HADRONIC JOURNAL

VOLUME 8, NUMBER 1

Lie-isotopic liftings of Lie symmetries. I Lifting of rotations
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As is well known, perfectly spherical objects with invariant xx + yy +zz=1 can be
deformed into the ellipsoids xa™2x + yb~2y + z¢™2z = 1, with consequent manifest loss of
the symmetry under rotations. We show that the Lie-isotopic lifting of Lie symmetries
presented in the preceding paper permits a generalization of the contemporary theory of
rotations into a form which provides the invariance of all possible deformations of the
sphere, while being able to recover the original theory identically, whenever the perfectly
spherical form is regained. The resultant lifting of rotations turns out to be applicable also
to the motion of extended particles within inhomogeneous and umnisotropic media. A
number of classical applications are indicated, together with the identification of intriguing
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open problems for the possible extension of the theory to particle physics.

I INTRODUCTION

As 1s well known, when absolute rigidity is re-
laxed to admit the deformations of the real world,!+?
perfectly spherical objects in Euclidean space,

r'r=xx+yy+zz=1, (1)
can be deformed into ellipsoids
r'gr = xbix + ybly + zb2z = 1, (2)

with the consequent manifest loss of the symmetry
under rotations. -

Similarly, when the motion of extended objects
occurs  within inhomogeneous and unisotropic
material media, the Euclidean invariant (1) is gener-
alized to a form of the type

‘(r’gr= r’g,-j(t,r,i,...)rf, o (3)

where, in general, the metric tensor has a depen-
dence on time, coordinates, velocities, and a number
of additional physical quantities (such as tempera-
ture, density, pressure, eic:).

In this paper, we shall propose a generalization of
the theory of rotations which provides the invari-
ance of all possible deformations of the sphere, Eq.
(2), while recovering the conventional theory identi-
cally whenever the original structure (1) is resumed.
We shall then show that the generalized theory also
provides the invariance of the generalized metric of

Eq. (3).

These objectives will be achieved via the use of
the Lie-isotopic lifting of Lie symmetries presented
in the preceding paper® of this series (hereinafter
referred as I), with particular reference to Theorem
2.1 of that paper. All notation, definitions, and
results of Paper I will be tacitly assumed.

II.  LIE-ISOTOPIC LIFTING OF ROTATIONS

The Lie-isotopic lifting of Lie symmetries
proposed in Section 2 of I permits a step-by-step
generalization of the theory of rotations for the
achievement of the form invariance of all possible
deformations of the sphere. Some of the main lines
of this program can be presented as follows.

Our basic space is the conventional Euclidean
space in three dimensions, E(3, 8,R), with local
coordinates

x
r={rk}=()’), k=1,2,3,
. z

and composition
Pl o= riﬁiji‘j = XX+ yy + zz. (4)

The continuous component SO(3) of the metric-pre-
serving group® O(3) is given by the familiar form

SO(3): R(8) = e el pels),, ()
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verifying the conditions

RR = RR' =1, (62)
=R (6b)
detR=1, (6¢c)

where the @’s are Euler’s angles; the, skew—
Hermitean generators are given by

0 0 0
J=Jy=]0 0 1},

0 -1 0

0 0 -1
J2=j31: O 0 O 9

1 0 0
0 1 0
S=J,=|-1 0 0],
0 0 0
= —Ji; (7)

and the infinite series leading to the exponentiations
(7a) and (7b) are computed in the universal envelop-
ing algebra & with conventional associative product
of matrices and unit

&: J,J, = associative product, (8a)
L= J,I =J,
I = diag(+1, +1, +1) (8b)

The attached Lie algebra is characterized by the
familiar commutation rules

SO(3): [ ] JiJy = JJi = —€udis

i, j,k=1,2,3, (9)
while the second-order Casimir invariant is given by
3

=y JJ = -2I (10)
k=1

The discrete part of O(3) is characterized by the
inversion
P = diag(—1, -1, -1),

Pr= —r,

det P = —1, | (11)

which, as well known, commutes with all elements
of SO(3). We shall keep in mind that O(3) is not

connected and that, since the reflections do not

contain the identity, they constitute a group only
when combined with SO(3).

We now introduce arbitrary, nonsingular, sym-
metric, and sufficiently smooth metrics over R:

gz(gij)z(gij(t7r’i‘"">) (12)
with composition law
rleyr =l = r’('g;j.rf (13)

characterizing the isotopic liftings £(n, g, R) of
E(n,8,R), according to the specifications of Sec. I
of Paper L.

We are interested in identifying the Lie-isotopic
liftings O(3) of the group of rotations O(3), that is,
the set of transformations

X' =R(6)+ X =R(0)gX, _ (14)

which verify the conditions for constituting a Lie-
isotopic group, including the isotopic rules

R(O)=1=g", (15a)
R(8,)* R(8,) = R(0, + 6 ) (15b)
R(0)*R(-0)=1, (15¢)

while leaving invariant composition (11), i.e.,
rUap =t R Rer=risr. (16)

As indicated in Sec. 11 of Paper I, the latter
property holds if the elements R(8) € O(3) verify
the isotopic-orthogonality conditions

N A

R+ R=R+R =1, (17)

which can be expressed in terms of the inverse
operation with respect to the new unit /,

Ri=RT (18)

and imply the following generalization of the condi-
tion (6¢): :
(det R)? = (det )7, (19)

or equivalently (because of the symmetric character
of g),

[det(Rg)]* = 1. (20)
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The desired liftings O(3) of O(3) can be explicitly
constructed for each given metric g via the methods
of Paper I (hereby tacitly assumed). The first recom-
mendable step is the isotopic lifting & of the en-
velope &. This is essentially achieved via the as-
sociativity-preserving generalization of the product
J;J; of & (associative isotopy),

& JxJ=Jgl, g lixed, (21)
with consequent generalization of the unit
I=g™t,  IxJ=Jsi=y (22)

and of the methodology of enveloping algebras
(Poincaré-Birkhoff-Witt theorem, etc.).

The Lie-isotopic groups O(3) are then constructed
in such a way to admit the inverse of the metric as
the new, generalized unit, that is, as the Casimir
invariant of order zero. The preservation of the new
separation (13).is then ensured by construcﬁiﬂgn.

The continuous component of O(3), say, SO(3), is
characterized by the reformulation of the expansion
(5) in the new envelope é according to Eq. (45) of
Paper 1, 1.e.,

SO(3): R(8) = eMjgnellpne Dy, (23)

and can be equivalently formulated in the old en-
velope & for computational convenience, resulting
in the factorization of the isotopic unit

SO(3):  R(8) = (e8| e728% et )

‘ (ﬁ JAgﬂk) Sg(ﬁ)f,
(24)

where the reduced elements verify the rules (59) of
Paper 1, ie.,

S'eS = g. (25)

Note that, from the rule R’R = I and [R', R] = 0,
we have the isotopic rules R'* R = [ and [R’, Rl =
0, from which Eqgs. (17) follow. For the case of
factorization R = ST as in Eq. (24), we have condi-
tion (25) as a consequence of (17). However, in
general, [S7, 8]+ 0 and S'gS = SgS'. Also, det S =
1, but S'S == J. The reader interested in learning
about Lie isotopy is encouraged to verify these (and
other) properties.

‘The discrete component of O(3) can be char-
acterized by the isotopic inversions (61) of Paper I,
ie.,

Pxr=—r,  P=P], (26)

where P is the conventional inversion (11).

One readily verifies that the isotopic inversions
alone do not constitute a Lie-isotopic (or an
ordinary) group. However, the set of all possible
combinations of isotopic rotations (23) and in-
versions (26) does form a Lie-isotopic group, as the
reader is encouraged to verify.

Note that the isotopes O(3) can be explicitly
constructed for each given metric g, as indicated
earlier. In fact, the only unknown of Egs. (23) and
(26) is precisely the assumed metric g. Note also
that the invariance of the generalized separation
(13) is achieved for all possible metrics of the ad-
mitted class, including generally nondiagonal met-
rics.

To simplify our analysis, we restrict ourselves
from here on to the canonical reference frames, that
is, the frame for which the metric is diagonal, and
we shall write

riwr=rigr=xg x+ygypy+ Z833Z (27)

It should be noted that the reduction to a diago-
nal form can always be achieved for all metrics of
the class admitted via a similarity transformation, as
is well known in the theory of metric spaces. The
reader should however keep in mind that the diago-
nal character of the metric, holding in the canonical
frame, is not generally preserved in other frames,
irrespective of whether they are inertial or not.

Despite these physical limitations, the canonical
frame provides a great simplification of the compu-
tations. In particular, it permits the speedy identifi-
cation of the Lie-isotopic algebra via the rule (49) of
Paper 1, i.e.,

[%. %] = [ % %]
=Xing“ngXi
= [% x]g + X[5, %] + X1 X, 6]
= g[ %, X] + X, 81X +[g X] X

(28)
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which yields the desired commutation rules

S0(): (U] = 4, = Il = Cln i,
i,j,k=1,2,3, (29)

where
Ci//('S "fijlcg/ck(t,r,f,-..)f. (30)

One can see in this way the generalization of the
“structure constants” of the standard formulation
of Lie’s theory into “structure functions,” as cor-
rectly predicted by the isotopic generalization of
Lie’s second theorem (see Refs. 3 and 12 of Paper
). ‘

The commutativity between isotopic inversions
and rotations holds in the canonical frame, owing to
the identities

[J:P] =[J,P]=0, k=123 (31)
Under the conditions specified above, the isotopic
inversions therefore constitute a discrete, invariant
subgroup of O(3). The decomposition of O(3) into a
continuous and a discrete component can then be
done essentially along the conventional lines.

The corresponding decomposition for the case of
nondiagonal metrics demands additional, specific
studies that will not be conducted at this time. This
is due to the fact that the topological structure of
O(3) is expected to be considerably broader than
that of O(3). The relationship between discrete and
continuous transformations for arbitrary, generally
nondiagonal metrics is therefore expected to depend
on delicate, yet unexplored properties (e.g., of
cohomological nature).

Our next problem is the classification of all possi-
ble Lie algebras SO(3) characterized by all possible
metrics of the class admitted (regular, diagonal, and
sufficiently - smooth, but not necessarily positive or
negative definite). ‘

First, it- is evident from rules (2.26) that the
isotopes have no proper invariant subalgebra. The
algebras SO(3) are therefore simple in the conven-
tional (abstract) sense:

Second, to identify the compact or noncompact
character of the isotopes, we consider an arbitrary
element X = a,J; + a,J, + a;J;. The Killing form

of 36(3) can be written

K(X, X) = tr(adX)’
2
0 Ta382 42833
=1 43811 0 — 1833
| —a28u 41822 0

= —2(012822833 + 0%811833 + a_%gugzz)‘
. (32)

One can readily see that the above form is negative
definite, and the isotopes SO(3) are compact, for all

elements g,, possessing the same sign (whether

positive or negative). The isotopes are noncompact
whenever the elements g;;, g,,, and g;; have differ-
ent signs.

Since the metric elements are functions of the
local variables, g,, = g,.(¢,r, 7,...), their sign can-
not in general be globally defined. As a conse-
quence, we must assume an additional local restric-
tion for the achievement of a first classification -of
SO(3). More particularly, we shall assume sufficient
topological restrictions on the functions g,, to pre-
serve the sign of their value in the neighborhood of
the considered point (7, r, 7, ...) of their variables.
__Under these restrictions, all possible isotopes
SO(3) are characterized by all possible invariants

It is then easy to see that the only compact Lie-iso-
topic algebras are the following two:

§61(3): signg = {+, +, +), (34a)
§762(3) Signg=(_’_?_)5 (34b) »

while all the remaining six algebras are noncompact,
according to the classification

SO,(3): signg = (+,+,-), (352)
50,(3): signg=(+,—,+), (35b)
SO5(3): signg=(—,+,+), (35¢)
S0,(3): signg=(—,—,+), (35d)
50,(3): signg = (-, +,-), (35¢)
§0,(3): signg=(+,-,-). (350)
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To identify the type of algebras, we introduce the
following redefinition of the generators

Jy=b5Y,, T = b7, Jy = by ;.
(36)

The Lie-isotopic commutation rules (29) for the
compact algebras (34) then become

S0,(3):

[jl:jz] =J;, [j2:j3] =J, [jB:jl] =J,,

(37b)

The second-order isotopic Casimir invariants are
then given by

j(:'zl) = Z jkg(a)jk = '-2[(0‘)7 a = 192 (38>

Comparison of Egs. (37) and (38) with (9) and (10),
respectively, then leads to the following result.

Proposition 2.1.  All compact isotopes §6(3) are
locally isomorphic to the SO(3) algebra, and they
occur for positive or negative definite metrics.

Under the assumed topological restrictions on the
metric, the Lie-isotopic algebras are integrable to
their corresponding groups. The exponentials (24)
therefore exist and characterize well-defined, finite
isotopic rotations.

Numerous examples can be explicitly computed.
As an illustration, we consider a compact isotopic
rotation j_l_;gund the third axis for the case of the
isotope SO,(3). Trivial calculations then vield the
group element

R(8,) = 5,(0,)]

b
cos f, —I;E sind; 0
1
= b I, (39
—Lsind, cos#, O (39)
b,
0 0 1

with underlying transformations

r=R(8)xr= S (8;)r

b
xcosfy + yb—2 sin
1

= b, . , (40)
—~xb—2 sinf; + ycosé,

z
which leave invariant the hyperboloids
rgayr’ = x'bix’ + y'b2y’ + z'b3z’
= xbix + yby + zb2z

=r'gny’, (41)

as the reader is encouraged to verify.

Note that the isotopic commutation rules of
TS?)TB) and those of the conventional algebra SO(3)
coincide at the abstract level of realization-free
treatment of rotations. The same situation occurs
for all other aspects of the theory, such as envelop-
ing algebra, Casimir invariants, etc. A similar, for-
mal unification can also be reached between the full
orthogonal-isotopic group O,(3) and the conven-
tional one O(3).

Our main results of this section can then be
expressed as follows.

Theorem 2.1. The groups of isometries of all
possible ellipsoidical deformations of the sphere,

r'gayr = xbix + ybiy + zbiz =1,
by=0b.(t,r,7,...), ' (42)

here denoted 6?(3), verify the following properties:

(A) The groups 6:(3) are all locally isomorphic to
O(3) when isotopically realized in such a way
that their units f(l) are the inverse of the met-
rics g, of ellipsoids (42).

(B) The groups 6:(3) consist of infinitely many
different (but isomorphic) realizations, corre-
sponding to the infinite possibilities of explicit,

local forms of the units /  (or, equivalently, of
the metrics g;,).
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(C) The groups 6;(3) constitute “isotopic cover-
ings” of O(3), in the sense that

(C-a) the groups O,(3) are constructed via
methods structurally more general than
those of O(3);

(C-b) the groups O,(3) apply for physical con-
ditions broic_l;er than those of O(3); and -

(C-c) all groups O(3) recover O(3) identically
whenever ellipsoids (42) reduce to the
sphere.

The nontriviality of the notion of isotopic cover-
ing can be illustrated via the following important

property.

Corollary 2.1.A. While the action of O(3) on
local coordinates is linear, 1.e.,

r=R(0)r, (43)

that of its isotopic coverings 6;(3) is generally non-
linear, i.e.,

¥ =R(8)xr= S, (8)r
=S(t,r,i,...;0)r. » ‘ (44)

An illustration of this occurrence is given by
transformations (40). In fact, the nonlinearity oc-
curs because the elements b, entering into the trans-
formations are generally dependent on the local
coordinates. .

The nonlinearity of the action of O,(3) constitutes
the primary reason for our hopes of the physical
relevance of the theory for strong interactions, as we
shall indicate in the next paper.

We pass now to the study of the noncompact
forms, which, besides being useful for achieving a
classification of all possible isotopic images of ro-
tations, constitute the foundations of the next paper
on the Lie-isotopic lifting of special relativity.

For the case of the noncompact algebras (35),
isotopic rules (29) become

50,(3):

[Foh] = =4, [hikl=F0, [J0l=4,
(45a)

50,(3):

[Jo0] =4, [hikl=T, [Ad]= -4,

(45b)

504(3)

[Jl: jz] - j3, [Jz:jal = —Jp [j3:j1] =j2,
{(45¢)

S04(3)

[Jl’Jl] = J3’ [Jz’-]3] = Jl’ [j3:j1] = _jz,
(45d)

SO,(3)

[jl: jz] = —-j3’ [j2:j3] = _jl, [j3:j1] = jz,
(45e)

SO4(3):

[jl: jZ] = _j3’ [jz:j:;] =j1, [j;: jl] = —-—jz’
(45F)

while the second-order Casimir mvanants presexve
the form (38), i.e.,

(a) Z'Ikg(a) [k “"21‘\(“),

(46)

The following result then follows.

Proposition 2. All noncompact isotopes SO(3)
are locally isomorphic to the 5O(2.1) algebra, and
they occur for (diagonal) metrics whose elements
have different signs.

Under the assumed restrictions, the noncompact
isotopic algebras are also integrable to their corre-
sponding groups. The exponentials (24) therefore
exist, although the range of the parameters now
becomes infinite.

Again, numerous examples of noncompact iso-
topic rotations can be explicitly constructed for all
cases (35). As an illustration, we consider a “ro-
tation” around the third axis for the case of the
isotope SO,(3). Then, trivial calculations yield the
group element

b
coshd, - 7;2 sinh8, 0
1
R(6)=1 b /
(63) —~—Lsinhg,  coshd, 0
b2
0 0 1
(47)
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with underlying isotopic transformations

¥ =R(0,)r = S (6;)r

b
xcoshéy — yb—2 sinh @,
1

= b , (48)
—«xb%; sinhé; + ycoshé,

z

which, this time, leave invariant the hyperbolic form
r'gar’ = x'bix’ + y'bly’ — z'b3z’
= xbix + ybly — zbz
= r'gsr. , (49)

Again, the noncompact isotopes are indistinguish-
able from SO(2.1) at the level of abstract, realiza-
tion-free formulations. This aspect, including the
corresponding formulation of Theorem 2.1, will be
studied in the next paper for the more general case
of the Lorentz group.

In summary, the isotopic lifting of Lie algebras
do not produce new Lie algebras, because (as
stressed in Sec. IIT of Paper 1) all Lie algebras over
a field of characteristic zero are already known.
Thus, the Lie-isotopic theory merely provides new
realizations of known algebras. The resulis of Prop-
ositions 1 and 2 were therefore predictable from the
simplicity of the algebra (29). In fact, all simple,
three-dimensional Lie algebras over the reals are
known and are given either by SO(3) or by SO(2.1)
(or by algebras isomorphic to them)

To complete our classification, we need additional
information on Lie-isotopic algebras whose metrics
have opposite signs. '

Definition 1. Let G be an isotopic algebra char-
acterized by (diagonal) metrics with elements Sin
The isotopic dual G? of G is the algebra char-
acterized by the (diagonal) metric with elements
8= —8&u k=1,2,...,n.

It is then easy to prove the following result.

Proposition 3. Isotopically dual Lie algebras are
locally isomorphic.

Note that the proposition above includes the case
when one of the algebras is conventional. We dis-
cover in this way that SO(3) has an image tha.t|

cos(8s1{*s %)
S, () =
0

- -1/2 . 1/2 2
_'gu(gugzz) Sm(ﬁ%gi{’g%

)

cannot be identified via the simplest possible Lie
product AB — BA of current use, and demands
instead the use of a more general product, such as
AgB — BgA.

In fact, besides its conventional form, SO(3) can
be realized via the isotopic dual, according to the
expressions

SO(3):
[75 7]
= JigJ); — JigJ;
= =€ i
g = diag(+1, +1, +1),
Ji=—J
SO4(3):
[ 7]
= Jigl, — Jjg),
> g/ jg (50)
= +e,jk.1’ R
g = diag(—-1, -1, -1),
Jp=—J,

At the level of the full orthogonal group O(3), this
essentially implies the interchange of the identity 7
with the total inversion [ = —1I, the latter becom-
ing the identity of the isotopic dual. It is then easy
to see that the basic algebras (50) and the eight
isotopes (37) and (45) can be divided into two sets
interconnected by isotopic duality.

. Until now we have considered isotopes char-
acterized by metrics with locally definite topological
characters, resulting in locally definite compact or
noncompact groups. To complete our classification,
we should indicate the existence of isotopes that can
smoothly transform compact algebras into noncom-
pact ones, and vice versa. Evidently, this topic is
technically involved (and yet unexplored); it there-
fore demands specific, detailed investigations. We
shall thus content ourselves with the mere indica-
tion of the existence of this additional class of
isotopies.

For this purpose it is more effective to return to
the original basis J, of Egs. (7), to the original
isotopic rules (29), and to the generic separation
(27), with diagonal metric elements &k An isotopic
rotation around the third axis can be readily com-
puted from the exponentiations (24), resulting in the
expression

—-1/2 . -

80 (8u8gn) sin(6g}%4?) 0
cos(8,2i{’g3”) 0 1)

0 : 1
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It is easy to see that the above transformations do
not have, in general, a globally defined compact or
noncompact character. In particular, they can be
isomorphic to SO(3) for given values of the local
variables and to SO(2.1) for others. Thus they can
continuously interconnect compact and nomncom-
pact structures. Evidently, this is the most general

possible isotopic lifting of rotations, which includes

as particular cases all other forms considered so far.

To illustrate, assume that the elements g;; and
253 have the value +1, while the element g,, is
given by a function of the local variables z, r, 7, ...
that interconnects smoothly the values +1 and —1.

familiar, compact rotations

cos@; sinf; O
S,(6;) = | —sin6; cosb; 0], (52)
0 0 1

while for g,, = —g,, = g3; = 1, the transforma-
tions (51) reduce to the equally familiar, but this
time noncompact, Lorentz transformations

coshé, —sinhd, 0

It is then easy to see that, for the case g, = g5, =
= +1, the transformations (51) reduce to the 0

Sg(OB) =

TABLE L. A preliminary classification of the isotopes of the group of
rotations characterized by generalized, diagonal units 7 = g~ 1.

— _d
03  g=(+1,+1,+1) g=(1-1-1) Oy, (3)

0.3 g=(+b},+b, 48 | g=(-bl, -} -b}) O, (3)

0,3)  g=(+b},+b3,—b)) | g=(=b,—b},+b}) O, (3)

0,3) g=(+b},—b3,+b}) | g=(-bL+b,-b)) 0,0

03)  g=(=b%+b3,+0}) | g=(+b}, -0, -b}) O; ()
O3): g = (8115 8225 833)

The basic element-6;(3) is the conventional group of rotations realized in
terms of the 3 X 3 unit J. Its isotopic dual 6; (3) is constructed in such a
way to admit the unit I= —1 opposite to that of Oy(3). The isotope
0O,(3) achieves the form invariance of all possible ellipsoidical deforma-
tions of the sphere, and it is locally isomorphic to 6;(3) although it
characterizes an infinite famﬂy of 1sotop1c covenngs of 00(3) (theorem
2.1). The subsequent isotopes 03(3), 04(3), and 05(3) and their duals are
noncompact and locally isomorphic to the Lorentz group in two (2 + 1)
dimensions. The last and most general isotope is O(3). The unit is still
diagonal, but the signs of its elements cannot be globally defined. There-
fore, O(3) does not possess a globally defined compact or noncompact
character; it thus achieves a unified form of all simple, nonisomorphic
three-dimensional Lie groups over the reals, O(3) and O(2.1). It is evident
that the family of isotopes O(3) contains all the preceding ones, including
their dual forms. all units (or metrics) have been restricted in these papers
to be nonsingular, symmetric, and sufficiently smooth. As such, they can
be all diagonalized, resulting in the classification above. Nevertheless,
specific studies of the isotopic liftings of the group of rotations for
noundiagonal units (or metrics) are recommended here. This is because if a
unit is diagonal for the observer at rest with respect to the canonical
frame, the same unit is generally nondiagonal for other frames, whether
they are inertial or not. In turn, this may have important implications for
the relationship between discrete and continuous transformations as well
as other aspects.

—sinhé, coshf, 0 (53)

1
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The generalization to metrics (33) is self-evident
and will be studied in details in Paper III. A
summary view of our results with additional com-
ments is provided in Table I. Note the lack of
consideration for the irivial isotopy

Jo=J.g7Y, J € S0(3),
(54)

which does not provide the invariance of the el-
lipsoidical deformations of the sphere, as indicated
in the closing remarks of Sec. II of Paper I. On the
contrary, the realization

SO(3): [K,.,Kj] = —¢, 1 Ky,
0 0 0
b
0 0o =2
K1= 2 9
b,
5 0 0
b3
0 0 5
K,=10 0 0 |,
by
b 0 0
b2
0 b 0
K. = b , 54
3 e 0 O ( )
b,
0 0 0

.even though conventional in structure (that is, real-

ized via the conventional associative envelope
without any isotopy), reaches the basic invariance
property (25), as the reader is encouraged to verify.

Here it is important to understand that by no
means can the results under consideration be
uniquely derived via the Lie-isotopic theory. In fact,
the structure (54) indicates the possibility of re-
covering the form invariance of the ellipsoidical
deformations of the sphere via the conventionally
realized O(3). The Lie-isotopic liftings of Lie sym-
metries have been merely submitted in this paper on
grounds of their pragmatic effectiveness in- con-
structing the covering symmetry when a given, con-
ventionally realized Lie symmetry is broken, while
admitting the latter as a particular case whenever
the original physical conditions are regained.

III. PRELIMINARY APPLICATIONS IN
CLASSICAL MECHANICS

In order to identify physical applications of the
Lie-isotopic theory of rotationms, it is desirable to
identify first its dynamical foundations. This in turn
can be done more effectively in the arena of our best
intuitions, Newtonian mechanics; we then pass to
abstract, operator-type applications to particle
physics.

The recently achieved Birkhoffian generalization
of (classical) Hamiltonian mechanics (Paper I, Ref.
12) provides the desired dynamical setting quite
naturally. In fact, the generalized mechanics was
constructed via a joint analytic, geometric, and alge-
braic isotopy of the conventional mechanics. In
particular, the Birkhoffian and Hamiltonian me-
chanics lose any distinction at the level of abstract,
coordinate-free formulations, being characterized by
different realizations of the same abstract structures.
Most importantly for the content of this paper, the
local realization of the relativity underlying Ham-
iltonian mechanics, Galilei’s relativity, is not appli-
cable to the Birkhoffian mechanics, not only be-
cause of profound physical differences, but also
because of irreconciliable differences in the
mathematical structures. For these reasons, a gener-
alization of Galilei’s relativity which is directly ap-
plicable to Birkhoffian mechanics has been sub-
mitted in Ref. 12 of Paper I under the name of
Galilei-isotopic relativity.

In this section, we shall indicate that the Lie-iso-
topic theory of rotations worked out in this paper is
the rotational component of the Galilei-isotopic rel-
ativity. The applicability of Birkhoffian mechanics
and related laws then follows. In turn, this provides
the classical dynamical foundations needed for op-
erator formulations.

For the reader’s convenience, as well as for nota-
tional needs, let us recall the main lines of the

analytic, geometric, and algebraic isotopies of the

Hamiltonian into the Birkhoffian mechanics.

(1) Analytic lifting of the canonical (Hamilton’s)
action principle

A(t,i') = jt‘tzdt[pk';'k - H(tara P)]
“;ff’z[Rg(a) da* — H(t,a) di]
L
= [*RY(a)a
n
= ["R(a), (552)
I
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a=(r,p), R°=(p,0),

p=1,2,...,6N, (55b)

&=(l,i",p), RO:(—H“D,O)’

p=20,1,2,...,6N, (55¢)

into the most general possible first-order (Pféfﬁan)
principle

L

Ax=(t,r, p) = [dt[P(t, 7, p)

+Qk(t’r’p)Pk— B(i’r’p)]

def ro,
=]t R,(t,a) da* — B(t,a)dt

def ~
= ["R,(a) da*

= f‘ZRl(a). (56)

(2) Geometric lifting of the exact, canonical, con-
tact two-form on R X T = M:

o L _L(ORS AR)\
&,(a) = dR(a) = —i(-gg; - (9~f, ) da* A da
= 3®,,(a)da" A da” (57a)
0 dH
dat
Do) = 57b
(80) = | —5 (™)
G

with symplectic subform

0 0
oy (R0 2R
(o da* da’

- (3 _01), (58a)

det(w,,) =1, (58b)

into the most general possible, local, exact, contact
two-forms

Qz(‘i) =d 1(5’)
_1(8R, R\ ,
= 2( Frri e ) da* A da (59a)

0 8_B _ aR“
~ da* at
(€,,) =
— ili + aR'L Q
da" at g
(59b).
with symplecﬁc subforms
dR, R,
(Ql.w) - (EZT - da’ )
()| ()
~ ar; 8rj ar, 3pj
0B, 99;) ) (99, 3w
Ip; ar, dp;  dp;
(60a)
det(€,,) = 0. (60b)

(3) Algebraic lifting of the conventional, regular,
canonical realization of the Lie product (the Poisson
brackets),

; 04 0B
—_ e T
[4,B] = met 50
94 0B 9B 04
= re 9pe dr, Opy (612)
@ = (Jlogal )", (61b)

into the most general possible local and regular
realization of the Lie-algebra product in Newtonian
mechanics (the Birkhoffian brackets),

JA 0B
[4;B] = 2 0v ==, (62a)
Q= (19,4171)"" (62b)
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Hamilton’s equations (without external terms), as
emerging from the principle (55) in their covariant-
symplectic version

., 9H(1,a)

v Jar 0, p=1,2,...,6N,

(63)

or in their equivalent, contravariant-Lie version

4 = 3H = [a*, H], (64a)

[a*, a"] = 0™, : (64b)

are then generalized into Birkhoff’s equations in
their corresponding covariani-symplectic version
originating from the principle (56),

_0B(t,a)

9, (a)a" - =28 o, (65)

or in their equivalent contravariant-Lie version

B
L T = [g"
at=9Q e [a*; B], (66a)
[a*a”] = Q¥ (a), (66b)

where we have considered only the semiautonomous
case (see Ref. 12 of Paper I for the full nonautono-
mous case).

As is well known, the function H of Egs. (64) is
called the Hamiltonian, and generally represents the
total energy. The function B of Egs. (66) is called
instead the Birkhoffian to stress its differences from
the Hamiltonian, particularly in view of the novel
degrees of freedom, called Birkhoffian gauges,

, G (t,a)
R“ — RL == R“ + W’
B Bt =8 —»_Lg’ a). (67)

The understanding is that, under certain restrictions
worked out in Ref. 12 of Paper I and here tacitly
assumed, the Birkhoffian can indeed represent the
total energy B=T+ V =E,,. ‘

Along similar lines, the conventional Hamilton-
Jacobi equations

0A :
S+ H(1,a) =0, (68a)

8
(=)= (5)-(24)=| 3] om
0

are generalized into the Birkhoffian form [Ref. 12 of
Paper I, Egs. (6.1.24), p. 207]

A&
at

() - (7))« (1)

+B(t,a)=0, (69a)

BA gen
ary, :

ap,

under the condition

(R,
det( 527 ) + 0, (70)

which is always realizable because of the gauges
(67).

Each and every aspect of Hamiltonian mechanics
(transformation theory, symmetries, first integrals,
etc.) then admits a consistent Birkhoffian generaliza-
tion. For brevity, these aspects are not reviewed
here. We merely restrict ourself to the indication
that the conventional canonical realization of the
Galilei symmeiry

10
X, 9
. r = ap 7k _Z
G(3.1): a [kljlexp(()kw P 3a“”a’

(71a)
X={Eg,pJ=rXp,mr}, ~ (71b)

0 = {15;10; 01, 6,,05; v}, (71c)

is generalized into the Galilei-isotopic symmetry [Ref.
12 of Paper I, Eq. (6.3.60), p. 245]

A 10 X, 9
. [— af 2k
G(3.1): a lellexp((),ﬂ oaf 6’a“) a

(72)

where, in line with the basic idea of Lie isotopy
(Paper I), the generators, the parameters, and the
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local variable are the conventional ones (and we
have ignored scalar extensions for simplicity). Note
that the time component of Eq. (72) is exactly the
exponentiated form of Birkhoff’s equations, much
as in the Hamiltonian case.

The generality of the Birkhoffian over the Ham-
iltonian mechanics is evident. In fact, the latter is
contained as a particular case of the former whenever
the functions (R,) = (P, Q) assume the canonical
form (R%) = (p,0).

We should also recall that the Birkhoffian me-
chanics achieves the so-called “direct universality”
in mechanics, that is, the capability of representing
in the local frame of the observer all systems of
ordinary differential equations in first-order form
that verify certain topological conditions (locality,
regularity, and analyticity). On the contrary, Ham-
iltonian mechanics can represent only a subset of
Newton’s equations in the frame of the observer
(the so-called nonessentially non-self-adjoint sys-
tems). »

A primary physical result emerging from the lift-
ing of the Hamiltonian into the Birkhoffian mechan-
ics is the identification of a new class of interactions
called closed, variationally non-self-adjoint interac-
tions. We are referring to systems of extended par-
ticles which are closed in the conventional sense of
verifying all conservation laws of total quantities
(see Ref. 12 of Paper I, pp. 235-237):

9Ky un 9

o tot ~ -
X = 8&”&2 _a;lT - [le Etot] =0, (73)

B=E.

Nevertheless, the internal forces are partially of
non-Hamiltonian type, due to the extended char-
acter of the constituents and the consequent ex-
istence of contact forces for which the notion of
potential energy has no physical meaning.

In short, the theory of isotopic lifting, in general,
and the Lie-isotopy theory, in particular, when real-
ized in classical mechanics, permit a representation
of the extended character of particles via contact
forces that are beyond the technical capabilities of
Hamiltonian mechanics. In particular, the non-
Hamiltonian forces are represented by the gener-
alized structure of the Lie product, therefore open-
ing up a new horizon of possible, intriguing
advances in the problem of interactions.

Once the foundations of the Birkhoffian mechan-
ics are known, the identification of the dynamics
underlying the Lie-isotopic theory of rotations is
straightforward.

For simplicity but without loss of generality, let
us consider the case of one, free, extended particle
in Euclidean space E(3, 8, R), and the trivial canon-
ical action

A(t,r) = [Par[p-i—ip-p]

41

= ["at [ pyi - H],  m=1. (14)

L3t

Suppose that, at a given value of time, the particle
experiences only contact non-Hamiltonian forces
due to its extended character (e.g., because of
penetration within a resistive, generally anisotropic
and inhomogeneous, material medium). Suppose
that these physical conditions can be represented
via the isotopic lifting £(3, g, R) of the Euclidean
space (Paper I), ie., via the generalization of the
action (74) into the form

A= (e, r) = [ai (pri — dprp)

O
_ frrzdl [pk gl — %Pigijpj]’
1

g=g(t,r,i,...), (75)

which is manifestly of Birkhoffian non-Hamiltonian
type with identifications

P (t,r, p) = p,giu,

The non-Hamiltonian character of the theory can
be technically established via the property that the
equations of motion underlying the action (56) gen-
erally violate the integrability conditions for the
existence of a Hamiltonian in the r-frame consid-
ered (see e.g. Ref. 5, Theorem 3.12.1, p. 176). The
inapplicability of the Hamiltonian mechanics im-
plies, in particular, the inapplicability of the Poisson
brackets for the Lie characterization of both the
time evolution and the theory of rotations.

The direct applicability of Birkhoffian mechanics
has the immediate advantage of permitting the
identification of the generalized Lie product for
both the time evolution and the applicable theory of
rotations. For the limited objectives of this paper, it
is sufficient to restrict ourselves to the case of a
diagonal metric g with constant elements

g = diag(b?,b2,b2), b, = const. (77)

B =1ipg,p. (76)
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Use of Egs. (60) and (62b) then readily yields the
Lie-isotopic tensor

(9

I

(78)

Il

with generalized brackets

i _d4 0B 2B 04
[A7B]_ 3rigijapj arigijapj- (79)

Simple calculations then establish the following

J—

Newtonian realization of the isotope SO, (3) of rota-
tions:

$0,(3): [ 9] = euubi Vs (80)
with redefinition according to Eq. (37a):
50,(3): [J37)] = e (81a)

J, = bybsJ,, J, = bybyJy, J, = bibyJs,

(81b)

and group form of the symbolic type
S0,(3): a' = f[ L
1 . a = kzlexp Ik aav. da* a,

(82)

with a corresponding reduction 0 a form of type
(24).

The achievement of the desired objectiive is then
confirmed by illustrative examples. For instance, an
isotopic rotation around the third axis with genera-
tor J, can be computed via exponentials (82), yield-
ing the transformations

b
xcos(050,b,) — y—l-)—2 sin(d36,b,)
1

=1 b ; 83
xgl— sin(85b,b, ) + ycos(8b1b,) ®3)
2

r

4

with additional transformations of the type (39) for
the generator J,.

The achievement of the form invariance of the
Pfaffian action (75) is then consequential. Action-at-
a-distance forces can be trivially incorporated in the
theory via additive potentials in the Birkhoffian

= 1p?, provided that they are properly written in
E@3, g, ft), e.g., with “squares” of the type (2).

As an application, we shall now present a gener-
alization of Euler’s theorem (on the displacement of
rigid bodies) to the case of elastic bodies. As the
reader recalls,® Euler’s theorem essentially states
that the general displacement of a rigid body with one
point fixed is a continuous rotation around some axis.

Suppose that the object is an elastic sphere of
radius 1, and that the fixed point is the origin of the
reference frame. In the absence of deformation, the
displacements of the objects are given by time-
dependent transformations R = R(1) € SO(3). At
time ¢ = 0 one can assume

R(0) = I = diag(+1, +1, +1). (84)

At subsequent times f, the rotations are such that
their eigenvalues are the elements of the conven-
tional 3 X 3 unit T, i.e., there exists an eigenvector a
of R(p) which preserves its components in the
rotated system:

a = R(1)a=a, (85)

or, equivalently, rotations verify the eigenvalue
equations

[R(t)—T]a=0 (86)
with secular determinant
det(R — I)=0. (87)
Suppose now that at time 1 = Ig the sphere expe-
riences an infinitesimal deformation into” the el-
lipsoid with
rigr=x(1+ € )x + y(1 + €)Y

b2l 4 e)2=1. (88)

It is easy to see that the displacement can now be
described via a compact isotopic rotation R(Z)
e SO,(3), beginning with the identification

R(e)=F=g" (89)
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It is also easy to prove that the eigenvalue equa-
tion for the rigid motion, Eq. (86), admits the
isotopic generalization

[R(:) —i]*a= [Sg(t)——[]a=0 (90)
with isotopic-secular determinant

det(R — J) =det(5 — I) =0, - (91)
where we have used the decomposition of Eq. (24),

R = S, I, and Theorem 2.19 of Ref. 15 of Paper I, p.
1310.

In fact, from Eq. (19), det R(z) = det [. A step-‘

by-step generalization of the conventional proof
(see, e.g., Ref. 6, pp. 119-123) then leads to the
following result.

Lemma 3.1. The isotopic eigenvalues of the
compact-isotopic rotations of type 1 are the ele-
menis of the (diagonal) generalized unit / = g~ 1.

Thus, much as in the conventional case, the com- -

pact-isotopic rotations admit an eigenvector that
preserves its componenis in the transformed system.
By recalling that the transformations considered
here can only be continuous, the extensions to the
case of finite deformations and to nonspherical ob-
jects are straightforward, vielding the following re-
sult.

Theorem 3.1 (Isotopic lifting of Euler’s theorem).
The general displacement of an elastic body with
one point fixed is a compact isotopic rotation of
type 1 arcund some fixed axis.

Numerous additional applications to the dy-
narmics of extended, elastic, and deformable bodies
are possible. Here, we limit ourselves to the indica-
tion that the isotopes of O(3) seem to be naturally
set for the description of deformations, with the
understanding that the theory generally demands
the use of nondiagonal metrics. In fact, all metrics
of the theory of elasticity are permitted by the
isotopic theory of rotations described in this paper.

An additional class of physical applications is the
motion of extended objects within generally inho-
mogeneous and anisotropic material media. In effect,
the description of the displacement of elastic bodies
(Theorem 3.1) and that of the motion on material
media are complementary to each other, in the sense
that they can both be reduced to suitable isotopic
liftings of the Euclidean space.

To illustrate this possibility, consider a (classical)
particle moving in a region of empty space for
which the Euclidean geometry applies. Suppose now
that the region considered is filled with intense
radiation originating from a distant and constant
source, assumaed to be at infinity. It is evident that,
under these novel physical conditions, the particle
cannot be considered as moving in empty space.
The new medium of propagation is space filled with
radiation. Depending on the physical characteristics
of the particle (size, charge, electric and magnetic
moments, etc.), the new medium will directly affect
the trajectory of the particle, that is, its dynamical
evolution. In particular, the new medium is homo-
genecus but manifestly anisotropic, in the sense that

the distribution of radiative energy is uniform, but..

the medium has a preferred orientation in space
given by the direction of propagation of the back-
ground radiation.

Clearly, the Buclidean geometry is merely ap-
proximated for these broader physical conditions.
The selection of an appropriate isotopic lifting is
then relevant. We select the Finsler space’ with
composition

rigr=rf(r,u)d, r’, (92a)
rou) = (r-u)” u)’
f(r,u) o) (92b)

where u is a unit vector (#? = u,u, = 1), here
assumed along the direction of the radiation.

It is evident that the Finsler space with Composi-
tion (92) characterizes an isotope E (€5 i) of
E(3,8,R). As a result, the symmetry O(3) applies
(including isotopic reflections). The reader should
be aware that the symmetry O(3) is broken for the
composition (92) because of its inability to preserve
the preferred direction in space. The achievement of
this preservation via the covering symmetry O(3) is
instead ensured by the invariance of the metric
under isotopic rotations [Eq. (60) of Paper 1), i.e.,

e—é’glge./gﬁ =g. (93)

It is also clear that, in the transition from the
Euclidean to the Finsler space, we have the transi-
tion from a flat, homogeneous, and isotropic geom-
etry to a curved, homogeneous, and anisotropic one.
Numerous intriguing properties then follow. Here
we limit ourselves to the indication that, owing to
the particular metric of Eq. (92), the conventional
Casimir J?=J,J, is preserved by the isotopic

P
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rotations,

3
J¥ =R *( > kak) « RO = g2, (94)

k=

as the interested reader is encouraged to verify. This
result indicates that the angular momentum can be
conserved also for motion within anisotropic media
in which the conventional rotational symmetry is
broken.

We recover in this way a result already known in
analytic mechanics (Paper I, Ref. 12). We are re-
ferring here to the fact that the conservation of
angular momentum by no means necessarily implies
the symmetry under the conventional rotation group.
In fact, angular momentum conservation can be
also characterized by isotopic symmetries.

The generalization of the model to an inhomoge-
neous form is possible, and occurs, for instance,
when the energy distribution of the background sea
of radiation is not homogeneous. This is the case
when the intensity of the radiation varies in space
and time, in which case the metric (92) is gen-
eralized to forms of the type

gi./zfv(r’u)dij(t’r’i}"“)s (95)

where the inhomogeneity and anisotropy are dif-
ferentiated and represented by the respective terms
f(u, r) and di (4, r, 7.0

Note that, with sufficient care, the applications of
the model (95) can also be extended to treat the
motion of Newtonian systems within a resistive
medium with density varying in space and time, and
with a preferred direction in space.

Numerous additional applications are conceiv-

able, but for brevity they are not considered here.

We conclude this paper with a few remarks on
the structure of the Newtonian realization of 003),
which are relevant for the construction of corre-
sponding operator forms.

The attentive reader has certainly noted a rather
fundamental difference between the isotopic form of
the Lie product in Newtonian mechanics, Eq. (80),

and that of the abstract treatment, Eq. (29). In the -

latter case, the metric g is the isotopic element
resulting in the Lie product AgB — BgAd, while in
the former case we see the appearance-of the inverse
g~ ! in the Lie product. A similar difference occurs
in the exponentiations, which are characterized by
the metric g in the abstract case and g7l in its
Newtonian realization. Despite these differences, the

isotopic structure functions, the eigenvalues of the

isotopic Casimirs, and the explicit forms of the
isotopic rotations are the same in both the abstract
and the Newtonian cases.

The reasons for these differences have been iden-
tified in Ref. 8 (pp. 1330-1334). They are due to the
fact that the envelope of the conventional, abstract
Lie product is associative,

[4,B]s= AB — BA,; (96)
&: AB = associative product
(AB)C = A(BC),

while the envelope of the Poisson brackets is nonas-
sociative, i.e., we can write the Poisson brackets as
the attached brackets of an algebra %:

[4,Bla=(4,B)—(B, A); (97)
u: (A,B)= %%ﬁ—

= nonassociative product,
((4,8),C) # (4,(B,C)),

which is a nonassociative Lie-admissible algebra.

In the transition to the isotopic forms, the as-
sociative and nonassociative characters persist. In
fact, in the former case we have

[4,Bls=AgB — Bgd; (98)
é: 4 gB = associative product,
(4gB)gC = Ag(BgC),

while in the latter case we have

[43Bla= (4, B) —(B; 4); ' (99)
o A 0B
U: (AaB)_ arigij apj

= nonassociative product,

((4;B);C) = (4,(B;0C).

As a result, the element [ = g~ ! is the unit of the
algebra & but not of 4. The possibility of using the
element g~! as the isotopic element of the Lie
product (97) then follows.

The implications of these facts are far reaching
for virtually all levels of the theory. In fact, we learn
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that the most adequate formulation of the Lie-iso-
topic generalization of rotations is that along the
lines of the original proposal of Ref. 9, via a nenas-
sociative Lie-admissible envelope %, rather than the
simpler form presented in Sec. II. This reformula-
tion will not be studied at this time; the interested
reader may consult theoretical papers®'* and ex-
perimental papers!>~1° on related issues.

In conclusion, Lie’s theory has been presented
historically in mathematical and physical treatments
via an associative Lie-admissible envelope &. How-
ever, Newtonian mechanics teaches us that the reali-
zations of both the conventional and the isotopic
forms of Lie’s theory that occur in practical cases
are those via nomassociative Lie-admissible forms.
The nonassociative character of the envelope then
has rather profound (and mostly unexplored) impli-
cations in the transition to the operator forms. In
fact, to avoid possible inconsistencies, the preserva-
tion of such nonassociative character is desirable in
the operator treatments of particles physics, much
as Jordan’s teaching has proposed (Paper I, Ref. 4).
It is for this and other reasons that more recent
treatises on Lie’s theory?® stress the need for the
nonassociative character of the envelope.

The fundamental character of the nonassociative
Lie-admissible algebras can therefore be seen in the
structure of the conventional Poisson brackets. Thus

it is expected to persist at all subsequent levels:
classical or operator, physical or mathematical.

As a concluding remark, we would like to indi-
cate that by no means is the Lie-isotopic theory of
rotations submitted here as the only possibility of
representing extended particles. In fact, a number of
additional possibilities have been identified in the
literature, most notably, Kalnay’s approach via the
use of intervals®* and Prugovecki’s studies via sto-
chastic techniques.”? Each of these approaches has
its own preferred features. For instance, the Lie-iso-
topic approach has been conceived, specifically, for
the treatment of the deformation of extended par-
ticles; Kalnay’s approach is particularly tailored for
quantum-mechanical measures; Prugovecki’s ap-
proach is particularly suited for extended (perfectly
spherical) particles under electromagnetic interac-
tions. Despite these differences, the interrelations
among these (and other) approaches to extended
particles are quite intriguing, as we hope to indicate
in a future paper.
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