)=xPy  and (G,P) is a semihypergroup but we do not know 
about (G,Pr) and (G,Pl). In some cases, depending on the choice of P, the (G,Pr) 
and (G,Pl) can be associative or WASS.  

A generalization of P-hopes is the following [6], [9]:   
Construction 1.10 Let (G,) be abelian group and P, subset of G. Define the 
hope P as follows:` 

  xPy = xPy = {xhyhP}  if   xe  and  ce 
        xy                                          if   x=e   or  y=e 

we call this hope Pe-hope. The hyperstructure (G,P) is an abelian Hv-group. 
The general definition of an Hv-Lie algebra was given as follows [31], [9]:  

Definition 1.11 Let (L,+) Hv-vector space on (F,+,), φ:F→F/γ* canonical, 
ωF={xF:φ(x)=0}, where 0 is zero of F/γ*. Let ωL the core of  φ:L→L/ε*  and 
denote 0 the zero of L/ε*. Consider the bracket (commutator) hope: 

[ , ]: LL → P(L): (x,y) → [x,y] 
then L is an Hv-Lie algebra over F if the following axioms are satisfied: 
(L1)  The bracket hope is bilinear, i.e. 

         [λ1x1+λ2x2,y](λ1[x1,y]+λ2[x2,y])    

         [x,λ1y1+λ2y2](λ1[x,y1]+λ2[x,y2])  , x,x1,x2,y,y1,y2L, λ1,λ2F 

(L2)  [x,x]ωL  ,  xL 

(L3)  ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])ωL  ,  x,yL. 
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Τhe enlargement or reduction of hyperstructures are examined in the sense 
that an extra element appears in one result or we take out an element. In both 
directions most useful are those Hv-structures with the same fundamental 
structure [25], [27]:  

Let (H,) be HV-semigroup and vH. Extend () into the H=H{v} as follows: 
xv=vx=v, xH, and vv=H. The ( H,) is an h/v-group where  (H,)/β*Z2  and 
v is a single element. We call (H,) the attach h/v-group of (H,).  
Theorem 1.12 Let (G,) be semigroup and vG be an element appearing in a 
product ab, where a,bG, thus the result becomes a hyperproduct ab={ab,v}. 
Then the minimal hope () extended in G΄=G{v} such that () contains () in 
the restriction on G,  and such that (G΄,) is a minimal HV-semigroup which has 
fundamental structure isomorphic to (G,),  is defined as follows: 

ab={ab,v},   xy=xy,  ( x,y)G2-{(a,b)} 

vv=abab,   xv=xab   and   vx=abx,  xG.     

(G΄,) is very thin Hv-semigroup. If (G,) is commutative then the (G΄,) is 
strongly commutative. 

Let (H,) be hypergroupoid. We say that remove hH, if we consider the 
restriction of () on H-{h}. We say hH absorbs hH if we replace h by h. We 
say hH merges with hH, if we take as product of xH by h, the union of the 
results of x with both h, h and consider h and h as one class.   

Now we present some ‘small’ h/v-fields. 
Constructions 1.13 On the rings (Z4,+,∙) and (Z6,+,∙) we will define all the 
multiplicative h/v-fields which have non-degenerate fundamental field and, 
moreover they are,  

(a)  very thin minimal,   (b)  COW,   (c)  they have 0 and 1, scalars.  

I.  On (Z4,+,∙) we have the isomorphic cases: 23={0,2} or 32={0,2}. The 
fundamental classes are [0]={0,2},  [1]={1,3} and we have  (Z4,+,)/γ*(Z2,+,∙). 
Thus it is isomorphic to (Z2×Z2,+). In this Hv-group there is only one unit and 
every element have a unique double inverse.  
II.   On (Z6,+,∙), we have the only one hyperproduct, 

(i)   23={0,3}, 24={2,5}, 34={0,3}, 35={0,3}, 45={2,5}  
Fundamental classes: [0]={0,3}, [1]={1,4}, [2]={2,5} and we have 

(Z6,+,)/γ*(Z3,+,∙). 
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(ii)  23={0,2} or 23={0,4}, 24={0,2} or {2,4}, 25={0,4} or 25={2,4}, 
34={0,2} or {0,4}, 35={3,5}, 45={0,2} or {2,4}.          
Fundamental classes: [0]={0,2,4}, [1]={1,3,5} and we have   

(Z6,+,)/γ* (Z2,+,∙). 
Definition 1.14 The uniting elements method, introduced by Corsini & 
Vougiouklis in 1989 [2], is the following: Let G be algebraic structure and d be 
a property, which is not valid and described by a set of equations; then, consider 
the partition in G for which it is put together, in the same class, every pair that 
causes the non-validity of d. The quotient G/d is an h/v-structure. Then, quotient 
out the G/d by β*, a stricter structure (G/d)/β* for which the property d is valid, 
is obtained. 

A problem of the uniting elements occurs when more than one property is 
desired. The reason is that some of the properties lead straight to the classes than 
others. So, we apply the straightforward classes followed by the more 
complicated ones. The commutativity and reproductivity are easy applicable 
properties. One can do this because the following Theorem is valid [22], [25], 
[27]. 
Theorem 1.15 Let (G,) be a groupoid, and  F={f1,…,fm,fm+1,…, fm+n} be system 
of equations on G consisting of subsystems Fm={f1,…,fm}, Fn={fm+1,…, fm+n}. 
Let σ, σm be the equivalence relations defined by the uniting elements procedure 
on systems F and Fm, respectively, and let σn be the equivalence relation defined 
using the induced equations of Fn on the groupoid Gm=(G/σm)/β*. Then   

(G/σ)/β*  (Gm/σn)/β*. 
i.e. the following diagram is commutative 

      ρm          φm 
      G      G/σm          Gm  
    ρ       ρn 

 
    G/σ           Gm/σn 
    φ        φn   
                  
             (G/σ)/β*       (Gm/σn)/β*. 
 

Where all maps  ρ, φ, ρm, φm, ρn, φn,  are the canonicals. 
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The problem of enumeration and classification of hyperstructures, started 
from the beginning, it is complicate in Hv-structures because we have very great 
numbers [10]. For example, the number of Hv-groups with three elements, up to 
isomorphism, is 1.026.462. There are 7.926 abelian; the 1.013.598 are cyclic. 
The partial order in Hv-structures and the Little Theorem, transfers and restrict 
the problem in finding the minimal, up to isomorphisms, Hv-structures.  
 

2.  REPRESENTATIONS 
 
Representations (we abbreviate with rep) of Hv-groups, can be considered either 
by Hv-matrices [21], [22], [23], [24], [27] or by generalized permutations [20].  
Definition 2.1 Hv-matrix (or h/v-matrix) is called a matrix with entries elements 
of an Hv-ring or Hv-field (or h/v-ring or h/v-field). The hyperproduct of Hv-
matrices A=(aij) and B=(bij), of type mn and nr, respectively, is a set of mr 
Hv-matrices, defined in a usual manner:  

AB = (aij)(bij) = {C=(cij)cijΣaikbkj }, 

where () is the n-ary circle hope on the hyperaddition.   
The rep problem by Hv-matrices is the following:  

Definition 2.2 Let (H,) be Hv-group, (R,+,) be Hv-ring and MR ={(aij)aijR}, 
then any  

T:H→MR: h→T(h)  with  T(h1h2)T(h1)T(h2),  h1,h2H, 

is called Hv-matrix rep. If T(h1h2)T(h1)T(h2), then T is an inclusion rep, if  
T(h1h2)=T(h1)T(h2),  then T is a good rep an induced rep T* for the hypergroup 
algebra is obtained.  If T is one to one and good, then it is a faithful rep. 
Theorem 2.3 A necessary condition in order to have an inclusion rep T of an 
Hv-group (H, )  by nn  Hv-matrices over the Hv-ring (R,+, ) is the following: 
For all β*(x), xH there must exist elements aijH, i,j{1,...,n} such that 

T(β*(a))  {A = (aij)  aij  γ* (aij), i,j{1,...,n}} 

Thus, every inclusion rep  T:H→MR: aT(a)=(aij) induces a homomorphic 
rep T* of H/β* over  R/γ* by setting  T*(β*(a))=[γ*(aij)], β*(a)H/β*,  where 
the element  γ*(aij)R/γ*  is the ij entry of the matrix T*(β*(a)).   

The rep problem by Generalized Permutations (write gp), is described as 
follows [20]:  
Definitions 2.4 Let X be a set, then a map f:X→P(X)–{}, is a gp of X if it is 
reproductive:   
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xXf(x)=f(X)=X. 

Denote by MX the set of all gps on X. For an Hv-group (X,) and aX, the gp fa 
defined by fa(x)=ax is called inner gp. Arrow of f is any (x,y)X2 with yf(x). 
The f2MX contains f1MX or f1 is a sub-gp of f2, if  f1(x)f2(x), xX, then 
we write f1f2. If, moreover, f1f2, then f1 is a proper sub-gp of f2. An fMX is 
called minimal if it has no proper sub-gp. Denote MX the set of all minimal gps 
of MX. The converse of a gp f is the gp f defined by f(x)={zX: f(z)x}, thus f 
is obtained by reversing arrows. We call associated to fMX the gp f◦f.   
Theorem 2.5 Let fMX, then fMX iff, the following condition is valid:  

If ab and f(a)f(b), then f(a)=f(b) and f(a) is singleton.  

If fMX then, fMX.  If fMX then, (f◦f)(x)={yX:f(y)=f(x)}. 
Several classes of Hv-structures can face special reps. Some of those classes 

are as follows [22], [24]: 
Definition 2.6 Let M=Mmn, the set of mn matrices on R and P={Pi:iI}M. 
We define, a kind of, P-hope P on M as follows 

P: MM→P(M): (A,B) APB={APt
iB: iI } M 

where Pt denotes the transpose of P.  P is bilinear Rees’ like operation where, 
instead of one sandwich matrix, a set is used. P is strong associative and the 
inclusion distributive to addition is valid: 

AP(B+C)  APB+APC, A,B,CM 
So (M,+,P) defines a multiplicative hyperring on non-square matrices.  

Let M=Mmn be module of mn matrices on R and take the sets 

  S={sk:kK}R,  Q={Qi:jJ}M,   P={Pi:iI}M. 
Define three hopes as follows 

S: RM → P(M): (r,A) → rSA = {(rsk)A: kK} M 

Q+: MM → P(M): (A,B) → AQ+B = {A+Qj+B: jJ} M 

P: MM → P(M): (A,B) → APB = {APt
iB: iI} M 

Then (M,S,Q+,P) is a hyperalgebra on R called general matrix P-hyperalgebra. 
Hopes on any type of ordinary matrices can be defined [37], [8] they are called 

helix hopes. 
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Definition 2.7 Let A=(aij)Mmn be matrix and s,tN, with 1sm, 1tn. The 
helix-projection is a map  

st: Mmn → Mst:  A → Ast=(aij), 
where Ast has entries 

aij = {ai+s,j+t1is, 1jt  and ,N, i+sm, j+tn} 

Let A=(aij)Mmn, B=(bij)Muv,  s=min(m,u), t=min(n,v). We define a hyper-
addition, called helix-sum, by 

 : MmnMuv→P(Mst):(A,B)→AB=Ast+Bst=(aij)+(bij)Mst 

where (aij)+(bij)={(cij)=(aij+bij) aijaij and bijbij)}. 
Let A=(aij)Mmn, B=(bij)Muv and s=min(n,u). Define the helix-product, by 

: MmnMuv→P(Mmv): (A,B)→AB=AmsBsv=(aij)(bij)Mmv 

where   (aij)(bij)= {(cij)=(aitbtj) aijaij  and  bijbij)}. 
The helix-sum is commutative, WASS, not associative. The helix-product is 

WASS, not associative and not distributive to the helix-addition.  
We present a proof for the fundamental relation, analogous to Theorem 1.4, 

in the case of an Hv-module: 
Theorem 2.8 Let (M,+) be Hv-module over R. Denote by U the set of 
expressions of finite hopes either on R and M or the external hope applied on 
finite sets.  We define the relation ε in M by:  xεy iff  {x,y}u, uU.  Then the 
relation ε* is the transitive closure of the relation ε.  
Proof. Let ε be the transitive closure of ε, and denote by ε(x) the class of the 
element x. First we prove that the quotient set M/ε is a module over R/γ*.  
In M/ε the sum () and the external product (), using the γ* classes in R, are 
defined in the usual manner:  

ε(x)ε(y) = {ε(z): zε(x)+ε(y)}, x,yM. 

γ*(a)ε(x) = {ε(z): zγ*(a)ε(x)}, aR, x,yM. 

Take xε(x), yε(y). Then xεx iff x1,…,xm+1 with x1=x, xm+1=x and 
u1,…,umU such that {xi, xi+1}ui, i=1,…,m and yεy iff y1,…,yn+1 with y1=y, 
yn+1=y and v1,…,vnU such that {yj,yj+1}vj,j=1,…,n.  

From the above we obtain  

{xi, xi+1}+y1  u1+v1, i=1,…,m-1,   xm+1+{yj, yj+1}  um+vj, j=1,…,n. 
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The ui+v1=ti, i=1,…,m-1, um+vj=tm+j-1, j=1,…,n are elements of U, therefore, 
tkU, k{1,…,m+n-1}. Take elements  z1,…,zm+n  with zixi+y1, i=1,…,n  and  
zm+jxm+1+yj+1, j=1,…,n, thus, {zk,zk+1}tk, k=1,…,m+n-1.  

Therefore, z1x1+y1=x+y is ε equivalent to zm+n xm+1+yn+1=x+y. Thus 
ε(x)ε(y) is a singleton so we can write, ε(x)ε(y)=ε(z), zε(x)+ε(y). 

Similarly, using the properties of γ* in R, we prove that   

γ*(a)ε(x)=ε(z), zγ*(a)ε(x) 
The WASS and the weak distributivity on R and M guarantee that the 

associativities and the distributivity are valid for M/ε over R/γ*. Therefore, M/ε 
is a module over R/γ*. 

Now let σ equivalence relation in M such that M/σ is module on R/γ*.  Denote 
σ(x) the class of x. Then, σ(x)σ(y) and γ*(a)σ(x) are singletons aR and 
x,yM, i.e. 

σ(x)σ(y)=σ(z),  zσ(x)+σ(y),  γ*(a)σ(x)=σ(z), zγ*(a)σ(x). 

Thus we write, aR, x,yM  and Aγ*(a), Xσ(x), Yσ(x) 

σ(x)σ(y)=σ(x+y)=σ(X+Y),   γ*(a)σ(x)=σ(ax)=σ(AX). 

By induction, extend these relations on finite sums and products. Thus, uU, 
we have σ(x)=σ(u), xu. Consequently xε(x) implies xσ(x), xM. But 
σ is transitively closed, so we obtain:  xε(x) implies xσ(x). 

Therefore, ε is the smallest equivalence on M such that M/ε is a module on 
R/γ*, i.e. ε=ε*.   ■ 

Recall that, an element is single if its fundamental class is singleton, so, in an 
Hv-group if s is single then β*(s)={s}. Denote SH the set of singles. If SH≠, 
then we can answer to the very hard problem, that is to find the fundamental 
classes. The following theorems are proved [22], [24], [35]: 
Theorem 2.9 Let (H,) be Hv-group and sSH≠. Let aH, take an element vH 
such that sav, then  β*(a)={hH:hv=s}, and the core of H is  ωH={uH:us=s}= 
{uH: su=s}.  Moreover, sx=β*(sx) and xs=β*(xs), xH. 
Important Conlusion. Two elements a,b are in the fundamental relation β if 
there are two elements x,y who bring a,b in the relation β. That means that the 
fundamental relation β* ‘depend’ on the results. This fact leads to a special proof 
where we need to discover the ‘reason’ to have the results. Every relation needs 
even the last one result to characterize its classes. However, if there are special 
elements, as the singles, which are strictly formed and carry inside them the 
relation, then these elements form the fundamental classes.   
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3.  LIE-SANTILLI HYPER-ADMISSIBILITY 
  

Last decade hyperstructures have applications in mathematics and in other 
sciences. These applications include biomathematics – conchology and 
inheritance - hadronic physics, lepton physics, and Santilli’s iso-theory, to 
mention but a few. The hyperstructure theory is closely related to fuzzy theory; 
consequently, it can be widely applied in linguistic, sociology, industry and 
production [1], [3], [4], [7], [9], [18], [28], [29], [31], [34], [36].  

In [30], with ‘The Santilli’s theory ‘invasion’ in hyperstructures’, there is a 
first description on how Santilli’s theories effect in hyperstructures and how new 
theories in Mathematics appeared by Santilli’s pioneer research. In 1996 Santilli 
& Vougiouklis [14], point out that in physics the most interesting hyperstructures 
are the one called e-hyperstructures. These hyperstructures contain a unique left 
ant right scalar unit, which is an important tool in Lie-Santilli theory. One can 
see the books and related papers for more definitions and results related topics: 
[5], [6], [9], [11], [12], [13], [14], [15], [26], [30].  
Definition 3.1 A hyperstructure (F,+,), where (+) is an operation and () a hope, 
is called e-hyperfield if the following axioms are valid:  (F,+) is an abelian group 
with the additive unit 0,  () is WASS, () is weak distributive with respect to (+), 
0 is absorbing element: 0x=x0=0, xF, there exist a multiplicative scalar unit 
1, i.e. 1x=x1=x, xF, and xF there exists a unique inverse x-1, such that 

1xx-1x-1x. 
The elements of an e-hyperfield are called e-hypernumbers. If the relation: 

1=xx-1=x-1x, is valid, then we say that we have a strong e-hyperfield.  
Definition 3.2 The Main e-Construction. Given a group (G,), where e is the unit, 
then we define in G, a huge number of hopes () as follows:   

xy={xy, g1, g2,…}, x,yG-{e}, and g1, g2,…G-{e}. 

The (G,) is an e-hypergroup, which is an Hb-group because it contains (G,). 
Moreover, if x,y with xy=e, so  xy=xy, then  (G,) is strong e-hypergroup. 

The proof is immediate since we enlarge the results of the group by putting 
elements from G and applying the Little Theorem. Moreover, the unit e is unique 
scalar and xG, there exists a unique inverse x-1, such that  exx-1x-1x.  
Finally, if the last condition of the difinition is valid, then  e=xx1=x-1x,  so the 
(G,) is a strong e-hypergroup.   
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Remark that the main e-construction gives an extremely large class of e-
hopes. The most useful are the ones where only few products are enlarged and, 
even more, the extra elements are one or two.  
Example 3.3 Consider the quaternion group Q={1,-1, i,-i, j,-j, k,-k} with   
i2=j2=k2=-1,  ij=k, jk=i, ki=j.  Denoting i={i,-i}, j={j,-j}, k={k,-k} we may define 
a very large number () of hopes by enlarging only few products.  For example,     
(-1)k=k, ki=j and ij=k. Then the (Q,) is a strong e-hypergroup. 

An important new field in hypermathematics comes straightforward from 
Santilli’s Admissibility. We can transfer Santilli’s theory in admissibility for 
representations in two ways: using either, the ordinary matrices and a hope on 
them, or using hypermatrices and ordinary operations on them [11], [12], [13], 
[15], [30]. 

The general definition is the following: 
Definition 3.4 Let L be Hv-vector space over the Hv-field (F,+,), φ:F→F/γ*, 
the canonical map and ωF={xF:φ(x)=0}, where 0 is the zero of the fundamental 
field F/γ*. Let ωL be the core of the canonical map φ:L→L/ε* and denote by 
the same symbol 0 the zero of L/ε*. Take two subsets R, SL then a Lie-Santilli 
admissible hyperalgebra is obtained by taking the Lie bracket, which is a hope:  

[ , ] RS : LL→P(L): [x,y]RS= xRy–ySx= {xry–ysxrR, sS} 
On non square matrices we can define admissibility as follow: 

Construction 3.5 Let (L=Mmn,+) be Hv-vector space of mn hyper-matrices on 
the Hv-field (F,+,), φ:F→F/γ*, canonical map and ωF={xF:φ(x)=0}, where 0 
is the zero of F/γ*. Similarly, let ωL be the core of φ:L→L/ε* and denote by the 
same symbol 0 the zero of L/ε*. Take any two subsets R,SL then a Santilli’s 
Lie-admissible hyperalgebra is obtained by taking the Lie bracket, which is a 
hope:     

[ , ] RS: LL→P(L): [x,y]RS=xRty–yStx. 

Notice that    [x,y]RS=xRty–yStx={xrty–ystxrR and sS} 
Definition 3.6 According to Santilli’s iso-theory [9], [13], [14], [15], [26], [30], 
on a field F=(F,+,), a general isofield �̂�= �̂�(â,+̂,×̂)  is defined to be a field with 
elements â=a1̂, called isonumbers, where aF, and 1̂ is a positive-defined 
element generally outside F, equipped with two operations +̂ and ×̂ where +̂ is 
the sum with the conventional additive unit 0, and ×̂ is a new multiplication 

â ×̂ b̂: = âT̂b̂,   with  1̂ = T̂-1,  â, b̂�̂�         (i)  
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called iso-multiplication, for which 1̂  is the left and right unit of F, 

1̂ ×̂ â = â1̂ = â , â�̂�            (ii) 
called iso-unit. The rest properties of a field are reformulated analogously. 

In order to transfer this theory into the hyperstructure case we generalize only 
the new multiplication ×̂ from (i), by replacing with a hope including the old 
one. We introduce two general constructions on this direction as follows: 
Construction 3.7 General enlargement. On a field F=(F,+,) and on the isofield  
�̂�=�̂�(â,+̂,×̂)  we replace in the iso-product 

â ×̂ b̂=   âT̂b̂,     with  1̂ = T̂-1 

the element T̂ by a set of elements Ĥab={T̂,x̂1,x̂2,…} where x̂1,x̂2,…�̂�,  
containing T̂, for all  â ×̂ b̂ for which  â,b̂{0̂,1̂} and  x̂1,x̂2,…�̂�-{0̂,1̂}. If one 
of  â, b̂, or both, is equal to 0̂ or 1̂, then Ĥab={T̂}. Therefore, the new iso-hope is 

â ×̂ b̂ = âĤabb̂= â{T̂,x̂1,x̂2,…}b̂, â,b̂�̂�         (iii) 

�̂�=�̂�(â,+̂,×̂) is an isoHv-field. The elements of 𝑭 are called isoHv-numbers or 
isonumbers. 
Remarks 3.8 Important hopes of this construction are those where the result is 
enlarged  only for few ordered pairs (â,b̂), even more, the extra elements x̂i, are 
only few, preferable exactly one. Thus, this special case is if there exists only 
one pair (â,b̂) for which    

â ×̂ b̂=  â{T̂,x̂}b̂,   â,b̂�̂� 
and the rest are ordinary results, then we have a so called very thin isoHv-field. 

The assumption that Ĥab={T̂}, â or b̂, is equal to 0̂ or 1̂, with that x̂i, are not 0̂ 
or 1̂, give that the isoHv-field has one scalar absorbing 0̂, one scalar 1̂, and 
â�̂�,  has one inverse.   
Construction 3.9 The P-hope. Consider an isofield �̂�=�̂�(â,+̂,×̂) with â=a1̂, the 
isonumbers, where aF, and 1̂ is a positive-defined element generally outside F, 
with two operations +̂ and ×̂, where +̂ is the sum with the conventional unit 0, 
and ×̂ is the iso-multiplication 

â ×̂ b̂ : =   âT̂b̂,     with  1̂ = T̂-1,  â,b̂  �̂�                          

Take a set P̂={T̂,p̂1,…,p̂s}, with p̂1,…, p̂s�̂�-{0̂,1̂}, define the isoP-Hv-field, 
�̂�=�̂�(â,+̂,×̂P), where the hope ×̂P as follows: 
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            âP̂b̂ = {âĥb̂ĥP̂}   if   â  1̂  and  b̂  1̂    
   â ×̂P b̂:=                (iv) 
                   âT̂b̂                                if   â = 1̂  or  b̂ = 1̂ 

The elements of  �̂� are called isoP-Hv-numbers.  
Remark. If  P ̂= {T̂,p̂}, that is that P̂ contains only one p̂ except T̂. The inverses 
in isoP-Hv-fields, are not necessarily unique.  
Consruction 3.10 The generalized P-construction can be applied on rings to 
obtain Hv-fields. Thus for, �̂�10 = 𝒁10(â,+̂,×̂), and if we take  �̂�={2̂,7̂}, then we 
have the table 
 

×̂ �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 
�̂� 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 
�̂� 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 
�̂� 0̂ 2̂ 8̂ 2̂ 6̂ 0̂ 4̂ 8̂ 2̂ 6̂ 
�̂� 0̂ 3̂ 2̂ 3̂,8̂ 4̂ 0̂,5̂ 6̂ 2̂,7̂ 8̂ 4̂,9̂ 
�̂� 0̂ 4̂ 6̂ 4̂ 2̂ 0̂ 8̂ 6̂ 4̂ 2̂ 
�̂� 0̂ 5̂ 0̂ 0̂,5̂ 0̂ 0̂,5̂ 0̂ 0̂,5̂ 0̂ 0̂,5̂ 
�̂� 0̂ 6̂ 4̂ 6̂ 8̂ 0̂ 2̂ 4̂ 6̂ 8̂ 
�̂� 0̂ 7̂ 8̂ 2̂,7̂ 6̂ 0̂,5̂ 4̂ 3̂,8̂ 2̂ 1̂,6̂ 
�̂� 0̂ 8̂ 2̂ 8̂ 4̂ 0̂ 6̂ 2̂ 8̂ 4̂ 
�̂� 0̂ 9̂ 6̂ 4̂,9̂ 2̂ 0̂,5̂ 8̂ 1̂,6̂ 4̂ 2̂,7̂ 

 
Then the fundamental classes are    

(0)={0̂,5̂},   (1)={1̂,6̂},   (2)={2̂,7̂},   (3)={3̂,8̂},  (4)={4̂,9̂}, 

and the multiplicative table is the following 
 

 (0) (1) (2) (3) (4) 
(0) (0) (0) (0) (0) (0) 
(1) (0) (1),(2) (2),(4) (3),(1) (4),(3) 
(2) (0) (2),(4) (3) (2) (1) 
(3) (0) (3),(1) (2) (3) (4) 
(4) (0) (4),(3) (1) (4) (2) 

 
Consequently,  �̂�10 = 𝒁10(â,+̂,×̂), is an Hv-field. 
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4.  CONCUSIONS 
 
Anytime applied sciences ask from mathematics to have a model to express a 
new theory, then mathematicians search for existing mathematics if there is an 
appropriate one. If there is none, then they try to create a new mathematics to 
represent the required axioms. The Hv-structures can offer to the Lie-Santilli 
theory some of the models needed, because they are multivalued and there is a 
huge number of Hv-structures defined on the same set. Moreover, the appropriate 
Hv-fields can sometimes answer the basic question of Santilli’s theory: What are 
the hypernumbers on which the entire theory is constructed via mere 
compatibility arguments.  
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Abstract: According to Einstein, Podolsky and Rosen, ‘quantum mechanics is 
incomplete’ and it is popularly known as “EPR argument”. R.M.Santilli is 
seriously working in this direction and trying to prove it. In this context, we 
would like to appeal that, when mass of any elementary particle is 
extremely small/negligible compared to macroscopic bodies, highly curved 
microscopic space-time can be addressed with large gravitational constants. 
Following this kind of approach, it is possible to show that, Reduced Planck’s 
constant is a compactified coupling constant of electroweak gravity.  

Keywords: Four gravitational constants; Electro weak Fermion; Reduced 
Planck’s constant;  
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Nomenclature 
1) Newtonian gravitational constant =

N
G  

2) Electromagnetic gravitational constant=
e

G  

3) Nuclear gravitational constant =
s

G  

4) Weak gravitational constant =
W

G  

5) Fermi’s weak coupling constant = 
F

G  

6) Strong coupling constant = 
s

  

7) Mass of electroweak fermion =
w

M  

8) Reduced Planck’s constant =   
9) Speed of light = c  
10) Elementary charge = e  
11) Strong nuclear charge = 

s
e  

12) Mass of proton =
p

m  

13) Mass of neutron =
n

m  

14) Mass of electron =
e

m  

15) Charge radius of nucleus=
0

R  

16) Root mean square radius of proton =
p

R  

17) Magnetic moment of proton =
p

  

18) Neutron life time=
n
t  

19) Weak interaction string tension=
w

F  

20) Strong interaction string tension=
s

F  

21) Electromagnetic interaction string 
tension=

e
F  

22) Gravitational interaction string tension=

g
F  

23) Weak interaction string potential=
w

E  

24) Strong interaction string potential =
s

E  

25) Electromagnetic interaction string 
potential =

e
E  

26) Gravitational interaction string potential 
=

g
E  

27) Fine structure ratio =   
28) Nuclear fine structure ratio = 

n
  

29) Mass of pions =    0
,m m 


 

30) Mass of weak bosons =    0
,z wm m


 

 
1. Introduction  
 

As it is well known, Albert Einstein did not accept quantum mechanical 
uncertainties as being final, for which reason he made his famous quote “God 
does not play dice with the universe.” More particularly, Einstein believed that 
“quantum mechanics is not a complete theory,” in the sense that it could be 
broadened into such a form to recover classical determinism at least under 
limit conditions. Einstein communicated his views to B. Podolsky and N. 
Rosen and they jointly published in 1935 the historical paper [1] that became 
known as the EPR argument. In view of the rather widespread belief that 
quantum mechanics is a final theory valid for all conceivable conditions 
existing in the universe, objections against the EPR argument have been 
voiced by numerous scholars, including by N. Bohr [2], J. S. Bell [3,4], J. von 
Neumann [5] and others (see Ref. [6] for a review and comprehensive 
literature). The field became known as local realism and included the 
dismissal of the EPR argument based on claims that quantum axioms do not 
admit hidden variables λ [7, 8]. In this context,  R.M.Santilli is seriously 
working and proving the ‘EPR’ argument based on ‘isosymmetries’ [9-13]. 
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Even though our approach is different, we would like to emphasize the point 
that, ‘quantum mechanics’ is certainly an incomplete theory because of its 
poor background associated with the mysterious origin of the ‘reduced 
Planck’s constant’ and it is the root cause of failure of unification of ‘quantum 
mechanics’ and ‘gravity’.  

Subject of final unification is very interesting. But, unifying gravity 
and quantum mechanics (QM) is very much complicated and scientists are 
trying their level best in different ways. As gravitational effects are negligible 
at quantum level, standard model of particle physics attempts to explore the 
secrets of elementary particles. On the other hand, as quantum effects are 
negligible at macroscopic level, General theory of relativity (GTR) attempts to 
explore the secrets of the universe. The most complicated question to be 
answered is – If celestial objects are confirmed to be made up of various kinds 
of atoms, whether ‘gravity’ is causing the atoms to form into celestial spheres 
or quantum rules are causing the atoms to form into celestial spheres that show 
gravity?              

Astrophysics point of view or ‘Planck scale’ point of view, there is a 
possibility   of observing the combined effects of GTR and QM at 
intermediate energy scales. In between GTR and QM, there exist fascinating 
and most complicated astrophysical objects, i.e. Black holes. Even though 
their detection is a great mystery, one can see the best possibility of 
understanding QM and GTR at extreme energy scales. Here, we would like to 
emphasize the point that, astrophysical observations pertaining to Black holes 
and various other compact stellar objects just reveal the combined effects of 
GTR and QM but no way indicate the secrets of unification of QM and GTR. 
One most common point of QM and GTR is “mass”.  By understanding the 
massive origin of elementary particles, it may be possible to probe the secrets 
of QM and GTR.  

The primary goal of quantum gravity is to join the laws of quantum 
mechanics with the laws of general relativity into a single mathematically 
consistent framework. Many scientists believe that, String theory [14,15,16] is 
one best candidate of quantum gravity. It is embedded with beautiful physical 
concepts like open strings, closed strings, string vibrations, string length, 
string tension and ‘fermion-boson super symmetry’. Scientists strongly believe 
that, String theory is empowered with good mathematics and smartly fits 
gravity in unification program. Point to be noted is that, by considering the 
Planck length as characteristic amplitude associated with strings, String theory 
advances its ideological representation. Very unfortunate thing is that, even 
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though, originally, String theory was proposed for understanding ‘strong 
interaction, as Planck length is 20 orders of magnitude less than nuclear size, it 
is badly failing in explaining and predicting nuclear scale physical 
phenomena.  Here we would like to stress the point that, the main reason for 
its fatal failure is – “implementation of the two famous physical constants H-
bar and big G as-they-are”. We would like to say that, without addressing the 
roots of H-Bar and big G, it is impossible to construct a workable model of 
final unification. 

 
2. Three large atomic gravitational coupling constants  
 

When mass of any elementary particle is extremely small/negligible 
compared to macroscopic bodies, highly curved microscopic space-time can 
be addressed with large gravitational constants and magnitude of elementary 
gravitational constant seems to increase with decreasing mass and increasing 
interaction range. Based on this logic, we consider the possibility of existence 
of three large gravitational constants assumed to be associated with the 
electromagnetic, strong and weak interactions [17-32]. Compared to multi-
dimensions and unproved maths of any String theory model, our proposal can 
be given some positive consideration. Following the notion of string theory, 
compactification of un-observable spatial dimensions might be playing a key 
role in hiding the large magnitudes of the three atomic gravitational constants. 
If multi dimensional physics is having a real sense, then, compactification of 
large magnitudes of atomic gravitational constants can also be possible.      

By following our idea, in analogy with Planck scale, as an immediate 
result, it seems possible to have three different string amplitudes 
corresponding to electromagnetic, strong and weak interactions. In this way, 
String theory can be shaped to a model of elementary particle physics 
associated with 3+1 dimensions. Another advantage is that, considering the 
combined effect of the three atomic gravitational constants, origins of H-Bar 
and big G can be understood.  Including the Newtonian gravitational constant, 
as the subject under consideration deals with 4 different gravitational 
constants, our model can be called as 4G model of final unification or 
Microscopic Quantum Gravity. With further study, Planck scale and 
electroweak scale can be studied in a unified manner. During cosmic 
evolution, if one is willing to give equal importance to Higgs boson and 
Planck mass in understanding the massive origin of  elementary particles, then 
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it seems quite logical to expect a common relation between Planck scale and 
Electroweak scale.  

 
3. Basic assumptions 
 

1) There exists a characteristic electroweak fermion of rest energy,
2 584.725 GeV.

w
M c  It can be considered as the zygote of all elementary 
particles.  

2) There exists a strong interaction elementary charge  se  in such a way that, 

its squared ratio with normal elementary charge is close to the reciprocal of 
the strong coupling constant.  

3) Each atomic interaction is associated with a characteristic large 
gravitational coupling constant.   

 

4. To validate assumption-1 
 

To validate assumption-1, we argue with the following nuclear and particle 
level observations.  

1) It is generally believed that,    0
,m m 

  are the force carriers of strong 

interaction and    0
,z wm m

 are the force carriers of weak interaction. 

Considering Pions and electroweak bosons, to a great surprise, we 
noticed that,                            

   
   

02 2

02 2

0.001606

134.98 139.57  MeV
0.0016032.

80379.0 91187.6  MeV

p n

w
z w

m c m cm m

M
m c m c

 




 
   
     
      

 
 

    

                               (1) 

2) It is also very interesting to note that,  
 

       0 0
6.84 6.83.

p n w

z w

m m M

m m m m 
 
                                  (2) 
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3) As neutron’s weak decay is directly responsible for nuclear stability 
associated with beta emission,  based on the two numerical 
coincidences, i.e. 0.0016 and 6.83,  existence of our assumed 584.725 
GeV weak fermion can be confirmed and  it is also possible to have a 
relation of the form,                          

   

   

0
2

0
585.244 GeV .

z w
w p

m m
M m c

m m 





 
    
 

                               (3) 

4) With reference to nucleons and pions, it is reasonable to argue that, if 

one is willing to consider    02 2&z wm c m c


 as the force carriers of 

weak interaction [33,34,35,36], one should not ignore the possibility of 
considering the proposed weak fermion of rest energy 584.725 GeV as 
the characteristic field generator of weak interaction.  

5) Weak force carriers cannot exist without the existence of their weak 
field generating fermion.    

6) We would like to emphasize that, independent of the famous semi 
empirical mass formula (SEMF), and using the ratio 0.0016, nuclear 
stability and nuclear binding energy can be understood with four 
simple terms and one energy coefficient. See section 7. 

 

5. Semi empirical derivations 
 

This section has been divided into 4 sub sections [26,29]. Based on the 
proposed second and third assumptions, in section 5.1, relations (3), (7) and 
(11) have been defined.  

In Section 5.2 important numerical fitting relations (13), (14), (15) and 
(16) have been proposed (pertaining to nuclear charge radius, Planck size 
and Fermi’s weak coupling constant) and an attempt has been made to infer 
an expression for weak gravitational constant.  

In Section 5.3, based on the results obtained from Section 5.1 and 
Section 5.2, an important inference i.e. relation (21) has been made.  

Section 5.4 includes simplified relations pertaining to elementary mass 
ratios, Newtonian gravitational constant and strong coupling constant.    
 
5.1 Defined basic relations and their consequences 
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5.1.1 Ratio of Newtonian and electromagnetic gravitational constants 

Considering the similarities in between gravitational and electromagnetic 
interactions, relation (3) has been defined to understand the role and to 
estimate the approximate magnitudes of the electromagnetic and Newtonian 
gravitational constants [37].   

  

11 1
2 46 6

where, Planck mass

N N e
p pl e

e e N

pl
N

G G cm
m M m

G G G

c
M

G


                   


  







 

                             (4)  

On rearranging relation (4),  

2
23
pe

pl
N N e

mGc
M

G G m

  
         



 

                                       (5) 

5.1.2 Proton – electron mass ratio 

Pertaining to proton-electron mass ratio, relations (6) and (7) have been 
defined  in the following way. 

22
p s pe e

e

m G mG m

m c c

  
       

 

                                                          (6) 

 
2 2

2 2
0 04 4

p s

e s p e e

m e e

m G m G m 

   
        

 

                                                  (7) 

Based on the second assumption and relations (6) and (7), 

2 3 2 4

3 2 2

1 s p s ps

s e e

G m G me

e G m c
     
  

 

                                             (8) 
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3 2

3

1 s p s ps

s e e

G m G me

e cG m
     
  

 

                                          (9) 

Based on relation (8), quantitatively, it can be inferred that,   

2

0

2
4

s

s p e

e

G m m





 

                                                  (10) 

Based on relation (8), substituting 
3

2 2
3

s p
s

e e

G m
e e

G m

 
   
 

in  relation (10),   

2
0

2

4
 2p e e

e

m G m

m e




 

                                                 (11) 

Based on relation (4) and (6), on eliminating c , 

1 7

1 3 2 3
 p s

e e N

m G

m G G

 
  
 

 

                                                  (12) 

5.2 Numerical  fits and their consequences pertaining to nuclear charge 
radius,  Planck size and Fermi’s weak coupling constant  

 
With reference to nuclear gravitational constant, nuclear charge radius can 
be fitted with, 
 

0 2

2
1.2393 fms pG m

R
c

 
  
   

                                        (13) 

With reference to Planck size, it has been noticed that, 

6

2 3

s p pN

e

G m mG

mc c

  
    

   


                                           (14) 

 
Based on relation (13), Fermi’s weak coupling constant can be fitted with, 

 

808https://doi.org/10.52202/059404-0020

https://doi.org/10.52202/059404-0020


9 
 

2
2 2

2
0 3

62 3

4

1.4402105 10  J.m

e s e
F

p

m G m
G cR

m c



 
   
 

 



 
                                    (15) 

Based on relations (13), (14) and (15),  
 

10 2

2

4p N
F

e

m G
G

m c

 
  
 



 
                                            (16) 

Based on the magnitude of weak gravitational constant proposed by 
Roberto Onofrio [21] and based on relation (16), it has been inferred that,   

10
p

w N
e

m
G G

m

 
  
   

                                              (17) 

Based on relations (16) and (17) 

2

2

4 w
F

G
G

c




 
                                                  (18) 

Based on relations (15) and (18),  

2 3

2 4s e wF G m GG

c c c
 


  

                                          (19) 

5.3 Important inference and its implications pertaining to first 
assumption      

 
Based on the above relations (4) to (19), on eliminating the three proposed 
atomic gravitational constants, one can get the following relation.   

 
7

2
2

4 e

p N p

m c

m G m
 

 
   

 



                                               
(20) 

  
If one is willing infer that,  
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2

w wc G M
                                                

(21) 
 

Based on relations (19) and (21),  

s e w wG m G M
                                              

(22) 
 

Based on relations (20), (21) and (22), the following relations can be 
obtained. 
 

 
1

12 3
2 3

4
p w em M m




 
  
                                             

(23) 

 
2 2

2

2
where, 

F w w w

w w
w

G G M R

G M
R

c



  
                                           (24) 

 

w

e w

s

G
m M

G

 
  
 

                                                     (25) 

 

     

2

s s s

p w w

w e w e

G G G
m M M

G G G G

    
     
    

                                        (26) 

 
3

2

p s

e w e

m G

m G G
                                                         (27) 

 

e w
p e s w e
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5.4 Simplified relations for elementary mass ratios, Newtonian 
gravitational constant and strong coupling constant   
 

On eliminating proton and electron rest masses, Newtonian gravitational 
constant and strong coupling constant take the following simplified forms.    
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Based on relations (29) and (30),  
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6. Characteristic unified relations pertaining to estimation of
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a) With the following relation, magnitude of 

e
G can be estimated.  
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b) After finding the value of eG ,with the following relation, magnitude of 

s
G can be estimated. 

2 4 2 2

3 3
w w

s
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(33) 

c) After finding the value of sG , weak gravitational constant can be 
estimated with a relation of the form, 

3

e s

w

p e

m G
G

m G

 
   

                                                     
(34) 

 
d) Thus, quantitatively,   
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e) Based on relation (25), we are working on developing procedures for 
estimating the magnitude of strong gravitational constant and weak 
gravitational constant independent of the reduced Planck’s constant. 
Appropriate relations seem to be associated with the experimental values 
of strong coupling constant [38,39], nuclear charge radius [40,41,42,43], 
magnetic moment of proton and neutron life time [44].   

3
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(37) 
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     (38) 

 
7. Understanding nuclear binding energy with single energy coefficient 

and four simple terms                                                                                                
 

We would like to emphasize the fact that, physics and mathematics associated 
with fixing of the energy coefficients of semi empirical mass formula (SEMF) 
[45,46,47] are neither connected with residual strong nuclear force nor 
connected with strong coupling constant s . Since nuclear force is mediated 
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via quarks and gluons, it is necessary and compulsory to study the nuclear 
binding energy scheme in terms of nuclear coupling constants. In this 
direction, N. Ghahramany and team members have taken a great initiative in 
exploring the secrets of nuclear binding energy and magic numbers [48,49] 
with reference to quarks. Very interesting point of their study is that - nuclear 
binding energy can be understood with two or three terms having single 
variable energy coefficient. In this direction, based on three unified 
assumptions connected with gravity and atomic interactions, in a semi 
empirical approach, we have developed a very simple formula for nuclear 
binding energy with single energy coefficient having four simple terms [27]. 
Corresponding relations can be expressed in the following way. Starting from 
Z=3 to 118,  

 2 2

    Estimated mass number close to proton-neu

2

tron mean stability

0.0016 2 2 0.006

 line

4

.
sA Z Z Z Z



                   (39) 

   
2

1 3
0 10.1 Me

     Estimated nuclea

V

r binding energy

s
fg

s

A A
BE A A A B

A

       
  



                                (40) 

      Here, we would like to appeal that,  

1)  1 0.0019fgA A ZN  can be called as the geometric number of free or 

unbound nucleons. 
2) 1 3A  can be called as radial factor associated with nucleons. 

3) 
 2s

s

A A

A


 can be called as isotopic asymmetric term associated with 

mean stable mass number.   

4) Binding energy coefficient, 
2

0
0 0

1
10.1 MeV

4s

e
B

R 
 

   
 

seems to be 

associated with nuclear radius, strong coupling constant and fine 
structure ratio. 

5) Proceeding further, by considering electroweak interaction and 
eliminating the number 0.0019, it is possible to show that,  
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         (41)  

8. Estimating nuclear charge radii independent of  quantum concepts 
 
Without considering quantum concepts, nuclear charge radii can be estimated 
with the following expression. For medium and heavy atomic nuclides,  

   1 31 3
, 2

s p n
Z N

G m m
R Z ZN

c

           
                                           (42)  

This relation can be compared the currently believed various relations 
pertaining to the estimation of nuclear charge radii [50,51] 

9. Discussion 
 
We would like to emphasise the following points: 
 
1) Even though quantum mechanics is successful in understanding the 

quantum effects of microscopic systems, origin of the reduced Planck’s 
constant is still a mystery at the microscopic level. 

2) String theory is silent on the universal applicability of the reduced 
Planck’s constant. 

3) During cosmic evolution, if one is willing to give equal importance to 
Higgs Boson and Planck mass in understanding the massive origin of 
elementary particles,  it seems quite logical to expect a common relation 
between Planck scale and Electroweak scale.  

4) When microscopic space time is more curved than the macroscopic space 
time curvature, it is natural to assign a large value to microscopic 
gravitational constant.  

5) Compared to particles having a structure, for point particles the magnitude 
of gravitational constant can be much higher.  

6) Magnitude of the elementary gravitational constant seems to increase with 
the decreasing mass of the elementary particle under consideration.  

7) According to the String theory, the real world is a compact manifold and 
out of 10 dimensions, 6 spatial dimensions get compressed and will not 
allow any observer to identify their existence. Applying this idea to our 
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proposal, compactification of  6 unobservable space dimensions might be 
playing a key role in hiding the large magnitudes of the three atomic 
gravitational constants.   

8) Using the strong nuclear charge, proton magnetic moment  2
s p
e m , 

nuclear fine structure ratio  2

0
4 ,

n s
e c   unified nuclear binding energy 

coefficient  2

0

1

2 n p
B m c   and Fermi gas model of nuclear potential 

 2 2

F n p n
E m c m c     can be fitted. Another interesting application is 

that, based on strong charge conservation, electromagnetic charge 
conservation and super symmetry, fractional charge quarks can be 
understood with generation of quark fermions and quark bosons 
[29,30,31,32]. 

9) ‘String Tension’ is a practical aspect of String Theory [52]. Considering 
the proposed three atomic gravitational constants and following the 
universal applicability of ‘speed of light’, approximate tensions associated 
with weak, strong, electromagnetic and gravitational interactions can be 
represented by, 
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(43) 

10) Following the universal applicability of ‘elementary charge’, approximate 
(operating) energy potentials associated with the above string tensions can 
be  represented by,   
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(44) 

11) These estimated weak, strong and electromagnetic energy potentials seem 
to be close to experimental values. 

12) Relation (21) needs in depth discussion at fundamental level. 
13) With reference to the current experimental values of root mean square 

radius of proton,  0.833 0.01  fm and   ,0.831  0.007   0.01  f2 m
stat syst

   we 

noticed one interesting relation. It can be expressed as, 

2 3
0 0

2 2 2

4 4
0.835 fmp

ps p s p

R
m ce m e m c

   
        

                             (45) 

In this relation,  

a) 
2

0
2

4
3.32 fm

s pe m

 
  
 
 

  can be inferred as the Bohr’s model of probable 

distance of finding proton in the nuclear well where the operating 
charge is 2.946

s
e e . 

b) 0.21 fm
pm c

 
  

 

 can be considered as the reduced Compton wavelength 

of proton. 
 
     Based on relation (45) and assumption(2),  
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e
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816https://doi.org/10.52202/059404-0020

https://doi.org/10.52202/059404-0020


17 
 

10. Conclusion 
 
With reference to pions and electroweak bosons, it is possible to confirm the 
existence of 2 584.725 GeV.

w
M c   Proceeding further, based on the famous EPR 

argument and with further research, actual essence of final unification and 
mystery of the reduced Planck’s constant can be understood. 
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Abstract

We present measurements of the polarization correlation of the
two-photonsystem produced in positron-electron annihilation of 64Cu
that were conducted at Freiburg University 1976-1980. Our
experiment was motivated by two contradicting results. An
experiment conducted at Columbia University observed a quantum
mechanical correlation whereas an experiment conducted in Catania,
Sicily observed a correlation that was about 40% lower. The two
back-to-back photons are either both right-handed or left-handed
polarized. The polarization of each photon is measured with a
Compton polarimeter on each side of the source consisting of a plastic
scintillator as scatterer and a NaI detector, which records the
Compton-scattered photons.The polarization correlation is measured
by the difference in azimuth angle φ between the two polarimeters.
We performed the measurements for different scatterer shapes,
different scattering angles and different distances between the source
and the polarimeters. We developed a detailed MonteCarlo program
for simulating the quantum mechanical expectation for each
measurement setup. All measurements agree rather well with
quantum mechanics. We further reproduced the results of all
conducted experiments with our simulation. The reduced Polarization
correlation observed by the Sicilian experiment originated from a large
fraction of double scattering in which the original polarization
correlation is diminished. We further performed a test of Bells
inequality with our results and those measured by other experiments.

1
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1 Introduction

In the early 1970s two experiments were conducted that measured the po-
larization correlation of the two annihilation photons from electron-positron
annihilation. The motivation came from the EPR article [1] and Bell’s inves-
tigation into hidden variables [2, 3]. The experiment by Kasday-Ulman-Wu
(Columbia U., 1975) [4] measured a polarization correlation that confirmed
the quantum mechanical prediction. The experiment by Faraci et al. (Cata-
nia U., 1974) [5] measured a value that was 30% lower than the quantum
mechanical expectation. The discrepancy could not be explained. Therefore,
K. Meisenheimer and myself under supervision of professor Runge built a new
experiment for measuring the polarization correlation of the two annihilation
photons from at the University of Freiburg. The experiment was conducted
like a modern high-energy physics experiment with respect to data taking,
analysis and simulation.

2 Measurement Principle

Positrons from a 64Cu source annihilate with electrons in the conduction band
typically in an S=0 state into two nearly back-to-back photons (HWHM=5.9±
0.1 mrad), which are either both left-handed or right-handed polarized. Thus,

the state vector in terms of momentum ~ki and polarization εi = Ri, Li is

|ψ〉 =
1√
2

{
|k1, R1〉 |k2, R2〉 − |k1, L1〉 |k2, L2〉

}
. (1)

In terms of linear polarization we get

|ψ〉 =
1√
2

{
|k1, X1〉 |k2, Y2〉 − |k1, Y1〉 |k2, X2〉

}
. (2)

The polarization is detected via Compton scattering. The probability that a
photon polarized in the X direction is scattered under the angles θ and φ is

dPi =
1

2π
f(θi)

[
1−m(θi)

]
cos (2φi)dΩ (3)

where f(θi) is the differential cross section for unpolarized photons f(θi)

f(θi) =
1

CN

(k′i
ki

)2[ki

k′i
+
k′i
ki

− sin2 θ
]

(4)

2
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and m(θi) is the θi-dependent amplitude that describes the strength of the φi

dependence and, therefore, the polarization sensitivity,

m(θi) = sin2 θi

[ki

k′i
+
k′i
ki

− sin2 θ
]−1

. (5)

The parameter CN is a normalization constant. The maximum polarization
sensitivity is obtained for θ = 82◦ yieldingm(82◦) = 0.691 while f(82◦)/f(0◦) =
0.203 for θ = 82◦. So, f(θ) is nearly at the minimum, For fixed θ, dP/dΩ be-
comes maximum if the initial polarization is orthogonal to the scattering plane
(φ = 90◦) and minimum if it is in the scattering plane (φ = 0◦). The analyzing
power of a polarimeter is defined by

εP =
Pmax − Pmin

Pmax + Pmin

(6)

where Pmax is the maximum of dP/dΩ if ~ε is parallel to the polarimeter axis
and Pmin is the minimum of dP/dΩ if ~ε is orthogonal to the polarimeter axis.
For a Compton polarimeter we get

εCP = M(θ,∆θ) ·N(∆φ) (7)

with

M(θ,∆θ) =

∫ θ+∆θ

θ−∆θ
f(θ)m(θ) sin θdθ∫ θ+∆θ

θ−∆θ
f(θ) sin θdθ

(8)

and

N(∆φ) =

∫ φ+∆φ

φ−∆φ
cos(2φ)dφ∫ φ+∆φ

φ−∆φ
dφ

=
sin(2∆φ)

2∆φ
(9)

where ∆θ and ∆φ are the polar angle and azimuth angle acceptances of the
detector.

For example, for θ = 82◦, ∆θ = 14◦ and ∆φ = 10◦ the analyzing power is
εCP = 0.648± 0.002, which is 94% of the maximum analyzing power εmax

CP .
The detection efficiency of a polarimeter is defined by

ηP =
number of detected particles

number of particles hitting the polarimeter
(10)

3
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Figure 1: Left: The function M(θ,∆θ) as a function of θ for different values
of ∆θ. Right: The function N(∆φ) as a function of ∆φ.

For an ideal polarimeter ηP = 1. For a Compton polarimeter

ηCP = ηS · δS · ηD · δD · F (θ,∆Ω) (11)

where ηS is the scattering probability in the scatterer, ηD is the probability to
record a signal in the detector, δS is the detection limit of the scatterer, δD

is the detection limit of the detector and F (θ,∆Ω) = (1/2π)
∫

∆Ω
f(θ)dΩ. For

the θ = 82◦, ∆θ = 14◦ and ∆φ = 10◦ we get ηCP = (1.46± 0.02)× 10−3.
The probability that two photons represented by the state |ψ〉 are scattered

under the polar angles θ1 and θ2 and azimuth angles φ1 and φ2 is given by

dP12 =
1

4π
f(θ1)f(θ2){1−m(θ1)m(θ2)] cos 2(φ1 − φ2)dΩ1dΩ2} (12)

The flight directions of the two photons after scattering are correlated with
respect to the azimuth angles with a strength of m(θ1)m(θ2), which has a max-
imum value of 0.478. The two scattering angles are completely independent.

4
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The product f(θ1)f(θ2) denotes the probability for scattering two arbitrary
polarized photons under the angles θ1 and θ2.

3 Experimental Setup

Figure 2 shows the experimental setup. In the center a 64Cu is placed inside
a collimator. The two Compton polarimeters are placed on both sides of the
collimator. Each polarimeter consists of a plastic scintillator as scatterer and
a NaI counter covered with a lead shield as detector. The plastic scintillator
and the NaI crystal are both read out by a photomultiplier. For most measure-
ments the NaI detector is placed at the optimal scattering angle of θ = 82◦.
We measured four coincidence numbers: N2 the coincidence between the two
scatterers, N31, N32 the coincidence between the two scatterers and detector 1,
2 and N4 the coincidence between all four counters. The three- and four-fold
coincidences have azimuth angle dependences.

Figure 3 (top) shows a photograph of the experiment. We chose the grav-
itational axis as symmetry axis. Figure 3 (bottom) shows a close up view of
the Compton polarimeter. The lead shield in front of the detector permits to
define the acceptance in ∆θ and ∆φ.

4 Polarization Correlation

We define the polarization correlation R(θ1, θ2) in terms of coincidence num-
bers to reduce systematic uncertainties from the source intensity, alignment
and calibration issues. Thus

R(θ1, θ2) =
N4(φ1, φ2)/N2

N31(φ1)/N2 ·N32(φ2)/N2

=
N4(φ1, φ2) ·N2

N31(φ1) ·N32(φ2)
(13)

In the laboratory system there is no preferred polarization direction. The
3-fold coincidencesN31(φ1) andN32(φ2) are isotropic in φ1 and φ2. The angular
dependence comes from N4(φ1, φ2), yielding

R(θ1, θ2) = A[1− β cos 2(φ1 − φ2)] (14)

where A = 1 is the normalization and β is the polarization correlation param-
eter. Deviations from A = 1 may come from systematic effects like non-perfect

5
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Scatterer 1

Scatterer 2

Detector 1
with shield

Detector 2
with shield

Collimator

Source

Figure 2: The experimental set up showing the source inside a collimator and
the two Compton polarimeters, each consisting of a scatterer and a detector
with a shield.

alignments. For uncorrelated photons R(φ1, φ2) = 1. In a quantum mechanical
system, β is given by

β ≤ m(θ1) ·m(θ2) ≤ 0.478. (15)

Several effects reduce the polarization correlation R(φ1, φ2), such as the
analyzing power of the Compton polarimeter, changes in the two-photon quan-
tum state and backgrounds, which include accidental coincidences, uncorre-
lated coincident photons from a calibration source, secondary scattering in the

6
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z

collimator

scatterer detector

Lead shield

Figure 3: Top: Photograph of the experimental setup. Bottom: Photograph
of a Compton polarimeter.
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light guide and lead shield and double scattering in the scintillator. Further-
more, systematic effects like misalignment of the scatterers may change the
analyzing power or backgrounds. We determined the polarization correlation
parameter βexp from R(φ1, φ2) by measuring the φ2 − φ1 dependence in four
data sets Mi.

1. Data set M1: cylindrical shaped scatterers placed at 16 cm from the
source for 82◦ scattering angles.

2. Data set M2: conical shaped scatterers placed at 16 cm from the source
for 82◦ scattering angles.

3. Data set M3: conical shaped scatterers placed at 16 cm from the source
for 68◦ scattering angles.

4. Data set M4: conical shaped scatterers placed at 42 cm from the source
for 82◦ scattering angles.

For all measurements the acceptances were set to ∆θ = 13.5◦ and ∆φ = 9.5◦.
For each measurement we recorded the following observables:

• Coincidence numbers N2, N31(φ1), N32(φ2) and N4(φ1, φ2) and the corre-
sponding accidental coincidences A2, A31(φ1), A32(φ2), and A4(φ1, φ2).

• Single rates in the scatterers and detectors, NS1, NS2, ND1 and ND2.

• Response times TS1, TS2, TD1 and TD2 and the TDC spectra for all three-
fold and four-fold coincidences.

• The measured energies ES1, ES2, ED1 and ED2 for all three-fold and four-
fold coincidences.

For a four-fold coincidence the response times have to be consistent with
expectations within errors and the energies of the scattered photon Eγ and the
recoil electron Ee have to satisfy Ee +Eγ = ES +ED = 511 keV within errors,
where ES and ED are the energies measured in a scatterer and corresponding
detector, respectively.

5 Simulation of the Experiment

The goal of the Monte Carlo simulation is to determine the quantum mechan-
ical expectation value for the polarization correlation parameter βQM for the

8
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four data sets. To obtain precise predictions we have simulated the experiment
in very great detail, including the form and position of the source, the effect
of the collimator, the shape and position of the scatterers, the opening of the
lead slits and the absorption in the NaI detectors. The simulations allowed
us to determine the dependence of βQM on the scattering angle θ and the an-
gular acceptances ∆θ and ∆φ and to study the effect of multiple scattering
in scatterers on βQM. We further determined the efficiencies of scatterers and
detectors, energy distributions in the scatterers and detectors and ratios of
coincidence numbers.

Note that due to the event-by-event simulation, βQM cannot be determined
from dP12 directly because for the generation of Compton scattering we need
to make concrete assumption about the polarization state of the two-photon
system. The pure state |ψ >, represented by the density matrix

ρQM = |ψ〉 〈ψ| = 1

2

(
|x1y2〉 〈y2x1|+ |y1x2〉 〈x2y1|+ |x1y2〉 〈x2y1|+ |y1x2〉 〈y2x1|

)
(16)

cannot be factorized into the individual polarization states, i.e. dP12 cannot be
written as a product of dP1 and dP2, We have two possibilities to determine the
quantum mechanical expectation value, either determine the analyzing power
of each Compton polarimeter and then multiply their values or determine the
expectation value for a symmetric mixture.

|Φ〉 =
1√
2

(
|x1y2〉+ |y1x2〉

)
(17)

for which we get

dP sm
12 =

1

4π
f(θ10f(θ2)

[
1− 1

2
m(θ1)m(θ2)

]
cos 2(φ2 − φ1). (18)

This has the same form as dP12 except for the extra factor 1/2. We use both
methods to simulate βQM for the four data sets, yielding either βQM = εCP

1 ·εCP
2

or βQM = 2βsm for the symmetric mixture.

6 Analysis Requirements

Figure 4 shows the measured energy spectrum E/mec
2 in the NaI detector.

The signal region is marked by A. Region B results from events that are scat-
tered in the scatterer and scattered again in the lead shield, while region C

9

831 https://doi.org/10.52202/059404-0021

https://doi.org/10.52202/059404-0021


results from double scattered events. Region D is caused by the Sn calibra-
tion source. To reduce backgrounds from accidental coincidences and multiple
scattering we apply different selection criteria and define four event categories.

• Category 0: measured coincidences corrected for accidental coincidences.

• Category T: add time requirements.

∗ tS2 − tS1 ≤ 1.6 ns for N2.

∗ tD1 − tS1 ≤ 4.6 ns for N31.

∗ tD2 − tS2 ≤ 3.6 ns for N32.

• Category S: add energy sums.

∗ 370 ≤ ES1 + ED1 ≤ 650 keV.

∗ 385 ≤ ES2 + ED2 ≤ 635 keV.

• Category E: add detector energy constraints.

∗ 200 ≤ ED1 ≤ 325 keV.

∗ 195 ≤ ED2 ≤ 320 keV.

These selection criteria are applied successively.

7 Quantum Mechanical Expectations

We have simulated the quantum mechanical expectation value βQM under dif-
ferent assumptions. Figure 5 (left) shows βQM for single-scattered events for
category 0 and category E as a function of the scattering angle for ∆θ = 14.5◦

and ∆φ = 10◦. The peak value is at θ = 82◦ and is not very different for
the two categories. The solid curve shows the theoretical calculation of the
polarization correlation for an ideal Compton polarimeter by Snyder et al. [6].
Our simulations confirm that the polarization correlation parameter for our
setup is rather close to that of an ideal Compton polarimeter. Figure 5 (right)
shows βQM for single and multiple scattered events. The quantum mechanical
expectation value βQM is lowered also for category E even though the energy
selection removes some multiple-scattered events. So, compared to the pre-
diction by Snyder et al. the measured polarization correlation parameter for
category E is reduced by about 10%. Figures 6 (left, right) respectively show

10
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Energy
Spectrum
In NaI detector

0
T
S 
E 

Figure 4: Energy spectrum in the NaI detector.

βQM for single-scattered and single- plus multiple-scattered events as a func-
tion of ∆θ for a scattering angle of θ = 82◦ for three values of ∆φ. Note that
multiple scattering and large acceptances ∆θ and ∆φ reduce the correlation
parameter βQM significantly.

8 Systematic Effects

Multiple scattering in the scatterer affects βexp. In our setup the amount
of double-scattered four-fold coincidences is 17.8% for category 0 and 10%
for category E. The effect of accidental coincidences on βexp is rather small.

11
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Monte Carlo data for category 0
MC data for category E without t
Fit curve for category 0
Fit curve for category E without t 
Approximation by Snyder et al

Monte Carlo data for category 0
MC data for category E without t
Fit curve for category 0
Fit curve for category E without t 
Approximation by Snyder et al

Only single scattering Single and multiple scattering

bbQM bbQM

Figure 5: Left: Quantum mechanical expectation value βQM as a function of
θ for ∆θ = 14.5◦ and ∆φ = 10◦ for categories 0 and E. The curves show fits
to the data. Right: The corresponding plots for single- and multiple-scattered
events. The solid lines show the theoretical calculation of the polarization
correlation parameter for an ideal Compton polarimeter by Snyder et al.

For category E the fraction of accidental four-fold coincidences is less 0.15%.
Coincidences with a 1.34 MeV photon from 64Cu source are negligible and
events having secondary scatterings in other parts of the detector are removed
by criteria S. The accuracy in the azimuth angle setting is better than 1◦

leading to a systematic error on βexp less than 1%. Furthermore, deviations
from rotation symmetry yields a negligible error on βexp.

12
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bbQM bbQM

Monte Carlo data for category 0
MC data for category E without time requirement
Fit curve for category 0
Fit curve for category E without time requirement
Approximation by Snyder et al

Monte Carlo data for category 0
MC data for category E without time requirement
Fit curve for category 0
Fit curve for category E without time requirement
Approximation by Snyder et al

Only single scattering Single and multiple scattering

Figure 6: Left: Quantum mechanical expectation value βQM as a function of
∆θ for θ = 82◦ and three values of ∆φ = 10◦ for categories 0 and E. The
curves show fits to the data. Right: The corresponding plot for single- and
multiple-scattered events. The solid lines show the theoretical calculation of
the polarization correlation parameter for an ideal Compton polarimeter by
Snyder et al.

9 Results

Figure 7 shows the measured polarization correlation R12(φ1, φ2) as a function
of the azimuth angle φ = φ2 − φ1 for data set II for categories 0 (top left), T
(bottom left), S (top right) and E (bottom right). We fit each distributions to
the function A[1+βcat

exp cos 2(φ2 − φ1)] and extract A and βcat
exp for each category.

We apply the same procedure to the other three data sets. Table 1 summa-
rizes our measurements for the four data sets evaluated for each category.
In addition, we list the quantum mechanical expectation value, the ratio of
observed-to-expected polarization correlation parameters and the scaled value
β̂ = βexp/βQM · βideal

QM where βideal
QM = 0.478 is the polarization correlation pa-

rameter for ideal Compton polarimeters expected for the representation of the
two-photon system by the quantum mechanical state vector |ψ〉. The latter
value will be used for comparison with other experiments. For all data sets
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0

T

S

E

Figure 7: :Simulated polarization correlation for data set II. Top left: For
category 0. Top right: For category T. Bottom left: For category S. Bottom
right: For category E.

and categories the quantum mechanical correlation parameter is determined
by βQM = ε1 · ε2 · qcorr where qcorr = 1.026 ± 0.023 is a correction factor. For
data set II βQM is evaluated also with method 2. The two methods yield the
same results. Note that for category E βexp/βQM is one. So for category E we

use β̂E = βE
exp/β

E
QM ·0.478, while for all other categories k we normalize to βT

QM

yielding β̂k = βk
exp/β

T
QM · 0.478.

Figure 8 shows our results for the four data sets and four categories scaled
to the polarization correlation parameter of an ideal Compton polarimeter. For
mixing of the first kind β̂ = 0.239 and for uncorrelated photons it is zero. The
average over the four data sets yields 〈β̂0〉 = 0.454±0.009, 〈β̂T〉 = 0.463±0.009,
〈β̂T〉 = 0.483 ± 0.010 and 〈β̂E〉 = 0.479 ± 0.011. For categories S and E,
the measurements are in excellent agreement with the quantum mechanical
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Table 1: Measured polarization correlation parameter βexp, the expected po-
larization correlation parameter βQM, their ratio and the computed value for

an ideal Compton polarimeter β̂ for all four data sets and all categories.

data set Category βexp βQM βexp/βQM β̂

I 0 0.374± 0.009 0.959± 0.03 0.458± 0.014

T 0.382± 0.01 0.390± 0.008 0.979± 0.033 0.468± 0.016

S 0.395± 0.011 1.013± 0.035 0.484± 0.017

E 0.418± 0.012 0.416± 0.009 1.005± 0.036 0.480± 0.017

II 0 0.370± 0.01 0.941± 0.03 0.450± 0.015

T 0.381± 0.011 0.393± 0.007 0.969± 0.033 0.463± 0.016

S 0.397± 0.012 1.01± 0.035 0.483± 0.017

E 0.415± 0.014 0.413± 0.009 1.005± 0.04 0.480± 0.19

III 0 0.315± 0.01 0.940± 0.041 0.449± 0.02

T 0.316± 0.011 0.335± 0.01 0.943± 0.043 0.451± 0.021

S 0.337± 0.013 1.006± 0.049 0.481± 0.023

E 0.368± 0.015 0.369± 0.011 0.997± 0.052 0.477± 0.025

IV 0 0.373± 0.019 0.969± 0.052 0.463± 0.025

T 0.377± 0.02 0.385± 0.008 0.979± 0.055 0.468± 0.026

S 0.387± 0.023 1.005± 0.062 0.480± 0.03

E 0.405± 0.026 0.405± 0.009 1.00± 0.068 0.478± 0.032
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Data set

average

Mixing of the first kind

Measured value

Corrected correlation
parameter

QM

Figure 8: Measured polarization correlation parameters for the four data sets
and four categories scaled to ideal Compton polarimeters. The last column
shows the average values.

expectation.
The average values 〈β̂0〉 and 〈β̂T〉 respectively are 5.0±1.9% and 3.2±2.0%

below the quantum mechanical expectation value. This systematic deviation
is caused by events that are scattered in other parts of the detector, which are
removed by the selection criteria in category S. Assuming the azimuth angle
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distribution for such events to be similar to that of multiple scattered events
we can use the estimate〈

βT
app

〉
'
(

1 + 2ñm

[
1− ε0m/ε0s

])
〈β0

βs
〉, (19)

where ñm is the amount of photons that are scattered a second time outside the
scatterer (ñm = 41%), 〈βs〉 = 0.483 is the quantum mechanical polarization
correlation parameter for single-scattered events and ε0m/ε

0
s = 0.37 is the ratio

of analyzing powers for multiple-scattered and single-scattered events. We

get
〈
βT

app

〉
= 0.459 ± 0.006, which is consistent with the average values 〈β̂0〉

and 〈β̂T〉. The selection criteria in categories S and E remove most of this
background. Note that for categories S and E the deviation from the quantum
mechanical expectation value are 1.0±2.0% and 0.2±2.3%, respectively. Thus,
mixing of the first kind [7] is clearly ruled out as well as a value of 0.478/

√
2 [3].

10 Comparison with other Experiments

Though the discrepancy between the results of Kasday [4] and Faraci [5] initi-
ated this work, we found two other experiments by Langhoff [9] and Bruno [8].
Table 2 list the parameters of the four experiments. Using the information
provided in the publications we simulated the polarization correlation in the
four experiments. Figure 10 shows the results in comparison to our results.
We have sorted them according to our four selection categories. The Faraci
experiments has not incorporated any timing requirements and energy selec-
tions except for a loose time requirement on four-fold coincidences whereas the
Kasday experiment applied similar selections as we did. The Bruno experi-
ment did not give any time requirements but just imposed requirements on the
energy sums, which varied slightly for the different data sets. The Langhoff
experiment applied time constraints and requirements of the energy detected
in the NaI detectors.

The final measurements of the Langhoff, Bruno and Kasday experiments
and the those adjusted by our simulations agree well with quantum mechanics
for categories S and E. With our simulation the results of the Faraci experi-
ment are consistent with quantum mechanics while their own corrections yield
values consistent with βQM/

√
2. Note that their corrections did not account

for multiple scattering effects.
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Table 2: Parameters used in other polarization correlation experiments.

Parameter/Experiment Faraci [5] Kasday [4] Bruno [8] Langhoff [9]

β+ source 22Na 64Cu 22Na 22Na, 64Cu

Absorber plexiglass brass Cu-plexiglass plexiglass-aluminum

collimator [Ω/4π] - 3.13× 10−4 1.54× 10−4 3.28× 10−4

Scatterer: cylindrical conical cylindrical cylindrical

Radius [cm] 1.27 0.319/0.956 1.0 1.0

Length [cm] 2.55 0.383 3.0 2.0

Opening angle - 9.46◦ - -

Detector: shield depth - 1.39 1,2 -

Nai crystal � [cm] 5.1 5.1 7.0 3.82

Length [cm] 5.1 5.1 7.0 2.55

Source-scatterer [cm] 5.5/5.5 15.8/15.8 10.0/10.0 25.0/25.0

Scatterer-detector [cm] 20.0 5.1 10 10

Average scattering angle 60◦, 80◦ 82◦ 60◦, 82◦, 98◦ 82◦

θ acceptance [FWHM] 5.6◦ 23.8◦ 11.7◦ 8.5◦

φ acceptance [FWHM] 6.0◦ 9.6◦ 11.4◦ 8.4◦

Coincidence times t2 [ns] - 21 - 5

t31, t32 [ns] - 95 - -

t4 [ns] 30 - - 30

S selection [keV] - 427, 595 434, 588 -

- - 427, 595 -

- - 413, 609 -

E selection [keV] - 256, 307 - 205, 320

- 307, 358 - -
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Figure 9: Measured polarization correlation parameters scaled to ideal Comp-
ton polarimeters of four experiments, Faraci (magenta points) [5], Kasday
(blue points) [4], Bruno (brown point) [8] and Langhoff (green points) [9] in
comparison to our results (red points). Open points show the measured values
without correction, stars show the results after corrections by the authors and
solid points depict the results with our corrections.

11 Test of Bell’s Inequality

Bell’s inequality states that

F (a, b, a′, b′) = |P (a, b)∓ P (a, b′)|+ |P (a′, b)∓ P (a′, b′)| ≤ 2 (20)
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Violation               

Bruno

This experiment

Faraci

Kasday

Langhoff

Optical experiments

Figure 10: Graphical presentation of the violation of Bell’s inequality in the
η − ε2 plane. In addition, the detection efficiencies and squares of analyzing
power are shown for the five experiments.

where P (a, b) = 〈A(a) ·B(b)〉. For a real experiment the quantum mechanical
correlation is

PQM(φ1, φ2) = 1− ∆Ω

4π
p2η{2− η[1− ε2 cos 2(φ2 − φ1)]} (21)

where p2 = N2/N0
2π
∆Ω

, ε is the analyzing power of a Compton polarimeter and
η is the detection efficiency. Using the values 2φ1 = π/4, 2φ′1 = 3π/4, 2φ2 = 0
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and 2φ′2 = −π/2 yields the inequality

FQM − 2 = 2
∆Ω

2π
p2η{η[1 + ε2

√
2]− 2} ≤ 2 (22)

So, we find violation if η[1 + ε2
√

2] > 2. However, for present experiments
η[1 + ε2

√
2] ≤ 1.68η � 2. Thus, there is no violation of Bell’s inequality since

both the analyzing power and efficiency of present experiments are too small.

12 Conclusions

We measured the polarization correlation of the two-photon system from positron-
electron annihilation. We varied the shape of the scatterer, scattering angle
and distance source-scatterer. We simulated the quantum mechanical expec-
tation value with a very sophisticated Monte Carlo program. All results are
in good agreement with the quantum mechanical expectation value. Further-
more, we simulated the QM expectation value of four other experiment. The
measurements either agree rather well or are consistent with the QM expec-
tation value. The discrepancy of the Faraci with the QM expectation value
is due to the neglect of multiple scattering, which reduces the polarization
correlation parameter and needs to be corrected for.
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