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CHAPTER 1

ISOALGEBRAIC STRUCTURES

1.1 : STATEMENT OF THE PROBLEM

As well known, the discovery of the mathematician Sophus Lie
about one century ago, today called Lie’s theory, has a wide
range of applications in various branches of contemporary
physics and mathematics.

Lie groups found their way into physics even before
the development of the quantum theory through their finite
‘and infinite dimentional matrix representations. They were
useful for the description of pseudo-Riemannian, (locally)
--homogeneous symmetric spaces, being used in particular in
gedmetric theories of gravitations. But Lie groups were
virtually forced into physics by the development of the
modern quantum theory in 1925-1926. In this theory, physi-
cal observables appear through their hermitian matrix repre-
sentatives, whereas processes producing transformations are
described by their unitary or antiunitary matrix repre-
sentations. Operators that close under commutation belong to
a finite dimensional Lie algebra ; transformation processes
described by a finite number of continuous parameters belong
to a Lie group.



The importance of Lie algebras and Lie groups
(Jacobson 1962a, Gilmore 1974a, Barut 1977a),for mathema-
tics and for physics has also become increasingly evident in
recent years. In fact, Lie’s theory remains a powerful tool
for studing differential equations, special functions,
pertubation theory, differential geometry and other fields.

Lie’s theory often enters into physics either through
the presence of exact kinematical symmetries or through the
use of idealized ‘dynamical models having symmetry greater
than that present in the real world. These exact kinematical
symmetries include rotational, translational and Galilean or
Lorentz invariance, as well as symetries arising from the
use of canonical formalism in both classical and quantum
mechanics. Lie’s theory finds applications not only in
elementary particle physics and nuclear physics, but also
in such diverse fields as continuum mechanics, solid state
physics, cosmology and control theory.

A generalization of Lie’s theory was discovered in
1978 by the theoretical physicist Ruggero Maria Santilli
(1978a) under the original name of Lie-isotopic theory and
subsequantly called Lie-Santilli theory, (see Aringazin,
Jannussis et al (1991), Kadeisvili (1992), and quoted refe-
rences). The word "isotopic" comes from the greek words
"100¢ vono¢", which mean "the same place", that is the same
- configuration. The .primary aim of the new theory is to gene-
ralized the conventional Lie theory in such a way to be
effective for the treatment of nonlocal, (integral) and non-
lagrangian , (nonhamiltonian) physical problems, where the
conventional theory fails to be applicable, while preserving
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the original Lie axioms.

The central point is the generalization of the
conventional unit of every algebraic, analytic and geome-
tric structure (such as field, metric space, vector space,
algebra, etc) into a new unit 1 called isotopic unit or
isounit, under the condition of preserving the original
topological properties of I, in order to qualify as an
isotopy. The resulting new mathematical structures include
the old ones as special cases. The replacement of the old
unit I by the isounit 1 is called isotopic 1lifting. The
methods for the construction of the generalized formulations
are known under the generic name of isotopies.

- The main idea of the isotopies is that of identifying
the ultimate geometric properties and axioms of the theory
considered, and realizing them in their most general
possible nonlinear, nonlocal and noncanonical way. This
generally can be done via an infinite numbers of possible
isotopies.

‘ The conventional Lie theory has been developed in
both mathematical and physical literatures with respect to
the simplest conceivable unit, say I=diag(1,1,...1), and
the simplest conceivable product AB-BA, where AB is the
trivial associative product, say, of vector fields or
matrices.

Prof. Santilli’s generalized formulation of Lie’s
theory 1is constructed with respect to the most general
possible unit ?, in which case the Lie product assumes less
trivial forms, such as A*B-B+*A where A*B is still associa-



tive but of the more general type A*B=ATB, where T is fixed,
nonsingular and such that I=Tl. In the most general case
the isounit 1 can possess a nonlinear and nonlocal
dependence on time t, coordinates r, their derivatives of
arbitrary order P,¥, as well as any other needed quantity

A A
I=1(t,r,t,F...) (1.1.1)

In any case the isounit ? must verify certain properties. As
a first example, the primary properties of the conventio-
nal unit I are those of being nowhere singular, real valued
and symmetric. The lifting I——ef must then be done in such a
way that the isounit f is nowhere null, to be everywhere
invertible in the considered region of the local variables,
and hermitean.

As we shall see, the assumption of ? as the gene-
ralized unit of the theory has nontrivial mathematical
implications, in as much as it implies the generalization of
each and every notion used in contemporary mathematics, such
as : field, metric space, Lie algebras, symplectic geometry,
affine geometry, Riemannian geometry, etc. A step-by-step
generalization of Lie’s theory is then consequential.

In this way Santilli generalized (1978a) the envelo-
ping associative algebras, Lie’s first, second and third
theorems and the conventional notion of Lie group into forms
compatible with the most general possible unit 1. Additional
subsequent studies on the isotopies of Lie’s theory can be
found in Santilli, (1978b; 1979; 1982a; 1979c¢,1982c; 1983a;



1983e; 1985a,b; 1988a,b,c,d; 1989a,b,c,d; 1983b; 1983c¢;
1985a,b; 1988a,b,c,d; 1989a,b,c,d; 1991a,be,f and the
recent monographs 1991c,d).

Under the condition that the old unit I is contained
as a particular case of the generalized unit f, the Lie-
isotopic theory becomes a covering of the conventional one,
in the sense of being formulated on stucturaly more general
foundations, while admitting the conventional formulation as
a particular trivial case.

Physically, the isounit (1.1.1) has equally far
reaching implications, in as much as it requires a necessary
generalization of conventional space-time symmetries and,
-consequently, of  contemporary  relativities,{Santilli
1991c,d).

The basic notions of isostfuctures and their applica-
tions are contained in the chapters I and II. In the third
chapter the isomanifolds are studied. The isotensor algebra
over an isomanifold is contained in the fourth chapter. The
fifth chapter includes the isoexterior algebra over an
isomanifolds. The isomapping between two isomanifolds is
included in the sixth paragraph. The isogroups and their
associated Llie-isoalgebras are contained in the seventh
chapter. The eighth paragraph include the isoconections on
an isomanifold. The last chapter contains Riemannian
isometric on an isomanifold.



1.2 ISOGROUPS

DEFINITION 1.2.1 : Let A be a set with elements o,B,y,....
An algebraic composition law on A is a rule, which assigns
to any ordered pair (a,B) an element c of A. Thus, a compo-
sition law on A4 is a map :

f:AA ——— A (1.2.1a)

f: (a,) — f{a,B)=c (1.2.1b)
Instead of writing f(a,b) we use a symbol, such as -, o, for
denoting the composition law and we write aob=c. A set A4

equiped with a composition law is called algebraic structure
or algebraic system and is denoted by (4.-)

DEFINITION 1.2.2 : A group is an algebraic system (6.-),
where the internal composition law is associative, there

exists a unit element e, and every element a possesses an
inverve a°!, that is :

i) (va,B,v<6) [ (ooB)oy-oo(poy) | (1.2.23)
ii) (3ees)(vues)[ aee=e-Q=a ] (1.2.2b)
iii) (VaeG)(Ba'leG)[ acal=atoame ] (1.2.2¢)

If 6 is a group with the additional property :



iv) (Va,beG)[ asb=bea ] (1.2.2d)

then the group & is called commutative group or Abelian
group.

If I is a subset of & and obeys the group axioms (i),
(ii), and (iii), then I' is called a subgroup of &.

DEFINITION 1.2.3 : Amap f : 6——— G’ between two groups
{G,°) and (G',o0) is called homomorphism, if the following
property holds :

(Va,beG)[ £(asb)=f(a)of (b) ] (1.2.3)

Thus a homomorphism "carries" the composition law < on 6§ to
the composition law o on &/. Homomorphisms of groups are
well visualized in some important aspects with the help of
two concepts, the image Im(f) and the kernel Ker(f) of
the homeomorphism.

DEFINITION 1.2.4 : If f : 6——— 6 1is a group homo-
morphism, then we define :

a) Im(f) = { f(a) / ae6 } . (1.2.4)

b) Ker(f) = { aeG / f(a)=e’eG } (1.2.5)

It is well known that Im(f) is a subgroup of &< and Ker(f)



is a subgroup of 6.

DEFINITION 1.2.5 : A homomorphism f between two groups &
and G- is called isomorphism if f is bijective. In the case
where 6=6- an homomorphism f is called endomorphism and an
isomorphism is called automorphisa.

DEFINITION 1.2.6 : Let (G,°) be a group with unit element e.
We define as an “isogroup" 3 an isotope of the group &
(Santilli, 1978a) equipped now with a new composition law,
denoted by * and with a new unit i, which will be called
1soun1t, (which does not need to belong to G), so that the
pair (G *} verifies all the propertles to have the group
structure.

Thus an isogroup is a group by construction. A way to
define the new composition law is the following :
A
Firstly, we reconstruct the elements of the group 6 as

63q —— 3 = u? (1.2.6)

where the isounit ? is defined with the help of an
invertible element T ?=T*, called isotopic element,
(fixed or not). The new composition law is defined by
(Santilli, loc. cit) :

(vG,ﬁe’s‘)[ a+B = aT ] (1.2.7)



. ,

It can be proved easily, that G, with the above internal
A

composition, can become a group with unit I.

Example. We may consider the group (R,.) of real numbers
with internal composition law given by the usual product. As
isounit we consider the imaginary unit i which of course,
does not belong to R, and construct the set :

A A A
R = { a=al=ai / aeR } (1.2.8)

that is, the set of imaginary numbers. On this set we define
a new product, denoted by *, via an invertible element T,
A
where T=I"1=-%-=-i, as follows :
A A A A A A A . ] . ) A A
(va,Bef) | o-Be(al)T(p])-(a1) (-1) (B1)-opi-pi- o' ]
(1.2.9)

It is easy to check that the set of imaginary numbers is
A

close under this new product and the pair (R,*) has the

group structure.

The notions of isosubgroup, isomorphism, iso-
isomorphism, etc..can be defined in a similar way as above.



1.3 : ISORINGS :

Groups are algebraic systems with one internal compo-
sition law. More complicated (and hence, richer) systems are
obtained if we introduce a second internal composition law,
which is related to the first.

DEFINITION 1.3.1 : We recall that a ring R(+.-) is an Abe-
lian group (R,+) with identity element e equipped with a

second internal composition law, verifying the properties of
associativity and of distributivity over the first law :

(va,B,veR) | (a-B)-y-a- (§+) ] (1.3.1a)

(va,B.yeR) | (@48)-y=(a-y)+(a-y) ] (1.3.1b)
If, in addition to the above properties, we have :

(va,seR)[ a-B=B-a ] (1.3.1c)

the ring R is called commutative ring.
If there exists a unit element 1 for the latter law,

(BleR)(VueR)[ a.1=1.0=a ] (1.3.1d)
then the ring R is called a ring with unit.
DEFINITION 1.3.2 : Amap f : R ——— R between two rings

R(+.+) and R’ (o.o) is called homomorphism if it preserves

10



both composition laws, i.e, if

(va,BR) | F(a+B)-F(a)of(B) A Fla-B)=F(a)oF(B) |
(1.3.4)

DEFINITION 1.3.3 : A homomorphism f between two rings R and
R+ 1is called isomorphisa if f is bijective. In the case
where R=R:, a homomorphism f is called endomorphism and an
isomorphism is called automorphism.

DEFINITION 1.3.4 : If f : R———— R is a ring homo-
morphism, then we define : :

i) Im(f) = { fa) / aeR }

ii) Ker(f) = { aeR / f(a)=e’eR }

where e is the identity element of the ring R-.

DEFINITION 1.3.5 : Let (R,+,+) be a ring with unit 1. We
define as a "isoring" R an isotope of the ring R, which is
the same set as R but equipped now with a new second
internal composition law, denoted by * and with an isounit
?, so that the triple (ﬁ,+,*) has the structure of a ring.

11



Note that the isotopy R — R’ is solely referred
to the second composition law (which is often called multi-
- plication), and not to the first one (which is often called
addition). A more general notion of isotopy may include both
the composition law.

In a similar way , as in the case of a group, we can
define the notions of isosubring, isohomomorphism, isoiso-
morphism, between two rings, etc.

1.4 ISOFIELDS

DEFINITION 1.4.1 : We recall that a field F(+.-) is a
commutative ring with unit where every element (except
zero), is invertible. More precisely a field F(+.:) is :

1) an abelian group with respect to an internal ope-
ration, which is usally denoted with + and called addition
and

2) is equipped with a second internal operation,
denoted with - and called multiplication, so that the
following rules hold :

1) (vo,B,veF) o(By)=(ap)v] (1.4.1a)
i) (31eF)(vaeF) {01=1q=a] (1.4.1b)
iii) (VaeIF)(EIu'leﬂ-')[ aa~'=ata=1 ] (1.4.1c)

12



iv) (vo,BeF) [uB=Ba] (1.4.1d)

v) (Va,B,yeF)[u(B+y)=uB+uv] (1.4.1e}

In the following we shall dencte a field for brevity with F
instead of F(+,+) and assume all fields, unless otherwise
stated, of characteristics zero(*J, so as to avoid fields
with an axiomatic structure different than that currently
used in applied physics.

The sets of real numbers R, complex numbers ¢
constitute fields with respect to the conventional sum and
multiplication. However, the next more complex structure,
the quaternions numbers ©, does not constitute a field
according to Definition 1.4.1, because we lose the property
of commutativity. In going now from the quaternions to the
next case of Caley numbers we also lose the associativity.

It should be noted, however, that the notion of fields
is also defined without the condition of commutativity, in
which case the gquaternions are indeed field (see, e.g.,
Albert 1948).

DEFINITION 1.4.2 : tet F be a field with identities elements

0 and 1 with respect to addition and multiplication respe-
A

ctively. We define as an "isotope" F of the field F with

(*) A field F is said to have characteristic p if there exists

a least positive integer p such that pa = a+a+...+a = 0 vaoeF.
p times

13



respect to the multiplication (Santilli 1981b, Myung and
Santilli 1982b), the abelian group (F,+) equipped with a new
multiplication o*f and a new multiplicative unit f, called
"multiplicative isounit", which verifies all properties for
F to be a field.

Thus, an isofield is a field by construction. The basic
isofields are the real isofields ﬁ, i.e, the infinitely
possible isotopes R of the field of real numbers R, which
can be symbolically written as :

A A A A A
R = { n / n=nl, ner , I20 } (1.4.2)

A
and their elements n are called isonumbers. From definition
1.4.1 it is easy to see that the sum of two isonumbers is
the conventional one

A A A

n +n,= (n1 + nz)I (1.4.3)

To identify the appropriate isoproduct, we have to recall

that the isounit i must be the right and left isounit of ﬁ.

This can be done exactly in the same way as in the case of

isogroups, if we interpret ? as the inverse of an element T,

called "isotopic element”.

1-1 (1.4.4)

and define the isoproduct as :

A A A A -1 -1 ' -1 A

n*n, = an n, = (an )T(nzT ) = "1"2T =nn,
(1.4.5)

14



Then
Tn=nml=n vner (1.4.6)
as desired.

Note that the isotopic element T need not be
necessarily an element of the original field R, since it can
be an integra-differential operator. As we shall see, this
feature is of fundamental relevance for the applications of
the isotopic theory.

Note also that the lifting I — f does not imply a
change in the numbers used in a given theory. This can be
seen in various ways, e.g., from the fact that the isopro-

A
duct of an isonumber n times a quantity Q coincides with
the conventional product :

nQ = (nT1)TQ = nQ (1.4.7)

Note finelly, from the arbitraryness of the isotopic
element T in isoproduct (1.4.5), that the field of real
numbers R admits an infinite number of different isotopies.

Another field of basic physical relevance is the
complex isofield C:

A A A A A
C = { c [/ c=cl , cec, I¢0 } (1.4.8)

which plays a fundamental role in the operator formulation
of the isotopies of this monograph.
An 1important property of the notion of isofield is

15



that of permitting the unification of all possible fields

(of characteristic zero) into one single, abstract field,
A

say, F. This unification can be expressed via the following

PROPOSITION 1.4.1 : The infinitely possible isotopies ﬁ of
the field of real numbers R contain, as particular cases,
all possible fields of characteristics zero (Santilli
199]a).

PROOF : Let R =R1 be the field of real numbers with the
ordinary unit 1. The field of complex numbers € is an
isotope of R because it can be written as the axiom-
preserving tensorial product

A

R =RIeRl, , 1-i (1.4.9)

(or depending on the viewpoint at hand, as the direct sum

C= m Rl@mf ), where 1 is the conventional imaginary un1t In

this case the isounit is the tensorial product I lal

while generic elements have the stucture n=aeB8, a,BeR, so c
T = (aop)(lel) - aleail - a+ip .

Another approach to the complex field as an isotope
of the real numbers is to introduce a variable isounit of
the form Bf, peR and f= 1@?1. In this way every complex
number ¢ can be written as :

= al = a(lel ) = ceapi = a+api (1.4.10)

16



In turn, by relaxing the commutativity condition, the
field of quaternions @ is an isotope of € and therefore of
R, because it can be written as the tensorial product :

A A ‘ A
e=c-R =cl (1.4.11)

A A A .2 e e s . ,
where Iz=1®12, 12=J sy J=-1 , and ij=-ji=k. Using this
notation we have :

A A A . .
0sq = ch = c{lelz) = cllaczl2 = (a+iB)e(y+jd) =

= ay+Byi+adj+Bdij = oy+Pyi+adj+Bok = a’+p i+y j+5°'k = qed
(1.4.12)

Note that the isotopy F —— F to be used in this
monograph is solely referred to the multiplication, and not
to the addition. Needless to say, a more general notion of
isotopy including both sum and myltiplication as well as
internal and external operations, is conceivable, but its
study is left for brevity to the interested reader.

1.5 TISOVECTORSPACES AND ISOTRANSFORMATIONS

Let (V,+) be an additive abelian group of elements
X,¥,Z,...and F a commutative field of elements a,B,y,...Let
us introduce an external operation Fx¥ —— V by defining
the multiplicative action of F on V. This means that to
every pair (a,x) with aeF and xeV we assign a composite aex
(to be denoted in the sequel simply by the juxtaposition ax)

17



such that the following properties hold :

(Vu,BeF)(VXEV)[ a(Bx)=(aB)x ] (1.5.1a)

(anV)[ ex=x ] e is the additive indentity

element of F, (1.5.1b)
(vaeF)(Vx,er)[ a(x+y)=ax+ay ] (1.5.1c)
(VO,BEF)(VXEV)[ (a+B) X=ax+BX ] (1.5.1d)

DEFINITION 1.5.1 :The algebraic system so defined is called
a linear space or vector space over the field F, and denoted
by (V,F,+,o) or simply V.

DEFINITION 1.5.2 : A subset U of a vector space V is called
vector subspace if it is a subsystem which obeys the axioms
of linear space in itself, that is U is closed under vector
addition and scalar multiplication.

DEFINITION 1.5.3 : Let V and U two vector spaces over the
same field F (not necessarily of the same dimension). A map
f : V— U is called linear map or linear transforma-
tion if the following property is holds :

(vo,ser)(vx,yew[ flax+By) = af(x)+BF(y) ]

18



In case V=U, the map f is called operator.
The notions of Ker(f) and Im(f) are defined by the relations

Ker(f) = [ xeV / £(x)=0el ]
In(f) = [ fF(x)eU / xeV ]

It easy proved that Ker(f) Im(f) are subspaces of V and U
respectively.

From definition 1.5.1 one can see that we cannot
construct an isotopy of a linear space without first
introducing an isotopy of the field, because the multiplica-
tive unit I of the space is that of the underlying field.

DEFINITION 1.5.4 Let V be a linear space over the field F
and ? an isofield of F. We define as "isospace" or
"isovector space" (Santilli 1983a) the linear space G,
(which is the same set as V), over the isofield F equipped
with a new external operation o which is such to verify all
the axioms for a linear space, i.e,

(vG,ﬁeE)(vxeﬁ)[ do(Box) = (a*B)ex ] (1.5.2a)
(vﬁeﬁ)(vx,yeﬁ)[ do(x+y) = Gox+aoy ] (1.5.2b)
(va,ﬁeﬁ)(Vxeﬁ)[ (a+B)ox = Qox+Box ] (1.5.2¢)
(VXEV)[ Tox = xol = x ] (1.5.2d)

19



Note the lifting of the field, but the elements of
the linear space remain unchanged. This is a property of
important physical consequence, inasmuch as it is at the
foundation of the preservation of the conventional
generators of Lie algebras under isotopies. In turn, this
implies the preservation of conventional conservation laws
under lifting. From the invariance of the elements
X,¥,Z,... of the space under isotopy the following proposi-
tion is obtain :

PROPOSITION 1.5.1 : The basis of a linear space V remains
unchanged under isotopy.

Let V and V/ be two linear spaces over the same field
F. A linear transformation is a map :
f:V———sV
which preserves both the sum and the scalar multiplication,
i.e. :

(Vx,er)(VueF)[ Flxty) = FOX)+F(y) A flax) = of(x) ]
(1.5.3)

or equivalently :
(Vx,er)(Va,BeF)[ Flax+By) = af(x)+BF(y) ] (1.5.4)

DEFINITION 1.5.5 : An isolinear transformation is an isomap :
A

A A
f:V——V
A A
between two isolinear vector spaces V and V- over the same

20



. .
isofield F which preserves the sum and isomultiplication,
1.e., which is such that (Santilli 1991a)

(vx,yeV) (vS,BeE)[ FaxeBry) = af(x)+8+F(y) ] (1.5.5)

In physical applications, the spaces V and V: are
usually assumed to coincide, V=V/, in which case the linear
map f is an endomorphism, (usually called linear operator),
and is realized by the familiar right modular-associative
type :

xt = f(x) = Ax vxeV (1.5.6)
where A is independent from the local variables and the
product Ax is associative. A similar notion would evidently
result for a left modular associative action : x’=xA.

The transformation is nonlinear when it has the form :

X’ = A(X)X (1.5.7)

i.e., when A has an explicit dependence in the local
coordinates x. If the x-dependence is of integral type, we
shall say that the above transformation is nonlocal.

Assume now that the isospaces G and G' coincide : Gs
Gf. Then the isotransformation ? can be realized through the

right modular, associative isotopic action :
xt = f(x) = Ax = ATx  T-fixed  (1.5.8)

where the action A*x is still associative. A similar notion
would result for a left, modular-isotopic action :

x: = F(x) = x*A =xTA (1.5.9)
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REMARK 1.5.1 : When a transformation f is realized by the
A
element A, the isotransformation f is realized by the element
A A A
AT, where T'=1 {I-isounit of the isofield F).

DEFINITION 1.5.6 : An isotransformation ? is said to be
isolinear and/or isolocal when the element A , (that is f) is
conventionally linear and/or local, respectively, i.e., when
all nonlinear and/or nonlocal terms are embedded in the
isotopic element T.

A number of properties of isotransformations can be
easily proved. At the level of abstract axioms, all
distinctions between the ordinary multiplication xy and the
isotopic one x*y (transformations Ax and A*x) cease to
exist, in which case linear and isclinear spaces (linear and
isolinear transformations) coincide.

However, the isbtopies are nontrivial, as illustrated
by a number of properties. First, one readily prove the
following :

PROPOSITION 1.5.2 : Conventional linear transformations f on
A
an isolinear space V violate the conditions of isolinearity.

Explicitly stated, the lifting of the Euclidean
spaces and of the Minkowski spaces inteo their corresponding
isospaces requires the necessary abandonment, for
mathematical consistency, of the Galilean and Lorentz
transformations in favor of suitable isolinear and isolocal

22



generalizations.

PROPOSITION 1.5.3 : A isotransformation ? which is isolinear
A

and isolocal in an isospace V is generally nonlinear and

nonlocal in V.

In fact, when explicitly written out, isotransformations
(1.5.8) become :
X+ = ATx = AT(t,x,%,%,...)x {1.5.10)

the nonlinearity and nonlocality of the transformations then
becomes evidently dependent on the assumed explicitly form
of the isotopic element T.

Another simple but important property is the
following :

PROPOSITION 1.5.4 : Under sufficient topological conditions,
nonlinear transformations on a linear vector space V can
always be cast into an equivalent isolinear form on an
isospace V.

In different terms, given a map f in V which violates
the conditions of 11near1ty and/or of locallty, there always
exist an isotope V of V under which f is isolinear and/or
isolocal. Explicitly, nonlinear transformations (6.1.2) can
always be written :

= A{x)x = BT{x)x = B*x (1.5.11)

i.e., for A=BT, with B linear.
The above property has important mathematical and
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physical implications. On mathematical grounds we learn that
nonlinearity and nonlocality are mathematical characteri-
stics without an essential axiomatic structure, because they
can be made to diasappear at the abstract Ievel via isotonic
Iiftings.

In turn, this feature is not a mere mathamatical
curiosity, but has a number of possible mathematical
applications. As an example, if properly developed, the
isotopies of the current theory of linear equations may be
assistance in solving equivalent nonlinear systems.

On physical grounds, the first application of the
notions presented in this section is that of rendering more
manageable the formulation and treatment of nonlinear nad
nonlocal generalizations of Galilean or Lorentzian theories
which if treated conventionally, are of a notoriously
difficult (if not impossible) treatment.

The physical implications are however deeper than
that. Recall that the electromagnetic interactions have
been fully treatable with linear and local theories, such as
the symmetry under the conventional Lorentz transformations.

One of the central open problem of contemporary
theoretical physics (as well as of applied mathematics) is
the still unanswered, historical legacy by Fermi (1949) and
other Founders of contemporary physics on the ultimate
nonlinearity and nonlocality of the strong interactions.

All attempts conducted until now in achieving a
nonlinear and nonlocal extension of current theories via
conventional techniques have met with rather serious problem
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of mathematical consistency and/or physical effectiveness,
as well known.

Because of their simplicity, the isotopies appear to
have all the necessary ingredients for the achievement of a
mathematically consistent and physically effective nonlinear
and nonlocal generalization of the current theories for the
electromagnetic interactions via the mere generalization of.
the trivial wunity I into the isounit ?, and the
consequential isotopic generalization of the various notions
of field, spaces, transformations, etc.

The mathematical consistency of the isotopies is
self-evident from their simplicity. Their physical effecti-
veness is due to the fact that, given a linear theory, say a
Hamiltonian description of a conservative trajectory on a
metric space, all the possible nonlinear and nonlocal
generalizations are guaranteed by the mere isotopies of the
underlying space.

1.6 ISOMODULE

As well known, a generalization of the notion of
vector space over a field is provided by a module aver a
ring R with unit.

DEFINITION 1.6.1 : As R-module one means an additive group

M, together with a map R«M—— M, verifying properties
(1.5.1a) - (1.5.1d).
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DEFINITION 1.6.2 : Let M to be an R-module and R an isoring
of R. We define as iso-R-module the R-module M (which is the
same set as M), equipped with a new external operation o,
which is such to preserve the axioms (1.5.2a)-(1.5.2d) for a
R-module.

The notion of isomodule was introduced for the first time
by Santilli (1979c).

1.7 ISOSPACES

In order to lift other important mathematical
structures, as metric space, Banach space, inner product
space (Hilbert space), etc, we have firstly to define the
notion of isobilinear form.

We recall that given a linear space V over the field
F, a bilinear form is a map f :

f:W————F

with the folowing property :
(va,BeF) (vx,y,2V) [ F(ax+By,2)=0f(x,2)+BF(y,2) A
f(x,ay+pz)=af(x,y)+pf(x,z) ) (1.7.1)
An isotope £ of this bilinear form f, which is here

called isobilinear form, can be defined if we 1lift the field
A
F to an isofield F, such that
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(va,ﬁeF)(Vx,y,zeV)[ f(aex+§oy,z)=a*f(x,z)+§*f(y,z) A
£ (x, Goy+Boz)=a-F (X, y)+Bof (x,2) ] (1.7.2)

Let {ei} i=1,...,n be a basis of V, where n=dimV. Then, as
is well known, a bilinear form f is represented by n?
constants giJ=f(ei,ej) as follows :

If x=Y% x.e, and y=y Y8, then f(x,y)= % xiyjf(ei,ej)=
i i 1,3]

-1 xgYy (1.7.3)

As a consequence, the isobilinear form ? can be represented
2 isonumbers aij=%(ei,ej).

In the case of an inner product space (V,<,>), the
bilinear form <,>, which is called inner preduct, is a map
of the form Vx«V—— F, with the properties :

by n

(VXeV)[ <x,x>z0 and <x,x>=0 iff x=0 ] (1.7.4a)
(Vx,er)[ <X, Y>=<Yy,X> ] : (1.7.4b)

(VU,BeF)(Vx,y,zeV)[ <X, ay+Bz>=0<x,y>+p<x,z> ]
(1.7.4c)

A
An isoinner product space V is defined as the iso-
A A
space V, over F, equipped with an isoinner product <,> with
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similar properties :
A A ]

(Ver)[ <x,x>z0 and <x,x>=0 iff x=0 ] (1.7.5a)

)

(Vx,er)[ <X y>=<y x> (1.7.5)

A

A A AA A A A A
(Vu,BeF)(Vx,y,zeV)[ <X, 00X+Be2>=0*<X, y>+p*<X, 2> ]
(1.7.5¢)

Let us now recall the general notion of metric
space. If M 1is a non-empty set and d a function :
d : MM— R
which obeys the axioms :
i) (Vx,yeM)[ d(x,y)=z0 and d(x,y)=0 iff x=y ] (1.7.6a)
i) (vx,yeM)[ d(x, y)=d(y,x) ] (1.7.6b)

iii) (vx,y,zeM)[ d(x,y) = d(x,2)+d(z,y) ] (1.7.6¢)

then the function d is called a metric on M and the pair
(M,d}, metric space. If the axiom (i) is replace by

(Vx,yeM)[ d(x,y)=0 and d(x,x)=0 ] (1.7.7)

the metric space M is called pseudometric space.
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If now the metric space M has the structure of an
n-dimentional linear vector space and {ei} is a base of M,
then the familiar way of realizing the function d , which is
assumed to be a bilinear form, is via the n® constant :

ii_
g —d(ei,ej) .

So if x= ¢ Xe, and y= ¥ yjej, then
i j

d(x,y) = d[ I Xxe, Zyjej ] = ¥ xiyjd(ei,ej) =

i A i,j

=¥ xigijyj (1.7.8)

ilj

The best physical example of a metric space is the
n-dimentional Euclidean space hereon denoted with the symbol

E(r,5,R), where the metric & is determined by the Kronecker
delta 34 ;
§ = (3Y) = diag(1,1,...,1)

A pseudometric space of primary physical relevance is
the (3+1)-dimensional Minkowski space, hereon denoted
M(x,n,R), whose the elements are of the form :

X = (xu) = (xix4) » x.€E(r,8,R) , x,=c t

where C,€R represenis the speed of light in vacuum. The
metric is indefinite and defined by :
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- W, 2
n{x,y) = xn'y, g0 (1.7.9)
which is the well known Minkowski metric of the type :
n = diag.(1,1,1,-1) (1.7.10)

Futher spaces also relevant in physics are the
Riemannian spaces hereon denoted R(a,q,F).

In 1983 Santilli (1983b) constructed for the first
time the isotopes ﬁ(x,a,@) of M(x,9,F) which are playing an
increasingly fundamental role in physics. Santilli’s
construction of the isospaces can be formulated by introdu-
cing the n-dimentional, nowhere null and Hermitean isounits

T-ah-=-() 1120 (1.7.11)
with isotopic elements
Aq i
T=T1'=(1)) (1.7.12)
Then we can introduce the isomap
A Aij A
g(x,y) = (x,97y)1 (1.7.13)
where the quantity
A k_kj
g=7Tg = (Tj g") (1.7.14)

is called hereon the isometric.
The basis e={ei}, i=1,2,...,n of an n-dimentional
space M(x,9,F) can be defined via the rules

A
gle,e) =g, (1.7.15)
The above isotopic generalizations can be expressed as
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follows :

DEFINITION 1.7.1 : The “isotopic liftings™ of a given
n-dimentional metric or pseudometric space M(x,g;F) Aa:e
given by the infinitely possible "isotopes" M(x,g,F)
characterized by :

a) the same dimention n and the same local coordinates x of
the original space, '

b) the isotopies of the original metric g into one of the
infinitely possible nonsingular Hermitean "isometrics" a=Tg
on F with isotopic element T depending on the local
variables x, their derivatives %,X,.. with respect to an
indepedent parameter, as well as any needed additional
quantity :

g ——— g=Tg (1.7.16)

T=T(x,%,%,...), detT=0, T°=T, detg=0, g=¢ , and
c) the lifting of the field F into the isotope ?, whose

A
isounit I is the inverse of the isotopic element T, i.e. :
-1 %1
1=T"1=3 (1.7.17)
v - y - A
with composition now in F

A A A A A n AN I
90, y)=(x,y)=06Ty) I=(Tx,y) I=1(x,Ty)= £ (x'g, ¥}
1]
(1.7.18)

The following three cases are particularly important
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(Santilli 1983b; 1991a) :

The 1liftings of the conventional n-dimentional
Euclidean spaces E(r,3,R) over the reals R into "Euclidean-
Santilli spaces" or "Santilli’s isceuclidean spaces", are
given by :

A A A
E(r,0,R) — E(r,5,R) "~ (1.7.19a)
5= —— 5 B=T(r,’,¥,...)d (1.7.19b)

nxn
2 A Ag A
det.T=0 , T=T° , det.5#0 , &=6  (1.7.1%c)
A A A4 Ay
R—— R=RI , I=T =0 (1.7.19d)
n i 3 A
S(rl,r2)= i{; rlﬁijrz EE— B(rl,r2)=

SR R R TH N g 1.7.19
(rys8r,)I=(dr ,r )I=I(r ,dr )= ):i jrl " (1.7.19e)
The liftings of the conventional Minkowski space
M(x,n,R) in (3+1)-space-time dimensions are given by the

isotopes called "Minkowski-Santilli spaces”™ or "Santilli’s
isominkowski spaces".

A AA
M(x,n,R) ——— M(x,n,R) (1.7.20a)

n=diag.(1,1,1,-1) ——— =T(X,%,%,...)n (1.7.20b)

det.T=0 , T=T?Z , det.n=0 , rf=n  (1.7.20c)
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A A -1
R— R=Rl , I-=T (1.7.20d)

n A A A
(%y)= T X0y —— (x,y)=(x,Ty)1=(Tx,y}1=

i )

A n A

=I{x,Ty})= ¥ x“nwy"l (1.7.20e)

Finally, th;.vliftings of a given n-dimensional,
Riemannian or pseudoriemannian space R{x,g,R) over the reals
R into the infinitely possible "Riemannian-Santilli spaces"
or "Santilli’s isoriemannian spaces" ﬁ(x,a,lﬁ) are given by

R(x,g,R) ———— ﬁ(x,a,iﬁ) (1.7.21a)
g— 3=T(x,f<,>‘<,-..)g (1.7.21b)

det.g=0 |, g=92 y det.T=0 , T=T s det.Agan R Ag:f
(1.7.21c)
R— R=Rl , 1-T" (1.7.21d)
(x,y)=i}"; x'g, ¥ ——— (Y=, Ty E= (T, T=1(x,Ty) =
|

n s A
= ¥ xlgi‘yj (1.7.21e)
iy

The general character of the concept of isotopy is
illustrated by the following property proved in the original
proposal (SAntilli 1983b).
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PROPOSITION 1.7.2 : All possible metric and pseudometric
spaces in n-dimension M(r,g,F) can be interpreted as
isotopes of the Euclidean -space in the same dimension
E(r,5,F)

M(r,g,F) : F=F1 , 1=’ (1.7.22)
The following Corollary illustrates the fact that
there is no need to study the isotopies of all spaces,
because those of the fundamental Euclidean space are
sufficient.

COROLLARY 1.7.1: The conventional Minkowski space M(x,n,R)
in (3+1)-space-time dimensions over the reals R can be
interpreted as an isotope ﬁ(x,s,ﬁ) of the 4-dimentional
Euclidean space E(x,5,R) characterized by the isotopy of the
metric :

5-1, =5-To=n=diag.(1,1,1,-1) (1.7.23)

under the redefinition of the fields :
A

R— R=RI , I=T=n’l= (1.7.24)

The reader should remember that the isotopy of the
field is a feature needed for mathematical consistency,
which however does not affect the practlcal numbers of the
theory owing to the property N*x-Nx, Nem, xeM. Also, the
symmetries of M(x,n,R) and those of M(x,n,R) coincide
because characterized by the metric n. Thus, the Minkowski-
Santilli space ﬁ(x,n,ﬁ) and the conventional Minkowski
space M{x,n,R) can be made to coincide for all practical
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purposes .

COROLLARY 1.7.2 :The conventional Riemannian spaces R(x,g,R)
in (3+1)-space-time dimensions over the reals R is an

isotope ﬁ(x,g,ﬁ) of the 4-dimensional Euclidean space
E(x,5,R) characterized by the lifting of the Euclidean
metric & into the Riemannian metric g :

5=1, ,—— Tb=g (1.7.25)

and by the corresponding lifting of the field :
R———— ReRl , 1=T':q?  (1.7.26)

We also have the following alternative interpretation of the
Riemannian space.

~ COROLLARY 1.7.3 : The conventional Riemannian space R(x,g,R)
in (3+1)-space-time dimensions over the reals R can be

interpreted as an isotope ﬁ(x,g,ﬁ) of the Minkowski space
M{x,n,R) in the same dimension characterized by the isotopy
of the Minkowski metric :

n=diag.(1,1,1,-1) ————— T(x)n=g(x) ({(1.7.27)
and of the field :
AA A
R——— R=RI , I=T (1.7.28)

The notion of isotopy of a metric or pseudometric
space 1is therefore first useful for conventional formula-
tions. In fact, Santilli (1991a) proved that the transition
from relativistic to gravitational aspects is an isotopy.
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This concept is at the foundations of the global symmetries
of conventional gravitational theories, which can be readily
studied via the Lie-isotopic theory, but which is of other-
wise rather difficult treatment via conventional techniques.

Notice also the chain of isotopies illustrated by the
above Corollaries, also called isotopies of isotopies.

E(x,8,R) ——— M(x,n,R) —— R(x,9,R) (1.7.29)

Corollary 1.5.3 is wusefull to illustrate the
insensitively of the isotopies to the explicit functional
depedence of the isounit. We can then begin to see the
vastity of the Euclidean-Santilli spaces, which encompass,
not only the Minkowski and Riemannian space, but also all
known metric and pseudometric spaces of the same dimension,
such as Finslerian spaces, etc., as well as additional
classes of infinitely possible, genuine isotopies of the
Euclidean, Minkowski, Riemannian and other spaces.

DEFINITION 1.7.2 : Given a metric or pseudometric space
M{x,g,F) with metric g, "Santilli-isodual" space ﬁd(x,a,ﬁ)
is the isotopic space ﬁ characterized by the isotopic ele-
ment (Santilli 1985b) :

T=-I=diag.{-1,-1,-1,...,-1) (1.7.30)

The isodual of the Euclidean space E(x,8,R) is
therefore the isotope Ed(x,g,ﬁ), where the isometric is
given by

5= -5 (1.7.31)
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which cannot be reinterpreted via the inversion, i.e.

Txg x3 = fx@”w
. i3 Lo T, xe=ex

thus illustrating the independence of Santilli’s isoduality
E(x,5,R) — £%(x,,R)

from the inversion x— -x.

The above spaces are useful for the construction of
the new realizations of given simple Lie groups precisely of
isodual type with rather intriguing implications.

Similarly, the isodual of the Minkowski space
M(x,n,R) is the isospace ﬁd(x,a,ﬁ) where the isometric a is
given by :

N=Tn=-n=diag.(-1,-1,-1,+1)  (1.7.32)

Since we have the joint lifting R-—————#§=-R, one can
see that isoduality implies the mapping
x”nwxv _— -x”nuvxv
while preserving the space-like or time-like character of a
vector.
More generally, the same equations of motion are
admitted by both, a given space and its isodual. This has

led Santilli (Santilli 1991d), to the formulation of a new
universal invariance of physical laws under isoduality.
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1.8 ISOALGEBRAS

A linear algebra,

or algebra for short, is an

algebraic system with two internal and one external composi-
tion laws. Such algebraic system combines the features of a
ring and of a vector space (Roman 1975a).

DEFINITION 1.8.1

: A linear algebra is an algebraic system

(A,F,.), where A is a ring, F is a field, such that the
following properties hold :

(Vx,y,zeA)[ X+({y+z)=(x+y)+z }

(30eA)(VxeA)[ X+0=0+x=X ]

(VXeA)(H-XeA)[ X+{-x)=(-x)+x=0 ]

(Vx,yeA)[ X+y=y+X ]

(vx,y,zeA)

(vx,y,zeA)

b

x(yz)=(xy)z ]

x(y+z)=xy+xz N (x+y)z=xz+yz ]

(vxeA)(va,Ber)[ a(x)=(aB)x |

38

(1.8.1a)

(1.8.1b)

(1.8.1¢)

(1.8.1d)

(1.8.2a)

(1.8.2b)

(1.8.3a)



(BIeF)(VXEA)[ 1x=x1=x ] (1.8.3b)

(VX,yEA)(VUEF)- a{x+y)=ax+ay ] (1.8.4a)
(vxeA) (va,BeF) | (a+B)x=ax+Bx ] (1.8.4b)
(Vx,yeA)(vaeF)- a{xy)={ax)y=x{ay) ] (1.8.4c)

where we use the symbol + to denote both the sum of ring
elements x,y,... as well as the sum of elements a,B,... of
the field F. Similarly, we use simple juxtaposition of
symbols to indicate a product xy in the ring, a product
ap of two scalars, and a product ox of a scalar and of an
element of A.

DEFINITION 1.8.2 : If the algebra A, considered as a ring,
is commutative, i.e. :
(Vx,yeA)[ Xy=yx ] (1.8.5)
then we call A a comutative algebra.
If, as a ring, A has a unit element e, i.e.
(BeeA)(VxeA)[ EX=XE=X ] (1.8.6)

we call A an algebra with unit.
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Finally, if, as a ring, A is a field, i.e., if it has
a unit and

(VxeA)(BxdeA)[ xx t=x"Ix=¢ ] (1.8.7)
then we say that A is a division algebra.

DEFINITION 1.8.3 : A subset V of an algebra A is called a
subalgebra if it satisfies the algebra axioms, i.e., if it
is an algebra in its own right.

It is easy to proove that a subset VcA of an algebra A is a
subalgebra iff :

(Vx,yeA)(VueF)[ X+yeA , axeA , xyeA ] (1.8.8)

that is, the subset V is closed under all the composition
laws.

In the following we discuss some tools, which
simplify the handling of algebras.
Let A be an algebra and {el,...,en} a basis. If x and
y are any two elements of A, we have :
n n
X=X ae, and y =Y Bej (1.8.9)

i i
and in view of the axioms for algebras, we have :

Xy =.£ uiBj(eiej) (1.8.10)
i]

Since ee, €A we can expand this element with respect to the
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same basis : .
e, = T N (1.8.11)
k

The coefficients C. are called the structure constants of
the algebra A. They determine uniquely the product of
arbitrary elements, since

Xy = E B.c (1.8.12)

ik 3 ik k

Thus the multiplicative structure of an algebra is fully
characterized by the structure constants. It is obvious that
there are n® structure constants for an algebra of dimen-
sions n. However, they are not independent. The associati-
vity of products gives the constraints :

ei(eéek) = (eiej)ek (1.8.13)

for any three basis elements, which under the equations
(1.8.11), give the relations :

n
€ Sem = E € inS ilm (1.8.14)

Fol o I

DEFINITION 1.8.4 : Amap f : A——— A~ between algebras
over the same field F is called morphism if :

(vx,yeA)(va,ser)[f(ux+ﬂy)=uf(x)+sf(y) A £(xy)=F(x) F(y) ]

(1.8.15)
The usual statements about the image and kernel of a
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morphism hold and need not be repeated.

Algebras play a fundamental role in physics, as well
known, and their use is predictably enlarged by the isoto-
pies. Among the existing large number of algebras, a true
understanding of the formulations presented here, as well as
of their operator image, requires a knowledge of the follow-
ing primary algebras :

DEFINITION 1.8.5 : A nonassociative algebra is an algebraic
system which obeys all axioms of a linear algebra except
(1.8.2a) .

Completely general nonassociative algebras are of
little interest. If however, one imposes some additional
identities to be satisfied by the elements of a
nonassociative algebra, then several types of useful
systems, with a rich theory and many applications, ensue.

It should be clear that all concepts, properties, and
theorems relating to associative algebras which are
independent of the associative law, have their complete
counterpart in any nonassociative algebra. Thus, without any
further explanation we may speak of dimension, subalgebras,
direct sums, ideals, quotient algebra and morphisms of non-
associative algebras.

The most familiar class of nonassociative algebras is
known by the name of Lie algebras.
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DEFINITION 1.8.6 : A Lie algebra is a nonassociative algebra
L over the field F where the product {called Lie product),
satisfies the following two axioms :

(VXEL)[ xx=0 ] (1.8.17)
(Vx,y,ZeL)[ x(yz)+y(zx)+2(xy)=0 ] (1.8.18)

If the characteristic p of the field F is not 2, then
the axiom (1.8.17) .is equivalent to the following :

(Vx,yeL)[ Xy+yx=0 ] (1.8.17a)

Property (1.8.17a) of a Lie product is called anti-
symetry and property (1.8.18) is known as the Jacobi
-identity, which can be written as

y(zx) = (xy)z - x{yz) (1.8.19)
The presence of the 1l.h.s shows that, in general, a Lie

product cannot be associative. The r.h.s is called
associator of the three elements x,y,z and is denoted by :

[x,y,z] = {xy)z - x(yz) (1.8.20)

A Lie algebra can be characterized in terms of its
structure constants by the relations :
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c..=-C, (1.8.21)

T{c.c. +c } =0 (1.8.22)

ijr rks jkrcris + ckircrjs

A familiar realization of the Lie product is given in

terms of an associative product xy {where x,y belong to an
associative algebra A), by the relation :

[x,¥] = xy-yx (1.8.23)

The r.h.s of (1.8.23) is usually called the commutator of
the elements x,y of the associative algebra A. The Lie
algebra with the Lie product being defined as the
commutator, 1is called the commutator algebra of the
associative algebra A, or the attached algebra and will be
denoted by A”. The algebras A and A” are identical as linear
spaces. The associative algebras A are the fundamental Lie-
admissible algebras,as we shall see in next chapter.

As we saw, every associative algebra A gives rise to a
Lie algebra A". The answer to the converse relation is given
by the fundamental result of Poincaré-Birkhoff-Witt theorem :
THEOREM 1.8.1 : Every Lie algebra is isomorphic to a
subalgebra of some attached Lie algebra A~ of an associative

algebra A.

Next we will discuss shortly about Lie algebras whose
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elements are linear operators. Let L be any given linear
space and C(L) the associative algebra consisting of all
linear operators on L, with respect to the usual

compositions of maps. We form the attached algebra C (L),
whose any subalgebra is called operator Lie algebra. The
elements of an operator Lie algebra are linear operators f
acting on L, and the Lie product is defined by : '

l(VXEL)[ [, 6100 = () 00-(F,F)(0 | (1.8.20)

The importance of operator Lie algebra is exhibited by the
following theorem :

THEOREM 1.8.2 : Every Lie algebra is isomorphic to a Lie
algebra of linear operators.

In the case of a finite dimensional Lie algebra we
have :

THEOREM 1.8.3 : Every finite n-dimensional Lie algebra is
isomorphic to a subalgebra of a Lie algebra consisting of
n«n  matrices, with the Lie product being the wusual
commutator of matrices.

DEFINITION 1.8.7 : A subalgebra D of a Lie algebra L is

called ideal or invariant subalgebras if the following
property is verified :
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(VdeD)(VXeL)[ [d4,x] D A [x,d]eD] (1.8.25)

DEFINITION 1.8.8 : A Lie algebra L with dimension n>1, which
has no other ideals than the trivial ones, i.e., {0} and L,
is called simple. If L has no, (nonzero), Abelian ideal,
then L is said to be semisimple.

Let L and L, be subalgebras of a Lie algebra L. We
define :

[LI’LZ] = subalgebra spanned by the set { ‘[xl,xz]

where x el , szLa} (1.8.26)

So a subalgebra D of L is an ideal if [£,D}c<D. We construct
now the ideals :

L“]=[L,L] , Lu}=[L(H,L(”] e L&)t[L(kd),L&-n] .
(1.8.27)

obtaining the series of derived ideals :
LW @5 Sk, (1.8.28)

DEFINITION 1.8.9 : A Lie algebra L is called solvable if
there exist a keN such that L®={0}.

Every Abelian Lie algebra is solvable, since then
t“.[L.L]-{c}. On the ohter hand, a solvable Lie algebra
with k>1 cannot be simple, nor even semisimple. Indeed, a
solvable Lie algebra surely has an ideal L(“d), and since
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[L%1 %] _{0}, this ideal is Abelian.
Another class of interesting ideals can be constructed
in a similar manner :

12=[e,1] , 3=[131 , ..., (=041, ...
(1.8.29)

where

TSRS L : (1.8.30)

DEFINITION 1.8.10 :If there exists a keN such that (*={0},
then the Lie algebra L is called nilpotent.

Every nilpotent Lie algebra is solvable, but the
converse is not true. It then follows that a nilpotent Lie
algebra cannot be simple (if k>2), nor semisimple.

In the sequel we mention some nonassociative
algebras which, along with Lie algebras, are often met in
physics.

DEFINITION 1.8.11 : Jordan algebras are nonassociative
algebras J equipped with the product xy which obeys the
following two axioms :

(Vx,yeJ)[ Xy=yX ] | (1.8.31)

(Vx,yeJ)[ 2(yx) = (xzy)x] | (1.8.32)
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If A is an associative algebra and if we define :

Xy = -%—(xy+yx) (1.8.33)

we can easily see that we obtain a Jordan algebra, which
will be denoted by A'. In contrast to Lie algebras, however,
we do not have an analog of the Poincaré-Bikhoff-Witt
theorem : there exist Jordan algebras, which are not
subalgebras of any A" algebra.

DEFINITION 1.8.12 : Poisson algebras are those associative
algebras P, in which we introduce an additional, nonassocia-
tive internal composition law, called Poisson bracket
and denoted by [x,y]p. We set the following axioms (in
addition to the already existing ones on x+y, ax, xy) :

(VxeP)[ [x,x]P=0] (1.8.34)

(vx,y,zeP)[ [x, (y+z)1 =[x, y] +Ix,2], A
(a3}, 2]~ [0, 2]+ 1y, 2], | (1.8.35)

(vx,yeP) (VoeF)[ alx,y],=[ax,y] =[x,0y], ] (1.8.36)

(vx,y,2¢P) | [x,32],~x¥] zoyIx, 2], | (1.8.37)
A familiar example of Poisson algebras comes from
classical mechanics : Let
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P = { f / f:RR——— R , f=infinitely differentiable

real valyed functions } (1.8.38)

The set P have the structure of an ordinary associative
algebra by pointwise sum, scalar product, and product :

(vx,yeR) (vF,9¢P) | (F+9)(x,¥)=F (x,¥)4g(x.) ]
(1.8.39)

(VX, yeR) (VFeP) (Vue[R)[ (af) (X, y)=af(x,y) ] (1.8.40)

(vx,yem)(vf,gep)[ (Fg) (X, ¥)=F (X, ¥)g(x, ) ] (1.8.41)
Define now the Poisson bracket :

| of ag  of &
[f,g]p = X '3_;1- By —ag-‘ (1.8.42)

It is easy to see that all axioms of a Poisson algebra are
fulfilled as well as the Jacobi identity. Hence, the Poisson
algebra of classical mechanics is also a Lie algebra, (but
it is not a commutator algebra).

DEFINITION 1.8.13 : An algebra A is called flexible when

(vx,ye) [ [,5,X] = (xy)x-x(yx) = 0 | (1.8.43)
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The flexibility axiom can be equivalently formulated (for
fields of characteristic p=2) in terms of the relation :

(Vx,y,zeA)[ [x,y,z] + [z,y,x] = 0 ] (1.8.44)

DEFINITION 1.8.14 : An algebra A (associative or not), is
called general Lie-admissible algebra (Albert 1948a),if it
is characterized by a product xy, such that the attached
product [x,y]A=xy-yx is Lie, This implies the unique axiom :

(Vx,y,zeA)[ (x,y,2)+{y,z,x)+(Z,x,y) =
(z,y,x)+(y,x,2)+(x,z,y)] (1.8.45)
where (x,y,z) is the associator of x,y,z.

Note that Lie algebras are a particular case of the
Lie-admissible algebras. In fact, given an algebra L with
product xy=[x,y]A, the attached algebra L~ has the product
[x,y]L =2[x,y]A and thus L is Lie-admissible.

Therefore, the classification of the Lie-admissible
algebras contains all Lie algebras. In particular Lie
algebras enter in the Lie-admissible algebras in two-fold
way : first, in their classification and second, as the
attached antisymmetric algebras. Finally, associative
algebras are trivially Lie-admissible.

The first abstract realization of the general
Lie-admissible algebras was given by Santilli, {((1978b),
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Sect. 4.14), and can be written :

(Vx,yeA)[ (x,y)Asxry-ysx, r,s fixed €A, r#s r,s=0 ]
(1.8.46)
The first realization of L in classical mechanics was

also identified by Santilli (1969) and (1978a) and it is
given by the following product for functions f{(r,p) and

g(r,p) in TE(r,5,A)
L: (f,q) = 2£ 89 ' (1.8.47)
a8

namely, the general, nonassociative Lie-admissible algebras
are at the foundations of the structure of the conventional
Poisson brackets, which can be written :

[f.q] = [f,g] =(f,9)-(g,f) (1.8.48)

Poisson

DEFINITION 1.8.15 : An algebra A is called flexible Lie-
admissible if it is flexible and verifies the property :

(vx,3,260) | (x,3,2)4(y,2,5)+(2,%,¥)=0 ] (1.8.49)
An abstract realization of the flexible Lie-admissible

product {Santilli 1978b) is given by :

(vx,y,zeA)[ (X,¥) =Mxy-uyx , A,HeF ] (1.8.50)

No classical realization of flexible Lie-admissible
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algebras has been identified until now. As an example, the
3
brackets on T E(r,0,R)

-p2L of (1.8.51)
8

(f.g) =22L 29
r “ep,

ar apk

are Lie-admissible, but violate the flexibility law.

DEFINITION 1.8.16 : An algebra A is called general Jordan-
admissible algebra if it is characterized by a product xy,
such that the attached symmetric product {x,y}A=xy+yx is
Jordan, i.e. it verifies the axioms (1.8.31) and (1.8.32).
The axiom (1.8.32) more generally can be written as :

(Vx,y,zeA)[ (X%, ¥, X)4 (X, ¥, X2 )+ (¥, X5 X)+(x, x5, y) = 0 ]

(1.8.52)

Again, associative and Jordan algebras are trivially
Jordan-admissible. Also, Jordan algebras enter in the
Jordan-admissible algebras in a two-fold way, in the
classification of the latter, ‘as well as the attached
symmetric algebras.

It is important for the operator formulation of the
isotopies to point out that the Lie-admissible product
(1.8.46) is jointly, Lie admissible and Jordan-admissible,
(Santilli 1978b), because the attached symmetric product
characterizes a special commutative Jordan algebra.

Finally, we should note that the classical product
(1.8.47) is Lie- admissible and not Jointly Jordan-
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admissible.

DEFINITION 1.8.16 : An algebra A is called flexible Jordan-
admissible (Albert 1948, Santilli 1978a,b), if it is
characterized by a product xy such that the following axioms
hold :

(vx,yeA) | x(yx)=(xy)x ] (1.8.53)

(vx,yeA) xz(yx)+x2(xy) = (xzy)x+(x?y)y ] (1.8.54)

The flexible Lie-admissible product (1.8.50) is also
flexible Jordan-admissible, but the classical product
(1.8.51) is only Lie-admissible, and not flexible Lie-
admissible nor Jordan-admissible.

DEFINITION 1.8.17 : An ‘"isoalgebra" (Santilli 1978a), or
simply an "isotope" 3 of an algebra A with elements x,y,
2,... and product xy over a field ¥, is the same vector
space A but defined over the isofield ?, equipped with a new
product x*y, called "isotopic product", which is such to
verify the original axioms of A.

Thus by definition, the isotopic lifting of an algebra
does not alter the type of algebra considered.

Let us review the isotopies of the primary algebras

listed above, beginning with the associative algebras
(Santilli 3978a,b 1991a).
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Given an associative algebra A with product xy over a

A
field F, its simplest possible isotope A, hereon called
associative-isotopic or isoassociative algebra, is given by

31: (Vx,yeA)[ X*y = axy , aeF with a=fixed and = 0 ]
(1.8.55)

and is called a scalar isotopy. The preservation of the
original associativity is trivial in this case.

A second less trivial isotopy is the fundamental one
of the Lie-Santilli theory, and it is characterized by the
product :

A (Vx,yeA)[ xty = xTy ] - (1.8.56)

where T is a nonsingular (invertible) and Hermitean (real
valued and symmetric) element not necessary belonging to the
original algebra A. The associativity of product (1.8.56)
can also be readily proved.

Note the necessary condition, from Definition 1.8.17
that the isoproduct and isounit in A and F coincide. That
is, if in 1sof1e1d F the isoproduct is defined by u*B—uTB
with isounit I T 1, then the isoproduct in the isoalgebra A
is defined by x*y=xTy with the same isounit 1=1"1. This is
the technical reason for the lifting of the universal enve-
loping associative algebras of a Lie algebra into a form
whose center coincides with the isounit of the underlying
isofield. Also the identity of the isoproduct and isounit
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for A and F occurs in the associative cases (1.8.55) and
(1.8.56), but does not hold in general, e.g., for nonasso-
ciative algebras. This is due to the lack of general
admittance of a unit, while such a unit is always well
defined in the underlying field. :

A third significant isotopy of an associative algebra
was given by Santilli, (1981), and it is characterized by
the product :

ﬁsz (VX,yeA)[ x*y = wxwyw / w’=w=0 and fixed ]

(1.8.57)
Additional isotopies are given by the combinations of the

preceding ones, such as :

wxwTwyw / wl=wz0 and fixed ]

(1.8.58)

34: (Vx,yeA)[ X*y

and

awxwIwyw / aeF, w’=w, a,w,T=0 ]
(1.8.59)

ﬁsz (vx,yeA) [ Xty

It is believed that the above isotopies (of which
only the first three are independent) exhaust all possible
isotopies of an associative algebra {over a field of
characteristics zero), although this property has not been
rigorously proved until now.

The issue is not trivial, physically and mathemati-
cally. In fact, any new isotopy of an associative algebra
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implies a potentially new mechanics, while having intriguing
mathematical implications.

Another important point is that isotopy (1.8.56) is
preferable than (1.8.57) because the former possesses a well
defined isounit, while the latter does not admit a con-
sistent isounit, thus creating a host of problems of physi-
cal consistency in its possible use for an operator theory.

We now pass to the study of the central notion
introduced by Santilli (1978a), the isotopes I of a Lie
algebra [ with product xy over a fielf F, here called
Lie- Santilli algebra, which are the same vector space [ but
equipped with a product x*y over the isofield F which veri-
fies the left and right scalar and distibutive laws (1.8.3)
and (1.8.4) and the axioms :

(vx,yeL)[ X*y+y*x=0 ] (1.8.60)

(vx,y,zel) [ x*(y*z)+y*{z*x)+z*{x*y) = O ] (1.8.61)
Namely, the abstract axioms of the Lie algebras remain the
same by assumptions.

The simplest possible realization of the Lie-Santilli
: A
product is that attached to isotopes A (1.8.45) :

A
L: (vx,yel) [ [x,¥13 = xy-y*x = a(xy-yx)=
1

=a[x,y] , GeF, as0 ] (1.8.62)
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and it is also called a scalar Lie-isotopy. It is generally
the first lifting of Lie algebras one can encounter in the
operator formulation of the theory.

The second independent realization of the Lie-Santilli
algebras is that characterized by the isotopy 32 :

L,: (Vx,yeL)[ [%,¥]} = X*¥-y*x = XTy-yTx ] (1.8.63)
2
A
The third, independent isotopy is that attached to A,
23: (VX,yEL)[ [x,y]A = X*Y-Y* X = WXWYW-WyWXw
3

we=w=0 ] (1.8.64)

A fourth isotopy is that attached to 34. i.e.
L4: (Vx,yeL)[ [x,y]ﬁ = X*Y-¥Y*X = WXWIWYW-WYyWIWXw
4
wlews0, w,T+0 ] (1.8.65)

A fifth and final, (abstract), isotopy is that characterized
A
by A i.e.

L : (vx,yel Y14 = alx,y14 1.8.66
5 (xye)[[xm|5 a[xy]Aq] ( )

Note that the Lie algebra attached to the general
Lie-admissible product (1.8.46) are not conventional, but
isotopic. In fact, we can write :
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DGYI = (6Y)p-{y,x)y = (xry-ysx)-(yrx-xsy) =

= X(r+s)y-y(r+s)x xTy-yTx = x*y-y*x
where r=s , r,s,T20 , T=r+s (1.8.67)

The following Proposition can be easily proved from
properties of type (1.8.67).

PROPOSITION 1.8.1 : An abstract Lie-isotopic algebra 2
attached to a general, nonassociative, Lie-admissible
algebra A, that is izA', can always be isomorphically
rewritten as the algebra attached to an isoassociative
algebra 3, that is £=ﬁ', and vice-versa, i.e.

A - -
LA =4 (1.8.68)

The obove property has the important consequence that the
construction of the abstract Lie-isotobic theory does not
necessarily require a nonassociative enveloping algebra
because it can always be done via the use of an
isoassociative enveloping algebra. In turn, this focuses
again the importance of knowing all possible isotopes of an
associative algebra, e.g., from the viewpoint of the
representation theory.
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CHAPTER 11

LTE-SANTILLI ALGEBRAS

2.1 : STATEMENT OF THE PROBLEM
We are now sufficiently equipped to present the first

main topics of this monograph, the isotopies of the primary
structural theorems on Lie algebras, as derived in the
original memoir (Santilli 1978a). In this chapter we shall
essentially follows the presentation of Santilli - (1982c),
Charts 5.1-5.4, pages 154-183, and (1991a).

The term "Lie theory" is referred today to an
articulated body of sophisticated mathematical tools
encompassing several disciplines. Whether in functional
analysis or in the theory of linear operators, the structure
of the contemporary formulation of Lie’s theory can be
reduced to the following three parts :

Universal enveloping
associative algebras U

Lie Lie
algebras ( groups @
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As duly emphasized in the mathematical literature,
(Jacomson 1962, Dixmier 1977, and others), a truly funda-
mental part of Lie’s theory is the universal enveloping
algebra U, which is obtained from a tensor algebra by means
of a quotient construction. This associative algebra, is
important because it allows us to translate questions about
Lie algebras into corresponding questions about associative
algebras. We know that the Lie group theory reduces locally
to the theory of Lie algebras. By means of the enveloping
algebra, the theory of Lie algebra is reduced to the even
better understood theory of associative algebras.

Intuitively, the universal enveloping associative
algebra U(L) constists of all polynomials in elements of the
Lie algebra L and a unity element, with the Lie product
[x,y] of elements x and y in L being identified with the
commutator xy-yx. More formally, we can construct the
universal enveloping algebra as follows : Since the Lie
algebra L is a vector space, it is possible to construct its
contravariant tensor algebra T(L)=Fele{lel)e... In this
associative algebra T(L), we consider the two-side ideal K
generated by the set of all elements of the form :

[x,¥]-{xey-yex)

where x and y are elements of L. The ideal X thus contains
the differences between Lie algebra products and the
corresponding commutators in the associative tensor algebra.
If we consider the associative quotient algebra

60



u(e) = -Ith (A)

then Lie products will not be distinguished from commutators
since they belong to the same coset. The associative algebra
U(L) is called universal enveloping algebra of the Lie
algebrh L. As with any associative algebra, we can also make
U(L) a Lie algebra using the commutator operation as the Lie
product. If we do this, we can consider I to be injected
homomorphically inte U(L), considered as a Lie algebra.

The associative algebra U(L) is useful because of the
following property : Suppose that A is an arbitrary
associative algebra, and that A is also given the commutator
Lie algebra structure. Any homomorphism of [ into A,
considered as a Lie algebra, has a unique extension to an
associative algebra homomorphism of U(L) into A. Now a
representation of a Lie algebra [ is a Lie homomorphism of L
into the associative algebra of all linear operators on the
module, with the Lie product of two linear operators being
their commutator. Thus every representation of a Lie algebra
L can be extented to a representation of its universal
enveloping associative algebra U(L), and we see that every
module over L can also be regarded as a module over its
enveloping algebra U{L). This idea is central to certain
proofs of complete reducibility for modules over semisimple
Lie algebras which are based on the universal enveloping
algebra.

In fact, the algebra U provides a symbiotic characte-
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rization of both the Lie algebra and the Lie groups. This is
due to the fact that the basis of U, (which is constructed
via the Poincaré-Birkhoff-Witt Theorem, is givem by an
infinite number of suitable polynomial powers of the genera-
tors Xi of 6 such as :

U 1eFiX X X (1s5)3X X X, (ssk)s... (2.1.1)

where the product xixj, etc., are associative. It then
follows that the Lie algebra ( :

L [XX] = XX XX, = c';jxk (2.1.2)
is, (homomorphic to), the attached algebra U of U. The Lie
group & of L is then the infinite power series :

o e'g’
G : exp(ekxk) =1+ 'TT_xk + ——iT—-Xin-+... (2.1.3)

- which, evidently, can be properly defined and treated only
in the enveloping algebra, (note that all terms from Xin on
are outside the Lie algebra). One can then see why
fundamental aspects of Lie algebras, (such as the
representation theory), are treated by mathematicians within
the context of its enveloping algebra.

On physical grounds, the role of the enveloping
algebra is equally crucial, even though not sufficiently
emphasized in the current literature. For instance, a
frequent physical problem is the computation of the
magnitude of physical quantities, such as the magnitude,
(eigenvalue), of the angular momentum, (operator), M=
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| [M]|"%. While the components M, of M are elements of the

Lie algebra S0(3), the quantity M is outside S0(3) and can
only be defined in the, (center of), the enveloping algebra
U(S0(3)). Thus, while the Lie algebra SO0(3) essentially
. characterizes the components of the angular momentum and
their commutation rules, the envelope U(SO(3)) characterizes
1) the components M&; 2) their commutation relations via the
attached rule U ~S0(3); 3) the magnitude of the angular
momentum M?; 4) the exponentiation to the Lie group of
rotations; 5) the representation theory, etc. In short, we
can state that a truly primitive part of the contemporary
formulation of Lie’s theory is its universal enveloping
associative algebra.

Once the mathematical and physical motivations of
this occurence are uderstood in full, the need for a
suitable generalization of Lie’ theory becomes unavoidable.
Lie algebras emerge in Physics at the trully fundamental
part, the brackets of the time evolution. The above remarks
then imply that the primitive algebraic structure of the
time evolution is the enveloping algebra. Santilli, (1978b)
points out that the enveloping algebra of the time evolution
of Hamilton Mechanics is nonassociative, by therefore being
not directly compatible with the contemporary formulation of
Lie’s theory. In fact, he essentially indicated that the
conventional Poisson brackets :
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axX, aX, ax. aX aX axX,
L [X,X1-= Lo b . 1 i h| i
17y

aa” 8a’ ark %P, ark 9Py
(2.1.4)
are the attached brackets of the algebra :
U axi axj
: (Xi,Xj = -;;;— ?ﬁi:- (2.1.5)

which is nonassociative; that is, the vector space U of
elements X, and their polynomial powers, over the field R of
real numbers equipped with product (2.1.5), is first of all
an algebra since it verifies the left and right distributive
laws and the scalar law. Secondly, this algebra turns out to
be nonassociative because of properties :

(KX 00K (X, (X)) (2.1.6)

Since associative and nonassociative algebras are different
algebras, without a known interconnecting mapping, Santilli
argues that the insistence on the associative character of
the envelope would literally prohibit the conventional
formulation of Hamiltonian Mechanics, that according to time
evolution (2.1.4). He therefore advocates a dual generaliza-
tion of Lie’s Theory, (see the preceding paper, Santilli
(1978b, pp 298-375) according to the following classifica-
tion.
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I. Contemporary Formulation of Lie’s Theory. This is the
formulation available in the contemporary literature,
and it is expressed via an envelope with conventional
associative product Xin (e.g., the conventional
product of matrices or operators).

Il Lie-Isotopic Generalization of Lie’s Theory. This is
a first generalization based on envelopes which are
still associative yet are formulated via the most
general possible associative product, say, X;Xj,
whose attached product X;Xj-x;xi, is Lie.

III Lie-Admissible Generalization of Lie Theory. This is
the largest possible generalization of Lie’s theory
conceivable at this time. It is based on envelopes
that are Lie-admissible ‘that is, on envelopes with
the most general possible nonassociative product,
say, (xi,xj), whose attached product (Xi,Xj)-(Xj,Xi)
is lLie.

We think that a few introductory remarks may help the
reader to reach a better mathematical and physical under-
stading of the generalization under considaration.

A difficulty generally experienced by mathematicians
trying to see the need for a generalization of Lie’s theory
is that simple Lie algebras over a field of characteristic
zero have been classified and are given by the well known
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Cartan classificaton®!!. In fact, the Poincaré-Birkhoff-Witt
theorem essentially ensures that all Lie algebras over a
field of characteristic zero can be obtained as the attached
algebras of enveloping algebras with the conventional
associative product Xin. Thus the classification of Lie
algebras has been already achieved by Formulation I. The
point is that generalizations II and III are not Intended
for the classification. Instead, they are Intended for the
formulation of Lie’s theory In the most general possible
(rather than simplest possible} form, as a necessary
condition for Its direct applicability 1in physics.
Generalizations II and III are, of course, expected to
recover Cartan classification. But this is a minor aspect of
the issue. The issue is that of abandoning the conventional
‘mathematical treatment of Lie algebra,

[Xi,Xj] = Xin—Xin (2.1.7)

(1) It is appropriate to recall here that the classification
of Lie algebras over a field of characteristics p#0 is far
from complete. The generalizations of Lie’s theory here
reffered to are intended primarily for the conventional case
of characteristic zero which is the most important for
current physical applications {in fact, no physical
application is known at this time for algebras and/or fields
of characteristic p=0).
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where xixj is the conventional associative product, in
favor of the most general conceivable product :

(X, X1 7= (XX) - (X,X) (2.1.8)

where (Xi,Xj) is a nonassociative Lie-admissible product.
Only in this way does the theory acquire a form suitable for
direct application to machanics while possessing trivial
realization (2.1.7) as a particular case. At any rate,
while the formulation of Lie’s theory for structure (2.1.8)
includes that of structure (2.1.7) as a particular case, the
opposite is not necessarily true'®’. As an example, the
current formulation of the representation theory is.
inapplicable to Lie algebras (2.1.8) beginning from its
foundations (necessary and sufficient conditions for a
representation to be faithful, Ado’s theorem, etc). At a
deeper analysis, it soon emerges that the alteration of the
associative character of the envelope into a nonassociative
form demands the reformulation of the entire theory.

Perhaps an effective way for a mathematician to see
the need of reformulating Lie’s theory is through a
comparative analysis with the corresponding situation in the
symplectic and contact geometries, for which no reformula-

(2) As will be soon evident, nonassociative products exist
under which the enveloping algebra can be trivially reduced
to an associative form.
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tion is needed for local-differential systems. In essence,
these geometries, in their most abstract and general form
(the coordinate-free form), present a body of notions, pro-
perties and theorems hich preserve their validity under all
possiblerealizations of the symplectic and contact forms.
For instance, all the parts of the symplectic geometry
dealing with symplectic two-forms :

0, = do (2.1.9)

preserve their validity regardless of where the two-form is
the canonical form :

0, = dpkAdr‘k (2.1.10)
or the most general possible Birkhoffian form (Santilli

1978a, 1982c)
aRv 3R

0, - _%'[

: t]da”nda" a=(r, ) (2.1.11)
8a ga’ /

The crucial character of the theory, that of being
applicable to all possible realizations, is lost for the
contemporary formulation of Lie’s theory. In fact, if the
enveloping algebra is generalized from the trivial product
xixj to a more general product X;Xj (e.qg., X;Xj=XiTXj,
with T fixed and nonsingular, then the notion of Lie group
(2.1.3) is generalized into structures, for instance, of the
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type :

* . iai
G :exp(6"X )| =14+ %-x'w iz?—xi*xj + ...

(2.1.12)

The fact that the notions, propertiés, and theorems
developed for the conventional structure (2.1.3) are not
necessarily applicable to the more general structure
{(2.1.12) is established, for instance, by the fact that 1 is
no longer the unit of the envelope, trivially, because now
l*Xi¢Xi¢ Xi*l.

Remarkably, while the symplectic and contact
geometries have been develeped by keeeping the most general
possible realizations of the two-forms in mind, the theory
of Lie algebras has been developed until now for the
simplest possible realization of the Lie algebra product.
‘The Lie-isotopic generalization of Lie’s theory is advocated
here in order to recover the compatibility of the formula-
‘tion with the symplectic and contact geometries, that is, to
reach algebraic notions, properties, and theorems which are
directly applicable to their most general possible realiza-
tions, in the same way as it occurs for the geometric
counterparts. The Lie-admissible generalization of Lie’s
theory,instead, is intended as the algebraic counterpart of
the symplectic-admissible generalization of the symplectic
geometry (Santilli 1982d).
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A further point which should be clarified is that the
Lie-isotopic generalization of Lie’s theory is not directly
applicable to the Hamiltonian as well as the Birkhoffian
Mechanics. In fact, the envelope is still associative by
conception, while algebra (2.1.5) is already nonassociative
for Hamiltonian mechanics, and this algebraic character
clearly persists for the covering Birkhoffian Mechanics. The
theory under consideration is merely an intermediate step
prior to the full treatment of type III. Nevertheless, a
possibility exists that the theory is applicable in a
specific case, on account of the following property. Often,
when structure (2.1.8) is worked out, it implies the
possible reformulation :

[Xi,XJ_] = (XiXJ)-(Xin) = Xi*Xj-)(j*X1 (1.2.13)
An example is given by the Lie-admissible product
(Xi,XJ_) = XiR)(J_-)(jS)(i

with R and S fixed and nonsingular, and XiR, RXj, etc.,
associative. Then we have :

(Xi,Xj)-(Xj,Xi) = (XiRXj-XjSXi)—(XjRXi-XiSXj) =

= XTX-XTX. = X*X -X*X. T=R+S (2.1.14)
1 3 3 1 1 3 31

where xiij is clearly isotopic associative. Thus, in
certain instances, the intermediary Lie-isotopic generaliza-
tion may be sufficient.
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For the case of the Hamiltonian Mechanics, one can
attempt modifications of product (2.1.5) into more general
Lie-admissible forms' of the type :

R T T S S S Y
(X.,X,) = + a — + B..
17 ar 9P, ar? arl 9Py 13 9Py
(2.1.15)

that is, modifications which are such as to preserve the
conventional Poisson brackets as the attached Lie brackets.
With the understanding that modifications (2.1.15) remain
nonassociative in general, it may be that the associative
law is regained in particular cases. (One can easily see
that the associative law cannot in general be verified for
product (2.1.15) because, for instance, the expression
((xi,xj),xk) implies only first-order derivatives for Xk,
while the expression (Xi,(Xj,Xk)) implies second-order
derivatives for Xk. Neverthelgss, restrictions on the
functional depedence of the generators are conceivable under
which ({X;,X.),X) = (xi,(xj,xk))).

The important point is that, even when the associati-
ve character of the envelope is regained via extensions of
type (2.1.15), the enveloping algebra is not of the trivial
type Xin, but rather of the most general possible type
X;Xj, As a result, assuming that the associative character
of the envelope of classical mechanics is regained via
(still unknown) methods, the isotopic generalization of
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Lie’s theory remains mandatory for its direct applicability.
Lacking the generalization, one risks the application of
existing theorems conceived for formulations I which are
actually meaningless for physical models belonging to case
I or III.

Some of the most remarkable and intriguing
implications are those for particle physics. The only time
evolution known at this point with a structure truly of type
I (that is, with an associative envelope with trivial
product Xin) is that of Heisenberg’s equations in quantum

mechanics:

A= -%-[Z,H] = -%—(ZH - FA) , 2AH = Associative product
(2.1.16)

with fundamental brackets (in our unified notation a=(v,p),
of course, now reffered to as operators in a Hilbert space).

)"1][:\!

R® = (p,0) | (2.1.17)

aR°® aR?
v n

[3,5"] = 38" - 33 = 13" = i [ :

aa¥ da

The mere identification of the possibilities of generalizing
Lie’ theory according to types II and III immediately
implies the possibility of generalizing Heisenberg’s
equations accordingly.
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In fact, Santilli (1978d, pp. 725 and 752) proposed
the following Lie-isotopic generalization of Heisenberg’s
equations

A- 3[R - L@ara - ) (2.1.18a)
% R aR ||}
[3,3%] = i0"Y(@3) = i —v . K (2.1.18b)
" aa¥ aa’
and the following Lie-admissible generalization
A= g [AH - L (a0 - m2) (2.1.19a)

(-a'u’-av) = iLMY G) - i(‘nl-"'+'7'l-"’) , V=T (2.1.19b)

As a matter of fact, generalizations of Lie’s theory of
types II and III were intended as mathematical tools for the
proper treatment of the corresponding generalized equations
of type (2.1.18) and (2.1.19). For these quantum mechanical
applications the interested reader may inspect Santilli
(1992a,b,c).

The generalizations of type II and III studied until
now in these introductory words refer to the transition from
conventional, linear, local-differential and canonical- Ha-
miltonian realizations of Lie’s theory to covering formula-
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tions which are nonlinear and noncanonical-nonhamiltonian ,
yet still local-differential. This is requested by the use
of the conventional symplectic geometry, owing to its
stricly local-differential topology.

The transition from the symplectic geometry to its
isotopic covering, as presented later on in Chapter V, then
permits the transition from local-differential-canonical
realizations to their nonlinear-nonlocal-nonhamiltonian
coverings.
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2.2 : ISOTOPIC GENERALIZATION OF UNIVERSAL ENVELOPING
ASSOCIATIVE ALGEBRAS.

In this section we shall first review the definition
of universal enveloping associative algebra, and the methods
for the construction of its basis according to the Poincaré-
Birkhoff-Witt theorem, (see, e.g., Jacobson 1962). We shall
then present their isotopic generalizations, that is, genera-
lizations which preserve the associative character of the
product. By keeping in mind the primitive character of the
enveloping algebra in Lie’s theory, the generalizations
presented in this section render inevitable a corresponding
reinspection of lie algebras and of Lie groups initiated in
the next section.

DEFINITION 2.1.1 The universal enveloping associative
algebra of a Lie algebra L is the set (U,7) where U is an
associative algebra and 1 a homomorphism of [ into the
attached algebra U™ of U satisfying the following properties.
If U’ is another associative algebra and 1’ a homomorphism
of L into U’, a unique homomorphism y of U into U’ exists
such that t'=1y; i.e., the following diagram is commutative

(2.2.1)

Ml
™ o

Q(——C:
-t
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Whenever an algebra U belongs to the context of the
 definition above, we shall write U(L). All Lie algebras are
assumed, for simplicity, to be finite-dimensional. Also, all
algebras and fields are assumed to have characteristic zero,
and the basis of all Lie algebras is ordered.

The construction of the enveloping algebra U(L) is
conducted as follows : . '

Consider the algebra [ as a vector space with basis
given by the {(ordered set of) generators Xi, i=1,...,m. The
tensorial product Lel is the ordinary Kronecker (or direct)
product of L with itself as a vector space. Such a tensorial
product constitutes an algebra because it satisfies the
distributive and scalar laws. Also, the algebra is associa-
tive because the Kronecker product is associative. The most
general possible, associative, tensor algebra which can be
constructed on L as vector space is given by :

T = Frelo(lel)o(lelsl)e... (2.2.2)

where F is the base field and e denotes the direct sum. Let
K be the ideal generated by all elements of the form :

[Xi,Xj]-(stXj-XjeXi) ' (2.2.3)

where [Xi,Xj] is the product of L. Then the universal
enveloping algebra U(L) of L is given (or, equivalently, can
be defined) by the guotient :

uL) = & (2.2.4)
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It is possimple to prove that the algebra (2.2.4) satisfies
all the conditions of Definition 2.2.1 (see, for instance,
Jacobson 1962 loc. cit.).

Of the most importance for mathematical and physical
considerations is the identification of the basis of U(L).
The quantities :

Ms = Xilexize...@xis (2.2.5)
are called standard (nonstandard) wmonomials of order s
depending on whether the ordering :

isi=,, =i (2.2.6)

is verified (not verified). It is possible to prove that
every element of U(L) can be reduced to a linear combination
of standard monomials and (cosets of) 1. This yields the
following fundamental theorem on enveloping associative
algebras (Jacobson, loc. cit.).

THEOREM 2.2.1 (Poincaré-Birkhoff-Witt Theorem). The cosets
of 1 and the standard monomials form a basis of the
universal enveloping associative algebra U(L) of a Lie
algebra L.

The associative envelope U(L), as presented, is still
abstract in the sense that the product of U(L)is the
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tensorial product XI@X i while the product used in physics
{e.g., quantum mechanlcs) applications is the conventional
associative product xixj. Consider then the algebra :

A({L) = FroA{Uep Pe . .
A = {X XX}, dsis st (2.2.7)

It is possible to prove that U(L) is homomorphic to A(L)}, in
line with Definition 2.2.1. Thus the algebra A{L} can be
assumed as the universal enveloping associative algebra of [
with basis :

{1, Xy X, XKoo XX X . ; isigi, .. (2.2.8)

1s

and arbitary elements : Xﬂxt;u.XES (2.2.9)

where the X’s are the generators of L. Notice that A(l) is
infinite-dimensional. The center of A{L) is the set of all
polynimials P(X) verifying the property :

[P(X),xi]A =0 (2.2.10)

for all elements Xel. Most important elements of the center
are the so-called Casimir invariants of L.

We move now to the identification of the desired
associative-isotopic generalization.
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DEFINITION 2.2.2. (Santilli 1978b). The isotopically mapped
‘universal enveloping associative algebra of a Lie algebra (L
is the set ((U,71),U",1,7") where

(i) (U,v) is the universal enveloping associative algebra
as per Definition 1;

(ii) i is an isotopic mapping of L, 1'(!.)=I.*, as per Chart
4.2;

(iii) U is an another associative algebra generally
nonisomorphic to U; and

(iv) T is a homomorphism of " into U*', such that the
following properties are verified.

If U+ is still another associative algebra and T+ a
homomorphism of L into U*", a unique homomorphism v* of U’
1nto U+ exists such that T f-v T , and two unlque isotopies
1 and 1' exist for which 1U—U and 1fU'-U +, i.e., the
following diagram is commutative :

1
>
*

U 2> U
d Uy
L ,TY i o ly (2.2.11)

Whenever an algebra U verifies the conditions of the
definition above, we write U'(L). Again, for simplicity, we
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assume that all Lie algebras are finite-dimensional, all
algebras and fields have characteristic zero, and all Lie
algebra bases are ordered.

We are now in a position to elaborate on the insuffi-
ciency of Definition 2.2.1, and the need of Definition 2.2.2
for the physical and mathematical studies under considera-
tion in this monograph. We shall indicate first the mathema-
tical aspect and then point out the physical profile.

The main idea of Definition 2.2.1 is, beginning with
the basis of a Lie algebra L, to construct an enveloping
algebra U(L) such that [U(L)] =L. The more general idea of
Definition 2.2.2 is, beginning also with the basis of a Lie
algebra L, to construct an enveloping algebra U'(L) such
that the attached algebra [U*(L)]' is not, in general,
isomorphic to L but rather is isomorphic to an isotope " of
L, and we write!®

W ~ ¢ L (2.2.12)

The lack of unique association of a given basis with
the envelope then ensures freedom in the realization of the
associative product. Equivalently, we can say that within
the context of Definition 2.2.1, a given basis essentially

{3) Note that the scripture U*(L)_ (rather than U*(L*)) is
intended to stress precisely properties 2.2.12.
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yields a single unique enveloping algebra and thus a single
unique attached Lie algebra. On the contrary, within the
context of Definition 2.2.2, a given an n-dimensionalbasis
yields all possible enveloping algebras, and, thus all
possible n-dimensionallLie algebras. S$till equivalently, we
can say that, as 1is conventional in the contemporary
formulation of Lie’s theory, nonisomrphiclie algebras are
expressed via the use of different generators and the same
realization of the Lie product. On the contrary, within the
context of the isotopic formulation of Lie’s theory, noniso-
morphic Lie algebras can be obtained via the use of the same
basis and different realizations of the Lie product. We can
therefore state that all possible enveloping associative
algebras can indeed be introduced according to Definition
2.2.1, which is therefore suitable for the classification of
Lie algebras. Definition 2.2.2 is more general inasmuch as,
besides permitting the introduction of all possible envelo-
ping algebras, it also permits us to construct nonisomorphic
algebras via the same basis, by therefore rendering necessary
the use of the most general possible realizations of the
associative product.

On physical grounds, these mathematical mechanisms
are at the foundation of the Lie isotopic generalization of
Hamilton’s and Heisenberg’s equations for closed non-self-
adjoint interactions. As now familiar, the definition of
physical quantities is independent of whether or not the
-system possesses nonpotential interactions. When these
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interactions are admitted by the theory, they are repre-
sented via an alteraction of the Lie algebra product. As a
result, when the Hamiltonian description of a closed self-
adjoint system

. a
A(a) = [AE ] = oM Fot a=(2,p) (2.2.13)
° 84

ad
is generalized into a Birkhoffian form to represent the
additional presence of internal, contact, nonpotential,
interactions :

Aa) = ARG - aa" aa"

(2.2.14)

the basis of the original Lie algebra remains unchanged,
together with the underlying carrier space (RxTﬂ”} and the
field, and only the realization of the Lie algebra product
(that is, the realization of the envelope) is permitted to
“change. As a result, the original Lie algebra [ with basis
X, (a) over TH equipped with conventional Poisson brackets
1s mapped into the isotope L , which preserves the original
basis Xi(a) in the same local coordinates of T M, although
it is now equipped with the generalized Poisson brackets,
i.e.,

Ls XX = (KpX) - (KX)o ———

(2.2.15)

Lo XX Dy = KoKy - (X x)(a)

82



In the transition to the case of Heisenberg’s
equations, the situation is essentially the same and
actually turns out to be more directly compatible with
Definition 2.2.2. In fact, for consistency of the theory with
its classical image, during the generalization of Heisenberg’
s equations :

0@3) - -il- [A,H] (2.2.16)

into the Lie-isotopic form :
D(3) = -+ (A,A) (2.2.17)

the nonpotential forces due to charge overlapping are
expressed via the Lie-isotopic generalization of the product

L : [Xi,Xj] = xixj-xjxi —_— L [xi,xj] =

- X,TX XX, (2.2.18)

Mechanism (2.2.18) is clearly along Definition (2.2.2)
rather than (2.2.1).

The alterative approach would be that of preserving
the original simplest possible product and changing the
basis in order to reach direct compatibility with Definition
2.2.1. However, this approach has a number of problematic
aspects. First of all, it is centered on the loss of the
direct physical meaning of the generators (e.g., the
physical linear momentum in one dimansien, p=m*, is replaced
by abstract objects of the type p=aexp(Bri). Secondly, the
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approach does not permit the achievement of the direct uni-
versality, for all possible nonlinear, nonlocal and nonpoten-
tial systems. The removal of unnecessary restriction on the
realization of the enveloping algebras is clearly preferable,
both mathematically and physically.

Owing to the relevanve of mechanisms (2.2.15) and
(2.2.18) for this monograph, it is important to give an
exlicit example. To stress the fact that the ideas are not
necessarily restricted to nonpotential interactions, we
select an example of isotopy for the harmonic oscillator in a
three-dimension Euclidean space.

We know that the nonisomorphic groups S0(3) and
$0(2.1) are isotopic symmetries with respect to the Hamilto-
nians :

H(a) = —%—(pi+P§+p:)+—%—-(x2+yz+z'z) a=(r,p) m=k=1
(2.2.19a)

H (a) = —i— (;f-P:+pzz)+§!— (x%-y*+2%) (2.2.19b)

that 1s, they are symmetries leading to the same
conservation laws of the components Mb, b=x,y,z, of the
angular momentum via the use of Noether’s theorem. Let us
review the case again and reinterpret it in 1light of
Definition 2.2.1 and 2.2.2.

The Hamiltonian realization of the symmetry SO(3) of
H(a) is based on the Lie algebra of conserved quantities :

SO(3) : [Hx,Hy] = Mz . [Hy,Mz] = Mx , [MZ,HX] = Hy (2.2.20)
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which is defined in terms of the conventional Poisson
brackets

MM 1 = (M,M)-(M M) (2.2.21a)
( aM, " oM_ @) |+l 0
M,M) = — 8, H ) = +1
b" e i i 0p. 3
ar J 0 +1
(2.2.21b)

In the transition to the equaivalent Hamiltonian

H*(a), the conserved quantities Mb clearly remain conserved,
_but the SO(3) symmetry is broken and is replaced by the
nonisomorphic symmetry S0(2.1). The problem now is the
construction of a realization of the S0(2.1) algebra (the
Lorentz algebra in (2+1)-dimensions) whose generators are
those of the nonisomorphic SO0{3) algebra (the rotational
algebra in three-dimensions). This can clearly be achieved
if and only if one alters the Lie algebra product. An
explicit realization has been identified by Santilli (1978a)

and is given by the well-known commutation rules :

$0(2.1) : [Mx,My] =M, [My,MZ] =-M ., [M,M] = Hy

which are now expressed in terms of the generalized Poisson
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(Birkhoffian) brackets.

M M1 = (Mb,nc)*-(nc,ub)' . (2.2.23a)
oM oM +l 0
(M,M) - “‘2‘“? I (u;ii) = -1
ar . 0 +1
(2.2.23b)

Note that the insistence in the preservation of the same
realization of the Lie algebra product, in this case, would
prohibit the representation of the conservation of the
angular momentum via a symmetry of the Hamiltonian H*(a).

The example considered therefore establishes that one
given basis (the componets of the angular momentum M=r«xp,
p=mt) can define a hierarhy of enveloping algebras and
attached Lie algebras, depending on the selected
realizations of the products, which is fully in line with
diagram (2.2.11) and Definition 2.2.2. The example actually
establishes not only the insufficiency of Definition 2.2.1
but also that of Definition 2.2.2 itself. In fact, the
algebras (Mb,Hc) and (Mb,Mc)* are nonassociative, therefore
demanding further generalization of Definition 2.2.1 for
nonassociative enveloping algebras of type IIT even though
the existence of a realization within the context of the
Lie-isotopic generalization is expected to exist. For studies
on the nonassociative, Lie-admissible generalization of
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enveloping algebras one may consult Santilli (1978a) and
Ktorides et al (1980).

Stated in different terms, the example establishes
the generalizations of the conventional definition of the
envelope of the Lie algebra of the group of rotations as per

diagram (1)
]
T
/ J Y (2.2.24)
T\\ _
U

into the Lie-isotopic form as per diagram (2.2.11).

| U
/ ] T .
S0(3) \\\\\N i}¥ 1 > $0(2.1) < l Y (2.2.25)
T F
T

which is expected for operator-type realizations (2.2.18).
In addition, the example establishes that generalization
(2.2.25) is only an intermediate step, prior to a more
general nonassociative realization which is not considered
here for the sake of brevity.

With a clear understanding of the new capabilities,
as well as limitations, of the Lie-isotopic generalization,
we pass now to the study of the generalization of Theorem

S0(3)

<
-
<
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2.2.1.

The construction of an isotope U*(L) of U(L) can be
conducted as follows (Santilli 1978a, 1982c). Perform an
isotopic mapping of the tensorial product xiexj of U(L)

X eX —— XX, (2.2.26)
i3 i

that is, any invertible modification of the product e via
elements of U(L), of the base manifold, and of the field,
which preserves the distributive and scalar laws (to qualify
as an algebra), as well as the associativity of the product
(to qualify as an isotopy), i.e.,

(XiJXj)JXk= X f()( 5X )( (2.2.27)

The product of two elements Xi1XJ_ and XrJXsis then given by
(XiJXj)I(X ‘gX 2 = X 11)( JJX 1')_( . (2.2.28)

and no ordering ambiguity arises because of the preservation
of the associative character of the original product.Note
that, for the more general nonassociative Lie- admissible
generalization, the left- and right-hand sides of quantities
(2.2.27) would be different. In this case all possible
different orderings of the product must be taken into
account

The isotope of the associative tensorial algebra T
can then be written :

T = Frote(LiL)e(Lilil)e... (2.2.29)
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Let R be the ideal of T 'generated by :
[Xi,Xj] - (Xij-XfX ) (2.2.30)

where [Xi,Xj]* is the product in L". An isotopically mapped
universal enveloping associative algebra U*(L) of the Lie
algebra L can then be written :

UL - T (2.2.31)

*

Structure (2.2.31) is, by construction, the universal enve-
loping algebra of L', where L" is realized via an isotopic
mapping of L.

The remaining aspects of the theory of Ur(L) are
essentially given by an isotopic mapping of the
- corresponding steps for U(L) outlined above. The quantities

Ms = XﬂJXin...JX is (2.2.32)
are called isotopically mapped standard (nonstandard)

monomials depending on whether the following ordering

condition :
i=i=, .=] (2.2.33)

is verified (not verified). In the reduction of an arbitrary
element of U'(L) '

k1 k2 kr

)(1.1 1 Xizz cee 1 X ir (2.2.34)

to standard monomial, a new feature arises, due to the fact
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that the emerging combinations of these latter monomials may
occur via functions on the base manifold. This, in turn, is
because the isotopy @ —1 can be realized via functions of
this type. We call these combinations F -linear, to
differentiate them from the F-linear combinations for the
conventional case, that is, combinations only via elements
of the field. As we shall see in the next chart, these F-
linear combinations have a precise interpretation within the
context of the isotopic Lie’s theory. Despite this generali-
zation, the construction of the basis of U*(L) paralles that
for U(L) because Lf(L) is a conventional envelope for L.
The (inverse) isotopy then simply reduces L™ to L.

Finally, introduce the isounit I of U*(L), i.e., the
quantity 1" such that 11X ?X {r;& ’% i=1,2,...,n, and* the
lifting of the original field F into the isofield F with
isounit 1~ (Sect. 1.4). Then the primary result of this
section can be expressed via the following.

THEOREM 2.2.2 (Isotopic Generalization of the Poincaré-
Birkhoff-Witt Theorem, Santilli, loc. cit.). The cosets of
r'eF  and the standard isotopically mapped monomials from
a basis of the isotopically mapped universal enveloping
associative algebra U*(L) of a Lie algebra L with basis :
i1, X E xifx i2? X dx ﬂ} ia (2.2.35)
11512 ’ 11512513

The distinction between the tensorial realization and
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that used in practical applications is now lost. Indeed, the
mapping xiexj——» )(i)(j can be considered, in the final
analysis, a particular form of isotopy.

The explicit form of the basis depends on the assumed
type of isotopy e—— . In turn, this depends on the
realization of the basis xi of L, whether via matrices,
quantum mechanical operators, or classical functions on
phase space, etc.

Suppose that the X’s are realized via matrices. Then
an isotopy is provided by Equation (2.2.18). Let 7 be a
polynimial on the X’s (not necessarily on the center of
U*(L))(42 Then the explicit form of basis (2.2.35) is given
by

Iy X X X, » X, T TX (2.2.36)
ilsiz ) ilsizsi3 T=fixed , 1 =¥
Needless to say, the isotopy Xin———h—e XiTXj is only one
example of possible associativity-preserving modifications
of the product, and numerous additional forms exist. For

(4) In a number of applications, the element T cannot
actually be expressed via F -linear combinations of
polynomials of the original basis, and as such, it is
outside the original envelope.
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instance, if ¥ is an idempotent matrix (¥=W), then another
associative isotopy is given by(ﬂ

XX = WX X W (2.2.37)

A few comments in regard to the unit are now in order.
As one can see, Theorem 2.2.2 has been formulated in its most
general possible isotopic form, that with respect to an
- isofield ¥ with isounit 1: because needed for future
aspects, such as the identification of the most general
possible isotopies of the Lie algebras and groups.

The reader should be aware that the isotopy of the
base field necessarily implies that of the underlying
manifolds. Thus, Theorem 2.2.2 is formulated, strictly
speaking, in a form compatible with the notion of isomani-
folds of the next chapters, which is the main line of inquiry
of this monograph.

Theorem 2.2.2 also admits a sort of "intermediary"
formulation, that on ordinary manifolds, in which case the
base field is conventional and the unit is the trivial one.
In this latter case, Theorem 2.2.2 still holds with the
conventional unit 1 replacing the isotopic one 1" in the
infinite-dimensional basis (2.3.35). In fact, the latter

(5) Intriguingly, isotopy (2.2.37) was introduced within the
context of the studies for a possible isotopic generaliza-
tion of Heisenberg’s indeterminancy principle for strong
interactions (Santilli 1981a, 1992c)
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formulation was used in Santilli (1978a, 1982c), while the
former is used in Santilli (1991a).

The origin of the above alternatives is related to the
underlying geometry. In fact, if one selects the canonical
realization of the symplectic geometry on T:M over ¥ then the
conventional Theorem 2.2.1 applies. If one selects the
Birkhoffian realization of the symplectic geometry also on
T:M over F, then the "intermediate" version of Theorem 2.2.2
holds with the conventional unit reF. On the contrary, if one

selects the isosymplectic geometry on an isomanifold over F,
then the most general possible formulation of Theorem 2.2.2
‘holds. _

The above three alternatives will be clearer in the
next section when studing the corresponding construction of
the Lie groups.

In summary the mathematical aspect here is that the
knowledge of a given set of generators deos not uniquely
characterize a Lie algebra because of the freedom in the
selection of the enveloping algebra. The physical aspect
treated is that the knowledge of a Hamiltonian does not
uniguely characterize the ohysical system because such a
characterization also depends on the explicit form of the
brackets of the time evolution.
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2.3 ISOTOPIC GENERALIZATION OF LIE’S FIRST, SECOND, AND
THIRD THEOREMS

As well-known, an effective historical, and technical
way of presenting Lie groups and Lie algebras is according
to their original derivation.by Sophus Lie via celebrated
First,Second, and Third Theorems {(Lie 1893). We shall first
review these theorems and then show that they admit a
consistent Lie isotopic, generalization which is compatible
with the isotopic generalization of the enveloping algebra
of the preceding section (Santilli 1978a, 1982b, 1991a).
More specifically, the objective of this section is to show
that the notion of connected Lie transformation group admits
a generalization such that, when reduced in the neighborhood
of the identity, admits Lie algebras in their most general
possible realizations of the product.

From a physical viewpoint, there layers of the theory
can be identified. First, we have the conventional
formulation, and canonical-Hamiltonian transformations on a
manifold, say, the phase space T+M. In this case the
conventional Lie’s Theorems apply.

Second, we have transformations on an ordinary mani-
fold which, besides preserving the local-differential cha-
racter , are nevertheless noncanonical-Birkhoffian. In this
case a first, "intermediate" isotopic form of Lie’s Theorems
apply, that characterizing the most general possible Lie
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product although on a conventional manifold.

Finally, we have the most general possible trans-
formations on an isomanifold, isotransformations, which are
generally nonlocal-integral. In this latter case, we have
the most general possible isotopies of Lie algebras and
groups on isomanifolds.

This second is devoted to the "intermediate" presenta-
tion of the isotopies of Lie’ Theorems, that on conventional
manifolds, while the more general forms on isomanifolds will
be considered later on in this analysis.

As clearly stated in Santilli (1978a, 1982c), a ma-
thematical and physical motivation for the "intermediate"
formulation is the following : Recall that the canonical
realization of Lie’s Theorems provides the algebraic
counterpart of the symplectic geometry in canonical
-realization, 1i.e., the nowhere degenerate, exact and
canonical two-form (2.1.10). These methods, in turn, provide
the, algebraic and geometric characterization of Hamiltonian
systems.

The analysis of this section provides the algebraic
counterpart of two-forms (2.1.11) which are the most general
possible nowhere degenerate, exact and symplectic forms in
local coordinates, called Birkhoffian two-forms by Santilli
(loc. cit.). Still in turn, the transition from the
Hamiltonian to the Birkhoffian realization of Lie’s theory
and of the symplectic geometry permits the representation of
the most general possible nonlinear and nonpotential (varia-
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tionally nonselfadjoint) systems although in their
local-differential forms. '

The subsequent third level of study, conducted later
on in this monograph, provides the algebraic characteriza-
tion of the most general possible isosymplectic two-forms,
thus permitting the treatment of the most general possible
nonlinear and non-Hamiltonian systems, this time in their
nonlocal-integral form.

The emerging isotopic generalization of Lie’s theory
(that is, of the enveloping algebra, Lie algebras, Lie
groups, representation theory) was used for the construction
of the isotopic generalization of Galilei’s and Einstein’s
relativities for closed non-self-adjoint systems (Santilli
1982c, 1991d, 1992b). Since the theory alsc admits operator-
type realizations, its abstract formulation is expected to
permit the joint treatment of clesed, classical and quantum
mechanical, nonpotential interactions, in much of the same
way as the conventional abstract formulation of Lie’s
theory permits a joint treatment of closed classical and
quantum mechanical interactions of potential/Hamiltonian
type. The underlying physical objective is therefore to
achieve, in due time, the generalization of the contemporary
notion of interactions, with corresponding generalization of
relativities and physical laws.

DEFINITION 2.3.1 let M be a Hausdorff, second-countable,
analytic, N-dimensional manifold with local coordinates a,
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u=1,2,...,N (e.g., MTM or RJM. The set of
transformations on M depending on r-independent parameters
ol, i=1,2,...,r

a ——— as=f(a;8)-{f*(a";6')) (2.3.1)
is called a Lie transformation group when the following
conditions are verified.

1. All functions f* are analytic in their variables.
2. For any given two transformations
ar=f(a;0) , a'=f(a’;6) - (2.3.2)
a set of parameters exists
0+ =g'(8,0¢) (2.3.3)

characterized by analytic functions gi called group
composition laws, such that :

ars = f(a;6//) : (2.3.4)

3. Transformations (2.3.1) recover the identity trans-
formation at the null value of the parameters, i.e.,
a=f(a;0) (2.3.5)

4. Corresponding to each transformation (2.3.1), there
is a unique inverse transformation
a=f(a-;0™") (2.3.6)
and thus the transformations are regular,
5. The combination of any transformation (2.3.1) with its
inverse (2.3.6) yields the identity transformation.
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The number r of independent parameters is called the
dimension of the Lie group.

A central property of Lie transformation group is
that they are connected; that is, they can be continuously
connected to the identity. The primary idea of Lie’s
theorems is that, under the conditions indicated, the groups
can be studied via their infinitesimal transformations,
because a “finite transformation can be recovered via
infinite successions of infinitesimal transformations.

We shall review these ideas by following as closely
as possible their original derivation. Consider transforma-
tions (2.3.1) and their identity

ar=f(a;0) , a=f(a;0) (2.3.7)
and perform the infinitesimal variations
ar=a+da=f(a;0+d0) ; a+da=f(a;d8) (2.3.8)

where do and 30 represent two independent variations of the
parameters. We can then write

da = Lfg%—Bl de - ' (2.3.9a)
5a = ["’—f‘gg—el] 50 (2.3.9b)
=0

The transformation 6+d® can be interpreted as the product of
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transformations relative to © and 50, i.e.,

8+del=q!(0,50) (2.3.10)
‘for which

L i
e‘+da‘=¢‘(e,0)+-[ 0 ?,u ] 567 +... (2.3.11)
8a
a=0

Thus we can write
. R i
dei=p;(e)aeJ , u; = [ % (8,0 ] (2.3.12)

The formula above represents a relation between d8 and &9
which can also be written

J_vi i Lk kel =3
selad(e)50! ,  Alepnl- (2.3.13)
By putting
T
w(a) = [-ﬁf-iézgl ] (2.3.14)
29

and by using Equation (4b) can be written
da"=u:(a)x';(e)dej (2.3.15)

In this way we reach Lie’s first theorem.
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THEOREM 2.3.1 When transformations (2.3.1) form a connected,
m-dimensional, Lie group, then

U
8 w(a)a“(e) (2.3.16)
agd kT

where the functions ui are analytic.

Let A{a) be an (analytic) function of the variables.
The infinitesimal Lie transformation a —— a+da induces a
variation of A(a) which can be written

dA = 22 sed - serer 24 - sk (2.3.17)
aa" ! k ag¥ k
The m-independent quantities :
Heo.
X = x(a) = w(a) i - | 2B} 2 (5318
aa” a8 oo 02

are called the infinitesimal generators of the
transformations (or of the group). For our later needs, we
refer to the X’s defined by Equations (2.3.18) as the
standard generarors.

We are now interested in the (necessary and
sufficient) conditions for transformations (2.3.1) to
costitute a Lie group. By using the converse of the Poincaré
lemma, they can be written :
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&at - g al

2 2 (2.3.19)
80 a9’ 80° 50"
that is
au” axk ay¥ 8k
EN o Kk L (2.3.20)
el 1k gpl apd 1 k apd
Thus § L
ax" AN au au¥
u¥ J L[ = ak ko )k =
kKl ap! a6’ i a0t 1 ag9
H H
- K U aa" R %, s .
I 83 ot tosa¥ aed
H [
rovy 1l aur k vyl aur
= Ajulki ” - )\jul)\j _v (2.3.21)
da 3a
Therefore,
au* aug )
U — - Y = C.u (2.3.22)
to&a¥ I 8 =
where
ij = Ml FX 8" e

The m® quantities C';j are independent from 8. This
can be seen by differentiating Equation (2.3.22) with
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respect to . After some simple calculations, one then see
that ‘
act

—8 20 1,3,k121,2,...,m (2.3.24)
26

In this way we reach Lie’s second theorem.

THEOREM 2.3.2. If Xi, i=1,2,...,m are the generators of an
m-dimensional Lie group, they satisfy the closure relations

- XY =k
[Xi,Xj]A = Xin Xin Cink (2.3.25)

where the quantities Cij are called structure constants.

The symbol A in Equation (2.3.25) denotes an associa-
tive algebra with a conventional, associative product of
operators Xij' At closer inspection, this algebra emerges
as being the universal enveloving associative algebra of the
Lie algebra characterized by the rule (2.3.25).

The fundamental Lie’s rule (2.3.25) can be explicitly

written :

- p 8 v 8 S S 8
[X,.X,1, [ui o ] G 0 S (2.3.26)

where the product [Xi,X'j]A is Lie; that is, it satisfies the
identities :
[Xi,Xj]A + [XJ_,Xi]A = 0 (2.3.27a)
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[[Xi’xJ]A'Xk]A + [[xj’xk]A’XI]A + [[Xk’xi]A’Xj]A =0
(2.3.27b)

By substituting into these expressions the explicit
form of the Lie product in terms of the structure constants,
Lie’s third theorem is reached.

THEOREM 2.3.3 The structure constants of a Lie group in
standard realization (18) obey the relations :

c‘;j +C =0 (2.3.28a)

Coley + CCr + CiiC, = 0 (2.3.28b)

Theorems (2.3.1-2-3) essentially provide the corres-
pondence between a given (connected) lie goup G and its Lie
algebra 6. In particular, they allow the characterization of
a Lie group in the neighborhood of the identity via the
‘structure constants. We have here tacitly implied that
different Lie groups may exist all admitting the same Lie
algebra, that is, the same structure constants. However,
among all Lie groups with the same Lie algebra only one is
simply connected, called the universal covering group. For
instance, group SU(2) (SL(2.C)) is the universal covering
group of the group of rotations SO(3) (the homogeneous

Lorentz group S0(3.1)).

The inverse transition from a Lie algebra to a
corresponding Lie group can be characterized via the
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inverses of Lie’s first, second, and third theorems.

We pass now to the Lie-isotopic generalization of
Definition 2.3.1 and Theorems (2.3.1-2-3) The prior identi-
fication of the main objective may be useful here. Llie’s
crucial result is fundamental rule (2.3.25). This rule
essentially characterizes Lie algebras via the conventional
associative product XX, of vector fields X€=ug(a)a/6a“ on a
manifold M. Our main objective is to generalized Definition
2.3.1 and Theorem (2.3.1-2-3) in such a way as to characte-
rize a Lie algebra via the most general possible associative
product‘X;Xj of vector fields on a manifold.

Of utmost importance is the condition that the Iocal
coordinates a", the parameters Bi, and the generators Xi of
the conventional formulation of Lie’s theorems are not
changed Iin their isotopic generalization. This is due to
physical requirements which are uncompromisable for the
description under consideration. As we recalled earlier, the
local coordinates of M customerily have a direct physical
meaning such as the coordinates of the frame of the experi-
mental setup; the parameters carry a direct physical meaning
as measurable quantities such as time, angle, etc., and the
generators directly represent physical characteristics such
as energy, angular momentum, etc. When the conventional
description of self-adjoint interactions via Theorems (2.3.
1-2-3-3) is broadened to permit the additional presence of
the non-self-adjoint interactions,the frame of the experi-
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mental observer must be preserved; and physical characte-
ristic such as energy and angular momentum must also be
preserved unaltered.

These objectives can be realized as follows :

DEFINITION 3.2.2 Let
62" —— a™=g"(a;0)f"(a,0) = £"(a;6) (2.3.42a)

det(g:):o , gth = 6: A (2.3.42b)
which verify the following properties :

(a} The transformations *—f*(a-e) constitute a Lie
Transformation group, by therefore verlfylng conditions 1-5
of Definition 2.3. 1

(b) The group G is realized via the same base marifold,
the same parameters and the same generators of G.

{c) When reduced in the neighborhood of the identity
transformations, the group G can be characterized by the
Lie algebra isotope & of 6.

Condition (c) is introduced to avoid non-Lie, Lie-
admissible algebras in the neighborhood of the identity
transformations. As a matter of fact, it is precisely this
possibility that permits the further generalization of Lie’s
theory of type III (Santilli 1978a, 1982d).

Since the group of transformations f"(a;8) is a
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conventional, connected Lie group by assumption, it can be
studied in the neighborhood of the identity as in the
conventional case. The repetition of the analysis of f(a;0)
then yields the expressions :

da" = u:"(.-;\))\‘;(e)dei (2.3.43a)

w'(a) = | 2 ¢%(a;0)f"(as0) (2.3.43b)

In order to realize the isotopy, we then introduce the
following reformulation in terms of the quantities of G for
given g:(a) functions :

u(a) = g (a)u!(a) , det(g)) = O (2.3.44)

Note that the other possibility u:‘ = g:u:, even
though conceivable (and actually more in line with Equations
(2.3.43)), is excluded here because it would imply the
redefinition of the generators :

a * povi B8
X=u“[ ] » X = g'u [————]
k 'k aau k v k aau

which is contrary to the notion of isotopy under study. The
analyticity of the transformations then trivially implies
the following generalization of Lie’s First Theorem.
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THEOREM 2.3.4.‘8)(Santilli, loc. cit.) If transformations
(2.3.42) characterize an isotopic image G of the Lie group
G of transformations (2.3.41), then analytic functions g, (a)
exist such that :

*,

da "
80’

= gi(a)ui(a)r] , detg=0  (2.3.45)
and the u:(a) functions are analytic,

This theorem, though analytic trivial, has nontrivial
implications. Indeed, it implies a modification of the
structure of the group in the neighborhood of the identity,
i.e.,

G:atx a“+eiu:(a) — G a”+eigi(a)ug(a) (2.3.46)

which 1is precisely the desired situation. We must now
- identity the integrability conditions under which such a

(6) The identity transformation of a Lie group should not
be confused with the unit element of the universal
enveloping associative algebra. As we shall see, the
identity trasnformation of & is preserved in a way
compatible with the loss of the conventional unit element 1
for A (6).
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behavior is still Lie in algebraic character, when expressed
in terms of the generators and parameters of the original
group. Under these conditions, we say that the quantities gj
of Equations (2.3.45) or (2.3.46) are isotopic functions
with respect to G. _

The group G is Lie and thus admits the standard
realization worked out earlier in this chart :

T TR - RTY ck o 22 (2.3.47a)
i aav 3 i aav i i k aau
k r.s 6)\: 8)\:
¢5, = ui L. (2.3.47b)
a0 80
X X1, =XX - XX = ck X, (2.3.47¢)
= 2
X = u(a) oo (2.3.47d)

The group G is also Lie and thus can be realized in the
standard form :

T TR O A L T 8 (2.3.48a)
1 osaY et b ok gt
*K *r *s ak:k 8\ ) 3
iy = "1"3 20° - e (2.3.48b)
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* o ow * x * k LI
[Xi,Xj]A = XiXJ_ - Xin = Ci‘j X {2.3.48c)

X =uta) 2— (2.3.48d)
ko k aa"

However, this realization generally implies a change of the
generators in the transition from G to G :

2] * * * 8

G : X =u » 6 X =u¥ — (2.3.49)
k ka2 ko ko ga¥

and, as such, does not verify the conditions for isotopy. To

achieve the objective under consideration, we introduce the

following isotopy of the universal enveloping associative

algebra, realized via functions on the base manifold :

. * e ¥Y*Y = a'¥ S
AB) : XX, —— A'(6) : XX, = g X GX (2.3.50)

Notice that this mapping does verify the conditions of
isotopy, in the sense that it is realized via the generators
of the original algebra, while preserving the associativity
of the product,

(a"X g°x )gt){t = gX (93X g.X.) (2.3.51)

1 ris J sk t

The fundamental Lie rule (2.3.47c) can now be written :

TS R - R 3 w (2.3.52a)
P j igaV i ij
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T, = Clgk(a) (2.3.52b)

The integrability conditions for the functions g:(a) to be
isotopic, that is, to yield rule (2.3.52), can then be
readily computed. Thus we reach the following generaliza-
tion of Lie’s second theorenm. '

THEOREM 2.3.5. (Santilli, loc. cit.) Under the integrability
conditions :

kv & 1 kv 8 1 r sal * 1
9,4, ad’ 9, - 94 2l 9, =990, +C; 9%
(2.3.53)

the generators Xi of an isotope G of a Lie group G satisfy
the isotopic rule of associative Lie-admissibility :

* - * = k
(X X[0, = XX, - XX = T (a), (2.3.54a)
* . . =af s
A(8) XX = giX g (2.3.54b)
X =u'(a) 2— (2.3.54c)
k Tk aa"

where the quantities Ctd(a), here called structure
functions, are generally dependent on the (local)
coordinates of the base manifold of the original group.
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In this way we reach an interpretation of the
F'-linear combination of the isotopically mapped standard
monomials. While in the standard realization (2.3.47c) the
quantities CZE are constants (the structure constants of a
Lie group), the corresponding quantities which emerge after
the reformulation of the same group G in terms of the base
manifeld, the parameters, and the generators of G, acquire
an explicit dependence on the local coordinates (the
structure functions ng(a)). This situation has numerous
technical implications (e.g., from the viewpoint of the
representation and classification theory) which are not
considered here.

The reformulation of Lie’s third theorem is now
straightforward. Indeed, the use of the Lie algebra laws for
the isotopically mapped product (2.3.54a) yields the
following property.

THEOREM 6. (Santilli, loc. cit.). The structure functions
ng(a) of the isotopic realization of a Lie group G verify
the identities :

o+t -0
ij ij

k  pr k mr kK =r ro- r

CiJ_ Ckl + le Cki + T, ij + [Cij ’XI]A* + [le ,Xi]A* +
T

+ [T, 1, =0 (2.3.55b)

The exponentiation from the Lie algebra to the Lie group can
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now be formulated in terms of the isotoric image of the
exponential law (2.3.37), i.e.,

G : exp(BiXi) —_— e exp(BiXi) . (2.3.56)
A A’

which is based on the following rule of Lie isotopy :

. = kK * * = [k
6 : [Xi’xj]A = Cij)."k —_ [Xi,Xj]A = Cij(a)){k
(2.3.57)
with consequential .isotopically mapped Baker-Campbell-

Hausdorff formula :

exp(XZ)exp(X;) = exp(X:) X* = gX (2.3.58a)

* _ * * ]_ 1
X =X + X+ XX+ 1 [ -x), 0 ,x], + ...
(2.3.58b)

whose existence is ensured by that of the standard
realization. The reader can now see the emergence of the F-
linear combination of the basis directly in the group
composition law. Clearly, the enveloping algebra underlying
expressions (2.3.57) is the isotope A*(G) of A(G).
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CHAPTER 111

ISOMANIFOLDS

The extension of the isotopies to continuous structure
was initialed with the notion of isodifferential calculus
(Santilli 1991a). In this and in the following chapter we
shall review the studies by the authors (Sourlas and Tsagas
1392a,b) on the isotopies of manifolds and their primary
properties.

3.1. REAL CARTECIAN MANIFOLD.

DEFINITIONS 3.1.1 : let

be the conventional n-dimensional Cartecian space. Then on
R" we can define the following structures :

3.1.1 Vector structure : On R" we define two operations as
follows :
(i) +:f"®" ——— R"

+ {(xl""’xn)’(yl""’yn)} _— (xl""’xn)+ ‘

(yi,...,yn) = (x1+yl,...,xn+yn)

(ii) « : RR" ———— R"
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. {)\,(xl,...,xn)} ———— MXj;..0X ) =

()\xl, cee ,)\xn)

Then R" with the two operations (+,) becomes a vector
space over R of dimension n, which is called real Cartesian
vector space of dimension n, denoted by V'(R)={R",+,-},
whose base is :

{ e=(1,0,0,...,0), e2=(o,1,o,..;,0),..., en=(o,o,o,...,1)}
called canonical base.
3.1.2 Affine structure : It is well known that to the vector

space V'(R)={R",+,-} we can associate a set A=R" if there
exist a mapping f :

f: AA —— V'(R)
f : (P,Q) —— F(P,Q)=veV'(R)

with the following properties :

i) (vPl,Pz,PaeA)[ PP, = PP+PR. ]

ii)  (vPen) (vveV"(R)) (HQEA)[ PQ = v ]

The set A is called real Cartesian affine space of dimension
n and will be denoted A"(R).

We consider the points :
P,=(0,0,0,...,0), P=(1,0,0,...,0), P,=(0,1,0,...,0),...

P =(0,0,0,...,1)
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of the real Cartesian affine space A"(R). These points form
a base of A", because the vectors :

e=PP=(1,0,...,0), es=PpP=(0,1,...,0),...,
e =P P =(0,0,...1)

form the canonical base of V'(R). This base {Po’P1""’Pn}
is called fundamental base of A"(R).

3.1.3 Affine coordinates of a point

If PeA"(R), then PP eV*(R), which can be written :
PPn=ale1+...+unen |
The numbers (01""’°n) are called affine coordinates of the

point P with respect to the fundamental base {Po,Pl,...,Pn}
of A"(R).

3.1.4 Natural affine coordinate functions on A"(R)

On the real cartesian affine space A"(R) consider the
function X, i=1,...,n, defined by :

X, A(R) ———— R

X, : P=(°1""’°n) —_— xi(P)=ui

These functions are called natural affine coordinate.
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3.1.5 Topological structure.

On the set R" we consider a topology T defined by :
T={ 2, R, U B.}
jer *

where Bi, the subset of R", is defined by :

Bi = { P=(p1,...,pn) / ul<p1<B1,...,un<pn<Bn, ai,BieIR }

This topology T can be considered as the Cartesian product
of the topology of the open intervals on the straight line n
times. The topological space {R",T} is denoted by T"(R) and
called real cartesian topological space.

REMARK 3.1.1. The real cartesian topological space T'(R) is
a Hausdorf space

3.1.6 Cartesian manifold, Let

R"={P=(x1,...,xn)/xiem i=1,...,n}

be the cartesian product of R n times. On this space we
consider the previous structures, that 1is the vector
structure, the affine structure and the topological
structure. We also consider the mapping :

f: R"—— R", f: P +——— f(P)=P VvPeR"

which is the identity on R". This set R" with the three
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structures and the mapping f is denoted by :
Mn(m)={mn, f}

and is called real Cartesian manifold of dimension n.

3.2. REAL CARTESIAN ISOMANIFOLD

DEFINITION 3.2.1 We consider the real isofield ﬁ, which is
A
an isotope of R with the new multiplicative unit I, called
A
multiplicative isounit. It is known that R is defined by :

- { a/ a=al , 0€R and 120}

We consider the Cartesian product of ﬁ with itself n times,
then we obtain the space :

= {(a 9---’3) / GEH’.‘\\' ’ j.=1,... n }

which is called real Cartesian 1sospace (Sourlas and Tsagas,
1992a first paper at AGC). On R we can define the following
structures :

3.2.1 Vector structure From the vector space V'(R) if we
use the 1sof1e1d m we obtain the isovector space, which is
denoted by V"(R) and called real Cartesian isovector space.
The vectors :

e=(1,0,...,0) , =(0,1,...,0), ... , e=(0,0,...1)

whlch form the canonical base of V'(R), are also a base of
V" (R) Every isovector veV" (R) can be written :
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Xe A A AeR =1
V— 1e1+ 2e2+-oo+ nen ’ hiER 1= ,...,n

3.2.2 _Change of the base in V'(R). Llet {t,...,t} be a

base of V"(ﬁ) different than the canonical base {el,...,en}.
We decompose the vectors tl,...,tﬂ with respect to the base
{el,...,en} and then we have :

t = Ale 4\ A" ’
y = Ae et he
A A A
1 2 n
= +...4
tz Azel+A2e2 .Azen (3.2.1)

3 ( 3
( \ ( Aq Ay A
t1 Al Al ....... Al e
Al Az An
t2 AZ Az ....... hz e,
M L2 %n
|t A A e Mo e

Therefore, the matrix :
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( A A A )
1 2
)\1 )\1 ....... A
A Az AI"I
Aj AZ Az ------- Az A
(A)) = € GL(n,R)

AR A )

\

is the transpose matrix from one base to another,where
GL(n,R) is the set of all 1nvert1b1e square matrices of
order n with elements in the isofield R of R, is the trans-
pose matrix from one base to another.

3.2.3 _Affine structure. We can associate to the vector
space V“(ﬁ) the affine space A"(I?l) which, as a set is
identified with R". Then A"(n?t)'is called real Cartesian
isoaffine space of dimension n. A"(ﬁ) is isotopic to A"(R).

Let P(000 0),P(010 0),P(001 ..,0},
..P (0,0,0,...1) be n+l pomts of A"(iR) These p01nts form

an affine base of A“(R) because the vectors :

PP, » PGP2 reses PP

form a base of A"(R), which is called fundamental affine
base of V'(R).

3. 2 4 Isoaffine conrdmates of a point. If P is a point of
A"(R), then P Pev“(n), which can be written :

119



PP =B PP +BPP+...4B PP

where ﬂl,Bz,...,Bneﬁ, which are called isoaffine coordinates
of }he point P with respect to fundamental affine base of
CA"(R).

EXAMPLE 3.2.1 et A?(ﬁ) be the real cartesian isoaffine
space of three dimension. Determine grafically its funda-
mental affine base.

Solution : The points PO(O,O,O), Pl(l,0,0), Pz(o,l,O) and

————————

P.(0,0,1), which are essentially the origin and the

-

coordinates of the unit vectors on the axes 0X, 0Y and 0Z
respectively, form the fundamental affine base, because the
vectors :

P0P1 ? Pnpz’ Pops

form the canonical base of v3(§)

3.2.5 Natural isoaffine coordinate function. On the real
A A
Cartesian space A"(R) we consider the functions X, i=l,...n
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defined by :

A A
X A'(R) — R

A L]
X; t P=(ps..0ip ) — x,(P)=p, , i=1,...,n
are called natural isoaffine coordinate.
3.2.6 Change of bases in A"(ﬁ). On the A"(ﬁ) we can define

other affine bases except the fundamental. We consider
another base : '

{e,:q...-,0} |

of A"(ﬁ), which always contains n+l points. In the same way
we can define isoaffine coordinate functions Yis¥pseesy oD
A"(R) with respect to the base {Q ,Qn} as we have
. defined the natural isoaffine coordlnate functions with
respect to the fundamental affine base. The Ffunctions
(yl,yé,...,yn) are vrelated with (xl,xz,...,xﬁ) by the
relations :

= oot +
¥,=0, 1 X,+0, X, + 0, Xt

y2=a“x1+022x2+. . '+u2nxn+02
= .
‘yn l.'nllxl"'uﬂ 2x2+ unnxn+an

which can be written as :
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y1 u11 012 . u1n xl u1
yz u21 uzz . u2n xz uz
L 'ynj L t:'nl nz * c‘nn J 1 xn, { UnJ
where
r h'
a9, 9. u1n
e, uzz aZn A
as=s : € GL{n,R)
L c'nl unz clr:n J

3.2.7 Topological structure. On the set ﬁ“, which coincides
A
with the set R",we consider the same topology on R"=R" as

sets, which has been defined in 3.1.5. The set §“=R with the

topology T is called real Cartesian isotopological space and
A

denoted by T"(R). It is obvious that :

A
T (R)=T"(R)
A A
3.2.8 Cartesian isomanifold. Let R"={(x1,...,xn)/xiem,

i=1,...n} be the real isocartesian space of dimension n. On
this space we obtain the previous structures, that is, the
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vector structure, the affine structure and the fopological
structure. We consider the mapping :

A A A
f:RR——— R, f:Pr——s f(P)=P vPeR

which is the identity on R. The set ﬁ", with the three
structures and the mapping f, is called real Cartesian
isomanifold of dimension n. '

3.3 ISOMANIFOLD

DEFINITION 3.3.1 (Sourlas and Tsagas 1992a) : Let M be a
Hausdorff space. We consider the pair (U 1 }, where UsM

and 9, is a homeomorphism of U onto an open subset V of R R
that is :

. Al’l
9, ° Uu ——— Qa(Uu)=VaSIR

The pair (Uu,pu) is called isochart on M. From the above we
conclude that the isochart (U ,¢) has the following
meaning. The subset UsM since 1t is homeomorphic onto a
subset of M"(IR), whlch is the real carte51an isomanifold of
dimension n, is reduced to the study of M" (R). ‘

Let (Un”u)ueA be the set of all isocharts on M with
the following three properties :

P1 Uu=¥
oEAo

P2 We consider the two isocharts (Uu,vo) and (UB,QB)
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with the condition :

Uun UB 20

The mapping qﬂo¢: is the following :

058 9, (UnY) ——— 9 (UnU)

Relation (3.3.1) is obtained as follows :
¢ : =(UnlU) ———> ¢ (Z)=¢ (Un U)
q;l 9 Unl) ——— Z=Un U,

0, =(Un U) ——— ¢ (2)=9,(Un U))

which is Eq. (3.3.1).
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P, The collection (Ua"a)ueA contains the maximal

number of isocharts satisfying the above conditions.

We assume that all the mappings (3.3.1) are class (%,
that is, they are continously k times differentiable.

One collection of isocharts (Uu"'u)ueA’ which
satisfies the above three properties P, P, and P, is called
a differentiable isoatlas of class C* on M.

REMARK 3.3.2 : The mapping Qﬁoq;l maps the qu(Uun UB) into
QB(Uun UB) , that is :

-1 _'
0,00, 1 9. (UnU) —— . (Un U)

Both sets QB(Uun UB) and QB(Uun UB) are subsets of R". Hence

,BoQ;l can be expressed by :

B y1=f1(x1,...,xn)
'Bovo =

yn=fn(x1, cen ,xn)

where (xl,xz,...xn) and (yl,yz,...,yn) two isoaffine coordi-

nate functions on ﬁ" with respect to two affine bases
A
{So,Sl,...,Sn} and {QO,QI,...,QH} respectively of R".

DEFINITION 3.3.1 If the mapping Qsoq;l, for all the pairs
{a,B) for which Ua” Uﬂata,are differentiable of class %, or

briefly %, then the isoatlas (Ua,qu)ceA on M is called
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isodifferential structure of class C* on M and denoted by
(U9 ) ceA .

DEFINITION 3.3.2 Let M be a Hausdorff space on which we
consider an isoatlas (U, ) aeA, €. The pair {H,(Uﬂ,qu)aeA}
is called differential isomanifold of dimension m and class k.

REMARK 3.3.3 From now on when we say differentiable isomani-
fold we mean of class €7, in any other case we shall state.

DEFINITION 3.3.3 lLet {M,(Uu,npo)uaA} be a differential
isomanifold of dimension n. It is known that :

. AN
9, ;U — e (U) sR

A
9, g — ¢ (q)=(x(q),...,x (q))eR"
The coordinates (x (@),...,x (q)), qeU  are called iso-
coordinates of the isochart (Uu,vu).

EXAMPLE 3.3.1 Determine an isoatlas on the cartesian
A
isomanifold M"(R).

Solution : It is known that M"(QJEIR", with the mentioned

structures, is a Haudorff space. We consider an isoatlas on
A A
M"(R) contain only one isochart (Uuis",epa) where

o Uk — &
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’ P qu(P)=P vPeR"
So M=R", with the isoatlas (Uu,qa), where Unsﬁ“ and 0, is

the identity map on ﬁ", is an isomanifold, which was called
Cartesian isomanifold.

EXAMPLE 3.3.2  Let M=R with (U-R, ¢: x——°) be an
isomanifold. Determine its differentiability.

Its isoatlas has only one isochart :
(U:Iﬁ, ¢, X — xa)

since we require :

tp;l !X —— Q;l(x)=_y= X

The function y="4X is continuous and differentiable at x=0,

but its derivative y = -%—

is not continous at x=0.
x 23

Hence the isomanifold
An “n . 3
{R,(U:m,ga.x—eJx}

is of class C°

PROBLEM 3.3.1 Let M be an isomanifold of dimension n. Does
M admit always a differentiable structure ?

any differentiable structure €*. With the same method we
prove that there are Hausdorff spaces, which do not admit
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any isostructures of any class €" r=0,1,...

3.3.2 Different isostructures. Let M be a Hausdorff space.
We assume that M admits an isodefferentiable structure. Is
this a unique ?

It has been proved that there are manifolds which
admit more than one differentiable structures. We refer to
the sphere S" n=7, which can carry more than one diffe-
rentiable structures. However this number of differentiable
structures is finite. From the real Cartesian manifolds R"
n=1 only R' can carry more than one differentiable
structures.

The same problem can be asked for the isodifferentiable
structure. Hence on §" nz7 there are more than one isodiffe-
rentiable structures. On the real Cartesian isomanifold R"
nxl there is only one isodifferentiable structure except R
on which there are more than one isodifferentiable
structures

4

3.3.3 Analytic isomanifold. Let M be a Hausdorff space on
which we consider an isoatlas (U .9 ) aeA with the following
three properties :

P1 Uu =M
a€A g

P The mappings :

-1 R
vBc'i}c: ' Qu(uun UB) - q,B(umﬁ UB)
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are analytic for all isocharts (Uu,qu) aeA with the
properties P1 and P2 is the maximal possible.

The Hausdorff space M with the isoatlas (V.9 ) aeA
with the three properties is called analytic isomanifold.

REMARK 3.3.3. Every analytic isomanifold is a differentiable
isomanifold. The inverse is not true. Therefore the set of
analytic isomanifolds is a proper subset of the set of
differentiable isomanifolds.

DEFINITION 3.3.4. Let M, (Ua,Qu) aeA be an isomanifold. We
consider two isocharts (U ,lp) and (U ,lp) of the isoatlas
(Y, .9 ) of the isoatlas (U ,tp) aeA such that Un Um The
mapping anlp is defined by

9! g (UNU)ER —— 5 o (UnU) R
,B’u"uu B ’Ba B

where n is the dimension of the isomanifold .
On the open subsets 9, (Un U) and e, (U n U) we
consider the coordinate systems :

-(xl,...,xn) and (yl,...,yn)

respectively. Therefore ¢Be¢;l can be expressed by the

128



functions :
. ¥1=f1(x1,...,xn)
0,00, = 1 ceeeerieneinns (3.3.4)

which are the coordinate functions of the mapping ¢B°Q;1 .
From (3.3.4) we obtain the Jacobian determinant :

Bfl afl

X ax

D(fl,..,,f ) 1 n

J_= n_o_

ab /[ vevvvey Bl RALEERRERE R
" af af
n n

ax ax
1 n

If Juﬂ>0 V(xl,...,xn)eq:u(uun UB) and for all pairs of
isocharts (U@}, (UB,QB) for which UanU8¢z, then the
isomanifold M is called orientable.

PROBLEM 3.3.2. Let M, (Uu,¢a) and N, (Vﬁ,wﬁ) be two iso-
manifolds of dimension m and n respectively. The topological
product MxN can be an isomanifold.

Proof : The topological product MxN is also a Hausdorff

space. We consider the isoatlas :

(Ux V.0 x §,) (a,B)eAxB
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on MxN because it has the three properties :
P U UxV =MN
1 a B
(a,B)eAxB

From which the following property holds :

. = n+m
o) 2 UV ———— (919, ) (UxV,) va(Ua)xwﬁ(Va)fm

P, For the two isocharts

2

(Uxv e xv ), (Uxv 0 xy ),
o8’ a B o, 8, "o, B,

of this isoatlas, for which
(U"lxvf’l) n (U"zxvﬁz) =
we have the mapping :
. -1
(o205 )00 29, ) g sy, ( (U0, ) o (u,) )
1 "1 1 N1 2 2

—+—->ox¢((UxV)n(UxV))
uz 82 ulﬁl uzaz

P, The collection of these isocharts of the isoatlas
(qu Va,qux wﬁ) (a,B)eAxB
1s maximal , satisfying properties P, and P..

Therefore, the Hausdorff space MxN with the mentioned
isoatlas becomes one differentiable isomanifold of dimension
n+m and it is called the topological product of the two
differentiable isomanifolds M and N.

EXAMPLE 3.3.3. Let S' be an isosphere of one dimension,
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which coincides with circumference. We consider the
topological product of S! by itself k times. Then we obtain
the isomanifold :

T = sixsx. . .xs!
k times

which is called isotorus of dimensicn k.

REMARK 3.3.4. Let M“(ﬁ)sﬁn be the Cartesian isomanifold of
dimension n. We know that ﬁ"=M"(ﬁ) has avector structure,
an affine structure and a topological structure. We consider
the canonical base :

e =(1,0,...,0), e=(0,1,...,0) ,..., €=(0,0,...,1)

A . Ao Ao .
of R. and obtaln the subset Z" of R, defined by :
An A
" = { et ke / AyoosheZ }
- An A“ [] a L]
The quotient space : R"/ Z" can be coincide with :
T = sh...x8!

n times

Cartesian isocylinder 3.3.17. We consider the Cartesian
A
isomanifold R" and obtain k<n vectors :

tl’tz’ .as ’tk
A A
We construct the subset Z* of R" as follows :

Ak A
" = { At At / AseeorheZ }

A
The quotient space : ¢* = R"/ z¥ is called Cartesian ise-
cylider.
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CHAPTER IV

ISOTENSOR FIELDS ON ISOMANIFOLDS

In the preceding chapter we have introduced the notion
of isomanifold and related topology that is applicable under
isotopy. '

In this chapter we shall study isovector and isotensor
fields on isomanifolds (Sourlas and Tsagas 1992b). The
formers are important for the characterization of the
foundamental isotopy of Lie algebra (Santilli, 1978a). The
latter are important for the condtruction of isotopic
geometries (Santilli, 1991b).

4.1 ISOFUNCTIONS

DEFINITION 4.1.1 Let M be a differentiable isomanifold where
we have substituted the field of real number with its iso-
A
field R.
We consider the mapping :
f:M —R , f:P— f(P)

which 1is called isofunction on the differentiable
isomanifold.

DEFINITION 4.1.2 Let f be an isofunction on the diffe-
rentiable isomanifold. The function f is called diffe-
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rentiable of class (¢ at the point P if, for every neighbor-
A

hood V of P homeomorphic onto an open subset B of R" with

corresponding homeomorphism :

A
¢ : U ——uy BR"

the function foe™! on B is k times differentiable. The above
can be explained as follows :

Since U is a neighborhood of M homeomorphic onto an
open subset of ﬁ", there exists one homeomorphism :

o : U ——— q(U)sﬁ"
} (4.1.1)

A
¢ : P——— g{P)eRr"

Since ¢ is a homeomorphism, its inverse ¢ can be
defined as follows :

ol e(l) —— U (4.1.2)

From the first of (4.1.1) and (4.1.2) we conclude that :

-1

fogl : g(l) ——— R

Therefore, 1"oq>'1 is defined on an open subset of the

Cartesian isomanifold ﬁ" and hence we can define its
differentialbility. If fo¢™! is differentiable of class C¥,
then f is differentiable of class €* at the point P.

DEFINITION 4.1.3. Let f be an isofunction which is diffe-

rentiable of class ¢ for every point PeM, then f is called
differentiable of class C~.
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NOTATION 4.1.1. The set of differentiable isofunctions of
class € on the differentiable isomanifold M is denoted by :

p°(M) ,
If we consider the set of differential isofunction of
class €°, then this set is denoted by :

D°(M) 1instead of D°(M) , C°

REMARK 4.1.1. The set of all isofunctions on a
differentiable isomanifold M of class °, are the continuous
isofunctions on M. Hence we have :

D°(M),€° < DO(M),C' ¢ ... < D®(M)

PROPOSITION 4.1.1. Let M be a differentiable isomanifold.
The set of isofunctions of class Ck, D°(M),Ck can become an
A

isoalgebra over the isofield R.

defined as follows (addition of two isofunction) :

fiM— SR, f

: PP £ (P)

f,iM — R, f, 1 P —— £(P)

The addition f'1+f2 is given by :

faf, : M —— R, (F45,)(P) = £,(P)+F,(P)
(ii) The external decomposition law : The product °f1’

A
where aeR, is defined by :
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flzn—n'i .

of : M ——— R , of : P —— (of )(P)=af (P)

(iii) The second internal law of decomposition, product of
two functions. It is defined by :

: P ——— f1(P)

A
fl ‘M — R , fl.: .

ff, 1 P ——(F -£,) (P)=F.(P).1,(P)

These three laws turn out this set into an isoalgebra
A
over the isofield R.

DEFINITION 4.1.4 Let M be a differentiable isomanifold with
the isoatlas (Uu,eu) acA. We consider an open subset V of M
and an isofunction :

f: M — ﬁ such that f(v)=0 vveV

If V is the maximal subset M with this property, then the
closure V of V is called support of this function.

THEOREM 4.1.1. Let M be a compact canonical topological

space. We consider a family {Vu} asA of open subsets of M,
such that :
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Uv =M
a
acA
 Then, there is a family of isofunctions on M such that each
9, has a support, contained in Va with :

¢ =0 Lo

¢ a€A

Proof : This theorem, called partition unity’s theorem, is
proved by means of the following remarks :
(1) The isomanifold M can be seperated in subsets, such
that each of them is homeomorphic onto an open subset of [ﬁ".
This means from the topological point of view that the study
of each of these subsets is reduced to the open subset of Iﬁ".
(ii) From the known theorem for the Cartesian isomanifold
M”([ﬁ)_lﬁ" we have :

If H and H are dlSJOlnt open subsets of R , then
there ex1sts a functlon f on IR with the property :

f(w1)=1 and f(w2)=0 Wlewl , wzeuz

4.2 GERMS OF DIFFERENTIABLE ISOFUNCTIONS.

Let M be a differentiable isofunctions and let P be a point
of M. We say that an isofunction f is differentiable near P
if f is differentiable on an open neighborhood of P. We
shall now introduce an equivalence relation between iso-
functions that are differentiable near P. Two isofunctions
f1 and 1-"2 will be considered equivalent if they have the
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same value on a neighborhood of P, each equivalence iso-
function being considered at P. Each equivalence class will
be called the germ of a differentiable isofunction at P. .The
set of all germs at PeM will be denoted by Fy- The germ of
the isofunction f is denoted by [F].

REMARK 4.2.1 The germ of an isofunction at P depends on the
behavior of the isofunction in one open neighborhood of P
and not only on the value of the isofunction at P. '

All isofunctions of the same germ have the same value
at P. This value is called the value of the germ at P.

PROPOSITION 4.2.1. The set Fn can be turned out into a
commutative algebra.

Proof : Let f and f, be two differentiable isofunctions

near P and let [f1] and [fz] be their germs. On some

neighborhood of P the sum ff+fé is defined and it is a

differentiable isofunction near P. Now, we can define :
[f1+f2}

to be the germ of isofunction f&+f2. Therefore, we have the

first internal composition law.

The external composition law : If f is differentiable
near P and [f] is its gern, then for every constant ueﬁ,
af is differentiable near P and we can define [af].

These two composition laws are well defined and make
Fn' with these three laws becomes a commutative algebra of
infinite dimension.

The second internal composition law : If [f1] and [f2]
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are two germs, the second internal composition law, denoted
by +, is defined as the germ of the product of two repre-
sentatives f1'fz of [f,] and [f2] respectively. It can be
easily proved that this product does not depent of the
choice of f1 and fz.

F., with these three laws, bacome a commutative

M
algebra.

REMARK 4.2.1. The germs of differentiable isofunctions on
A A

the cartesian isomanifold M"{R)=R" play important role in

many application in different branches of mathematics.

THEOREM 4.2.1. Let M be a differentiable isomanifold. If P
and P+ are two points of M, then there is an algebra
isomorphism between FP and F,..

Proof : Llet (U,9) and (Us,¢) be two isocharts of M
containing the points P and P+ respectively. We can assume
¢(P)=9/(P/). Let [f]eFP and let f be the representative of
[f]. Then f is a differentiable isofunction on some open set

V, contained af V. We consider the isofunction :
h = foplog:
which is defined on a neighborhood of Ps. Since we have :

heg: ™! = fop™
we obtain that this isofunction hog-™' is differentiable in
a neighborhood of ¢/(P/) and therefore h is differentiable
near Ps. Let [h] be the germ of h in Fw‘ Now, we construct
the mapping t defined by :
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t:F, ——F, , t:[f] —— t([f])={h]

We must show that t is well defined. Let f1 be another
representation of [f]. Then f-flso mod(open) on a

neighborhood of P. If we define :
-1 ,
h1 = ﬂ °p “o@

then h-h1=(f-f1)oq*»qf=o on a neighborhood of P+ and there-
fore h and h1 belong to the same germ of [g].

We can easily prove that the mapping t preserves the
three laws in the algebras FP and Fw’ that is :

t:F, ——F, ,
t: [f] — [h] ,
t:[f] —— [h’]

and t has the properties :
t : [f]+[f] +———> [h]+[h’]
t : a[f] ——— a[h] Vaeﬁ
t: [f]-[f ] —— [h]-[h]

Therefore t is a Lie isomorphism between the two commutive
algebra F, and Fe.
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4.3 ISOVECTOR FIELDS ON AN ISOMANIFOLD

A
4.3.a Isovector fields on R°®
A
Let Oxyz be a cartesian coordinate system in R,
is a collection of

(figure 1). An isovector field on R®

Figure 1

. A A

isovector on R® such that to each point of R’ corresponds
A

one isovector. Therefore an isovector field V on R® can be

written :
, A3 A
V= { VP = al'f+a23+uaT<) / PeR°, a,,0,,0,€R }
and the isovector field V on ﬁa can be written :

V= fonal + fi002)7 + fxy,2)R  (4.3.1)

where fl,f2 and f3 are 1isofunctions on ﬁs. From (4.3.1) we

obtain :
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vp = fl(pl’pZ'DS)T + f2(p1’p2’p3)3 + fa(pl’pZ’DB)?
' (4.3.2)

where (pl,pz,pa) are the isoaffine coordinates of the points
P and

a=f(p,sP,sp;) » a=f,(pp,,p,) » a=F.(p,P,>P,)

4.3.b Natural basic 1sovector field on R Let'Tj 13 and'Tj
be three isovectors on R with the property :

BT , B(P) =3 and T (P) =R wper® (Figure 2).

U,(P)

,(P)

0 Tj2(P)

-

Figure 2

Then'ﬁ 'U and'U are called natural basic
lsovector f1e1ds on R For these isovector fields we have :

U = 17+03+0K , ITZ = 0T+13+0R , Us = 01+03+1%  (4.3.3)

where the quantities 1 and 0 in (4.3.3) are the constants
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A
isofunctions on R® :
A3

1:R —— 5 R, 1:P——— 1(P)=] vPeR®

0: 8 — "R, 0:P—— 0(P)=0 vPeR

NEW NOTATION 4.3.1. Let V be an isovector field on £3. This
can be written :

V- fltx,y,sz+f2(x,y,z)34fs(x,y,zf? (4.3.4)

and if we take under consideration the natural basic
isovector fields, then (4.3.4) takes the form :

V= f (600 +f (Gynf 4f (x,y,2)U (4.3.5)

In some cases the natural basic isovector fields can be
represented by the symbols :

v -4 | ﬁz=-§y— , B, = 5 (4.3.6)

Therefore, the isovectors field V defined by (4.3.5) by
means of (4.3.6) can take the form :

3 8
V- fl(x,y,z) ——ST + fz(x,y,z) 5y + fs(x,y,z) ra
(4.3.7)

DEFINITION 4.3.1 The isovector field V is called of class
¢* if the isofunctions fl, f2 and f3 are of class &, that
means f1’ f2 and f3 are differentiable k times.
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NOTATION 4.3.2. The set of all isovector fields of cless C*
is denoted by :

'R , &
If k=, then the set D'(R®) ¢ is denoted by D(R%)
8
PROPOSITION 4.3.1 Let V- f S + £, +f 2 bean

isovector field. Then V can be considered as a derivation on
A A
the algebra D*(R%), C° or briefly on D*(R?).

Proof : Firstly, we prove that V can be a mapping on

p° (IR ), as follows :

V:DURY) ———— DR

. e_g¢ 8 8 a .

v'1:"1:16x"'fzay +_fsaz i
i af of af
V(f) - i:1 ax T fz ay + fa oz

This mapping V has the property :

. \ ; = f 2 _
V * CI1"1""’2"2 v(Ql"1+“2°z) fl ax (01’1+°2'2) +

de¢
1
* 2ay (09+°')+f3 az (01’1"'0’) 1f1ax +
29, 29, 29, a9,
tof o tof, 55— +tof5— + o f, 5 +
a9 a9 ae 8¢
2 1 1 1
tofiax - °1(f1 wx *tf ay f. 5 )+
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39, ae, 99,
+ @ (f1 x thay fs"ﬁ") - uIV(vl) * ozv(’z)
(4.3.8)

 where a, uzel?! and 9 QzeDo(ﬁs), .
The relation (4.3.8) shows that the mapping V is

linear on the vector space Du(ﬁs). For the linear mapping V
we have :

. , = fF & 2
LK 9.9 vwf’z) - i:1 ox 99, t 1::z By 9.9, +

- 8 8 _
fst" $. = 1:1("'2 ax 97t 9 x 92) +

8
AU a_y "Wy a_y 9,) + f.(0, 57 az )t
8
"’(fl ax AT ay Al M

+ o (f, T 9, F, g0+ f,2—9,) = 9.V(0,)+9 V(0,)

16)(
(4.3.9)

zay

Relation (4.3.9) proves that the linear mapping V is a
A
derivation on the algebra DY(R%).

PROPOSITION 4.3.3 Every isovector field :
- o 8
Vef o ax +f + f

2 By 397

can be considered as a linear mapping of the isovector space
p° (IR ), € into the isovector space D°(ER )s ¢! k0.
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denoted also by V, is defined as follows :

VR, ¢ — DR, &F

. _ a d d . . N -
V.Q-f13x+fzay+fsaz T > Y(e)

- o¢ 89 3¢
fiaxt oyt fia

For this mapping we have :

V: a9.+a.9, ;—>V(u¢+ag) =f, = 6x (0,0,+0.9,) +

8
+23y(ug+a¢)+fsaz(uo+ag) 116x’+
3
+uzf1-3792+01f2-—5?¢ +uf2 ay e, +01f3 az 9, +

8
+ azfa'ﬁ'z’%(fl 8x ’+fz ay o+ 57 az ‘P) *

+u(f ¢+fzay¢+fsazqi)=uv(¢)+uV(9)

(4.3.10)

1 8X

LY

A A
where a, 0.€R , Ql,QzeDU(le), c<.

The relation (4.3.10) shows that the mapplng V is
linear between the vector spaces D° (IR ), € and D° (IR ), 1,
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4.3.c Isovector fields on Iﬁ". All notions, propositions and
A

remarks for the isovector fields on R® can be extended on

A A

R". Therefore, every isovector field V on R" take the form :

V- fl(xl,...,xn)e1+...+ fn(xl,...,xn)en

where f (x veensX ) PR (xl,...,x) are 1isofunctions on
R and €,...,e are the canonical base of the Cartesian

A
" isovector space V(IR). The isovector field V can be also
written :

8 d
V- F{Xseensk ) Wl”“'*fn("l""”‘n) e

PROPOSITION 4.3.4 Every isovector field on R" can be
A
considered as a derivation on the algebra D°(R).

Proof : This is similar as the proposition 4.3.1 V, as

‘mapping, is defined by :
n
. = —a—L -—L —aL..
V: 9 V(qa) k§1fk Bx, f"1 Bx. +. +i’n axn

4.3.3 New notation. The isovector field on ﬁ" are denoted
usually without arrow, that is :

n

3 )
V=1 3 -;-“'+fn 3% Zlf1 ax
or =

’ n
V= fle1+...+1’neﬂ = )=: f.e
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IMPORTANT REMARK 4.3.1. The consideration of an isovector
field on R" as a derivation on the algebra D°(R") permits
the definition of an isovector field on a differentiable
isomanifold.

4.3.d. Isovector feilds on isomanifolds. Let M be a diffe-
rentiable isomanifold. Let D°(M) be the algebra of all
isofunctions on M. Every derivation on D°(M) is
called isovector field on the differentiable isomanifold. If
X is an isovector field on M, then X has the properties :

X :D°(M) —— M) , X:f i — X(f)
X : ulf1+uzf2 — X(01f1+uzf2) = 01X(f1)+02)((f2)
X : ff, ——— X(F/f) = fX(F)+FX(f)

where a , a,€R and f , f,eD’(M).

PROPOSITION 4.3.5. Let M be a differentiable isomanifold.
The set of isovector fields on M, denoted by D!(M), can be

turned into a Lie algebra over D°(M).

(i) The internal composition law : If X,YeDl(M), then we
have :

X : (M) ——— D°(M) , X :f — X(f)

Y : D°(M) ——— D°(M) , Y : f — Y(f)
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Now, we define the sum of X+Y as follows :

X+Y : DY(M) ———— D°(M) , $F —— (X4Y)=X(F)+Y(F)
(ii) The external composltlon law : If XeD®(M) and QEDO(M),
then ¢X is defined by :

X :D"M) ——0°(M) , X:f — X(f)
Xz D'(M) ——— D°(M) , oX : f ———— (gX){f)=gX(f)

These two laws have the properties, which turn D!(M) into a
module over D°(M).

(1ii) Second internal composition law. On D'(M) we define the
second internal composition law, denoted by [ ], as follows

[ 1: D'(MD(M) — D'(M)
[1: (X,Y) —— [X¥] = XY-Y*X = XTY-YTX

where T 1s the inverse of the isounit I of the underlying
isofield R, by reaching in this was the fundamental isotopy
of Lie algebra by Santilli (1978a). Note that the
composition D'(M)xD'(M) is among isospaces and, as such,
isotopic, i.e., realized by X+Y-Y+X.

It can be easily proved that the Lie-Santilli bracket
satisfies the relations :

[X2¥] = -[YoX].

149



A A A A A A
[x’[Y!z]] + [Y,[Z,X]] + [Z’[X3Y]} = 0
Hence DI(M) become a Lie algebra over DD(M).

REMARK 4.3.2. For each element of D'(M), which is an
isovector field, we have assumed that it is a derivation on
the algebra DO(H). With the same manner we cobtain the set
D}(M), €°. Each element of D'(M), €* is called isovector
field of class C*. This can be considered as a derivation on
the algebra D'(M), .

4.3.e Isovector fields on an isochart of an isomanifold.
Let M be a differentiable isomanifold and (U,e) an
isochart of M. Therefore we have :

A
$: U —— () sR" ,

¢ : g —— e(aq)=(x(q),...,x (q)) vqel

where n is the dimension of M and (xl,...,xn) are the
isocoordinates of M on its open neighborhood U. Let f be an
isofunction on M, that is :

F:M — >R , '%/U:u——n'% (4.3.11)

Then for ¢} we have :
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0'1 : oV} — U

From the composition of f and ¢ we obtain :
-1 A
f/u°’ : f{(U) —— R

Hence the isofunction f/umq'1 is a function on ¢(U), which

is denoted by f .

If we consider the restriction of the isofunctions
D°(M) on U, we obtain the set p°(M), that is, the iseo-
functions on U. It can be easily proved that the set D%(U)
can be become an isoalgebra over R.

We consider the derivations I1"“’In on DI(U), which
are defined by :

I :D'(¥) ——0'() I, :fe—1I(f)= ngl-ep

I: pl(u) — pt(U) I :f——1I(f)= 5 —o»

It can be easily proved that the derivations I:""’In’
which are isovector fields on U, form a base, denoted with :

d a
Il_ ax ,.'.,Int ax'
1 n

Hence, every vector field X on U can be written :
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8
X = F1 _ax1 +"'+fn_axn

where fl,...,fneDD(U)

REMARK 4.3.3. The isovector fields on an isochart (U,¢) of an
isomanifold behave as isovector fields on an open set of R".

4.4 ISOTANGENT SPACE AT A POINT OF AN ISOMANIFOLD

DEFINITION 4.4.1. Let P be a point of the differentiable
isomanifold M. Let (U,9) be an isochart arount the point P.
Therefore, we have :

A
9 : U —— o(U)cR"
1f f is an isofunction on M, then we obtain the isofunction
Fefop : o(U) — R

which has the form :
(X500 esX )

n

where X ..,xn the isoccoordinates on U. We consider the
mapplng
: D°(V) —— D° (U) , I f —— I(f)=f o9

The fact that f o9 is an isofunction on U can be proved via
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the property :
o:U — s e(l) , f : o) — R
whose composition implies :
f*oq : U —»ﬁ

0
It can be easily proved that I is a derivation on D (U).

Therefore, I is an isovector field on U, which sometimes
will be denoted by X. From X and for the point P we can
construct the following linear mapping :

o A A
XP :D{R) — R

X, : £ —— X (F)=F <q(P) = (X(f)),
We construct the set TP(H) defined by :

T,(M) = { X, / Xed'(M) , X, : D°(M) —— R , lin. mapping}

On this set we define the following composition laws :

(i) Internal composition law : If X,» YT (M), then X +Y
is defined as follows :

X, :D°() — R , X 1 f —— (X(f),

'YP :D°(M) —— R , Y, i f— (Y(f)),

The sum XP+Y; is defined by :

XY : D'(M) —— R
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X e (XY ) (F) = (XF)+(YF), = {(x+¥) (O},

(ii) External composition law : If ueﬁ, then aX, is defined
as follows :

A
aX, p*(M) ——— R

aXP : f ———— (uXP)(f) = (c:)((f))P
This set TP(M) with these two laws becomes an
A
isovector space over R of dimension n and it is called
isotangent space of M at the point P.

4.4.a A base of the isotangent space TP(H). Let (U,9) be an
isochart of the differentiable isomanifold. Let (xl,...,xn)
be an isocoordinate system on U. It has been proved that the
isovector fields :

form a base of D'(U) with coefficients from D (V). Let TP(H)
be the isotangent space of M at the point Pel.
The values of the isovector fields at the point P are

given by :
n]P

8
e1=(I1)|>'[ 8X, ]
and they are isovectors belonging to the isotangent space
TP(M). The 1isovectors PRRENL form a base of TP(M). For
these isovectors e i=1,...,n, we have the mappings :

2]
A en=(In)P=[ 3x
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*
af
6xi

e, 1 D°(M) ———D°'(M), e :fr—el(f) =

i

where f has been defined above.

DEFINITION 4.4.2. Let M be a differentiable isomanifold of
dimension 2, which is called isosurface. The isotangent
space of M at the point P is called isotangent plane at the
point P and denoted also by TP(H);

DEFINITION 4.4.3. Let ¢ be a differentiable isomanifold of
dimension 1, which is called isocurve. The isotangent space
of ¢ at its point P is called isotangent and denoted by €,e

A
cp is an isovector space of one dimension, that is cPeIR.

REMARK 4.4.1. If the isomanifold M is of zero dimension,
i.e., it consists of isolated points, then the isotangent
space at each of these points coincide with the same point.

PROPOSITION 4.4.1 Let M be a differentiable isomanifold of
dimension n, whose one isoatlas (Uu,qu) aeA consists of at
least two isocharts. If Pel n UBaez, then determine the rela-
tion between the two bases :

L) &b b { &) l30): )

n

(4.4.1)

On TP(H), where (xl,...,xn) and (yl,...,y) are the

n
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isocoordinates on the isocharts (Uu,yo) and (UB,¢B),
respectively.

Proof : The isocoordinates (x,...,x) and (y,...,y) on
the isocharts (UQ,QQ) and (UB,QB) respectively are connected

on Un UB by the relations :
y, = ki(xl,...,xn) i=1,...,n (4.4.2)
The two bases (4.4.1) are related by :

(%), - = (%) 0 5 (4
8y, ), ax 8X, ax | &x ),
.................... e, (4.4.3)
3 axn 3 t. 4 8\ (s ]
ayn o X ax p ‘ axn ax p

From (4.4.3) we obtain the matrix :

2y o\,
P .
A = S - [D(Al'”’k") ]
D(xl,...,xn) P
A 8\
n n
L 9%, ax,  JP (4.4.4)

Therefore, the matrix, which corresponds to the change of the
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two bases is the transpose of the matrix A, that is :

f 6)\ 3)‘ '
1 n
ax axl
tA = B= .................
A\ ;) \
1 n
| dx ax_ )P
n n

which is the transpose of the Jacobian matrix (4.4.4) of
(4.4.2). '

DEFINITION 4.4.4 let P be a point of the differentiable
isomanifold M. The isotangent space T,(M) of M at P is an
isovector space of dimansion n. Therefore TP(M) has a dual
space, which is an isovector space of dimension n and is
‘called isocotangent space. '

4.5 DIFFFERENTIABLE ISOEXTERIOR FORMS OF THE FIRST ORDER
DEFINITION 4.5.1 Let M be a differentiable isomanifold of
dimension n. From M we obtain the isoalgebra D°(M) and the

isomodule D'(M) over D°(M). We denote by D (M)=D'(M)" the
isodual of D'(M). Therefore Dl(M) is defined by :

DI(M) = {w [/ w: D'(M) ——— D°(M) , w=linear isoform}
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Fach w is called differentiable isoexterior form of the
first order or differentiable isoexterior 1-form on M, as
introduced for the first time by Santilli (1991b, Memoir 25)

PROPOSITION 4.5.1 The set D (M) can be become an isomodule
over DO(M).

(i) Internal composition law : If

W D'(M) —— D°(M) , W : X — w(X)
W, Di(M) — D°(M) , W, : X —— W, (X)
The summation W W, is as follows :

W, p!(M) ——— D°(M)

W L X (W W) (X) = W, (X)+u, (X)

(ii) External composition law : If feD’(M), then the product
fwl is defined by : :

fuw, : p'(M) — D*'(M) , fw : X +—— (fw ) (X)=fw (X)
This set DI(M) with these two laws become an isomodule over

the isoalgebra D°(M). The elements of Dx(M)’ as it is known,
are called differential isoexterior forms of the first order
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or differentiable isoexterior 1-form. There on, when we
write iscexterior 1-forms we mean differentiable.

4.5.1 Isoexterior forms of the first order and differentia-

bility of class C*.

If we use the isoalgebra D°(M), C* instead of D°(M)
and the isomodule D*(M), C* instead of D'(M), then we obtain
the iscexterior form of the first order and differiability
of class (%, denoted by DI(H), ¢* and defined by :

D, (M), ¢ = {w / w=D'(M),c¥ —— D°(M), X, w=isolin. form}

It can be easily proved that DI(H),Ck is an isomodule over
the isoalgebra D%(M),c

4.5.2 Isoexterior forms on an isochart. Let (U,¢) be an
isochart on the differentiable isomanifold M. Let (xl,...,xn)
be the local isocoordinates on U. From U we obtain the
isoalgebra D°(U) and the isomodule D'(U) of isovector fields

on U, which can be an isomodule over D°(U). tet D'(U)” be
the dual of D'(U) denoted by D,(U). Each element of D (U) is
called differentiable isoexterior form of the first order on
U, or differentiable isoexterior 1-form.

It can be easily proved that Dl(U) can be an isomodule
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over the isoalgebra D°(V).
We have shown that the isovector fields :

d i

ax *°°? ax
1 n

form a base of the isomodule D'(U) of dimension n over the
isoalgebra D°(U). If XeD'(U), then we have :

8 ]
X = f1_"axl +...+fn axn

8 a
The dual base of {—a-x—l— ,...,?)-(-:-

{ dxl,...,dxn }

and is a base of DI(U). The two bases are related by the
relations :

3 1 if i=j
() (5] - 3, -
1 0 if i=j

} is denoted by :

The numbers 615 are called Kronecker’s symbols.
If weDl(H) a differentiable isoexterior 1-form, then
this can written (Santilli 1991b) :

w=9 1dx e .+qndxI1

where @,,... ,’nel)o(U), or more explicity,
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0
w=7Y T dx
g N

A
where T=(Tij) is the inverse of the underlying isounit I and
oofs are ordinary functions.

If XeDl(M), then we have :

X=f +...4F

a a
1 3)(1 n 8Xx

where fl,...,fneDO(U) and

w(X) = f1q1+...+fn¢n

£.5.3 A base of the isotangent space. Let P be a point of
- the isochart (U,¢) of the isomanifold M. Let (X;5.+.»% ) be
local isocoordinates on U. Let TP(H) and T (M) be the
tangent and cotangent of M at P. It is known that the
isovector fields :

3 3
X B
1 n
form a base of D'(U) and the isoexterior 1-forms :

dxl,...,dxn

form a base of D1(U)' The isovectors :
a—] [3—] (4.5.2)
[ ax, J, ax_

161



form a bése of TP(M) and
(dx), ,..., (dx),

form a base of T: which is dual of (4.5.2). Therefore, we
have :

1 if ied
d
(a5, 5], - 3, ‘{

0 if 1i=j

4.6 ISOTENSOR FIELDS

DEFINITION 4.6.1 Let M be a differentiable isomanifold of

dimension n. From this we obtain the isoalgebra D°(M) of all

isofunctions on M and the isomodules D'(M) and DI(M) of the

isovector fields and isoexterior l-form on M, respectively.
We consider the Cartesian product :

DDy, ..
s times
that is, D' is applied s-times. We construct the set :

T={ f:Dlx91§iﬁé§DI-————+ D° , fes-multilinear form}

that is, T is the set of all s-multilinear forms on T. Each
f is called differentiable covariant isotensor field of
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orders s, or simply covariant isotensor field of order s,
first introduced in Santilli (1991b).

PROPOSITION 4.6.1. The set T can be an isomodule on the
oalgebra DD(H).
Proof : On the set T we define the following composition

(i) Internal composition law :

i’1 s D'x...xD!— p° ,

1‘1 : (xl,...,xs)h—-—> fl(xl,...,xs)

1"2 : Dx...xp! ——— p° R

fz : (xl,...,)g )+—-————)£c (lx reeeX )

The sum f1+fz is defined by :

1*1+’r'2 : .. 0! —— D° ,

’r‘1+f2 : (xl,...,xs)l———» (f1+f2)(x1,...,xs) E

= f1(x1’ ees ,xs)+f2(x1, ces ,xs)

(ii) The external composition law : If ¢eD?, then the
multiplication Qfl is defined by :
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of : D!x...xp! — p° ’
’fl H (xl’--.,xn)|_) (0f1)(x1,-u-’xn) =

= qfl(xl,...,xs) multiplication of functions.

The set T denoted by :
T = 301
_becomes an isomodule over D%(M) of dimension n°.

DEFINITION 4.6.2 Let D°(M), D'(M) and D,(M) be the isoalge-
bra and the isomodules of the differentiable isomanifold
defined above. We consider the Cartesian product :

D xD x...xD
1 1'1 t imes 1

that is, D1 is applied r-times. We construct the set :
I = { v/ y:DxDx... D — D° r-multilinear form }

that is, y is an r-multilinear form on D°. Each y is called
differentiable contravariant isotensor field of order r or
briefly contravariant isotensor field of order r.

PROPOSITION 4.6.2. The set I of all contravariant isotensor
field of order r denoted by :

I = &'
can be an isomodule of dimension n" over the isoalgebra
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p°(M).

Proof : This propertycan be proved with the same manner as

proposition 4.6.1.

DEFINITION. 4.6.3 Let M be a differentiable isomanifold. From
this we obtain the isomodules D! (M) and D (M) over the
isoalgebra D°(M).

We consider the Cartesian product :

1 1 A
D'x...xD xDlx...xD1

s times r-times
that means the Cartesian product of D' r-times and of D
s-times. We construct the set :

V= {QIQ:DIX...XDIXDIX...XDI — D, ¢=(r+s)-multilinear

form }

Each element ¢ of V is called differentiable isotensor field
of type (r,s) or briefly isotensor field of type (r,s). This

set is denoted by :
= 501&01

PROPOSITION 4.6.3. The set 8D'8D of all isotensor fields of
type (r,s) can be become an isomodule over D°(M) of
dimension n™°.

Proof : On the set 501501 we define the same composition
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laws, as in proposition 4.6.1 which turns this set into an
isomodule over D°(M).

4.6.4 Isotensor fields on an isochart. Let (U,¢) be an
isochart of the differentiable isomanifold M. In a similar
manner, as above, we can construct the isomodules :

slu) , & () , &0'(u) , & (V)

over the isoalgebra DD(U), whose elements :
aelD!(V) BedD, (U) , yedD'(U)x3D (V)

are called covariant isotensor field of order r,
contravariant isotensor field of order s and isotensor field
of type {r,s), respectively. '

Let (xl,...,xn) be the local isocoordinates on U. It
is known that the isovector fields :

form a base of the isomodule D'(U) and the isoexterior
1-form :
dx ,...,dx
1 n

form a base of the isomodule DI(U). It can be easily
obtained that :
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X, ax 8.

{a ea—o...oa edx.ladx.lo...edxjr}
i1 iz ir 91 d

where lsil,iz,...,irsn and lsjl,jz,...,jssn form a base of
the isomodule :
60" (U)xD (V)

whose dimension is n™

4.6.5. Differentiability of the isotensor fields

If we use D° (M), o (M),c* and D (M), ¢ instead of
DO(M), D (M) and D (M) respectively, then we can obtain
covariant 1sotensor fields, contravariant isotensor fields
and mixed isotensor field of class C* denoted by :

SDI(M),Ck covariant isotensor field of order r of class ¢
80' (M),& contravariant isotensor field of order s of class £

5DI(M)§DI(H),Ck mixed isotensor field of type (r,s) of class

. Usually we work on isotensor field of class £°.
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NEW NOTATION 4.6.6 The isomodule SDI(M)ébl(M) over the
isoalgebra D°(M) is denoted by D:(H), that is,
5DI(M)§DI(M) - DI(M)

and the same time we use the symbols :

§D'(M) = D[(M) = D"(M)

8D (M) = Dg(n) = D_(M)

UNIFICATION 4.6.7 lLet M be a diffetentiable isomanifold
of dimension n. From M we obtain the sets :

D°(M) , D'(M) , D(M) , D"(M) , D_(M) and D(M)

of the isofunction, isovector fields, isoexterior 1-forms
and isotensor fields of type (r,s) respectively. Now we can
consider each isofunction as an isotensor fields of type
(0,0). We also consider an 1isovector field and an
iscexterior 1-form as isotensor fields of type (1,0) and
(0,1) respectively.

Each contravariant isotensor field of order r can be
identified as isotensor or field of type (r,0). Also each
covariant isotensor field of order s can be identified as
isotensor field of type (0,s)

4.6.8. Another definition of the isotensor field Let M be a
differentiable isomanifold of dimension n. Let TP(M) be the
isotangent space of M at the point P to whom we associate
the isocontangent space T:(M), which are isovector space of
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dimension n, that is,
dim(T,(M)) = dim(T (M)) = n

It is known that from the isovector space T,(M) we obtain
the isotensor algebra :

T(T,(M) = Te° (8T ()3T (M) )
under the condition :
T.(MET (M) = R

If we consider the isovector space STP(M)5T;(M) then each
element of this isovector space is called isotensor of type
(r,s) obtained from the isovector space TP(H).

Let A be an isotensor field of type (r,s) on the
differentiable isomanifold. This isotensor field A is
characterized by n®" isofunction on M. Therefore, A(P)
consists of a set of n™° numbers. In this case A(P)=a for
some a of the isovector

8T (M)3T (M)

Hence A(P} is an isotensor of type (r,s) obtained by the
isovector space T,(M).

From the above we conclude that every isotensor field
of type (r,s) can be considered as a set of isotensors of
type (r,s). To each point P of the differentiable
Isomanifold M corresponts one isotensor corresponding to
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T.(M).

'PROPOSITION 4.6.4 Let D:(M) and D:(M) be the two isomodules
of the 1isotensor fields of  type (r,s) and (s,r)
respectively, where M is differentiable isomanifold.

D'(M) = { £/ f: nlx...xnlxnlx...xn1 — > D°(M) ,

r-times s-times

f (r+s)-multilinear form } (4.6.1)
The isomodule D:(M) is defined dy :

D3(M) = { ¢/ 9: Dlx...xDIxDIx...xDI S— )

s-times r-times

¢(s+r) multilinear form } (4.6.2)

From the relations (4.6.1) and (4.6.2) we conclude that each
element of D:(M) can be considered as a linear form on D:,
that means the D:(M) is a dual space of D:, that means :

r _ s *
DT(M) = (D}(M))
DEFINITION 4.6.5. of the isotensor algebra associated to an

isomanifold. Let M be a differentiable isomanifold. From
this isomanifold we obtain the isoalgebra DP(M) and the
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isomodules :
D'(M)  r,s=0,1,...

with the constrains :
DO (M)=D°(M) , D"(M)=D"(M) , Dg(M)=Ds(H) (4.6.3)
We consider the direct sum :
D(M) = n°(n)eol(n)enl(n)en;(n)eng(n)e...
which by means of (5.3) can be written :
_ 0,0 or
D(M) = r?s DS(M)

D{M), as a direct sum of isomodules over D°(M), becomes an
isomodule over the isoalgebra D°(M).

On this isomodule D(M) we define a new internal law of
composition denoted by @ and called isotensor product. If §

and T are two isotensor fields of type (A,p) and (v,p)
‘respectively, their isotensor product is defined as follows

(SeT)P = Spe'TF vPeM (4.6.4)
where e is the isotensor product on the isotensor algebra :
n,ow *
r?s STP(H)éTP(M) | (4.6.5)
We must remark that the relation (4.6. 4) define completely
the(SeT) because its second member is the isotensor of S

and T Slnce the isotensor fields S and T are known, hence
SP and TP are also known for every point PeM. Therfor, the
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isotensor product SPs'TP is known. The relation (4.6.4)
determine the values of SeT for every point P of M and hence
SeT is known.

The isotensor product ' on the isomodule D(M) turns
of it an isoalgebra which is called isotensor algebra
associated to the isomanifold.

4.6.9 Special isotensor field Let M be a differentiable iso-
manifold from which we obtain the isotensor algebra D(M).
There are special isotensor fields. We mention some of them.

_4.6.10 Kronecker’s isotensor field The isotensor field & of
type (1.1) on the isomanifeld M is characterized with the
property : If (61,...,6:,65,...,6:) are its isocoordinates
then we have :

. 1 if i=j
Bi(P) = ¥PeM

0 if 1i=j

If we take the isotensor product of & by itself k times,
then we obtain the isotensor field :

5ebe...05 = &3

k-t imes

iees
wich has isocoordinates [Ejl ,

[
F P pte

] defined by :
Ly
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[ 1 if Bpeeeend, is even permutation
iy of dpaeeend,
(56)P = [6,1 k ] =4 -1 if Loty is odd permutation
Yk Jp of ;
Py
. 0 in all other cases

4.6.11 Symmetric covariant isotensor field. Let K be an
isotensor field of type (0,s) on the isomanifold M, that
means K is a covariant isotensor field of order s on M and
that implies :

KeD_(M)

Therefore, K can be considered as an s multilinear form on
D'(M), that is :

K : Dlxnlx...xnl ———y DU

K : (xl',xz,,..,xs) _— ¢(xl,x2,...',xs)

If we have :

K(’ﬂ’xz’ reerX s X5 ..,xs) = K(xl,xz, e Xore e ey Xogen .,xs)

then the s-multilinear isoform is called symmetric with
respect to the indices i and j. If K is symmetric with
respect to all indices then it is called symmetric
s-multilinear isoform or symmetric covariant isotensor field
of order s.
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4.6.12 Symmetric cbntravariant isotensor field. Let M be an
isotensor field of type (r,0) on the isomanifold M, that is

MeD" (M)
N is an r-multilinear isoform on D1 :
n: D:l:w:...x[):l —— DO
r-times

n: ("1""’"r) S — ﬂ(wl,...,wr)
If we have :

ﬂ(wl,...,wi,...,wj,...,wr) = H(wl,...,wj,...,wi,;..,wr)

then N is called symmetric s-multilinear isoform on D, with
respect to the indices i and j. If N is symmetric with
respect to all indices, then it is called symmetric contra-
variant isotensor field of order s.

REMARK 4.6.1 If K is a symmetric covariant field of order
s, then we have :

K(xl,...,xs) = K(xo“),...,xuh))

where oe Js(l,...,s) and Jsl,...,s) is the set of
permutations of 1,...,s.

If N is a symmetric contravariant isitensor field of order
r, then we obtain :

ﬂ(wl,...,wr) = M(w
where oeJr(l,...,r).

3eeesW

o(1) c(r))
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4.6.13 Antisymmetric covariant isotensor field. Let A be a
covariant isotensor field of order r, that means :

A:Dh..Dt —— D,

A (xl,...,xr) A;A(xl,...,xr)

in other words A is an r-multilinear isoform on D!. If we
have
A(xl,xz,...,xi,...,xj,...,xr) =

—A(xl,xz,...,xj,...,xi,...,xr)

then A is called antisymmetric r-multilinear isoform with
respect to the indices i and j. If A is a antisymmetric with
respect to any succesive pair of indices, then A is called
antisymetric covariant isotensor field of order r. For the
A, we have :

A(xl,...,xr) = T(o)A(xU“),...,xohq)

where oeJr(l,...,r) and
1 if o is even permutation
T{a) ={

-1 if o is odd permutation

REMARK 4.6.2 If A is an antisymmetric covariant isotensor
field of order r, then

A(xl,...,xr) = 0
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if two of X peaesX are propotional.

REMARK 4.6.3 With the same manner we can define an anti-
symmetric contravariant isotensor field.

REMARK 4.6.4 Let K be a symmetric covariant isotensor field
of order s on the isomanifold M. For each PeM, we have a
symmetric covariant isotensor K, obtain by the isotangent
space TP(M)

4.7. SUBALGEBRAS OF THE ISOTENSOR ALGEBRA ASSOCIATED TO AN
ISOMANIFOLD

4.7.1 Subalgebra of the covariant isotensor fields. Let M be
a differentiable isomanifold. From this we obtain the aiso-
modules D, (M), Da(M)""Dr(M)"" over D°(M). We consider
the direct sum :

sD(M) = D (M)eD, (M)e... = B D (M)

under the notation DO(M):DO(M). It can be easily proved that
sD(M) is an subalgebra of the isotensor algebra :

D (M)

D(M) = .§=0 s

r

Since D(M) is an isotensor algebra we obtain that sD(M) is
an isotensor subalgebra of D(M), which is called covariant
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isotensor algebra associated to M.

4.7.2 _Subalgebra of the contravariant isotensor fields. In
the same manner as in 4.7.1 we obtain the subalgebra :

aD(M) = D°(M)eD'(M)e...= 8 D(M)

of the D(M), which is called contravariant isotensor algebra
associated to M.

4.8. MAPPINGS ON THE ISOTENSOR ALGEBRA D(M)

4.8.1 Symmetrization mapping. Llet sD(M) be the covariant
isotensor algebra associated to the isomanifold M. We
consider the mapping :

S : sD(M) —————— sD(N)

St K ——— 5(K)

which is defined as follows : If K is a covariant isotensor
field of orde r, then we assume that S(K) is also a
covariant isotensor field of order r. K is an r-multilinear
isoform :

K:bhood! —— p®

K : (xl,...,xr) -—————-———a-K(xl,...xr)
and the same for S(K), that is :

S(K) : Do) ——— 4 p®
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S(K) : (xl,...,xr) —_—_— S(K)(xl,...xr)

where S(K} (xl,...,xr) is defined by:
S(K)(KeooX) = = I KX eeenXy )
oEﬂr(Jr')

where o is one of the permutations of [1,...,r]=Jr and
Ar(Jr) is the set of all permutations obtained from J .

It can be easily proved that the mapping S is a
linear on the sD(M) and is called symmetrization on the
covariant isotensor algebra sD{M) associated to M.

REMARK 4.8.1 On the contravariant isotensor algebra aD(M)
associated to an isomanifold M we can define in a similar
manner as in 4.8.1 the symmetrization mapping.

4.8.2 Alternation mapping. Llet sD(M) be the covariant
isotensor algebra associated to the isomanifold M. We define
the mapping :

A : sD(M) —— sD(M) A: N ———— A(N)
as follows : If N is a contravariant isotensor field of
order r, then A(N) is also a contravariant isotensor field
of order r. N can be considered as r-multilinear isoform on

DI(M) and therefore, ew have :

N: DY...xD! — —» p°
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N : (xl,...,xr) _— N(xl,...,xr)
Similarly for the isotensor field.A(N) we have :
A(N) : Dot —— 5 p°
A(N) : (xl,...,xr) _— A(N)(xl,...xr)

We difine A(N)(xl,...,xr) as follows :
AN (xpe00x) =~ g(q) Ny eeesX, )
neﬂ(\] )
where o is a permutation of the set J =[1,...,r] and Ar(Jr)
is the set of permutations of J and

, 1 if o is an even permutation
g(o)

-1 if o is an odd permutation

The mapping A, which is linear, is called altirnation.

REMARK 4.8.2 In the same manner we define the altirnation
mapping on the contravariant isctensor algebra ab(M). )

4.8.3 Meaning of the linear maps S and A. If K is a covariant
isotensor field of order r, then S{K} is a symmetric

covariant isotensor field of order r. The symmetry is

obtained by the definition of the symmetrization mapping.

Therefore, S is an operation which sends each covariant

isotensor filed to another symmetric covariant isotensor

field.

Let N be a covariant isotensor field of order r. A(N) is an
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antisymmetric covariant isotensor field of order r. Hence
the alternation mapping A is an operation which sends each
covariant isotensor field to another antisymmetric covariant
isotensor field.

4.8.4 Contraction. let D(M) be the isotensor algebra
associated to the isomanifold M. Let D'(M) and D;:i(M) be
the isomodules over the isoalgebra D°(M). We consider the
mapping C; between them defined by :

Cl: D) —— DM . € N ——— Ci(N)

The mapping is completely determined if we know C;(N). It is
known that N is (r+s)-multilinear isoform, that is :

N : D ..xD'xD.x...xD. — > D°
r-times s-times

N : (xl,...,xr,wl,...,ws) —_— N(xl,...,xr,wl,...,ws)
The mapping C; is completely defined as follows :
C!: xe...0X oW ®...8W — Ci.(xe...ex eW ®...8W ) =
J 1 s 1 T it s 1 r

= wj(xi) (xle. o®X, OX. ©...8X 8W

®...8 ®...0
W OW W)

From the definition of the contraction mapping C; we can
easily prove that this mapping is linear between the two
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isomodule D:(M) and D:::(M).Given the isomodule _D:(H) of all
isotensor fields of type (s,r) we can determine for every
pair (i,j) iss and rsj the linear mapping C; which is

called contraction between the isomodules D:(H) and D::;(H).
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CHAPTER V
ISOEXTERIOR ALGEBRA

5.1 CONSTRUCTION OF THE ISOEXTERIOR ALGEBRA ASSOCIATED TO AN
ISOMANIFOLD

In the preceding two chapters we have studied the
isotopies of manifolds. In this chapter we shall then study
the isotopies of the exterior calculus on manifolds. This
study was initiated by Santilli (1991b) who : 1) achieved
the rudiments of the exterior calculus on isofields, called
isoexterior calculus, which permits a nontrivial integral
generalization of the conventional one, under the condition
that all integral terms are embédded in the isounit I of
the base isofield F; 2) identified the isotopies of exact
p-forms; 3) proved the existence of the isotopic Poincare’
Lemma, i.e. the preservation under isotopies of the original
geometric axioms (exact p-forms are «closed, whether
conventional or isotopic); and then applied these broader
methods to the tretment of nonlinear, nonlocal and
nonhamiltonian systems.

In this chapter we shall use the above results and
incorporate them in more formal unpublished treatments.

DEFIRITION of isoexterior product 5.1.1. let M be a

differentiable isomanifold of dimension n. We consider the
.\
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isomodule D (M) over the isoalgebra D°(M), which consists of
contravariant isotensor fields of order r. From Dr(M) we
obtain its subset A"(M) of antisymmetric contravariant
isotensor field of order r, that is :

AT(M) = { weD" (M) /-A(w)=w }

PROPOSITION 5.1.1 The subset A"(M) of D"(M) is a subisomani-
fold.

Poof : If wl,wzeA’(M) , then we have :

A(w1J=w1 A(w2)=w2 (5.1.1)

Since A is a linear mapping, then we obtain :

A(W +,) = A(w )+A(w,) (5.1.2)
which, by means of (5.1.1), takes the form :

A(w1+w2) = W,
Hence A" is a subisomedule of D ().

REMARK 5.1.1 From the construction of A"(M) we obtain that :
A"(M) = 0 if r>n where n=dimM

5.1.2 Construction of the isomodule A"(M). Let M be a
differentiable isomanifold. From this we obtain the
isomodules :

ACH=D°(M) , AMM) , AEM) , ..., AT(M)
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over the isoalgebra D°(M)=A"(M). We consider the direct sum
of these isomodules :

AM) = A°(M)on’ (M)oh (M)e. ..eA" (M) = & AT(M)

THEOREM 1.5.1 The isomodule A(M) can become an isoalgebra.

Proof : On this isomodule A(M) we define a new law of

wwwww

internal composition denoted by mas follows :
At AM)A(M) ——— A(M)

A ("1""2) — W W,

1
where W AW, is defined by :
W AW, = A(wla ”z)

that means W, W, is equal to the alternation of the isotensor
product of the two isotensor fields W and w,. This law has
the associative property, that means :

“1“("2"”3) = (\-.rlmuva)f\w3 v wl,wz,wseA(M) (5.1.3)

The isomodule A(M) over D’(M) with the internal composition
A becomes an algebra over the isoalgebra AO(H).

DEFINITION of the isoexterior isoalgebra 5.1.2 Le M be a

differentiable isomanifold. The isoalgebra A(M)} is called
isoexterior algebra associated to M.
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PROPOSITION 5.1.2 Let M be a differantiable isomanifold.
Then A(M) 1is a subalgebra of the isotensor algebra D(M)
associated to M.

isotensor fields and therefore belong to D{(M). Hence
A(M) < D(M)

and since wlnwzsA(wle wz) we obtain A(M) is a subalgebra of
D(M).

DEFINITION of isoexterior form 5.1.3 The isoexterior algebra
A(M) of a differentiable isomanifcld M can be written :

AM) = N(M)eh(M)e...oA"(M) = & A"(H)

The elements of A"(M) r=0,1,...,n is called isoexterior form
of order r or isoexterior r-form on M.

REMARK 5.1.1 From the construction of the isoexterior
algebra we obtain that the isofunctions on M are isoexterior
o-forms on M.

PROPOSITION 5.1.3 If W and w, are two iscexterior forms of
order r and s respectively, then WA W, is an isoexterior of
order r+s. The following relation :

TS
W, = (-1) W AW

is hold.

-----

185



WA, = A(wle wz)

Since W, and W, are antisymmetric contravariant isotensor

fields of order r and s respectively, then
We “zEDm(H)

is an antisymmetric covariant isotensor field of order r+s.

Therefore, we have :
R AT (M)

From this we get that the isoexterior product A is a mapping
A AT(M)AS(M) ———— AT5(M)

PROPOSITION 5.1.4 If wleA'(M) and wzeAs(H), then we obtain :
TS
W AW, = (-1) W AW,
Proof : It is known that :

wlmzen"*s(n) , wzf\wlel\m(ﬂ)

W AW, = A(wle wz) y WM = A(wze "1)
From the definition of isoexterior product we obtain :

1 .
wlnwz(xl,...,xm) = TrisTi ZGEJ J(c)wl(xo(l),...,xu{r)) .

r+s

. wz(xo(m),...,xo(ﬁs)) (5.1.4)
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|
wzi\wl(xl,...,x”s) = TN cEJ wz(xo(l)"”’xa{s)) .

r+s

wl(xc(s+l),...,xc(s+t)) (5.1.5)

The relations (5.1.4) and (5.1.5) imply that the (5.1.5) is
obtained from (5.1.4) if we make rs permutations of {i,...
»Tyr+l, ..., r+s). This implies the relation :

W AW = (-I)rfwznw
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THEOREM 5.1.1 Let M be a differentiable isomanifold of
dimension n. The isomodule A"(M) 1srsn over the isoalgebra
A°(M) is of dimension (2)

Proof : It is known that the isomodule A'(M) has dimension

n. If WiseoosW is a base of AI(M), then the isoexterior
2-forms :

L PW AW WA L W W

form a base for the isomodule A(M). Therefore, the
dimension of AZ(M) is (2) . With the same method we can prove
that the isoexterior r-forms :

AW
n

W, AW, A... AW, (5.1.6)
1 1 1
i 2 r

where lsil<iz<...<irsn is a base of A"(M). The number of
these isoexterior r-forms is (:)

Another DEFINITION of the isoexterior r-form (5.1.4). Let
T.(M) be the isotangentspace of the differentiable
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isomanifold M at the point P. From this isovector space
T, (M} we obtain the iscexterior algebra :

AT() = o (T, ()

where r=dimM. The internal law of composition on this
isovector space A(TP(H)), which makes it an isoalgebra, is
the isoexterior product.

The isoexterior r-form w on the differentiable
jsomanifold M is define as follows :

wpeAr(Tpgﬂ))
From this definition we have the formula :
(wl)Pn(wz)P = (wlsz)P (5.1.7)
where A in the first member of (5.1.7) means the isoexterior

product on A(TP(M)) and the a the isoexterior product on
A(M).

5.2 LOCAL EXPRESSION OF AN ISOEXTERIOR R-FORM

5.2.1 Isoexterior algebra on an isochart : Let (U,e) be an
isochart of a differentiable isomanifold with a local
isocoordinate system (x',...,x"). Previously we have defined
the isoexterior algebra on the differentiable isomanifold M.
In a semilar manner we can define the isoexterior isoalgebra
A(U) on U, which is a subalgebra of the isotensor algebra
D(U). This isotensor algebra A(U) can be defined as follows
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A(U) = A°(U)enl(U)e. . .eA"(U) (5.2.1)

where A°(U)=D°(H) is the isoalgebra of the isofunctions on
U, and n the dimension of M, Al(U) the isomodule of
isoexterior r-form on U and A*(U) k=1,...,n the isomodule of
isoexterior k-form on M, k=1,...,n.

5.2.2 Isoexterior 1-form on the isochart. Every iscexterior
1-form w on the isochart (U,¢) with local isocoordinate
system (x',...,x") takes the form :

n
1 2 n A

- * x, +... -, *
w 1’1 dx +1’2 dx +1"'n dx = A8 wA dx

where fi*dxi =fdexi with T = ;" = isounit of F~ and

fl,fz,...,f;eDO(U). The isomodule A'(U) is of dimension n

over D°(M). The dx!, dx%, ... , dx" are isoexterior 1-forms
forming one base of A'(M). This base is the isodual of the
base :

of the isomodule D'(M) of all isovector fields on v.
Therefore, we have :

1 if 1=k
I RLEN
ax 0 if 1=k
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If WooW,,...,W are isoexterior 1-forms on U, then these can
be written : .

w =Y f dx?

R
The isoexterior 1-forms WoW,ee W form a base of AI(U) is
the matrix :

r 3

11 12 ° In

A = 21 22 Zn
| nl n2 fnn /

is order n or equivalently the determinant :

fu fxz'“ fln
f21 fzz on = D(A) = 0
fnl fnz nn

where f” 1= i,j =n are differentiable isofunction on U.

5.2.3 Isoexterior 2-form on an isochart. We consider an iso-
exterior 2-form w on U. Therefore, w can be written :
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W= wlzdxlndx2+. . .+wlndxlﬁdx"+w2ndxzf\dx"+. . oW ndxzr\dx“-r

+ .+ W dx" 1adx" = }: W, dx kpdx?
n- n k<1

0
where wkleD (u)

5.2.4 JIsoexterior k-form on an isochart k=3. The isoexterior
k-form w on the isochart (U,¢) takes the form :

w=Yy f. : dxiln adx E
i...0 |
1=i <i <...<i =n and f. . are the isofunctions on U. It is
1772 k i...1

obvious that WEAk(U)
The isoexterior k-forms :
i1 ik
dx “A...ndx lsil<iz<...<iksn

form a base of the isomodule A (U) and hence the dimension
of A(U) is (k)
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5.3 OPERATOR ON AN ISOALGEBRA

5.3.1 Isoexterior differentiation Let A(M) be the isoexte-
rior algebra on the differentiable isomanifold. It is known
that A(M) can be written :

AM) = A(M)eAl(M)e. . .oA" (M)

We define a mapping d :
d:A(M) ——— A" (M) d:wr—dw
for which we assume that it is linear :
d: AW AW, ——— d(klwl+xzw2) = Aldwl+kzdwz
where Al,kzeﬁ\! the isofield and wl,wzel\r(M) and has also the
properties :
(1) dod=0 (5.3.1)
. = N T
(IT) d(wlmz) = dwlnw2+( 1) wldw2 (5.3.2)

The 1linear mapping d with these properties is called
isoexterior differentiation.

PROPOSITION 5.3.2. The isoexterior differentiation d on the
isoexterior algebra A(M) is a differentiation of degree 1.

Proof : From the construction of d we conclude that d has

the property :
d: AT(M) ——— A(N)

and since it satisfies the relation (5.3.2) we conclude that
d is a differentiation of degree one.
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,f PO isofunctions o

af af

, afz Bfl L2
dw = — -—-—2" dx adx + --1"
ax ax

axt X

af of, . .
s =" Ta IV SR
ax

ot OX

Finally if w is an jsoexterio
on U :
1
W= M wi .--i dx f\-..f\dx
1 A
1=i <1 <. ..L1<n
1 ¢ r

. are isofu

wher :
e Wi ...l
1 r

jmplies ° o _
1 .,.1 11
E /’ Ao
ax
i‘{ix"“’lr}

1=i <i ¢...<1
1 2 T
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ior r-form, the

nctions on U. The relation

be written

obtain

S \dxlndxa+...+

L dx?'lndx?
X"

n w has the form

(5.3-3)

(5.3.3)

i .
p dx *adxt



ie{l,...,n}
THEOREM &5.3.1 If w is an isoexterior r-form on a
defferentiable isomanifold, then we have :

dw{x ,x X) = 1 f (-1) 5, (w(x X x)) +
RITERREET W B m— z i MARRELITEERE N

1 ek A2
=1 I DT wllxex 1o Xgs e X)
0= lck=r

where the symbol # means the term is ommited. For an
isoexterior 1-form w and an isoexterior 2-form ¢ we have :

(@) (X,¥) = 3 [ w00-¥ex)-w(x, YD) |

@) %2 = 3 [ Xettzevie@xzmxn)] -

- ’([X,Y],Z) - '([Y,Z],X) = Q([Z,X],Y)

where X,Y,Z are isovector fields on M
Proof : The proof is by induction on r. Indeed, if r=0, then

w ia an isofunction and therefore, we have :
dw(XD) = Xow

This shows that thé above formula is true for r=0. We assume
that is true for r=1 and using the operators L and ix we
obtain the above formula.
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5.4 : CONNECTION BETWEEN  ISOSYMPLECTIC GEOMETRY  AND
LIE-1SOTOPIC _ALGEBRAS

We now study the jsodifferential calculus of
p-isoforms. let 61=A*ax be a ?ne-isoform. we define as the
jsoexterior derivative of ¢1_ (also called jsoexterior
differential) and denoted with 2%, the two-isoform

it
. R oA, TH3) . .
b = i1 1 12, 2udl. ayd? o
¢2 aol ———-———axn L P2 ABX (5.4.1)

i1,
8A. . . art--3] . . .
- i1 i1, 412 ) 1 ol jroa dz
[——12 T °§1T %j2 + A11 _T Jz]ax ADX

ax ax}?
i1,
.4 3A. . . 8T .
1 <jiiz 11 i1, 412 1 L1z, ki . ke
=—0 [—-—-—- TH31T 32 + Ay — 1] ]ax ABX
2 klk2 axlz i axlz 2

from which one can see that 651 is no longer the curl of the
vector field A; ., but something more general, although
admitting the conventional formulation as a particular case
for i=1.

The isoexterior derivative of a two-isoform

o = A, . Thie The, axdiaax®
tbz AlllzT 1le zjzax 1A8XV2 (5.4.2)

is given by the three-isoform
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oA. . atl;,

- - 11 ; s . J .
0. =00« — 2 7h 1l 1l A, — 1 gl g
3o [ ax's PRI PR L1 axi® JzT Js
_ alej
PA g oyt Ve qis ax3 aaxI2aaxd? (5.4.3)
L2 3 a3 J3)

It is easy to see that the isoexterior derivative of
the isoexterior product of a p-isoform tb and a g-isoform tb
is given by

a(&:p,\éq) - (a&:p),\&aq + (-I)Péap,\(a&q) (5.4.4)

A p-isoform ip shall ce called isoexact when there

exists a (p-1) form &Jp_l such that

-~ -

o = o0 (5.4.5)

Similarly, a p-isoform &p shall be called isoclosed when

o6 =0 . (5.4.6)

The most significant result of this section can be expressed
as follows.

LEMMA 5.4.1 ((Isotopic Poincaré Lemma ; Santilli (1988a,b),
(1991b). Under sufficient regularity and continuity condi-
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tions, the Poincaré Lemma admits an infinite number of iso-
topic images i.e. given an exact p-form ¢-d¢ b1 there
exists an infinite number of isotopies of © o1 1nto isoforms

q)p-l -

¢ =10 (5.4.7)
with consequential isotopies of the p-form

© =do ) =0 =30 ) (5.4.8)

for which the isoexterior derivative of the isoexact
p-isoforms are identically null,

a(amp_l) =0 (5.4.9)
PROOF : Consider an isoexact two-isoform

- a6 = i
o, = 00 = 2(AT ox') (5.4.10)

Then, under the necessary regularity and continuity condi-

tions, its isoexterior derivative

i
, . aT . .
662(661) = ““61'2111 Tll. Tla. + aA%; % le- Tla- +
axt2axl? J, 3 8% ax1? Y J
i
8T 2.
aA: i J, 1 j
4 il 71 T2 78 51,502,903 (5.4.11)
axiz 9 axl? I5
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is identically null for all infinitely possible isectopic
elements, as the reader can verify via simple but tedious
calculations based on the antisymmetrization of all indeces.
An iteration of the procedure then proves the lemma at anny
(finite) order p. QED.

In short, the existence of consistent isotopies of the
Poincaré Lemma proves the consistency of the isotopic
generalization of the conventional and exterior calculus
under consideration here.

The mathematical relevance of Lemma 5.4.1 is provided
by the fact that the abstract, realization-free axioms

m
[ =]

¢ = d¢1 ) d@z (X.X.12a)

2

¢ =do , do

5 ) 0, etc. (X.X.12b)

3

admit the conventional realization based on an ordinary mani-
fold, as well as an infinite number of additional realiza-
tions for each given original form which can be readily
identified via our isomanifolds. The latter realizations are
generally inequivalent owing to the generally different iso-
topic elements or isounits.

The conventional Poincaré -Lemma constitutes a
geometric foundation of Galilei’s, Einstein’s special and
Einstein’s general relativities for the exterior problem in
vacuum. Also the isotopic Poincaré Lemma constitutes a
geometric foundation of the isotopic coverings of the above
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relativities for the interior dynamical problem within
physical media.

Note that, for each given, conventional realization of
axioms (5.4.12), there exist an infinite number of isotopies
which are all geometrically equivalent, but physically in-
equivalent, because they characterize different integro-
differential system with inequivalent solutions.

We shall now consider some cases of exact isoclosed
~ isoforms. Consider a one-isoform ¢ on TM (A) Then d® =0,
iff

i1,
T VO aT!j
1 <j1jz i1 i1, iz, 1 iz,
15y [“_axlz TR 4+ Ay —tT ] 0 (5.4.13)

namely, the isoclosure of a one-isoform does not imply that
the conventional curl of the vector A is null.

Similarly, given a exact two-isoform 0 =a¢ the
property a0 ,=0 ‘holds iff

1
2. . . aT 1. . .
531j2j3[ 6 Ail Tll Tla + aAil Jy le T13 +
k. k_ks3 12, 13 J J 12 . J J
12 ax " ax 1 3 8x 6x13 2 3
1l
2
aA11 il a jz i3
+ —3; T j - T i| = 0 (5.4.14)
ax 1 13 3

ax
We are now equipped to identify the desired geometry.

Let us review the interplay between exact symplectic two-
forms and Lie-isotopic algebras (see Santilli (1982a) for
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details). Recall that a conventional two-form on an even, 2n-
dimensional manifold 1JHZ(A) with covariant-geometric tensor

. .
1112 . .
0, = =0y 5 dx adx’? (5.4.15)

2 iiiz

characterizes the algebra brackets among functions A(x) and
B(x) on T'M,(A)

- aA ,ii1i» OB
[A,B] = —=—q" (5.4.16)
axl! ax12

where the contravariant-algebraic tensor ol*1? g given by

the familiar rule

. -14 i1i2
1112
liiz . {|nj1j2| } (5.4.17)

Now, the integrability conditions for two-form
(5.4.15) to be an exact symplectic two-form are given by

0y 5 + 0y, = 0 (5.4.18a)
an. . an. . an, .

i;lz + ;i13 + %211 =0 (5.4.18b)
ax ax ax

The above conditions are equivalent to the integrability
conditions

i1z 4 l?dt . g (5.4.19a)
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i2is izis i2is
n11|( af — + Qllk an + 01 1k a0 - =0 (5.4.19b)
ax ax ax

for generalized brackets (5.4.16) to be Lie-isotopic, i.e.
verify the Lie algebra axioms in their most general possible,
classical, regular realization on T*MZ(A)

[A,B] + [B,A] = 0 (5.4.20a)
[[A,B],C] + [[B,C],A] + [[C,A]l,B] = 0 (5.4.20b)

Thus the exact character of the two form ¢2=d¢1
implies its closure d¢250 (Poincaré Lemma), which, in turn,
guarantees that the underlying brackets are Lie-isotopic with
the canonical case being a trivial particular case (see the
analytic, algebraic, and geometric proofs of Santilli (1982),

lema 5.4.1 establishes that all the above results on
the conventional exterior calculus persist under isotopies.
Our objective is than that of using the isotopies for the
identification of the isounit of the Lie-isotopic algebra
directly in the structure of the brackets.
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CHAPTER VI

ISOMAPPING BETWEEN ISOMANIFOLDS

6.1 BASIC PROPERTIES OF ISOMAPPINGS

DEFINITION 6.1.1 Let M and N be two differentiable
isomanifolds. We consider the mapping ¢ of M onto N, that is

¢ :H — N , ¢: P r——— O(P)

which is called isomapping. This isomapping ¢ is called
differentiable at the point P, if for every neighborhood U at
the point P, there exists a neighborhood ¢(U) at the point
®(P) such that the isofunction

ged e D'(U) v geD’(o(U))

If the isomapping ¢ is differentiable for all the
points of the isomanifold M, then ¢ is called differentiable
on the whole M.

REMARK 6.1.1 In the above we have considered differentiable
isomapping between two isomanifolds. In a similar manner we
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can define differentiable isomapping of class k or briefly
¢*. Finally, if the differentiability of ® is zero or C°,
then the isomapping is continous

REMARK 6.1.2 We assume that M and N are analytic isomani-
folds. In a similar way as we have defined a differentiable
isomapping, we can define analytic isomapping between M and N.

REMARK 6.1.3 Every analytic isomapping between two analytic
isomanifolds M and N is a differentiable isomapping and the
inverse is not always true, that is a differentiable
isomapping between two analytic isomanifolds M and N is not
always analytic.

6.1.1 Expression of an isomapping in local isocordinate
systems. Let ¢ be an isomapping between two differentiable
isomanifolds M and N, that is

$ : M ——— N , & : P —— ¢(P)

Let U be a neighborhood of the point P with (x!,...,x") local
isocoordinate system and U/ a neighborhood of ®(P) such that
Urso(P) with local isocoordinate system. Therefore we have
the relations

yi= el 0™ i=l,...,n (6.1.1)

The relations (6.1.1) give the expression of ¢ in local
isocoordinate systems. The isomapping ¢ is differentiable of
order k at the point P if there are all the partial
derivatives of (6.1.1) until of order k at the point P.
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DEFINITION 6.1.2 Let M and N be two differentiable isomani-
folds and ¢ a diferentiable isomapping such that ¢ is a
homeomorphism. Then ¢ is called differentiable isohomeo-
morphisam.

REMARK 6.1.4 In the above we have assumed that ¢ is a
differentiable isomapping of order infinite or €. If we
assume that ¢ is a homeomorphism of differentiability of
order k, or LJ‘, then it is called isohomeomorphism of
differentiability of order k.

REMARK 6.1.5 If the isomanifold M and N are analytic and the
isomapping ¢ : M ——— N is analytic, then ¢ is called
isoanalytic.

DEFINITION 6.1.3 Let M be a differentiable isomanifold. A
defferentiable isohomeomorphism of M onto M is called diffe-
rentiable isotransformation or simply isotransformation.

DEFINITION 6.1.4 Let M be a differentiable isomanifold. We

consider a differentiable isomapping a of the open
A

isointerval IsR into M, that is

a: ] — M , a:tel — a(t)eM
This isomapping is called isocurve on M.
REMARK 6.1.6 If the isomapping a is of class C*, then a is

called isocurve of class (. In some cases we consider, for
the definition of the isocurve, that the isointerval 1 is
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closed, that is
A A
I =[a,b] SR a,beRr

This is true under the condition that the isomapping a can be
A
extended to an open isointerval 1121 of R.

DEFINITION 6.1.5 Let ot} be an isocurve on the differen-
tiable isomanifold M. Let P be a point of the isomanifold and
f a differentiable isofunction defined on a neighborhood of
P. We assume that there exist the limit

I. = i 1 -
[ 10 = 1n - Flaltsh))-fa(t) ]

where t is the value of the parameter which corresponds to
the point P.

Let (U,p) be an isochart of M such that a{t)el with
isocoordinates (uﬂ...,u“). Then the isofunction f for the
point qel has the form

f{q) = f(u'(q),...,u"(q))

Therefore f can be described as an isofunction on the open
A

subset ¢{U)sR". The part of the isocurve a{t) on U can be

expressed as follows

u'(a(t)) = u¥(t) i<1,...,n

From the known derivation’s ruler we obtain

[o()](f) - 3 2L du

i=t 8u

. ' 6.1.2
ul=ul(t) ( )
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a’(t) is called tangent isovector of the isocurve at the
point a{t).

DEFINITION 6.1.6 The relation (6.1.2) is called derivative
of the isofunction f along the isocurve a at the point a(t).

DEFINITION 6.1.7 Let P be a point of the differentiable
isomanifold M. We consider all the differentiable isocurves
a(t) which are defined by

a: I ——M , a:1t ——a(t)eM
0cl and a(0)=P

The set of all these curves is denoted by S on which we
define a binary relation " -~ " as follows

a~8 if a{0)=p(0) and

e
gx_*é%(g_)_ [t=0 - d_)(ié%(m |t=0

where (xl,...,x") are the local coordinates of the chart
(U,¢) and 0OeU.

It can be easily proved that "~" ia an equivalence
relation on S, which defines classes. Each class of
equivalence is obtained as a tangent isovector of M at the
point PeM. Therefore all the classes of equivalence define
the tangent isospace TP(M) of M at the point P.

REMARK 6.1.7 Very often we identify the tangent isovector v
at the point PeM with the isocurve a{t) under the condition
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that a-(t) is a linear form on the isomodule.
We consider the isocurves a,, i=1,...,n defined by :

a, = [ui(t) - d'(P)st , od(t)=a'(P) , iaej]

It can be easily proved that uf(O) is a linear isoform on
0°(U), which can be identified wlth

8
axi P

From the above identification we conclude that the isocurves

ul(t),...,un(t)

can be considered as a base of the tangent isospace TP(M).

DEFINITION 6.1.8 Let ¢ be a differentiable isomapping between
two differentiable isomanifolds M and N. tet (U,p) be an
isochart of M and PeU. From ¢ we obtain the point ®(P)eN and
consider the open neighborhood Us of N such that ¢(P)elsc
®(U). Let D°(U) and D°(U/) be the isoalgebras of the
differentiable isofunctions on U and Us respectively.

If A is an isovector, then A can be considered as an
isooperator on D°(U), that means

A:D°(U) ——— D) , A:g+—s A(g)

To the 1isovector AeTP(H) we correspond to the
isovector BeT.w)(N) defined as an isooperator on DD(U') as
follows

B :D%U) ——— D) , B:h ——s B(h)
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The B(h) is defined by the relation

B(h), ) = Alhe®),

Now we have constructed an isomapping, denoted by (¢*)P, of
T,(M) into T.w)(N) defined as follows

(0), : T,(M) ——— T, (N)
(0,), : A ——— (0,),(A)=A
This isomapping (¢*)P is called derivative of ¢ at the point P.

THEOREM 6.1.1 The derivative isomapping (®,), of the
isomapping ¢ between the isomanifolds M and N at the point
PeM is an isolinear mapping of TP(M) into T.w)(N).

Proof Let a be an isocurve on the isomanifold M, that is :

A A A A
a: ] ——M , ¢: 0] — $(0)=P

A
where 1 is an open isointerval of M. From the isomapping

¢ : M — N

we obtain the isocurve B=tca on N and therefore B(0)=0¢(P).
Let A be the tangent isovector of a at the point P. By the
meaning of the isomapping derivative (tb*)P we obtain the
tangent isovector B of B at the point ¢(P). From the
constraction of (¢,)P we have
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A A A A
(.), : MNAHRA, —— (¢*)P(A1A1+)\2A2) =
A A

A A A
where Al,hfem and Al’AzeTp(M)'

From the above we conclude that (¢,), is linear
isomapping between the tangent isospaces.

PROBLEM 6.1.1 et (6.) be the isomapping derivative between
P

the tangent isospaces T,(M) and Tow)(N) of the isomanifolds

M and N at the points P anf ¢(P) respectively. Determine (¢*)P
by a matrix.

Solution Let (U,¥) and (U-,¥) be two isocharts of M and N
respectively such that PeU and ¢(P)eUs and o(U)cU/. Let (X%,
...,x"} and (yl,...,y“) be the isocoordinates on U and U/
“respectively. For the isohomeomorphisms ¥ and ¥ we have

W:U — 5 YU)SR" , V:gqr—s W(q) =

=(x'(a),...,x" (@) = (x,.,,.x")

s

Vot — S WU )R, W s W (r) =
=(y (r) s Y™} = (Y hss¥™

Hence the isomapping ¢ locally can be expressed as follows :
¥o= Yt LX) k=l,...,m

It is known that the isovectors
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e = [ _Q__ i=1,...,n
! ax' /p
form a base for the tangent isospace TP(H).
Similarly the isovectors :

a8 .
E, - [ 8 © jel,...,m

ay'! Jep)

form a base for the tangent isospace Tow)(N)' Therefore the
derivetive isomapping (F+), for these isovectors implies

i
Ej = 2 — = a¢1 g T e 99 3@ j=1,...,m
ay’ ax-  ax

from which we have :

r h'
301 601 50!
1 2 rrice n
ax ax ax
qu aqz 502
- b L 2
T-= ax! ax’? ax"
ag" ag" so"
1 2z ! ? n
ax ax ax
\ F, P

Hence (0*)P is represented by the matrix
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( 1 2 m ]
a9 a9 39
3. 9
ax’ ax! ax*
1 2 m
S =17 = _Laz ';Laz ‘Laz (6.1.3)
ax ax X
1 2 m
a a 3
e .
ax" ax" ax"
\ F P

REMARK 6.1.8 If N=R, the T, (N) can be identified with R
and in this case (¢*)P is an isolinear form on T (M). In this
case ¢,=3% can be considered as defferentiable one-isoform on
the isomanifold.

If AeT (M), then the tangent isovector (¢*)9(A) and
the tangent isovector B defined by the relation

B: f > S F(0(P)+A(6))

where feD“(ﬁ), determine the same number f- (9{P))A(9).

REMARK 6.1.9 If the differentiable isomapping ¢ between the
two differentiable isomanifolds M and N at the point PeM has
the property such that the derivative isomapping (d>,,)P of
TP(M) into T¢(N) is one-to-one, then ¢ is called regular at
the point P. In this case the matrix (6.1.3) has rank equal
to the minimum between the two numbers m,n.
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REMARK 6.1.10 We consider the 1isocurve a on the
differentiable isomanifold M, that is

CI:I—)H,O:ti—)u(t),ﬂ:tol——)O(At0)=P

which is canonical at the point Pea. In order to be canonical
at the point P it is necessary at least one of the derivati-
ves of the functions
i i
u'{a(t)) = u'(t)

where (uﬂ...,u“) the local coordinate system on the chart
(U,9) where UcM such that a{t)cU, must be different than zero
at P.

THEOREM 6.1.2 let ¢ be an isohomeomorphism between the two
isomanifolds M and N. We assume that the isomapping
derivative (0,,)P is an isoisomorphism of TM onto T, N,
then there are neighborhoods U and U+ of the points P and
¢®(P) respectively such that ¢/U is a differentiable

isohomeomorphism of U onto U-.

Proof. The restriction of the isohomeomorphism, that is ¢/U
can be expressed by the relations

yi= ol .. X" i=l,...,n

since the isomapping derivative (¢*)P is an isoisomorphism of
T.(M) onto T.w)(N), it implies that the Jacobian
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BT
ax! ax"
D(e,...,q") S %0
D(x!,...,x") ) )
%o ... S
ax! ax"
\ /

The theorem of the inverse isomapping implies the proof.

6.2 CONNECTION BETWEEN ISOTENSOR FIELDS AND ISOMAPPING

DEFINITION 6.2.1 Let ¢ be a differentiable isomapping between
the two isomanifolds M and N. We consider two isovector
fields X and Y of M and N respectively. If for every PeM we
have

(0.),(%) = ¥,

then the two isovector field X and Y are called connected
trough the isomapping ¢ and this is denoted by

(da*)P =Y (6.2.1)
PROPOSITION 6.2.1 Let Xi,Yi, i=1,2 be two connected isovector

fields of the differentiable isomanifolds M and N
respectively with respect to the differentiable isomapping ¢
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between M and N. The following relation

o,([X,X,1) = [Y,Y,] (6.2.2)
holds. ‘

Proof. It is known the following’
(0.),((x),) = () > (0),(0),) = (¥,)

From the definition of the Lie bracket, the properties of the
derivative isomapping and the (6.2.3) we conclude that

(0,),((X),5(X,),) = [Y,Y,] vPeM
which implies the relation (6.2.2)

PROPOSITION 6.2.3 Let ¢ be a differentiable isotransformation
of M. We set f*=fo¢'1, where feD’(M). Prove that

o, (f(X))=F (6,(X)) and f (XF)=0,(X)(F) , XeD'(M) (6.2.4)

Proof. If X and Y are two isovector fields, which are
connected by the isotransformation ¢, By this property of ¢

we have
(Yf)o® = X(f-0) (6.2.5)

where feD’(M). If we have under the consideration (6.2.5) and
some properties of the derivative isomapping then we have
proved (6.2.4).

DEFINITION 6.2.2 Let ® : M ——— N be an isomapping between
the two differentiable isomanifolds M and N. Let w be an
isoexterior k-form of N, Then there exists an isocexterior
k-form of M, denoted by ¢*(u), such that
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o(Y,...,Y,) = o*(u)(xl,...,xr)oa (6.2.6)

where Yl,...,YreDI(N) are connected of Xl,...,XreDl(H)
respectevely, through the isomapping ¢, that means

0.(X) =Y i=l,...,r (6.2.7)

The relation (6.2.6), for an arbirtrary point PeM, can be
expressed as follows

o (W{A,....AY = v {(9,) (A),...,(0,) (A)} (6.2.8)
1 r A | P* r

where AieTP(M), i=1,...,r are isovectors of the isotangent
space TP(M).

REMARK 6.2.1 Let feD’(N) be an isofunction of N. We set
O f=fod. If weA(N)}, where A(N) is the iscexterior algebra of
N, then
o (w)eh(M)
It is known that
A(M) =r§1A(M) » A(N) =k§1ﬂ(N)

where A°(M) = D°(M) , A(N) = D°(N).

PROPOSITION 6.2.2 If ulﬂ%eA(N), then the following relations
hold
0 (r,) = O (v)r0 (0,) , d(0w) = ¢ (du)

where weA(N) and ¢ is an isomapping between the two
differentiable isomanifolds M and N.

Proof This is an immediate consequence of the definitions of
the exterior product of two isoexterior forms, of the
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derivation of an isoexterior form and of the derivative
isomapping.

REMARK 6.2.2 If TesD(N), that means T is a covariant
isotensor field of N, then we can define with the semilar
manner the ¢*(T)esD(M).

If QeaD(M), that is 0 is a contravariant isotensor
field of M, then, by means of the isomapping between M and N,
it can be determined a contravarian isotensor field of N
denoted by ¢, (). Therefore we have

®_(0)<aD{N)

DEFINITION 6.2.3 Let ¢ be a-differentiable isohomeomorphism
of M, that is M=N. If we have

o (t) = TesD(M)
then T is called invariant by ®. Similarly if we have
¢.(0) = DeaD(N)

then 0 is called invariant by ¢.

PROBLEM 6.2.1 Let ¢ be differentiable isomapping ¢ between
the two isomanifolds M and N. If @ is an isoexterior r-form
of N whose the corrsponding through ¢ is ®'w of M. Determine
®'w in local coordinate system.

Solution. Let P be a point of M whose the corresponding of N
is ¢(P). Let U and U- be two neighborhoods of P and ¢{P)
respectively such that ®(U)cU/. The isomapping ¢ can be
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expressed by local isocoordinates as follows

¥ o= e, .0 k=l,...,n (6.2.9)

where (xl,...,xm) local isocoordinates around P in U and
(v',...,¥") local isocoordinates around ®(P) in U:.

The restriction of the isoexterior r-form on U can be
written :

‘”w 'E%r“gdf%”dwh hhc“ﬁfn(ﬁidw

where g . eDO(U')
11...1 r

The restriction of the isoexterior r-form ¢'w on u
takes the form

TTED> fh1 .“hrdxlhln...ndxhr lsh<...<hsn  (6.2.11)

The relation (6.2.11) can be obtained by (6.2.10) by means of

m k .
Y=o (x!,...x") , dy* = T ﬂi“d"l k=1,...,n
i=1 " ax

6.3. SUBISOMANIFOLDS

DEFINITION 6.3.1 Let M and N be two differentiable
isomanifolds. If McN, M and N considered as sets and the
induced isomapping

i:M———N, i:P —— 5 i(P)=P
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is regular for every point peM, then the isomanifold M is
called subisomanifold of N.

EXAMPLE 6.3.2 Let S° be the isosphere defined by the equa-
tion

25 1 6, _26 2 2

S° = [ (X'5.., X )R [ X xe =1 ]

Prove that §° is a subisomanifold of the Euclidean isospace RS

Solution. The hypersphere gs is a subisomanifold of ﬁﬁ and at
A
the same time topological subspace of RS,

REMARK 6.3.1 Let M be a subisomanifold of N. It is possible M
showed not be a topological subspace of N.

THEOREM 6.3.4 Let M be a subisomanifold of N. If PeN, then
there exist a local isocoordinate system (xl,...,x") around P
in a neighborhood U of N such that

x'(P) = ...= x"(P) = 0
and the same time the set
Ur = [ qel / x’(q)=0 m+ls<j=n ]

with the restriction of (x!,...,x") on U/ to form a local
isocoordinate system around PeM in UscM.

Proof Let U and U be two neighborhoods of the point P
considered as a point of the isomanifolds M and N
respectively. Let (y',...,y") and (z},...,z") be local
isocoordinate systems on U+ and U respectively with the
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properties
yiP) =0, i=1,...,m, 2)(P)=0 , j=1,...,n
The induced isomapping
ieM —N , i:P+——5 i(P) vPeM
in the neighborhood of P can be expressed by meaning of the

relations
Zj = QJ(.VI,---,.VM) J=l,...,n

The Jacobian matrix

f ag’ ap’
a.yl a-ym
J = teserertiabaranns
n n
Qe L. e
\ ayl aym 7

of the system has rank m at the point P, since i is regular

at this point.
Without loss of generality we can assume that the

square matrix

[ 1 1)
2 ... Lo
Byl aym

| ey ay"
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"has determinant different than zero at the point.
Therefore at the neighborhood (0,...,0) we obtain

yl= f(24,...,2")  lsism
Each of the function f! is differentiable. If we set
x! = 2 i=1,...,m
x! = 23 - P(F, ..., 2),..., "2} ..., 2")

then it can be easily proved that

D[(axi/ayl)] £0 d=l,...,m , l=1,....m

D[(axj/azk)] #0 j=l,...,n , k=l,...,n

where D is the determinant of the matrices

(ax*/ay?) i=1,....,m , 1l=1,...,m

(ax’/82")  j=1,...,n , k=l,...,n

Therefore (x',...,x") is the required local isocoordinate
system q.e.d.

DEFINITION 6.3.2 Llet M and N be two differentiable
isomanifolds. Let ¢ be a differentiable isomapping of M into
N, that is

: M — N
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If the derivative isomapping (o, ) » VPeM, is one-to-
one, then ¢ is called isoimersion and M 1s called isoimersed
isomanifold in the isomanifold N.

If at the same time is one-to-one then ¢ is called
isoembeding and M is called isoembended isomanifold in the
isomanifold N.

REMARK 6.3.2 Let ¢ be an isoimersion of the isomanifold into
the isomanifold N. Since (0,)P 1s one-to-one for every PeM,
we conclude that

dim(T M) = dlm(T"P)N)

and therefor dimM=dimN.

There exists a neighborhood U of the point P with
local isocoordinate system, (xl,...,xm), and a neighborhood U
of the point ¢{P) with local isocoordinate system (y',...,y")
such that we have

v (o(Q) = x}(Q) vQev i-1,....m

Specially it is a homeomorphism of U onto Us. The isomerced
isomanifold M can be considered as subisomanifold.

REMARK 6.3.3 The isomanifold M is a Hausdorff space and
therefore has a topology denoted by T On the other hand the
isomapping ¢ : M ——— N 1nduces on M another topology
denoted by T There is an open problem to compare these two
topologies Tl and T, on M.

DEFINITION 6.3.3 Let ¢ be an isomersion of M into N, that is
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DEFINITION 6.4.2 Llet S be an isodistribution of a
differentiable isomanifold M. If vPeM S, is a subspace of the
isotangent space TP(M) of dimension r<n, where n=dimM, then r
is called dimension of the isodistribution §.

EXAMBLE 6.4.1 Let ﬁ‘ be the isoeuclidean manifold. We
consider the isovector fields

X1 8 X2 _ X3 8
xl =€ 3x xz =€ 3x ’ xa =€ 3x
1 2 3
A
Prove that these form an isodistribution of R*. Determine its

dimension. Is this an involutive ?

Solution If P{p ,P,,P,:P, )em , then three 1sovector fields
X x X, define the followlng isovectors of T (R )

() (), - (3], - (4,

where (x X, X ) the ispoaffine coordinate system on R These
three 1sovectors define a subvectorspace V of 1‘(m ) of di-
mension 3. If we consider V as a sublsomanlfold of R , then.
it represent an isohypersurface of R

X4W\
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which is parallel to the coordinate isohyperplep Oxlxzxs.
Therefore the three isovector fields X XX, of rR' form an
isodistribution, whose dimension is three, that is dimS=3. In
order to prove that S is involutive it is necessary that the
Lie brackets [XI,XZ] , [Xz,xs] , [XI.XS] beleng to this
isodistribution. These Lie brackets have componets different
than zero only for the isovector fields a/axl, a/axz, a/axs.

Therefore the distribution S is involutive.

DEFINITION 6.4.2 Let N be a subisomanifold of the
differentiable isomanifold M, that is we have the isomapping
® : N ——— M. We consider the isodistribution S of M such
that to be

(), (T,(N)) = Se(py VPN

The subisomanifeld N is called integrable isomanifold of S.
If there not exist any other integrable isomanifold of §,
which contains N, then N is called waximal integrable
isomanifold of S.

PROPOSITION 6.4.1 Let S be an involutive isodistribution of
M. Then for each point PeM, there exists a unique maximal
integrable isomanifold N(P) of S. Every integrable
isomanifold through the point P is a subisomanifold of N.

Proof This is an immediate sequence of the definitions of
involutive isodistribution, integrable isomanifold and
maximal integrable isomanifold associated to an involutive
isodistribution.
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Similarly we obtain the proposition :

PROPOSITION 6.4.2 Let S be an ivolutive isodistribution of
the differentiable isomanifold. Let N be a subisomanifold of
whose the connected parts are all integral subisomanifolds of
S.

We consider the differentiable isomapping of the
isomanifold into the isomanifold M such that

FK) < N

If N satisfies the second axiom of countability, then f is a
differentiable isomapping of K into N.

DEFINITION 6.4.3 Let X be an isovector field of the
differentiable isomanifold M. Let u{t) be an isocurve of M,
that is

u: f —_— M, Ut — u(t)eM
u(t) is called integrable of the isovector field if for every
t, of t, the isovector qu is isotangent of the isocurve at

g

the point u(to).

THEOREM 6.4.1 Llet X be an isovector field of the
differentiable isomanifold M. For every point PeM, there
exists a unique integral isocurve u(t) of X, defined for
|t]<e, where €>0 and such that u(0)=P.

Proof We obtain a neighborhood U of the point P with local
isocoordinate system (xl,...,x"). In this case the isovector
field X can be written :
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X = a2 e
ax ax"
where Alskl(xl,...,x"),...,A"=h"(x1,...,x") isofunctions of
U. Every integral isocurve u(t)={x'(t),...,x"(t)} is a
solution of the system : '

—f}’g—i = Aed, . X" d=l,...,n (6.4.1)
According to existance theorem of the solution of the system
(6.4.1), there is a unique solution which is satisfied by P
for t=0. The solution is valid for |t]<e. The solution gives
the unique integrable isocurve of X having the required
properties.
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