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Abstract 
Hyperstructure theory can overcome restrictions which ordinary algebraic 

structures have. A hyperproduct on non-square ordinary matrices can be defined 

by using the so called helix-hyperoperations. We define and study the helix-

hyperstructures on the representations and we extend our study up to Lie-Santilli 

theory by using ordinary fields. Therefore the related theory can be faced by 

defining the hyperproduct on the extended set of non square matrices. The 

obtained hyperstructure is an Hv-algebra or an Hv-Lie-alebra.  
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1.   Introduction. 

We deal with the largest class of hyperstructures called Hv-structures introduced 

in 1990 [23], [26], which satisfy the weak axioms where the non-empty intersection 

replaces the equality.   

Basic definitions:   

Definitions 1.1 In a set H equipped with a hyperoperation (which we abbreviate it by 

hope)  : HH  P(H),  we abbreviate by 

WASS  the  weak associativity:    (xy)zx(yz),  x,y,zH    and by  

COW  the  weak commutativity:     xyyx,  x,yH.   

The hyperstructure (H,) is called  Hv-semigroup  if it is WASS and is called  Hv-group  

if it is reproductive Hv-semigroup:  xH=Hx=H, xH.    

(R,+,) is called  Hv-ring  if (+) and () are WASS, the reproduction axiom is valid for 

(+) and  () is  weak distributive  with respect to (+):     

x(y+z)(xy+xz),    (x+y)z(xz+yz), x,y,zR. 

For more definitions, results and applications on Hv-structures, see books [26], [2], 

[8] and the survey papers [6], [25], [30]. An extreme class is the following [26]: An Hv-

structure is very thin iff all hopes are operations except one, with all hyperproducts 

singletons except only one, which is a subset of cardinality more than one. Therefore, in 

a very thin Hv-structure in a set H there exists a hope () and a pair (a,b)H
2
 for which 

ab=A, with cardA>1, and all the other products, with respect to any other hopes (so they 

are operations), are singletons. 
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The fundamental relations β* and γ* are defined, in Hv-groups and Hv-rings, 

respectively, as the smallest equivalences so that the quotient would be group and ring, 

respectively [22], [23], [26], [27], [28], [35]. The way to find the fundamental classes is 

given by analogous theorems to the following:  

Theorem 1.2 Let (H,) be an Hv-group and let us denote by U the set of all finite 

products of elements of H. We define the relation β in H as follows:  xβy  iff  {x,y}u  

where  uU.  Then the fundamental relation β* is the transitive closure of the relation β. 

The main point of the proof of this theorem is that β guaranties that the following 

is valid: Take two elements x,y such that {x,y}uU and any hyperproduct where one 

of these elements is used. Then, if this element is replaced by the other, the new 

hyperproduct is inside the same fundamental class where the first hyperproduct is. Thus, 

if the ‘hyperproducts’of the above β-classes are ‘products’, then, they are fundamental 

classes. Analogously for the γ in Hv-rings.   

An element is called single if its fundamental class is a singleton. 

Motivation for Hv-structures:  

We know that the quotient of a group with respect to an invariant subgroup is a group. 

Marty states that, the quotient of a group with respect to any subgroup is a hypergroup. 

Now, the quotient of a group with respect to any partition is an Hv-group. 

Definition 1.3 Let (H,), (H,) be Hv-semigroups defined on the same H. () is smaller 

than (), and () greater than (), iff there exists automorphism  

fAut(H,)  such that   xyf(xy), xH. 

Then (H,) contains (H,) and write   .  If (H,) is structure, then it is basic and (H,) 

is an Hb-structure. 

The Little Theorem [26]. Greater hopes of the ones which are WASS or COW, are also 

WASS and COW, respectively. 

The fundamental relations are used for general definitions of hyperstructures. 

Thus, to define the general Hv-field one uses the fundamental relation γ*:   

Definition 1.4 [23], [26], [27]. The Hv-ring (R,+,) is called Hv-field if the quotient R/γ* 

is a field. 

Let ω* be the kernel of the canonical map from R to R/γ*; then we call 

reproductive Hv-field any Hv-field  (R,+,)  if the following axiom is valid:     

x(R-ω*) = (R-ω*)x = R-ω*,  xR-ω*. 

From the above definition we introduced a new class [31],[38]: 

Definition 1.5 The Hv-semigroup (H,) is called h/v-group if the H/β* is a group.   

Similarly the h/v-rings, h/v-fields, h/v-modulus, h/v-vector spaces etc, are defined. 

The h/v-group is a generalization of the Hv-group since the reproductivity is not 

necessarily valid. Sometimes a kind of reproductivity of classes is valid, i.e. if H is 

partitioned into equivalence classes ζ(x), then the quotient is reproductive   

xζ(y)=ζ(xy)=ζ(x)y, xH [31].    
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An Hv-group is called cyclic [17], [26], if there is an element, called generator, 

which the powers have union the underline set, the minimal power with this property is 

the period of the generator. If there exists an element and a special power, the minimum 

one, is the underline set, then the Hv-group is called single-power cyclic.  

To compape classes we can see the small sets. The problem of enumeration and 

classification of Hv-structures, or of classes of them, is complicate in Hv-structures 

because we have great numbers. The partial order, introduced in Hv-structures [26], 

restrict the problem in finding the minimal, up to isomorphisms, Hv-structures. In this 

direction we have results recently by Bayon & Lygeros as the following [1], [13]: In sets 

with three elements: Up to isomorphism, there are 6.494 minimal Hv-groups. The 137 

are abelians; the 6.152 are cyclic. The number of Hv-groups with three elements, up to 

isomorphism, is 1.026.462. The 7.926 are abelians; 1.013.598 are cyclic. 16 are very 

thin. Abelian Hv-groups with 4 elements are, 8.028.299.905, the 7.995.884.377.  

Definitions 1.6 [25],[26], [38] Let (R,+,) be an Hv-ring, (M,+) be COW Hv-group and 

there exists an external hope   : RMP(M): (a,x)ax, such that, a,bR and 

x,yM  we have 

a(x+y)(ax+ay),     (a+b)x(ax+bx),     (ab)xa(bx), 

then M is called an Hv-module over R. In the case of an Hv-field F instead of Hv-ring R, 

then the Hv-vector space is defined. 

The fundamental relation ε* is defined to be the smallest equivalence such that the 

quotient M/ε* is a module (respectively, a vector space) over the fundamental ring R/γ* 

(resp. the fundamental field  F/γ*). The analogous theorem to Theorem 1.2, is: 

Theorem Let (M,+) be Hv-module over the Hv-ring R. Denote by U the set of all 

expressions consisting of finite hopes either on R and M or the external hope applied on 

finite sets of elements of R and M.  We define the relation ε in M as follows:  

xεy  iff   {x,y} u   where  uU. 

Then the relation ε* is the transitive closure of the relation ε.  

Definitions 1.7 [28], [29], [38]. Let (H,) be hypergroupoid. We remove hH, if we 

consider the restriction of () in the set H-{h}.  We say that hH absorbs hH if we 

replace h by h and h does not appear in the structure. We say that hH merges with 

hH, if we take as product of any xH by h, the union of the results of x with both h, h, 

and consider h and h as one class, with representative h, therefore the element h does 

not appeared in the hyperstructure. 

Let (H,) be an Hv-group, then, if an element h absorbs all elements of its own 

fundamental class then this element becomes a single in the new Hv-group.  

Definition 1.8 [35], [37] Let (L,+) be Hv-vector space over the field (F,+,), φ:FF/γ*, 

the canonical map and ωF={xF:φ(x)=0}, where 0 is the zero of the fundamental field 

F/γ*. Similarly, let ωL be the core of the canonical map φ: LL/ε* and denote by the 

same symbol 0 the zero of L/ε*. Consider the bracket (commutator) hope: 

[ , ] : LLP(L):  (x,y)[x,y] 

then L is an Hv-Lie algebra over F if the following axioms are satisfied: 
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(L1)   The bracket hope is bilinear, i.e. 

[λ1x1+λ2x2,y](λ1[x1,y]+λ2[x2,y])    

[x,λ1y1+λ2y](λ1[x,y1]+λ2[x,y2])  ,  x,x1,x2,y,y1,y2L and λ1,λ2F 

(L2)   [x,x]ωL  ,  xL 

(L3)   ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])ωL  ,  x,yL 

A well known and large class of hopes is given as follows [17],[21]: 

Definitions 1.9 Let (G,) be a groupoid, then for every subset PG, P, we define the 

following hopes, called P-hopes:   x,yG 

P: xPy= (xP)yx(Py),   

 Pr: xPry= (xy)Px(yP),     Pl: xPly= (Px)yP(xy). 

The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures. The usual case is for 

semigroup (G,), then xPy=(xP)yx(Py)=xPy and (G,P) is a semihypergroup but we do 

not know about (G,Pr) and (G,Pl). In some cases, depending on the choice of P, the 

(G,Pr) and (G,Pl) can be associative or WASS.  

A generalization of P-hopes is the following [9], [10]: Let (G,) be abelian group 

and P a subset of G with more than one elements. We define the hope P as follows: 

xPy   =       xPy = {xhy hP}    if   xe  and  ye 

                           xy                                  if   x=e   or  y=e 

we call this hope, Pe-hope. The hyperstructure (G,P) is an abelian Hv-group. 

A general definition of hopes, is the following [32], [35], [36], [37]:   

Definitions 1.20 Let H be a set with n operations (or hopes) 1,2,…,n  and one map 

(or multivalued map) f: HH, then n hopes 1,2,…,n on H are defined, called -hopes 

by putting 

xiy = {f(x)iy, xif(y)}, x,yH, i{1,2,…,n} 

or in case where i is hope or f is multivalued map we have 

xiy = (f(x)iy)(xif(y)), x,yH, i{1,2,…,n} 

Let (G,) groupoid and fi:GG, iI, set of maps on G. Take the map f:GP(G) such 

that f(x)={fi(x)iI}, call it the union of the fi(x). We call the union -hope (), on G if 

we consider the map f(x). An important case for a map f, is to take the union of this 

with the identity id. Thus, we consider the map ff(id), so f(x)={x,f(x)}, xG, which 

is called b--hope, we denote it by (), so we have 

xy = {xy, f(x)y, xf(y)}, x,yG. 

Remark If i is associative then i is WASS. If  contains the operation (), then it 

is b-operation. Moreover, if  f:GP(G) is multivalued then the b--hopes is defined by 

using the f(x)={x}f(x), xG. 
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Motivation for the definition of -hope is the derivative where only multiplication 

of functions can be used. Therefore, for functions s(x), t(x), we have st={st,st}, () is 

the derivative. 

Example. Consider all polynomials of first degree gi(x)=aix+bi. We have   

g1g2 = {a1a2x+a1b2, a1a2x+b1a2}, 

so it is a hope in the set of first degree polynomials. Moreover all polynomials x+c, 

where c be a constant, are units. 

In hyperstructures there is the uniting elements method. This is defined as follows 

[3], [26], [28]: Let G be a structure and d be a property, which is not valid, and d is 

described by a set of equations. Consider the partition in G for which it is put together, 

in the same class, every pair of elements that causes the non-validity of d. The quotient 

G/d is an Hv-structure. The quotient of G/d by β*, is a stricter structure (G/d)β* for 

which d is valid.  

  

2.   Matrix representations. 

Hv-structures are used in Representation (abbreviate by rep) Theory. Reps of Hv-

groups can be considered either by generalized permutations or by Hv-matrices [18], 

[20], [24], [25], [26], [38]. The reps by generalized permutations can be achieved by 

using left or right translations. We present here the hypermatrix rep in Hv-structures and 

there exist the analogous theory for the h/v-structures.  

Definitions 2.1 [20], [26] Hv-matrix is called a matrix with entries elements of an Hv-

ring or Hv-field. The hyperproduct of two Hv-matrices A=(aij) and B=(bij), of type mn 

and nr respectively, is defined, in the usual manner,  

AB = (aij)(bij) = { C= (cij)cijΣaikbkj }, 

and it is a set of mr Hv-matrices. The sum of products of elements of the Hv-field is the 

union of the sets obtained with all possible parentheses put on them, called n-ary circle 

hope on the hyperaddition.  

The hyperproduct of Hv-matrices does not nessesarily satisfy WASS. 

The problem of the Hv-matrix representations is the following: 

Definitions 2.2 Let (H,) be an Hv-group. Find an Hv-ring or an Hv-field (F,+,), a set 

MR={(aij)aijR} and a map     

T: H  MR: h  T(h)  such that  T(h1h2)T(h1)T(h2)  , h1,h2H. 

The map T is called Hv -matrix rep.    

If the  T(h1h2)T(h1)T(h2), h1,h2H    is valid, then T is called  inclusion rep.    

If  T(h1h2)=T(h1)T(h2)= {T(h)hh1h2}, h1,h2H, then T is called good rep and then 

an induced rep T* for the hypergroup algebra is obtained.  If T is one to one and good 

then it is a faithful rep. 

The problem of reps is complicated because the cardinality of the product of Hv-

matrices is very big. But it can be simplified in special cases such as the following: The 

Hv-matrices are over Hv-fields with scalars 0 and 1. The Hv-matrices are over very thin 
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Hv-fields. On 22 Hv-matrices, since the circle hope coincides with the hyperaddition. 

On Hv-fields which contain singles, then these act as absorbings.  

 The main theorem of reps is the following [20], [25], [26]:       

Theorem 2.3 A necessary condition in order to have an inclusion rep T of an Hv-group 

(H,) by nn Hv-matrices over the Hv-rind or Hv-field (F,+,) is the following: 

For all classes β*(x), xH there must exist elements aijH, i,j{1,...,n}  such that 

T(β*(a))   { A= (aij )aij γ*(aij), i,j{1,...,n} } 

So every inclusion rep  T:HMR: a T(a)=(aij)  induces a homomorphic rep T* of the 

group H/β* over the field F/γ* by setting  T*(β*(a))=[γ*(aij)], β*(a)H/β*,   where the 

γ*(aij)R/γ*  is the ij entry of the matrix T*(β*(a)).  T* is called fundamental induced 

rep of T. 

Denote  trφ(T(x)) = γ*(T(xii)) the fundamental trace, then the mapping 

XT : H  R/γ*: x XT (x) =  trφ (T(x)) = trT*(x) 

is called fundamental character.  There are several types of traces. 

Using several classes of Hv-structures one can face several reps [26], [29], [30], 

[38]: 

Definition 2.4 Let M=Mmn be a module of mn matrices over a ring R and take sets 

S={sk:kK}R,    Q={Qi:jJ}M,    P={Pi:iI}M. 

Define three hopes as follows 

S:  RM  P(M): (r,A)  rSA= {(rsk)A: kK} M 

Q+:  MM  P(M): (A,B)  AQ+B= {A+Qj+B: jJ} M 

P:  MM  P(M): (A,B)  APB= {AP
t
iB: iI} M 

Then (M,S,Q+,P) is a hyperalgebra over R called general matrix P-hyperalgebra. 

The hope P, which is a bilinear map, is a generalization of Rees’ operation where, 

instead of one sandwich matrix, a set of sandwich matrices is used. The hope P is strong 

associative and the inclusion distributivity with respect to addition of matrices 

AP(B+C)  APB+APC   A,B,C M 

is valid. Therefore, (M,+,P) defines a multiplicative hyperring on non-square matrices.  

In a similar way a generalization of this hyperalgebra can be defined considering 

an Hv-ring or an Hv-field instead of a ring and using Hv-matrices instead of matrices. 

Definition 2.5 Let A=(aij), B=(bij)Mmn, we call (A,B) a unitize pair of matrices if  

A
t
B=In, where In denotes the nn unit matrix. 

 The following theorem can be applied in the classical theory [37], [38]. 

Theorem 2.6 If  m<n, then there is no unitize pair. 



 7 

Proof. Suppose that n>m and that A
t
B= (cij),  cij=



m

k

kjikba
1

.  Denote by Am the block of 

the matrix A such that Am= (aij)Mmm, i.e. we take the matrix of the first m columns. 

Then we suppose that we have (Am)
t
Bm = Im, therefore we must have det(Am)0. Now, 

since n>m, we can consider the homogeneous system with respect to the ‘unknowns’  

b1n,b2n,…, bmn: 

cin= 


m

k

knikba
1

 = 0   for  i= 1,2,…,m. 

From which, since det(Am)0, we obtain that b1n=b2n=…=bmn= 0. Using this fact 

on the last equation, on the same unknowns,  cnn= 


m

k

knnkba
1

=1  we have  0=1, absurd. ■  

We recall some definitions from [18], [20], [25]. 

Definition 2.7 Let (G,) hypergroupoid, is called set of fundamental maps on G, a set of 

onto maps    

Q = { q: GGG: (x,y) onto
zzxy }. 

Any subset QsQ defines a hope (◦s) on G as follows   

x◦sy = { zz= q(x,y) for some  qQ } 

◦s  ,  and QsQos, where Qos is the set of fundamental maps with respect to (◦s).  A  

QaQ for which every QsQa has (◦s) associative (resp. WASS) is called associative 

(resp. WASS). A hypergroupoid (G,) is q-WASS if there exists an element qoQ which 

defines an associative operation (◦) in G.  Remark that for Hv-groups we have Q .   

If G is finite, cardG=G=n, it is q-WASS with associative qoQ. In the set Κ[G] of all 

formal linear combinations of elements of G with coefficients from a field Κ, we define 

an operation (+):   

(f1+f2)(g)=f1(g)+f2(g),gG,f1,f2Κ[G] 

and a hope (), the convolution,  

f1f2 = {  fq: fq(g) = f x f y
q x y g

1 2( ) ( )
( , )

 , qQ }. 

(K[G],+,) is a multiplicative Hv-ring where the inclusion distributivity is valid, which 

is called hypergroupoid Hv-algebra.   

For all qQ, gG, we have   

Q (| |)
( , )

xy
x y inGxG

 ,  1  |q
-1

(g)|  n
2
-n+1    and    

ginG

 |q
-1

(g)| = n
2
. 

The zero map f(x)=0 is a scalar element in K[G]. 

In the representation theory several constructions are used, some of them are the 

following [26], [28], [ 29], [30]: 

Constructions 2.8 Let (H,) be Hv-group, then for all () such that xy{x,y}, x,yH, 

the (H,,) is an Hv-ring. These Hv-rings are called associated to (H,) Hv-rings.   
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In rep theory of hypergroups, in sense of Marty where the equality is valid, there are 

three associated hyperrings (H,,) to (H,). The () is defined respectively, x,yH, by: 

 type a: xy  = {x,y},     type b:  xy = β*(x)  β*(y),       type c:  xy  =  H. 

In the above types the strong associativity and strong or inclusion distributivity, is valid.  

Let (H,) be HV-semigroup and {v1,…,vn}H=, an ordered set, where if vi<vj, 

when i<j.  Extend () in  Hn=H{v1,v2,…,vn } as follows: 

xvi = vix = vi ,   vivj = vjvi = vj ,  i<j   and    

vivi = H{v1,…,vi-1 }, xH,  i{1,2,…,n}.   

Then (Hn,) is an HV-group (Attach Elements Construction). We have (Hn,)/β*Z2 and  

vn  is single.  

Some open problems arising on the topic of rep theory of hypergroups, are:  

Open Problems. 

a.  Find standard Hv-rings or Hv-fields to represent all Hv-groups by Hv-matrices.  

b.  Find reps by Hv-matrices over standard finite Hv-rings analogous to Zn.  

c. Using matrices find a generalization of the ordinary multiplication of matrices which 

it could be used in Hv-rep theory (see the helix-hope [40]).  

d.  Find the ‘minimal’ hypermatrices corresponding to the minimal hopes. 

e.  Find reps of special classes of hypergroups and reduce these to minimal dimensions.  

 

3.   Helix-hopes and applications 

Recall some definitions from [40], [16], [11]: 

Definition 3.1 Let A=(aij)Mmn be an mn matrix and s,tN be natural numbers such 

that 1sm, 1tn. Then we define the characteristic-like map cst  from Mmn to Mst by 

corresponding to the matrix A, the matrix Acst=(aij) where 1is, 1jt. We call this 

map cut-projection of type st. In other words Acst is a matrix obtained from A by 

cutting the lines, with index greater than s, and columns, with index greater than t.  

We can use cut-projections on several types of matrices to define sums and 

products, however, in this case we have ordinary operations, not multivalued. 

In the same attitude we define hopes on any type of matrices:   

Definition 3.2 Let A=(aij)Mmn be an mn matrix and s,tN, such that 1sm, 1tn.  

We define the mod-like map st from Mmn to Mst by corresponding to A the matrix Ast= 

(aij) which has as entries the sets  

aij = {ai+κs,j+λt 1is, 1jt. and κ,λN, i+κsm,  j+λtn}. 

Thus we have the map 

st: Mmn  Mst: A  Ast = (aij). 
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We call this multivalued map helix-projection of type st. Thus Ast is a set of st-

matrices X=(xij) such that  xijaij, i,j. Obviously Amn=A. We may define helix-

projections on ‘matrices’ of which their entries are sets. 

Let A=(aij)Mmn be a matrix and s,tN such that 1sm, 1tn.  Then it is clear 

that we can apply the helix-projection first on the columns and then on the rows, the 

result is the same if we apply the helix-progection on both, rows and columns. Therefore 

we have  

(Asn)st =  (Amt)st =  Ast. 

Let A=(aij)Mmn be matrix and s,tN such that 1sm, 1tn. Then if Ast is not 

a set of matrices but one single matrix then we call A cut-helix matrix of type st.  In 

other words the matrix A is a helix matrix of type st, if   Acst= Ast. 

Definitions 3.3 (a) Let A=(aij)Mmn and B=(bij)Muv be matrices and s=min(m,u), 

t=min(n,u). We define a hope, called helix-addition or helix-sum, as follows: 

: MmnMuvP(Mst): (A,B)AB=Ast+Bst=(aij)+(bij) Mst, 

where 

(aij)+( bij)= {(cij)= (aij+bij) aijaij and bijbij}. 

(b) Let A=(aij)Mmn and B=(bij)Muv be matrices and s=min(n,u). We define a hope, 

called helix-multiplication or helix-product, as follows: 

: MmnMuv  P(Mmv): (A,B)AB=AmsBsv= (aij)(bij) Mmv, 

where 

(aij)(bij)= {( cij)=(aitbtj) aijaij and bijbij}. 

The the helix-addition is an external hope since it is defined on different sets and 

the result is also in different set. The commutativity is valid in the helix-addition. For 

the helix-multiplication we remark that we have AB=AmsBsv so we have either  

Ams=A or Bsv=B, that means that the helix-projection was applied only in one matrix 

and only in the rows or in the columns. If the appropriate matrices in the helix-sum and 

in the helix-product are cut-helix, then the result is singleton. 

Remark. In the set Mmn the addition of matrices is an ordinary operation, therefore we 

are interested only in the ‘product’. From the fact that the helix-product on non square 

matrices is defined, the definition of the Lie-bracket is immediate, therefore the helix-

Lie Algebra is defined [36], [37], as well. This algebra is an Hv-Lie Algebra where the 

fundamental relation ε* gives, by a quotient, a Lie algebra, from which a classification is 

obtained.  

In the following we restrict ourselves on the matrices Mmn where m<n. 

Obviously, we have analogous results in the case where m>n and for m=n we have the 

classical theory. In order to simplify the notation, since we have results on modm, we 

will use the following notation: 

Notation. For given κℕ-{0}, we denote by κ the remainder resulting from its division 

by m if the remainder is non zero, and κ=m if the remainder is zero. Thus a matrix 

A=(aκλ)Mmn,  m<n  is a cut-helix matrix if we have  aκλ=aκλ, κ,λℕ-{0}. 
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Moreover let us denote by Ic=(cκλ) the cut-helix unit matrix which the cut matrix is the 

unit matrix Im. Therefore, since Im=(δκλ), where δκλ is the Kronecker’s delta, we obtain 

that, κ,λ, we have  cκλ=δκλ. 

Proposition 3.4 For m<n in (Mmn,) the cut-helix unit matrix Ic=(cκλ), where cκλ=δκλ, is 

a left scalar unit and a right unit. It is the only one left scalar unit. 

Proof. Let A,BMmn then in the helix-multiplication, since m<n, we take helix 

projection of the matrix A, therefore, the result AB is singleton if the matrix A is a cut-

helix matrix of type mm. Moreover, in order to have AB=AmmB=B, the matrix 

Amm must be the unit matrix. Consequently, Ic=(cκλ), where  cκλ=δκλ, κ,λℕ-{0}, is 

necessarily the left scalar unit element. 

Now we remark that it is not possible to have the same case for the right matrix B, 

therefore we have only to prove that cut-helix unit matrix Ic is a right unit but it is not a 

scalar, consequently it is not unique.  

Let A=(auv)Mmn and consider the hyperproduct AIc. In the entry κλ of this 

hyperproduct there are sets, for all 1κm, 1λn , of the form 

aκscsλ =  aκsδsλ=  aκλ aκλ. 

Therefore AIcA, AMmn.  ■ 

In the following examples of the helix-hope, we denote Eij any type of matrices 

which have the ij-entry 1 and in all the other entries we have 0.  

Example 3.5 [38] Consider the 23 matrices of the following form,  

Aκ= E11+κE21+E22+E23,   Bκ= κE21+E22+E23,  κℕ.   

Then we obtain    AκAλ = {Aκ+λ, Aλ+1, Βκ+λ, Βλ+1} 

Similarly, we have    ΒκAλ = {Βκ+λ, Βλ+1},    AκΒλ = Βλ = ΒκΒλ. 

Thus the set {Aκ,Βλκ,λℕ} becomes an Hv-semigroup which is not COW 

because for  κλ we have BκΒλ = Βλ  Βκ =ΒλΒκ,  however    

(AκAλ)(AλAκ) = {Aκ+λ, Βκ+λ}, κ,λℕ. 

All elements Βλ are right absorbing and Β1 is a left scalar element, because  B1Aλ=Bλ+1 

and B1Bλ=Bλ. The element A0 is a unit. 

Example 3.6 Consider the 23 matrices of the forms,  

Aκλ = E11+E13+κE21+E22+λE23, κ,λℤ.   

Then we obtain   AκλAst = {Aκ+s,κ+t, Aκ+s,λ+t, Aλ+s,κ+t, Aλ+s,λ+t}. 

Moreover     AstAκλ={Aκ+s,λ+s,Aκ+s,λ+t,Aκ+t,λ+s,Aκ+t,λ+t}, so  

AκλAstAstAκλ={Aκ+s,λ+t}, thus () is COW. 

The helix multiplication () is associative. 

Example 3.7 Consider all traceless matrices A=(aij)M23, in the sence that a11+ a22=0. 

In this case, the cardinality of the helix-product of any two matrices is 1, or 2
3
, or 2

6
.  

These correspond to the cases:  a11=a13 and a21=a23, or only a11=a13 either only a21=a23, 
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or if there is no restriction, respectively. For the Lie-bracket of two traceless matrices 

the corresponding cardinalities are up to 1, or 2
6
, or 2

12
, respectively. We remark that, 

from the definition of the helix-projection, the initial 22, block guaranties that in the 

result there exists at least one traceless matrix.  

From this example it is obvious the following:  

Theorem 3.8 The Lie-bracket of any two traceless matrices A=(aij), B=(bij)Mmn, 

m<n, contain at least one traceless matrix.  

During last years hyperstructures there is a variety of applications in mathematics 

and in many other sciences. The hyperstructures theory can now be widely applicable in 

industry and production, too. In several books and papers [2], [4], [5], [7], [8], [10], 

[12], [19], [26], [33], [39] one can find numerous applications.  

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic 

Mechanics problems. The original theory is reconstructed such as to admit the new 

matrix as left and right unit. The isofields needed in this theory correspond into the 

hyperstructures were introduced by Santilli and Vougiouklis in 1996 and they are called 

e-hyperfields [9], [14], [15], [33], [36]. The Hv-fields can give e-hyperfields which can 

be used in the isotopy theory for applications.  

Definitions 3.9 A hyperstructure (H,) which contain a unique scalar unit e, is called e-

hyperstructure, where we assume that x, there exists an inverse x
-1

, so  exx-1x
-1x.  

A hyperstructure (F,+,), where (+) is an operation and () is a hope, is called e-

hyperfield if the following are valid:   

(F,+) is an abelian group with the additive unit 0,      () is WASS,   

() is weak distributive with respect to (+),    0 is absorbing: 0x=x0=0, xF,   

exist a multiplicative scalar unit 1, i.e. 1x=x1=x, xF,   

xF there exists a unique inverse x
-1

, such that 1xx-1x
-1x.  

The elements of an e-hyperfield are called e-hypernumbers. In the case that the 

relation: 1=xx-1
=x

-1x, is valid, then we say that we have a strong e-hyperfield.  

A general construction based on the partial ordering of the Hv-structures:   

Construction 3.10 [6], [36] The Main e-Construction. Given a group (G,), where e is 

the unit, then we define in G, a large number of hopes () by extended (), as follows:   

xy = {xy, g1, g2,…}, x,yG-{e}, and g1, g2,…G-{e} 

Then (G,) becomes an Hv-group, in fact is Hb-group which contains the (G,). The Hv-

group (G,) is an e-hypergroup. Moreover, if x,y such that xy=e, so we have xy=xy, 

then (G,) becomes a strong e-hypergroup.  

An application combining hyperstructures and fuzzy theory, is to replace the scale 

of Likert in questionnaires by the bar of Vougiouklis & Vougiouklis [41]:  

Definition 3.11 In every question substitute the Likert scale with ‘the bar’ whose poles 

are defined with ‘0’ on the left end, and ‘1’ on the right end: 

              0                    1 
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The subjects/participants are asked instead of deciding and checking a specific grade 

on the scale, to cut the bar at any point they feel expresses their answer to the question.  

The use of the bar of Vougiouklis & Vougiouklis instead of a scale of Likert has 

several advantages during both the filling-in and the research processing [41]. The final 

suggested length of the bar, according to the Golden Ratio, is 6.2cm.  
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