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THE NOMINATION

Physics is a discipline that will never admit sizz/ theories . No matter how
authoritative current theories are, their generalization is only a matter of time.

Physics is also a discipline centrally dependent on mathematical elaborations of
the physical reality in a quantitative form suitable for experimental verification.

The contemporary relativities, Ga/Z/ers, £instem’s special and Einstein’s general
relativities;, and related physical theories, are based on an articulated body of
mathematical methods comprising:

I) Afebras , eg., Lie’s theory in its various branches such as enveloping
algebras, Lie algebras, Lie groups, representation theory, etc.;

1) Geometries , eg., the Euclidean, symplectic, and Riemannian geometries;
and

III) Mechanics, e.g., conventional nonrelativistic and relativistic Lagrangian and
Hamiltonian mechanics;

and others.

Professor Ruggero Maria Santilli, while working first at the /stitute or Fisica
Teorica of the Umiversita degli Studi, Torino, Italy (where he obtained his PhD in
Physics), then at the Zepartment of Mathematics of Harvard University , Cambridge,
MA, USA, and more recently at the /mlernational Centre ror Theorelical Physics of
Trieste, Italy, has achieved an unprecedented series of discoveries consisting, first, of
the identification of new mathematical methods, including:

) Certain generalizations of Lie algebras called or isotopic type;

11) /Isotopic generalizations or the Euclidean, svuplectic and Riemannian
Lgeometries; and

1) [sotopic generalizations of convemional nonrelativistic and relativistic,
classical and quantvm techanics .

Then, via the use of these broader mathematical tools, Santilli succeeded in
constructing certain generalizations-coverings ol Galilers relativity, Einstein’s
special relativity, and Einsteins general theory or relativity for novel physical
conditions in which the conventional relativities are inapplicable.

As well known, the conventional relativities describe particles which can be
approximated as being point-like while moving in vacuum under action-at-a-distance,
potential forces (historically called exzerior dynamical problem, see Sect. I).

Sanlilli’s nmew relativities describe instead the most general known
physical systems, namely, extended and therefore deformable particles while
moving within generally inhomogeneous and anisotropic physical media, resulting in
equations of motion that are nonlinear, nonlocal, as well as not representable via the



usual Lagrangian or Hamiltonian (historically referred to as iuterior dyvnamical
problem, see Sect. ).

Also, Santilli’s mew relativities are a covering of the conventional
ones in the sense that: 1) they are based on more general mathematical methods; 2)
they represent structurally more general physical conditions; and 3) they admit the
conventional relativities as particular cases.

There is little doubt that Samzi/li’s discoveries are among the most
important ones which can be brought to the attemtion orf the NOBEL
COMMITTEE . In actuality, it appears that Santilli's discoveries are unprecedented
in physics as an achievement by one single individual. In fact, virtually all discoveries
made by physicists until now were based on mathematical tools previously established
by mathematicians. The unprecedented aspect of Santilli's discoveries is that, before
being in a position to generalize conventional relativities, he had to discover all
needed new mathematical methods because unavailable in the mathematical literature
for the needed application: the treatment of nonlinear, nonlocal-integral,
nonlagrangian and nonhamiltonian systems of the interior dynamical problem.

The purpose of this presentation, specifically written for the NOBEL COMMITTEE,
is multifold. First, we would like to indicate the fundamental novelty, comprehensive
character, and historical dimension of the discoveries.

Second, Santilli has written in the topic some seven monographs and over 100
articles in numerous international Journals. By adding the contributions of other
independent scientists, we are dealing with a field that has surpassed the mark of ten
thousand pages of published research. The second objective of this presentation is,
therefore, that of identifying for the NOBEL COMMITTEE the most salient aspects of
the discoveries and their original reference among such a disparate literature.

Third, the novel scientific edifice emerging from Santilli's discoveries implies a
generalization of the entirety of contemporary physics, including generalizations of:
classical nonrelativistic and relativistic mechanics, nonrelativistic and relativistic
quantum mechanics, quantum field theory, gravitation, classical and quantum statistics,
etc. It is easily predictable that in a scientific scene of this dimension, we have a
spectrum of conditions, including: discoveries which can be safely considered as
established at this writing; discoveries in need of additional theoretical and
experimental studies; and others only at their initiation.

This Nomination of Professor RUGGERO MARIA SANT/ILLI ror the
NOBEL PRIZE IN PHYSICS FOR 1992 is solely based on those
discoveries which are rully established at this writing on both
grounds of mathematical consistency and physical validity, and
which, as outlined in this Part [, consists of Santilli’s classical
generalization of Galilei’s relativity fror nonlinear, nmonlocal and
nonhamiltonian dynamical systems of the interior problem.

according to the following primary publications:
1) The discovery originally appeared in the memoir (Santilli (1978a); see Document

A for its front page); and was then subjected to a variety of specialized studies in a
number of papers identified in this Part I;



2) The discovery was then presented in all the necessary details in the four
monographs:
R. M. Santilli, Foundations or Theoretical Mechanics,
Volume 1: 7he /mverse Problem in Newtonian Mechanics (1978b) |
Volume |1lI: Birkhoffiam Generalization of Hamiltonian Mechanics
(79323} , and
printed by Springer-¥er/gg of Heidelberg, Germany,

R. M. Santilli, Zie-admissible Approach to the Hadromic Structure

Volume 1: Nomapplicability of Galileis and Einstein’s Relativities ?
7978c/ ,

Volume 1I: Gemeralizations of Galiler's and Einstein’s Relativities ?
19813} :

published by Aadronic FPress /nnc., Palm Harbor, FL 34682-1577 USA, and

3) The discovery was then finalized in the memoir (Santilli (1988a)). Its novel
mathematical structures were studied in detail, first, in the memoir (Santilli (1988b)), and
then in the two memoirs appeared in a mathematical Journal (Santilli (1991a, b). The
discovery was then finalized in its physical contents in the two additional monographs:

R.M.Santilli, Zsotopic Genmeralizations of Galilei's and Einstein's

Relativities
Volume 1: Mzathematical Foundations (199/c/
Volume 1I: C/assical Isotopies (199/d)

In our opinion, the content of the two monographs published by Springer-Verlag
in 1978 and 1982 is sufficient to warrant, alone, a NOBEL PRIZE IN PHYSICS. In fact, the
title of Volume 11 reads ~Birkhorfian Generalization of Hamiltonian
Mechanics™ and does indeed present a completely new physical discipline (see
Section IV for a brief outline). Similarly, the title of Chapter 6, p. 199, Volume II, reads
“Generalization of Galilei's Relativity™ and presents a generalization that
appears in print for the first time after about four centuries from the original Galilean
conception.

As a result of this occurrence, copies of Prof. Santilli's two monographs
published by Springer-Verlag are enclosed as an integral part or Lhis
Nomination . The more recent monographs 3) will be separately mailed to the NOBEL
COMMITTEE as addenda.

Part II, which is under preparation for the NOBEL COMMITTEE, outlines
SanLillr's isotopic generalization of Einstein’s special relativity ror fight and/or
relativistic systems of extended-derormable particles moving within inhounogeneouvs
and anisotropic plzysical media, and it is scheduled for submission sometime in 1992.
This latter new relativity is mathematically consistent but, unlike the Galilean case, its
novel predictions (e.g., that for a redshift of light propagating within inhomogeneous
and anisotropic transparent media, and others) needs specific experimnental
verifications.

Part 111, also in preparation for the NOBEL COMMITTEE for delivery sometime in
1992, outlines Santilli's Isotopic generalization of Einstein’s gravitation ror the most
general known nonlinear, nomlocal and nonfagrangran Ifnterior gravitatronal
condriions, as expected, say, for a siar vidergoing gravitational collapse or ror any
fnterior gravitation at /arge This third new relativity is also mathematically



consistent at this writing but its physical consistency, in addition to the experimental
verifications for the local relativistic interior behavior indicated above, requires
additional studies connected to the numerous and now vexing problematic aspects of
Einstein’s gravitation.

Part 1V, also in preparation for the NOBEL COMMITTEE, outlines ¢#e operator
rormulation of Sautillis coverings of Galiler's and Einstein’s special relativities ror
elemientary particles with extended wavepackets when i conditions of total mutval
penetraltion, as concelvable for the hadronic structure, which result in expected,
shart range, nonlinear, nonlocal and nonhamiltonian internal errects without any
visible efrect in the exterior dynamics . These studies, which have resulted in a
generalization of quantum mechanics called Aadronic mechanics , are also
mathematically consistent at this writing, but in need of a number of additional
theoretical elaborations and experimental verifications.

A final Part V may be prepared for the NOBEL COMMITTEE at some future tithe
on certain ongoing efforts to achieve an isotopic generalization of unified gauge
theories for the possible inclusion of gravitational and strong interactions, known
under the name of iso-grand-unificalion .

This Nomination for the NOBEL PRIZE IN PHYSICS OF 1992 is solely referred to this
Part 1. Nevertheless, the NOBEL COMMITTEE should be aware of the additional
discoveries outlined in the remaining parts, because important to reach a mature
judgment on their dimension, depth, implications and interrelations.

It may be appropriate here to recall that Santilli's discoveries were called

Truly epoc making~ by Prof. H.P.Leipholz, Univ. of Waterloo, Canada
(official reviewer for Springer-Verlag, see enclosed Document B).

In recognition of his discoveries, Santilli received zwo Gold Medzals, one from
the City of Orleans, France, and another from the city of Campobasso, Italy, in
conjunctions with international Conferences in which he presented his discoveries (see
Document C).

But the biggest honor was granted until now by the Estonian Academy of Science
in Tartu which, in the occasion of an International Conference in algebras of 1989,
prepared two official charts on the most historical contributions in physics and
mathematics from 1800 till today (Document D) which were presented at the Conference
during the opening talk of the organizers and subsequently printed in 1990 (ISSN0134-
627X). As the NOBEL COMMITTEE can see, the name RUGGERO SANTILLI is listed with
the year 1967 of initiation of the discoveries that lead to this Nomination, jointly with
the best names in the history of physics and mathematics, such as GAUSS (1820), CAUCHY
(1847), HAMILTON (1843), CAYLEY (1854), LIE (1880), POINCARE" (1884), CARTAN (1894),
NOETHER (1929), EDDINGTON (1928), WEYL (1926), DIRAC (1928), JORDAN (1932), VON
NEUMANN (1934), WIGNER (1934), ALBERT (1948), and others.



SECTION I: INTRODUCTION.

1.1: THE FIELD OF UNEQUIVOCAL VALIDITY OF CONVENTIONAL

RELATIVITIES.

Galilel’s relativity (see Galilei (1638), Newton (1687) and, for a contemporary account,
Sudarshan and Mukunda (1974)), ZLinsteins special relativity (see Lorentz (1904),
Poincare (1905), Einstein (1905), Minkowki (1913) and, for a historical review, Pauli (1921))
and Zinsteins general relativity (see Riemann (1868), Einstein (1916) and, for a
historical account, Pauli (loc. cit.) were conceived for physical conditions referred to
by Lagrange (1788), Hamilton (1334), Jacobi (1837) and other Founders of contemponary
physics, as those of the exterior dynamical problem , that is, the study of particles
which can be well approximated as being point-like, while moving within the
(homogeneous and isotropic) vacuum, under action-at-a-distance interactions
derivable from a potential energy.

The point-like character of the particles implies the exact validity of
conventional local-differential geometries, such as the symplectic, affine or
Riemannian geometries. The action-at-a—-distance, potential nature of the interactions
then implies the exact validity of all conventional Lagrangian-Hamiltonian disciplines,
such as the conventional nonrelativistic and relativistic, discrete or continuous,
classical or quantum mechanics.

An overwhelming amount of experimental evidence has nowadays established the
validity of the conventional relativities in the arena considered beyond any possible
doubt. It is here appropriate to recall, as a classical illustration, the majestic
successes of the NASA missions throughout our Solar system and, as a quantum
mechanical illustration, the equally majestic successes in the description of the atomic
structure.

The exact validity of conventional relativities, within the asove Identiried
conditions, is assumed by Sanlilirs as the sound fovndations of his researclh . The
NOBEL COMMITTEE should therefore expect w#o conrlict whatever between
conventional relativities and Santilli’'s generalizations, but only a continuity of
mathematical and physical thought, as we shall see.

1.2: THE DIFFERENT FIELD OF VALIDITY OF SANTILLI'S COVERING
RELATIVITIES.

Santilli has devoted his research life to the study of physical conditions fundamentally
different and substantially more complex than the above. In particular, he has studied
conditions which were historically referred to by Lagrange (loc. cit.), Hamilton (loc. cit.),
Jacobi (loc. cit) and other Founders, as those of the Zterior dynamical problem , that
is, the study of extended particles which cannot be approximated as being point-like,
while moving within generally /nhomogencous and amisolrgpic physical media under
action-at-a-distance, potential forces, as well the additional contact forces with the
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physical media for which the notion of potential has no meaning.

Lagrange and Hamilton knew well that the contact forces between extended
objects and the physical media in which they move are outside the representational
capabilities of their functions and, for this reason, they formulated their historical
equations with external terms. In fact, for a system of N particles represented by the
index a =1, 2, ..., N, in three-dimensional Euclidean space with local coordinates r =
(rka), k =1,2,3 (=X, Y, z)!, the historical Lagrangian and Hamilton’s equations are nor
those given in the contemporary texbooks of physics and mathematics, but instead by
the forms

d oLt r, 1) aL(t,r, 1)

— - = Fpalt, 1, 1,.), (1.1a)
i ar
dt arka ka
dH(t,r, p) OH(t, r, p)
g = ———» Pg = —————— * Faltri,.)  (L1b)
9Pka Mya
k =1,23FExy,2), a=1,2,..,N,

where the external terms F,, represent precisely the contact,

nonlagrangian/nonhamiltonian forces of our physical reality. Similarly, Jacobi
formulated his historical theorem, not for the “contemporary Lagrange’s and Hamilton’s
equations”, those wirkour external terms, but for the original ones w/# external
terms.

With the passing of time, the external terms were removed as a result of a
historical process still ignored by historians until now, such as: the advent of Lie’s
theory (1983), the classical and quantum mechanical successes for the description of
exterior planetary and atomic systems, respectively, and other reasons. In this way,
Lagrange’s and Hamilton’s equation acquired the contemporary “truncated form”
without external terms.

As a result of this process, the original, historical distinction between the
exterior and interior dynamical problem was progressively lost, up to the
contemporary scientific scene which is virtually without any remnant of the historical
distinction.

Santilli essentially dedicated his research life to a comprehensive classical and
quantum mechanical study of historical equations (1.1} #7z# external terms. In fact, he
first identified their algebraic character as being that of a generalization of Lie
algebra called Lie-adwmissible afgebras (Sect. 111.3) and discovered their underlying
new geometry, which he called spmplectic-admissible geometry (Appendix A), Santilli
then succeeded in identifying their operator image (see the forthcoming Part 1V). This
first group of methods, now known as Szzuili's Lie-admissible rormulations (Sect. 111.3
and Appendix A), is particularly suited for the direct study of Lagrange’s and Hamilton’s
interior problem in its original conception, that is, under open-nonconservative
conditions.

Santilli then identified a second group of methods, now known as Squiilrs Lie-

1 For simplicity, we shall ignore any disctinction between covariant and contravariant indeces for
coordinates r = (ri,;) and momenta p = (py,), but introduce the dictinction later on for the unified

notation in phase space a = @*) =(r, p),p =1,2,.., 6N



Isotopic rormuiations , which essentially consist of an alternative approach in which
the external terms are removed, and replaced by a generalized unit of the theory, by
resulting in a structural generalization of Lie algebras, symplectic geometry and
Hamiltonian mechanics, called by Santilli Lie-Zsotopic algebras, symplectic-isotoprc
geowelry and Birkfolr - mechanics , as outlined in Sect. IY. Santilli also
succeeded in identifying the operator countepart of these alternative formulations,
which is outlined in the forthcoming Part IV. These latter formulations are particularly
suited for “closing” Eq.s (I.1) via the addition of the external media, thus resulting in
isolated systems verifying all conventional total conservation laws, while the internal
forces are nonlinear, nonlocal and nonhamiltonian (Sect. II).

The technical foundations of all these studies are provided by the so-called
conditions or variational selfadjointness , which are presented in details in the
enclosed first monograph by Santilli under the title Foundations of Theoretical
Mechanics, ¥ol [I- The [nverse Problem iIn Newtonian Mechanics
published by Springer-ver/ag , Heidelberg (1978b). As the NOBEL COMMITTEE can see,
this is a very scholarly work providing the first comprehensive presentation of the
necessary and svrrcient conditions ror given rorces to adnut a potential or, more
generally, 1or given equalions of motion Lo 20mit a Lagrangian or a Hamiltonian .

The NOBEL COMMITTEE should also be aware of the historical search conducted
by Santilli in the scientific libraries of Cambridge, Massachusetts as an essential part of
this monograph. In fact, the paternity of the integrability conditions for the existence
of a Lagrangian were essentially unknown in the 70’s, with contrasting quotations
generally existing in advanced mathematical papers. In his comprehensive library
search, which lasted from 1975 to 1978, Santilli succeeded in establishing that Helmholtz
(1887) had been the originator of the conditions of variational selfadjointness, and then
identified all subsequent contributions (see Vol. I of the enclosed monographs, pages 12,
13).

The conditions of variational selfadjointness are the true technical foundations
for both the Lie-admissible and the Lie-isotopic formulations, inasmuch as they
provide all the necessary quantitative means for studying the structure of any given
force, the conditions when it is reducible to the Lie-isotopic formulations, and the
conditions under which the more general Lie-admissible methods are requested.

The NOBEL COMMITTEE can find in Document E the outline of a post-graduate
course Santilli taught in 1978 in the field at the ZLjpuwan Lakoratory or Physics of
Harvard University .

1.3: INEQUIVALENCE OF THE INTERIOR AND EXTERIOR PROBLEMS.
One of the first introductory points the NOBEL COMMITTEE can find in Santilli’s
writings is the proof of the inequivalence of the interior and exterior problems (Santilli
{1978a, c), (1982a), (1985c), (1988a), (1991C)).

In fact, the exterior problem is based on the point-like abstraction of particles
under interactions derivable from a potential V and are representable in their first-
order form via the familiar Hamiltonian vector-fields

10



i‘ka pk a/ma

a= @M = = ¢ = (@) = (L.2)

Pka -
Mya
a = (au) = (r$ p)s (rka, pka)a u = 15 25 ey 3N9 k= ls 27 3a (= X, ya z)

and, as such, it implies the exact validity of conventional local-differential geometries,
such as the symplectic, affine and Riemannian geometries.

On the contrary, interior dynamical problems describe, say, a satellite during re-
entry in Earth’s atmosphere, where, in addition to the conventional local-differential
forces derivable from a potential V, experimental evidence establishes the existence
of the contact interaction with the medium which can be reduced to local-differential
nonlinear and nonhamiltonian forces Fk(t, r, p..), plus additional nonlocal-integral

forces also evidently not derivable from a Hamiltonian (see, e.g., Hofstadter et al. (1970),
Fijimura et al. (1971), and quoted papers)

Pka Pka/Ma
a = @W= =T = [Mta,.) =
oy \
Pka ;’ +Fatr,p,. + I Udo‘ﬂfka(t, r, P, .

3

Thus, interior dynamical systems are characterized by the most general knog-n )
systems of differential equations which are: 1) nonlinear and nonlocal in all variables;
2) nonlagrangian and nonhamiltonian, in the sense that the conventional functions L(t, r,
i) or H(t, r, p) are insufficient to represent the system; and 3) nonnewtonian in the sense
that the acting forces generally dependent on the accelerations.

As the NOBEL COMMITTEE can see, systems (1.3) can be readily represented by
the original equations (I.1), where L or H represent the Kinetic energy T as well as the
potential energy V,L=T - Vor H=T + V, while the external terms Fyq represent all
the nonpotential forces.

The inequivalence of the interior and exterior problems is then established at all
levels of studies. In fact:

A) 7opologically , the nonlocal character of systems (3) imply the inapplicability
of all basic geometries of contemporary physics, the symplectic, affine and Riemannian
geometries because of their strict local-differential nature;

B) Algebrascally , the nonlinear, nonlocal and nonhamiltonian character of the

systems imply the inapplicability of the conventional canonical formulation of Lie’s
theory;

C) Aunalvtically , the nonlagrangian and nonhamiltonian character implies the
inapplicability of current analytic mechanics;

1



etc.

Even by approximating the nonlocal-integral forces with local-differential
expressions (which are usually done via power series expansions in the velocities
truncated to a sufficiently high power), the nonlagrangian and nonhamiltonian
character of the systems persists. In fact, it is well known in engineering circles (but
not yet in physical circles) that the computerized guidance systems of missiles in
atmophere may require contact forces up fo the tentlh power it the velocity and more
, thus being strictly nonlagrangian and nonhamiltonian.

GALILEI'S AND NEWTON’S CONCEPT
OF MASSIVE POINT MOVING IN VACUUM

T o
) C“/‘: “L: A
(_A “v'v R k\G,—\‘ a&( f {
R
RN 1]
’A‘A‘A"‘A“A’A\‘A‘A&A’d e

SANTILLI'S CONCEPT OF EXTENDED-DEFORMABLE
BODY MOVING WITHIN PHYSICAL MEDIA

FIGURE 1.1: A schematic view of the funndamental concepts in conventional and Santilli's
relativities. Consider an object moving in empty space, such as a satellite in a stationary orbit
around our Earth. Since motion occurs in vacuum, the extended character of the object and its
actual shape do not affect its dynamical evolution. One recovers in this way tke Aistorical
notion of “massive point” by CGalilei (1638) and Newton (1687) namely, the
satellite can be assumed to be a massive point concentrated in its center of gravity without any
consequential approximation in the dynamics. This centuries hold concept has profound,
contemporary, topological implications. In fact, it implies the exact validity of the local-
differential geometries of contemporary mathematics, such as the differential, affine and
Riemannian geometries. The Newtonian equations of motion are then given by Eqs (1.2). The
exact validity of Galilei's relativity, Einstein's special relativity and Einstein's gravitation for the
satellite in exterior conditions is then consequential.

Consider now the satellite during re-entry in Earth’s atmosphere. The dynamical conditions are
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then profoundly altered. In fact, the actual shape of the satellite now directly affects its
dynamical evolution: (e.g., spherical and nonspherical satellites of equal mass have essentially
different trajectories in atmosphere). As a result, the extended character of the satellite must be
represented in the equations of motion. Moreover, perfectly rigid objects do not eaist in Nature.
One therefore has deformations of the shape of the satellite which must also be taken into
consideration. We reach in this way Sawfillis comcept of extended anmd Ctherefore
deformable object moving within generally imhomogenmeows and anisotropic
phiysical media of equally historical character which is at the foundation of this
Nomination. The mathematical implications of the latter concept are far reaching. In fact, the
representation of the shape in the dynamical evolution requires forces of integral type as in Eq.s
(I.3) where 6 now represents the surface of the satellite. In turn, this implies the irreconcilable
inapplicability of conventional geometries, such as the symplectic, affine and Riemannian
geometries, because of their strictly local-differential topology. The inapplicability of
conventional relativities is then consequential, as outlined in the text.

While a member of the Zepariment of Mathematics of Harvard University in the late 70's,
Prof. Santilli studied all available efforts by pure mathematicians in the construction of the so-
called "integral topologies” and “integral geometries” for the purpose of ascertaining their
effectiveness in the treatment of systems (I.3). He found none available in the pure
mathematical literature which would verify all his requirements, including the conditions of: a)
admitting nonlocal-integral forces of nonlagrangian and nonhamiltonian character; b) being
simple in use and effective in physical applications; and, last but not least, c) permitting the
constructions of covering relativities. He therefore constructed novel geometries and
mathematical tools for the needed quantitative treatment of ‘externded” and ‘deformable”
objects moving within ‘indomogeneous” and “anisotropfc” physical media (see Sect.s III and
1¥). The construction of generalized relativities was then consequential (Sect. V).

These experimental facts establish that interior trajectories are structurally
beyond the representational capabilities of the symplectic and Riemannian geometries
(a property also known as the Cartzn’s /egacy) , thus establishing the need for
suitable generalizations.

1.4 IRREDUCIBILITY OF THE INTERIOR TO THE EXTERIOR DYNAMICAL

PROBLEM.

When exposed to interior systems (1.3), contemporary physicists generally provide all
conceivable efforts in reducing them to the simpler form (1.2). Santilli (1985c) has proved
that such a reduction is inconsistent and not realizable in technical terms.

First, when exposed to systems of type (I.3), physicists tend to perform their
transformation, from the original coordinate system r of their experimental detection,
into an imaginary frame r’ in which the systems become Hamiltonian. Under a number of
approximations and conditions (locality, regularity and analyticity in a star-shaped
region), the existence of such a transformation is ensured by the ZLie-Koening
Theorem (Santilli (1982a)). However, it is a mere mathematical curiosity, because the
original system is nonhamiltonian as well as nonlinear. Thus, the transformation r = r
must necessarily be wrorncamonica/, as well as highly row/iresr . This renders
inapplicable all conventional relativities to the hypothetical, transformed system,
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evidently because the transformed frame r” is highly noninertial, as well as
nonrealizable in experiments (e.g.,r' = a exp{(b sinh (cr) },a, b, c € ®).

Santilli (loc. cit) therefore insists that systems (1.3} must be represented in
the physical coordinates r of their experimental detection (Which he calls
~direct representation”). Besides, systems (I.3) are nonlocal-integral, in which case the
Lie-Koening Theorem is known to be /zapplicable and the reduction to a Hamiltonian
form impossible.

After recognizing the impossibility of effectively reducing systems (1.3) to the
simpler form (1.2) treatable via current relativities, contemporary physicists claim that
their differences are 7/usory™ (sic) because, when a macroscopic body of the
interior dynamical problem, such as a satellite during re-entry, is reduced to its
elementary particle constituents, one recovers point-like particles in stable orbits
under potential interactions, with the consequential validity of conventional
geometries, disciplines and relativities.

In an invited talk at an International Conference held in Calcutta in 1985, Santilli
(1985c) presented a series of “No Reduction Theorems™ Wwhich establish the
impossibility of any consistent reduction of a classical, nonconservative and
nonlagrangian-nonhamiltonian system to a collection of conservative, Lagrangian-
Hamiltonian particles. Viceversa, he proved that a (finite) collection of elementary
particles in stable orbits and im unitary time evolution simply cannot reproduce a
mascroscopic system which is in highly nonconservative conditions and not
representable by a Hamiltonian.

When the impossibility of a consistent elimination of the interior nonlocality is
finally acknowledged, contemporary physicists still attempt other mechanisms in the
hope of salvaging established doctrines for interior conditions.

One of them is the addition of an “integral potential” to conventional Lagrangians
and Hamiltonians. The simplistic argument is that the salvaging of the canonical
formalism implies the preservation of conventional relativity. Santilli (1978c) has proved
the inconsistency of these latter attempts on numerous mathematical and physical
grounds reviewed in Sect. 11.2 (see Footnote? in particular), such as the invalidation of
the conventional local-differential topology with consequential loss of topological
symmetries, as well as the necessary impact on the exzer7or trajectory caused by the
internal effects (because of its “potential” interpretation), which is against clear
physical evidence.

The mathematical roots of Santilli's “No Reduction Theorems” is the evidence
that the unstable orbit, say, of a satellite during re-entry with monotonically decaying
angular momentum, simply cannot be decomposed into a collection of stable orbits,
each one with conserved angular momentum, Viceversa, a collection of stable orbits
each with conserved angular momentum simply cannot reproduce a macroscopic body
with monotonically decaying angular momentum.

The physical roots are given by the /Jegacy of Fermi (1949), Bogoliubov
(7960), and other Founders of particle physics on the ultimate non-
locality of the structvre of strongly interactimg particles . In fact, while
the atomic constituents are at large mutual distances when compared to their
wavelength, the hadronic constituents must necessarily be in conditions of total mutual
penetration and overlapping because their wavelength is precisely of the order of

magnitude of the size of all hadrons (about 1 F = 10718 cm). Thus the atomic structure is
a typical example of exterior quantum mechanical problems , while the hadronic
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structure is expected to be a typical case of erior quantu mechanical probleis .

As well known, current theories on the structure of hadrons are dominated by the
hypothesis that the constituents of hadrons are the gquszks (see the reprints of the
original contributions edited by Lichtenberg et al. (1980)). Now, even though there is
experimental evidence (Bloom et al (1969)) that the hadronic constituents have a point-
like charge structure (for which NOBEL PRIZES were recently granted), “point-like
wave packets” do not exist in Nature. Quarks, to be physical particles, must therefore
have extended wavepackets with the dimension of the entire hadron. The historical
legacy on the ultimate nonlocality of strong interactions then follows.

One may argue from the clear successes of the quark theories that such nonlocal
effects could be small. Nevertheless, if one passes to more limiting conditions, they
simply are not ignorable. The NOBEL COMMITTEE can consider in this respect the core
of a collapsing star, in which we have not only total mutual penetration of the
wavepackets of the particles constituents, but also their compression in very large
numbers in an extremely small region of space. Under these conditions, the validity of
the historical legacy on the ultimate nonlocality of the structure of matter becomes
beyond any credible scientific doubt.

This illustrates the wmecessity or studying the iInterior dynamical
problem at all its levels, nonrelativistic, relativistic, gravitational,
classical and quantum mechanically , precisely as done by Santilli.

Moreover, despite their successes, quark theories are still afflicted by
fundamental, now vexing, open problems. As an example, all nonrelativistic quark
theories have a finite nonnull probability of tunnel effects for free quarks when near
the infinite potential barrier (Chattarjee et al. (1986)), whigg is contrary to experimental
evidence. This occurrence is a necessary consequence,the assumption of quantum
mechanics in general, and Heisennberg’s uncertainty principle in particular, in the
interior and in the exterior problems of hadrons. The same nonnull probability of
tunnel effects is expected to persist at all subsequent levels of treatment, such as that
of QCD, because inherent in Heisenberg’s uncertainty principle.

Explicitly stated, Heisenberg’s uncertainty principle implies the consequence,
beyond any reasonable doubt, that curremt quark theories have a finite
nonnull probability that the ordinary protons and neutrons should
spontaneously emit free quarks, which Is evidently contrary to
experimental evidence .

In Part 1V of this Nomination we shall review for the NOBEL COMMITTEE the fact
that this (and other) vexing open problems of current quark theories may be due
precisely to their lack of treatment of the historical legacy on the ultimate nonlocality
of the hadronic structure. In fact, short range, nonlocal effects can be admitted only in
the interior problem, and are definitely null in the large mutual distances of the
exterior problem.

This results into a structural difference between the interior and the exterior
problem under which the probability of tunnel effects of free quarks can indeed be
made identically null, e.g., by rendering incoherent the interior and exterior Hilbert
spaces and other means.

Besides, the isotopic generalization of the SU(3) symmetry is locally isomorphic to
the conventional symmetry (Mignani (1984)). As a result, the representation of the
historical legagy of the ultimate nonlocality of the strong interactions via Santilli's
isotopic techniques offers the possibility of genuine advances in quark theories, while
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leaving the unitary symmetries essentially unchanged.

The NOBEL COMMITTEE is warned against high ranking “false experts”, and
encouraged to dismiss superficial opinions expressed by individuals without an
established record of expertise on the methods necessary for an ethically and
scientifically sound judgment: the conditions of variational selfadjointness (see the
encloseed Vol. I of Santilli's Foundations or Theoretical Mechanics).

I.5: INAPPLICABILITY OF CONVENTIONAL RELATIVITIES FOR THE
INTERIOR DYNAMICAL PROBLEM.

The conventional relativities of contemporary physics are J/uzapplicable (rather than

“violated”) for an effective characterization of interior dynamical systems (1.3) beyond

any scientific doubt, for a variety of independent mathematical and physical reasons,

such as:

1) The fundamental transformations of contemporary relativities, Galilei’s,
Lorentz’s and Poincare’s transformations, are /zear and Joca/, as well known, while
systems (1.3) are strictly zonlinear and nonlfocal;

2) Contemporary relativities are centered on the canonical-Hamiltonian
formalism, while systems (1.3) are strictly usowmhamiltonizn in the frame of their
experimental detection;

3) Contemporary relativity are based on L/es sywmetries in their canonical
realization, while the counventional Lies theory Is rundamentally inapplicable ror
systems (1.3);

4) Conventional relativities are centered on a /oca/-differential topology (e.g.,
the Zeeman topology), while systems (1.3) require an essential wowlocal-integral
Lopology ,

5) Conventional relativities are centrally dependent on the /Jomogenuity and
Iisotropy of space , while interior physical media are manifestly /nkomogeneous and
anisoLropic ,

and numerous other independent technical reasons worked out by Santilli in all
necessary details. In particular, the breakings of conventional symmetries for interior
systems (1.3) were classified by Santilli (1978e), Sect. A.12, pp. 344-348) into: Jsolopic,
selradjornt, semicanonical, canonical and essentially nonseltadjoint breakings.

These studies establish beyond any credible scientiiic doubt the
inapplicability for interior systems (1.3 of the mathematical foundations or
Galilers relativicy, Einstein’s special relativity and £insteins general relativity,
let alone the iInapplicabriity of the relauvities themselves, by thererore
establishing the need to identify new mathematical methiods and consuauct new
coverinlg relativities.

As an illustration, rhe imsistence in the exact validity for Interior
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dynamical problems of the relativities rfor the exterior problem literally
implies the acceptance of the perpetual motion in a physical
environment , trivially, from the necessarily exact validity of their local rotational
symmetry, with consequential necessary conservation of the angular momentum,
without any possibility of escaping from these nonscientific conclusions because of the

”“No Reduction Theorems” recalled earlier.
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SECTION II: CONCEPTUAL OVERVIEW OF
SANTILLI'S DISCOVERIES

II.1: COMPREHENSIVE CHARACTER OF SANTILLI'S RESEARCH.

Santilli has conducted a truly vast study of the interior dynamical problem at the
nonrelativistic, relativistic and gravitational levels, from a discrete and continuous
viewpoint, as well as for classical and quantum mechanical treatments, all this
repeated twice, one for the study of interior systems as closed-isolated (thus
verifying conventional total conservation laws), and one for their open-
nonconservative treatment (as conceived by Lagrange and Hamilton).

Moreover, in each of the above two main lines, Santilli constructed suitable
generalizations of conventional mechanics, algebras and geometries, by resulting in
this way in a novel scientific edifice of truly unique dimension, diversifications and
interrelations, which is rather remarkable as the achievement by one single individual.

In a scientific edifice of this type, it appears recommendable to point out first the
main conceptual lines, and then pass to a technical review.

II.2: SANTILLI'S CLOSED NONHAMILTONIAN SYSTEMS.
It is generally believed that the global stability of a system is due to the stability of the
orbits of each constituent, as it is the case for the planetary and atomic structures.

Santilli (1978d) proved that, by no means, these systems exhaust all possible
systems of the Universe. In fact, he identified . " aclass of systems, at both
classical and quantum mechanical levels, which he called -c/osed nonhzamiltonian’
systems™ . These are systems whose total physical quantities are conventionally
conserved (closure), but the internal orbits of the constituents are generally unstable
because of contact interactions with the physical medium (nonhamiltonian character).
In these broader systems we merely have /mzer#a/ exchanges of energy, angular
momentum and other physical quantities, but in a way compatible with total
conservations.

At the classical level, Santilli represented these novel systems with the equations

fka Pka/ma
@ = =T =Mt a,.) =
. oV NBA NSA
pk ‘ — ;r— + Fka (t, r7 p-; ---) + J‘o.daf}-ka (t" r" p" "')

{I.1a)

0, k=1,2,..,10. (I1.1b)

i

X = @Xy /9 at + ax, /ot
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where: the (ordered set of) ten conserved quantities X, represent the conventional
Galilean conservation laws of the energy, H = 0, total linear momentum, P = 0, total

JUPITERS STRUCTURE

CONVENTIONAL RELATIVITIES FOR
THE EXTERIOR CENTER-OF-MASS BEHAVIOUR

) SANTILLI'S RELATIVITIES FOR
THE INTERIOR DYNAMICAL PROBLEM

FIGURE 11.1: A conceptual view often presented in Santilli’s publications (1978c, d),
(1981a), (1982a), etc.). The origin of all current relativities can be identified with the first
visual observation of the Jovian system by Galileo Galilei back in 1609. Santilli’s

generalizations of Galilei's and Einstein’s relativities can also be identified with a
direct visual inspection of the Jovian systrem. The recent NASA missions to Jupiter
clearly reveal a dichotomy of historical character: the exact vaZoitpr of the
conventional relativities for Jupiter’s center-of-mass, EXTERIOR dynamics in the
Solar system, jointly with the manifest /wzpplicabiiey  (and not “violation”) of the
same relativities for Jupiter’s INTERIOR structural problem, as established by vortices
with continuously varying angular momenta, etc. Also, when considered as isolated
from the rest of the universe, Jupiter’s is a majestic illustration of Santilli's “closed

nonhamiltonian systems”, because of its clear global stability and verification of
conventional total conservation laws, while its interior dynamics is structurally
nonconservative, nonlinear, nonlocal and nonhamiltonian. The above view has

particularly conceptual value, because Santilli's generalized relativities provide a

form-invariant description of Jupiter's structure conceived as aclosed nonhamiltonian
system at the various Newtonian (Part I), relativistic (Part II) and gravitational (Part III)
levels. As we shall see in Part IV, the operator counterpart of Jupiter's leads to a conceptually
similar structure of hadrons, namely, an operator bound system whose center-of-mass
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EXTERIOR dynamics (e.g., in a particle accelerator), verifies all conventional relativities,
nevertheless, the INTERIOR structural problem is nonhamiltonian to acccount for the historical
nonlocality of matter. This is the reason why Santilli repeats in his writings that the structure
of hadrons may well be analytically equivalent to the structure of Jupiter.

angular momentum J = 0, and uniform, motion of the center of mass, G = 0, and NSA
stands for variational nonselfadjointness, namely, for the violation of the integrability
conditions for the existence of a Hamiltonian (see the enclosed Vol. I of Santilli's
Foundations of Theoretical Mechanics).

Systems (II.1) constitute underdetermined systems of 6N differential equations
with ten subsidiary constraints given by the total conservation laws, which are
reducible for certain technical reasons to seven independent constraints. As such, the
systems are consistent under sufficient continuity conditions generally verified in the
physical reality.

In particular, Santilli proved that wwrconstrazzzed solutions in the nonselfadjoint
forces always exist for given potential forces.

In essence, Santilli's systems (I1.1) establish that, in “closing” the satellite of Fig. 1.1
with the surrounding atmosphere (or, equivalently, by “closing”Lagrange’s and
Hamilton’s historical equations (1.1) via the inclusion of the medium in which motion
occur), by no means, the contact, nonlocal, nonlagrangian or hamiltonian forces Fra

“disappear” according to a rather widespread but erroneous belief. On the contrary,
Lagrange’s and Hamilton’s exterior forces Fra persist in their entirety because

variationally nonselfadjoint.

Closed nonhamiltonian systems for N = 2 were studied in detail in the original
proposal (Santilli (1978d)). Their general theory was then studied in the enclosed Vol. II
of Santilli's Feoundations or Theoretical Mechanics (1982a). Additional basic advances
were made in the memoir (Santilli (1988a)). Examples for N = 2 and 3 were worked out in
details by Jannussis, Mijatovic and Veljanoski (1991) as the first examples of Santilli's
generalization of Galilei’s relativity (see Sect. V.7). Systems (I1.1) were also studied from
a statistical viewpoint by Fronteau et al. (1982), Tellez-arenas et al. (1982), and others.

Systems (I1.1) are expected to have an intriguing connection with Arigagine
statistics (see Prigogine {1962), (1968), (1990) and quoted references), which is currently
under study by Jannussis et al. In fact, the systems recover the conventional time
reversal symmetry for the exterior center-of-mass behavior, while admitting an
intrinsically irreversible interior dynamics. The operator counterpart of the above
results is presented in Part IV.

In summary, the central requirements for the closed-isolated approach to
interior dynamical systems are the following:

I) All total, conventional, Galilean, Lorentzian or Riemannian conservations are
verified.

I) The particles considered are extended-deformable while moving within a
generally inhomogeneous and anisotropic medium; and

II) The forces are a combination of conventional local-potential, as well as
nonlinerar, nonlocal and nonhamiltonian forces.



Note that, by conception and practical realization, no generalized interior
dynamics can be detected from the outside, trivially, because of the exact validity of
conventionbal relativities (Figure II.1).

This is nothing but a consequence of the fact that internal contact interactions
for which the notion of potential energy has no meaning, cannot possibly have an
impact on the exterior dynamical behaviour, as majestically established at the
nonrelativistic level by Jupiter (Fig. I11.1)

In Part 11 the NOBEL COMMITTEE will see the relativistic counterpart of the
above setting. In fact, the historical legacy on the nonlocality of the hadronic
structure can at best deal with Jiuwzernal short range erfects also of nonpotential
type2 which, as such, cannot possibly affect the exterior dynamical behaviour This
leads to a dichotomy fully analogous of that of Jupiter, whereby the center—of-mass
trajectory of a hadron in a particle accelerator strictly obeys Einstein’s special
relativity in a way fully compatible with the possible validity of Santilli's covering
relativity for its interior structural problem.

As well known, “closed Hamiltomnian systems™ (i.e., isolated systems of point-like
particles with only potential internal forces) constitute the physical foundations of
contemporary relativities. Santilli's more general closed nonhamiltonian systems then
constitute the physical foundations of his covering relativities. The main sections of
this Nomination are therefore devoted to a review of the mathematical methods and
relativities for closed nonhamiltonian systems

11.3: LAGRANGE'S AND HAMILTON'S OPEN SYSTEMS.
The second complementary approach identified by Santilli is the study of
systems (1.3) as originally conceived by Lagrange’s and Hamilton's, namely, with a
total energy H = T + V which is NONCONSERVED because of exchanges with the
physical medium which is considered as external

This alternative conception is a necesary complement of the preceding one
on numerous counts indicated later on in this presentation, including the proper
definition of ONE individual “particle” in interior conditions.

2 A fundamental point for the consistency of this dichotomy is the Z#ck of potential character of the
contact internal forces, as conceived by Santilli and quantitatively treated via the conditions of
nonselfadjomminess . In fact, intermal forces with a potential wowld directly affect tke
exterior dynamical bebhavioar, conlrary (o experimental evidemce (Fig. 11.1). This point
is important for the NOBEL COMMITTEE to separate “true experts” from “false experts” (Sect.4). When
exposed to interior nonlocal dynamical problems, the formers use the conditions of selfadjointness or
other means to treat forces are they are in the physical reality, and proceeds to the consequential
necessary genmeralization of current doctrines,. By contrast, the latters merely add “nonlocal potentials”
to their trivial Lagranmgian or Hamiltonians, for the intent of preservriy conventional relativities for
the interior dynamics. This latter approach is however inconsistent on numerous mathematical and
physical counts identified by Santilli (1981c) in details. In fact, the latter approach implies the
invalidation of the Zeeman topology (evidently because strictly local-differential and therefore
incompatible with “nonlocal potentials’, with the consequential loss of the integrability to the finite
Galilei's or Lorentz’s symmetries. Physically, the addition of a “nonlocal potential” to a Lagrangian or a
Hamiltonian implies the necessary alteration of the exterior trajectory (e.g., Jupiter's center-of -mass
motion would be in part dependent on internal nonconservative effects), which is manifestly against

clear experimental evidence.
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Therefore, the contemporary study of the historical interior problem can
be reinterpreted today as the study of owne paricle in the most coniplex
possible physical conditions , e.g., a proton in the core of a star undergoing
gravitational collapse. The complementarity of this open—-nonconservative
notion with that of the closed-isolated system as a whole is then evident, and
equally evident is the need to identify the most effective means to treat each
approach.

To clarify the above setting, recall that only one approach is needed for
the characterization of a closed Hamiltonian system as a whole as well as for
the characterization of one of its constituent. This is due to the fact that &ei#,
the system as a whole and its individual constituents are in stable orbits A
theory characterizing conservation laws is therefore sufficient for both profiles
(see next section).

In the transition to closed nonhamiltonian systems the situation is, again,
fundamentally different. In fact, in this case e system as a whole Is stable,
thus requiring rheories willh the emphasis oh conservaton laws, while indrvidual
construents are mn generally unstable conditions, thus requiring more general
thearies which pur the empliasis on time-rate-of—-variations of physical
quantities (see next section ]

This complementary open-nonconservative approach is outlined in
Appendix A of this Nomination.



SECTION III: MATHEMATICAL OVERVIEW OF
SANTILLI'S DISCOVERIES

I11.1: STATEMENT OF THE PROBLEM.

As recalled in the foreword, the mathematical foundations of contemporary

theoretical physics at large and, in particular, of the conventional Galilei’s and

Einstein’s spacial relativities for the exterior problem, are given by LJ/e

algeiras , the symplectic geometry; and conventional Hauiftonian mechanics
The central equations for an exterior system of N particles in phase space are

Hamilton’s equations in their contemporary “truncated” form without external terms,

which can be written in the local coordinates a = (a") of Eq.s (I1.1)

N H(@) = H@E,p) = T(p) + V@), p = 1,2,..,6N (111.1)
a

where the tensor w*Y, called the canonical Lie tensor; is given by
n O3nxaN  IanxaN (11.2)
(0™) = 1l
3Nx3N 03NX3N
The underlying brackets are the familiar Poisson brackels

dA aB d0A aB B dA
[AB] = _u_ wlV — - - . (g
da da Mya apka pa  Pka

K =123 a-=12..,N

Their most salient feature is that they characterize a Lie algebra, i.e., they
verify the axioms

[AB] +[BA] = 0, [A[BCl + [B[CA] + [C[AB] = o. (I1L4)

from which the symplectic geometry and Hamiltonian mechanics follow, as well
known (see, e.g., Abraham and Marsden (1967)).

But, the systems represented by these mathematical methods are local-
differential and potential-Hamiltonian, while no effective mathematical method
existed, at the time of initiation of Santilli's studies, for the treatment of interior,
nonlinear, nonlocal and nonhamiltonian systems.

Thus, in order to be able to study of the generalization of current
relativities, Santilli was forced to construct, first, suitable generalizations of
their mathematical foundations, and then construct the covering relativities
themselves.



Moreover, the novel mathematical methods had to be of dual character, a
first class for the characterization of interior systems as closed-conservative
(e.g., Jupiter's structure of Fig. II.1), and a second class for their open-
nonconservative version (e.g., the satellite in Jupiter’s atmosphere considered as
external of Fig. 1.1).

I11.2: SANTILLI'S LIE-ISOTOPIC FORMULATIONS.
The formulations needed for the characterization of closed nonhamiltonian
systems (I1.1) must verify the following conditions:

1) Their algebra must possess a totally antisymmetric product, say [A , B] =
-[B ,"A] (or, equivalently, the underlying exterior calculus must be totally
antisymmetric) as a necessary condition to represent the conservation of the
total energy, H= [H, H]=0.

2) The formulations must be able to represent consistently nonlinear,
nonlocal and nonhamiltonian forces, and must therefore have in particular a
suitable nonlocal topology; and

3) All conventional formulations and disciplines must be contained as a
particular case, and recovered identically when the nonhamiltonian forces are
null. .

The first identification of the above generalized methods was made by
Santilli in his memoir (1978a) written at the Zpman Laboratory of Physics of
Harvard Umversity under contract from the U. 8. Department of Energy No.
ER-78-8-02-4742.A000 (see Docunment A), and then subsequently presented in
the enclosed Vol. 11 of Ffoundations of Theoretical Mechanics (1982a). It consists
of the discovery of a generalization of Lie’s theory verifying conditions 1), 2) and
3) above, which he called “Zie-isotopic theory”, and which has been called in
the literature the Lie-Szatllr theory (see, .Kadeisvili (199), Aringazin et al. (1992),
and others).

In the subsequent years, he worked out the necessary details for the
construction of the foundations of the various branches of his generalized
theory, including the compatible formulation of fields, vector spaces,
transformations, representations, analytic mechanics, symplectic and
Riemannian geometries, ect. , as reviewed in the memoirs Santilli (1988a, b) and
(19914, b) (see the outline of Sect. IV below).

The central analytic equations are a generalization of the “truncated”
Hamilton's equations (II1.1) of the form, how called Hamilton-Santilli equations

oH(a)
at = wh®1,Y(@) — H(a) = Ht,p) = T+V, w,v,=1,2,.,N, (IIL5)
Ja

where 1 is the generalized unit of the theory (see next section), with generalized
brackets
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verifying the axioms
[A;Bl+[B,Al=0, [A;[B ClI+[B [c Al+[c [A B]] = o, (111.7)

The terms Zie-Santilli rormulations”™ today encompass a generalization of
the virtual entirety of the mathematical foundations of contemporary classical
(and quantum) mechanics, as we shall outline in the next section.

One of the objectives of this Nomination is to indicate that the
generalization of contemporary relativities were achieved by Santilli only
AFTER discovering these generalized new mathematical tools.

I11.3: SANTILLI'S LIE-ADMISSIBLE FORMULATIONS.

Quite significantly, the listing by the Estonian Academy of Science of Santilli’s
name among the most illustrious names in the history of physics and
mathematics (Document D) was #oz done for the Lie-Santilli formulations, but
for yet more general formulations which include the preceding ones as
particular case.

They treat the more general class of open nonconservative systems as
originally conceived by Lagrange (1788) and Hamilton (1834), those via the original
equations (I.1). At the time of Santilli's PhD studies at the /sztuto di Fisica of
the umiversita® di Torimo , Italy, the algebraic character of Eq.s (L.1) was
entirely unknown.

In three historical papers (1967), (1968) and (1969) (see also the enclosed
monograph of (1982a), p. 90 and ff.) Santilli first proved that the brackets of the
original Hamilton’s equations,

AxB =[AB] +

Fias (111.8)

not only violate the Lie algebra axioms (111.4) or (I1L.7), but z#ey violate the conditions
ror the valldity or any algebra as commonly understood i coltemporary matlematics
(see, e.g., Schafer (1966)), because they verify the left scalar and distributive laws, but
violate the corresponding right laws
ax(BxC) = Ax(axB) = (axA)xB, (A + BxC = AxXC + BxC, (111.9a)
(AxB)xa # Ax(Bxa) # (Axa)xB, Ax(B + C) # AXxB + AxC, (111.9b)

Santilli then reformulated Hamilton's equations (I.1) in the form



9H(a) v . ' :
at = W a) : , (5" )= (“"-‘;")”r‘t“ﬁ(o'é), s = F/(oH/0p)  (I11.10)
da

where the F's are the external forces, whose brackets are now given by

3A v 3B
Su (t,a)

(AB) =
paM aaV

(ITL11)

He then showed that the brackets (AB) of modified Equations (111.10) do indeed
characterize a consistent algebra, because they do verify the /esz and right scalar
and distributive laws. Santilli also showed that the consistent algebras characterized
by brackets (A,B) admit the Lie algebras as a particular case evidently when all
external forces are null and, in this sense, they are “coverings” of Lie algebras.

Prior to publishing his first paper, Santilli (1967) then conducted an extensive
search in the mathematical libraries of the Universita” di Torino, Italy, which lasted
well in excess of one full year, and finally succeeeded in identifying the algebras with
brackets (AB) as being the (nonassociative) algebras introduced by Albert (1948) under
the name of Lie-admissible algebras .

The NOBEL COMMITTEE should note that, as today known (see the extensive
mathematical bibliography by Balzer et al. (1984) in nonassociative algebras), prior to
the paper (Santilli (1967)), only two other papers had appeared in the specialized
mathematical literature besides the original paper by Albert, and given by a paper by
Weiner (1957) published in a little known Journal (Rev. Uuiv. Tucuman) and a paper by
Laufer et al. (1962) appeared in Cam ./ Afat/r Despite that, Santilli did succeed in
identifying prior contributions, as a necessary pre-requisite for truly scolarly work.

In fact, the NOBEL COMMITTEE can see the quotation of the mathematical article
by Albert (1948) published by 7raus. Amer. Math Seoc ,in the physics article by Santilli
(1967) published by # Nveve Cimenteo, at the bottom of the first page 570. Santilli then
continued his laborious library search in 1967-1968, this time, at the Uw/versity of Miami
, Coral Gables, Florida, and did indeed succeed in identifying the remaining two articles
by Weiner (1957) and Laufer et al. (1962) which he quoted in the subsequent paper
(Santilli (1968), p. 1243 and 1244, respectively.

Albert had introduced the abstract definition of Lie—admissible algebras as
nonassociative algebras U with elements a, b, ... and abstract product ab over a field F

which are such that the attached algebra U™, which is the same vector space U
(namely, the elements of U and U™ coincide) is Lie, that is, the product [a,b]U =ab - ba is

Lie. Weiner (loc. cit.) and Laufer et al. (loc. cit.) had studied some preliminary properties
of these algebras, but always at the abstract mathematical level, while none of these
authors had identified specific cases of Lie-admissible algebras.

Santilli was unequivocally the first to identify a rather fundamental realization of
Lie-admissible algebras and their application as providing the algebraic
characterization of the historical Hamilton’s equations with external terms, when
written in the modified form (111.10). In fact, the algrebra characterized by brackets
(AB) is Lie-admissible because that characterized by the attached brackets (A,B) - (B,A)
is Lie,

(AB) is LIE-ADMISSIBLE because (AB) - (BA) = 2[AB]is LIE. (111.12)



Subsequently, Santilli extended his studies of Lie-admissible algebras in memoir
(1978a) at the abstract level as well as in their classical realization. In the subsequent
memoir (1978d) also written at Harvard University under contract with the U.S.
Department of Energy, Santilli succeeded in introducing an operator rezlization
or the Lie-admissible algebras, that is, an operator counterpart of Lhe
historical Hamiltons equations with externszl terms, which sighaled the birth
of a generalization of quantum mechanics as outlined for the NOBEL COMMITTEE in
the forthcoming Part IV. Finally he expanded his Lie-admissible studies in the
monographs Santilli (1978c) and (1981a).

By recalling that Lie algebras constituite the ultimate mathematical structure of
both classical and quantum mechanics, zhe listing by the Estonian Academy of
Science of Ruggero Saniilli im their chart of famed mathematicians and
physicists since 1800 (Document D) for his first article of 1967 was very
appropriate indeed, because that particular article canm be historically
referred to as signaling the birth of the Lie-admissible genmeralizations
or both classical and quantum mechanics for open interior trajectories,
the complementary classical (19782) and quantum mechanics (1978d) Lie-
isotopic generalization ror closed nonhamiltonian systems being a mere
particular case

Nowadays, the terms “Santillis Lie-admissible formulztions™ are referred to a
rather vast body of methodological tools encompassing Lie-admissible generalizations
of classical and operator Hamiltonian mechanics, as well as symplectic and Riemannian
geometries, which we cannot possibly review in this Nomination in detail, but merely
indicate in the appendices of: this Part | for the classical Galilean profile, of Part II for
the relativistic profile, of Part III for the gravitational prorile, of Part IV for the
operator profile, and of Part V for the unified theories.

When inspecting the rather vast body of novel mat:hematlcal and physical
knowledge of this Nomination, the NOBEL COMMITTEE should therefore keep in
mind the following chain of mathematical formulations of increasing complexity
and methodological need

LIE LIE-ISOTOPIC LIE-ADMISSIBLE
C C (111.13)
FORMULATIONS FORMULATIONS FORMULATIONS

which represent systems of corresponding, progressively more complex
physical conditions

CLOSED CLOSED | OPEN
LOCAL C NONLOCAL C NONLOCAL 111.14)
HAMILTONIAN NONHAMILTONIAN NONHAMILTONIA

wifh related, progressively more general relativities
CONVENTIONAL SANTILLI'S SANTILLI'S

LIE C LIE-ISOTOPIC C LIE-ADMISSIBLE | (I11.15)
RELATVITIES RELATIVITIES RELATIVITIES
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SECTION 1V: OUTLINE OF SANTILLI'S LIE-
ISOTOPIC FORMULATIONS

1V:1: THE CENTRAL MATHEMATICAL IDEA.

The fundamental mathematical notion introduced by Santilli in his memoir (1978a)
is the generalization of the conventional trivial unit I of contemporary Lie’s
formulations into a quantity 1, called isofopic-umit (or 7isounit for short),
which, besides being nonsingular and Hermitean, has an arbitrary, nonlinear and
nonlocal dependence on all possible quantities and their derivatives (see, later
on, the examples of Sect. V.8),

1 =1,r,p,p, ... (1v.1)

Since Lie’s theory is insensitive to the topology of its unit, the above
generalization ensures the possibility of representing nonlocal interactions,
while achieving the desired mathematically simple and physically effective
nonlocal topology.

The generalization of the unit evidently requires a corresponding,
compatible generalization of the entire Lie's theory, including: the universal
enveloping associative algebras; the theory of Lie algebras; the theory of Lie
groups; the representation theory; etc.. In turn, such a generalized theory
requires a corresponding generalization of virtually all mathematical structures
of current use in physics, such as fields, vector spaces, metric spaces,
transformations, representations, geometries, etc., as established in the recent
comprehensive presentation for mathematicians (Santilli (1991a, b). No appraisal
of Santilli's physical discoveries is possible, without a knowledge of these novel
mathematical structures outlined below in this section.

The mathematical method underlying the generalization 1 = 1is an isotopy
in the Greek meaning of “preserving the configuration”, namely, a generalization
of a given mathematical structure which preserves the basic axioms. In fact, the
axioms of the trivial unit I of Lie’s theory are nonsingularity, Hermiticity and
positive-definiteness, which are preserved by the generalized unit 1.

Prior to releasing the memoir (1978a), Santilli therefore embarked in his
third3 and perhaps most time consuming search in the Cantabridgean libraries

3The first extensive library search was that recalled in Sect.III.3 from 1966 to 1968 to identify prior
references on the Lie-admissible algebras, and lead to the establishment of Albert (1948) as the first
contribution in the field (Santilli (1967), (1968)). The second extensive library search was that recalled in
Sect. I.2 from 1975 to 1978 to identify all the historical contributions on the integrability conditions for
the existence of a Lagrangian or a Hamiltonian, and lead to the establishing of Helmholtz (1887) as the
originator of the studies. We are here referring to the third extensive library search on prior
contributions on Santilli's isotopic generalization of Lie’s theory wich resulted to be fruitless because,
as today well known (see the comprehensive bibliography on nonassociative algebras by Balzer et al.
1984)), Santilli was the originator of this new mathematical theory. Numerous, additional, extensive
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for prior references on the isotopic generalization of Lie’s theory. This search
lasted from 1975 to 1978 and essentially resulted to be fruitless.

The oz7/y mathematical book that Santilli could identify at that time with a
mention of the notion of isotopy, was Bruck (1958), who points out that the notion
of isotopy dates back to the early stages of sez theory . Still as of today, we are
aware of no mathematical texbook (let alone physics textbook) that reviews the
notion of isotopy.

In regards to articles, the so/e use of the isotopy Santilli could identify
was in regard to certain nonassociative algebras (the so-called commutative
and noncommutative Jordan zlgebras ), as subsequently confirmed by the
comprehensive bibliography in nonassociative algebras by Baltzer et al. (1984).

These historical notes are here presented to the NOBEL COMMITTEE to
illustrate the fact that the name -“Zie-Sazntzilli theory~ in Kadeisvili (1991),
Aringazin et al (1992) and othersis fully sound indeed.

1V.2: SANTILLY'S ISOFIELDS.
Let F be a field of current use in physics, such as the field of real numbers R or
of complex numbers C, with elements a, B, ...., conventional sum, a + g, product ap,
and multiplicative unit given by the trivial element 1, 1 = a1 = a for V «a €F.

At his invited speech at the 1980 Clonrerence on Differentiazl Geometric
Methods in Mathematical Physics , held in Clhaustal, Germany, Santilli ((1980,
(1981), (1983a), (1985a)) introduced the notion of Zsos7e/d F as the structure

F={ald=al, aeF, 1=T1, (1V.2)

equipped with the conventional sum & + B = (@ + g) T and the isotopic product a*f
= aTB = (ap) 1, where T is a fixed quantity (generally outside the original field),
called the isotapic efement. Then 1 is the correct right and left multiplicative
unit of the isofield F because

al = a = a, vV & ef (Iv.3)

Santilli then proved that the abstract notion of /Zsorez/s (that is, the
isotope & = K1 of the field of real number ®) includes as particular cases all
fields used in physics, such as the reals, complex numbers and quaternions. In
fact, the field of complex numbers C with structure ¢ = a1 + g1, (@, p €® and 14 =

i), and the field of quaternions with structure Q = A1 + B1, + y1, + 815 (Where a, B,
Y, 8 €® and the 1,k = 1, 2, 3 are Pauli’s matrices), are isotopes of the field of real

library searches, that individually lasted for years, were also conducted by Santilli, such as: the fourth
extensive library search that lead to the establishment of Birkhoff (1927) as the discoverer of the
analytic equations underlying generalized Poisson brackets (Sect. 1V.8); the fifth extensive library search
to identify any preceding true generalization of Einstein’s special relativity indicated in the forthcoming
Part II; and a number of additional extensive searches outlined in the subsequent parts of this
Nonimation. It is a pleasure for these authors to bring to the attention of the NOBEL COMMITTEE the
beautiful historical value of these very time consuming searches conceived and conducted by Santilli
alone.



numbers with isounits T = 1 x 14 and1=1x 1, x 1,* 1, respectively.

To begin the illustration of the unifying power of Santilli’s isofields, the
NOBEL COMMITTEE should be aware that e ALwown quaterhionic
generalization of quantuill mechamnics I's an isotopy of quantum mechanics (see
Part IV).

It should be indicated from the outset that the /Zrtings # =% ¢ = C etc,
imply no alteration of the physical numbers or isotoprc theories, both classically
and quantum mechanically . This is due to the fact that the isomultiplication of
an isonumber & by any physical quantity Q coincides with the conventional
multiplication by an ordinary number, i.e.,, @*Q = aQ. As a result classical and
quantum “isoeigenvalues” coincide with ordinary eigenvalues.

1V.3: SANTILLI'S ISOSPACES.
Let M(x,gF) be an n-dimensional metric or pseudo-metric space of current use

in physics with local coordinates X, metric g, and composition x2 = xigij x),i,j=
1, 2, ..., n, over the field F . Well known examples of spaces used in physics are:

1) The 3-dimensional Zuclidean space E(r8R) with metric § = diag. (1,1,1)
over the reals %;

2) The (3+1)-dimensional Ainkowski space M(x;)R) with the metric 1 =
diag. (1,1,1,-1); and

3) The (3+1)-dimensional Aiemannian space R(X,gR) with symmetric
metric g = gix);

which are the fundamental carrier spaces of Galilei’'s relativity, Einstein’s
special relativity and Einstein’s general relativity, respectively.

In one of his most important papers written on the isotopic generalization
of Einstein’s special relativity (see Part II), Santilli (1983a) discovered the notion
of /sospaces as the generalized spaces M(x,g,F) which have the same
coordinates x of the original space M(x,gF), but are equipped with the
generalized metric g = Tg called Zsomelric , and are defined over the isofields

F=F1,1 = T}, with composition

A

x2 = (xi éij € x % .)x)i eF, (1v.4)

called Zsocompaosition .

The fundamental meaning of isospaces is to provide a geowmetrization or
interior physical media , via the direct representation of their
inhomogenenuity, anisotropy and other physical characteristics. In fact, as we
shall see in the physical review of Sect. V, the transition rrom a conventional
space to Its isotopic extension is a direct represemiative or the ransition rrou
motion i vaucuum Lo motioh within physical media .
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Santilli ((1983a), (1985a), (1991a)) therefore studied in details the isotopes of
spaces E(r8R), M(x,n®) and R(xg#) given by:

1) The isoeuclidean spaces ErsH), R=%K,1=T1 §="T( ¢ ¥, ..)5, ™=
> 0, which are the carrier spaces of Szu2L/I/l7s isogalilean relativities
(Sect.v);

2) The isominkowski spaces MxAR), & = 8,1 =T71, ) = T, X, ¥, ..)n, =T
> 0, which are the carrier spaces of Santilis special refativities (Part
11); and

3) The isoriemannizn spaces RixgH), & = /1, 1=TL § = T, %, &, ..)g®), T'=
T > 0, which are the carrier spaces of Sznzillis isogravitation (see Part
I11).

The NOBEL COMMITTEE should be aware of the unifying power of Santilli's
isospaces. In fact, by Keeping the nonsingularity and Hermiticity of the isounit,
and by relaxing the condition T > 0, the isoriemannian and isominkowski spaces
are particular cases of the isoeuclidean spaces of the same dimension.

This permitted Santilli to achieve a remarkable geometric unirication of alf
relativities ror the interior and the exterior problemr which will be outlined in
Part III via the reduction of all conceivable interior and exterior, linear and
nonlinear, local and nonlocal, Lagrangian and nonlagrangian, relativistic and
gravitational systems to only one abstract symmetry: Szatilli’s Poincareé-
isotopic syarmerry . In this Part 1 we can only outline the first step of this chain
of unified relativities.

In the same paper (1983a) Santilli showed that the isospaces are useful also
for conventional theories. In fact, the Minkowski space M(x,n,%) can be
interpreted as the isotope of the 4-dimensional Euclidean space M(xn#) »

Ex3HR), & = 21,1 =171 8 = ns. Similarly, the Riemannian space R(xg®) can be

interpreted as the isotope of the Euclidean space E(x3#), & =al,1=g1 § =
g(x)s, or as the isotope of the MinkowskKi space M(x,n,8), g(x) = T(x)y, T > 0.

These novel mathematical methods permitted e interpretation of
£instein’s exterior gravitation as an isotope of the special refativity as well as
the discovery of the global symmetry of gravitational theories which was only
locally known prior to Santilli's research (see Part III).

Finally, the NOBEL COMMITTEE should Keep in mind the fundamental role
of the isofields in the very definition of isospaces.

1V.4: SANTILLI'S ISOTRASFORMATIONS.

Conventional relativities are fundamentally dependent on the notion of /Znear
and local transformations X’ = A(W)X on a manifold M(xF). In fact, Galilei’s,
Lorentz’'s and Poincaré’s transformations are strictly linear and local

transformations, as well kKnown.
Another fundamental discovery by Santilli in the original, memoir (1978a) is
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that of isorranstormations

X = Awpx = AW) Tx, T = fixed, (1v.5)

subsequently formulated on an isomanifold M(x,f), F = Fi, 1= T L(santilli (1980),
(1983a), (1985a), (1991a)). The relevance of the above transformations is that they
verify all the conditions of linearity and locality in M(x,F), called isodnearizy
and Zsofocality . Nevertheless, when projected in the original manifold M(x,F),
they are intrinsically nonlinear and nonlocal, because of the nonlinear and
nonlocal dependence of the isotopic element T on all variables and their
derivatives

X = AWw) T(t,x, %, ..) X, (1v.8)

In turn, this notion is at the foundations of Santilli's construction of
nonlinear and nonlocal generalizations of conventional relativities for the
characterization of the most general known interior systems (I1.1).

The discovery of isolinearity and isolocality has far reaching mathematical
and physical implications which will predictably require considerable time for
their full development. Mathematically, the discovery implies that

All nonlinear and nonfocal systens can always be wiritten i an equivalent
Isofinear and isolocal roim.

In fact, given a nonlinear transformation x" = A(w, X) X, there always exists an
isotopic element T(x) and a linear transformation B, such that

X = A(W, X) X = NONLINEAR = BWw)*x = B(W)T(X) X = ISOLINEAR (IV.7)

and the same evidently occurs for isolocality.

But at the abstract level, isotransformations A*x and Ax coincide. Thus, the
notions of isolinearity and isolocality have permitted a new horizon for the
mathematical treatment of nonlinear and nonlocal systems via an isotopy of
conventional methods for linear and local systems.

Physically, the implications are equally far reaching in all branches of
physics, classically and quantum mechanically. In fact, classically, the discovery
implies that

The isotopies of a given finear and local theory characterize afl its
possible nonlimear and nonlocal generalizations.

To see the physical implications, we can note that ke /fistorical open
legacy of the ultimate (nonlinearity and) nonlocality of the strong interactions
Sect. [} becomes quantitatively treatable via Santilli’s isotopies of quantuni
mechanics . In fact, the classification of such isotopies implies the achievement
of all possible nonlinear and nonlocal generalizations of quantum mechanics
without altering its basic axioms (Part 1V).

In this Nomination we deal with classical systems. We can therefore say
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that the transition trom the treatmeint of closed, focal-difrerential, Hamiltonian
Spstems Lo their closed nonfocal and nonhamiltonian generalization {711} can be
quantitatively studred via Santillis isotopies of classical Hamiftonian mechanics
and of its underlying methodologies , as outlined in the remaining parts of this
section.

Almost needless to say, the generalization of the notion of transformation
implies that of representations, which we regrettably cannot review here for
brevity. We merely point out that in conventional Lie’s theory the underlying
vector space of a Lie algebra is a owne-sided module of the algebra, with the
action to the right being equivalent to that to the left from the antisymmetry of
the Lie product (see, e.g., Schafer {1966)).

In the transition to the covering Lie-isotopic theory, the above structure is
axiomatically preserved as it is the case for all isotopies, but it is nevertheless
realized in its most general possible, isolinear and isolocal form. This lead
Santilli‘'s (1979) to the further discovery of the /sorepresentations as
characterized by the most general possible modu/ar-isotopic action to the
right or to the left, further developed and applied in Santilli (1982a), (1989¢c), and in
the ICTP preprint (1991g).

The physical implications of Santilli's isotopies then become visible. In fact,
the transition from conventional, linear and local representations of Lie
algebras to Santilli's isolinear and isolocal isorepresentations of Lie-isotopic
algebras implies 2 wecessary generalization ol the notion of particle into that
or isgparticle (Sect. V.8) 4

1V.5: LIE-SANTILLI THEORY IN ABSTRACT REALIZATION.
As well known, Lie’s theory characterizes all contemporary, classical and
quantum mechanical structures. In particular, Lie's theory provides a direct
characterization of quantum mechanics when realized via matrices, and a direct
characterization of classical Hamiltonian mechanics when realized via functions
in phase space.

Santilli’'s original and most basic intuition during his graduate studies at the
Universita” di Toring Italy, was that

Any generalization or Lie algebras implies a consequential

4 The non triviality of the covering Lie-admissible ;xlgehras over the Lie-isotopic and conventional
Lie algebras can be seen at this point by noting that the Lie-admissible product is no longer totally
antisymmetric. This implies that the modular action to the right is no longer equivalent to that to the
left. This lead Santilli 1979) to the further discovery of the isvbirguresentativns, that is,the two-sided,
left and right, modular-isotopic representations of a Lie-admissible algebras, which is one of the most
complex concepts of contemporary mathematics whose technical development will require
mathematical studies well into the next century. Santilli (1989a), (199la) conceived one open-
nonconservative particle of the interior system as an Zsolvparficle , that is, as an isoparticle in
irreversible conditions with inequivalent motions forward (modular action to the right) and backward in
time (modular action to the left). In this way, Santilli represented a proton in the core of a star
undergoing gravitational collapse as an isobiparticle characterized by an isobirepresentation of a Lie-
admissible algebras, as one way to express the view that we are dealing with one of the most complex
physical conditions that can be conceived by our current lnowledge.
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generalization of classical and quantum mechanical
disciplines .

He therefore identified two sequential generalizations of Lie algebras, the
Lie-isotopic and Lie-admissible algebras, and showed that each of them admits
consistent generalizations of conventional classical and quantum mechanics
theories.

In this section we shall outline the idea of the abstract (e.g., matrix)
formulation of the Lie-isotopic theory, today called Lie-Santilli theory (see,
e.g., Aringazin et al (1992)), which constitutes the algebraic foundation of the
isotopic generalization of quantum mechanics reviewed in Part IV. The classical
realization of the Lie-Santilli theory will be outlined in the next section. The
more general classical realizations of the Lie-admissible theory will be outlined
later on in Appendix A.

The current formulation of Lie’s theory is centered in the trivial unit I =
diag.(1,1,...1). The generalization of the unit I into the nontrivial isounit 1 (Sect.
1V.1) then implies a necessary, consequential generalization of the entire theory,
as indicated earlier.

Let £(L) be the conventional wn/versal enveloping associative algebra of a
Lie algebra L (see, e.g., Jacobson (1962)) with elements A, B, ..., trivial associative
product AB, and left and right unit I, IA = Al = A for V A € &(L). Let L be an n-

dimensional Lie algebra with the (ordered) basis X = x'= Xy), k=1,2...,n In

memoir (1978a) Santilli discovered a generalization of the envelope E(L] into a
form §(L) admitting 1 as the generalized unit, which he called the ww/versal/
enveloping associative-isotopic for isoassociative) ajgebras , characterized by
the isotopic product

& A*B = ATB, T = fixed (1v.8)

under which 1 is indeed the correct right and left unit of the new theory, T*A =
Ad = A VA eiL)

Moreover, Santilli proved, in the same memoir (loc. cit.), that the celebrated
Poincare-Birkhotr-witt Theorem (see, e.g., Jacobson (loc. cit.)) admits a
consistent isotopic generalization for E(L), resulting in the new infinite-
dimensional basis

E 1 Xy XX {i =3, XXy (i=j=K),.. (1v.9)

More recently, Santilli (199la) proved that the notion of abstract isoenvelope
E(L) is capable of unifying the envelopes of all simple (nonexceptional) Lie
algebras of the same dimension in Cartan’s classification (see, e.g., Gilmore (1974)).
In essence, the conventional envelope £(L) characterizes only one Lie algebra L.
On the contrary, the isoenvelope E(L) in the same original basis X but with
infinitely many possible isotopic elements T, can recover via the attached

algebras [E(L)]all possible Lie algebras of the same dimensional of L.
Note that [E(L)]” » L, but that, in general, [E(L)]” » L # L, namaly, the Lie-
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isotopic algebra L attached to the isoenvelope E(L) is not necessarily isomorphic
to the original Lie algebra L.

The preservation of the original symbol L in the isoenvelope E(L) was
submitted since the original proposal (Santilli (1978a)) to stress the fact that the
original basis and parameters are preserved by the isotopies. This is the
technical foundation of the preservation of the conventional total conservation
laws for closed nonhamiltonian systems (I1.1).

Note also that the isotopy &[L) = EL) implies a nonlinear and nonlocal
generalization of the original structure.

Contemporary mathematics and physics are based on the simplest
conceivable Lie product, the familiar Lie product [AB] = [A,B]g = AB - BA
attached to the envelope £(L). Another historical discovery made by Santilli in
the same memoir (loc. cit.) was the Zsotopic generafization of Lie afgebras as

the algebras L. ~ [E(L))” now attached to the isoenvelopes (L) which are
characterized by the new product

L: [A,B]sg- = A*B - BxA = ATB - BTA, (1v.10)

originally called Lrse-isotopic product , and today called Lrse-santilli product
(see, e.g., Aringazin et al (loc. cit.).

It is easy to see that brackets (IV.10) do verify the Lie algebra axioms,
although in the generalized form

[ABl + [BAl =0, [A[BCll; + BICAll [CIABIg = 0 (1v.11)

In more recent studies, the notion of Lie-Santilli algebras was brought to its full
mathematical maturity, via its formulation on isofields I (Santilli (1989a), (1991a)).

In the original memoir (loc. cit), Santilli then proved the isotopic
generalizations of a number of conventional structural theorems of Lie's theory,
including the Zsotopic generalizatioh of Lies First, Second ahd Third Theorems .

One of the most intriguing applications of the Lie-isotopic algebra is the
unification of all possible compact and noncompact simple (nonexceptional) Lie
algebras of the same dimension in Cartan’s classification into one single,
abstract, Lie-Santilli algebra.

This unification was first illustrated in Santilli (1978a) where one can see
that the abstract rotational-isotopic algebra O(3) (see Sect. V.3) unifies all simple
three-dimensional Lie algebras, the algebras O(3) and O(2.1). In Santilli (1983a) and
(1989b), (1991d) one can see the unification of all simple six-dimensional Lie
algebras into the abstract isotope 0O(4), which includes as particular cases O(4),
the Lorentz algebra 0(3.1), and 0(2.2), as well as all their infinitely possible
nonlinear and nonlocal realizations.

The underlying idea is so simple to appear trivial. In conventional Lie’s
theory it is generally believed (in both mathematics and physics) that one given
basis uniquely identifies a Lie algebra (up to local isomorphisms). Thus, the
transition from the compact O(3) algebra to the noncompact O(2.1) algebra
requires a change of the basis. Santilli proved this belief to be erroneous
because based on the asszmption of the simplest conceivable Lie product “AB -
BA”. If, on the contrary, one assumes the more general product “ATB - BTA”,
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then the same basis can evidently characterize nonisomorphic algebras.

In fact, the unification of O(3) and 0(2.1) was illustrated in Santilli (1978a)
(see also (1985b) for technical details) via the use of the generators of O(3), the
components of the conventional angular momentum, with two essential isounits 1
= diag. (1,1,1), and 1 = diag. (1,1,-1), the former leading to O(3) and the latter
leading to 0(2.1).

Moreover, Santilli introduced, also for the first time, the generalized notion
of Lie-isotopic groups G, today called Lie-Szniilli groups .(Aringazin et al
(1992)) Let G be a connected, linear, Lie group with Lie algebra L and envelope
E(L). As well known, G is characterized by exponentials in (L), namely, by power
series expansions in the conventional associative envelope &, G = exp (iwX), w €

F,X'= X,

Consider now a Lie-Santilli algebra L. over an isofield F. The use of the
same exponential in £(L) is now prohibited because it would violate the
isolinearity condition. Santilli therefore introduced the realization of the
connected isotopic group G as the power series expansion, this time, in the
isoenvelope &(L), ie.,

G Aw) =1 + (wX) /1 + (wX)x(iwX) 720 + ...

- iWTX
= (e,gXTWl)“l = “I(ezlw ) (1v.12)

The conventional group laws were then generalized into the Zie-Santillr
group laws

AO) =1, AwprAWw) = AWpAWw) = Aw + w), AwrAC-w) = 1. (1vV.13)

Always in the same memoir (loc. cit.), Santilli proved that the basic
properties of Lie groups admit a consistent isotopic extension. As an illustration,
he proved that the celebrated Baker-Camphel/-Hausfortt Theorem (see, e.g.,
Gilmore (loc. cit)) admits a consistent isotopic image given by

Xy, Xp _ X
ey )(engz) &

X = Xy +Xp + [KyXolp /2 + [(Xg — X)Xy Xo), /12 (1.

In this way Santilli identified the foundations of a structural generalization
of every branch of Lie’s theory of fundamental mathematical and physical
relevance. In fact, all the generalized mathematical structures recalled earlier
now emerge as one single mathematical edifice (Santilli (1988b), (1991a)). As an
example, Lie-Santilli transformation groups can only be consistently defined on
an isospace over an isofield.

Needless to say, the contemporary Lie’s theory has reached an outstanding
maturity and diversification, as a results of hundred of thousands of
contributions by mathematicians and physicists for over one century. By
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comparison, the Lie-Santilli theory, being the result of only one individuals, is
at its fist infancy at this writing. Despite that, the NOBEL COMMITTEE should be
reassured that all the most essential parts of the new theory needed for
physical applications are fully available.

Following the original proposal Santilli (1978a), the generalized theory was
reviewed and expanded in the enclosed Vol. 11 of Santilli's Foundations or
Theoretical Mechanics (1982a), see page 148 and ff., and then further
elaborated in the recent mathematical presentation (Santilli (1991a) and
monograph (1991c).

Note that the Lie-Santilli groups are formally linear and local, but
structurally nonlinear and nonlocal as it is the case for the isotransformations
(Iv.5), and this illustrates the mathematical and physical nontriviality of the
generalized theory.

The above theory was constructed by Santilli as the foundations of a
generalization of quantum mechanics reviewed in Part IV.

IV.6: LIE-SANTILLI THEORY IN CLASSICAL REALIZATION.
Let E(r,8,%) be a conventional Euclidean space and T*E(r,5,%) the corresponding

cotangent bundle (phase space) with local coordinates a = (ab) = (r, p) = (Fkas
Pgah M = 1,2,..6N,k=1,2,3(=x,y,2),a=1,2,..,N. The central algebraic tool for

the characterization of potential-Hamiltonian systems (1.2) is then given by the
the classical realization of the Lie algebras via the familiar Poisson brackets
(I11.3) among generic functions A(a) and B(a) in phase space, i.e.,

aA 9B 9A aB oB dA
[AB] = otV = - , (1v.14)

daP daV or, . Pka Mga  Pka

where whV is the canonical Lie tensor (I11.2) The exponentiated form of brackets
(1v.14), say, for the case of n generators X; and parameters wj, characterizes the

classical realizations of connected Lie groups

Afa) = IO @) By 4y (1v.15)

with the discrete part being characterized by zzversions of the type Pr = - r.

In particular, the celebrated Lie’s (1893) First, Second and Third Theorems
provide a direct characterization of Lie algebras in their classical realization
(1v.14).

The NOBEL COMMITTEE should keep in mind that all fundamental space-
time symmetries of contemporary physics, such as Galilei's symmetry G(3.1) and
Poincare’ symmetries P(3.1), have precisely a structure of type (IV.14) and (1V.15).

In his memoir (1978a), Santilli discovered the following classical realization

5 No contribution by mathematicians or physicists has appeared in print to this day in the specific
study of the Lie-isotopic algebras, to our best knowledge.
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of the Lie-isotopic theory, that via the most general possible, classical and
regular, Lie product in phase space

L. O 9B
[A.B] = — oM(a) —-, (1V.16)
aal daV

where QM is the LZLie-isotopic tensor , expressible, for certain analytic and
geometric reasons recalled below, via the form

-1..V

oV = (| 3Rp - aBRa)I P (1v.17)

Santilli then introduced the following classical realization of the connected
isotopic groups

v
wiQ (@) (0,X;) 9,)
Aa) = {e | W'y afa). (IV.18)
with discrete components characterized by the isoinversions P*r =Pr=-r, P =
Pl

Another fundamental result of the same memoir is the discovery of the
Isotopic generalization of Lies First, Second and 7hird Theorems, and the proof
that they provide a direct characterization of the isotopic algebras in
realization (IV.16), and not of the conventional canonical form (IV.14).

The covering character of the Lie-Santilli theory over the canonical
formulation of Lie’s theory is evident. In fact, under the particular value R(a) =
R° = (pka> Oxa)) generalized Lie's tensor (IV.17) reduces to the canonical tensor

(111.2), and all conventional canonical formulations are recovered identically.

The above generalized classical theory was then used by Santilli, always in
his memoir (1978a), to outline the foundations of a generalization of Hamiltonian
mechanics which he called, for certain historical reasons, ZB/r&horrian
mechanics (see Sect. 1V.8).

In 1979 Santilli became a member of the Hepartment of Aathematics of
Harvard University as Coprincipal Investigator of the DOE contract ER-78-S-
02-4742.A000 with the known mathematician 8. Sternberg as Principal
Investigator.

In such a position, he studied his Birkhoffian mechanics in all the necessary
details and released his results in the enclosed monograph (1982a).

Significantly, Birkhoffian mechanics with its underlying Lie-Santilli theory
resulted to be “directly universal” for all possible nonlinear and nonhamiltonian
Newtonian systems, but on/y mn /ocal-dirferebntial approximation , owing to the
use of the conventional symplectic geometry as the background geometry (see
next section).

As a result of this limitation, and following the release of the monograph
(1982a), Santilli continued at the Department of Mathematics of Harvard
University the search for a suitable generalization permitting the direct
treatment of nonlocal-integral systems. The studies were then continued at the
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fnternationa! Centre ror Theoretical Physics of Trieste, Italy.

These studies were completed in the late 80's, and first published in the
memoirs Santilli (1988a, b, c, d) resulting in a new formulation of the Lie-Santilli
theory as the true classical counterpart of the abstract formulation. The studies
were also release in a series of ICTP preprints (1991), and were finally presented
in a comprehensive way in the recent mathematical papers (199la, b) and
monograph (1991c).

The latter additional discovery was achieved via the formulation of the

theory on the isospace T*E(r8,4), with 6Nx6N isounit i = 1(a, ..) = (Iaﬁ )= (IBa ),

and classical Hamilton-Santilli brackets (I11.6) here expressed in the more
general Birkhoff-Santilli form (see Sect. 1V.8 for details)

[A . B] o o)1 Vi) ® ( )
A Bl=—"gQ all “la) ——, 1v.19
aal a aaV

under certain integrability conditions indicated in the next section.

The exponentiation of structure (IV.19) follows the same pattern as above,
but it is now defined on an isospace and, as such, can only characterize
isotransformations, resulting in the classical realization of Lie-Santilli groups

e v
wiQ (@)1, (@) @,%;) 6,)
i o |aie' A
A) ={le W11 pata). (1v.20)
whose transformations can be explicitly computed in their finite form from the
sole knowkledge of the old generators and parameters, and of the new

quantities "V and 1.

The important point is the appearance, for the first time in mathematics
and physics, of the isounit 1 directly in the classical brackets of the theory. This
allowed the direct representation of mon/eca/ , as well as nonlinear and
nonhamiltonian forces via their embeding precisely in the isounit, without
requesting a new complicated topology (see Sect. 1V.8 for the computation of the
equations of motion).

It is evident that the Lie-isotopic groups are at the foundations of Santilli's
covering relativities in classical and quantum mechannics, of course, after their
formulation as symmetries of closed nonhamiltonian systems. But, before
reaching that stage, Santilli had to identify the underlying geometry and analytic
mechanics.

IV.7: SANTILLI'S SYMPLECTIC-ISOTOPIC GEOMETRY.

The symplectic geometry in canonical realization is the geometric structure of
Lie algebra in their classical realization. Consider again the cotangent bundle
T*E(r,8,8) with local coordinates in the unified notation a = (r, p) and the
cahonical one-form



6 =R, dal = py, dry,. R°=(p,0), (1v.21)
Then, the exact, symplectic, canonical two-form can be written

w =do = dat A da¥ = drp, A dpy,. (1v.22)

3 W)y
where ‘”uv = auR y - R mn is the covariant, canonical, symplectic tensor related

to the contravariant Lie tensor oMV of Eq. (I11.2) by the rules

Wy = (| woh | _1}uv (1V.23)

As is well known, canonical two-form (IV.22) is exact because w = d0, and
symplectic because dw = d(d8) = 0. In turn, the exact symplectic character of
two-form (IV.22) provides the necessary and sufficient conditions for the
corresponding Poisson brackets (IV.14) to be Lie (see, e.g., Abraham and Marsden
(1967)).

Moreover, under sufficient topological conditions herein ignored

(regularity and analyticity or at least class C*®), the local-differential, potential
system &, Eq.s (1.2) is a Hawiftomian vector-fie/d , namely, there exists a
function H(a), the Azwiltonian, such that

o] w=-dH, (1v.24

(see next section for the explicit form).

In his memoir (1978a), Santilli proved that the conventional symplectic
geometry in its most general possible exact form, is the geometry underlying the
classical, local—-differential realizations of Lie-Santilli algebras. Consider the
most general possible one-form on T*E(r,8,%)

® =R, (a) daM, (1v.25)

B

and introduce its exterior derivative

Q=00 =% szw(a) daPa daV, (1v.26)

which is therefore an exact two-form, where the tensor qu is assumed to be
nowhere degenerate with explicit form

Quyv = 3Ry ~ QR (1v.27)

Then, from the Poincare Lemma, dQ = d(d®) = 0, two-form (IV.25) becomes
the most general possible exact, symplectic two-form in local coordinates.

The symplectic character of two-form (IV.26) then provided the necessary
and sufficient conditions for the corresponding isotopic brackets (IV.16) to be
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Lie-Santilli (see the analytic, algebraic and geometric proofs in the enclosed Vol.
11 of Santilli's Feundations ofTheoretical Mechanics (1982a).

It is significant to recall that, in the same memoir (1978a), Santilli called two-
form (1V.26) an Zsofope of the canonical two-form (1V.22), in the sense that the
former preserves the basic axioms of the latter (nowhere degeneracy, exact
and symplectic characters), although expressed in their most general possible
local form.

This terminology was introduced to parallel the corresponding terminology
for the algebraic brackets (1V.16) and (IV.14), the former being called an Zisotope
of the latter, again, because the former preserves the basic axioms of the latter
(nondegeneracy and Lie character).

The topology of the conventional symplectic geometry is however local in
- character. Santilli therefore considered the most general possible nonlinear and
nonhamiltonian systems TI', Eq.s (1.3), in their local-differential approximation, and
achieved in the enclosed memoir (1982a) another remarkable result, Z#e proof
or thedirect universality of the comnventional syiplectic geomelly ror the most
general possible local-differential, but nonlinear and nonhamiltonian sysieus
(‘3.

In different terms, Santilli proved (under sufficient topological conditions)
that, whenever Hamiltonian condition (1V.24) is violated, there exists a general
exact two-form Q (or, equivalently, 6N functions Ru(a)) and a function B(t,a), he

called the Birkhortian (see next section), for any given nonhamiltonian system
I" of the class admitted, such that

rdqe=-dB (1v.28)

(“universality”), directly in the local a-frame of the experimenter (“direct
universality”). The nonhamiltonian vector-field i was then called by Santilli a
Birkhottian vector-rield .

The above direct universality of the conventional symplectic geometry in
Newtonian mechanics is an evident basic result of the enclosed monograph
(1982a), and illustrates the power of Santilli's isotopic techniques for specific
physical applications.

In order to achieve the “direct universality” for all possible systems (1.3) of
nonlocal-integral as well as nonhamiltonian type, Santilli discovered in memoir
(1988a) (see also (1988b) and (1991a, b)) a new geometry which he called the
symplectic-isotopic geoconmetry , and which is the full geometry underlying the
Lie-Santilli algebras (recall that the latter are naturally set for the
representation of nonlocal forces via their embedding in the isounit).

Evidently we cannot possibly review the new geometry here in the
necessary details. We merely indicate that it is formulated in the Zsocotangent
bundles T*E@E3R), & = /1,1 = T, with isozransrormations x' = Axx = ATX,
which require the necessary lifting of the conventional differentials da” and da
(those connected by the linear and local transformations da’ = Ada) into the
Isodifferentia/ls da’ and da connected by the isolinear and isolocal
transformations

da’ = Axda = AT(, a, a, ..) da. (1V.29)
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From the above notions he constructed the one-, two—, and p-isoforms,

v
vV = 1L 3.0 & 3P
u Ty dav, b, AWT ol pda% Adab, etc.  (IV.30)

d\)]. = A*aa = A
and proved that the new geometry verifies a generalized version of the
celebrated Posicare Lemma , namely, that a two-isoform ®, which is isoexact,

ie., admitting of a one-isoform &, such that &, = d&,, is isoclosed, dd, = 0.

He then proved in all the necessary technical details that the symplectic-
isotopic geometry is indeed the proper geometry underlying the classical Lie-
Santilli brackets (IV.20). We indicate here the main ‘lines for the simpler case of

the Hamilton-Santilli brackets (I1L6).
The starting point is the restriction of a general one-form to the structure

@ = R“a“f‘l“u dah = p;, 3l drys. R° = (p,0), Ty=diag. 5,8 >0, (1v.31)

where § is precisely the isometric of the isospace T*E(r,3 &) for one-isoforms,
often denoted with T*E(r.5,%).

Santilli then restricted the two-isoform ©° = d8° characterized by one-
isoform (IV.31) to possess a structure in which the canonical two-form w is
factorizable, i.e., a structure of the type

Q" = 346 = 1Ty, %a) uy, da A a2, (1v.32)
where
O3nxsn Ganxan
@) = (T % wgy) = (1V.33)
~GgnxaN O33N
and
a8K;
G = (Sl] * Pka JanxsN (1v.34)
apja

Then, the following major features result:

1) The simplectic-isotopic character of two-form (IV.32) provides the
necessary and sufricient conditions for the Hamilton-Santilli brackets (1113 to
be Lie-isotaprc, i.e., for brackets

. 3A way v aB
ABl = —uw — =
aat ¢ aa?



JdA aB B JA

= I - I . 1=671 (1V.35)
al‘ia apja al‘ia apja
to verify the axioms
[A;Bl+[B,Al=0, [A,[B;Cl+[B [c Al+I[C [A B] = o, (1v.36)

1) 7he symplectic-isotopic geometry can rully represent nonlocal-

ntegral rorces, provided that they are totally embedded in the isotopic element
Ty or T,. In fact, the conventional local-differential topology of the symplectic

geometry remains fully valid, because of the factorization of the canonical two-
form w, while the geometry is insensitive to the topology of the isotopic element
because at the abstract, coordinate-free level all distinctions between the
conventional p-forms and p-isoforms (conventional symplectic and symplectic-
isotopic geometry) cease to exist by construction.

1) The isometrics of two-Isorforms (at is, of the algebraic brackets ol the
theory) are different than the Iisometrics of onhe-isoforus (that is of the
Integrand of variational principles, see also next section/ . In the conventional
case the metric is constant, 8§ = diag. (1,1,1) and therefore applies for both one-
and two-forms. As a result, there iS no change of metric in the transition from a
variational principle to the analytic equations and underlying algebraic
brackets.

In the Santilli's covering geometry the situation is different. In fact, in the
transition from one-isoform (IV.31) to two-isoforms (IV.32), we have the
transition from the original isometric § of T*E,(r,8.8), to the new isometric G, Eq.s

(IV.34). The isocotangent bundle for two-isoforms is therefore different than
that of one iso-forms and denoted with T*E,(r.8.8) = T*E(.G.R).

This implies that the isospaces for Lie-isotopic analytic equations and
symmetries are T*E(r,G,#) and not T*E(r,8,&). Needless to say, when the
iosometrics § are constants, § = G and T*E(r,3%) = T*E{r.G R).

The knowledge of the transition from the isometric of one-isoforms to that
of two-isoforms is a fundamental point for the understanding of Santilli’s
generalized symmetries for nonlinear, nonlocal and nonhamiltonian systems (1.3)
or (I1.1).

Santilli also worked out the most general possible case of the symplectic-
isotopic geometry which is that characterized by the exact two-isoform®

Q = 86 = 1Ty, %a) Qqpla) dah A 82, (1v.37)

namely, by two-isoform with the factorization of the most general possible
nowhere degenerate and exact symplectic tensor Qau(a)-

% From now on, the symbols 8° and £° shall denote one-and two-isoforms with the factorization of the
canonical forms, while the symbols & and Q shall denote the most general possible one- and two-

isoforms, respectively.
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To complete his geometrical studies, Santilli proved (1989a) that z#e
symplectic-isolopic geomelry in the above general rorn, achieves “direct
antversality™ ror all, most general possible, nonfinear, nonlocal and
nanhamiltonian systems (£.3. In fact, he proved that, under the necessary
topological conditions indicated earlier, for any given nonhamiltonian and
nonlocal vector-field T' of Eq.s (1.3) on T*E(r,8,A), there always exist: 1) 6N

functions Ru(a) (or a general symplectic tensor Q'w(a)), 2) a isounit 1 = diag. (G 1,

G71), and 3) a Birkhoffian function B(t, a), such that

rfo-=-a (1v.38)

(see next section for explicit expressions).

These far reaching discoveries should constitute, per sé, sufficient grounds
for the Nomination of Prof. Santilli for the NOBEL PRIZE IN PHYSICS OF 1992
Nevertheless, they constitute the mere geometric background of the true
reason for this Nomination, the classical generalizations of Galilei’s relativity

(Sect. V).

IV.3: BIRKHOFF-SANTILLI AND HAMILTON-SANTILLI MECHANICS.

As clearly expressed in the original presentations (1978a) and (1988a), Santilli
addressed the physical issue of the analytic representation of local nonhamiltonian,
and nonlocal nonhamiltonian systems, respectively, only z7zer having discovered

the underlying new algebras and geometries.
The same original approach to analytic mechanics, which is the sole capable of

ensuring mathematical consistency, has been followed in thiS presentation as close
as possible.

Recall that conventional Hamiltonian mechanics is based on the canonical
variational principle in phase space T*E(r,5 %) with local coordinates a = (aM) = (r, p) =
(rka- Pxa) (s€€, €.g., Sudarshan and Mukunda (1974)),

t t
SA = s_[ 2[Pkai'ka - H(t,r,p)ldt = sf 2[R° aM - H(ta) dt =0, (1v.39)
ty ty "
where R° = (p, 0), which characterizes the conventional, truncated Hamilton's
equations , without external terms in their covariant form

w,..,aY = aH / daV, : (1v.40)

b
from which the contravariant form follow
at = oMV aH / 8aV (1v.41)

with Aaumilton-/acobi equations



A + H =0, 8 A =FR . (1v.42)

Hamiltonian vector-field (IV.24) can then be written explicitly (see, e.g., Abraham
and Marsden (1967))

TR ~ d ‘ v dH ¢
w,, & da’ = -dH, or ¢ = ¢f — = gtV ——, (1V.43)

aal 9aY aal

Another discovery made by Santilli in his memoir (1978a) is the construction of a
step~by-step generalization of Hamiltonian mechanics into a form which he called
Birkhorrian mechanics for historical reasons indicated below. As a matter of fact,
he introduced the generalized, algebraic and geometric theories outlined in the
preceding sections precisely for the purpose of constructing the generalized
mechanics.

The mechanics was further studied in all the necessary details while at the
Department or Mathematics of Harvard Umiversity , and published in Volume 11 of
Santilli's Foundations ot Theoretical AMechanics with the subtitle Birkhorrian
Generalization of Hauiltoman Mechanics .

Again, as it had been the case for all other discoveries (such as those of the
Lie—admissible algebras, the conditions of variational selfadjointness, and the Lie-
isotopic algebras), Santilli first identified the generalization of Hamiltonian mechanics
needed for the interior problem, and then conducted his sourtr extensive library

search (see Footnote:", page 28) to identify preceding contributions. In this way, he
discovered that G.D.Birkhoff (1927)7 had previously identified the basic equations of
the mechanics, although without the identification of their algebraic and geometric
structures. Also, Birkhoff had applied his equations to typical aspects of the exterior
problem, such as the stability of the planetary orbits.

Birkhoff’s (1927) studies went essentially un-noticed for over half a century,
until rediscovered by Santilli (1978a) who:

A) proved the “direct universality” of Birkhoff’s equations for all nonlinear and
nonhamiltonian interior systems in local approximation;

B) identified the algebraic and geometric structures of the equations as being
those of his Lie-isotopic algebras and of the conventional symplectic geometry in its
most general possible exact formulation; and

C) used the equations for a step-by-step generalization of Hamiltonian
mechanics which had not beed considered by Birkhoff.

To outline the enclosed monograph in a few words, Birkhoffian mechanics can
be constructed from the most general possible, first-order, Pfaffian variational
principle

7 The initiator of “Birkhoffian mechanics”, G.D.Birkhoff, was the father of G.Birkhoff, the former
colleague of Santilli at Harvard and co-author of the Poincare-Birkhoff-Witt Theorem of Sect. IV.5.
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t
5A = sft Ryt 4* - B(t,alldt = o, (1V.44)
1

(here presented for simplicity in the so-called semiautonomous form with R = R(a)
and B = B(t,a)), where the function B was called by Santilli the Zirekfroffian because
it does not necessarily represent the total energy H =T + V.

Principle (1V.44) characterizes the comtravarrant Birkhofr's equations

Qpfa) a¥ = aB(t, a) / sal Qy = Ry ~ Ry, (1V.45)
with contravariant form
at = oWV(a) 8B(t, a) / 92’ oM o= {] (szaB)|‘1 P, (1v.46)
while Hamilton-Jacobi equations (IV.42) assume the generalized expression
a,A + Bta) = 0, A = R, (1v.47)

The connection with the preceding algebraic and geometric studies is given by
the fact that the brackets of the time evolution characterized by Birkhoff's equations
(Iv.46) are given precisely by the Lie-isotopic brackets (IV.16), ie.,

) dA 9B
[A B] = — oVi@) —, (1v.48)
aat daV

while the underlying geometric structure is precisely the general, exact two form
(1v.26), i.e.,

Q=de = mw(a) daPA daV, (1v.49)

which illustrates the algebraic and geometric characters of Birkhoff’s equations
recalled earlier.

By using these techniques, he then proved the analytic counterpart of the “direct
universality of the symplectic geometry for local nonhamiltonian system,s indicated
earlier. in fact, he proved that, under sufficient topological conditions, for any
nonhamiltonian vector-field T', there always exist 6N functions Ru(a) and a Birkhoffian

B(t.a), such that the following equations
(0yRy — 8Ry) TVita) = 8B(t,a)/8a", or @, Mda¥=-dB  (1v.50)

hold identically.

Santilli then identified numerous methods for the construction of the above
Birkhoffian representation from given equations of motion (I.3), and studied in detail
their degrees of freedom, e.g., the so-called Birkhoffian gauge transformations

Ry (@) = R’u(a) = Ru(a) +9G / aal, B(t,a) = Bt, a) = B(t, a) = 8G / at, (IV.51)
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which evidently leave invariant principle (IV.44).

A step-by-step generalization of Hamiltonian mechanics was then presented,
including a generalized transformation theory, generalized symmetries and
conservation laws, etc.

Note that the new mechanics is a “covering” of the Hamiltonian mechanics, in
the sense that:

1) The new mechanics is constructed via mathematical tools (Lie-Santilli theory)
structurally more general than those of the conventional mechanics (Lie’s theory in
the simplest possible, canonical formulation);

2) The new mechanics represents physical systems (the local, but most general
possible nonlinear and nonhamiltonian systems) structurally more general than those
of the conventional ones (conservative-potential systems); and

3) The new mechanics admits the old mechanics as a particular case. In fact, for
R = R° = (p, 0) all conventional Hamiltonian formulations are recovered identically.

Despite these achievements, Santilli remained unsatisfied and continued his
studies to reach a still more general formulation of Birkhoffian mechanics capable of
achieving “direct universality” for the most general systems known to mankind today,
the nonlocal, as well as nonlinear and nonhamiltonian interior systems.

This further advancement was reached for the first time in the memoir Santilli
(1989a); it was then reviewed and expanded for mathematicians in Santilli (1991a); and
finally presented in a comprehensive way in the monographs Santilli (1991c, d).

The central starting point is the reformulation of Birkhoffian mechanics in the
isophase space T*E(r5#) with the local coordinates a = (r, p). This implies the
generalization of the trivial six—dimensional unit of the conventional phase space, I =
diag. (1, 1, ..., 1), into Santilli’s isounit i = 1(t, a, 4, ..) which, in turn, implies the necessary
lifting of the conventional linear and local transformation theory into the isolinear
and isolocal form of Sect. IV.4.

The emerging generalization of the Birkhoffian mechanics was called by Santilli
the Birkhortian-isotopic mechanics , and it is now known as Birkhorr-Santilli
mechanics  (Aringazin et al (1992)) Its general form is rather complex for the
rudimentary nature of this review. We shall therefore outline here its simplest
possible realization, that called AHzuwilton-Santilli mechanics.

The latter mechanics is based on the following form of Pfaffian variational
principle

§A° —s_r [R° T1 a¥ - Ht,a)]dt = o, (1v.52)
where the integrand characterizes a one-isoform (IV.31), i.e.,

®; = rxda = r°, /M) da. (1V.53)

17



The above variational principle characterizes the following equations, called
the convariant Hamilton-Santilli equations

Ty, % 00,,, 2V = dH(t,a) / dal, (1v.54)

p Wop 2

with cowmtrayvariant Hanilton-Santilfi roror

o
At = 1p,Y 9 HL2) / 8, (1V.55)

where, from Eq.s (IV.33) and (IV.34)

2 oV N N N

Ognx6N (L)gnxeN

1l

(1V.56)

~enxen  OpnxoN
and the quantities I, = ¢! are computed from the integrand of the variational

principle via rukles (IV.34).
Eq.s (IV.55) can be written in the disjoint r- and p—coordinates

oH(t, r, p)
rl = 12 ij(r’ p’_) _ (Iv.57a)
dH(t,r, p)
pi = - Iy i]-(r, p) — , (1V.57b)
or;

1

The NOBEL COMMITTEE can see in this way that the Hamilton-Santilli
mechanics has indeed the structure of the symplectic-isotopic geometry.
The algebraic structure is evidently that of the Lie-isotopic brackets (IIL3), ie.,

. A p 3B
[A]B] = — ¥, fa,) — (1v.58)
aah aaY
which can also be written in the disjoint r— and p—form
| dA : aB B ( \ dA ( )
[A B] = — Iyicp,.) — - —— Iyrp,.) —- 1V.59
) l] L) ok 21] D) o} »

which exhibit rather clearly the generalized structure over the conventional Poisson
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brackets.
The analytic representation of nonlocal nonhamiltonian vectort-fields I' (1.3]
then follows according to the rules

A

a | - = axy v 4
T Ve = oH /0a*, or TH = W7,V aH/ 8aV. (1V.60)

One can now see the importance of the symplectic-isotopic geometry in the

representation of nonlocal systems (1.3). In fact, the Hamiltonian H = H(t, a) = H(t, r, p)
= T(p) + V() represent all conventional potential forces, while the isounit 1
represents all nonlocal and nonhamiltonian forces (see Sect. V for examples).

In conclusion, the conventional Hamiltonian mechanics is based on the
knowledge of only one function, the Hamiltonian H = T + V, and can therefore
represent only local-potential forces (as well as a very limited class of local
nonpotential forces, see Santilli (1978b)).

The Hamilton-Santili mechanics is based instead on two quantities, the
conventional Hamiltonian H = T(p) + V(r), plus the isounit i(t, r, p, ...) = diag. (15, Ip). As

such, it can represent not only all conventional potential forces, but also a large
class of nonlinear, nonlocal and nonhamiltonian forces.

The direct universality is achieved for the more general Birkhoff-Santilli case
in which, besides the Birkhoffian B(t, a) and the isounit i(t, a, &, ...), one has available
the 6N additional functions Ru(a).

A few comments on the operator counterpart of Santilli's Lie-isotopic
formulations are presented in Fig IV.1, as an advance outline of the more detailed
treatment scheduled for Part IV.

1V.9: SANTILLI'S ISOSYMMETRIES AND CONSERVATION LAWS.

In our outline of Santilli's journey of discoveries, we have reviewed until now the
background new tools, such as the notions of isofields, isospaces and
isotransformations, and then the isotopies of Lie’s theory, symplectic geometry and
analytic mechanics.

All these discoveries were used by Santilli for a final central notion needed for
the construction of the generalized relativities, tze spmwmetries of interior
dynamical systenrs at large, and or closed nonkamiltonian systews, i particular
(Sect. 11.2), which he called /Zsospmmetries to stress the point that they must be
defined on an isospace and possess an isotopic algebraic structure.

Santilli's contributions in this field are rather numerous (See his curriculum). We
can therefore indicate here only the most salient ones.

The generalization of the conventional Noether’s theorem was first achieved in
the enclosed monograph (Santiilli (1982a)) for the case of the most general possible
nonlinear and nonhamiltonian interior systems, although in local approximation.

The generalized symmetries for nonlinear, nonlocal and nonhamiltonian systems
were achieved in the subsequent paper Santilli (1985a), then applied to the
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construction of the generalized rotational symmetry (1985h), the generalized Lorentz

HAMILTONIAN HAMILTON-SANTILLI |
isotopy
MECHANICS MECHANICS
quantization hadronization
QUANTUM HADRONIC
isotopy
MECHANICS » MECHANICS

FIGURE IV.1: A schematic view of the deep inter-relation between Santilli's classical and
operator formulations, the latter being outlined in more details in the forthcoming Part IV. The
advance information that may be useful to the NOBEL COMMITTEE is that ke rery existence
of the Hamidlton-Santilk genaralization of Hamiltonian mechanics implies the existence of a
corresponding operator genersalization of quantan meckanics of which it is the classical
limit. Also, the methods wsed for the construction of the classical gerneralization can alsv be
used for the construction of the operator image . In essence, the Hamilton-Santilli mechanics
is constructed via the isotopies of the conventional analytic, algebraic and geometric
structures. In particular, the isotopies are such that all distinctions between Hamiltonian and
Hamilton-Santilli mechanics cease to exist at the abstract realization-free level. The first
aspect the NOBEL COMMITTEE should know for an appraisal of the classical profile is that a
fully similar occurrence emerges at the operator level. In fact, in another pioneering memoir
(1978d) (see also the comprehensive presentations (1989a, b, c, d))) Santilli proposed the
construction of the “hadronic generalization of quantum mechsanics, or ‘“hadronic
mechanics” for short, as an isotope of quantum mechanics, and provided the fundamental
Lie-isotopic generalization of Heisenberg's equations (see below in this footnote).

In essence, quantum mechanics is characterized by

1) The enveloping associative operator algebra §{ with elements A, B, ..and trivial associative
product AB (say, of matrices) and unit I ;

2) The field F of real numbers R or of complex numbers C; and

3) The Hilbert space JC with states | ¢ > and inner product <¢ | > € F,

from which the entire theory follows, such as Heisenberg’s equations iA = [A’H]E =AH-HA b =
1, Schrédinger's equation i3] § > = H ¢ > = K| >, K € F, the linear (and local) operations on I,

the unitary transformatio theory, etc.

Thanks to the contributions of several independent scientists besides Santilli's origination (see
Part IV for their full identification and bibliography), in today’s language we can say that
hadronic mechanics is based on the isotopy of the above structures, that is:

1) The isoassociative operator algebra ¢ of Sect. 1V.5 with isounit T and isotopic product A+B =
ATB,i=1t= T1>¢

%) The isofield f of isoreals numbers ® or of isocomplex numbers €; and
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3) The isohilbert space ¥ with isoinner product <¢ [4 > =< ¢ [T ¢ >1 € F;

from which the entire new operator mechanics can be built, including Santilli’s isoheisenberg's
equations iA = [AH}; = A+H - H*A = ATH - HTA, the isoschrodinger's equation id 4 > = H{ § >
=R ¢ >=K ¢ > R e F, K € F, (derived by Mignani, Myung and Santilli) the isolinear and
isolocal operations on i, the isounitary transformation theory, etc. (see Part 1V for details). In
particular, the isohermiciticy coincides with the conventional Hermicicity, as a result of which
observables H = Ht of quantum mechanics remain observable for hadronic mechanics. Note
that hadronic and quantum mechanics coincide at the abstract, realization-free level by
construction, exactly as it occurs at the classical level. In fact, under the assumed positive
definiteness T > 0, the isotopes ¥ remain associative, the isotopes F remain fields and the
isotopes 3 remain Hilbert spaces.

Moreover, hadronic mechanics can be obtained via an isotopy of the conventional methods of
quantization called kadromization . In fact, under the (naive) quantization of the canonical
action A = i I logy, where I is the trivial unit, the Hamilton-Jacobi equations 3;A + H = 0
becomes i 3, ¢ + Hy = 0, which is precisely Schridinger's equation. Along exactly the same

1 is now the

lines, under the hadronization of Santilli‘s isotopic action A = i1 logys, where T = T~
isounit, the equation of the Hamilton-Santilli mechanics '()t& + H = 0 become i 33y + Hep = idp
+ HT¢$ = 0, which is precisely the isoschrodinger's equation of hadronic mechanics. Thus,
hadronic mechanics is indeed the operator image of the Hamilton-Santilli classical mechanics

and, viceversa, the latter is the classical limit of the former.

In summary:

a) Quantum mechanics can only represent particles as being point-like with action-at-a-
distance, potential forces, as well known from its mathematical structure. On the contrary,
hadronic mechanics can directly represent all conventional potential forces via the
Hamiltonian H plus nonlinerar and nonlocal forces in all variables as well weavefunctions
AND their derivatives via the appropriate selection of the isotopic element, T = Tt = T (¢, p, ¥,
‘l’Ta N‘, Nﬂ', )’

b) Hadronic mechanics is fully consistent on mathematical grounds at this writing, although in
need of experimental verification;

c) The additionnal nonlinear, nonlocal and nonhamiltonian interactions represented by hadronic
mechnics are strictly short range and internal, as expected fronm the overlapping of their
wavepackets (Sect. 1) and, as such, not detectable from the outside. Thus, to our best
knowledge, no experimental information is currently available to disprove hadronic mechanics,
and the issue of its validity or invalidity must be resolved via direct experimental
verificvations of its novel predictions in particle physics, such as that of the deformability of
the extended charge distributions of hadrons, with their consequential alteration of their
intrinsic magnetic moment, and others intriguing predictions (see again Part IV).

In conclusion, the operator image of the entire content of this Part I has already been identified
in the literature, and will be outlined in Part IV, including the operator image of: closed
nonhamiltonian systems, isosymmetries and conservation laws, isogalilean symmetries,
Santilli's isogalilean relativity, etc.

symmetry (1983a) 8. A comprehensive study of the nonlocal case first appeared in

8 The papers Santilli (1985a, b) on the general methodology for isosymmetries and its application to
isorotations were evidently written prior to paper (1983a) on the isotopic generalization of the Lorentz
symmetry, but they appeared in print two years later because of truly increedible difficultiers in their
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the memoirs (1989a); it was rewritten for mathematicians in the recent paper Santilli
(1991a); and finally presented for the physical audience in monograph (1991c).

Again, we cannot possibly review this extensive reseach, but only indicate a
few salient aspects. The first result to bring to the attention of the NOBEL
COMMITTEE is the following

THEOREM V.91 (SANTILLIS FUNPAMENTAL THEORERS ON [SOSVIHMETRIES
79s5all  Let G, be an r-ormensional Lie group or isometries of an n-

dimensional metric or pseudometric space Mx.gF/ over the field of real
numbers & complex numbers C or quaternions ¢,

Gp x' = x'Alw), x = AW x (Iv.61a)

[x -y ATl g [Aw) x - )] = x-y) g (&x - y). (IV.61b)
Alga = agal =gl (1V.61c)

det A = *1. (1v.61d)

Then, the mfnitely possible isotopes 6?1 of G, characterized by the same
parameters and generators of G, and the inrinitely possible, nowhere

singular, Hermitean and sufriciently smooth isounits 1 = 77 Jeave invariant
the isocomposition (Y’Z’g}?i of the isotopic spaces Mgt £ = Tg, £ = Fl 7
6, = x' = x'Aw) = x'TA'w), x = AWhx = AWITX, (1V.62a)

t ety ~ 2 T o
[x-y)«A] &g [Adx-y)] = -y g&x-y), - (1V.62b)

it s _iast =gl

AgA=AgA , (1v.62c)
Det (Ag) = detB = *1. (1v.624)

The following comments are in order:

1) Each given isometry Gr admits an infinite number of different isotopes Gr

characterized by infinitely possible, different isounits which, from a physical
viewpoint, represent infinitely possible interior physical media.

2) Each of the infinite isotopes can be explicitly computed, from expansions
(Iv.20), via the knowledge of the old isometry G(m) and of the isotopic element T.

publication, Santilli felt obliged to formally report in paper (1985a), p. 26.
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3) Even though the mathematical formulation can be unified for all possible
isotopes G(m), the explicit form of the isotransformations is different for different
isounits 1 (see later on).

4) As indicated earlier, the isotransformations are generally nonlinear and
nonlocal, because of the dependence of T.

6) All isotopes Gr are coverings groups of the original isometry G, under the

sole condition that the old metric g is admitted as a particular case (or the isotopic
element T admits the trivial unit I as a particular case).

7) All Lie algebras admit the following zr7via/ isotopy Xp = )“(k = in, under
which

]

G.,r: [XI‘ , XS lz

=% - 1 = ty )i = ts
=Xk - XX = X ,xS]‘ I = (Crg- XPT = Cpgv X,

£
(1V.63)

The above isotopies are exc/uded from the above theorem because they do not
produce the invariance of the new isoseparation;

8) The dimension m of the original isometries G, is preserved by all infinitely
possible isotopic isometries Gr- In particular, the condition for closure of Gr are
reducible to those for G,.

9) The isotopic isometries Gr are generally nonisomorphic to the original
symmetry G,. However, as we shall see in the subsequent section, all infinitely
possible isotopes Gr can be restricted to be locally isomorphic to the original
isometry G(m) under the sole condition of positive- (or negative-) definiteness of the
isotopic element T.

To understand the physical relevance of Theorem IV.9.1, one should be aware
that all isotopic generalizations of Galilei's relativity, of Einstein’s special relativity
and of Einstein’s general relativity are particular applications of Theorem 1V.9.1

Next, we indicate the following

THEOREM V.92 (BIRKHOFFIAN NOETHER'S THEOREM (Santilli (1952af- I
BIrkfiolr's equations aduit a syuunelry vihder an r-dimensional, connected Lie
group G,. of inrinitesimal transroriations

G..:

s b = b =Db+ sb = M+ wldhb)

t + wipilt, a)

= (1v.64)
at + wlyht, a)
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then there exist r first integrals ¥; () of the equations of motion which are
conserved along an actval path £
d

namely, there exist r linear combinations of Birkholr's equations whicl are
exact dirterentials along £, ie,

d

- %) = &, b) bY ¥y, (1v.66)
dt
given explicritdy by
= Ryt a) Wit a) - B{t, a) plt,a) + Gijlt, a). (1V.67)

Note that the “new time” t" in Birkhoffian mechanics is a function of the old time
t as well as of the coordinates r and momenta p, t = t (t, r, p).. This property is
important to understand the isotranslations in time of the new relativities presented
in the next csection.

Intriguingly, this property is typical of relativistic formulations. The Birkhoffian
mechanics then achieves a form of symmetric behaviour of time for both
nonrelativistic and relativistic formulations.

Note that the symmetry Gy of Theorem 1V.9.2 is a comventional Lie syummerry
defined on a conmventional space.

Considers the Birkhoff-Santilli representation of systems (1.3) on a on isospace
T*E(r,G.®) from the preceding section, i.e.,

dBI(t, a)
@r¥ta) = \ (1V.68)
aalt

s

Ty

04
@) Qg

where qu is the symplectic tensor and 'T‘2 = diag. (G, G) isthe isotopic element of
T*E(r,G.R).
An r-dimensional symmetry of Birkhoff-isotopic equations (IV.68) is an

Isosymmerry” Gr when it is defined on isospaces T*E(r,G.#) and admits infinitesimal
transformations of the Lie-isotopic type

aX;

at = al + wloh@) 1, —-, (1V.69)
aaV

where Ty = 'T‘z_l is the isounit of the isospace, the w's are the parameter and the X's
are the generators of Gr, with Jsocommuviation rules
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) X, . T
[X. Xl = e Qht lza"a—;— = Cpqfa) X, (1v.70)
a a

where the {’s are the so-called structure functions of the Lie-Santilli algebra (Santilli
1978a), (1982a))

It is easy to see that a zecessary condition for transformations a = a’ to be a
symmetry of Birkhoff-Santilli equations is that they have a isotopic structure. This
renders nzecessary the use of the Lie—Santilli theory for the study of isosymmetries
and their first integrals.

THEORERM [¥.83 (INTEGRABILITY CONDITIONMHS FOR THE EXISTENCE OF AN
ISOSYMMETRY (Santilli (1952a), (1955#), (199/2)) Necessary and sufficient
conditions ror a smoothness and regularity preserving transrormation (1V.69 to
be an isosymmetry of the Birkhofr-isotopic equations (IV.68) Is that they Jeave
the Birkotfian mvariani, i.e,

B(a) = B@) + w;[X;.Bl = Bla), (8.86)
which camn hold itt the Birkfioffian B isocommutes with all generators X ie,

[X;,Bl =0, i=1,2,..,r. (8.87)

The Hamilton-Santilli subcase is simpler and readily usable in practical cases.
Consider a closed Hamiltonian system of N particles and let G, be its symmetry with

generato.rs Xk and parameters Wk

wh (9,%) @

Gy Afa) = {e'k u)}A(a). (1v.88)

Suppose now that the system is generalized into a closed nonhamiltonian form (I1.2).
The construction of the isotope Gr of G, leaving invariant the new system can be

achieved via the following steps (Santilli (1988a), (1991d)):

1) Construct an analytic representation of the system in terms of the Pfaffian
principle (1V.52) on T*E(r 8, R) via the use of any of the techniques of the enclosed Vol
11 of Santilli's Foundations or Theoretical Mechanics (1982a);

2) Construct the contravariant Hamilton-Santilli equations (IV.55) from principle
(1v.52), by making sure that the isounit T (or isotopic element T,) verifies the

conditions for the underlying brackets to be Lie-isotopic (the underlying two-
isoform to be simpletic-isotopic). This essentially implies that the symmetries of the
system are now studied in the new isospace T*E,(r88) = T*r,G#R) , where G is given

by Eq.s (1V.34),



3) The isotope G, of G, is given by structure

wy ol TpoM®) 3 %) @

a

Ge Al) = {[e ”) ] 1}xA(a)

1, B
. Wy wlo I2(Z (a) (avXk) (au) } A(a). (lV.Sg)

and it is an invariant of system (I1.2) when H is an isoscalar on T*E(r,G.R), i.e., has the
form

H = p,Glirp, p,.) Py, / 2ma * Vi), (1V.90a)

= e | F R
Tab I(ria ri,) G (t‘] r]b)l : (1v.90b)
(see next section for examples).

We have completed in this way our review of the network of Santilli’s
discoveries which do indeed provide the methodological tools for constructing the

most general possible nonlinear and nonlocal space-time symmetries for the interior
dynamical problem and, therefore, for constructing new relativities.
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SECTION V:SANTILLI'S LIE-ISOTOPIC GENERA-
LIZATIONS OF GALILEI'S RELATI-
VITY IN CLASSICAL MECHANICS

V.1: STATEMENT OF THE PROBLEM.

The exact validity of the conventional Galilei’s relativity for the exterior dynamical
problem, such as for the form-invariant characterization of the stability of the
planetary orbits, has been recalled in the introductory words as being assumed at
the foundations of Santilli's studies.

However, the insistence in the exact validity of the same relativity for the
interior dynamical problem implies a number of inconsistencies of mathematical,
physical and <pistemological nature also recalled in Sect. I, including the direct
acceptance of the perpetual motion in a physical environment, without any possibility
of compromise because of the Theorems preventing the reduction of actual interior
systems to idealistic exterior conditions (Sect. I).

Santilli therefore embarked in his most demanding and successful task: use the
generalized mathematical structures outlined in the preceding section for the
construction of suitable generalizations of Galilei’'s relativity for the interior
dynamical problem which:

a) are “directly universal” for closed, nonlinear, nonlocal and nonhamiltonian
interior systems (I1.1), that is, capable of providing the form-invariant description of
all systems considered (universality), directly in the frame of the experimenter
(direct universality);

b) the generalized isotransformations and isosymmetries can be explicitly
constructed from each given equations of motion, resulting in this way in an infinite
number of generalized relativities (infinite number of different isounits), one per each
given closed nonhamiltonian system; and, last but not least,

c) all possible generalized relativities admit the conventional Galilei’s relativity
identically when all nonhamiltonian forces are null.

Santilli's successful achievement of the above generalizations is a historical
event, because it deals with the very first comprehensive generalizations of Galilei's
relativity in all its mathematical foundations, physical applications and
epistemological profiles, after some four centuries from its inception by Galileo
Galilei in the early 1600°s.
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V.2: PHYSICAL MEANING OF SANTILLI'S ISOSPACES.
We now outline the physical applications of the novel mathematical tools of the
preceding section, beginning with the physical meaning of the isospaces of Sect. 1V.3.

The conventional Euclidean space E(r.8.%) essentially provides a geometrization
of the homogeneous and isotropic vacuum (empty space).

The first meaning of Santilli's isospaces E(r,G,#) ? is that of providing a
geometrization of the interior physical media. Thus, the differences between E(r.8.R)
and E(r,G.#) are representative of the transition from motion of an extended object in
vacuum to motion of the same object within a physical medium.

Suppose that the interior problem is characterized by a surface S, of local

radius R, encompassing all matter of the body considered, including its atmosphere.

Then, the first fundamental condition of Santilli’s relativities is that all isometrics G =
T8, recover the conventional metric 8, or, equivalently, all isotopic elements T
acquire their conventional value 1 at distances r > Ry, ie.,

1 =1, T =1 (1v.1)
|r>R, |r>R,

This ensures the full compatibility of the generalized relativities with the
conventional one, as well as the capability of the former to admit the latter as a
particular case (Condition ¢ above). Conditions a) and b) are ensured by the Lie-
Santilli formulations.

Because of the assumed nonsingularity and Hermiticity, all isometrics G can
always be diagonalized into the forms

G = diag. (8,% B,2, B, (v.2)

where the Bs are called characteristic functions of the interior phvsical medivu
and depend on all possible variables and their derivatives, such as: coordinates r,
their derivatives f, ¥, ..., the local density (), the local temperature T(r), the local
index of refraction n(r) (if any), etc.,

By = Bk(t, r, b, ¥, 0 T,0n.) >0 (v.3)

where the positive-definite value is assumed to ensure the isomorphism of the
generalized and conventional symmetries (see bellow).

Next, a central physical difference between empty space and physical media is
that the latter are generally nkomageneous (e.g., because of the local variation of
the density) as well as anisotropic (e.g., because of an intrinsic angular momentum
which creates a preferred direction in the medium). A typical physical example is
given by our Earth’s atmosphere, which is exactly inhomogeneous and anisotropic.

Another important application of the isotopic element T is therefore that of

9 santini (1988a), (1991a, d) considers the isospace E(r,8,%) when dealing with variational principles
(IV.52) and the more general isospaces E(r,G,#) when dealing with Hamilton-Santilli equations (IV.55) or,
equivalently, with the isosymmetries of the equations of motion. In fact, the latter are characterized by
the brackets of the analytic equations and not by the metric of the variational principle. When G is
constant, then the two spaces coincide, E(r,5,%) = E(r,G.R).
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representing the inhomogenuity of the physical media, e.g., via the values By # B, #
Bg, as well as its possible anisotropy, e.g., via the factorization G = F()§, wherer

represents a preferred direction.

The NOBEL COMMITTEE should be aware that, in Santilli's writings, &#e above
inhomogenuity and anisolropy Is solely referred to the experimental evidence
pertaining to mterior phyvsical media, while the underiving space Itsefl rengins
exactly fromogeneous and isotropic .

This is the reason for the factorization of the isometrics used throughout
Santilli's writings, G = T8, where the conventional metric 8 represents the
homogenuity and isotropy of (empty) space, and the isotopic element T represents
the 7wwations™ caused by physical media.

A further important distinction is the global effect of interior media (e.g., for
light propagating through the entire Earth’s atmosphere), as compared to the local
interior behavior (say, the motion of a satellite during re-entry in Earth’s
atmosphere). The explicit functional dependence (V.3) is essential for the latter case,
but for the former case, the characteristic B-functions can be averaged into
constants via any averaging process,

<|Bg|> = by = constants >0. (v.4)

In turn, the regaining of the costant value of the isometrics has important
epistemological implications. For instance, it implies the return to a linear and local
transformation theory with r* = Axr = ATr, T = constant. Still in turn, this implies
the possibility of preserving the 7zerZia/ approximation of the observer as currently
used in physics.1?

Another meaning of the conventional metric 8§ = diag. (1,1,1) is that of
representing the perfect sphere,

r2 = rj s Iy = rqry + ryPy + rgfg = const (1v.5)

A further meaning of Santilli's isometric 3 is, first, that of representing the actual
shape desired, say an oblate spheroidal ellipsoid

ré = r;GY r]-=r1B12r1 + r2822r2 + r3B32r3 = const. (v.6)
and then all possible deformations of the original shape, e.g., via a dependence of the
characteristic B-functions on the external pressure or other physical causes.

A number of additional physical interpretations and applications of Santilli's
isospaces have been identified in the specialized literature and they will be pointed
out later on (the most intriguing ones are of operator nature and, as such, are
indicated in Part III).

Finally, the NOBEL COMMITTEE should note that the above applications are a
mere classical limit of the applications in particle physics to represent the historical
legacy on interior, short range, nonlocal and nonhamiltonian effects (Part IV.).

10 Recall from Sect. IV.3 that the isotransformations are nonlinear and nonlocal only for a nontrivial
functional dependence of the isometric, while they return to be linear and local for constant isometrics
{or constant isotopic elemts).
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V. 3: SANTILLI'S ISOROTATIONAL SYMMETRIES. .
The pillar of contemporary theoretical physics is the rotational symmetry 0(3),
classically and quantum mechanically.

The first generalized symmetry discovered by Santilli for nonlinear, nonlocal
and nonhamiltonian systems was the generalization of the rotational symmetry into a
form he called rotational-isotopic symmetry, or isorotational syvmmetry O(3).

The notion of “isorotational group” first appeared with examples in memoir
Santilli (1978a), and was then expanded in the enclosed Vol. 11 of Santilli's Foundations
of Theoretical Mechanics (1982a) for the nonlinear and nonhamiltonian but local
case. The theory was then formulated for the most general possible abstract
nonlocal case in Santilli (1985a). The first classical, nonlinear, nonlocal and
nonhamiltonian realizations of O(3) appeared in Santilli (1988a), and reached their final
form in the monograph Santilli (1991d).

The NOBEL COMMITTEE should be aware that Sazxzi//ii 7s, not ounly the
arigmator, but also the sole contributor In the rrefd vntil now , that is, we are aware
of no independent study by other mathematicians or physicists on the realization of
the rotational symmetry with z structurally generalized Lie product other than the
Poisson brackets (I11.3) or the simplest possible Lie product [A,B]§ = AB - BA

In essence, the conventional theory of rotations provides the symmetry only of
perrect spheres (V.5), and can only characterize rigrd bodies, as well known. But
perfectly spherical and/or perfectly rigid bodies do not exist in the physical reality.
Santilli’s theory of isotopic rotations O(3) provide the symmetries, first, of any given
nonspherical shape (V.6) and, second, of the infinitely-possible deformations of that
original shape.

Santilli therefore discovered a generalized theory of rotations which is a
theory of extended and thererfore deformable bodies.

The “Trotational isotopic groups~ O(3), or ‘Isarotational groups® , are the
largest possible isolinear and isolocal groups of isometries of the infinitely possible
isotopes Er,GR) of the three-dimensional Euclidean space E(r3.8), ie,

EcsR) = ErGH] 8 = I35 = G = T, £ 1,.) 3§, (V.7a)
det.T#0, T =T, ® >f=gn], 1=11=6"1 (V.7b)
e =r;sr; = 0 = €601 = b6 1) I, (V.7c)

characterized by: the right, modular-isotopic transformations

r = R@xr = RO Gr, G = fixed, (v.8)

where the 6’s are the conventional Euler’s angles, whose elements R(8) verify the
properties



RRU=RUVR =1 = G, (v.9)

or, equivalently, Rt = ﬁ'i’ and form Lie-Santilli groups, i.e., verify the group-isotopic
rules

RO) = 1, REMRO) = RE)RE) = RO+ 0), R@)*R(-0) = 1. (v.10)

Finally the isogroups O(3), like the conventional group 0(3), are simple, three-
dimensional, and admit a decomposition into connected isosubgroups SO(3) occurring,

from Eq.s (V.9), for

det RG) = +1, (v.11)
and a discrete component $(3) characterized by the isoinversions
Pxr = Pr = -1, P =Pl (v.12)

Let us briefly outline the classical realization of Santilli’s ((1985a), (1988a), (1991d))
isorotations, owing to its truly fundamental character. For simplicity, but without lack
of generality, we shall assume diagonalized isometrics with elements bk independent

from the local coordinates and momenta (but depending on all other quantities of
interior media)

EeGH =B SR, § = diag. b4 02059, by >0, (v.13a)
ré = I 8ij rj = r1b12r1 + r2b22r2 + r3b32r3 = isoinv. (v.13b)
The Lie-Santilli brackets (IV.35) then assume the simpler form

) 3A 9B 3B . 0A
[AB] = by 2 - by 2 , (V.14)

ya 9Pka oya %Pga

By central condition of the Lie-Santilli theory, the original generators and
parameters do not changell, The generators of SO(3) are then given by the

conventional generators of 3 , Jk = ekij ri pj. The isocommutation rules of the
(compact, connected) isorotational algebra SO(3) are then given by (loc. cit.)

i1 Technically, this originates from the PROPOSITION: 7ke basis of # vector space is left unchsinged
by rsoropies (Santilli 1991a), which then propagates to Lie algebras, Lie groups, etc. This so simple a
mathematical property has funbdamental physical implications. The basis of a Lie algebra in physics,
say, that of the Galilei algebra G(3.1), is given by the conventional total conserved quantities. The
above Proposition then provides # geomefrization of closed nonhamiltonian syster:s , that is, the
conservation of conventional total physical quantities (the basis of the old symmetry) under additional
nonhamiltonian forces. Equivalently, the Proposition confirm the purely interior character of Santillis
nonlocal effects , not only at this introductory classical level, but much so at the level of the structure

of hadrons (Part IV).
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5 N S 2
SO(3): b, Jj] = Gy Y =GP I (V.15)

The proof of the local isomorphisms SO(3) » SO(3) was then done via the redefinition

jk = Ekij bty bjpj, (V.16)
for which

b;. 3]] = €jjk K, (v.17)

which recovers the structure constants €ijk of the original symmetry. However, the
physical generators remain Ji and the physical isocommutation rules remain rules

(V.15).
The 7socasimir (the invariant quantity) is given by the “square” of J, but
properly computed in the isospace E(r,3.8), i.e., the isosguare

Fepa=5tlyy =5 v 2o (v.18)

while the conventional Hamiltonian quantity

- 1.8l =
2 =08l = gy (v.19)

is no longer invariant as one can easily prove via rules (V.15).
The classical realization of the Lie-Santilli group SO(3) is then given by ((loc. cit.)

0 0%,V () (8J)/02Y) (a7aM)

SO0(3): R = [nk=1z,ae|§

11 o= 8301, (v.20)

where the exponentials are expanded in the conventional associative envelope &.
Note the true realization of Santilli's notion of isotopic lifting of a Lie symmetry,

i.e., the preservation of the original generators and parameters of the symmetry, and

the isotopic generalization of the szrucrure of the Lie group via the liftings 1 = 12.

Note also the existence of infinitely many different isorotational symmetries O(3),
which are however all locally isomorphic among themselves and to the conventional
symmetry Of(3).

The isorotational transformations can be explicitly computed from expansion
(v.20) via the sole knowledge of the new metric 8, and their convergence into a finite
form is ensured by the original convergence (under the assumed topological
restrictions of the isounit). For instance a (classical) Zsorozation around the third
ax7s is given by (loc. cit.)

' = R@ghr = S3leg) r = (v.21)
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The invariance of isoseparation (V.13b) under the above transformation then
follows.

Santilli ((1982a), (1985b), (1988a)) therefore introduced the notion of iserotational
symmerry (at times also called rosational isosymmetry , depending on the desired
emphasis) which is verified by systems (II.1) when they are: 1) properly written in
T*E(r,3.8); 2) represented by Hamilton-Santilli equations (1V.55) via the identification
of the Hamiltonian H and of the isounit i; and 3) the Hamiltonian H is isorotationally
invariant, i.e.,

. . -850 nAJ
H(r,p) = H(r+ 80 nAJ,p + 88 nAJ) = { elé } B(r, p) (v.22)
which can hold iff [Jk ., Bl = 0, k=1,2,3, as expected. The above conditions were
proved to be verified when the Hamiltonian has the structure in E(r3.%)
ij
P:, 87 p; "
1a a 1
H="Tp + Vo) =——2 + v, r=]|r 8r,|*% (v.23)
om ia Ja
a

Moreover, Santilli (loc. cit.) worked out numerours additional developments and
classical applications also of fundamental character, such as:

1) the most general poassible nonlinear, nonlocal and nonhamiltonian
isorotational symmetries 0O(3), including isoinversions, whuich are essentially given by
structures (V.15), (V.20) and (V.21) with the b-quantities replaced by the characteristic
B-functions, while isocasimir (V.18) assumes a local meaning;

2) the proof of the local isomorphisms O(3) = O(3) for the above most general
possible case under the conditions of positive-definiteness of the B-functions;

3) the proof of the O(3) invariance for all possible extended, nonspherical
shapes;

4) the application for the direct representation of all infinitely possible
deformations of a given shape;

5) the establishing of the isorotational symmetries O(3) as the fundamental
isosymmetries of the theory of elasticity;

6) the isotopic generalization of the historical Euler’s theorem, according to
which the general displacement of an elastic body with one point fixed is a (compact)
isorotation around an axis through that point;

7) the construction of the isorepresentation theory of the covering, isotopic
SU(2) symmetries, including the constructioon of the iso-Clebsh-Gordon coefficients,
etc.;
and numerous other advances we cannot possibly review here.
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FIGURE 111.3.2; An illustration of the possibilities of Santilli's (1978a), (1982a), (1985b), (198 Sa),
(1991d) discovery of the classical isorotations: the direct representation, first, of the actual
shape of a given body via the isometric & (in the figure, an oblate spheroidal ellispoid), and
then the direct representation of all its infinitely possible deformations under sufficiently
intense external forces, collisions or other causes, all this already at a semiclassical level.
By comparison, contemporary theories can indeed reach a representation of the extended
character of particles via form factors, but, as well known: 1) the representation occurs only
after the rather complex second quantization; 2) the form factors provide only a remnant of
the actual shape and cannot characterize the actual shape itself (at any rate, the
representation of non-spherical shapes would imply the breaking of the conventional
rotational symmetry); and 3) the representation cannot possibly characterize the
deformations of said original shape (because, again, the conventional rotational symmetry
refers strictly to rigid bodies and it is broken under the deformations of the physical reality).
The advantages of Santilli's covering isorotational symmetries over the conventional
rotational symmetry is then multiple, diversified, and beyond any scientific doubt. But, the
most far reaching implications of Santilli's isorotations occurs in particle physics (Part III),
where they directly imply a generalization of the very notion of particle.

A central discovery the NOBEL COMMITTEE should keep in mind is the

following. /r /s generally believed, i both the mathematical and physical literatures,
that all derormations (V.13b) of the perrect sphere (V.5) violate the rotatioinal
syrmmelry. santifli proved this belier to be erroneous. I/n rfact, since his isorotational
symuetries Of3) are locally isomorplic to the conventional rotational syumetry O/3)
Sanulli reconsiructed as exact the rotational syunmnetry for all possible elljpsordical

desormations or the sphere, of course, at the covering Iisotaopic level .
The same reconstruction of the exact character at the isotopic level also exists

for all remaining space-time symmetries when believed to be broken in conventional
formulations, including the Galilei symmetry, the Lorentz symmetry, and the Poincaré
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symmetry.

As a matter of fact, one of the reasons for which Santilli constructed the
isotopies of conventional space-time symmetries is precisely to prove that the claim
of their being violated is erroneous and due to insufficient mathematical knowlede
because, when the same symmetry is realized in a sufficiently more general way, it
returns to be exact.2

The NOBEL COMMITTEE should be aware that, &y rar the most rendzmentzl
applications of Santiflis isorotational symmelries exist in pardcle pliysics. As an
illustration, let us recall that, after over half a century, nuclear physics has been
unable to explain the total magnetic moment of nuclei. Santilli's isorotational
symmetry predicts that, under the “contact” conditions of the nuclear structure, the
extended charge distribution of protons and neutrons experiences a small
deformation of shape, e.g., into the oblate form of Fig. V.1. Such a deformation of the
charge distribution then implies a necessary alteration of the intrinsic magnetic
moment of the necleons as requested by (classical and quam;um) Maxwells
electrodynamics, which is finally capable of representing the total magnetic monment
of nuclei (for details, see Part IV).

An important aspect of these latter advances in particle physics is that the
deformation of the charge distribution of protons and neutrons and related
phenomenology are represented by preserving the exact character of the rotational
symmetry, of course, at the isotopic level

V.4: SANTILLI'S ISOEUCLIDEAN SYMMETRIES.

The conventional Euclidean symmetry for the exterior problem on T*E(r,5}) is given
by E@B) = 0(3) x T(3), where O(3) is the group of rotations and T(3) represents the
translations. The Euclidean transformations are given by the familiar expressions

' = R@)r, I =r + r°, (v.24)

and leave invariant the composition in E(r,8,®) for the relative distances among any
pair of particles

{rp - rb)2 = {rj, — Ty 51l (rja - r]-b). (v.25)

The next space-time isosymmetries discovered by Santilli was the
generalization of the above Euclidean symmetry for the most general possible,
nonlinear, nonlocal and nonhamiltonian conditions, called Fuclidean-isotopic
spmmerries , or isoeuclid ean symmetries E(3).

The discovery was first made as implicitly contained in the more general Galilei

12 This reconstruction of the exact space-time symmetries when believed to be broken at the
simplest possible level of Lie's theory is fully established at the classical level, but not yet at the
operator level. In fact, in Part 111 we indicate Santilli (1984a) conjecture on the possible regaining of the
exact character of parity for wesk interactions ,of course, when realized at the covering isotopic
level. These studies are under way at this writing and, if confirmed, would be of such a magnitude to
deserve, alone, a NOBEL PRIZE IN PHYSICS.
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isosymmetries in Santilli (1978a) and in the enclosed monograph Santilli (1982a). The
explicit treatment of the isoeuclidean symmetry first appeared in Santilli (1988a) and
was then treated in full details in the monograph Santilli (1991d).
The NOBEL COMMITTEE should be aware that, again, Santilli is the originator
and the sole contributor on the isoeuclidean symmetry to this day.
The discovery can be essentially presented via the following
THEOREM V.41: The Euclidean-isotopic svmmetries £{3) are defined on the
Isotopes Ef,G. %) or the Euclidean spaces E(,88), leave invariant the relative
Isoseparation

g -rp? = T 1) 6T 61, 1,00 (g - 1y (v.26)
possess the structure
E@) : 6B ® 1T0), (v.27)
where O(3) is given by the isorotational spmmnetries or sect. V.3

0B): 14 = R@)*ry =RE) Gf,..) 1y, (v.28a)

RUxR = xRt =1 = &1, (V.28D)

= i= = a=12,...N,
Iy =(ry,) =123 (=xy,2),

and 713 is the largest possible group of isolinear and isolocal transiations

t@: r., = r, I ﬁi"z(t, r, i, W, T, 0., (V.29a)

Pig = Pig (V.29b)

with realization I T+EE,G8) characterized by:

1) The same set or parameters (wyg = (6; /) or the conventional symmel:y

E13):
2) the same ser of generators (X g )= (h F), J =3, S, P = Dg Pg» OF the

conventional syuunetry £{(3)
3 the Lie-Saniilli slgebras

E@): [Ji, Jj] = ei]-k k Jk (v.30a)
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b, Pj] = Sk Bj P (V.30b)

(4.30c)

{
e

[Pj, Pj]
) the Lie-Samtilli groups

E@):  elwlxa = (R(0),T(r")pa

w, o “12‘"’ 6, %) @)
={[I] e 11, )+, (v.31)
K e 2
5 the realization of the B-runctions
5 2 =B 2 + r° [B. 2 P/ + r°. ¥ [B2.P); !
B, {trp,...) B4 + rj[Bi . P2+ r’ 1[[Bi ,Pj],Pl]/S. L (v.32)

and the local isocasimir mvariants given by the rollowing multiples of the
Isounits ¥

C(o) _ .12, c(l) = (PP) *12’ C(z) = {J*P} '\]2, (v.33)

Finally, all the above infinitely possible Euclidean-isotopic symmetries E{3)
result to be Jfocally isomorplic to the conventional Euclidean symmetry F£(3/
under the saele conditions of sutficient smoothiess, norsingularity and
positive-deriniteness or e isometrics G.

The NOBEL COMMITTEE should note the achievement of the most general
possible nonlinear and nonlocal realizations, not only of the group of rotations, but also
of the translations, as clearly expressed in Eq.s (V.29) via the arbitraryness of the B-
functions.

Also, the above theorem provides the foundations of the isotopic generalization
of the Poincare’ symmetry in (2+1)-space-time dimension (see Part II), via tits mere

reformulation for the isonmetric G = diag. (+ B2, + B22, - B32).

V.5: SANTILLI'S ISOGALILEAN SYMMETRIES
Recall that the conventional Ga/lers syvmmetry G(3.1) (see, e.g., Levy-Leblond (1971) or
Sudarshan and Mukunda (1974)) is the largest Lie group of /Jwear and local
transformations leaving invariant the separations

ta - tb = inV.,

13 1t is appropriate to recall here that the realization of the isoeuclidean symmetry under consideration
here is classical, that is, via fuactions in T*B(r,G,R). As a result, the generators and, therefore, the
isocasimir invariants, must necessarily be functions, while the isounit '12 of Eqs (4.18) is a matrix of
functions. When passing to the operator realization of the isorotational symmetry of Part III, then the
entire expressions of rthe isocasimirs must be used.
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(ria - rib) 8 (rja - rjb) =inv. at ty = tp, (v.34)

ij =123 Exy2d a=12..N

in §Rt>< T*E(r.8.%), where R represents time, E(r,8.®) is the conventional Euclidean space,

and T*E its cotangent bundle (phase space), with metric § = diag. (1,1,1) over the reals .
The explicit form of the celebrated Galife/ transrormations is given by the
familiar expressions

t =t + t°, translations in time (v.35a)
ig = Ijy + r°i, translations in space (V.35b)
Fig = Tig * UV Galilei bosts (v.35¢)

I'q = RO)ry,, rotations. (v.354)

The use of the totality of the preceding mathematical and physical studies,
including the Lie-isotopic theory, the Birkhoffian-Santilli mechanics, the symplectic—
isotopic geometry, etc., then permitted Santilli to achieve the most general possible
nonlinear, nonlocal and nonhamiltonian generalizations G(3.1) of the conventional
Galilei symmetry G(3.1) for the interior problems, which he called Ga/i/er-isotopic
svmmelries , or isogalilean syvmmelries , but which are now called Sani/ili's
Isogalilean symumetiies (see, Kadeisvili (1991), Aringazin et al (1992) and others).

The generalizations were first achieved in the memoir Santilli (1978a) as a
particular case of their broader Lie-admissible forms (see Appendix A), they were
formalized for the local case in the enclosed monograph Santilli (1982a); the
isosymmetries were then formulated for the most general possible nonlocal case in the
memoir Santilli (1988a); and finally treated in details in the recent monograph Santilli
(19914).

The NOBEL COMMITTEE should note that, again, Santilli is the originator and the

sole contributor in the study of the isogalilean symmetries 1% In fact, despite the
appearance of the enclosed monograph printed by Springer-VFer/ag (and advertized
rather widely), no independent mathematician or physicist elected to conduct research
in the field. Santilli therefore continued his studies alone.

THEORERM V.5.1: The general nounlmear and nonlocal, classical reafization of
Santilli’s isogalilean symmetries G{31) are the isotopic groups of the most

general possible isotransformations ot Ky » TE(@,G8) lfeaving mvarram the
isoseparations

ta — tp =inv, (V.36a)

(rka~ Tgp) B2, T, p..) (typ, = Ty =10V 3Lt =1y, (V.36b)

14 1pe only independent article in Santilli's isotopic generalizations of Galilei's symmetry known to
these authors is that by Jannussis, Mijatovic and Veljanoski (1991) reviewed later on in Sect. V.7 which
however studies exazples of the isogalilean symmetries.
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ty, tp € Ry, ra, Iy € T*E(r.G.R) (V.36¢)

where $y is an Isotopic lirting of the conventional rield Ky, called isotime riefo,
with explicit structure

R = R, Ty = 134_2&, r,p..), By>0, (v.37)

TEM G Is the Isocotangent bundle for symplectic-isotopic Iwo-isororns
with isometrics G dizgonalizable to rorm (V.2), and the rour runctions B ' Ba B3

and By besides being independent and posiiive-derinie, are arbitrary

nonlinear and nonlocal (eg., integrall runctions on all possible, or otherwise
needed local variables and quanitities. Sanlilli'’s isagalilean Lransfolnations

can be explicitly weritten

t=t+ B 4_2, iso—-time translations (v.38a)
ro=rj tr Ei_z, iso-space translations (v.38b)
o=+ t°‘v°i B2, iso—Galilei boosts (V.38c)

r = R@) *r, isorotations, (v.38d)

where the B-tunctions are generally nonlinear and nonfocal in all possible
flocal variables and quanhtities to be identified shortly. Moreover, the
spummetries Gl are characterized by the Lie-Santilli brackers underlving rhe
exact symplectic-Iisolopic two-rforuls, with explicit expression

. d0A 0B d0A N 0B
[A%B] =—— By 2 - B “—, (v.39)
drga 9 Pka 0 Pxa 0 rka
and possess thre rollowing structure:
2 the conventional paramerters of G321,
w = (wg) = 6, 1%, v“i, t), k=1,2,..,10, {v.40)

and the conventional generators of G314, but now defined on Isospace ﬁ’, X
TEAGH, Le,

Ji = 2gSik gl P = 2y P (v.41a)

G =2a(m r, - tp,) (V.41b)
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H = pgy Bk2 Pra r2mgy 4 Vicgp), (v.41¢)

1 1
= — 2 = —_ 2 p— 2
Fab =g —rpl *= It , - 1 )B 2, - r )V (v.41d)
2 the Lie-Santilli algebras
Gay ;3] = 2 *p] = ¢ B2
@2y | ] Sk B e bj ;P Sijk B~ Py (V.42a)
[J G] = ele y Gk, ;. Bl = o, (V.42b)
[Gi.P] =6 .MB 2 [G, Bl = 0,
i ]] ij M B (G, . Bl (v.42¢)
3 the (connected component or the) Lie-Santili groups
po
Wg W X (6 X )0y
6t v = {I[]e T e, (v.43)
3
o the local isocasinir mvariants
{0 g, &0
¢ = 1, = (PGP - MH) 15, (V.44a)
o =MJ - gap2 = {(MJ - GAP)G(MJ - GAP) |1, (V.44b)
5/ the explicit expressions of the B; runctions
B 2%) =B, 2 + (B2 P] /2 + r° 1" B2 Pyl ; !
. i j[Bi % P /2! r°pt’n (B2 TPyl [Pyl 731 +. (V.45a)
P T o -2 -
Bi3v) = B “ + vj[Bi TGl vV [[Bl .G 1G]+ (V.45D)
wiiile §4_2ﬁ713 the solution of the algebraic equation
MG
b 2 °w 2 (6 H) (8
t+t By ) = {e " I’)]}r. (v.46)
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The infinite possible isogalilean symmetries G(31) so constructed result to be
all locally isomorphic to the conventional Galilei symmetry G(3 1) under the sole
condjtron of (sulricient smoothness, nonsinguiarity and) positive-derinitness of
the rsounits. finally, all isosymmerries G121 can approxmmate the conventional
symmetry G2l as close as desired whenever the Isounits approach the
conventronal unit, and they all admir the conventional symmetry as a
particular case by construction.

The follwoving particular case is sufficiently improtant to warrant a mention for the
NOBEL COMMITTEE.

COROLLARY V.514: [nr the partcular case when the characteristic B-runctions
of the rhrerior pliysical media are averdaged to constant b-quantities, we fiave

Ui

R TECSR) = RpTRIGH (v.47a)
=G=di 2,by%,b3?), b, = cost. > 0; (V.47b)
g = G = diag. (by™> 2% P37 bk cost. > 0; .

the B-quantities coincide with the diagonal elements of the isounits,

Bi2r) = B7%) = B 2=1;2 B2 = b, 2 (V.48)

and the general isagalilean transrormations (¥.35) become limear and local, ie,
they assule the simplified rorin called “restricted rsogalifean transiornarions™

U=t+ th 4 (V.49a)
. o 1 -2
rp =+ b (V.49b)
rp =T+ vy bi 2, (V.49c¢)
i
r = R@) *r. (v.49d)

The above properties imply that the Santilli's isogalilean symmetries can indeed
preserve inertial frames, but, of course, in their linear particularization, e.g., following
averaging of the characteristic B-functions of the interior medium of type (V.4).

Thanks to the body of formulations outlined in the preceding section, the
application of the symmetries G(3.1) to the characterization of closed nonselfadjoint
systems was readily achieved by Santilli. In fact, Theorems 1V.9.2 and 1V.9.3 readily yield
the following

LERTAA Vs1 (foc cit) Necessary and sufficient conditions rfor the
Isoinvariznce of closed nonselfadjoint systens (I1.1) under Santillis isogalilean
symmetries Gi31/ are that ithe systems can be consistently writien in
isospaces A"f’? G and admit the representation in teris of the Hamifton-

Santili - equations

Tt



oH(t, a) 9H(t, a)

oyg ToOa) a¥ = ——, at = oP¥1y" ) -, (V.500)
6au aaV

H = pip Gt 1, p,.) pia/2my + Virgy, (V.50D)

rp = {Fia ~ i) GOep..) vy, ~ i) (V.50¢)

in which case all total pliysical quantities are not subsidiary constraints, but
7irst Integrals or the equatiolis of moLion.

In summary, Santilli not only discovered the class of closed nonhamiltonian
systems (I1.1) with subsidiary constraints ensuring the conventional total conservation
laws, but also the technical means for eliminating the subsidiary constraints, and
reduce the conservation laws to generalized symmetries. In fact, the imposition of the
invariance under the isogalilean symmetries G(3.1) ensures the ten conventional total
conservation laws.

Remarkably, the same results hold all subsequent levels of study, such as the
relativistic (Part II), gravitational (Part III), quantum mechanical (Part 1V), gauge, etc.

V.6: SANTILLI'S CLASSICAL ISOGALILEAN RELATIVITY.

As well known, Ga/ifer’s relativity (see, e.g., Levy-Leblond (1971) or Sudarshan and
Mukunda (1974)) is a description of physical systems via their form-invariance under
the Galilei’s symmetry G(3.1) = [09(3) ® Tpe@)] x [Ty°@) x Tye(1)l, or, equivalently, under

the celebrated Galifer’s transrormations

r=t + t°, translations in time, (V.51a)
rj=rj+ r°i, translations in space, (v.51b)
rj=rj + t°v°, Galilei boosts, (V.51c)
r=R@)r, rotations. (v.514)

The relativity is verified in our physical reality only for a rather small class of
Newtonian systems, called c/osed selfadjoint systems . These are systems (such as our
planetary system) which verify the conventional total Galilean conservation laws when
isolated from the rest of the universe, and admit internal forces which are local
(differential), potential and (variationally) selfadjoint (Helmholtz (1887), Santilli (1978b)).

For all remaining Newtonian systems, Galilei’s relativity is inapplicable because of
the several; reasons outlined in Sect. IIL.1. In the final analysis, the limitations of
Galilei’s relativity are inherent in its mathematical structure, because:

1) The /inear character of Galilei’s transformations is at variance with the

72



generally wzon/mear structure of the systems of the physical reality of the interior
dynamical problem, as established by incontrovertible evidence;

2) The /oca/ (differential) character of Galilei’s relativity is at variance with the
generally #nonlocal (integral) nature of our Earthly environment;

3) The Aamiltonran (canonical) structure of Galilei's relativity is at variance with
the generally won/amiitonian character of physical systems of our reality,

and so on.

An infinite family of isotopic generalizations of the Galilei symmetry, under the
name of Szuweillrs isagalilean symmetrres G(3.1) has been reviewed in the preceding
section. In particular, we have indicated that:

A) The symmetries G(3.1) characterize c/osed non-seiradjoint systems
(IL.1).These are systems (such as Jupiter) which verify the conventional, total, Galilean
conservation laws when isolated, while admitting the additional class of nonlinear,
nonlocal and nonhamiltonian internal forces.

B) The Galilei-isotopic symmetries possess the structure
6(3.1) = [0(@) ® Tyeld)] x [Tye@) x Tee(tl], (v.52)

which results to be locally isomorphic to the conventional symmetry G(3.1) under the
positive-definiteness of the isounits, by admitting the latter as a particular case. In
this sense, G(3.1) provides an infinite family of isofgpic coverings of G(3.1)

C) All symmetries G(3.1) can be explicitly constructed via the Lie-Santilli theory,
that is, via the use of the same parameters and generators (conserved quantities) of
the conventional symmetry, and the most general possible, axiom-preserving
realization of Lie algebras and Lie groups. In this way, an infinite number of symmetries
G(3.1) can be constructed for each given Hamiltonian H = T + V (i.e., for each given
potential-selfadjoint forces), as characterized by an infinite number of posssible
interior physical media.

By using the above discoveries, Santilli finally constructed his generalizations of
the conventional Galilei’s relativity for the most general known interior dynamical
systems, hereinafter referred to as Sautilli’s general isogalilean rektivities (Theorem
V.5.1), with the specra/ isogalilean relativities holding for the case of linear and local
isotransformation (Corollary V.5.1A).The relativities were first submitted as a
particular case of the more general Lie-admissible relativities in the memoir (Santilli
(1978a)). The new relativities were then submitted in the enclosed monograph Santilli
(1982a) for the most general possible local case. Finally, the extension to the most
general possible nonlinear, nonlocal and nonhamiltonian systems was achieved in
Santilli (1983a) and then presented in details in the recent monograph (Santilli (1991d)).

DEFINITION V.61 The “general, nounfinear and nonlocal, Santillis isogalilean

relativities™ are a Jrform-invariant description of physical systems
characterized by the Infinite family or Isogalilean symmetries G(31 on
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RpTEGH, R =R1r, 1, = dizg &1 ¢, Bpy=m1,1,>01,>0 wih
corresponding, intinite ramily or general isotransformations (V.38)

Note that the conventional Galilei transformations are unique, while Santilli’s
isogalilean transformations admit an infinite number of different forms. Also, within the
context of the Galilei’s relativity, one first selects the symmetry transformations (), and
then restricts the physical reality to be invariant under them. On the contrary, within
the context of Santilli's relativities, one first identifies the physical systems as they
occur in Nature, and then constructs the corresponding isosymmetries.

Note also that the above definition implies the restriction G(3.1) » G(3.1). This is
due to the fact that, if such restriction is lifted (i.e., if the isounits are not necessarily
positive-definite), isosymmetries G(3.1) still formally exist, but they do not qualify for
the characterization of covering relativities. See in this respect the classification of all
possible compact and noncompact isotopes O(3) of 0(3) of Santilli (1985b).

Finally, the NOBEL COMMITTEE should note that Santilli's isotopic formulations
have been constructed in such a way to coincide with the original formulations at the
abstract, realization-free level. We should therefore expect that the Galilei-isotopic
relativities too coincide, by construction, with the conventional relativity at the
coordinate-free level.

In the following we briefly illustrate the generalized structure of Santilli’s
relativities. Consider the historical Ga/ilers boosts

ri=r +Uvy Pi =P+ mv5 (v.53)

which, as well known, characterize a particle with constant speed, under the (often
tacit) assumption that motion occurs in vacuum.

Suppose now that the particle considered is extended and penetrates within a
physical medium at a given instant of time t. Then, Galilei’'s transfortmations are
evidently inapplicable, e.g., because of their linearity, locality and Hamiltonian
character, while the particle experiences a drag force that is nonlinear, nonlocal and
nonhamiltonian,

Santilli’'s generalized tranformations

o .0 ~—2 ’ o 5 —
ri=r; + ©v8 “tr,p.), Pi = p; +mv’; Bj 2, r, P, (V.54)

are then applicable to represent the devizzions from the original uniform motion. In
particular, Eq.s (V.54) can represent a (monotonic) increase or decrease of speed

depending on the sign of the v°-parameter (since the B2-terms are always positive
definite). In the former case we have the usual drag force caused by motion within the
physical medium. In the latter case we have instead an extended particle penetrating a
medium in such highly dynamical conditions to cause an increase of its speed.

The important point is that, in the transition from the linear, local and Hamiltonian
transformations (V.34) to their nonlinear, nonlocal and nonhamiltonian generalizations
(v.38) santilli's relativities preserve the underlying Galilean axioms for the uniform
motion, as ensured by the local isomorphisms G(3.1) = G(3.1).

To elaborate better these aspects, note that law (V.53) of the uniform motion in
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vacuum is geometrically expressed by the Lie group

TGV 1 = 15 ~t° v, TO) p; = pj ~ mv7y, (V.55a)
o, WV
viw @ G)@ )
T = ¢ jor 0,6 e) (V.55b)
£

namely, the siructvre of the the Galilean /aw of uniforin motion Is provided by the
right modular (associativel action of the rinite Galiler boosts T on the coordinates

and monenta.
But isotopic laws (V.54) are geometrically expressed by the Lie-Santilli group

T@) *xrj = rj - t°v°; ﬁi—z, TW) *pj = pj - mv'j Bi_z, (v.56a)

vy o %) °"(a G)(a

v = {[e M 11,0 (V.56b)

Thus, the structure or the varrable wmotion within a pliysical mediun Is
characterized by the modular-isotopic (associative-isotopic/ action Tt i+ of Santili's
Isoboosts on coordinates and nomenia.

But the conventional action T(v°)r coincides with the modular-isotopic action
T(W°)xr at the abstract, realization-free level by construction. This shows that tZe
abstract axioms vnderlying the Galilean uvnirorin motion are preserved Dy Santili’s
covering relativities .

Note the unity of physical and mathematical thought in Santilli's covering
relativities. In fact we can introduce only one abstract law of rectilinear motion, say,

T(v®)r, with infinitely many different, but locally isomorphic, realizations T(v°)*r
representing the infinitely many nonuniform motions within different physical media,
and only one canonical realization T(v°)r, representing uniform motion in vacuum.

The extension of the above results to other physical laws is straightforward and
not reviewed here for brevity.

We reached in this way another most important physical result achieved by
Santilli (1989a), (1991d), which can be expressed as follows:

THEOREM F.6.1: All mrnitely possible Santliis Isogalilean relativities on
Ry TE,G Y coincide with the conventional Galiler relativity on HpT°E(,5%/
ar the abstract, realization-rree level, that Is, not only all inrinntely possible
Isosymmerries G2 1) comcide with the conventional symmetry G(31), but also all
the Infinite c/ass of Isogalilean transrormalions coincrde with the conventional
Galiler transrormations, and the same holds ror the related physical laws .

The NOBEL COMMITTEE should keep in mind that the above unity will appear in
its full light only at the gravitational level of Part ][l where we shall see that the
axiomatic unity between Galilei’'s boosts and their isotopic extensions is a particular
case of a much broader geometric unity within the context of Santilli's Riemannian-
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isotopic geometry.

Systems: Systems: Systems:
closed. closed. closed.
Forces: Forces: Forces:

local, SA. local NSA. nonloc. NSA.
Space: Space: Space:
Re<TElr S.R) Re<T*E(r g R) R T*EL[r,GR)
§=1 § = const>0. G =G(rp,.) > 0.
Frames: Frames: C. Frames:
Inertial. C Inertial. Noninertial.
Methods: Methods: Methods:
Lies Lie-Santilli Lie-Santilli
theory. theory. theory.
Relativity: Relativity: Relativity;
Convent. Restricted General
Galilei’s isogalil, isogalil.
relativity. relativity. relativity.

FIGURE V.1: A classification of physical systems, with their carrier spaces, observer’s
frames (assumed at rest with respect to the center-of-mass of the system), and related
methodology. The first column depicts the conventional linear-local-inertial-
Hamiltonian setting; the second column depicts the first nontrivial isotopic
generalization, that of linear-local-inertial but of isotopic type; and the third column
depicts the most general possible nonlinear, nonlocal, nonhamiltonian and
nonmeryza/ setting. The first two columns have equivalent inertial characterizations,
because they are both defined on inertial frames. Also, the first column treats rigid
bodies, while the second represents deformable bodies. The third column represents
the most general possible conditions of extended-deformable bodies in regard to both
acting forces and observer frames.

In particular, in Part 11 we shall see that zhe transition from the Galilean, exterror,
unirorm motion i vacuun to Santifli’s extensions within phvsical media does not imply
a change in geodesic motion but onfy the transition Irom geooesics witimn
conventional spaces, to geodesics within 1sospaces.

Despite such ultimate mathematical and physical unity, the physical differences
between the Galilei's and Santilli's relativities are nontrivial. To illustrate of this point,
let us recall that Galilers relativity establishes the egquivalence or all mertial rrames ,
as well known.

But inertial frames are a philosophical abstractions inasmuch as they do not exist
in our earthly environment, nor are they attainable in our Solar or Galactic systems.

Santilli’s relativities were therefore conceived for the actual, physical frames of
the experimenter, that is, for the actual noninertial frames of our Earthly laboratories.
In fact, Santifilis relativities establish eguivalence subclisses or noninertial 1rames,
those with respect to the center-or-mass iframe ot the interior medivi ,each class
being characterized by each relativity (i.e., by each physical medium). The
understanding is that different systems imply different subclasses of isotopically
equivalent frames.
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But Santilli's relativities are coverings of the conventional one. This means that
the conventional inertial aspects are not lost, but fully included and actually
generalized in the broader isotopic setting. This concept can be made more clear by
nothing that, when the isometrics § are constants, Santilli’s isogalilean transform.ations
are given by the linear and local form (V.49). In this case the covering relativity is
called restricted isogalilean refativities

The generalized nature of the relativities is soon illustrated by the fact that the
isotopic relativities characterize desormable bodies while the conventional relativity
characterizes rjg7d bodies (see the examples of Sect.s V.7 andV.8).

The NOBEL COMMITTEE should keep in mind that the network of classical
nonrelativistic discoveries outlined until now were merely preparatory for Sautilis
(/959) Isotapic generalization of Galifer’s relativity in quantuwm mechanics (Part 1V),
which he proved in the most rigorous possible way (via an isotopic lifting of Wigner’s
theorem on unitary symmetries and Mckay imprimitivity theorem), and which does
establish the mathematical consistency of the “7adronic generalization of quantun
wechanrics” (see Fig. 1V.1). The discoveries were also conceived as a basis for the
Isotopic generalizations or Einstelin’s special relativity for interior dynamical systems
(Part 1I). However, the true geometric understanding and ultimate unity of
mathematical and physical thought can be seen only at the level of the Jsofaopic
generalizatrans of Fmstern’s gravitation on the Santilli's novel isoriemannian
geometry for the most general nonlinear, nonlocal and nonlagrangian interior

gravitational conditions known to mankind today (Part I1I).

Y.7: EXAMPLES OF COMPOSITE ISOGALILEAN SYSTEMS-
All the classical nonrelativistic discoveries reviewed so far have been made by Santilli
alone. The sole contribution in the field we are aware of is the paper by Jannussis,
Mijatovic and Veljanoski (1991) on examples or the classical Santllis isogalilean
relativities consisting of two-body and three-body, closed nonhamiltonian bound
systems (IL.1).

The two-body case is the simplest possible one and is geometrically expressed by
the so-called scalar isotopy of the Lie tensor

W > MV =p2 oW, b= constant > 0. (v.57)

Despite this simplicity, the system is analytically nontrivial. In fact, contrary to the
conventional Kepler’s system where both circular and elliptic orbits are possible, #
two-body closed system with comtact Internal rorces adwits only the circle as a
stable orbit . Moreover, scalar isotopy (V.57) implies a remormalization or the
miassses of the two bodies already at this classical leve/ (Santilli (1988a), (1991d), with
truly intriguing implications at the operator level (see Part 111).15

15 As an illustration of advances reviewed in Part 1V, recall that & structure model of the m° pasrticle
as a bownd state of an ordinary electron and a positron is wconsistent withi the contest of guantuw
mechabics . This is so on numeorus counts, such as the inability to represent the total energy of 140
Mev as a bound state of two very light constituents with 0.5 MeV rest energy, the inability to represent
the relatively long mean life, and others. In his very first proposal of the “ksdronic gemeralization of
quanturr mechanics” (19784, Sect. V), Santilli proved that # structure model of the 7° particle as i
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Three-body closed nonhamiltonian systems are less trivial then the two-body
ones and much richer in structure, possible configurations and implications. The
simplest stable configurations is that for the three bodies on a straight line, the system
rotating rigidly as a whole on its center-of-mass. The next stable configuration is
Lagrange’s fistorical triangle with contact internal forces. These configurations
occur without subsidiary constraints and they all imply circular orbits for the
individual constituents.

The most general configuration was studied by Jannussis et al. (loc. cit.) and
occurs for nontrivial subsidiary constrtaints (I1.1b). This configuration is analytically
intriguing because it permits the constituents to have individually unstable-
nonconservative orbits, while all total quantities are conserved (this possibility is
precluded for the two-body case).

Santilli (1978a), (1982a) (1988a), (1991d) also studied examples of his classical
relativities and made another discovery. In essence, the #uc/eus for the conventional
Kepler's systems must have a mass much bigger than that of the peripheral
constituents, as verified by our Solar system. However, when the constituents are
under mutual contact interactions, the particle at the center, called by Santilli
Isonucleus , can instead have an arbitrary mass, including a mass much smaller than
that of the peripheral constituents.

These features have predictable far reaching, quantum mechanical implications,
as we shall indicate in Part IV. In fact, they imply profound departures from
conventional quantum mechanical bound states, e.g., of atomic type, into fundamentally
novel composite systems with short range, nonlocal and nonhamiltonian internal
effects. These systems possess basically novel features, such as “isocenters” with mass
much smaller than those of the peripheral particles, spontaneous renormalization of
the masses and other characteristics. In turn, these novel features permit
fundamentally new approaches to all conditions in which short range nonlocal effects
are expected, such as: the structure of hadrons; the structure of the Cooper’s pairs in
superconductivity, the origin of the Bose-Einstein correlations; etc.

In conclusion, the studies by Jannussis et al. (loc. cit) via specific cases of
generalized two-body and three-body systems have confirmed the existence and
consistency of Santilli's isogalilean relativities. Moreover, the emerging generalized
bound states possess truly novel features at the classical level, with far reaching
implications at the quantum mechanical level

‘compressed positroniwy’, fe., as a bownd state of one efectron and one positron at distances maller
than their wavelength, is fully consistent within the context of the covering hadronic mechanics, and
in fact capable of representing with one single equation of structure ALL the characteristics of the m°,
such as: rest energy, mean life, charge radius, charge, spin, space and charge parity, and the (aull)
electric and magnetic moments. The consisency is given precisely by the short range internal nonlocal
effects caused by the total mutual penetration of the electron and positron. In fact, when such internal
force is represented by an isotopy of quantum mechanics (Fig. IV.1), it implies the renormalization of
the masses already existing at the classical level (Santilli (loc. cit), Jannussis et al. (loc. cit.)) which
turns inconsistent quantum mechanical equations into consistent hadronic equations. We reach in this
way what appears to be one of most important aspects of Santilli's research: the possibility that the
imposition of established relativities for the characterization of the hadronic constituents PREVENTS
their identification with physical particles freely emitted in their spontaneous decays. On the contrary,
if generalized relativities and disciplies are build for the interior structural problem of hadrons following
the historical legancy on its lonlocality, the identification of the hadronic constituents with ordinary
particles appears within technical reach. As clearly stated in his contributions, see (1978a, c, d), (1981a),
and others, Santilli constructed his scientific edifice for one ultimate purpose: achieve, in due time, the
identification of the hadronic constituents with physical particles freely produced in the spontaneous
decays, as established for the preceding nuclear and atomic structures.
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V.8: EXAMPLES OF ISOGALILEAN PARTICLES
Another most effective way of appraising the physical relevance of any generalized
relativity is by identifying its impact in the characterization of the notion of particle. It
is at this point where Santilli’s relativities acquire their full light, inasmuch as they
imply a profound revision of the very notion of particle, into a generalized notion he
called isgpartic/e (Santilli (1988a), (1991b)).

As well known, the conventional notion of c/assical nonrelativistic particle is a
representation of the Galilei group G(3.1) = [00(3)®Tro(s))X(Tvo(S)tho(l)] on RxT*E(r.8,%)

and, as such, it is characterized by conventional units, the scalar unit 1 for the time
field R¢, and the six-dimensional unit matrix I for the cotangent bundle.

By recalling that the Galilei symmetry holds only for interactions which are of
local and potential type, the notion essentially characterizes the historical Galilei's
concept of “wmassive point™ moving in vacuum under action-at-a-distance
interactions (Fig. 1.1).

In particular, the intrinsic characteristics of the particle (mass, spin, charge, etc.)
are immutable, classically and quantum mechanically, because points are immutable
geometrical objects.

This perennial character of the intrinsic characteristics of particles is lost under
Santilli's covering relativities. In fact, as we shall illustrate shortly, the new relativities
represent the actual shape of the particle, as well as all its possible deformations,
called mutations in Santilli (1978c).

The NOBEL COMMITTEE can now see better why the Galilei symmetry G(3.1) is
unique, while there are infinitely many isotopic coverings G(3.1). In fact, the latter
essentially represent the physical reality according to which one extended particle
can assume an infinite variety of different configurations, evidently depending on the
local physical conditions.

Consider a spherical particle, say, in vacuum. When the same particle penetrates
within an inhomogeneous medium, it can assume an infinite number of different shapes
depending on the local density, pressure, etc. All these infinitely different
configurations, including the simpler isogalilean one, are represented with the
following

DEFINITIONV Il1.7.1 floc. cith A nonrelativistic isoparticle Is a representation of
one of the infinitely possible Santillis isogalilean symmetries G(3.1) on isospace
R TEmGH) , Theorem V.51,

- wi 0h0 1,7 @y @)
GB1): 2 = gWxa = &w) T, ={[e| 11,  (V.58))
g

Egquivalently, Santifli’s nonrelativistic iscparticle can be derined as the
generalization of the conventionzl pariicle mduced by the isotopic lirtngs of
the unit

=1 e® =l e, 1eTERSH =1y=diag G161 e T*EGGH.  (V.59b)
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§ = diag. (111) = G = diag. (812, By2, Bg?) > 0. (v.59c¢)

We shall now present a few classical nonrelativistic examples of isoparticles. A
technicalk knowledge of the preceding analysis is assumed.

FREE™ ISOPARTICLE In this case, N = 1, all selfadjoint and nonselfadjoint forces
are null, and the isometrics § = G must evidently be constants, and we have (Santilli
(1988a), (19914))

8 = G = diag. (bg2, bzz, bgd), bj= constants > 0. (v.60)
Hamilton-Santilli equations (1V.55) then describe, as expected, the free particle

pi = - bi_z 8H/drj =0. (V.61D)

namely, the isoequations of motion are identical to those of the conventional Galilei’s
relativity.

Despite that, the use of the Santilli's relativities is not trivial, because it permits
the direct and immediate representation of:

1) the extended character of the particle;

2) the actual shape of the particle considered; and

3) an infinite class of possible deformations of the shape itself;
all the above already at this primitive, classical, nonrelativistic level.

By comparison, if one insists in preserving the conventional Galilei relativity:

1) the extended character of the particle can be represented only after the
rather complex process of second quantization;

2) the second quantization does not represent the actual shape of a particle, say,
an oblate spheroidal ellipsoid, but provides only the remnants of the actual shape; and,
last but not least, :

3) possible deformations of extended particles are strictly excluded, as well
known, for numerous reasons, €.g., because they imply the breaking of the conventional
rotational symmetry.

As an illustration, there are reasons to suspect that the charge distribution of the
proton is not perfectly spherical, but characterized instead by a deformation of the
sphere of the oblate type computed by Nishioka and Santilli (1992)

8 = diag. (1,1,1) = g =G = (diag. (1, 1, 0.6), (v.62)

(where the third axis is assumed to be that of the intrinsic angular momentum), which
permits an interpretation of the anomalous magnetic moment of the particle.

Oblate spheroidal ellipsoid (V.62) can be directly and exactly represented by
Santilli’s relativities, already at the classical nonrelativistic level of this treatment via
the value of the isometric
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b2 =1 b2 =1 b? =06 (v.63)

It is evident that such an actual, direct and immediate representation of the
shape of the proton is impossible within the context of the conventional Galilei's
relativity, classically and quantum mechanically.

We shall indicate in subsequent strudies that, in the transition to the operator
version of the theory, the representational capabilities are enhanced because of the
appearance of additional degrees of freedom besides that offered by the isounit of the
enveloping algebra.

The above case illustrates the simplest conceivable (and perhaps most
fundamental) mutation of a Galilean particle. In fact, the original particle has the
perfectly spherical shape expressed by the underlying metric 8§ = diag. (1,1,1), while
Santilli's isoparticle can acquire any one of the infinitely many ellipsoidical
deformations of the original sphere expressed by the isometrics 8.

The case also illustrates a first use of the isoeuclidean spaces E(r,8#®), the
geometric one for the characterization of shape only without any force.

In particular, it should be indicated that this is a sort of limiting case because
the notron or Isoparucle generally regquires nontrivial mmteractons . With the terms
“free” isoparticles we therefore refer to a conventionally free particles which
however have nongalilean characteristics.

In conclusion, the mutation of shape under consideration at this primitive
Newtonian level is intrinsically contained in the lifting of the underlying metric § = 3§,
with consequential liftings of fields, metric spaces, space-time symmetries, etc.

Equivalently, it can be geometrically expressed by the symplectic isotopy wy = S"Z"z =

woxTo and it is algebraically/group theoretically characterized by the Lie-Santilli

isotopy whV = Q°WV = ¢l0 1,0V 1, = T2_1 > 0

LSOPARTICLE UNDER EXTERNAL POTENTIAI INTERACT/ONS. The simplest
possible generalization of the preceding case is the extended-deformable particle

under conventional, external, pofentra/ interactions. In this case, N =1,V # 0, FSA = 0,
all nonselfadjoint forces are null, and the b-quantities can still be assumed to be
independent of the local coordinates in first approximation, although they can be
dependent on the local strength of the potential and other local quantities. The
equations of motion are then given by (loc. cit.)

L2
i = b, “8H/dp,

5 = - .2 :
py=-b;728H/dr

p;/ m=vj, (v.64a)

-(@V/dr) ri/r, (V.64b)

where one should assume that the deformation of shape 8 = § is volume preserving
§ = 3, detd = det?- (v.65)

Equations of motion (7.7) also coincide with the conventional Galilean equations
when
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r=(ri bizri)%= ?=(Al‘i Sijf‘j)%, F: = r;b; (v.66)

namely, when the coordinates rj in the geometrical space E(rS.®) coincide with the
distance ;= rjbj in our physical space E(r,3,}).

Again, the transition from the Galilei to Santilli's covering relativities is not trivial.
In fact, it first allows the direct representation of the actual shape of the particle, as in
the free case. In addition, Zhe new relativities can represent the deformations or the
original shape caused by the external rorce .

In fact, starting from an extended particle with the shape represented by the
isometric 8§, we have to expect from simple mechanical considerations that the

application of the external potential force FSA will cause a deformation of the shape
into the isometric §".

Needless to say, one may argue that such deformation could be small for given
conditions. The point is that perfectly rigid bodies do not exist in the physical reality.
The zaoun: of deformations for given conditions is evidently an open scientific
debate, but its exZszence is out of any scientific doubt.16

In conclusion, the rotational and Galilei symmetries characterize a zheory of
rigid bodies , as well known. The above examples confirm that Santilli’s isorotational
and isogalilean symmetries characterize instead a theory or derormable bodies
(Figure 1V.1) without violating the abstract 0(3) and G(3.1] symmetries, but by realizing
them instead in their most general possible form.

ISOPARTICLE UNDPER EXTERNAL NONAAMILTONIAN INTERACT/ONS The next
examples are those of an extended-deformable isoparticle under, this time,
nonpotentiz/ external fields caused by motion within a physical medium. Noze that
s class ol mteractions Is Strictly excluded by the conventional Galiler refatuvity, but
It Is rather natoral ror Santilfis covering refalivities.

In this case, N = 1, the selfadjoint interactions can be assumed to be null (V = 0)
for simplicity, but we have nontrivial nonselfadjoint interactions represented via Lie-
Santilli formulations.

A first simple case in one space-dimension is given by a particle moving within a
resistive medium under a quadratic damping force (loc. cit.)

m¢ + yid = 0, (v.67)

with the Birkhoffian representation (Santilli (1982a))

16 1n particle physics, this is precisely the case of protons and neutrons (see Part 1V). Their extended
charge distribution (of about 1F in radius) is in fact expected to experience deformations under
sufficiently intense external forces or collisions, resulting in a consequential alteration of their intrinsic
magnetic monent, as indicated at the end of Sect. V.3. These novel conditions are predicted and directly
represented by Santilli's isogalilean relativities, classically (1989a) and quantum mechanicaly (1991f).
Again, the amount of deformation of the charge distribution/intrinsic magnetic moment of protons and
neutrons under given external forces is debatable, but the idea that these partecles have a perfectly
rigid charge distribution and a consequently perennial magnetic moment under whatever conditions
exist in the Universe, has no physical value.
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R° = (p3, 0), B= pdp/2m, § = el (V.68)

which provides a first approximation of systems such as a satellite penetrating
Jupiter’s atmosphere or, along similar conceptual grounds, a proton moving within the
core of a star.

The above case illustrates a second use of the isospaces, hamely, that for the
characterization of nonpotential forces of the interior dynamics. In fact, the lifting
E(cs®R) = Erd#K), 8 =18 = exp yr > 0, essentially represents the local, but

nonlinear and nonselfadjoint resistive force FNSA = _yp2

Note that the resistive forces imply an evident breaking of the conventional
Galilei symmetry, while Santilli's techniques permit the restoration of the exact
symmetries at the broader isotopic level. Note also that the case considered is a direct
illustration of physical validity of Santilli’s isoboosts.

The above example can be readily extended to three dimensions, e.g., for motion
along the third axis

.Y . o r
R = (p 8ij 0, 8= diag. (by2 by2 bg?e?), B = pj &j pj/ 2m, (V.69)

with a deformation of shape, this time, due to contact interactions!?.

Along similar lines, one can have an isoparticle subject to selfadjoint (Vv # 0) and
nonselfadjoint (8 = 3(r)) interactions. In this case, a simple example is given by the
quadratically damped oscillator

P+ or o+ syi2 + 4yrd = o, m=k=1, ' (v.70)

with Birkhoffian representation (loc. cit.)

R = (pe’",0), = pe’p + e’y (v.71)

Similarly, an illustration of a nonlocal and nonselfadjoint internal forces is
provided by the isometric

8 = exp[yr + k_rc do ¥, r, p,.), (v.72)

where the first term characterizes the damping of the center-of-mass trajectory due
to the quadratic forces in the velocity, and the second term provides the nonlocal
correction due to the shape ¢ of the particle considered.

Numerous additional examples can be worked out in any desired combination of
selfadjoint and nonselfadjoint forces, the latter being local-differential or nonlocal-
integral, as desired. A number of explicit examples of nonlocal interactions can be
found in, e.g.; Hostandter et al (1971) or Fujimura et al (1971) and in the references quoted
herein.

In the transition to elementary particles, we shall encouter nonlocal interactions
directly expressing the overlapping of the wavepackets § and ¢ of two particles

17 This case is particularly relevant in elementary particle physics to represent the deformation of the
charge distribution of hadrons under sufficiently intense external fields and/or collisions, as we shall
see in Part IV.
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represented by Animalu’s (1994 isounit

1= Tlexp tCIdr’ ¥(r) o) (v.73)

where one can see that, for nonoverlapping waves, the isounit 1 recovers the trivial
unit I of quantum mechanics. Isounit 1 illustrates that the systems outlined in this
section are intended to be a mere classical image of the systems expected in Santilli’s
nonlocal realization of the strong interactions (Part III).

In all the above cases, Santilli's covering relativities permit the explicit
construction of the generalized invariance G(3.1) via the computation of the isounit
directly from the equations of motion, and its use in the exponential characterizing
G(3.1) as reviewed in Sect. V.5, all in a way which reconstructs the exact Galilei
symmetry in isospaces R¢xT*E(r,G.®), while the conventional symmetry is manifestly
broken in RxT*E(r.8.R).

V. CONCLUDING REMARKS.
The most important conlusion of this Part I which is here submitted for consideration
by the NOBEL COMMITTEE is that

Santillis classical isogalilean relativities are fully consistent on
mathematical grovwnds, and amply verified in the imterior physical
reality or our environment.

Stated differently, and contrary to the relativistic case of Part II which dooes
need experimental verificastion, Santillis classical isogalilean relativities need no
further experimental verification.

The grounds for the above statements are the following:

The existence theorems of Santilli's isotopic rormulations!®
permit the construction of the isogalilean symmetry for alf
closed, linear and nonflinear, local and nomlocal and Hamiltonian
or nonhamiltonian systems of the exterior and interior physical
reality. Samiilli's Iisogalilean relativities are then “directly
universal~ in classical Newtonian mechanics, that Is, they hold for
a2/l possible interior and exterior!® systems (universality),
directly in the frame of the experimenter (direct universality).

Also, we would like to take the liberty to point out to the NOBEL COMMITTEE that
the possible granting of the NOBEL PRIZE to Santilli would be different than any of the
recent NOBEL PRIZES, essentially consisting of awards for clearly outstanding but
past accomplishments without significant implications for the swrzure of physics. We

18 See the Theoraw of Direct Uaiversality of Birkhoffian Meckanics for all local Newtonian system of
the enclosed monograph Santilli 1982a), p. 54, and the corresponding Zheorer: of Direct Uuiversakity of
the Birkhoffian-rsotopic Meckanic for all nonlocal systems of Santilli (1991c).

19 The conventional Galilei's relativity is a simple particular case of Santilli's covering relativities.
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therefore closed this Nomination with the remarks that

The possible graniing of a NOBEL PRIZE IN PHYSICS te Professor
RUGGERO MARIA SANTILLI would have a prorfound influence in
the FUTURE of physics, because it would provide the necessary
authority to terminate a rather widespread scientific inertia
against truly rundamental advances, it would Jlaunch a
fundamentally  new generation of  relativities with expected
implications in all branches of physics and, in the wards of Profr.
Leipholtz of the University of Waterloo, Canada, it would confirm
the birth orf a ~“new epoc”™ in physics , fundamentally beyond
Galilei, Newton and Finstein.
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APPENDIX A:

SANTILLI'S CLASSICAL LIE-ADMISSIBLE
FORMULATIONS

The Lie-isotopic formulations outlined in the main text were achieved by Santilli
as a particular case of the still more general formulations of Lie-admissible
type, as indicated in the very title of a main reference of this Nomination, the
memoir Santilli (1978a), see the title of the memoir in Exhibit D.

No in depth appraisal of Santilli's research can be achieved without some
knowledge of at least the analytic, algebraic and geometric structures
underlying these broader formulations. One can then see in this way the birth of
a second generation of covering theories for yet more general physical
conditions..

The study of the classical Lie-admissible formulations was initiated in
papers ( Santilli (1967), (1968), and (1969);, then developed in the memoir (1978a); and
finalized in monographs (Santilli (1978c) and (1981a) (the operator Lie-admissible
formulations originating from the second memoir off the same year, Santilli
(1978c) will be outlined in Part III). As it was the case for the Lie-isotopic
formulations, Santilli is the originator and remains the sole author for
fundamental reseaerch on c/zss/ca/ Lie—admissible formulations. However,
unlike the Lie-Santilli algebras which have seen no contribution by
mathematicians to this day, Lie-admissible algebras have been the subject of
considerable mathematical research identified in the bibliography by Baltzer et
al. (1984). Also, numerous physicists conducted independent research in the Lie-
admissible formulations, although mostly in the operator formulation of the
theory and, for this reason, thety will be identified in Part Il

A.1: ANALYTIC PROFILE.

As recalled in Sect. III, the central physical objective of the classical Lie-
admissible formulation is the representation of the most general known
nonlinear, nonlopcal and nonhamiltonian systems (I.3) in open-nonconservative
conditions. '

This physical arena can be best visualized by considering o#ze
extended-deformable object moving within a physical medium which is
considered as externa/, such as a satellite during re-entry in Earth’s
atmosphere.

As a result, while conventional Lie and Lie-isotopic formulations use
symmetries for the characterization of conservation laws, Zie more general
Lie—admissitle rormulations use syhmmetries ror the characterization of tme-
rate-or-variations of plhysical quantities , of course, in a covering way, that is,
in such a way to recover the conventional Lie-isotopic or the simpler Lie
formulation whenever the physical quantities considered are conserved.
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As recalled in Sect. I, the anhalytic foundations of the approacCh are
given by the equations originally conceived by Hamilton (1834) for interior dynamical
systems, those with external terms

dHt, r, p)
fka = ———— = Pyq/Mg: (A.12)
Pya
_ “8H(t, 1, p)
pka =~ + Fka: (A.lb)
arka
H = ppo P,/ 2mg + V(r), (A.1c)
Fra = Fodaltrpp.) + ‘rc doFNSA 6, p, P..), (A.19)

k=1,23(=xy,2, a=1,2,..,N.

As one can see, the ~direct universality” of the equations for the
representation of all possible systems (I.3) in the coordinates of the exterimenter is
immediate, because the Hamiltonian H = T + V represents all local and potential forces,
while the external terms Fka represents all remaining nonlinear, nonlocal and

nonhamiltonian forces. However, in so doing, the Hamiltonian H is necessarily
nonconserved and, for this reason, the equations characterize an open
nonconservative system.

But, as recalled in Sect. 111, the brackets of the time evolution characterized by
Eq.s (A.1)

JA
AxB =[AB] + —— Fp,. (A.2)
appa
(where [A,B] are the conventional Poisson brackets) violate the left scalar and

distributive laws (Santilli (1978a)). For this reason they were rewritten by Santilli in the
unified form in phase space T*E(r,5,%) with the now familar local coordinates a = (r, p),

oH(t, a)
al = s, a,a,.) =
3aV
I'ka . 9H/3pg, OH / 9py,
- = = (A.3)
Pra — 8H/dry, + Skajb aH/ap].b - gH/0rgq + Fka'
called Hzamilton-admissible equations ,where
ia) = o+ Miea), (A.4)

ol is the (totally antisymmetric) canonical Lie tensor (I11.2), and sMV is the totally
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symmetric tensor

s = (V) = diag. (0,s), s=F/(dH/ap) (A.5)

In the disjoint r— and p-variables, Eq.s (A. 2)can be written

aH(t, r, p)
fgg = — (A. 6a)
Pya
_ aH(t, r, p) aH(t, r, p)
Pka =~ * Saiab PR ), (A. 6b)
’yq Pia
The brackets of the theory are now given by
0A dB 0A oB
(B) = —— sM(ta, ) —- = [ABl + —Sp5 — (A.7)
daal da 9Pia oPja

The consistency of Santilli's reformulation (A.3) is soon established by the fact
that brackets (A.8) correctly represent the time-rate-of-variation of the energy

oH

H = HH = Fra = VkaFka (A.8)

9Pka

Santilli (1978a) (1981a) discovered that the most general possible nonautonomous
Birkhoff's equation in T*E(r8.R)

dB(t, a) aRy, (t, a)
alk = QiW(ta) [ + - mr=1,2..,N, (A.9a)
9aV ot ‘
V = -1\uv
QM (|Qaﬁ| v (A.9b)
3R, (t, a) R, (ta)
Qy = v S , (A.9¢)
dalt 9aV

also do not characterize a consistent algebra, in the sense that the brackets of their
time evolution also violate the right scalar and distributive laws.
For this reason, he reformulated Eq.s (A.9) in the identical form

9B(t, a) 9B(t, a) aRu(t, a)
ab = W a,.) = QM(t, a) +
9aV 9aY at

(A.10)

called Birkhorr-admissible equations, where
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. AV
UV = oWV S” , (A.11)

namely, where the antisymmetric part attached to the S-tensor is the most general
possible Birkhoff’s (rather than the canonical) tensor.
The brackets of reformulation (A.10) are now given by (Santilli (1981a))

9A 9B
AB) = — W a,.) — (A.12)
dat daV

and they are now algebraically consistent as well as characterizing a Lie-admissible
algebra. Moreover, note that the mapping of brackets (A.7) into brackets (A.12)

(AB) = (A B (A.13)

constitutes a Lie-admissible isotopy, in same way as the transition from the Poisson
brackets [A,B] to the Birkhhoffian brackets [A , B] constitutesd a Lie isotopy (loc. cit.).

Even though Eq.s (A.10) might be considered physically redundant over Eq.s
(A.3), (because the latter are already directly universal for all possible systems (1.3)),
the generalization is analytically nontrivial. As an example, it allows the derivation of
the analytic equations from the most general possible nonautonomous Pfaffian
variational principle

=sf t:Q[Ru(t, a)ak - B, a)] = 0, (A.14)

from which Eq.s (A.9) and their identical reformulation (A.10) follow.
Regrettably, we are forced for brevity to refer the interested Reviewer to
Santilli (1981a) for further analytic details.

A.2: ALGEBRAIC PROFILE
By no means, the loss of a consistent algebra in the brackets of the time evolution laws
is a mere “mathematical occurrence”, because it carries serious physical impocations.
As an example the angular momentum can be consistently formulated in
classical Hamiltonian mechanics because the underlying Poisson bracklets, first of all,
verify both the right and left scalar and distributive laws and, secondly, characterize a
Lie algebra.
When the same system becomes open-nonconservative and it is represented
via Hamilton’s historical equations (A.1), the entire theory of the angular momentum
cannot be consistently formulated any more, let alone applied to specific cases. In

particular, the magnitude J2= JkJk of the angular momentum, while having a fully

consistent meaning in conventional Hamiltonian mechanics (as the Casimir invariant of
0(3)), it loses any consistent formulation when referred to Eq.s (A.1).20

20 As it is the case for most of Santilli's studies, these classical occurrences are a mere basis for the
identification of corresponding implications in quantum mechanics. In this case, the operator equatlons
corresponding to Eqs (A.1) are given by Schrédinger's equations with nonhermitean Hamiltonians H # H

as widely used, e.g., in nuclear physics. The brackets of the theory are then given by A®H = AH' - HA
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Santilli arrived at the consistent reformulation (A.3) by imposing the following
conditions on the new brackets (A.B):

I) They must be algebraically consistent, that is, verify the right and left scalar
and distributive laws);

I) They must 7ol be totally antisymmetric as a necessary condition to
represent the time-rate-of-variation of the energy H = (H,H) # 0; and

I1I) They must admit the convenmtional (Lie) Poisson brackets as a particular
case when all external forcees are null, i.e.,

(AB) | Fia=0 " [A,B]. (A.15)

Santilli (loc. cit) then proved that the above conditions identify uniquely the
so-called geweral Lie-admissible aleebras .

According to Albert (1948), an algebra U with (abstract) elements a, b, c,..and
(generally nonassociative, abstract) product ab over a field F is called a Lie-

admissible algebra, when the attached algebra U , Which is the same vector space as
U, but equipped with the product

L) [a,b]U = ab - ba, (A.16)

is Lie.
The simplest Lie-admissible algebras are the associative algebra & with
elements A, B, ... (e.g., matrices) and product AB. Then

& [A’B]L‘ = AB - BA, (A.17)
is the familiar Lie produce of current use in mathematics and physics.

The next Lie-admissible algebras are the Lie algebras L themselves because,
fodr ab = [A,B]§, we have

L7: [ABl =208, . . . . . . . (A13)

Santilli (1978a) called the most general possible algebras of the type considered
the general Lie-admissible algebras U when they verify no condition other than the
general Lie-admissibility law

(A,B,C) +[B,C,A)+(C,A,B) = (C,B,A) + (B, A, C) + (A, C,B), (A.19)

where

and they also do not characterize a consistent algebra any more, let alone they violate the lie algebra
axioms. Under these conditions, and contrary to a rather popular but erroneous use, quantities centrally
dependent on a consistent algebra, such as the notion of spin,. cannot be consistently defined |, let
alone consistently applied (see Santilli 1978d) for details). This illustrates rather forcefully the serious
physical implications originating from the mathematical loss of a consistent algebra in the brackets of
the time evolution.
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(A,B,C) = (A, (A,B)-((A,B),C) (A.20)

is called the associator, and (A, B) is the Lie-admissible product (A.7)

Simpler Lie-admissible algebras are those of the so-called Zex7b/e type, and
they occur when, in addition to axiom (A<), verify the law. Yet simpler Lie-admissible
algebras are the Lie algebras themselves. The simplest possible Lie-admissible
algebras are the associative algebras.

It is easy to see that brackets (A.7) verify all conditions I, II and III above.
Moreover, the brackets are Lie-admissible because the attached brackets are Lie
(Santilli (loc. cit.)),

UT: (ARl = (AB) - BA) =2ABl (a.21)
or, equivalently, because the attached antisymmetric tensor
s - g = pqbv (A.22)

is canonical, and the same occurs for the more general brackets (A.12).

The regaining of a consistent algebraic structure carries rather important
physical implications.

As an example, £g.5 (4.1 do not admit a consistent exponentiation Into a ruite
group or semgroup . On the contrary, when written in their equivalent Lie-admissible
form (A.3), they can be easily exponentiated into the form (Santilli (1978a), (1981a))

nv
tosHVa, H) (au) a (423

n

In particular, e above structure leaves mmvarizinl the equations ol motoin .
In fact, from a general property of vector-fields on manifolds we have (loc. cit.)

rta) =

tOSl‘w(avH) @)
}rita) = r(a), (A.24)

{e|A

For this reason, structures of type (A.23) constitutes an intriguing generalization of the
notion of Lie-isotopic symmetry (Sect. 1V.9) called Lre-zdwmissible symmerry (loc. cit.).

Also, the broader Lie-admissible symmetry (4.23 represents the time-rate-
or-variation of the energy , exaclly as desirea,

toshV (6VH) ® )

Ho=Hta) - {e WY Hita) = v Fia- (A.25)

a

Moreover, exponentiation (A.23) admﬁts the following explicit form
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oGV
L OeHe)

a

A+ tOA, H) /1t + t°%(A, H), H) /20 + ... (A.26)

namely, symmetries (A.24 admit nen-Lie, Lie-admissible algebras in the neighborfood
or the identity.

The above properties signal the birth of a generalization of the entire Lie’s and
Lie—isotopic theories in a yet more general Lie-admissible form. We are here referring
to a Lie-admissible generalization of the entire Lie’s theory, such as enveloping
algebras, Lie algebras, Lie groups, representation theory, etc.

These studies were initiated by Santilli (1978a), (1981a), (1982a) via a (flexible) Lie-
admissible generalization of the Popincaré—Birkhoff—Witt Theorem (see also Ktorides,
Myung and Santilli (1980)), the Lie-admissible generalization of Lie’s First, Second and
Third Theorem, the notion of Lie-admissible group, the bimodular representation
theory (see also Santilli (1979)), and other aspects, with the understanding that so much
remains to be done. For additional mathematical studies of abstract Lie—admissible
algebras, one can consult the bibliography by Balzer (1984).

A.3: GEOMETRICAL PROFILE

As stressed in Santilli's work, physical theories in general, and relativities in
particular, are a simbiolic expression ol deeply inter-related, analvtic, algebraic and
geomeltric rormu/ations . No truly novel relativity can be achieved without prior
achievement of a generalization of each of these three basic structures.

After identifying the appropriate analytic structure of the equation and their
Lie-admissible character, Santilli proceeded with the discovering a per new geometry
(Santilli (1978a), (1981a)), he called spmplectic-admissible geometry , which is the
geometric counterpart of the Lie—admissible algebras, in exactly the same way as the
symplectic geometry is the geometric counterpart of the Lie algebras, and the
symplectic-isotopic geometry is the geometric counterpart of the Lie-isotopic
algebras.

Recall that the direct geometric structure underlying the conventional
Hamilton’s equations is the exact, canonical, symplectic two-form (A.

w = sy, dal A da¥; (A.27)
the geometric structure underlying Birkhoff’s equations is the exact, symplectic,
Birkhoffian two-forms

— L V.
Q = 19,) dak A da¥ (A.28)

and the geometric structure underlying the Hamilton—-Santilli equations is the isoexact,
symplectic-isotopic two-form on isospace T*E(r,S,)



& =11,%a) wy, dah A ga¥ (A.29)

Finally, recall that the covariant (geometric) tensor and the contravariant
(algebraic) tensor are inverse of each other, and that the symplectic (or symplectic-
isotopic) character of the two-form provides the necessary and sufficient conditions
for the cortresponding brackets to be Lie (or Lie-isotopic).

The first point identified by Santilli (oc. cit) in the study of the geometry of
Eq.s (A.3) is that e symplectic geometry and related exterior calculus, whether i
their conventional or isotopic formulation, are intrinsically vnable to characterize the
Lie-admissible algebras.

This is due to the fact that the calculus of exterior forms is essentially

antisymmetric in the indeces, while the Lie-admissible tensors S"V are not, and the
same occurs for the covariant counterpart

St a) = (| s®f Y wy £ 8 (A.30)

VI

In fact, the construction of a conventional exterior two-form with the above
tensor implies the reduction

Syy dah Ada’ = s, da A da?, (A.31)

namely the symplectic geometry automatically eliminates the symmetric component of
the S-tensor, thus characterizing only its Lie content.
The main idea of Santilli's symplectic-admissible geometry is that of

generalizing the conventional exterion calculus, say, of two differentials da’ and daV
into a more general calculus of differentials called extersor-adivissible calculus . It is
based on a product, say @, which is neither totally symmetric nor totally antisymmetric,
but such that its antisymmetric component is the conventional exterior one,

dat o da¥ = dal Ada¥ + daY xdaV, (A.32a)

dah A da¥ = - da¥ A dat, daPx daV = gdaV x gaM, (A.32¢)
This allows the introduction of the exzericir—-admissible farms

A A,

— — & & - vV
8o = dfa), 8 = 8§, dal, 32 = S;lw daMt o daV, ... (A.33)

The exact exterior-admissible rorms are then given by

3
o = — dal, (A.34a)
dat

[¢ 4
—
I
[ =)
[
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& & aAV
8 = d8) = ——— da* 0 da’, (A.34b)
akt

The calculus of exterior-admissible forms can indeed characterize the Lie-
admissible algebras, because they characterize, not only the antisymmetric component
of the Lie-admissible algebras, but also their symmetric part, via the two—-forms

14
Syyita) dat o da” =, fa) dat A da¥ + 5[t 2) dat x da, (A.35)

13
Structures (A.34b) were called by Santilli (loc. cit) spmplectic-admissible
two-foruzs because their antisymmeyric component is symplectic, in a way fully
parallel to the property whereby the antisymmetric part of the Lie-admissible algebras
is Lie. Spaces T*E(r,5,8), when equipped with two-form (A.34b) were called spmp/ectic-
admissible manifo/ds and the related geometry symplectic-adumissible geometry .

The most salient departure of the exterior-admissible calculus from the
exterior calculus in its conventional or isotopic formulation is that the Poincare’
Lemma no longer holds, ie., for exact symplectic-admissible two-forms we have in
general

8, =d§, a8, = dld8,) = o. (A.36)

In actuality, within the contest of the exterior—admissible calculus, the
Poincare” Lemma is generalized into a rather intriguing geometric struture which
evidently admits the conventional Lemma as a particular case when all symmetric
components are null.

The geometric understanding of the Lie-isotopic algebras requires the
understanding that ke vakidity of the Poincare Lemma within the context of the
symplectic-isotopic geometry Is a necessary condition for the representation of the
conservation of the total energy unider nonhamiltomzan internal forces, as putlined in
the main text

By the same token, the geometric understanding of the Lie-admissible algebras
requires the understanding that z&e /ack of validity of the Poincaré Lemma within the
context of the more general svuplectic-adinissible geometry Iis a necessary condition
for the representation of the tme-rate-olf-variation of the energy of an mterior
dyvuamirical sysiemn.

By using the above generalized, Lie-admissible, analytic, algebraic and
geometric structures, Santilli then formulated his Zie-adurissible generalizations of
Galilers refztivity for open nonconservative systems, as stated in the title of the
memoir (1978a), and then elaborated in the monograph Santilli (1981a).

The NOBEL COMMITTEE should know that such generalized relativity has a
bimodular structure (Santilli (1979), namely, a structure which, in its most general
possible form, is composed of two inequivalent modular-isotopic actions, one to the
right (forward in time) and one to the left (backward in time), which is one of the most
complex notions of contemporary mathematics, of which we possess today rather
limited knowledge beginning at the pure matheatical level. While the Lie-isotopic
formulations are at an advanced stage, the study of the still more general Lie-
admissible formulations will certainly continue well into next century.
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To conclude this Nomination, in the main test we have reviewed the series of
discoveries that lead Santilli to a Lie-isotopic generalization of Galilei's relativity for
closed systems with nonlinear, nonlocal and nonhamiltonian interior forces. In this case
the abstract Lie character is preserved, but realized in its most general possible form
preserving the original generators. This guarantees the validity of the conventional
total conservation laws, while permitting generalized interior forces.

In this Appendix we have outlined the foundations of a further generalization
of Galilei’s relativity of Lie-admissible character. In this case, the Lie structure itself is
abandoned in favor of a covering algebraic structure, while the emerging generalized
symmetries directly represent the covering notion of time-rate-of-variation of
physical quantities.

The sequential quantum leaps in physical and mathematical knowledge are
then rather evident.
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Abstract

In order to study the problem of the relativity laws of nonconservative and Galilei form-noninva-
riant systems, two complementary methodological frameworks are presented. The first belongs to
the so-called Inverse Problem of Classical Mechanics and consists of the conventional analytic,
algebraic and geometrical formulations which underlie the integrability conditions for the exist-
ence of a Lagrangian or, independently, of a Hamiltonian. These methods emerge as possessing
considerable effectiveness in the identification of the mechanism of Galilei relativity breaking
in Newtonian Mechanics by forces not derivable from a potential. Nevertheless, they do not exhi-
bit a clear constructive capability for a possible covering relativity. For this reason, the second
methodological framework is presented. It belongs to the so-called Lie-Admissible Problem in
Classical Mechanics and consists of the covering analytic, algebraic and geometrical formula-
tions which are needed for the equations originally conceived by Lagrange and Hamilton, those
with external terms. These formulations are characterized by the Lie-admissible algebras which
are known to be genuine algebraic covering of Lie algebras, and which in this paper are identified
as possessing (a) a direct applicability in Newtonian Mechanics for the case of forces not deriva-
ble from a potential, (b) an analytic origin fully parallel to that of Lie algebras, i.e., via the brackets
of the time evolution law, (c) a covering of the conventional canonical formulations as classical
realizations, (d) an implementation at a number of levels of Lie’s theory, including a fundamental
realization as enveloping nonassociative algebras, (e) a generalization of symplectic and contact
geometry as geometrical backing and (f) the capability of recovering conventional formulations
identically at the limit of null external forces, here interpreted as relativity breaking forces. A co-
vering of the Galilei relativity, called Galilei-admissible relativity, is then conjecturedforindepen-
dent scrutiny by interested researchers. A number of potential implications, particularly for hadron
physics, are then briefly considered for future detailed treatment.
*Supported by the U.S. Department of Energy under contract number ER-78-S-02-4742.A000.
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“It 1s...a hope and a prophecy that this book will soon become
essential knowledge for all those engaged in the development of
science...Professor Santilli’s discussion of the subject
distinguishes itself by completeness, mathematical rigor,
and clarity of physical applications.”

R. Mignani
University of Rome

Foundations of Theoretical Mechanics |
and 1]

Ruggero M. Santilli, Basic Institute for Research,
Cambridge, Massachusetts

The Importance...

The contemporary conception of Galilei's relativity is

based on systems of particles that are both closed—in the
sense that they verify conservation laws—and are
Hamiltonian-type.—or have constituents that are ap-
proximated as being point-like. Because most real systems
are non-Hamiltonian. its applications have, for the most
part, been limited to theoretical exercises.

Professor Santilli, drawing from mechanics, geometry. and
algebra, develops a generalization of Galilei’s relativity for
closed systems that considers both Hamiltonian and non-
Hamiltonian internal forces. Based on original research,
Santilli’'s discovery essentially establishes a new branch of
physics, with important applications in statistical and space
mechanics, theoretical biophysics. particle physics, and
engineering.

The Books...

Volume |. The Inverse Problem in Newtonian Mechanics
develops the conditions in which an arbitrary Newtonian
system can be integrated to admit a Lagrangian or,
independently, a Hamiltonian representation. In addition,
it surveys results in the field going back three centuries.
Building on the findings of the first volume. Birkhoffian
Generalization of Hamiltonian Mechanics constructs a
step-by-step generalization of Hamiltonian mechanics—a
generalization that on one hand, preserves the analytic,
Lie. and symplectic characters of Hamilton's equations,
yet. on the other, it expresses the principle in the most
general form possible. This constitutes the foundations of
generalized relativity. The numerous examples and
applications which are cited throughout the text emphasize
the direct universality of the new mechanics for local non-
Hamiltonian systems.

Foundations of Theoretical Mechanics

Volume I:

The Inverse Problem in Newtonian Mechanics
1978/266 pp./S illus. /cloth $37.00

(Texts and Monographs in Physics)

ISBN 0-387-08874-1

Volume II:

BirkhofTian Generalization of Hamiltonian Mechanics
1983/370 pp./cloth $66.00

(Texts and Monographs in Physics)

ISBN 0-387-09482-2

The Reviews...

Volume I:
“Truly epoche-making...It can be said that this is a
remarkable book of highest quality and greatest
importance to anyone who is interested in the progress of
theoretical mechanics.”
—H.P. Leipholz, University of Waterloo,

JOURNAL OF APPLIED MECHANICS

“This outstanding book treats the title problem, which
is making rapid and significant impact in mechanics as
well as control theory...Reviewer recommends this text
highly.”

—L.Y. Bahar, Drexel University, AMR

Volume 11:

“It’s all to Professor Santilli’s credit that in the second
volume of his treatise he proves the existence of a
mathematical structure of Lie type capable of these (non-
potential) interactions.™

“The monograph is »= excellent completion of the existing

literature. It deserves the attention of all students as well

as researchers, who deal with classical mechanics and/or

field theory.”

—J. Kobussen, Swiss Federal Institute for Reactor
Research

£ Springer-Verlag

i New York Berlin Heidelberg Tokyo
175 Fifth Avenue, New York, New York 10010

OFFICIAL ANNOUNCEMENT OF PROF. SANTILLI'S DISCOVERY APPEARED IN
PHYSICS TODAY, ISSUE OF JUNE 1983
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Harvard University, Lyman Laboratory

September 1977

tnformal Seminar Course
by Ruggero Maria Santilli

The inverse Problem in Newtonian Mechanics and Field Theory

Course Outline

Title

Objective

Means

Prerequisites
Duration

Organization

Reference

Qutline

Organizational
Meetings

The Inverse Probiem in Newtonian Mechanics
and Field Theory

a study of Lagrange’s and Hamilton’s equations

1. integrability conditions for analytic representations of systems
with couplings not necessarily derivable from a potential,

2. methods for the computation of a Lagrangian or, independently,
of a Hamiltonian, when they exist, from given arbitrary
systems,

3. outline of the applications to Newtonian mechanics, space
mechanics, optimal contro! theory, plasma physics and
classical field theory.

knowledge of mechanics and differential equations
25 lectures of 1.5h each

(a) 50% of time dedicated to the methodology of the Inverse
Problem for ordinary differential equations (Newtonian
mechanics, etc.),

(b) 30% of time dedicated to the extension of the methodology
to partial differential equations {field theory),

(c) 20% of time dedicated to applications and open problems,

(d) several illustrative examples will be either worked out in
class or distributed,

(e) a number of homeworks will be assigned.

a limited number of copies of two forthcoming monographs
on the Inverse Problem by R.M. Santilli (to be published by
Springer-Verlag! will be made available,

enclosed in a tentative form

Time: 4:30 p.m., October 3, 1977. Place: Room 267
(alternatively, the interested persons can contact R.M. Santilli
at Room 437, Lyman Lab, Harvard University, office 495-3212,
home 969-3465).

1. Introduction. Significance of systems with arbitrary couplings in Newtonian Mechanics, Space
Mechanics, Optimal Control Theory and other disciplines. Need for the applicability of known analytic
methods to the broader systems considered, ldentification of the inverse Problem.

2. Elemental Mathematics. Review of the existence theory for implicit functions, solutions and
derivatives in the parameters. Review of the calculus of differential forms, the Poincaré-Lemma and its
converse. Review of the calculus of variations.

3. Variational Approach to Self-Adjointness.  Equations of variation, adjoint system, conditions
of self-adjointness for quasi-linear second order systems. Reduction to first order systems and extension
to arbitrary order.

4. Lagrange’s and Hamilton’s Equations.  Hilbert Differentiability Theorem and basic properties.
Equations of variation of Lagrange’s and Hamilton’s equations and their properties. Self-adjointness of
Lagrange’s and Hamilton’s equations. Characterization of the ordered analytic representations of
arbitrary systems.

5. Fundamental Theorems. Theorems on the necessary and sufficient conditions for the existence
of a Lagrangian or, independently, of a Hamiltonian. Methods for the computation of these functions
from the given equations of motion. Analysis of their structure from the viewpoint of the interactions
and classification of the admissible couplings.

6. Application to the Newtonian Transformation Theory. Algebraic and geometrical significance
of the conditions of self-adjointness. The new class of equivalence transformations of a Lagrangian
characterized by its integrability conditions (isotopic transformations).

7. Application to Symmetries and First Integrals. Noether’s theorem, its inverse and its general-
ization to higher orders. Use of the isotopic transformations for the computation of new first integrals.
The concept of isotopically related symmetry groups, algebras and brackets.

8. Extension of the Inverse Problem to Field Theory. Conditions of variational self-adjointness
for quasi-linear partial differential equations and relation to the conventional concept of self-adjointness
in linear spaces. Fundamental theorems on the necessary and sufficient conditions for the existence of a
Lagrangian density and its construction. Analysis of its structure and the relation with chiral Lagrangians.
Application of the methodology to the transformation theory.

9. Outitne of Applications. Electric circuits inclusive of losses. Nonlinear nonconservative plasma
equations. Spinning top with drag torques. Space mechanics with drag forces for interplanetary dust.

A missile trajectory problem. Nonconservative equations in continuum mechanics. Variational analysis
of the Weinberg-Salam model of unified gauge theories of weak and electromagnetic interactions and the
problem of its extension for the inclusion of strong interactions.
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