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FOREWORD OF THE
FIRST EDITION

This book originates from two recent articles by Prof. Ruggero Maria Santilli
appeared in Algebras, Groups and Geomnetries (Santilli (1991a, b)) on his isotopic
liftings of contemporary mathematical structures.

I thought that their rewriting in the form of a short monograph, with the
addition of a few complementary aspects and applications, may be useful for
applied mathematicians and theoretical physicists interested in examining Prof.
Santilli’s nove! mathematical and physical theories.

[ would like to thank Prof. Santilli for invaluable assistance and for
authorizing free use of his computer disks in the preparation of this volume.

J. V. Kadeisvili
Spring 1992
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FOREWORD OF THE
SECOND EDITION

Part I of this second edition, on Santiili’s isotopies of contemporary algebras,
geometries and isorelativities, consists of the entire first edition with numerous
corrections following comments I received from various readers, which are here
gratefully appreciated.

‘Part Il is new and deals with the nonlinear, nonlocal and nonhamiltonian
isotopies of the various branches of Lie’s theory today known as the Lie—-Santilli
isotheory. This Part I also includes an updated and more advanced formulation of
the isotopies and isodualities of contemporary mathematics.

Part II[ has been added while this volume was about to be released for print,
and outlines the iso—grand-unification and isocosmology to be presented by at
the forthcoming VIII M. Grossmann Meeting on General Relativity scheduled in
Jerusalem this coming June, 1997.

Part I is recommended for a first study of the isotopies of contemporary
algebras, geometries and relativities. Part [[ is recommended as a more advanced
study of the topics. The understanding of Part [I! requires an advanced technical
knowledge of the field.

[ left the references of Part [ unchanged and added new references for Parts
{l and IIL. In this way, the reader can also see the rather remarkable progress made
in the field during the past five years.

This volumne is primarily devoted to theoretical profiles. For the numerous
applications and experimental verifications of isotopic theories and their isoduals
today available in particles physics, nuclear physics, astrophysics,
superconductivity, biology and other fields, we suggest Ref. {101} of Part II.

Again, | have no words to express my thanks to Prof. Santilli for his
guidance and support as well as for allowing me to use his computer disks.
Additional thanks are due to Mrs. Pamela Fleming of the Institute for Basic
Research for logistic assistance and to various colleagues for critical comments and
suggestions.

J. V. Kadeisvili
Spring 1997
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PART 1I:

SANTILLY’S ISORELATIVITIES

1992
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1.1: STATEMENT OF THE PROBLEM

In a series of contributions made over the past two decades, Ruggero Maria

Santilli' has achieved certain isotopic gene-realizations of Galilei’s, Einstein’s
special and Einstein’s general relativities, today called Santilli’s isotopic relativities
2 which:

[} have been conceived for the description of systems beyond the
representation capabilities of conventional relativities, the nonlinear, nonlocal,
nonlagrangian, nonhamiltonian and non—Newtonian systems3 characterizing

1 gee Santilli's contributions listed in the bibliography from 1967 to 1991.

Z See the monograph by Aringazin et al (1991), or the review article by Aringazin et al
(1992), as well as a number of research papers quoted later on in the text.

3 gantilli uses the following terminology which is aiso adopted in this monograph:

a) Nonlinearity is referred to all variables and quantities considered, as well as to
all their possible or otherwise needed derivatives {this implies that, at the operator level,
Santilli’s notion of nonlinearity is referred, not only to the wavefunctions but also, and
perhaps more importantly, to their derivatives);

b) Nonlocality is referred to interactions requiring an essential representation via
surface or volume integrals;

¢} Lagrangians are specifically intended to be first-order Lagrangians , ie,
functions L depending on time t, the local coordinates r and their derivatives of the first-
order only, L = L{t, r, ). A given system is then called nonlagrangian when it cannot be
represented in terms of a first-order Lagrangian in the given r-frame, but it may admit
representations in terms of higher—order Lagrangians L{t, £, 1, -

d) Hamiltonians are intended the conventional functions Hlt, r, p) obtained via the
usual Legendre transform of a firsi-order Lagrangian L{t, r, 1). A given system is then called
nonhamiltonian when it cannot be represented via the conventional Hamiltonian Ht, r, p)
in the given r—frame, but it may admit representations via generalized formulations
equivalent to higher—order Lagrangians {such as the Birkhoffian mechanics of Sect. 7).

¢) Newtonian forces are generally referred to forces F depending on time,
coordinates and velocities, F = Fit, 1, 1). Santilli calls a force F non-Newtonian , when it also
depends on derivatives higher than the first, F = At 1, 1,1 ..

The reader should therefore keep in mind that Santilli's isotopic relativities
characterize the most general possible systems which can be identified via current
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motion of extended particles within physical media:

[I) are based on the isotopic generalization of the virtual entirety of
contemporary mathematical structures, including: ficlds, vector spaces,
transformations, Lie algebras, Hamiltonian mechanics, Lie symmetries, and the
symplectic, affine and Riemannian geometries;

111} are a covering of the conventional relativities, because admitting the
latter as a particular case when motion returns to be in vacuum (empty space), and
all acting forces return to be local-differential and conservative.

By using a language accessible to both mathematicians and theoretical
physicists, in this monograph, I shall review Santilli's generalized mathematical
structures because they are mathematically relevant per se , and then outline their
application for the construction of the isotopic relativities.

The conditions of exact applicability of conventional relativities are those of
their original conception?, namely, particles which can be well approximated as
being point-like while moving in the homogeneous and isotropic vacuum, under
action at-a—distance, potential and therefore, variationally seifadjoint (SA) forces
(Helmhoitz (i887), Santilli (1978¢)).

These physical conditions were historically referred to by Lagrange (1788),
Hamilton (1834), Jacobi (1837), and other Founders of contemporary analytic
dynamics as those of the exterior dynamical problem, namely, the study of
dynamics in the empty space outside the minimal surface containing all matter of
the body considered, including its possible atmosphere. A typical example is given
by a satellite in‘6rbit around Earth,

Mathem’éftically, the above conditions render exactly applicable the
conventional local-differential structures of contemporary mathematics in their
canonical-Hamiltonian realizations, such as algebras, geometries, analytic
mechanics, etc.

As indicated before, Santilli’s isotopic relativities have been worked out for
physical conditions fundamentally more general than the above ones and, in

mathernatical and physical knowledge, including discrete systems, as shown by Jannussis
et al. (1982), (1985), (1986).

4 For historical presentations one may consult Galilei {1638), Newton (1687), Lorentz (1904),
Poincaré (1905), Einstein (e.g., (1905) and (1916)), Minkowski (1913), and others. For a
comprehensive historical bibliography on the special and general relativities one may
consult Pauli (1921), in the English edition of 1981. Contemporary formulations of Galilei’s
relativity can be found in Levy-Leblond (1971}, or Sudashan and Mukunda {1974). Among a
number of contemnporary presentations of Einstein’s relativities so large to discourage an
outline, this author still prefers Pauli (loc. c¢it) for reasons of completeness that will
transpire in the geometrical parts of this volume (e.g., because Pauli indeed reviews the
Freud (1939) identity of the Riemannian geometry, which is generally ignored by
contemporary presentations, and other reasons),
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particular, for conditions historically referred to as those of the interior dynamical
problemn , namely, the study of dynamics in the interior of the minimal surface
encompassing all matter of the body considered. A typical example is given by a
satellite during re-entry in Earth’s atmosphere.

in fact, Lagrange {loc. cit. ) and Hamilton Uoc. cit. ) formulated their
original analytic equations with external terms precisely to represent the contact
interior forces which were known since their time to be outside the
representational capabilities of the Lagrangian or Hamiltonian. [t was essentially at
the end of the past century that, as a result of the work by Lie (1893) and for other
historical reasons, the original Lagrange’s and Hamilton’s equations were “truncated”
with the removal of the external terms, by acquiring the form of conventional use
in contemporary mathematics and physics.

From a mathematical viewpoint, the latter systems can be represented as
follows. Denote with T*E(r,8) the cotangent bundle of the three—dimensional
Euclidean space E(r,8) with local chart r and metric & = diag. (1,1,1) over the reals
f. Then, the isotopic relativities provide a form-invariant description of systems of
N particles of mass my #0,a=1,2 ., N, in their first-order, vector—field form

which can be written

a= @M =( ) - Mtaa) =T =
Pia

= ( Pia/ma ) (L1
FSAia(r) + FNSA (L r, p,pod) + f do gNSA .1, p, p.) ' '

i=1236E=xy.2, a=12.N pL=12.6N

where: the r's are the coordinates of the experimenter, the p’s represent the linear
momenta; the m’s are the masses of the N particles; SA and NSA stand for
variational seifadjointness and nonseifadjointness (Santilli (1978e)), respectively; and
o represents a surface or volume.

The objective of this monograph is to review the generalized mathematical
tools used by Santilli for the treatment of systems {1.1). The following additional
introductory comments appear to be recommendable.

Recall that Einstein did not claim Galilef’s relativity to be “violated” for very
high speed, but merely “inapplicable” In this way, he constructed a covering of
Galilei’s relativity admitting of the latter at low speeds.

Along the same historical teaching, Santilli stresses that conventional
relativities are not “violated” for the systems considered, but merely inapplicable,
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because we are dealing with physical conditions substantially beyond those of their
original conception. He then constructed isotopic coverings of the conventional
relativities which admit the latter identically when their physical conditions are
recovered.

The inapplicability of the conventional relativities for Santilli's broader
conditions is beyond any meaningful doubt. As an example, Einstein’s special and
general relativities are inapplicable to systems (1.1) because of:

a) the inapplicability of their local-differential topology (e.g., the Zeeman
topology of the special relativity), due to the nonlocal-integral character of the
broader systems considered;

b} the inapplicability of their Lagrangian character, because the systems
considered are nonselfadjoint by conception and experimental evidence;

¢} the inapplicability of their canonicai-Hamiltonian formulation, due to the
nonhamiltonian character of the systems;

d) the inapplicability of their homogeneous and isotropic structure, owing
to the physical evidence that the material media of interior problems, such as our
atmosphere, are generally inhomogeneous fe.g., because of the local variation of
the density) and anisotropic (e.g., because of the intrinsic angular momenta of
Earth which evidently creates a preferred direction in the medium itself);

e) the inapplicability of Galilei's, Lorentz’s and Poincaré’s symmetries, due to
numerous independent reasons, such as their strictly linear and local characters, as
compared to the necessarily nonlinear and nonlocal character of systems (1.1);

f) the inapplicability of the conservation laws of physical quantities, because
of, e.g., the mori‘otonically decreasing character of the angular momentum of the
space-ship during re-entry in Earth’s atmosphere, which is contrary to the
fundamental conservation laws of established relativities;

g) the inapplicability of the conventional symplectic geometry (see, e.g.,
Abraham and Marsden (i967)), affine geometry (see, e.g., Schrodinger (1950)) and
Riemannian (1868) geometry {see, e.g., Lovelock and Rund (1975)), trivially, because of
their local-differential character as compared to the nonlocal-integral nature of
the systems considered;
and several other mathematical, theoretical and experimentat reasons.

Santilli illustrates rather convincingly all the above occurrences by
considering a limit case of interior problems, such as the core of a star undergoing
gravitational collapse. In this case we have the mutual penetration of a very large
number of wavepackets of the particle constituents and their compression in a
very small region of space. The
emergence of nonlinear, nonlocal and nonlagrangian-nonhamiltonian forces under
these conditions, and the consequential inapplicability of the Riemannian geometry
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are simply beyond any credible doubt. it is hoped the reader sees in this way the
inapplicability of Einstein’s gravitation for a more adequate study of interior
gravitational problems, as manifest via a mere inspection of systems (1.1) {see Sect.
12 for more details). Santilli nevertheless stresses that the Riemannian geometry
remains exactly valid for the physical conditions of its original use: the exterior
gravitational problem of test particle moving in empty space.

This establishes the need to identify mathematical tools for the effective
treatment of systems (1.1), and the consequential physical need to build a new
generation of covering relativities. For more details on Santilli’s isotopic relativities
see the two recent monographs (Santilli (1991a, b)) and the review monograph
{Aringazin et al. (1991).

To begin our review, let us recall that Santilli's studies are based on the so-
called isotopies of conventional formulations, which essentially are characterized
by the liftings from the conventional to the most general possible, nonlinear and
nonlocal, axiom—preserving formulations of current mathematical structures.

The fundamental mathematical (and physical) idea (Santilli (1978), (1979), (1980),
and others) is the generalization of the conventional trivial, n-dimensional unit I
of current theories, I = diag. {1, 1, ..,1), into a quantity 1 called isofopic unit, or
isounit, which is nowhere null in the considered region of the local variables, and
Hermitean, but otherwise possesses the most general possible, nonlinear and
nonlocal dependence on: coordinates r; their derivatives of arbitrary order f, 1,.... {or
P, b, as well as any other needed quantity, such as the density p. = p(r) of the local
medium considered, its local temperature T{r), its index of refraction n = nfr) (if
any), etc.

1 =11t W70 {1.2)

All contemporary mathematical structures, such as fields, vector spaces,
transformation theory, algebras, analytic mechanics, symplectic geometry, affine
geometry, Riemannian geometry, etc. were then generalized by Santilli in such a
way to admit the quantity 1 as their unit. The insensitivity of the structures to the
topology of their unit then allows a direct and effective representation of
nonlocal-integral forces without excessively complex alterations of the original
theories.

In particular, systems (1.1) become directly representable via a conventional
Hamiltonian H{t, r, p) characterizing alt selfadjoint forces, and by embedding all
nonharniltonian forces in the generalized unit 1.

Needless to say, the above representation of systems (1.1) is not unique, and a
number of additional possibilities exist in the specialized mathematical literature.
However, these methods are rather complex indeed, because requiring rather
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delicate noniocal topologies, and of unknown value for the characterization of a
generalized analytic mechanics. The primary value of Santilii's isotopic structures
is therefore their simplicity and effectiveness, as we shall see.

The mapping

I =1, (1.8)

is a first example of isotopies. In fact, the basic properties (or axioms) of the
conventional unit [ are those of being nowhere singular, real valued and symmetric.
The lifting I = 1 is then an isotopy because all the infinite, most general possible
isounits (1.2) do preserve these basic properties by assumption. In physical
applications Santilli adds the condition of positive-definiteness of the unit and of
its isotopic images because it is instrumental in proving the local isomorphism
between the isotopic and conventional symmetries.

Santilli fundamental application of the the isotopies I = 1 has been for the
construction of a corresponding generalized formulation of Lie’s theory which he
called Lie-isotopic theory {Santilli (loc. cit)), but which is today called Lie-
Santilli theory (see Aringazin et al. (1991), and other papers quoted later on). As we
shall see in Sect. 6, the generalized theory essentially consists of isotopic liftings of
all the various branches of the conventional Lie’s theory (universal enveloping
associative algebras, Lie algebras, Lie groups, representation theory, etc.), when
formulated with respect to, and under the condition of the existence of the most
general possibleisounit (1.2).

A few aspects should be indicated in these introductory words. The first is
that, owing to the deep inter-relation and mutual compatibility of the various
mathematical structures used in dynamics, the isotopies of any one of them
require, for mathematical consistency, the isotopies of all the others.

For instance, the isotopies of an algebra soon require, for consistency, those
of the underlying field which, in turn, require the isotopies of the space in which
their modular actions hold which, in turn, require the isotopies of the applicable
geometry, of the transformation theory, etc.

This is the reason why Santilli starts with the isotopies of fields, and then
passes 1o those of linear spaces, metric spaces, algebras, geometries, etc.

A second important aspect of Santilli's analysis, is the restriction of the
isotopies to those admitting a well identified (left and right) isounit 1. As well
known (see, e.g., Jacobson {1962)), the conventional Lie’s theory is formulated with
respect to the trivial unit I of current use in all its branches. [t is then evident that
the selection, say, of an isotopy of the associative enveloping algebra which does
not possess the unit, even though mathematically relevant, is bound to be
inadequate for the quantitative treatment of interior systems of type (1.1).
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it is evident that, when the isotopic formulation of a given mathematical
structure has been identified, then its study for singular isounits are
mathematically and physically relevant. The best example is given by the
singularities of the isotopies of the Riemannian geometry due to the isounits,
which offer evident new possibilities for gravitational collapse and other topics.
Nevertheless, Santilli stresses that regular isotopies should be studied prior to their
singular particularization.

A third introductory aspect is that the isotopies essentially represent the
“degrees of freedom” of given mathematical axioms and, by central conditions, they
produce no new abstract axiomatic structure.

As a matter of fact, this property is so universal that the most effective
criterion for ascertaining the mathematical consistency of given isotopies is that
the conventional and isotopic formulations must coincide, by construction, at the
abstract, realization-free level, as stressed since the original proposal (Santilli
(1978a)).

As a result, the reader should not expect the identification of new Lie
algebras via the use of isotopies, trivially, because all Lie algebras (over a Tield of
characteristic zero} are known from Cartan’s classification. On the contrary, the
isotopies produce generally new, infinitely many different, nonlinear and nonlocal
realizations of known abstract Lie algebras.

[n fact, Santilli's Lie-isotopic generalizations of Galilei's and Poincareé’s
symmetries which are at the foundations of his relativities coincide, by conception
and realization (for positive-definite jsounits), with the conventional Galilei and
Poincaré symmetries, respectively. More generally, Santilli’s isotopies of Galilei’s
relativity, Einstein’s special relativity and Einstein’s general relativity for the
interior problem coincide, also by conception and realization, with the conventional
relativities of the exterior problem at the level of abstract, realization—free
formulations (Santilli (1988a, b, c, d} and (1991a, b)).

In short, the isotopies permit the achievement of a rather remarkable unity
of mathematical and physical thought in which, in the transition from the exterior
to the interior dynamical problem, the fundamental geometries, space-time
symmetries and physical laws, rather than being abandoned, are preserved in their
entirety, and only realized in the most general possible nonlinear and nonlocal
forms.

The mathematical literature on isotopies is rather limited, to my best
knowledge. During his first studies in the topic at the Department of Mathermatics

of Harvard University5 in the late 70's, Santilli conducted an extensive search in

5 Where Santilli had a position as co-principal investigator under contracts with the US
Department of Energy Numbers ER-78-S-02-4742.4000, AS02-T8ER04742 and DE-AC02-8-
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the Cantabridgean mathematical libraries. The only mathematical book that he
could identify at that time with the notion of isotopy was Bruck (1958}, who points
out that the notion dates back to the early stages of set theory , whereby two sets
were called isotopicaily related if they could be made to coincide via
permutations. :

An extensive search in abstract algebras revealed that the notion had been
applied to associative and {commutative) Jordan algebras (see the mathematical
bibliography by C. Balzer et al. (1984)), but no application of the notion of isotopy
to Lie algebras and other structures of direct physical relevance existed at the time
of Santilli's original proposal of 1978.

To my best knowledge at this writing (early 1992), Santilli remains the
originator and sole author on the mathematical study of the isotopic liftings of Lie
algebras, geometries and mechanics; no additional mathematical book has appeared
with the notion of isotopy; and the only articles appeared in a mathematical journal
with the names “Lie—isotopic algebras” are the review by Aringazin et a/. (1990), and
the two memoirs by Santilli (1991a, b). Quite appropriately, Santilli quotes several
times Bruck’s (Joc. cit.) warning:

“'The notion (of isotopy) is so natural to creep in unnoticed.”

1.2: ISOFIELDS

Recall that a field (see, e.g., Albert (1963)) is a set F of elements a, 8, ¥,... equipped
with two (internal) operations, usually called addition a + 8 and multiplication or
product ap, such that

1) Properties of addition: Foralla,B, yeF, a+B=B+a,anda + B + ) =
{a +8) +y; for each element a there is an element 0, the unit for the addition here
called additive unit, such that a + 0 = a and an element - a such that a + (-a) = 0;
and the set is not empty, i.e., there exist elements a # 0;

2) Properties of multiplication: for all a, B, v € F we have a8 = Ba and
a(By) = (aply; for all elements @ € F there exists an element 1, the unit for the
multiplication here called multiplicative unit, such that al = Ie = @, and an
element a~! such that aa™! = a”la = I; and the equations ax = B, and xa = 8, for a
# 0, always admit solution;

3) Distributive laws: for alla, B,y €F, a3+ y)= af + ay, and 8 + y)a = fa
+ya.

OER10651 in association with his colleague S. Sternberg.
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Unless otherwise stated, all fields are assumed of characteristics zero®
throughout the analysis of these papers, so as to avoid fields with an axiomatic
structure different than that currently used in physics. The extension of the resulis
to fields of characteristic p # 0 is rather intriguing, but it will be left for brevity to
the interested mathematician.

The sets of real numbers R, complex numbers C and quaternions Q
constitute fields with respect to the conventional sum and multiplication. However,
octonions O do not constitute a field because of the loss of the associativity of the
product

DEFINITION 2.1: Given a field F with elements a, B, V.., sum a + 3,
multiplication aB, and respective units 0 and 1, “Santilli’s isofields” are rings of
elements & = a1 where a are elements of F and 1 = T"! is a positive-definite
nxn matrix generally outside F equipped with the same sum @ + B of F with
related additive unit & = 0, and a new multiplication a*3 = aTB, under which 1 =
T1 is the new left and right unit of F in which case F satisfies all axioms of a
field.

Thus, an isofield is a field by construction. The basic isofields of this
analysis are the real isofields R, i.e., the infinitely possible isotopes R of the field of
real numbers R, which can be symbolically written

fA={n]ln=nlneR 10, (2.1)

and their elements n are called isonumbers. As per Definition 2.1, the sum of two
isonumbers is the conventional one,

-~

n + flz = (nl + n2)'l. (2.2)

To identify the appropriate isoproduct, recall that T must be the right and
left isounit of K. This is the case if one interprets T as the inverse of an element T,
called isotopic element,

b et F be a field with elements a, B,... If there exists a least positive integer p such that pa
= 0 for all aeF, then the field F is said to be of characteristic p. The fields of real or
complex numbers evidently have characteristic zero. Contrary to a rather general belief in
physical circles, the classification of simple Lie algebras is still incomplete. In fact, we have
today Cartan’s classification of all simple Lie algebras, but only over a field of
characteristic zero, while that over a field of characteristic p is still an open problem at
this writing.
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1=11 (2.3)
and defines the isoproduct as
~ « def
nl*nz = ﬂITnz, T fixed. - (2.4)
Then,
= H¥l =f, foralln ef, (2.5)
as desired.

Note that the isotopic element T need not necessarily be an element of the
original field R, because it can be, say, an integro—differential operator. As we shall
see, this feature is of fundamental relevance for the applications of the isotopic
theory.

Note also that the lifting I = T does not imply a change in the numbers used
in the practical, mathematical and physical applications. This can be seen in various
ways, e.g., from the fact that the isoproduct of an isonumber © times a quantity Q
coincides with the conventional product,

i*Q = nQ (2.6)

Note finally, from the complete arbitrariness of the isotopic element T in
isoproduct (2.4); that the field of real number R admits an-infinite number of
different isotopies.

Another field of basic physical relevance is the complex isofield C,

C=k|c=c,ceC 170 @7

which plays a fundamental role in the operator formulation of the classical
isotopies of this volume. As such it will be considered elsewhere.

Particularly intriguing is the notion of quaternionic isofield § which does
not appear to have been studied in the mathematical or physical literature until
now, to our best knowledge. In fact, the elements of Q are matrices, as well known.
Their isotopic liftings via a matrix T of the same dimension then considerably
broaden the original structure.

Finally, note that the isotopy F = F used in these papers is solely referred to
the multiplication, and not to the addition. Needless to say, a more general notion of
isotopy including both sum and multiplication as well as internal and external
operations is, conceivable, but its study is left to the interested mathemnatician.

The netion of isofield was submitted by Santilli during an invited talk at the
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Clausthal Conference on Differential Geometric Methods in Mathematical Physics
of 1980 (see also Santilli (1981b)). The notion was then elaborated by Myung and by
Santilli (1982a), and by various works by Santilli (1983a), (1985a), (1988a, b) and (1991a, b.

1.3: ISOSPACES

A linear space V (see again Albert {1963)) is a set of elements a,bc,... over a field F
of elements a, B, v, ... and units 0 and I, equipped with the additions a+b, and a + b,
and the muitiplications ab, aa, and ab, such that, for alta,bc e V and a, By €F:a+
b=b+aa+b+cl=@+b)+c apa) =(apl; ala + b) = aa + ab; {a + bla = aa + Ba;
for every a € V there exists an element -a such that a+(a= a-a= 0; and the
multiplicative unit [ of F is the right and left unit of V,ie,la=al =[forallaeV.

From the above definition one can clearly see that we cannot construct an
isotopy of a linear space without first introducing an isotopy of the field, because
the multiplicative unit I of the space is that of the underlying field.

DEFINITION 3.1: Given a linear space V over a field F, the “isotope” ¥ of V with
respect to the multiplication, here called “Santillis isospace’, is the same set of
elements a, b, c,... € V defined over the isofield F with multiplicative isounit 1
and therefore equipped with a new multiplication a*b, which is such to verify all
the axiomns for a linear space, i.e,

as{pra) = (asBl¥a, ada+Dh) = axa + a*b, (3.1a)
(a+pHa = axa + P*a, axa+b) = ara + a*b, (3.1b)
T*¥a = afl = g, (3.1¢)

forallabe Vanda,p € F.

Note the lifting of the Tield, but the elements of the vector space remain
unchanged. This is a property of important physical consequence, inasmuch as it is
at the foundation of the preservation of the conventional generators of Lie algebras
under isotopies. [n turn, this implies the preservation of conventional conservation
laws under lifting.

The interested reader can prove as an exercise a number of properties of
isolinear spaces. One which is particularly relevant for this analysis follows from
the invariance of the elements a, b, ¢, ... of the space under isotopy and can be
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expressed as follows.

PROPOSITION 3.1: The basis of a (finite-dimensional) linear space V remains
unchanged under isotopy.

The above property essentially anticipates the fact that, when studying later
on the Lie-Santilli algebras, we shall expect no alteration of its basis (Santilli (1978a)).

Linear spaces V are also calied vector spaces in which case their elements
a,b,c, are called vectors. The isotopes ¥ are then called isovector spaces and their
elements a, b, c isovectors.

A metric space hereon denoted M(x,g,F) is a (universal) set of elements x, v,
z,.. over a field F equipped with a map (function) g: M x M = F, such that:

alxy) 20, (3.2a)
gxy)=glyxforallxyeM gy =0iffa=00orb=0. (3.2b)
glx,y) = glx,z) + gly.z) for all x,y,z € M. (3.2¢)

A pseudo-metric space, hereon also denoted with Mix,g,F), occurs when the
first condition (3.2a) is removed. Finally, recail that the field of metric spaces
generally used in physics is that of the reals ®.

Suppose that the space Mix,g,) is n-dimensional, and introduce the
components x = (x%}, y ={y!),i = 1, 2, .., n. Then, the familiar way of realizing the
map glx,y) is that via a metric g of the form

glxy) = xi gij v, (3.3

The axiom glx,y) > 0 for metric spaces then implies that g is positive-definite, g >

0.
The best physical example of a metric space is the n-dimensional Euclidean
space hereon denoted with the symbol E(r,5#), namely, the vector space E with

local charts r = (rl) and realization of the metric

gt ro) = 1,16 1ol (3.4)
fe) = Ty §j51rg

where
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8=(8;;) =diag.{L, 1, .., 1 (3.5)
is the matrix of the Kronecker delta 8.
A pseudo-metric space of primary physical relevance is the (3+1)-

dimensional Minkowski space hereon denoted M(xnR), namely, the vector space
with charts

x = () = 6l xh) o eBram), xt = o, (3.6)

where ¢, € # represents the speed of light in vacuum. Then the map is indefinite,
= Vo=
nxy) =< Ty ¥ g, (3.7)
where 7 is the celebrated Minkowski (1913) metric, hereon assumed of the type
n = diag. (1, L, 1, -1). (3.8)
Further spaces also relevant in physics are the Riemannian spaces hereon
denoted R{x,g,®), which are the fundamental spaces of Sect.s 11 and 12 of Part 1.

The simplest possible way of constructing an infinite family of isotopes of
M(x,g,F} is by introducing n—dimensional, nowhere null and Hermitean isounits

1=a)=0), tins = L2.n (3.9)
with isotopic elements
T =1 = (1) = ), (3.10)
Then, we can introduce the notion of the isomap
xy) = (1 8 ¥, (3.11)

where the quantity

g = Tg = (T¥ g, (3.12)
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shall be called hereon the isometric.
The basis e=(g), i=1I, 2, ..n of an n-dimensional space M(xgF) can be

defined via the rules

Then, under isotopy we have the rules

é(ei' eJ) = él_]' ’ (3.14)

which illustrate the preservation of the basis as per Proposition 3.1.
The above isotopic generalizations can be expressed as follows.

DEFINITION 3.2: The “isotopic liftings” of a given, n—dimensional, metric or
pseudometric space M(x.gR) are given by the infinitely possible Santilli’s isospaces
Mxg®R) characterized by: a) the same dimension n and the same local coordinates
-x of the original space; b) the isotopies of the original metric g into one of the
-infinitely possible nonsingular, Hermitean “isometric” g = Tg with isotopic
-element T depending on the local variables x, their derivatives X, %, .. with
-respect to an independent parameter, as well as any needed additional quantity

g = g=Tg (3.15a)
T=Th % %.), detT =0, TI=T, det.g=0, g=g (3.15b)

and c) the lifting the field R into an isotope fiwhose isounit1 is the inverse of the
isotopic element T, ie.,

A=nl 1=T1!=51 (3.16)

with composition now over

x;yl = x,TY)T = (Tx,y)1 = 1 (xTy)
= (x & v ek, (3.17)

" The liftings of the conventional n~dimensional Euclidean spaces E(r,5R) over the
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reals # into "Santilli’s isoeuclidean spaces’, are given by the particular case

ErsR = ErdH] (3.18a)

8 = Ipwy = 8 = Tlr 118, (3.18b)
dets=1705=5 = det.5=0, & =3, (3.18¢)
R >f=a1 1=T11=%" (3.18)
) =1l 8ij g = (r’r) = Aol (3.18¢)

= Gr1 = Tidn = [ 8yl ra i, (3.181)

The liftings of the conventional Minkowski space Mxn®) in (3+1)-space-time
dimensions are given by the isotopes called “Santilli’s isominkowski spaces”

MixnR) = MR, (3.19a)

n = diag(l, I, -1} = | = T, % %.)n, {3.19b)
det p=-1#0, n=nT = detfj#0, ﬁT=ﬁ. (3.19¢)
R = R=w 1= T, (3.194)

(xx) = x“nw = &%) = &TXT = (Txy

=TTy} = K A % % %,.J0 ¥ 11, (3.19¢)

Finally, the liftings of a given n—dimensional, Riemannian or pseudoriemannian
space Rix,gR) over the reals & into the infinitely possible isotopes called “Santilli's

isoriemannian spaces” Rix,g®) are given by

Rixg® = Rixgh), (3.20a)

g=g) = § = T, % % .. glx), (3.20b)

det.g =0, g=g = det.g=0, g=gl, (3.20¢)
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A= f=m 1=10h : (3.20d)

xy) = xl gij-(x) x} 2 &%) = &1 = (Txx)1

= 1xTx) =& i %, % ) o 1. (3.20¢)

Santilli }1988b) illustrated the general character of the concept of isotopy via
the following property of evident proof.

PROPOSITION 3.2: All possible metric and pseudometric spaces in n-dimension
M(r,gR) can be interpreted as isotopes of the Euclidean space in the same
dimension E(r,6f) under the reformulation

Mir,gf) : F=F,1=¢l (3.21)

The reader should therefore keep in mind that there is no need to study the
isotopies of all spaces, because those of the fundamental Euclidean space are
sufficient, and inclusive of all others, as illustrated by Santilli (Joc. cit. } with the
following

COROLLARY: 8.2.a: The conventional Minkowski space MixnR) in (3+1) space-time
dimensions over the reals ® can be interpreted as an isotope M{rm®) of the 4-
dimensional Euclidean space E{x,5%) characterized by the isotopy of the metric

8 = Igey =8 =T8 = = diag. (1, 1, [, -1), (322
under the redefinition of the fields

R=2>f=x 1=T1!=nl=q (3.29)

The reader should remember that the isotopy of the field is a feature needed
for mathematical consistency, but it does not affect the practical numbers of the
theory. Also, as we shall see in Sect. 8, the symmetries of M{x,n,f) and those of
M(x,n.5} coincide because characterized by the metric 1. Thus, the isotopic
Minkowski space Mx,nR) and the conventional Minkowski space M(xn,#) can be
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made to coincide for all practical purposes used in physics.

COROLLARY 3.2.b: The conventional Riemannian spaces Rxg®) in (3+1)-space-
time dimensions over the reals % is an isotope R(xg#) of the 4-dimensional
Euclidean space E(x,8,R) characterized by the lifting of the Euclidean metric &
into the Riemannian metric g

& = [4)(4 = T& = g, (324)
and by the corresponding lifting of the field

fsh-a, 1-1l=-gl (3.25)

Santilli (foc. cit. ) also submitted the following aiternative interpretation of
the Riemnannian space.

COROLLARY 3.2.c: The conventional Riemannian space Rix,g®) in (3+1)-space-time
dimensions over the reals # can be interpreted as an isotope Rix,gH) of the
Minkowski space M(x,n%) in the same dimension characterized by the isotopy of
the Minkowski metric

n = diag. (1, [, ,-1) = TRn = gk (3.26)

and of the field
R=>fA=m 1=T1L (3.27)

The notion of isotopy of a metric or pseudometric space is therefore first
useful for conventional formulations. In fact, Santilli (foc. cit. ) has shown that
the transition from relativistic to gravitational aspects is an isotopy. This concept
is at the foundations of his study of the global symmetries of conventional
gravitational theories which can be readily characterized by the Lie-Santilli
theory, but which are otherwise of rather difficult treatment via conventional
techniques.

Notice also the chain of isotopies illustrated by the above Coroilaries, also
called isotopies of isotopies,

Exs®) = Mxn® = RikgH. (3.28)

Corollary 3.2.c is useful to illustrate the insensitivity of the isotopies to the
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explicit functional dependence of the isounit. The reader can then begin to see the
general character of Santilli's isoeuclidean spaces which encompass, not only the
Minkowski and Riemannian spaces, but also all known metric and pseudometric
spaces of the same dimension, such as Finslerian spaces, as well as additional
classes of infinitely possible, genuine isotopies of the Euclidean, Minkowski,
Riemannian and other spaces.

DEFINITION 3.3: Given a metric or pseudo-metric space Mlx,gF) with metric g,

“Santilli’s isodual” space MAx3F) is the isotopic space M characterized by the
isotopic element

T =-1 = diag. &1, -1, -1, ..~ 1). (3:29)

The isodual of the Euclidean space E(x,5) is therefore the isotope Edx3,R)
where the isometric is given by

8§ =-38 (3.30)

As we shail see, the above spaces are useful for the construction of the
isodual realization of given simple Lie groups with rather intriguing implications,
evidently given by the embedding of the inversion in the isounit of the theory.

Similarly, the isodual of the Minkowski space M(x,n,R} is the isospace

M7, ) where the isometric 7 is given by
fl = Ty = -n = diag. (-1, -1, -1, +1). (3.31)

Clearly the notion of isoduality in Minkowski space allows the mapping of
time-like into space-like vectors and vice—versa. As such, isodual spaces are at the
basis of the generalized Lorentz transformations x = x{x) introduced by Recami and
Mignani (1972) for which

x# Ny X Voo u XY, (3.32}

and are important to identify certain properties of the isotopies of the Lorentz
group (Santitli (1991b)).

The notion of isospace was introduced by Santilli (1983a) in conjunction with
his first construction of the isotopic generalization of Einstein’s special relativity.
The theory of isospaces was then used in more details for the construction of the
infinite isotopies of isometries of metric and pseudometric spaces (Santilli (1985a,
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b)), where the notion of isotopic duality was also introduced. Finally, the extension
of the theory to Riemannian spaces was done recently in Santilli {(1988d), (1991a,b)).

The infinite family of isotopic generalizations of the Euclidean space, of the
Minkowski space and of the Riemannian space, constitute the foundations of
Santilli’s isotopic generalization of Galilei's relativity, Einstein’s special relativity,
and Einstein’s gravitation, respectively. .

The reason why they are infinite in number is to be able to represent the
infinitely possible interior conditions for each given exterior gravitational mass.

Also, the reader can see that Santilli's isceuclidean, isominkowski and
isoriemannian spaces provide a form of “geometrization” of the infinitely possible
interior physical media when studied from a nonrelativistic, relativistic and
gravitational profile, respectively. For numerous physical applications along these
lines, we suggest the consultation of Santilli {1991c, d).

1.4: ISOTRANSFORMATIONS

Let V and V* be two linear spaces over the same field F. A linear transformation
{Albert (1963)) is a map f: V = V' which preserves both the sum and the
multiplication, i.e., it is such that

f(a + b) = f(a) + f(b), {4.1a)

flaa) = fla)f(a), (4.10)

which can be equivalently written
flaa + pb) = fla)fla) + f(@)(b) forallabeVanda, B €F. - {4.2)

DEFINITION 4.1: “Santilli’s isotopic transformations” are isomaps T: ¥ = ¥ among
two isolinear vector spaces ¥ and V' of the same dimension over the same
isofield & which preserves the sum and isomultiplication, ic., which are such that

Hara + p*b) = Tla) *Tta) + HEMWIb) forallab e Vand a,p €R
{4.3)
In physical applications, the spaces V and V' are usually assumed to
coincide, YV = V, in which case the linear map f is an endomorphism with
realizations of the familiar right, modular-associative type
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X = Ax, xeV, xeV. (4.4)

where: A is independent from the local variables; the product Ax is associative; and
the notion of module will be treated in more details in the next section. A similar
notion would evidently result for a left modular associative action x' = xA.

The transformations are nonlinear when of the form

x = Alx) x (4.5)

i.e., when A has an explicit dependence in the local coordinates x. If the x—
dependence is of integral type, we shall say that the above transformations are
nonlocal.

Assume now that ¥ = V. Then the isomap T can be realized with the
isotransformations characterized by the right modular, associative isotopic action

X = A*x = ATx, T =fixed. (4.6)

:g_iwhere the action A+a is still associative. A similar notion would result for a left,
. modular-isotopic action X’ = x*A = xTA.

" DEFINITION 4.2: Santilli’s isotransformations (4.6) are said to be “isolinear” and/or
“isolocal” when the element A is conventionally linear and/or local, respectively,
ie, when all nonlinear and/or nonlocal terms are embedded in the isotopic
element T,

A number of properties of isotransformations can be easily proved. At the
level of abstract axioms, all distinctions between the ordinary multiplication ab and
the isotopic one a*b (transformations Ax and A*x) cease to exist, in which case
linear and isolinear spaces (linear and isolinear transformations) coincide.

However, the isotopies are nontrivial, as illustrated by a number of
properties. First, Santilli (I988b) points out the following

PROPOSITION 4.1: Conventional linear transformations ¥ on an isolinear space V
violate the conditions of isolinearity.

Explicitly stated, the lifting of the Euclidean spaces and of the Minkowski
spaces into their corresponding isospaces requires the necessary abandonment, for
mathematical consistency, of the Galilean and Lorentz transformations in favor of
Santilli’s isolinear and isolocal generalizations.
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A most important property of Santilli’s isotransformations is given by the
following

PROPOSITION 4.2 A transformation T which is isolinear and isolocal in an
isospace V is generally nonlinear and nonlocal in V.
[n fact, when explicitly written out, isotransformations (4.6) become

X = ATx = AT, X, %. %) X. 4.7)

the nenlinearity and nonlocality of the transformations then becomes evidently
dependent on the assumed explicitly form of the isotopic element T,
Another simple but important property is the following

PROPOSITION 4.3: Under sufficient topological conditions, nonlinear
transformations on a linear vector V space can always be cast into an equivalent
isolinear form on an isospace V.

In different terms, given a map f in V which violates the conditions of
linearity and/or of locality, there always exist an isotope ¥ of V under which Tis
isolinear and/or isolocal. Explicitly, nonlinear transformations (4.5) can always be
written

X = AlX) x = BT(x)x = B#x, (4.8)

i.e, for A =BT, with B linear.

The above property has important mathematical and physical implications.
On mathematical grounds we learn that nonlinearity and nonlocality are
mathematical characteristics without an essential axiomatic structure, because
they can be made to disappear at the abstract level via isotopic liftings.

In turn, this feature is not a mere mathematical curiosity, but has a number
of possible mathematical applications. As an example, if properly developed, the
isotopies of the current theory of linear equations may be of assistance in solving
equivalent nonlinear systems.

On physical grounds, the first application of the notions presented in this
section is that of rendering more manageable the formulation and treatment of
nonlinear and nonlocal generalizations of Galilean or Lorentzian theories which, if
treated conventionaily, are of a notoriously difficult (if not impossible) treatment.

The physical implications are however deeper than that. Recall that the
electromagnetic interactions have been fully treatable with linear and local
theories, such as the symmetry under the conventional Lorentz transformations.
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One of the central open problems of contemporary theoretical physics (as
well as of applied mathematics) is the still unanswered, historical legacy by Fermi
(1949) and other Founders of contemporary physics on the ultimate nonlinearity and
nonlocality of the strong interactions.

All attempts conducted untii now in achieving a nonlinear and nonlocal
extension of current theories via conventional techniques have met with rather
serious problem of mathematical consistency and/or physical effectiveness, as well
known.

Because of their simplicity, Santilli’s isotopies appear to have all the
necessary ingredients for the achievement of a mathematically consistent and
physically effective nonlinear and nonlocal generalization of the current theories
for the electromagnetic interactions-via the mere generalization of their trivial
unity I inte Santilli’s isounit 1, and the consequential isotopic generalization of the
various notions of field, spaces, transformations, etc.

The mathematical consistency of the isotopies is self-evident from their
simplicity. Their physical effectiveness is due to the fact that, given a linear theory,
say a Hamiltonian description of a conservative trajectory on a metric space, all the
possible nonlinear and nonlocal generalizations are guaranteed by the mere
isotopies of the underlying space.

The (one-sided) isotransformation theory reviewed in this section was
originally submitted by Santilli as a particular case of a still more general, two—
sided, left and right isotransformation theory for Lie—admissible algebras (Santilli
{1979)) (see Appendix D for a review). The isotransformation theory was then studied
in detail in the monograph (Santilli {1981a)) and became a second central tool,
following the notion of isominkowski space, for the first construction of the
isotopies of the special relativity (Santilli (1983a)). Additional relevant studies were
conducted in Myung and Santilli {1982a), Mignani, Myung and Santilli {1983), and
Santilli (1982a), (1988a, b), (19914, b, ¢, d).

L.5: ISOALGEBRAS

A (finite~dimensional) linear algebra U, or algebra for short (see, e.g., Albert (1963)
or Oehmke et al. (1974)) is a linear vector space V over a field F equipped with a
multiplication ab verifying the following axioms

alab) = {aalb = ala), (abp = alb3) = (apib, (5.1a)



J. V. Kadeisvili -24- Santilli's Isotopies

ab+c) = ab + ac, (@ + bl = ac + be, (5.1b)

called right and left scalar and distributive Jaws, rtespectively, which must hold

for all elements a,b,c € U, and a, B e F.
The reader should keep in mind that the above axioms must be verified by

all products to characterize an algebra {see Appendix A of Part II for products
commonly used in physics which do not characterize a consistent algebra).

Santilli (1988b), (1991a) stresses that algebras play a fundamental role in
physics, and their use is predictably enlarged by the isotopies. Among the existing
large number of algebras, a true understanding of the isotopic relativities at the
classical and/or at the operator level requires a knowledge of the following primary
algebras (see, e.g., Albert (1963) and Schafer (1966)):

1) Associative algebras A, characterized by the additional axiom {besides
taws (5.1)

albe) = (able (5.2)

for all abc € A, called the associative Jaw. Algebras violating the above law are
called nonassociative, All the following algebras are nonassociative:
2) Lie algebras L which are characterized by the additional axioms

ab+ba=0, (5.3a)
albc) + blea) + {clab) = 0. (5.3b)
A familiar realization of the Lie product is given by

[a’b]A = ab - ba, (5.4)
with the classical counterpart being given by the familiar Poisson brackets among
functions A, B in phase space T*E(r,55 (or the cotangent bundle of Sect. 9, Part I1)

9A OB 9B dA
- —— (5.5

{ABl ppisson= —7 — .
ork opk ark apy

3) Commutative Jordan algebras J, characterized by the additional axioms

ab-ba=0, ' (5.6a)
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(abla? = alba?) {5.6b)
A realization of the special commutative Jordan product is given by

{a,b} , = ab+ ba. {5.7)

No realization of the commutative Jordan product in classical mechanics is
known at this writing. As an example, the brackets

dA OB 9B 9A
(AB}= — — + — —, (5.82)

evidently verify axiom (5.6a), but violate axiom (5.6b).

4) General Lie-admissible algebras U (Albert (1948), Santilli (1967), (1968) and
- (1978a)), which are characterized by a product ab verifying laws (5.1), which is such
that the attached product [a,bl; = ab - ba is Lie. This implies, besides (5.1), the

unigue axiom
{abc) + (bcal + (c,ab) =(cba) + (bac) + lach), (5.9)

‘where
(ab.c)=albc) — (ablk, (5.10)

is called the associator. :
Note that Lie algebras are a particular case of the Lie-admissible algebras.

In fact, given an algebra L with product ab = [a,bl, , the attached algebra L™ has
the product [ably = 2labl, and, thus, L is Lie-admissible.

Therefore, the classification of the Lie Lie-admissible algebras contains all
possible Lie algebras. Also, Lie algebras enter in the Lie—admissible algebras in a
two-fold way: first, in their classification and, second, as the attached
antisymmetric algebras. Finally, associative algebras dre frivially Lie-admissible.

The first abstract realization of the general Lie—admissible algebras was
given by Santilli {(1978b), Sect. 4.14) and can be written

U: f(ably = arb - bsa, {5.11)
rs fixedeA, r#s 1,570

where ar, rb, etc., are associative. [n fact, the antisymmetric product attached to U
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is a particular form of a Lie algebra (see below).

The first realization of U in classical mechanics was also identified by
Santilli (1969) and (1978a) and it is given by the following product for functions Alr,p)
and B(r,p) in T*E(r,8.R)

A OB
U: {AB) = — —, (5.12)
ork  apy

namely, the general, nonassociative Lie-admissible algebras are at the foundations
of the structure of the conventional Poisson brackets, which can be written

(ABlpoisson = [ABly = (AB) —(B,A) (5.13)
5) Flexible Lie-admissible algebras U (Albert (1948), Santilli (1967), (1968) and
(1978a)), which are characterized by the axioms in addition to (5.1)
(a,b,a) =0, (5.14a)

(abc) + (bcal + {cab) =0, (5.14b)

where condition (5.14a), called the flexibility law, is a simple generalization of the
anticommutative law, as well as a weaker form of associativity. An abstract
realization of the flexible Lie-admissible product is given by (Santilli {1978b)

(ably = hab - pba, Ay € F (5.15)

where the products Aa, ab, etc. are associative. No classical realization of flexible
Lie—admissible algebras has been identif ied until now, to the best knowledge of this
author. As an example, the brackets on T*Er,3,5)

oA OB aB  0A
(ABh=A — — - B — — (5.16)

i
ark apy ark  opy

are Lie—admissible, but violate the flexibility law.

6) General Jordan-admissible algebras U {Albert (1948), Santilli {1978a, b)),
which are characterized by a product ab verifying laws (5.1), such that the attached
symmetric preduct {a,b}U = ab + ba is Jordan, i.e, verifies the axiom

(a2ba) + (ab,a? + (ba2,a) + (aa2b) = 0. 517
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Again, associative and Jordan algebras are trivially Jordan— admissible.
Also, Jordan aigebras enter in the Jordan—admissible algebras in a two—fold way, in
the classification of the latter, as well as the attached symmetric algebras.

it is important for the operator formulation of the isotopies of this volume
to point out that Lie-admissible product (5.11) is, jointly, Lie-admissible and
Jordan-admissible (Santilli (1978b)), because the attached symmetric product
characterizes a special commutative Jordan algebra {see below).

Finally, we should note that the classical Lie-admissible product (5.12) is only
Lie-admissible and not jointly Jordan—-admissible.

7) Flexible Jordan-admissible algebras U {(Albert (1948), Santilli (1978a, b)),
which, in addition to axioms (5.1), are characterized by the axioms

alba) = (abla, (5.18a)

a2(ba) + aab) = @%bl + (aZalb. (5.18b)

The flexible Lie-admissible product {5.15) is also a flexible Jordan-admissible
product, but the classical product (5.16) is only Lie-admissible, and not flexible Lie-
admissible nor Jordan-admissible.

B We now pass to the study of the isotopies of the above notions.

DEFINITION 5.1 (Santilli (1978a)}: An “isoalgebra”, or simply an “isotope” U of an
algebra U with elements a,b,c,... and product ab over a field F, is the same vector
space U but defined over the isofield F, equipped with a new product a*b, called
“Isotopic product’; which is such to verify the original axioms of U.

Thus, by definition, the isotopic lifting of an algebra does not alter the type
of algebra considered.

[t is important for this monograph {as well as for its operator formulation)
to review the isotopies of the primary algebras listed above, beginning with the
associative algebras.

Given an associative algebra A with product ab over a field F, its simplest
possible isotope A, cailed associative-isotopic or isoassociative algebra, is given
by

Aj: ab=aqab, a eF,fixed and #0, (5.19)

and called a scalar isotopy. The preservation of the original associativity is trivial
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in this case.
A second less trivial isotopy is the fundamental one of the Lie-isotopic

theory, and it is characterized by product {Santilli (foc. cit. )}
Ay: axb=aTh, (5.20)

where T is an nonsingular {invertible) and Hermitean elements not necessarily
belonging to the original algebra A.

Note the necessary condition, from Definition 5.1, that the isoproduct and
isounit in U and F coincide. This is the technical reason for the lifting of the
universal enveloping associative algebras of a Lie algebra (Sect. 6) into a form
whose center coincides with the isounit of the underlying isofield.

The reader should keep in mind that the identity of the isoproduct and
isounit for U and F occurs in the associative cases (5.19) and (5.20), but does not
hold in general, e.g., for nonassociative algebras. This is due to their lack of general
admittance of a unit, while such a unit is always well defined in the underlying
tield.

Only a third significant isotopy of an associative algebra is known, to the
author’s best knowledge. It is given by (Santiki (1980), (i981b}

Ag:  axb=wawbw, {(5.21)
wZ=ww = w #0,

Additional isotopies are given by the combinations of the preceding ones, such as

A 4 axb=wawTwbw, (5.22)
wZ=ww=w #0
and
A5 : axb = awawTwbw, (5.23)
aeF, w2=w, a,w,T=0.

It is believed that the above isotopies (of which only the first three are
independent) exhaust all possible isotopies of an associative algebra, although this
property has not been rigorously proved to this writing.

The issue is not trivial, physically and mathematically. [n fact, any new
isotopy of an associative algebra implies a potentially new mechanics, while having
intriguing mathematical implications (see later on Lemma 5.1).

It should be finally indicated that Santilli has selected isotopy (5.20) over
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(5.21) because the former possesses a well defined isounit, while the latter does not,
thus creating a host of problems of physical consistency in its possible use for an
operator theory.

Nevertheless, the study of isoassociative algebras {5.21) remains intriguing
indeed, although it has not yet been conducted in the mathematical and physical
literature, to our best knowledge.

We now pass to the study of the isotopes L of a Lie algebra L with product
ab over a field F, which are the same vector space L but equipped with a Lie—
Santilli product (Santilli (1978a, c)} acb over the isofield F* which verifies the left
and right scalar and distributive laws (5.1), and the axioms

ach + boa =0, (5.24a)
ao(boc) + bolcoa) + cofaob) = 0, {5.24b)

‘ﬁamely, the abstract axioms of the Lie algebras remain the same by assumption.
The simplest possible realization of the Lie-Santilli product is that attached
to isotopes A1, Eq. (5.19) ‘

L;: (ab AT aob - boa =afab - bal=alably, (5.25)
a €F, a #0
and it is also called a scalar isotopy. It is generally the first lifting of Lie algebras
one can encounter in the operator formulation of the theory.

The second independent realization of the Lie-isotopic algebras is that
characterized by the isotope A9, also introduced in Santilli {foc. cit.)

Lo [a,bIA2=aob - bea=aTh - bTa, (5.26)
The third, independent isotopy is that attached to A, and it was introduced
in Santilli (1981b}
L3: lably =wawbw - wbwaw, (5.27)
3

w2 =ww # 0.

A fourth isotope is that attached to A4, ie.,
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L,: [a,b];\4 = wawTwbw - wbwTwaw, {5.28)

w2=w, w,T0.
A fifth and final (abstract) isotope is that characterized by &g, ie.

L5 : laplg = alaply, ' (5.29)

Again, it is believed that the above five isotopes exhaust all possible abstract
Lie algebra isotopies {over a field of characteristics zero), although this property has
not been proved to date on rigorous grounds.

Note that the Lie algebra attached to the general Lie-admissibie product
(5.11) are not conventional, but isotopic. In fact, we can write

fably = (ab) e (ba), = arb - bsa — bra + asb, {5.30a)

=aTbhb — bTa=a*h — b¥a, (5.30b)
r<s, 71,5T#0 T=r+s570

As a matter of fact, Santiili first encountered the Lie-isotopic algebras by studying
precisely the Lie content of the more general Lie-admissible algebras (Santilli
{1978al).

The following property can be easily proved from properties of type (5.30).

LEMMA 5.1 An abstract Lie-Santilli algebra L attached to a general, nonassociative,
Lie-admissible algebra U, L ~ U, can always be isomorphically rewritten as the
algebra attached to an soassociative algebra 4, L ~ AT, and vice-versa, ie.

L=y =~ A" {5.31)

The above property has the important consequence that the construction of
the abstract Lie—isotopic theory does not necessarily require a nonassociative
enveloping algebra because it can always be done via the use of an isoassociative
enveloping algebra. In turn, this focuses again the importance of knowing all
possible isotopes of an associative algebra, e.g., from the viewpoint of the
representation theory.

As an example, the studies by Eder (1981} and (1982)) on a conceivable spin
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fluctuation of thermal neutrons caused by sufficiently intense external nuclear
Tields, are formulated via a flexible nonassociative Lie-admissible generalization of
the enveloping associative algebra of Pauli’s matrices. As such, these studies can be
identically reformulated via an associative—isotopic enveloping algebra. The
consequential simplification of the structure is then expected to permit further
physical advances.

Note also that the construction of the abstract Lie-isotopic theory
necessarily requires the isotopies of conventional associative envelopes.

As typical Tor all abstract formulations of Lie’s theory, the Lie-isotopies
indicated above are in a form readily interpretable in terms of operators. As such,
they provide the foundations for the operator formulations of the generalized
relativities (see, eg., the isotopic generalization of Wigner's theorem on unitary
symmetries in Santilli (1983c)). Note in particular the identification of the inverse of
the isounit 1 in the structure of product (5.30).

A primary objective of this monograph is to outline the classical
realizations of the Lie-isotopic product in such a way to admit a ready
identification of the isounit. The latter problem will be the subject of subsequent
sections. At this point, we shail review Santilli’s classical realizations without the
identification of their underlying isounit.

The most general possible, classical realization of Lie-Santilli algebras via
functions A{a) and Bfa) in T*E(r,8%) with local chart

a= @ =6,p) = 0hp) i, = L2un p=12..2, (5.32)

is provided by the Birkhoffian brackets (Santilli (1978a), (1982a)), also called
generalized Poisson brackets (see, e.g., Sudarshan and Mukunda (1974)),

oA oB
(A, Bgirkhorf = (AB). = — O*Ya) —, {5.33)
oal daV

where OHV, called the Lie—isotopic tensor ,is the contravariant form of {the exact,
symplectic, Birkhoff’s tensor (Santilli (1978a) and (1982a))

a = (o, (5.342)

oR, (a) aR, ()
Q,, = L (5.34b)

datt ¥
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where the R's are the so-called Birkhoff’s (1927) functions , and the symplectic
character of the covariant tensor (5.34b) ensures the Lie—Santilli character of

brackets (5.33) (see the geometric, algebraic and analytic proofs in Santitli (1982a)).

Recall that, unlike the conventional, abstract, Lie brackets (5.4), the
conventional Poisson brackets (5.5) characterize a Lie algebra attached to a
nonassociative Lie-admissible algebra U, Eg.s (5.12). It is then evident that the
covering Birkhoff’s brackets (5.33) are also attached to a nonassociative Lie—
admissible algebra, although of a more general type (see Santilli {Joc. cit. } for
details).

Numerous other classical Lie-isotopic brackets exist in the literature, the
most notable being Dirac’s generalized brackets for systems with substdiary
constraints (Dirac (1964).

Note the lack of identification of the underlying generalized unit in
Birkhoff’s brackets (5.33), as well as in Dirac’s brackets. This problem will be studied
in Sect. 9.

Realizations of the abstract isotopes U of the Lie-admissible algebras can be
easily constructed via the above techniques. For instance, an isotope of the general
Lie—admissible product (5.11) is given by

0: (a b =wawrwbw — wbwswaw, {5.35)
wl=w, wrs#®0, r#s

An isotope of the classical realization (5.12) is then given by

8A oB
U: (ATB) = — $Mta)—, (5.36)
daM aaV

where the tensor Y, called by Santilli (foc. cit. ) the Lie-admissible tensor , is
restricted by the conditions of admitting Birkhoff’s tensor as the attached
antisymmetric tensor, i.e.,

gV - gVt = Y, (5.37)

see Appendix A and, for a detailed study with additional examples, Santilli (1981a).
As recalled in the Introduction, the inception of the notion of algebraic
isotopy is rather old, and dated back to the early stages of set theory (Bruck {1958)).
Nevertheless, the initiation of the technical studies of the notion can be associated
with the development of nonassociative algebras in the middle part of this century
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and, more particularly, with the study of Jordan algebras (see the bibliography in
nonassociative algebras by Balzer et al. (1984)).

As also indicated in Sect. I, the first isotopies of Lie algebras were done by
Santilli (1978a, b). Since that time, while the study of more general algebras, such as
the Lie-admissible algebras, has received considerable attention in the
mathematical literature (see, again, the bibliography by Balzer et al. (loc. cit. )}, no
research paper in Lie-isotopic algebras has appeared in the mathematical literature
to this writing besides the memoirs Santilli (19913, b).

I.6: LIE-SANTILLI THEORY

We are now sufficiently equipped to initiate the review of Santilli's characterization
of the most general known class of integro-differential systems (I.1), begmnmg
with their algebraic treatment.

The isotopic formulation of enveloping associative algebras, L1e algebras and
Lie groups was presented in the original proposal by Santilli (1978a), and are today
known under the name of Lie-Santilli theory . A first review appeared in the
monograph Santilli (1982a). The theory was further developed in Santilli (1988a, b)
and (1991a, b). A first independent review was provided by Aringazin et al. (1990). In
this section we shall outline only those aspects of the theory needed for the
remaining sections of this work. ‘

) The literature on the conventional formulation of Lie's theory is so wast to
discourage even a partial outline. A mathematical treatment of structural theorems
on universal enveloping associative algebras and other aspects can be found in
Jacobson (1962). A physical treatment of the theory can be found in Gilmore (1974). A
classical realization of the theory is available in Sudarshan and Mukunda (1974).

In the following we shall first outline the Lie-Santilli theory in its abstract
formulation (i.e,, in a formulation admitting a direct interpretation via matrices),
and then point out its classical realization (i.e., via functions on the cotangent
bundle). To avoid a prohibitive length, our presentation will be mainly conceptual,
with no technical developments.

To begin, let us recall that the conventional formulation of Lie’s theory is
based on the notion of unit [ realized in its simplest possible form, e.g., via the
unit value | e R for the case of a scalar representation, or the trivial n—dimensional
unit matrix [ = Diag. (11,...,1} for the case of an n—dimensional representation, and

SO on.
In this case, the universal enveloping associative algebra A (Jacobson (1962))
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with elements a, b, c, ..... over a field F (again assumed of characteristic zero) has
the structure

A: ab = ass. product, fa=al=a foralla€A. {6.1)

The Lie algebra L (Jacobson {loc., cit)) is then homomorphic to the
antisymmetric algebra A~ attached to A characterized by the familiar commutator

L: [ably =ab-ba (6.2)

Connected Lie groups G (Gilmore (1974)) can then be defined via power series
expansions in A, according to the familiar form for one dimension

G:  glw)=expgWX=1+(iwx)/ 1t + (iwxdiwx) / 2+ .. 6.3

weF, x=xT<—:A.

with well known generalizations to more than one dimension, as well as to discrete
components such as the inversions (Gilmore (foc. cit. ))-

As recalled in Sect. 1, the central idea of the Lie-Santilli theory is to realize
Lie’s theory with respect to the most general possible unit T which, besides
invertibility and Hermiticity, has no restriction on its functional dependence. As
such, 1 can have a generally nonlinear dependence on all possible or otherwise
needed quantities. For an operator interpretation of the theory (see below for its
classical counterpart), such a dependence is on an independent parameter t,

coordinates x, velocity x = dx/dt or momenta p), accelerations X = d2x/dt? (or p),
wavefunctions ¢, their conjugate c];T. their derivatives 8% = 3y/ox and aul7ax , €tc.,

1 =1, x %, % ¥ ¥, 8y, 8dt,...) (6.4)

Furthermore, Lie’s theory is known to be insensitive to the topology of its
unit. As a result, the generalized unit T can be, not only nonlinear, but also nonlocal
in all its variables.

The Lie-Santilli theory therefore has all the necessary characteristics to
admit, ab initio the nonlinear, nonlocal and nonhamiltonian forces of systemns (1.1},
provided that they are all incorporated in the generalized unit (see the subsequent
sections for their analytic representation).

The reader should be aware that representations of noniocal forces outside
the unit of the theory would require a new topology precisely of nonlocal-integral
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type which, at any rate, does not appear to be available at the pure mathematical
level at this time in a form usable for physical applications.

It is easy to see that the lifting I = 1 requires a necessary, corresponding,
generalization of the entire Lie theory. [n fact, for T to be the left and right unit, the
universal enveloping algebra, say &, of Lie’s theory must be generalized into the
form, say, & which is the same vector space as &, but now equipped with the
generalized product (5.20), i.e.,

t. asb=aTh, {6.5)

where T is fixed, invertible and Hermitean.
As shown in Sect. 5, the new product axb is still associative and, for this
reason, & is called associative-isotopic algebra, or isoassociative algebra for short

(Santilli (1978a)). Under the assumptionT = T~L 1 is indeed the correct right and left
unit of the theory, ie,

1 =11, (6.62)
Txa = afl =3, forall acei, {6.6b)

and is called the isounit (loc. cit. ).
~“ Owing to the isotopic character of the generalizations (often referred to as
hftmgs) the structural theorems of conventional universal enveloping associative
algebras £ such as the Poincaré-Birkhoff 7-Witt Theorem for the infinite-
dimensional basis (see Jacobson (loc. cit. )), admit consistent extensions to the
isoassociative envelope t, as shown since the original proposal (Santilli (loc. cit. ),
and it is today called Poincare~Birkhoff-Santilli-Witt theorem .
In particular, the ordered basis X = (X)), i = 1, 2, .., n, of the original Lie

algebra L is left unchanged by the isotopy, because Proposition .3.1 applies to L as a
vector space, thus preserving the basis X.

In the transition to the underlying associative algebra, we have evidently the
same occurrence. However, when & is turned into an isotopic envelope , the
original infinite-dimensional basis of £ is lifted into the form characterized by the
Poincaré-Birkhoff-Santilli-Witt Theorem

E 1 X, XX, (i=3, XXX (i=j=k) .. 6.7)

{ 1t should be indicated that the name “Birkhoff” here refers to Santilli's former colleague
at the Department of Mathematics of Harvard University, G. Birkhoff, son of the author of
Birkhoff’s equations, G.D.Birkhoff.
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For brevity, we refer the interested reader to the reviews by Santilli (1982a)
and Aringazin et al. (1990). Thus,  is indeed, a bona fide, universal enveloping
isoassociative algebra.

Additional associative isotopies independent from form (6.5) are presented in
Sect. 5. Isotopy (6.5) is however the fundamental one of this analysis because it
admits a right and left generalized unit.

The Lie algebras, say, L are now homomorphic to the antisymmetric algebra

t~ attached to t, L ~¥~, with the new product (5.26), ie.,

L: [a,blE =ah - b*¥a = aTb - bTa, (6.8)

which verifies the Lie algebra axioms (5.24), while possessing a structure less trivial
than the simplest possible Lie product “ab — ba” of current use. For this reason, the
algebras [, have been called Lie-Santilli algebras .

The interplay between the algebra L and its isoenvelope t is intriguing.
Consider an n-dimensional Lie algebra L with ordered basis X. [n the conventional
theory, the Poincaré-Birkhoff-Witt Theorem then characterizes the envelope &
such that

E=E(L), [EL] ~L. 6.9)

The corresponding context of the covering Lie-Santilli theory is
considerably broader. In fact, the isotopic Poincare-Birkhoff—Witt Theorem now
characterizes an isoenvelope & which, since it is constructed via the original basis of
L, was denoted from its original formulation as & = §(L) (and not as L), The novelty
is that now, in general, we have

O »L, RBLI =L f.oL. (6.10)

More particularly, the original envelope (L} can characterize only one Lie
algebra, the algebra L. On the contrary, Santilli (1982a) has shown that the infinite
number of possibie isoenvelopes &(1) for each given original algebra L can
characterize in one, single, unified algorithm L) all possible Lie algebras L of the
same dimension, with the sole possible exclusion of the exceptional Lie algebras
& it is hoped that, in this, way the reader can begin to see the power of
geometric unification of our isotopies.

Again, owing to the isotopic character of the lifting, conventional structural
theorems of Lie algebras, such as the celebrated Lie’s First, Second and Third

B This is evidently due to the assumed Hermiticity of the isounit, see later on Sect. 8.
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Theorems (Gilmore (1974)), admit consistent isotopic generalizations identified
since the original proposal, and are today called Lie-Santilli Theorems . We refer
the interested reader for brevity to the locally quoted reviews.

Most importantly, the conventional structure constants Cijk of a Lie
algebra (Gilmore {loc. cit)) are generalized under isotopy into the structure
functions Cijk(t,x,x,ii....) as requested from the Lie—isotopic Second Theorem with

isocommutation relations

, = - PN TR
L: [xi,xj]E = XpXj - XX = MR, X, 6.11)

where the C’s are restricted by certain integrability conditions originating from the
Lie-Santilli Third Theorem (Santilli (loc. cit. ).

As we shall see, isotopes [ with positive-definite isounits of given,
conventional, simple Lie algebras L with basis X; and structure constants Cijk,

generally admit a reformulation X of the basis (while keeping the isounit
unchanged), which recovers the conventional structure constants, i.e., such that

. "+ N — "+ . , o k r

In turn, this evidently proves the local isomorphism of the infinitely possible
isotopes“L, with the original simple algebra L, L =~ L. One should however keep in
mind that, for the case of isounits of undefined topology, the isotopes are generally
nonisomorphic to the original algebra, [ » L.

Let us recall that Cartan’s classification identifies all nonisomorphic simple

Lie algebras of the same dimension, e.g.,
Simple 2-dim. algebras: O(3), and 0(2.1), {6.13a)
Simple 6-dim. algebras: O{4), O(3.1), and 0{2.2), {6.13b)

etc. (or algebras isomorphic to the above; see, e.g., Gilmore {oc. cit).

The covering Lie-Santilli theory allows instead the representation of all
simple Lie algebras (6.13) of the same dimension with one algorithm: the unique,
abstract, simple, Lie—isotopic algebra in n—dimension,

Simple 3~dim, isoalgebra &(3), {6.14a)
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Simple 6-dim. isoalgebra O(6), (6.14b)

and similarly for other cases, with the exclusion of the exceptional algebras
indicated earlier.

The recovering of different, generally nonisomorphic (e.g., compact or
noncompact) algebras is then reduced to the mere realization of the isountft 1. For
details on the above “isotopic unification” of simple Lie algebras, see Sect. 8, Figures
8.1 and 8.2, in particular.

A technical knowledge of the above unification is a necessary pre-requisite
for understanding certain physical resuits, such as the geometric unification of
Einstein’s special relativity in a Minkowski space, with Einstein’s gravitation in a
Riemannian space, as well as all their isotopic generalizations for the interior
problem, which is achieved via one unique, abstract notion, that of the Poincarée-
isotopic symmetry, admitting of an infinite number of different realizations,
whether in Minkowskian, or in Riemannian or in more general spaces Santilli (1988b,
c) and (1991a, b).

The reader should keep in mind that, in physical applications, the generators
have a direct physical meaning. The isotopic algebras with a direct physical
meaning therefore remain structures (6.9), while reformulations (6.10) lose the
directly physical meaning of the generators and, as such, they generally carry a sole
mathematical meaning.

We also recall the differential rule for the isocommutators

[A*B.C)E = A*{B,C]E + [A.C]E*B, {6.15a)

[A,B*CIE = [A,B]E*C + B*[A.CIE, (6.15b)

which is based on the fact that the conventional product AB of elements A and B
of the isoassociative envelope has no mathematical or physical meaning in &, and
must be replaced with the isotopic product A*B.

In particular, this implies that all conventional operations based on
multiplications are now inapplicable to the isotopic theory. As an example, the
insistence in the use of the conventional square

a2 = aa, (6.16)

such as the magnitude of the angular momentum
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2=3 (6.17)

Iy
k=123 Kk

within the context of the isoenvelope & would imply the violation of isolinearity
and numerous other inconsistencies (Sect.s 3, 4). The correct quantity is evidently
given by the isotopic square

a2= a%a, {6.18)

such as the isotopic magnitude of the angular momentum

D
J *J., {6.19)
Ek 123 kx

The lack of knowledge of these basic elements is reason for considerable
confusions. In fact, readers not familiar with the Lie-Santilli theory tend to
preserve under isotopy the old notion of square, say, of the angular momentum, Eq.
(6.17), by therefore resulting in a host of inconsistencies of which they are generalily
unaware.

Additional isotopies of Lie algebras independent of (6.7} are presented in Sect.
5, although structure (6.7) is the fundamental one for the construction of Santilli's
new generation of isotopic classical relativities, as well as for their operator
extensions.

Finally, connected Lie groups cannct be any longer defined via power series
in & (which would violate the linearity condition), and must be defined in the new
envelope & via infinite basis (6.7} with expressions of the following type for one
dimension

: glw) = expEIWX =T+ GwX}/ 1+ GwXMiwX) / 20+

=1 [expEiWTX] =exp EiX‘Tw] 1, (6.20}

with corresponding expressions for more than one dimension as well as for discrete

components.
The elements glw) cannot evidently verify the old group laws (Gilmore

(Toc.cit. )) but must verify instead the isotopic group laws

glwhg(w) = glwhglw) = glw + w), (6.21a)
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glwhkgl-w) = gl0) =1 (6.21b}

where the associativity of the isotopic group product gwhglw) is understood.

All Lie groups verifying the above laws were called Lie-isotopic groups
(Santilli (1978a)), and are now known as Lie-Santilli groups. Again, we refer the
interested reader to the locally quoted literature for the isotopic lifting of
conventional theorems on Lie groups.

As an example the isotopic lifting of the Baker—-Campbeli-Hausdorff
Theorem (Santilli {loc. cit)) is given by :

Xite 1o Xi1 = o Xk
ley xley il & (6.22a)
Xg =X+ X; +[xi,xj]E/2 + 1% - X, DGX el /12 + e (6. 22b)

and it is today known as the Baker-Campbeli-Hausdorf{-Santilli Theorem.

As now predictable, the covering Lie-Santilli theory is expected to unify
into one, single, abstract, n-dimensional Lie-isotopic group G(n) all possible
conventional {non-exceptional) Lie groups in the same dimensions G(n).

With the terms Lie-Santilli theory we shall specifically refer to the
collection of formulations based on: 1) the universal enveloping isoassociative
algebras, 2) the Lie-Santilli algebras, and 3) the Lie-Santilli groups, including all
related structural theorems, as well as the remaining compatible aspects, such as
the isorepresentation theory.

Needless to say, an inspection of the quoted literature indicates that the
theory is just at the beginning and so much remains to be done. Nevertheless, the
main structural lines developed so far are sufficient to identify the foundations of
Santilli's new relativities.

The Lie-isotopic generalization of the conventional formulation of Lies
theory was submitted along structural lines conceptually similar to those of the
Birkhoffian generalization of Hamiltonian mechanics (Santilli (1978a) and (1982a)),
i.e., under the condition that the generalized theory coincides with the conventional
one at the abstract, realization-free level. In fact, the isoenvelopes & the Lie-
isotopic algebras L and the Lie—isotopic groups & coincide by construction with the
original structures ¢, L and G, respectively, at the abstract, realization—free level.

Note that, by central assumption, Santilli’s isotopies preserve the generators
and parameters of the original group and generalize instead the structure of the
group itself in an axiom preserving way. These features are of central relevance
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for the characterization of interior dynamical systems, such as Jupiter when
considered as isolated from the rest of the universe, and thus verifying all
conventional total conservation laws.

The representation of the time evolution is evidently of fundamental
physical importance. In the conventional case it is given by a one-dimensional Lie
group G| with the Hamiltonian H as generator and time t as parameter. For the Lie-
tsotopic case, we have instead the more general structure in finite and infinitesimal
forms for an arbitrary quantity Qft)

G Q) = lep ' QloMley ™ =

, . -itHT i
- e T M <o g G2s)
dqlt)
i — =IGHl; = QH - B«Q = QTH - HTQ =
dt

= Q Tit.x,p.pdf 00,0010 H = H T, x,ppddl 00,0010 G (6.23b)

characterizing the Lie-isotopic generalization of Heisenberg’s equations, called
isoheisenberg’s representation, originally submitted in Santilli (1978b), p. 752.

Tﬁg corresponding, equivalent, isoschrédinger’s representation is then
charactaﬁiged by the right and left modular-isotopic isoeigenvalue equations

:k{"at|¢>=H»={¢>=H114;>=E*1¢>5E|¢>, (6.24a)
SISl -y = <ylTH = <o = <olE (6.24b)

Eef, Een H=H"

introduced by Mignani (1982) and Myung and Santilli (1982a).

By inspection, one can see that Eq.s (6.24) represent a physical system with
all possible potential forces, characterized by the conventional Hamiltonian as the
sum of the kinetic energy and potential energy, H = T(x) + V{t, x, %), with potential

d av oy
PA- . (6.25)

as well as an additional class of nonlinear, nonlocal and nonharniltonian forces
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beyond the representational capability of the Hamiltonian, characterized precisely
by the isotopic element T which, as one can see, multiplies the Hamiltonian from
the right and from the left.

Eq.s (6.23) and (6.24) are at the foundations of the operator formulation of the
Lie-Santilli theory. In fact, as shown in Santilli (1978b) and subsequently developed
by Myung and Santilli (1982a), Mignani, Myung and Santilli (1983) and Santilli (19893,
b, ¢, d), Eq.s (6.23) and (6.24) characterize a generalization of quantum mechanics on
a suitable isotopic form of the Hilbert space, called hadronic mechanics.

In this case, the gencrators X are generally expressed via matrices or via
local-differential operators, while the isounit 1 is generally represented by a
nonlinear and nonlocal, integro—differential operator.

As an example, for the case of two particles with wavepackets $(t,r) and
o(t,r) in conditions of deep mutual penetrations, the isotopic element can be
expressed via the form first introduced by Animalu (1991)

Hitkfavditn ot (6.26)

T=e¢e A

One can therefore see in this way that for null wave-overlapping, the
integral in the exponent of Eq. (6.26) is null, the isounit T assumes the conventional
trivial value I, and ali Lie-isotopic formulations recover the conventional
formulations identically at both the quantum mechanical as well as Lie levels.

In turn, the emerging isotopic generalization of quantum mechanics under
isounit (6.26) is useful for a more adequate nonlocal formulation of: bound states of
particles at very short distances resuiting in nonlocal internal effects, as expected
in the structure of hadrons and, to a lesser quantitative extent, in the structure of
nuclei (but not in the structure of atomsk a possible nonlocal structure of Cooper
pairs in superconductivity; the origin of Bose-Einstein correlations; and all other
particle cases where nonlocal conditions are expected to provide experimentally
measurable effects.

Realization (6.26) is useful to provide the reader with an illustration of the
needed type of nonlocality, as well as of the type of operator Lie—Santilli theory
which is expected from the classical formulations of this analysis.

We now pass to the classical realization of the Lie-Santilli theory, which is
the central topic of the remaining parts of this paper. In this section we shall
present only a few introductory notions. The topic is studied in detail at the
analytic level in Sect. 7 and at the geometric level in Sect. 9.

Introduce the conventional phase space T*E(r,5R) with local coordinates



J. V. Kadeisvili ~43 - Santilli’s Isotopies

a=@&"=>6p=>0p), i=12.0 p=12.20 (6.27)

where we shall ignore for simplicity of notation any distinction between covariant
and contravariant indeces in the r- and p-variables, but keep such a distinction for
the a-variables.

As well known, the celebrated Lie’s First, Second and Third Theorems
provide a direct characterization of the conventional Hamilton's equations without
external terms, as presented in their original derivation (Lie (1893)). Therefore, Lie’s
Theorems provide a direct characterization of the familiar Poisson brackets
among functions Afa) and B(a} on T*Er,5,#)

BA
ABl= —ot —= — — - — — (6.28)

where o'V is the contravariant, canonical, Lie tensor with components

[
nn ) (6.29)

Ol'lx!'l

W = ( "o

“Ihxn

(see the next sections for details and geometrical meaning).

Santilli’s primary physical motivation for proposing the Lie~isotopic theory
was to show that the isotopic First, Second and Third Theorems characterize a
generalization of Hamilton's equations originally discovered by Birkhoff (1927) and
called Birkhoff's equations, with the ensuing mechanics called Birkhoffian
mechanics.

In fact, the Lie-Santilli Theorems directly characterize the most general
possible, regular realization of Lie brackets on T*E{r,8#), given by Birkhoffs

brackets
8A@) 8Bla)
(A7Bl = — oV — , (6.30)
gaMt da¥

where MV, called contravariant Birkhoff’s tensor, verifies the conditions for
brackets (6.30) to be Lie

HY + QU = (6.31a)
Ao VT SOMT
QP——— + qHP + QVP = 0. (6.31b)
daP oaP aaP
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The reader should also be aware that, in a classical realization, the isotopic
rules (6.15) no longer hold because the product of functions A and B in the phase
space T*E(r,88) is conventional, AB, and the differential rules for the classical
isotopic brackets are given by

[A7BCl = [ABIC + B[A;C], (6.32a)
[AB.Cl = [ao,CIB + A[B,CL (6.32b)

A comprehensive treatment of Birkhoffian mechanics was presented in
Santilli (1982a). However, such a formulation is local-differential and, thus, basically
insufficient for the treatment of systems (1.1) A further structural generalization
was therefore needed.

In essence, the abstract formulation of the Lie-Santilli theory, as reviewed in
this section, is directly suited for the representation of nonlinear as well as nonlocal
interactions, via their embedding in the isounit of the theory.

On the contrary, the classical realization of the Lie-Santilli theory as
originally proposed and developed into the Birkhoffian mechanics could indeed
represent all possible nonlinear and non-Hamiltonian systems (1.1), but only in their
local-differential approximation.

This occurrence is dictated by the use of the conventional symplectic
geometry, although in its most general possible exact realization precisely given
by the Birkhoffian mechanics. The inability to represent any form of nonlocal—~
integral interactions was then due to the strictly local-differential topology of the
underlying geometry.

This created a rather unusual dichotomy whereby the operator formulations
of the theory did indeed permit nonlocal interactions (Myung and Santilli (1982a),
Mignani, Myung and Santilli (1983)), but their classical counterpart could only admit
local interactions (Santilli 1982a)).

This problem was solved only lately via the submission (Santilli (1988a, b),
(1991a, b)) of what he called symplectic-isotopic geometry and Birkhoffian—
isotopic mechanics , and now called Santilli’s isosymplectic geometry and
Birkhoff-Santilli mechanics, respectively, as the true, classical, geometric and
analytic counterparts, respectively, of the abstract Lie-Santilli theory reviewed
earlier. We are referring here to the capability of the geometry and of the analytic
mechanics to identify in a direct and unambiguous way the underlying isounit in a
way similar to the same capability of the Lie-Santilli theory.

Once the applicable geometry and analytic mechanics can directly identify
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the underlying isounits, they are readily turned into a form capable of representing
integro—differential equations, because one can embed all nonlocal terms in the
isounit of the theory.

Santilli's isosymplectic geometry and the Birkhoffian-Santilli mechanics will
be reviewed in the next sections. In this section, I shall merely present the main
idea of the brackets needed by Santilli.

Let us review the conventional Poisson brackets in the unified notation {6.27)
on the conventional 2n-dimensional space T*E(r,5,R). Its underlying unit is evidently
given by the trivial unit [ in 2n—dimension,

I = {1,0) = lopepp = diag, (1, L., 1) (6.33)

Santilli therefore note that, while the conventional way of writing the
Poisson brackets in the disjoint r- and p-coordinates does not aliow any effective
identification of the underlying unit, this is not the case for the brackets written in
the unified a—notaticn, because they can be written

aAla) aR(a)
[A,B] = — MP [pV S (6.34)
aaH daV

thus exh_ipiting the unit of the theory directly in their structure.

The classical isotopic brackets submitted by Santilli (1988a, b), here called
Hamﬂton;:;r_SantiHi brackets , are given by a direct generalization of brackets (6.34)
of the form

dAla) aB(a)
(ATB] = — oMP1 Ytaa.) —, {6.35)
dak P da¥

that is, with the following generalization of the canonical tensor
M = o1 Maa), (6.36)
p

evidently under integrability conditions {6.31) for brackets {(6.35) to be verify axioms
(5.24).

Santilli also writes brackets (6.35) in the disjoint r— and p—coordinates by
assuming the diagonal form of the isounit
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1 = diag. By Sy =81, detd=0, (6.37)

and structure {6.29), under which we have

0A oB 8B . A
(A’B] = — &_(rp.) — - — 8Utrp.) —, (6.38)
ar Y ap. ar; ap;
1 ]

One again see in this way that the unified notation (6.27) permits the direct
identification of the isounit 1, while such isounit is not directly exhibited by the
disjoint r- and p—formulation.

Classical brackets (6.35) do indeed permit the representation of nonlocal
systems without any need of introducing a nonlocal topology. This is essentially
due to the fact that the canonical structure wh? is preserved in its entirety in
structure (6.35), while all nonlocal terms are factorized into the isounit 1, exactly as
it oceurs at the abstract formulation of the theory.

The only difference between the abstract and classical realizations is that in
the abstract case, brackets (6.8) exhibit the presence of the isotopic element, while
in the classical realization (6.35), the brackets exhibit the presence of the isounit.

This is a fully normal occurrence and it is due to the interchange between
covariant and contravariant quantities in the transition from the abstract to the
classical formulation of the enveloping algebra.

The classical realization of the Lie—isotopic time evolution (6.2a) is
straightforward, and it is given by

twha Y (oH/2a") (o/at
& Qalth —(leg . © o ITkQal) (639

which constitutes precisely a classical realization of the abstract Lie—Santilli
transformation groups considered earlier, with a ready extension to more than one
dimension.

The infinitesimal version of time evolution (6.39) was easily identified by
Santilli; it is given by

Q- oH
G =07 H = — H9)Y —, (6.40)
dakt oa”

and characterizes the Hamilton-Santilii equations submitted in Santilli {1988a,b),
(1991a, d). The more general Birkhoff-Santilli equations hold when the factorized
Lie tensor is the original Birkhoff's tensor (see next section for details).
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The reader should be aware that, while the classical realizations of Lie
algebras and groups in their conventional or isotopic realizations are rather simple,
as shown above, the classical realizations of universal enveloping associative
algebras are rather complex, whether conventional or isotopic, and they will not be
treated here for brevity.

In particular, the most notable differences between the abstract
isoenvelopes and their classical realizations is the appearance of the so-called
neutral elements dj; {see, e.g,, Sudarshan and Mukunda (1974), p. 222). Conventional

closure rules must be generally written
. =k
L: X;, X = Gy~ Xy + dj; (6.41)

where the X's are vector-fields on T*E(r,8,%), the brackets are the conventional
Poisson brackets, and the neutral elements di f are pure numbers,

In the transition to the Hamilton-Santilli brackets, the situation is
predictably more complex, inasmuch as rules (6.41) are now lifted into the isotopic
form

XX = GfLas) X + 8itaa.) (6.42

namely, ﬁot only the structure constants Cijk are lifted into the structure functions
Cijk, but also the constant neutral elements dij are lifted into the isoneutral
elements aij with a nontrivial dependence in the local variables.

Now, the elimination of the neutral elements is rather simple at the level of
abstract Lie algebras and groups, whether conventiconal or isotopic. Nevertheless
their elimination is rather complex within the context of classical realizations.

This occurrence has direct implications in the identification of the classical
realizations of Casimir invariants of the Lie-Santilli theory, called isocasimir
invariants, but not in their abstract (or operator} counterpart. In fact, in the
abstract case the isocasimir invariant can be globally identified in a rather simple
way, while in the corresponding classical realization, the same isocasimir invariants
are generally defined only locally, in the neighborhood of a point of the local
variables.

This occurrence can be best illustrated by inspecting the global
identification of the isocasimir invariants of the Lorentz-isotopic group in Santilli
(1983a), and only the local identification of their classical counterpart in Santilli
(1988c¢), (1991).
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The ultimate roots of this occurrence were identified by Santilli (1978a), and
are due to the fact that the envelopes underlying the abstract Lie brackets "ab ~ ba”
or their isotopic generalization "axb — b*a” are associative Lie-admissible in the
conventional or isotopic sense,

E: ab = assoc., £7: ab - ba, (6.43a)

t axb = assoc, . ash - bea. (6.43b)

On the contrary, the envelopes underlying the classical Lie brackets (6.34) or
their isotopic generalizations (6.35) are nonassociative Lie-admissible, Eq.s (5.12},

gA o©B JdA OB aB oA
y. — —— = nonassoc,, U: —— - ——, (6.44a)
JA aB OA aB oB oA
0: “_‘Bij —— = nONassoc., U‘:—Sij-—-——sij—, (6.44D)
or; Bpj ary apj ory apj

We know nowadays how to generalize the Poincare-Birkhof f-Witt Theorem
for isoassociative algebras, but their generalization for nonassociative algebras is
known only for flexible Lie-admissible algebras (Santilli (1978a), Ktorides, Myung
and Santilli {1982a)), namely, for a type of algebra for which no classical realization
is known at this writing {Sect. 5).

[t is evidently true that the classical Lie algebras and groups can be
equivalently formulated via an associative envelope, Lemma 5.1. In fact, the Lie—
Santilli expansion (6.39) is precisely of conventionally associative type.

However, such an associative reformulation of nonassociative envelopes
implies the appearance of the neutral elements. The difficulties in their elimination
at this time therefore rest in our lack of knowledge of the infinite-dimensional
basis for the nonassociative envelopes U and U above.

[n conclusion, we do have today a vast mathematical and physical
knowledge on the associative envelope of the brackets of quantum mechanics,
Heisenberg’s brackets AB — BA.

Nevertheless, despite truly volurninous studies initiated by Sophus Lie (1893),
and contrary to rather widespread beliefs in mathematical and physical circles, we
still do not possess today final mathematical knowledge on the envelope of the
corresponding classical brackets, the conventional Poisson brackets (6.28).
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L.7: BIRKHOFFIAN MECHANICS

We now pass to the second step in Santilli’s characterization of systems (1.1), this
time, their analytic representation.

We shall first review the elements of the Birkhoffian generalization of
Hamiltonian mechanics, or Birkhoffian mechanics, as originally derived, that is,
via formuiations on conventional spaces with the algebra structure being the Lie-
Santilli theory, and the underlying geometry being the conventional symplectic
geometry.

We shall also review Santilli's direct universality of Birkhoffian mechanics
for local-differential systems verifying the necessary topological conditions, that
is, its capability of representing all possible nonlinear and nonhamiltonian systems
of ordinary local~differential equations verifying certain continuity and regularity
conditions (universality) directly in the coordinates of their experimental detection
(direct universality).

We shall then reformulate the Birkhoffian mechanics in a form, called

' Birkhoff-Santilli mechanics, which is formulated on Santilli’s isospaces in such a

way to exhibit the isounit of the theory directly in the analytic equations and,
therefore, in the Lie-Santilli brackets. The geometric structure of the latter
mechanics will be studied in Sec. 9.

The primary reason for such a reformulation was indicated earlier, and it is
due to the fact that the Birkhoffian mechanics can only represent local-differential
systems because it is based on a geometry, the symplectic geometry, which is
strictly local-differential in topological character. The Birkhoff-Santilli mechanics,
instead, permits the representation of nonlocal-integral systems under the
condition that all the nonlocal terms are incorporated in the isounit of the theory,
as permitted by the Lie—isotopic algebra.

In turn, the achievement of a mechanics capable of representing nonlocal
interactions is necessary, not only for the classical representation of systems of
type (1.1}, but also for the operator formulation of the theory. In fact, the
interactions of primary interest for the interior problem in both classical and
particles physics are precisely of nonlocal-integral type.

The studies of this section were initiated by Birkhoff (1927) who identified
the central local-differential equations of the new mechanics. However, their
algebraic and geometrical structures were unknown. Also, Birkhoff applied his
equations to conventional, conservative, Hamiltonian systems, such as the stability
of the planetary orbits.

Birkhoff’s studies went essentially un-noticed for about fifty one years.
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Santilli (1978a) rediscovered the equations, by calling them “Birkhoff’s equations”,
and identified: 1) their algebra structure as being that of the Lie-isotopic theory; 2)
their geometric structure as being that of the conventional symplectic geometry in
its most general possible exact and local formulation; and 3) the capability of the
equations of representing all possible nonlinear and nonhamiltonian systems in
local-differential approximation. The name of “Birkhoffian mechanics “ was
apparently submitted in the quoted memoir for the first time.

A presentation of the foundations of the studies, Helmholtz’s (1887)
conditions of variational selfadjointness, were subsequently presented in the
monograph Santilli (1978¢), while a comprehensive presentation of Birkhoffian
mechanics was provided in the subsequent monograph (1982a).

The nonrelativistic (relativistic) Birkhoff-Santilli mechanics were
introduced for the first time in Santilli {1988a) (Santilli (1988c)), and then developed in
Santilli (1988b) (Santilli (1991d)). In this section we shall present the structure of the
mechanics in isospaces of unspecified physical interpretation.

The reader should be aware that the Birkhoff-Santilli mechanics provides
the ultimate analytic foundations of the isotopies of Galilei’s and Einstein’s
relativities. No in depth knowledge of the Santilli's relativities can therefore be
reached without an in depth knowledge of their analytic structure. The
rudimentary outline of this section is basically insufficient for this task, and a
study of the original references is essential. :

We should finally mention that Santilli presented in the same memoir of
(1978a) a still more general mechanics possessing, this time, the broader Lie—
admissible and symplectic-admissible structures. This more general mechanics was
subsequently studied in detail in the monograph Santilli {1981a). The rudiments of
this latter mechanics are presented, for completeness, in the Appendices.

As anticipated in Sect. 4, the primary physical motivation for this latter
generalization is the following. Whether conventional or isotopic, Birkhoffian
mechanics is an axiom preserving generalization of Hamiltonian mechanics. As
such, its primary physical emphasis is in space-time symmetries and related first-
integrals which represent total conservation laws. This renders Birkhoffian
mechanics ideally suited for the characterization of closed-isolated interior
systems, such as Jupiter when studied as a whole.

Santilli's more general Birkhoffian—admissible mechanics implies instead a
generalization of the axiomatic structure of Hamiltonian mechanics into a form
which represents instead the time-rate-of-variations of physical quantities. This
renders the Birkhoffian-admissible mechanics particularly suited when studying
open—nonconservative interior systems, such as a satellite during penetration in
Jupiter’s atmosphere considered as external.
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Santilli’s notations, which are herein adopted, are the following. Manifolds
over the reals R of arbitrary physical interpretation are indicated with the generic
symbol M®). Specific physical interpretation of M{®) (such as the Euclidean space
over the reals), are generally indicated with different symbols (such as E(®)).

Generic local coordinates on an N-dimensional manifold M(&R) are indicated
with the symbol x, and their components with the symbol x = {x%), where for all
Latin indeces i= 1,2, .., N. Coordinates of specific physical interpretation (e.g., the
Cartesian coordinates on a Euclidean space) are indicated with generally different
symbols (e.g., r = (r!)).

_To begin, considered a 2n~dimensional manifold M(®) with local coordinates
x =), i=1, 2 .. 2n, over the reals ®. Let t be an independent variable and x =
dx/dt. Birkhoffian mechanics is based on the most general possible variational
principle in M(®) which is of linear and first-order character, i.e., depending linearly
in the x's. Our basic analytic tool is then the Pfaffian variational principle

t .
B8R = sft 2(Ri(x) x! - Bft, x)Edt =0, i=i2.,2n (7.1)
1

here written in its semiautonomous form, i.e., with the t-dependence restricted
“only to the B-function, cailed by Santifli the Birkhoffian because it does not
generally represent the Hamilfonian H=T + V.

When -computed along an actual path E of the system, principle (7.1)
characterizes:the following equations

. 9B{tx)
Q) = 5 i,j=12 .20, (7.2)
X

called by Santilli the covariant, semiautonomous Birkhoff’s equations, where

aR{x) aR.(x)
J.( Sg—— (7.3)

ax! axJ

0 ix) =

is the covariant Birkhoff’s tensor hereon restricted to be nowhere degenerate (i.e.,
det (Qij) # 0 everywhere in the region considered).

Santilli then called the contravariant, semiautonomous Birkhoff’s equations
the expressions

. o B(tx)
U U S (7.4)
axJ
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where
aled = (Jaed™ 7.5)

is the contravariant Birkhoff’5 tenscr.

[t is easy to see that the brackets of the algebraic structure of the theory
among functions Alx), B, ... on M(R) are characterized by the contravariant tensor
ol

A oAy . 9Bk
A Bl = — o) , (7.6)
ox! axJ
while the covariant tensor Qi i characterizes the two—form
0=de = dRdx) =
aRj oR; . . . .
= — - — )dx'Adx] = 0y dx Adx], (7.7)
ax! ax]

As we shall review in Section 9, two-form (7.7) is the most general possible
exact symplectic two-form in local coordinates. This provides the necessary and
sufficient conditions for brackets {7.6) to be the most general possible classical,
regular , unconstrained? Lie~Santilli product on M@®) (see the proof in Santilli
(1982a)). '

Brackets (7.6) were called by Santilli Birkhoff’s brackets , and this
terminology will be kept in this volume. The same brackets are also called
generalized Poisson brackets in other studies (e.g., Sudarshan and Mukunda (1974)).
The fundamental Birkhoff’s brackets are then given by

i xdl = allx), (7.8)

and they play an important role for the classical and operator realization of Lie-
Santilli, space-time symmetries.

Other fundamental equations are given by the expression called by Santilii
the Birkhoffian Hamilton—-Jacobi equations

¥ we should mention for completeness that, in addition to the brackets of this section, we
also have those defined on an hypersurface of constraints, as it is the case for Dirac’s
brackets (Dirac (1964)).
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dA
— + Bt = 0 (7.92}
at

LTy

— = Rj, (7.9b)
ax!

which are directly derivable from variational principle (7.1} (under the condition of
nowhere degeneracy of Birkhoff's tensors) and, as such, are equivalent to Birkhoff’s
equations {see Santilli (1982a) for details).

Eq.s (7.9) play a predictable fundamental role for the construction of the
operator formulation of the isotopic relativities, although in a reduced isotopic
form discussed below.

In Hamiltonian mechanics, one usualily assigns the Hamiltonian and then
computes the equations of motion, when needed. In Santilli’s studies of Birkhoffian
mechanics the situation is the opposite. In fact, one starts with an arbitrary
nonlinear and nonhamiltonian system and then computes its Birkhoffian
representation.

A main result can be formulated as follows.

THEOREM II.7.1 (Direct Universality of Birkhoffian Mechanics for Local First-
Order Systems; Santilli (1982a), Theorem 4.5.1, p. 54 All local, analytic, regular,
nonautonomoqg, finite-dimensional, first-order, ordinary differential equations on
a 2n-dimensional manifold M(®) with local coordinates x ={x!), i = 1, 2, .., 2n, and
derivatives x = dx/dt with respect to an independent variable t,

= i, ), (5.10)

always admii, in a star-shaped neighborhood of a regular point of their variables, a
representation in terms of Birkhoff's equations directly in the Jocal variables at
hand, ie,

R{t,x) Rt x) oB(t,xX)  oR;{t,x)
——- — ] rkt,x) = ———— + SR (AN
ax! axJ ox! at

Namely, for each given vector—field I{t, x) on M{(®)} verifying the topological
conditions of the theorem, one can always construct {n + 1} functions Rylt, x) and
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B(t, x) which characterize Birkhoffian representation (7.11).

The reader should be warned that, as the representation emerges from the
techniques of Birkhoffian mechanics, it is generally of the nonautonomous type
{7.11), even when the equations of motion are autonomous . Now, representation
(7.11) is certainly correct from an analytic viewpoint, i.e., for the use of variational
principle (7.1), the Hamilton—Jacobi theory, etc. However, structure {7.11) is not
suitable for a generalization of conventional relativities because it violates the
condition for the characterization of any algebra, let alone the Lie-isotopic algebras
(see Appendix .A for details).

This requires the reduction of nonautonomous representation (7.11) to the
semiautonomous form (7.2) (with a consistent Lie-Santilli structure) via the use of
the “degrees of freedom” of the theory which are considerably broader than those
of the conventional Hamiltonian mechanics.

We limit here to the indication that the so—called Birkhoffian gauge
transformations

aG(t, x)
Rit, x}) = R;lx} = Rylt,x) + . (7.12a)
axi
aGit, x)
Bltx) = Bfitx) = Blta) - 3 (7.12b)
ot

Jeave unchanged the integrand of principle (7.1) as well as brackets (7.6) and two-
form (7.7), within the fixed system of local coordinates of the vector—field. For
other degrees of freedom, see the locally quoted references.

Santilli's formulation of the Birkhoffian mechanics is evidently a covering
of the conventional Hamiltonian mechanics because:

1) The former mechanics is based on methods (the Lie-Santilli theory)
structurally more general then those of the latter mechanics (Lie’s theory in its
simplest possible realization);

2) The former mechanics represents physical systems (local, but arbitrarily
nonlinear and nonhamiltonian systems) which are structurally more general than
those represented by the latter systems {local potential systems); and

3) The former mechanics admits the latter as a particular case.

To illustrate the latter occurrence, we now introduce a physical realization
of the preceding formulation. Let E(r,®) be an n-dimensional Euclidean space with
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Cartesian coordinates r = (ri), and let p = dr/dt = (pi) be their tangent vectors ({the
ordinary linear momenta). Then, the 2n-dimensional manifold M(®) can be
interpreted as the cotangent bundle (the conventional phase space) T*E(r,R) with
local coordinates a = (@t} = (r;, p) w = I, 2, .., 2n, and i = 1, 2, ...n, where, for
simplicity of notation, we shall assume all uvpper and lower Latin indeces on
coordinates and momenta to be equivalent, but preserve the distinction between the
Greek upper (contravariant) and lower (covariant) indeces on T*E(r,R).

It is then easy to see that the particular case of Birkhoffian mechanics
characterized by

a=@"=@p=p), (7.13a)
R = Ro = (Rou) = (p, 0) = (pl, 01), (7].3]3):
B = Blt,a} =B{t,r,p) = Hit,r,p} = H{t, a), (7.13)

u=52..2n, 1i=12.,n,

reproduces the conventional Hamiltonian mechanics in its entirety,
In fact, under values (7.13), Pfaffian principle (7.1} re-acquires its canonical

form
ty
SA =8 [p;i' - Ht,r,pl dt =

ty e

t
=8 ftl 2[R°u(a) &t - H, a)]‘Edt =0, (7.14)

the covariant tensor (7.3} assumes the canonical-symplectic value on T*E(r,R)

(&) =( Ry Ry ) =( oo ) (7.15)

Vv
ax ax Insn Onxn

with canonical-Lie counterpart

- 0 s [
W = (Jo [ =( ma n ) 7.16)

ap “loxn O,

Birkhoff’s equations (7.2} then reduce to the covariant Hamilton's equations
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aH(t, a)
w _ a’ = =12 ..,2n, (7.17)
uv aal-l-
with contravariant form
aH(t, a)
b = oV (7.18)
9a”

which, when written in the disjoint coordinates x = (r, p), assumes the familiar form

oHit, 1, p) 8Hlt, r, p)
f=— pj = - ————, {7.19)

Finally, Birkhoffian Hamilton-Jacobi equations {7.9) assume the familiar
canonical form

9A
+ Hit,r,p) =0, (7.20a)
at
9A 9A
— =D, = 0. {7.20b}
o 1 9p;

Note that, while the canonical action A is independent from the variables p
as expressed in Eq.s (7.20b), the Pfaffian action A is generally dependent on all &'
and, thus also on the momenta, as expressed by Eq.s (7.9b).

This occurrence creates problems in the use of the general equations (7.9) for
the construction of an operator image of Birkhoffian mechanics, owing to its
excessive generality (e.g., because, after using conventional quantization techniques,
it would fmply “wavefunctions” ¢ depending also on momenta, e, § = (i, T, p).

Santilli’s first motivation for the reformulation of the above mechanics into
his isotopic form is therefore of physical character, and consists of the study of
Pfaffian variational principles which, while being truly generalized, imply an action
independent from the p-variables.

Santilli achieved this objective via the following particular form of the R-
functions

o= (R fa) = P, ph o) = (BT, 0=(p Ty 0 (7.21)
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where T| is an n*n symmetric, nonsingular and real~values matrix
= = = (r.iy = i
Ty =Ty = Ty ) = (T) = (1) (7.22)

Realization (7.21) characterizes a phase space T*E (r,) for which principle
{7.1) becomes

t
i° = ° IJ- -
84 aftl [R (ara Ht, a) jx dt

f 2
=5 i -
t) [pyT4t; - Hit,r, pl

i dt =0, {7.23)

E

and can be interpreted as acting on a 2n-dimensional iso-phase-space T*E,(r,})
equipped with the isounit

1, = dieg. (1,7, 7,70 (7.24)

Eq.s (7.9) then become

ak°
— + Hit,r,p) = 0, {7.25a)
ot
9A° , ai°
— =T — =, (7.25b)
ary op;

thus confirming the independence of the generalized action from the velocities, as
desired.

Intriguingly, the mapping of Eq.s (.8.25) into an operator form yields exactly
isoschridinger’s equations (6.24a), as shown by Animalu and Santilli (1990). We can
therefore state today that the Birkhoffian generalization of Hamiltonian mechanics
admits as operator image the hadronic generalization of quanturn mechanics.

The covariant Birkhoff’s tensor characterized by Pfaffian principle (7.23) is
given by

@) = — - —

oR,, aﬂu _ ( Orxn (Tz)n,m) )
oxh ax”

B (TZ)an Onxp
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a1 K,
0 Ii

wn FLij * P
_ %p;
: aT, k. (7.26)

li
T, .+ pg ———)
1 ij N*1 Onxn
apj

namely, has the factorized structure

= waxTy (7.27a)
Ty = diag. (To, Tg), (7.27b)
oT X,
Ty T+ P lan - (7.27¢)

with corresponding two-form
a
0 =y, dd Adx” = (ayq Ty ) da A da” (7.28)

where the upper script ” ° “ in structure }° stands to indicate that the factorized
structure o is canonical. The covariant analytic equations are given by the
Hamilton-Santilli equations (Santilli (1988a))

) ” o ” 3H(t, a)
qu (a)a¥ = g 1*2 Jara’ = o (7.29)

The contravariant Birkhoff's tensor has the structure

(@) = Wx1y = Lx M) = @MY,

0 {1,)
- ( wa 2 ) (7.30
~ g Onxn
....1 _ -
1, =T, = diag.(Ty L, Ty 1) = diag Iy I) (7.300)
gk
[p = (T; 4+ Pk R (7.30c)

api
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and characterizes the brackets

DA v 9B
[ATB] = — ¥y, fa.) —
dat da¥
OA ( 9B oB dA 731
= — Lo {r,p) — - — I5.{r,p) — 7.31
21 [] 2 3 ]
ar; ! 6pj or; 1 Bpj

with contravariant Hamilfon—-Santilli equations

oH(t, a) - aH(t, a)
") = "1 V) . (7.32)

da”

= ot

which can be written in the disjoint r— and p-coordinates

8H(t, r, p)
apj
oHit, 1, p)
ar;

1

A few comments are here in order. First, two—form (7.28) remains exact and
symplectic, as the reader can verify (see Sect. 9 for details). As a result, brackets
(7.31) remain Lie-Santilli under factorization (7.27), provided that the elements I,
are computed as in Eq.s (7.30¢).

Second, we note that Hamilton-Santilli mechanics characterized by analytic
equations (7.30) or (7.32) on T"E{rf) does indeed permit the representation of
nonlocal-integral interactions, provided that they are all incorporated in the
isotopic element Ty or, equivalently, in the isounit ?2 . In fact, the local-
differential topology of Hamiltonian mechanics is preserved in its entirety in the
factorized canonical forms, while the formulations are insensitive to the possible
nonlocality of their units. _

Moreover, we note that, when the equations of motion represented by Eq.s
{7.30) or (7.32) are written in their second-order form (see Santilli (1982a) for details),
they characterize second-order Lagrangians 0.

As a result, analytic equations {7.30) or {7.32) on isospaces T*E,(r,#) do indeed

U see footnote? in Sect. 1.
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characterize systems of type (1.1}, that is, the most general possible class of
nonlinear, nonlocal and nonhamiltonian systems (1.1} known at this writing“

The reader should finally be aware of the distinction between spaces
TE,(r,81) and T*E,(r ). The former is characterized by a one-form, the integrand
of Pfaffian principle (7.23), while the latter is characterized by a two-form, Eq.s
(7.28). As a result, they have different isotopic elements, T| and Ty, and different
isounits, 1; and 15, respectively. The isospace characterizing the Lie-Santilli algebra
is evidently that of the analytic equations, T*E{r,f).

The extension of the above results to a full isotopy of Birkhoffian
mechanics, i.e., for structures (7.28) and (7.30) in which the factorized structures are
Birkhoffian, rather than Hamiltonian, is straightforward (see also Sect. 9 for its
geometrical treatment).

Santilli (loc,. cit.) reach in this way the following

DEFINITION 7.1: Let T*M, (r,#) be a 2n-dimensional iso-phase spaces with local
coordinates x = r, p) , isofield® = R, and isounit

1y =={yH = 0P = (%) = (x® = diag. Uy 1y =

= Ugyplpy) = = 1Y =17 =yl >0 (7.34a)
alei(r,p)
Ty =+ p— ) (7.34b)
apj

with T; (r,p) being an nn symmetric, nonsingular and real-value matrix. Then, the
“Birkhoff-Santilli equations” are given in their covariant form by

@a” = [T, Ya) 0, fa) 2 o8t 2 (7.35)
ala’ = a. ala” = N .
Ouv 2L av ot
with contravariant version
dHlt, a) T aB(t, a)
M = 0@ = 0% el : (7.36)
sa¥ 2 oa¥

11 45 shown by Jannussis et al. (1983), (1985), the direct universality of the more genera! Lie=
admissible treatment is such to inchude also finite-difference equations. A similar possibility
is expected for the simpler Lie-isotopic treatment, evidently upon embedding of all finite—
difference terms in the isounit.
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namely, they occur when the contravariant tensor @ U (covariant tensor Py ) s,
first, Lie-Santilli (isosymplectic), and, second, admits the factorization of the
isounit (isotopic element) of the isospace T*E, (r.%) in which it is defined

Q) = 1, V) = @D (7.37a)

Q) = @) x (Ty%), (7.37b)

where {Or" } are conventional, local-differential contravariant (covariant)
Birkhoff’s tensors. The ’Birkhoff-Santilli mechanics” is the mechanics
characterized by the Birkhoff-Santilii equations.

It is easy to see that the Birkhoff-Santilli mechanics is broader than the
conventional one, trivially, because of the preservation of the most general possible
Birkhoff's tensors in its structure, plus the isounit. As a result, the Birkhoffian-
isotopic mechanics, not only verifies Theorem 7.1 of Direct Universality, but
actually verifies it in an exfended form inclusive of nonlocal integral terms.

In particular, Birkhoff-Santilli equations (7.32) are expected to be “directly
universal” for systems (1.1), although the study of this property was left open by
Santilli because not needed for his isotopic relativities.

The Birkhoff-Santilli mechanics is however, excessively broad for our needs.
In the subsequent sections of this volume we shall use its particularized form as
per the following

DEFINITION 7.2: The “Hamiltonian-Santilli mechanics” is the particular case of the
Birkhoff-Santilli mechanics in which the general Birkhoff’s tensors are replaced
by the canonical ones. The "Hamilton-Santilli equations” on T*E, (r,R) are therefore
given in their covariant form by Eq.s (7.30), and in their contravariant form by
Eq.s (7.32), with explicit form (7.33) in the r— and p—coordinates.

The above definitions essentially deal with the so-called “direct problem”
of analytic dynamics, in which one assigns the Hamiltonian and the isounit and
then computes the equations of motion via Eq.s (7.29) or (7.32).

Of particular importance for systems (1.1} is the “inverse problem” of
analytic dynamics, in which one assigns the equations of motion and must then
compute the corresponding isoanalytic representation. This problem was studied in
great detail in the monograph (Santilli (1978¢)} for the case of local, nonlinear and
Hamiltonian systems and in the monograph {Santilli (1982a)) for the case of local,
nonlinear and nonhamiltonian systems. Its extension to nonlocal, nonlinear and
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nonhamiltonian systems was done in Santilli (1988a), (1991a).

DEFINITION 7.% Let I" be a nonlinear, nonlocal and nonhamiltonian vector—field in
n-dimension with explicit form of type (1.1. A “direct Hamilton—Santilli
representation” exists when one can compute 2 Hamiltonian H and an isotopic
element T‘z from the given equations of motion, in such a way that the following
“isoanalytic representation” holds in the given local coordinates a = {1, p)

) y q oy | OHGLA
oy, @17 = o, Ty = ot (7.38a)
wyy = R AR R = 0). (7.38b)

The more general “direct Birkhotf-Santilli representation” of the same vector-Tleld
I' in the same Jocal coordinates a = {r, p) occurs when one can compute a
Birkhoffian B, 2n Birkhoffian functions R,u and one isotopic element Ty such that

the following “iscanalytic representation” holds, again, in the given Iocal variables
oBft, a}
aak

QIJ.V = ap_R.V - BVR'_L. (7.39b)

(7.39a)

0, @1 = [T, %) oy, fal ¥ =

The methods for the construction of the above isoanalytic representations
for the local subcase have been presented in detail in the monograph (Santilli (1982a),
Sect. 4.5 in particular., and they cannot be reviewed here to avoid a prohibitive
length. We merely recall that they are based on the construction, first, of an
equivalent covariant form of the given vector—field ' characterized by the
multiplication of a regular matrix of integrating factors (Cuv)

- = - = VvV _ =
b - =0 = (g, - [Cuva D) 0,

| SA lsA
det (C,) # 0, Dy = Gt (7. 40)

which verifies all the conditions of variational selfadjointness (SA), Theorem 4.1.1,
p. .20 of Santilli (1982a), ie.,

Cup * G =0 (7.41a)
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P aC aC
G, LAI ] S (7.41b)
da’ gt aaV

aD, aD.
w o B D , (7.41¢)
at aa¥ dak

LY, T = 1,2..20

which, as one can see, are the covariant version of the algebraic conditions (6.31)
(see Santilli (1982a) for details).

Once the selfadjointness of the covariant version of the vector-field is
assured, the construction of the and B functions from the equations of motion
can be done according to several possible methods of the quoted literature, e.g.,

ta =1 darrc,tala, (7.422)
Rli 0 py
Bt,a) = - [ 01 dr (D, + oR, /otki, Ta) |t (7.42b)

Note that the conditions of variational selfadjointness essentially imply that
the matrix of integrating factors coincides with that of Birkhoff's tensor, i.e.,

Cuy = Oy = 3Ry, = 3R, (7.43)

The generalization of the above techniques to the case of nonlocal vector—
fields I' is based on the construction of an equivalent covariant form (7.40) of the
given vector—field in the same coordinates which verifies the following conditions:

1) The multiplicative matrix of integrating factors (CMV) is decomposable in
the form

Quw = T, " 0, (7.44)
where 'I‘ua is totally symmetric and Q,, is totally antisymmetric
a = = - .
Tu = T, Quy =~ 0 (7.45)

2) All nonlocal terms are embedded in the symmetric tensor T, %, and the
quantity Q,,, admits no nonlocal-integral terms; and
3) the resulting system is variationally selfadjoint
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- DI-L}| A =0, (7.46)

Under these conditions, it is easy to sce that the following Birkhoff-Santilli
representation holds

a v
{1, %Cqp 2

a oB
1,50y, 2" - Dy = Ty Qg & - = 0. (7.47)
aalt

where the Birkhoffian functions Rll and B are computed as in the conventional
case.

We now review a few simple example from Santilli (1982a), (1988a), (1991d). The
simpler isoanalytic representations (7.38) with underlying variational principle (7.23),
Lie-Santilli brackets {7.30) and isosymplectic two—forms (7.28) are sufficient for all
practical cases. In fact, the Hamiltonian H can represent the totality of potential
forces, as in the conventional theory, while the isounit can represent the totality of
nonlocal-integral forces that are admitted by the theory. The broader Birkhoff-
Santilli setting is useful for mathematical aspects referred to the direct universality
of systems (L.1).

Let us begin with the simplest possible case, the free particle

= p/m, p=0 (7.48)
which admits the Hamilton-Santilli representation in isospace
Elrd5f): & = diag. (blz, b22. b32) = constants > 0, (7.49a)

f = A, 1=3%"1, (7.49b)

in terms of the functions

R°=,0, T=diag & 3), (7.50a}
~%
B=p2/2m, p = pip, (7.500)
The reader can therefore see that the transition from the conventional

Hamiltonian mechanics to the covering Hamilfon-Santilli mechanics implies the
possibility of representing the actual shape of the particle considered fe.g., an
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oblate or prolate spheroidal ellipsoid) via the 8 isometric while the equations of
rnotion formally coincide with the conventional ones.

After representing the actual shape of the particle considered, Santilli’s
methods can also represent all the infinitely possible deformations of the original
shape. The simplest possible case occurs when the deformation of shape 8 = & is
due to a conventional, external, local-potential force. This is the case when a
perfectly spherical charge distribution & = diag. (1, |, 1} in vacuum is subjected to
an external electric field which causes the deformation

5=diag.(1, 1, 1) = & = diag. (0,2 1,2 152 > o, (7.5)
The equations of moticn remain the conventional ones
fj = pi/m, B = —{oV / or) Ij /r, (7.52)
while the deformation of shape is represented via the Hamilton—-Santilli quantities
R*=(p, 0), T = diag. &, ¥), (7.53a)
%,

H=p2/2m+V(r), p?=pdp, r=|[rbr| (7.53b)
where all quanfities, including powers and absolute values, are properly written in
Santilli's isospace E(r,8,R).

In conclusions, Santilli’s isotopic methods apply first to the conventional,
local, potential subclass of systems (1.1) by

1} leaving the equations of motion unchanged:

2) by providing the additional capability of representing the actual shape of
the particle considered; as well as

3) of being able to represent all jts infinitely possible deformations caused
by external forces;

all this at this purely classical and Newtonian level (while preserving the exact
rotational symmelry, of course, at the isotopic level, as shown in the next section).

By comparison, the conventional Hamiltonian formulation of contemporary
mathematics and physics:

1Y) can represent the shape of a particle only after the rather complex second
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quantization and related form factors;

2) they cannot represent the actual shape of the particle considered (say, an
oblate spheroidal ellipsoid) because the form factors are only remnants of the shape
itself and, at any rate, they can only admit perfectly spherical objects to avoid the
breaking of the conventional rotational symmetry; and

3); they are structurally unable to represent the deformation of a given
original shape, again, to avoid the breaking of the conventional rotational
symmetry.

The mathematical and physical advancements for the study of conventional
local potential systems in the transition from the conventional Hamiltonian
techniques to Santilli’s isotopic formulations are then transparent.

Nevertheless, Santilli conceived his isotopic formulations for the
representation of the most general known, nonlinear, nonharmiltonian and nonlocal
systems (I.1). A typical example is given by the perfectly spherical charge
distribution above which performs the transition from motion in vacuum to
motion within a physical medium, resulting precisely in contact, nontinear,
nonlocal and nonhamiltonian forces between the sphere and the medium, with
evident, consequential deformation of shape.

A simple example occurs when the extended particle experiences a
nonlocal—integral force with quadratic damping

mt + yi2 [ Jdo i) = 0, (7.54)

which admits the following Hamilton-Santilli representation

R° = (p,0), (7.55a)
T = diag. (§ exp{ v1J qdoFi} ), & exp { T, f o4oF(r) ), (7.550)
B=p (& exp{yr) ,doF(r} )} p/2m. (7.54c)

where the dash in the isometric 8 indicates deformation of the original shape & and
the quantities b’y may depend on suitable parameters such as pressure, density, etc.
An endless variety of examples can then be constructed with infinitely
possible combinations of local-potential and nonlocal-nenpotential forces
depending on the infinitely possible physical media in which motion occurs.
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The reader interested in learning Santilli’s isotopic methods is urged to
construct a number of isoanalytic representations for given preassigned systems

(1.1).

L8: SANTILLI’S ISOSYMMETRIES

We are now sufficiently equipped to study Santilli's nonlinear and nonlocal
symmetries of systems (1.1} on isomanifolds, called Santilli’s isosymmetries .
These generalized symmetries evidently play a fundamental role for his
construction of the isotopies of Galilei’s, Einstein’s special and Einstein’s general
relativities.

In this section we shall consider two main topics. The first is the notion of
isosymmetries as the largest possible nonlinear, nonlocal and noncanonical groups
of isometries of given isometric spaces. The second is the notion of isosymmetries
of given equations of motion on isornanifolds, with related lifting of Noether's
theorem and conservation laws.

The notion of isotopic space-time symmetries was introduced in the original
proposal of the Lie—isotopic theory (Santitli (1978a)), although it was formulated in
conventional manifolds.

The formulation of space—time symmetries as isosymmetries, that is, as
symmetries on f"iSomanifolds, appeared in print, apparently for the first time, in
Santilli (1983a) in‘conjunction with his original construction of the infinite family of
isotopes O(3.1) of the Lorentz symmetry O{3.1). In fact, the paper first constructed
the infinite family of isotopies M of the Minkowski space M, then introduced the
Fundamental Theorem on [sosymrmetries {(see below), and finally constructed the
isotopies of O(3.1).

The operator counterpart of the above results was presented in Santilli
(1983c) via an isotopy of Wigner’s theorems on unitary symmetries.

The theory was formalized in Santilli (1985a), which constitutes the main
reference of this section, and applied to the lifting O(3) of the group of rotations in
the adjoining paper (Santilli {(1985b)).12

The second part of this section dealing with the isotopic symmetries of
given equations of motions, was first introduced in the monograph Santilli (1982a) as
part of the Birkhoffian generalization of Hamiltonian mechanics, including the

!4 We should indicate here that Santilli wrote first, in 1982, the papers (Santilli (1985a and b))
on the background methods and then wrote paper {1983a) on the isotopies of the Lorentz
symmetry. The preceding two papers appeared in print some two years after the latter
because of extreme editorial oppositions he encountered in their publication which he
reported in detail in the paper itself (Santilli (1985a)), p. 26.
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isotopic generalization of Noether’s theorem, and related conservation laws. As now
familiar, the theory was nonlinear and nonhamiltonian but local, owing to the use
of conventional local-differential manifolds.

The theory was then resumned in Santilli (1988a, b), (991a, d) and reformulated
as isosymmetries on isomanifolds, including the reformulation of Noether's
theorem on an isospace, which constitute the basis of the related review of this
section. ‘

To begin, consider a pseudometric space M (Sect. 3), here defined as an n—
dimensional topological space over the field F of real numbers %, complex numbers
C or quaternions Q with local coordinates x = {x'), y = yD,i=1, 2 .., n, equipped
with a nonsingular, sesquilinear and Hermitean composition {x,y) characterizing the

mapping
(xy): MxM = M. {8.1)

Let e = (el) be the basis of M, and define the metric tensor via the familiar
form
(ei’ e]) = gu, g = (glj)' (82)

The condition of nonsingularity is intended to ensure the existence of the
inverse

gl = (g 1 63

everywhere in the region considered, which permits the customary raising and
lowering of indeces

B . T
Xi = glj Xj, X = g‘]Xj, (8.4)

The condition of sequilinearity
(xay + 82 = alxy) + plxz), (ax + Bz} = adx2) + Bly,z), {8.5)

where the upper bar denotes conjugation in the field, permits the realization of the
composition in the familiar form

(xy) = ngy = xt gij vi. (8.6)
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Finaily, the condition of Hermiticity irplies that
xl (gy) = (ngT) y = @y 8.7)

by characterizing abstract spaces hereon denote M(x,gF).
The additional condition of positive-definiteness of the metric g implies that
we have a mefric space as per the definition of Sect. 3. Otherwise we have

pseudometric spaces.
Let us recali from Sect. 3 that a metric space of particular physical
relevance is the three-dimensional Euclidean space E(r,F), with local coordinates

r= (r}) over the fields F = R (real), C (complex), Q (quaternion), with composition

2 =g aij i) eF, &=diag. (1, I, 1). (8.8)

A pseudometric space also relevant in physic is the (3+1)-dimensional
Minkowski spaces Mix,n®) with local coordinates x = (rx%, x* = ot where ¢

represents the speed of light in vacuum, r € E{r,8®), and the composition is given by
the familiar expression

x2 = xh gy X 0= diag. 0, 1, 1,-1) (89)

Let us also recall the notion of isometry Glm} of a generic manifold Mix,g,F),
here defined as the largest possible m~dimensional Lie group G{m) of linear and
local transformations x = x’ leaving invariant the composition for the separation
X; = Xy among two points x ;, x, of an n—dimensional manifold MixgF) F =18, C

Q
xy Xl g ey = xg) = by —xolg ) — x0) (5.10)
(see for details, e.g., Gilmore (1974} and quoted literature),
The connected component GJ(m) of Glm) can be defined as an m-

dimensional Lie transformation group on M{x,gFX, i, as a topological space G,(m)
equipped with a binary associative composition ¢ characterizing the mapping

@ Golm) x G{m) = G.lm), (8.11)

for G{m) to be a topological Lie group, and the additional mapping
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f: GmxM = M, (8.12)

characterized by n analytic functions fw; x) depending on m parameters w and the
local coordinates x € M, which verify the conditions for G{m) to be a Lie
transformation group.

It is finally assumed that Gom) is a finear transformation group on Mix,gF),
i.e., the T—functions have the particular form

x = flw; x) = Alwlx, - (8.13)

under which the group conditions can he written

AlQ) = 1, (8.14a)
Alw) Alw) = Alw) Alw) = Alw + w), (8.14b)
Alw) Al=w) = |, (8.14c)

where [ is the trivial identity of Lie’s theory and the composition is the associative
one.

The isometry GJm) can then be defined as the largest possible group of
transformations (8.13) leaving invariant separation {8.10), i.e.
lix, - x ATl g [ab = x)l = () = xp)t g by ) (8.15)
which can hold iff in F

Agal =g, (5.16)

il

Alga

and

det A = %I (8.17)
Among the rather large number of methodological aspects needed for a
comprehensive characterization of G{m), we now restrict our attention to the
following.
I) The universal enveloping associative algebra E(G{m)) of the Lie algebra
GJm) recalled in Sect. 6. For readiness in the comparison of the results under
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isotopy, let us recall that the basis of G{m)
X = (Xp), ka = -Xg k=i2..m, (8.18)

must be ordered, and that the envelope &G (m)) is characterized by the infinite-
dimensional basis

€ L X XXg =s) XXX, r=sst)... (8.19)

A generic element of &(GJ{m)) is then an arbitrary polynomial P = P{X) in the
X's. The center C of E(GJ{m)) is the set of ail elements P which commute with all
components X of the basis, and can be characterized via the set of all possible
scalar multiples of the fundamental unit [ in F

C = (al| a €F, I =diagdi, I, .1} (8.20)

where the dimension of [ is that of the basis (e.g., for the regular representation of
G.Jm), [ is the mxm unit, etc.), and I is the right and left unit of Lie's theory

IXp = XI= X, VX, €& (8.21)
I1) The qbnnected Lie group Ge{m) of transformations on M(x,gF), which is
characterized by exponentiations in £GdJm)) via the infinite basis (8.19). For the case
of the right modular transformations (8.13), it can be written in the symbolic form
X, w
Gdm): Aw) = ] el K"k (8.22)
3
where the exponentiation is the conventional one. Exponentiation (8.22) can then be
reduced to the desired form via the Baker—-Campbell-Hausdorff Theorem (Gilmore
(loc. cit)). For the left modular action of G{m) on Mix,g,F)

X'T = xT AT(W), (8.23)

we have the realization
Gm): Af= (] elEXka)T’ (8.24)

where the skew-Hermiticity of the basis should be taken into account.
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[1I) The Lie algebra Gdm) of Gf{m), which is homomorphic to the
antisymmetric algebra [E(G{m))]” attached to the envelope EG{m)), and it is

characterized by the commutation rules
. = - - t
Gil(m) : [Xr, X§I-E = XXy — XXp = Cpg X (8.25)

where XX, is the trivial associative product in EG{m)), and the C’s are the structure

constants.
Finally, the discrete part Dim} of Glm) is characterized by the inversions

Dim): x = Px = =X {8.26)

and constitute an invariant Abelian subgroup of Gm).

As a specific example, the largest possible group of isometries G{m) of a
three—dimensional Euclidean space E(r,8,F) is the Euclidean group (see, e.g., Giltmore
(1974) or Sudarshan and Mukunda (1974)}

E(3) = 0(3) @ T(3), (8.27)

where O(3) is the familiar group of rotations, and T(3) is the group of translations.
Similarly, the largest possible group of isometries of the (3+1)-dimensional
Minkowski space Mixn®) is the Poincaré group (loc. cit)

P(3.1) = o3.1) ® T(3.1), (8.28)

where 0(3.1) is the Lorentz group and T(3.1) is the group of transiations in space-
fime.

We pass now to the study of Santilli's infinitely possible isotopies of each
given group of isometry. For this purpose, the first needed notion is that of
isospaces (Definition 3.2)

a) The infinitely possible isotopes M(x,gF) of Mlx,gF), which preserve the
dimensionality and local coordinates of M{x,gF), and generalize instead the metric g
and field F into the isometrics and isofields

g = Tg T=T, det T# 0, (8.29a)

F=rl, 1=T1" (8.290)
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respectively, with generic composition
k7% = 6gx1 = TTgx1 ek (8.30)

2) The infinitely possible isotopes E(r,5,R) of the Euclidean space E{(r,5,R),
called Santilli’s isoeuclidean spaces, with

= =" = - ~ o= -—-1 = _l
5 Tyd ’I‘s, f sms, ”I8 T8 8, (8.31)

and composition

r2 = (gt 811 €f. (8.32)

and
3) The infinitely possible isotopes M(x,),R) of the Minkowski space M{x,n),

called Santilli’s isominkowski spaces, with
A= Tn, =Rl 14 = Ty (8.33)
and composition

X2 = (M7 M), ef (8.34)
pe o f)

We introduce now Santilli’s isotransformation theory of Sect. 4 on isospaces
Mixg.F), i.e, the right, modular~isotopic transformations

def
X = A®x = ATX {8.35)

where T is the isotopic element of the isospace.
The following important properties then follows.

PROPOSITION 8.1: Given linear and local transformations on a metric or
pseudornetric space M{x.g,F)

x = Awlx, wePF {8.36)
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their images for the infinitely possible isotopes M(x,,F)
x = Alwhx, (8.37)

are “isolinear” and “isolocal” in the sense that they are linear and local at the
abstract, coordinate—free level, but they are generally nonlinear and nonlocal when
projected in the original space M(x.g.F),

X = A*¥x = Alw} T % %.J X (3.38)

Santilli (1983), (1985a) studied the groups of isometries of generic isospaces
Mx,5,8), namely, the largest possible, m-dimensional groups of isolinear and isolocal
transformations, denoted &{m), leaving invariant the isoseparation (x 'y} on F.

[t is evident that the old group of isometries G{m) cannot act consistently on
Mix.g,), e.g., because of the violation of the linearity condition and other problems.
This renders necessary the lifting of Lie's theory, from the conventional
formulation outlined earlier in this section, to the Lie-Santilli theory.

We shall therefore assume that G{m) admits a connected component Golm)

and a discrete part D(m). Suppose that GJ{m) is an (abstract) topological space
equipped with the isomap

@: Gdm) % Gdm} = G.lm), (8.39)

verifying the conditions for G.{m) to be a Lie-Santilli group (Sect. 6), and equipped
with the additional isomap

t: Gm&M = M, (8.40)

characterized by analytic functions f{x...; w) depending on the same parameters w
and the same local variables x of the original isometry G(m), as well as verifying
the Lie-Santilli First, Second and Third Theorems mentioned earlier.

We finally impose that isomap (8.40) is isolinear and isolocal, ie., of the left
and right modular—isotopic type

<1 = xTeitw) = xITAW), ' (8.41a)

x = Alwhx = AWITx. (8.41b)
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This implies that the elements A(w) of G(m) verify the Lie-Santilli group

laws
Aoy =1 =T, (8.42a)
AwlAlw) = Alwhilw) = Alw+w), {8.42b)
AlwkA(~w) =1, (8.42¢)

where the product Alw)*A{w) is isoassociative {Sect. 5), with similar laws for the
conjugate elements.

DEFINITION 8.1 (Santilli (19532): The group of isometries of an n-dimensional
isospace MixgF) £ = R C Q called “Santilli’s isometries’, is the largest possible,
m-dimensional, isolinear and isolocal, Lie-Santilli group G{m) of
isotransformations (8.41) leaving invariant the isoseparation for the difference z =
X =y of two points x, y € Mlx,g,F)

! 2) = @A &) =D g (A 11 =

= [lod - x) T AT g laS TR - yh 1)1 =
= -y%) g 65 -y (8.43)

For the construction of G(m} Santilli evidently use his Lie-isotopic theory,

with particular reference to:
I: The universal enveloping isoassociative algebra ¥Gdm)) of Gdm) which,

by central assumption, is constructed via the same generators of the original
isometry G/{m), i.e., the ordered basis (8.18). The isotopy EGf{m)} = EGdm)) is

characterized by the Poincare-Birkhoff-Santilli-Witt Theorem mentioned earlier,
with infinite—dimensional isobasis

.1, %, XpXgr=s), XpXoX; r=s=t),.., (644

where 1 = T7! is the fundamental isounit of the theory and the product is
isoassociative, i.e.,
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X#Xg = X,T Xg (8. 45a)

1P =P+ = P . vV Peg (8.45b)

where P is a generic element of §, i€, a generic polynomial on the basis X. The
isocenter € of the envelope is then characterized by all elements which
isocommute with the basis X and all its possible polynomial forms, and it can be
represented via all possible isoscalar multiples of TonF

C={a1]aeF) (8.46)

1) The connected Lie-Santilli group G{m), which can be characterized by
power scries expansions in the new envelope EGJ{m)). For the case of one parameter

w and one generator X, these generalized group structures are of type (5.8) and can
be written for the m-dimensional case

Ve - o, KK )T =

E
Gdm) = Atw) : T k=18 k= I.,m

def
= Blw; x,.) 1, {8.47)

with composition characterized by the Baker—Campbell-Hausdorff-Santilli
Theorem. The conjugate expression is evidently given by

WXy _
3

. t
adm): Al = TTk=t,.me KXk =1 ([Tk=l,..m e

5
def
= 1Blw; x,.). (8.48)

[1I) The Lie-Santilli algebra Gdm) of G.(m) characterized by the Lie-Santilli
First, Second and Third Theorems with isocommutation rules

Glm) : [)(I.,“xslIE = X X = XpXg - XX

= € Hx, %, %..) Xy, (8.49)

T3
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where the s are the structure functions of G(m).

Suppose now that the original group Glm) is an isometry of the original
space Mx,gF), ie. it verifies conditions (8.15)—(8.17). Santilli then proved that all
infinitely possible isotopes G{m) of G(m} as constructed above automatically leave
invariant the new isccomposition

(x-ylhal g At - )11 = [x-y g x-y) 11, (8.50)

or, equivalently, verifies by construction the property

-~

Alg A = Agat = g, 8. 51)
with
det. (Ag) = detB = + 1, (8.52)

without any need of additional conditions.
In fact, property (8.50) holds for the continuous part in view of the identities

-wp, TX
e "k 7K g "k Tk = g, (8.53)

which hold iff the original invariance conditions

-

—Wi, X X, w
e K l<ge k kK {8.54)

are verified, where the exponentiation in £ has been omitted for simplicity.

In particular, if the original isometry is the orthogonal group O(n) of an n-
dimensional Euclidean space E(r8,F), the isometric & coincides with the isotopic
element T (Pefinition 3.2}, and expressions (8.53) reduce to an identity, as one can see
in the one-dimensional case

e WX XBW _ oy e - 8K +

+ swW2BXBXE — BXBXB) +...... =3, (8.55)

The isotopies D(m) of the discrete component D{m) (8.26) are given by
Santillis isoinversions
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Bim): Px = Pl*x = Px =-x {8.56)

where P is the original discrete generator.
The above results can then be expressed as follows.

THEOREM 8.1 (Fundamental Theorem on Isotopic Isometries; Santilli ((1983a) and
(1985a)) : Let G(m) be an m-dimensional Lie group of isometries of an n-
dimensional metric or pseudometric space M(x.gF} over the field of real numbers
R, complex numbers C or quaternions Q,

ol 7 = xlAlw), ¥ = Alw)x, (8.57a)

Lix -y Al g law) -y ] = -y gx -y, (8.57)
Alga = agal =g (8.57¢)

det A = %L (8.57d)

Then, Santilli’s infinitely possible isotopes G{m) of Gim) characterized by the same

parameters and generators of Glm), and the infinitely possible, nowhere singular,
Hermitean and sufficiently smooth isounits 1 = 1! (isotopic elements T), leave

invariant the isocomposition (xITgx} T of the isotopic spaces MixgP), § = Tg, F
= FL,T = 77,

am) = x1 = xI*=Aw) =xIT ATw), %= Alwkx = AlwITx, (8.58a)
[x-yl*aTl g [Aetx-y)]1 = k- gx-y) (8.58b)

Afg a=agal =2, (8.58¢)

Det (Ag) =detB = £ 1. (8.58d)

The following comments are now in order:

1) Each given isometry G{m) admits an infinite number of different isotopes
G{m) characterized by infinitely possible, different isounits which, from a physical
viewpoint, represent the infinitely possible interior physical media.

2) Each of the infinite isotopes can be explicitly computed, from expansions
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(8.47), via the sole knowledge of the old isometry G{m) and the isotopic element T.

8) Even though the mathematical formulation can be unified for all isotopes
G(m), the explicit form of the isotransformations is different for different isounits
1.

4) As indicated earlier, the isotransformations are generally nonlinear,
because of the dependence of T.

5} The isotransformations are also generally nonlocal because of the possibie
integral functional dependence of the isotopic elements T.

6) All isotopes G{m) are coverings of the original isometry G{m) under the
sole condition that the old metric g is admitted as a particular case.

7) All Lie algebras, including that of the isometries GJ{m), admit the
following trivial isotopy X, = X; = XI, under which

Gmk (%, 8 = ReR - K%,
= XY= (Crgt X1 = Cret &y (8.59)

Santilli excludes the above isotopies from Theorem 8.1 because they do not
produce the invariance of the new isoseparation, as the reader is encouraged to
verify.

8) The dimension m of the original isometries G{m) is preserved by all
infinitely possible isotopic isometries G{m), as the reader is encouraged to verify. In
particular, the condition for closure of G{m), Eq.s (8.49) are reducible to those for
G{m).

9} The isotopic isometries G{m) are generally nonisomorphic to the original

symmetry Gim). However, as we shall see in the subsequent chapters, all infinitely
possible isotopes G{m} can be restricted to be locally isomorphic to the original
isometry G{m) under the sole condition of positive- (or negative-) definiteness of
the isotopic element T.

To understand the physical relevance of Santilli's Fundamental Theorem 8.1,
one should be aware that his isotopic generalizations of Galilei’s relativity, of
Einstein’s special relativity and of Einstein’s general relativity (Santilli (1988a, b, ¢, d))
are particular applications of the thecorem.

The first, physically relevant particularization of Theorem 8.1 is given by the
following

COROLLARY 8.1.a (Santilli (1985b)): Let O(3) be the simple, three-dimensional
orthogonal group of isometries of the three-dimensional Euclidean space E(r,5,%)
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over the reals A,

o3 rt = rtrke), r = RO, (8.60a)
r2 = rtsr = mRiRr=r2=rtr, {8.60b)
RIR = RR = [, (8.60c)
detR = £ L (8.60d)

where the Os are the Euler’s angles. Then, the infinitely possible isotopic
generalizations &(3) of O{3), called “Santilli’s isorotational symmetries” characterized
by the same parameters and generators of Of3) and a nowhere singular, Hermitean

and sufficiently smooth isounits T = 17! (isotopic elements T (r, I, 1,...), leave
invariant the corresponding, infinitely possible isocompositions ('8 r) 1 of the
isoeuclidean spaces B3R withd = Ts = T, R = &I, 1 = 71

amk 2 =@M = ([RYG 15[/ =1 2 = (B D1, (86la)
at = ReRt=1 = 57, (8.61b)
Det (R®) = % 1. (8.61c)

Intriguingly, the isotopes O(r) leave invariant all infinitely possible
deformatjons of the sphere, while resuiting to be locally isomorphic to of3) for T >
0. In this sense, the isotopes O(3) reconstruct as exact the rotational symmetry when
broken by ellipsoidical deformations of the sphere { loc. cit. ). In this way, one can
reach a first meaning of the isometric & as representing the shape of the particle
considered.

The fundamental physical application of Santilli’s isoeuclidean spaces Ef,3,8)
is however that of providing the first, rigorous, quantitative, and effective
mathematical tool for the study of the nonrelativistic motion of extended particles
within inhomogenecus and anisotropic physical media.

In fact, the mutation of the metric § = 8 = T8 geometrically represents the
underlying homogenous and isotropic space represented by the conventional
Euclidean metric §, and its mutation into an inhomogeneous and anisotropic form
caused by the presence of a physical medium represented by Ta.

These rathematical tools have permitted Santilli (1982a), {1988a), (1991d) to
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construct an isotopic generalization of Galilei’s relativity today called Santillis
isogalilean relativities I3 which provide a form-invariant description of the
most general dynamical systems known at this writing, systems (1.1), i.e., extended
and therefore deformable particles while moving within inhomogeneous and
anisotropic material media, thus resulting in the most general known combination
of long-range, action—at-a—distance, potential forces, as well as short-range,
contact, nonlinear, nonlocal and nonlagrangian-nonhamiltonian forces.

Needless to say. Santilli's isogalilean relativities are a covering of the
conventional Galilei's relativity, which is admitted as a particular case for 1 = [, that
is, when particles exist physical media and return to free motion in vacuum.

The reader should keep in mind the transition from motion in empty space
to motion within a physical medium because it is crucial to understand later on
(Sect. 12) the transition from conventional parallel transport and geodesic to
Santilli's covering geometrical notions of isoparallel transport and isogeodesics.

Remarkably, Santilli’s isogalilean relativities are directly universal for
- Systems (1.1) and do not need any additional verification, because it is verified by

construction for each given system (1.1) . This is first established by the fact that,

while Galilei’s symmetry is imposed on physical systems, Santiili’'s isogalilean
symmetries are instead constructed from each given system (1.1). The generalized
relativities are then established by the Theorems of Direct Universality of the
“Santilli's isotopic methods for systems {[.1) without any need for any further
verification.

The structure of Santilli’s isogalilean symmetries and further details are
provided in the appendices.

A further important case is given by the isotopies of the Lorentz isometry.

COROLLARY 8.1.b (Santilli (1983a), (1988c) and (1991d): Let O{3.1) be the simple
Lorentz group of isometries of the conventional Minkowski space M{x,n#) over the
reals A,

0.1 xt = xtaliw), ¥ = AwW)x (8.62a)
X2 = At nax = tnx, 7 = diag. (1, 1, 1, -1), (8.62b)
Atna = Anat = q (8.62¢)

'3 The plural was suggested by Santilli to stress the fact that, while the conventional
Galilei’s transformations are unique, there exist infinitely different, covering, isogalilean
transformations, evidently because of the infinite number of possible, different, interior
physical media.
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{detA) = £1. (8.62d)

where the w’s are the conventional six parameters of O(3.1). Then, the infinitely
possible isotopes O{3.1} called "Santillis isolorentzian symmetries” characterized by
the same parameters and generators of the original group 0{3.1) and by nowhere
singular, Hermitean and sufficiently smooth isounits1 (or isotopic elements Tlx, X,
%,.)), leave mvariant the isoseparation (xTnx) 1 of the corresponding infinite class of

Minkowski-isotopic spaces M Hf) withfy = Tn, & = A1, 1 = T,

O30 xt = xteAlw), x = Alwhx, (8.63a)
x2 = (xbalf A1 = &R0, (8.63b)
AqA = R /At =, (8.63¢)

det. (Afy) = £ L. (8.63d)

Santilli’'s isominkowski spaces M(x, AR} provide a geometrization of, this
time, the space-time, inhomogeneous and anisotropic character of physical media
characterized precisely by the mutation 1 = 1] = T, thus establishing the first,
rigorous and effective mathematical methods for the quantitative study of
relativistic dynamics within physical media.

Santilli’s (1983a), (1988c), (1991d) isolorentzian symmetries O(3.1) characterize a
generalization of the special relativity called Santillis isospecial relativities which
holds for strictly noneinsteinian conditions, such as relativistic motion of extended
and therefore deformable particles within physical media, or the propagation of
light within inhomogeneous and anisotropic atmospheres.

Santilli's special relativities are a covering of Einstein’s special relativity
because:

1) They are based on structurally more general mathematical methods
(isotopic generalization of contemporary mathematical structures as outlined in
this monograph);

2) They represent structurally more general physical systems (nonlinear,
nonlocal and nonlagrangian-nonhamiltonian systems}, and

3) They admit Einstein’s special relativity as a simple parficular case,
trivially, for T =L
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The isospecial relativities result in a series of quantitative predictions of
new, measurable, effects, such as the prediction of a redshift of light when
propagating within inhomogeneous and anisotropic media and other physical
effects structurally cutside the technical capabilities of Einstein’s special relativity
{see the locally quoted literature).

Thus, while Santilli's isogalilean relativities do not need experimental
verifications, as indicated earlier, his isospecial relativities require explicit
experirental tests.

Nevertheless, to really understand the plausibility of the isospecial
relativities, the reader should keep in mind that they admit as particular case the
isogalilean relativities via a mere isotopic lifting of the conventional methods of
group contraction (see Appendix A of Santilli {1988c), or the monograph (1991d)).

All isotopes O(3.1) result to be locally isomorphic to O(3.1) for all isotopic
elements T > 0, and they constitute the basis for Santilli's isotopies of the special
relativity.

Thus, contrary to a rather popular belief in mathematics and physics, a
deformation of the Minkowski metric n = 7 = Tn) DOES NOT imply a necessary
breaking of the Lorentz symmetry.

. This erroneous belief is due to the restriction of Lie's theory to the simplest
poSsible Lie product “"AB — BA”. In fact, if one uses the more general product of
Sgintilli's type “ATB — BTA” the validity of the Lorentz symmetry is reestablished in
fﬁll.

_ In particular, the isometric 7] can be a conventional Riemannian metric gix)
(Corollary 3.2.c). As a result, the Lorentz-isotopic group (3.1) for T = g results to be
the global group of isometries of conventional exterior gravitational models, thus
creating the possibility of constructing covering gravitational theories for the
interior problem via the mere isotopies of isotopies 7 = f} = Tlxkin = glx) =3¢ =
T, %, %..) g(x).

These geometrical results are at the basis of Santilli’s interpretation of the
general relativity as an isotopy of the special (see Sect.s 11 and 12 for more details).

A further case of physical relevance is the following.

COROLLARY 8.1.c (Mignani (1984) (Mignani and Santilli (1991 Let SU(3) be the
semisimple special unitary group of isometries of a two-dimensional Euclidean
space E(x,n,C) over the complex field C

suak 2T = Zfufw), 7 = uw 2, (8.64a)

Auts uz = 2Is Z, {8.64D)
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UTu = UUT = Ipe (8.64c)
det. U = +1, (8.64d)

Then, the infinitely possible isotopes SU(3) of SUB) characterized by the same

parameters and generators of SU(3) and by nowhere degenerate, Hermitean and
sufficiently smooth isounits1 {or isotopic elements Tlz, 2, ..) leave invariant the

isotopic separation IT82)1 of the isotopic spaces Ez3,C) with 8 = T8, ¢ = C1,
1 =717,

so): 2l =Wl 7z = O (8.65a)
zisz = 2+018 0 = 213, (8.65D)
ofso = 050t =1, (8.65¢)

det. (08) = + L. (8.65d)

As we shall see in the appendices, the above corollaries is instrumental in
introducing Santilli's notion of “isoparticle” (or “isoquarks” ) as an ordinary
elementary particle under nonlocal short-range interactions represented by the

isounit 1.

By using the Lie-isotopic theory outlined earlier in this section, it is easy to
compute explicit examples of Santilli’s isorotations and isolorentz transformations,
which can be written as follows for an isorotation around the third axis

8 =diag. (gl > 822 g33). (8.66a)

Ss(e) = ~g l(gl 1g22)*5ﬂ'1[93(g1 Igzz)i] Ccos [93(g1 lgzz)*] 0
0 0 1
(8.66h)
and for an isolorentz hoost (isorotation in the 3-4 plane)
vl =xl,

(8.67a)
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x7 = ¥{x> - px°),

x4 = §(x* - pxd),
B=v/cy, B=vb/coby, ¥=1(1-p2)%, (8.67D)

For the case of an explicit form of the isounitary symmetry 0(3), we refer the
interested reader to Mignani and Santilli (1991) for brevity.

It is an instructive exercise for the interested reader to prove that
isotransformations {8.66) and (8.67) do indeed verify the isoinvariance laws (8.61) and
(8.63), respectively.

The more general inhomogeneous isotransformations are given in the
appendices because it is recommendable for the reader to study first Santilli's
isoparallel transport and isogeodesic and then see their isogalilean, isominkowskian
and isoriemannian realizations.

In his construction of the generalized relativities, Santilli aiways imposes the
positive~definiteness of the isounit, 1 > 0, to ensure the local isomorphisms of the
isotopic and conventional symmetries, with consequential covering character of the
generalized over the conventional relativities.

However, from a mathematical viewpoint, the restriction 1 > 0 can be

removed. [n this case, Santilli’s isofopic, simple, n—dimensional groups unify in one
. single algorithm all nonexceptional simple group of Cartan’s classification in the

same dimension
For the case of simple, three-dimensional Lie groups this can be easily seen

by allowing metric (8.66a) of isotransformation (9.66b) to possess both positive and

negative values.

We reach in this way the conclusion that the abstract isotope O(3) of O{3)
with a nowhere singular, Hermitean and diagonal isometric (8.66a)) of unspecified
signature provides a single geomelric unification of all possible sirmple, two—
dimensional, Lie groups of Cartan’s classification (Santilli (1985b)).

This important property provides another illustration of the rather
rernarkable possibilities of the Lie—isotopic theory. [t can be readily seen from the
fact that the isosymmetry O(3) in realization {8.66) can interconnects the compact
realizations O(3) ~ O(3) with sig.5 = (+1,+1,+1), to the noncompact realizations O(3) ~
of2.1) with sig® = (F1,+1). The understanding is that Eq.s (8.66) provides the
isotopic generalization of O(3} and 0f2.1), rather then the conventional
transformations themselves. For additional cases, see Figure 8.1.

We now review Santilli (1983a), (1988¢c) classification and unification of all
possible isotopes of the Lorentz group O(3.1). Note that the preceding classification
already contains that for the Lorentz group in (2+I)-space—time dimensions. The
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extension of the results to the case of (3+|)-space-time dimension is then
straightforward, as summarized in Figure 8.2.

00(3): 3

04(3): Sig. § = (+1.+1.+1);
04(3): Sig. 8 = (+1,+1.-1)
O3(3): Sig. 8 = (+1,-1,+1);
04(3): Sig. § = (1,+1,+1);

§ = (+1,+1,+1);

090): § = -8 ={-1,-1-1)
0,9039): Sig. 8 = (-1,-1,-1)
009(3): Sig. § = (1,-1,+1)
039(3): Sig. § = (-1,+1,-1)
049(3): Sig. 3 = (+1,-1,-1)

Q(3) : § = diag. (g1, 827, £33

FIGURE 8..I: A classification of all possible isotopes O(3) of O(3) submitted in Santilli {1985b).
They can be presented via the classification of all possible underlying ispeuclidean spaces
£ 34} or, directly, via the classification of all possible topologies of the isometric 5. The
first group 00(3) is the conventional one. The isotopic theory initiates with the isodual
Ood(3) as per Definition 3.3 which can be formulated only via the use of a bona-fide isounit

1 =-1Then eight classes of isotopes follow, each one with infinite isotopes, grouped into
classes connected by isoduality. The last isotope O(3} is the abstract isotope of Eg.s (3.66)

unifying all preceding ones.

O d): §=diag. (1, +1,+141) 0, % : & = diag. [-1-1-1-1)
0,{3.1}: g = diag, (+1,+1,+1-1) 0 0“t3.1) . # = diag, (-1,-1-1,+1)
0,(22) : § = diag. t+1+1-1,-1) 0,922 : g = diag. (-1,-1+1:+1)
01 sig. & = (+,+, +, %) 049 - sig. & = -~ -, -
040.1): sig. g =, +,+,~) 0. 931):sig. g = -4
0,3.1): sig. & = {+, +, -, *) 6.3a1): sig. & = (- -, + )
0a1) : sig. £ = (.~ +. %) 0338.0):sig. £ = €+~ )
0,81): sig. & =, +,+, %) 6031 :sig. =+, ~ )
0122} : sig. g = f+, +, -, - 06.%22):sig. g = &, -, +.4)
0422): sig. & = (+, -, *, 0:522) : sig. & = (. +, - +)

Di9: ¢ = diag. € 11.822.833.844)

FIGURE 8.2. The 21 most significant, different isotopes of the Lorentz group in
Santilli's classification (1983a), (1988¢), (1991a, d) classification of all possible
isoorthogonal group in four dimension. The most general possible isotope is the last
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one, denoted with 0(4) with an arbitrary topology of its isometric, which unifies all
possible six-ditnensional simple Lie groups of Cartan’s classification. In particular,
this isotope is the abstract Santilli’s isclorentzian group of Theorem 5.1. In fact,
depending on the local topology of the isometric, 0(4) can assume: any one of the
six—dimensional simple Lie groups O{4), O(3.1) and 0(2.2) (and others locally
isomorphic to the latter); any one of their isodual; as well as any one of their
isotopes. An infinite number of possible realizations then emerge. They can be first
divided into two classes interconnected by isoduality. Then, among each of these
classes, only three essential isogroups emerge, those isomorphic to 0(4} or 0(3.1) or
0{2.2). The classification includes the local and global simple symmetries of the
special and general relativities for the exterior problem, as well as of their isotopic
generalizations for the interior problems, as elaborated in more details in Sect. [2.

The possibilities of geometrical unification offered by the Lie-Santilli
..theory are therefore remarkable, and expressible via the following

CONJECTURE 8.1: The simple, abstract, n—-dimensional isotopes G{n) unify in one
~ single aigorithm all possible simple, nonexceptional 4 e algebras of the same
. dimension in Cartan’s classification.

Santilli has proved the above conjecture for the cases n = 2 and 6. [ts proof
- for the general case is left to the interested reader.
We pass now to the study of Santillis isosymmetries of given equations of
~*motion (1.1) on an isospace. Since these equations are represented by the Birkhoff—
Santilli equations (Sect. 7), we can effectively restrict our analysis to the
isosymmetries of the latter equations. In particular, we shall first review the
symmetries of Birkhoff's equations on a conventional manifold, and then generalize
them to our isospaces.

Let E{r,5,%) be the 3N-dimensional Euclidean space of system ([.I) of N
particles. Its cotangent bundle T*E(r,8R) is the 6N-dimensional space with the

familiar local coordinates a = (@) = (,p} = {rj, piah 0 = L, 2 ., 6N, i=12
3 a=12.,N

The full representation space is then given by the (6N+1)-dimensional space
RexT*E(r,6,R), where R, represents (nonrelativistically) the ordinary time t.

Suppose as a first step that all nonlocal forces in system (1.1) are null {but
the vector-field remains nonlinear and nonhamiltonian), and denotes the

!4 We mentioned earlier that the removal of the exceptional Lie algebra is suggested by the
assumplion of Hermiticity of the isounit. In attempting the proof of Conjecture 8.1 for
arbitrary dimensions, we assume the reader is familiar with the unifying power of isofields.
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corresponding vector-field with * = (T(ta)). Then, the Theorems of Direct
Universality of Birkhoffian mechanics {(Sect. 7) ensures that, under the assumed
topological conditions, a representation of the vector—field I always exists in terms
of Birkhoff’s equations in the local coordinates considered, and we shall write

9 ) oB R,
[EV—— —Irv= — =z —”, (8.68)

gaH sa¥ daH at

A basic notion for the understanding of the isotopic relativities is the
behavior of Birkhoff’s equations under the most general possible transformations
of the local variables.

Recall that Hamilton’s equations preserve their form only under a special
class of transformations, the canonical ones.

On the contrary, Birkhoff’s equations are the most general equations which
can be written in T*E{r,8,R) with a Lie/symplectic structure. As such, they preserve
their form under the most general possible transformations of the local variables.

A detailed treatment of this property is provided in Chapter 5.3 of Santilli
(1982a). Here let us illustrate the property by introducing the unified notation

b=0H=>(a w=01,.,6N {8.69)

Then Birkhoff’s equations (7.2) can be written in the unified form

V = ]
G, =0 p=01..6N, (8.70)
where Birkhoff’s tensor éuv in T*E(r,5,R) is now extended to the form qu in
R>TEr8R)

. oRb) R (®)

= 1 Y (87 l)
o abH apY

and K = (-B, R) characterizes the one form in RXT*E(r,5,3)

ﬂu(b) dok = Ru(a) dat - B(ta)dt, {872
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namely, it characterizes the complete integrand of variational principle (7.1).
Eq.s (8.70) directly reproduces Eq.s (8.68) for p = 1, 2, .., 6N, while the
additional equation fo L. = 0 yields the identity

B 3
(— + —)dd’ =
8aV at
8  6R, ya OB oR
=(— o+ =)0 (—+ —%)=o (873)
da¥ ot 9a® at

What we have done here is performed the transition from the symplectic
geometry in T*Er,8R), to the so—called contact geometry in RyxT*E(r,8,R) (see,
e.g, Abraham and Marsden (1967); and Santilti (1982a) for a specific treatment of
Birkhoff’s equations in the contact geometry). Equivalently, we can see that
Birkhoff's tensor in T*E(r,5,%) is of symplectic type while its extended version (8.71)
is of contact type.

Once the contact character of tensor (8.71) is understood, one can readily see
the invariance of Birkhoff’s equations (8.70) under the local, but most general
possible, smoothness and regularity preserving transformations in ﬂtX’I‘*E(r.a,ﬂ)

b= (t,a) = v =bl} = [, a) = (tlt, a), alt, al}, (8.74)

In fact, contact tensor (8.71) transforms as follows

bt ap”

G, = a. ob)=— 0,.0bb) —, (8.75)
ad ad apa P ab®

by evidently preserving its structure. The form invariant (but not the symmetry) of
Birkhoff’s equations then follows.

The physical implications of the above findings are the following. The
space—time symmetries of contempcrary relativities for motion in vacuum are,
first of all, canonical, and then symmetries of the system considered. In the
transition to Santilli’s motion within physical media all smoothness and regularity
preserving transformations are “canonical” and, therefore possible candidates for
interior symmetries.

DEFINITION 8.2 (Santilli (1982a)} The local, but most general possible smoothness
and regularity preserving transformations (8.74) on RxT'E(r,8,%) constitute a
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“symmetry of Birkhoff’s equations’”, when they leave in variant Birkhoff’s tensor in
its contact form, i.e, when Eq.s (8.75) implies the particular form

G0 > 0,00 = 6,0 (5.76)

or, alternatively, when the underlying contact one-form (8.72) is invariant up to
Birkhoffian gauge transformations, ie.

aGb)
abH

R’u(b') dpt = IRu(b') + 1dot, (8.77)

We now review the construction of first integrals {i.e., conserved
quantities) from a given symmetry of Birkhoff’s equations.

THEOREM 8.2. (Birkhoffian Noether’s Theorem; Santilli (1982a)} If Birkhoff’s
equations admit a symmetry under an r-dimensional, connected Lie group G, of

infinitesimal transformations
G: b = b =D+ b= (oM + wiahb) =

r .

t + whit, a),

- ( ' ) (8.78)
 + winht a)

then there exist r first integrals F; (b) of the equations of motion which are
conserved along an actual path E

d
— Gk, =0 (8.79)
1 Ll
at e -
namely, there exist r linear combinations of Birkhoff's equations which are exact

differentials along E, ie,

d
— g = 4,0 vV aty, (8.80)
dt

given explicitly by
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= R (t, a) nPt, a} — B(t, a) pit, a) + G((t, a). (8.81)
Ry i i

Note that the "new time” t’ in Birkhoffian mechanics is a function of the old
time t as well as of the coordinates r and momenta p,

t' = tt,r, p (8.82)

This property is important to understand the isotranslations in time of the isotopic
relativities (see the isogeodesics of Sect. 12 and the appendices).

Intriguingly, this property is typical of relativistic formulations but not of
Hamiltonian mechanics. Santilli’s isogalilean relativities then achieve a form of
symmetric behavior of time for both nonrelativistic and relativistic formulations.

Note that the symmetry Gr of Theorem 8.2 is a conventional Lie symmetry

defined on a conventional space .
Recall also that the nonautonomous Birkhoff's equations considered until
" now in this section do not admit a consistent algebraic structure (Appendix C). From
now on we shal therefore restrict our attention to the semiautonomous case.

We are now in a position to consider the Birkhoff-Santilli representation of
systems {1.1) on isospaces T*E,(r3f), te.,

T, Ha) 0, (2} F¥(t,a) il (8.83}
Q PYIt, = d 8.83
LTS AR A 4 ool

where QLW is the conventional, local, Birkhoff—symplectic tensor, and T2 the
isotopic element of T*Eo(r,8,).

Our objective here is, not only that of reviewing isosymmetries on isospaces,
but also that of reviewing their most general known nonlinear, nonlocal and
nonhamiltonian form.

DEFINITION 8.3 (Santilli (1988b), (1991d): An r-dimensional symmetry of Birkhoff-
Santilli equations (8.83) is a “Santillis isosymmetry” G. when it is defined on

isospaces T*E, (r,8,) and admits infinitesimal transformations of the Lie-isotopic
type
%,

att = at + wioha)r, — (8.84)
da”
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where T, = ’1"2_1 is the basic isounit of the isospace, the w’s are the parameter and
the X5 are the generators of GI, with isocommutation rules
| () paq, v %y (
X, XJ= —0Q — = C. A X, 8.85)
1 Xs aalt 2a 2a¥ 3% g

It is easy to see that a necessary condition for transformations a = a’to
be a symmetry of the Birkhoff-isotopic equations is that they have a Lie—Santilli
structure. This renders necessary the use of the Lie-Santilli theory for the study
of isosymmetries and their first integrals.

THEOREM 8.3 (Integrability Conditions for the Existence of an Isosymmetry;
Santilli (1982a) and (1991b}} Necessary and sufficient conditions for a smoothness
and regularity preserving transformation (8.84) to be an isosymmetry of the
Birkhoff-Santilli equations {8.83) is that they leave the Birkhoffian in variant, ie,

Bla) = Bla) + w;[X; Bl = Bla), (8.86)
which can hold iff the Birkhoffian B isocommutes with all generators X;, i.e.,
[X;;Bl =0, i=12.,r (8.87)
The construction of the isosymmetries of a given system (1.1) is now

straightforward. Consider first the conservative part of the given system (1.1), ie.,
the vector field

Pio/M
¢ = (ot) = ( e ) (8.88)
@V / argp) dryp / iy

which is represented via the familiar Hamilton's equation with Hamiltonian
H = T{p)+ V) = pj, 8ij pjalzma + Virgy) (8.89a)

and which is manifestly invariant under the familiar rotational symmetry O(3), the
Euclidean symmetry E(3) and the Gatilei symmetry G(3.1).
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Consider now the complete extension of the above system into the assigned
form (1.1). The identification of the isosymmetries requires the isorepresentation of
the complete system via Hamilton-Santilli equations (7.32) according to the
techniques of Sect. 7. This identifies the isounit 15 (or isotopic element Ty). [n turn,

the isounit 1, permits the construction of the isotopes O(3), £(3) and G{3.1) via the

use of the original generators and parameters of O(3), E{3) and G(3.1), respectively,
according to the techniques of Sect. 6.

. The system then results to be invariant under the isotopic symmetries O(3), £(3)
and G(3.1) when the Hamiltonian is an isoscalar in T*E,(r,88), i.e., of the form

H="Tip)+ V() = p2/2m +V(r), (8.88a)

p2

= P Tay;Pj, = 5Ty rjl (8.88b)
Similar results hold under isorelativistic extension (Santilli {1988¢), (1991d)), yielding
the isosymmetries under the isotopes O(3.1) and P(3.1) of the Lorentz group 0O(3.1)
and of the Poincare’ group P(.3.1), respectively. See the appendices for more details.

. It is easy to see that Santilli's isosymmetries cutlined above are not only
nonlinear, but also nonlocal, owing to the appearance of the isounit 'Iz directly in

 their infinitesimal structure. As such, they are indeed the symmetries of the most
general known integro-differential systems of ordinary differential equations.

To summarize, in the preceding review, we have outlined the foliowing
methodologlcal foundations of Santilii’s isotopic liftings of Galilei’s, Einstein’s
special and Einstein’s general relativities for the interior dynamical problem:

I) Santilli’s basic isofield of thereals A=®1;

2) Santilli's fundamental carrier spaces, the isoeuclidean spaces B{r,5R), the
isominkowski spaces M(x,f,R), and the isoriemannian spaces Rix,gA), which provide
a geometrization of the interior physical media;

3) Santilli’s isotransformation theory, which results to be isolinear and
isolocal in the isospaces, but nonlinear and nonlocal when projected in the original
spaces;

4) Santilli’s isotopic generalization of the conventional Lie’s theory (universal
enveloping isoassociative algebras, Lie—isotopic algebras and Lie-isotopic groups)
characterizing the generalized algebraic structure of the isotopic relativities;
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5) The Birkhoff-Santilli mechanics, and its Hamilton—-Santilli
particularization, characterizing the generalized analytic structure of the isotopic
relativities;

6) Santilli's isoanalytic representation of systems (1.1} via the isotopic
equations (8.83%

7) Santilli’s isosymmetries and methods for their construction from the
given equations of motion {L.1).

These advances, however, even though rather considerable, were still
considered insufficient by Santilli for the construction of the new generation of
covering relativities in the needed depth. In fact, all relativities are an ultimate,
symbiotic manifestation of algebraic, analytic and geometric formulations. We
have outlined until now the isotopic generalizations of conventional algebraic and
analytic structures, but the isotopies of conventional symmetries have not been
considered so far.

In his remarkable series of mathematical and physical discoveries Santilli
therefore passed to the study of what appear to be his most significant
achievermnents: the isotopic generalizations of the conventional symplectic geometry,
affine geometry and Riemannian geometry, which are reviewed in the remaining
sections of this volume.

1.9: ISOSYMPLECTIC GEOMETRY

In this section we shall review a nonlocal-integral generalization of the symplectic
geometry introduced, apparently for the first time, by Santilli (1988a, b), (1991b, d)
under the name of symplectic-isotopic geometry , and which is today called
Santilli’s isosymplectic geometry . We shall then show that such a generalized
geometry is indeed the geometric counterpart of the Lie~Santilli’s theory and of the
Birkhoff-Santilli mechanics. We shalil finally show that the generalized geometry is
indeed applicable for the “direct representation” of nonlinear, nonlocal and
nonhamiltonian systems {1.1), that is, their representation directly in the local
coordinates of the experimenter.

To avoid a prohibitive length, in this section we shall merely review the
main lines of the new geometry, and refer the reader to the quoted literature for
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applications.

The lterature in the symplectic geometry is rather vast indeed. A list of
references can be found in Santilli (1982a), p. 77. In the following, we shall review
only the most essential aspects of the conventional symplectic geometry needed for
our analysis by following Abraham and Marsden (1967). The literature in the
calcuius of exterior forms is also so vast to discourage an outline. [n this section we
shall follow the monograph in the field by Lovelock and Rund (1975).

All quantities considered are assumed to verify the needed continuity

conditions, e.g., of being of Class ¢™, which shall be hereon omitted for brevity.
Similarly, all neighborhoods of given points are assumed to be star—-shaped, or have
a similar topology also ignored hereon for brevity.

Let M(R) be an n—dimensional (abstract) manifold over the reals # and let
T*M(#) be its cotangent bundle. We shall denote with T*M;{®) the manifold T*M(®)
_ equipped with the canonical one-form 9 defined by (see, e.g., Abraham and
+ Marsden {1967))

8 : T'M,@®) = THT'M;®), 6 € A[(TM,H). .0

The fundamental {canonical) symplectic form is then given by the two-

“ form

w = do, {9.2)

which is nowhere degenerated, exact and therefore closed, i.e., such that dw = 0. The
manifold T*M(R), when equipped with the symplectic two-form w becomes an
(exact) symplectic manifold T*My(R) in canonical realization. The symplectic
geometry is the geometry of symplectic manifolds as characterized by exterior
forms, Lie’s derivative, etc.

Let H be a function on T*"Ms#) called the Hamiltonian. A vector—field X

on T*M(®) is called a Hamiltonian vector-field when it verifies the condition

X'w = ~dH {9.3)

The above equation provides a global, coordinate—free characterization of
the conventional Hamilton's equations (those without external terms) for the case of
autonomous systems , i.e., systems without an explicit dependent in the
independent variable (time t).

Finally, we recall that the Lie derivative of a vector-field Y with respect to
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the vector field X on T*M4(®) can be defined by

L Y = [XY] ' {9.4)
X

where [X,Y] is the canonical commutator.

The case of nonautonomous systems (those with an explicit dependence on
time) requires the further extension to the contact geometry (see, e.g., Abraham
and Marsden (oc. cit. ), and it will not be considered here for brevity because it
does not affect the Lie content of the geometry of primary interest for this study.

The Birkhoffian generalization of the above canonical geometry is
straightforward, and was worked out in Santilli (1978a) and (1982a).

Introduce in the same cotangent bundle T*M,{R) the most general possible

one—-form 6, called by Santilli the Birkhoffian or Pfaffian one—form,

8: T'M ((#®) = THT'M &), 8 € A|(TM;@). (9.5)

The Birkhoffian two-form is then given by
Q = de, (9.6)

under the condition that it is nowhere degenerate. @ is exact by construction and
therefore closed, that is, symplectic. The manifold T*M(3®), when equipped with the
two—form €, becomes an exact, Birkhoffian, symplectic manifold 'I‘*Mz(éﬂ). :

Let B be another function on T*MZ(SR) called, also by Santilli, the
Birkhoffian. Then, a non-Hamiltonian vector—field X on T*Mz(éﬂ) is called a
Birkhoffian vector-field when it verifies the property

£'0Q = -dB. .7

which provides a global, coordinate-free characterization of Birkhoff's equations

for autonomous systems.
Similarly, we recall that the Lie-Santilli derivative of a vector-field ¥ with
respect to a nonhamiltonian vector field X (Santilli (1982a), p.88} can be written

Le¥ = K1) 93)

where the brackets are now Birkhoffian (see below for the explicit form).
The realization of the above global structures in local coordinates is
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straightforward. Interpret the space M{®) as an Euclidean space E(r,®) with local
coordinates r = {r;}, i= i, 2, .., n. Then, the cotangent bundle T*M becomes T*E(r,R)

with local coordinates {r,p} = (r;, pj), where p = dr/dt represents the tangent vectors,

and we ignore for simplicity of notation the distinction between contravariant and
covariant indices in Euclidean spaces (but not in other spaces). The canonical one-
form (9.1) then admits the local realization

6 = p;dry. {9.9)
The Hamiltonian two—form (9.2) admits the realization
w = d6 = dp; Adr, (9.10)
from which one can easily verify that dw = 0. A vector-field can then be written
X = Ai(r,p) o/ar; + Byrpla/ap, (9.01a)
Ajdr; + Bydp; = —dH, ©.11b)

swhich can hold iff Hamilton's equations are verified, i.e.,

o

dr; oH dp; oH
—_— =, —_— = = —, (9.12)
dt  op dt dry
Finally, Lie's derivative (9.4) admits the simple realization
ax a8y Y oX
LyY = XYl = — —- — — (9.13)
ary  op or; op;

where one recognizes in the commutator the familiar Poisson brackets (Sect. 7).
The realization of the Birkhoffian generalization of the above structures
requires the introduction of the unified notation introduced in Eq.s (7.13), e,

a=@ =({,p=0Cyp) w=L2..2n, i=12.,n 0.4

where we preserve the distinction between contravariant and covariant indices of



J. V. Kadeisvili -98 - Santilli’s Isotopies

the a—coordinates of the cotangent bundle. The canonical one-form can then be
written

6 = R} da' = p;jdr;, R* =1(p,0), 9.15)
and Hamiltonian two—form {9.10) becomes
@ =d0 = +q, da* Ada” = dp; Adry 9.16)

where cuuv is the covariant, canonical, symplectic tensor (7.15), ie.,

aR® aR° 0 -1
) = (=2 - .EV) - ( pn ) 9.17)
oat da Ixa Opxn
A vector—field can then be written
X = Xu(a) o/ dal. {9.18)

The conditions for a Hamiltonian vector-field become

wyy XM daH = -dH, 9.19)
and can hold iff
a aH o
x=xu——=ml“’——, {9.20)
daH da¥ aak
where
V_ Ly
WY = (g I, 9.21)

namely, iff Hamilton’s equations (9.12) hold, which in the unified notation can be
written as in Eq.s (7.18), i.e,

aH
at = oMY — (9.22)
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1d
Finally, Lie's derivative becomes, in unified notation,
ax aY

LyY = XYl = — oY — (9.23)
datt da¥

The transition to the Birkhoffian realization is now straight—forward (Santilli
(loc. cit. ). In fact, it merely requires the transition from the canonical quantities
R°(a) = {p, 0) to arbitrary quantities R(a) on T*E({r,) under which the Birkhoffian

one—form (9.5) assumes the realization
6 = R,a dat, (9.24)

while the Birkhoffian two—form (9.6) becomes
Q=de =1 Q]_w(a) dat A daV. (9.25)

where Q, is the {covariant) symplectic Birkhoff's tensor (7.3), ie.

R,  oR
1)

g fa)= — - —

Ty ool sa (9.26)

A Birkhoffian vector-field X can no longer be decomposed in the simple
form (9.11), but can be written

X = x* a/0a,. (9.27)
The conditions for a vector-field X to be Birkhoffian, Eq.s (9.7), then become
X'0 =g, ¥d - -d, | (9.28)

and they hold iff

o oB d
=% —= g — — {9.29)
gt ga¥ oaM
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where

otV = (| Qgar iy, (9.30)

which can hold iff the autonomous Birkhoff’s equations (Birkhoff (1927)), Eq.s (7.4),
hold, i.e,

m aB(a)
=% = ) 9.31)
da”
Simnilarly, the Lie-Santilli derivative {9.8) assumes the realization
) )’ aY
Lot = R79] = — oWa — {9.32)
dak da”

For additional aspects, the reader may consult Santilli (1982a), the appendices of Ch.

4,
Note that an arbitrary vector—field X is not Hamiltonian in a given local
chart. A central result of Santilli {foc. cit. ) can be reformulated as follows

THEOREM 9.1 (DIRECT UNIVERSALITY OF THE SYMPLECTIC GEOMETRY FOR
LOCAL NEWTONIAN SYSTEMS): An arbitrary, local-differential, analytic and
regular vector—tield X on a given chart on T'™M, {r,A) always admits a direct
representation as a Birkhoffian vector-field, i.e., a representation directly in the
chart considered.

The physical implications are the following. When considering conservative—
" potential systems of the exterior dynamical problem (Sect. 1), the vector-fields are
evidently Hamiltonian in the frame of the experimenter. However, when
considering the nonconservative systems of the interior dynamical problem, the
vector—fields are generally nonhamiltonian in the frame of the experimenterls.

15 1t is appropriate here to recall that the general lack of Hamiltonian character of vector—
fields is precisely the reason which lead Lagrange and Hamilton to formulate their analytic
equations with external terms {see Sect. | for details and historical references). Note that
Harnilton's equations with external terms are outside the representational capabilities of the
symplectic geometry. Nevertheless, the Birkhof fian realization of the symplectic geometry
essentially allows the representation of these historical external terms, when of local-
differential character, without abandoning the symplectic character of the geometry, but by
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Now, under sufficient topological conditions, the Lie=Koening theorem
ensures that a nonhamiltonian vector-field can always be transformed into a
Hamiltonian form under a suitable change of coordinates (see the analytic and
geometric proofs of Santilli (foc. cit. )).

However, since the original vector-field is nonhamlltoman by assumption,
the transformations must necessarily be noncanonical and nonlinear, thus
creating evident physical problems, e.g., conventional relativities become
inapplicable because turned into noninertial formulations.

This creates the need of Santilli’s “direct representation” of the physical
systemns considered, that is, their representation, first, in the frame of the
experimenter, as per Theorem 9.1. Once this basic task is achieved, then the
judicious use of the transformation theory may have some physical value.

Intriguingly, the identification of the Lie—Kcening transformation a = a’
turning nonhamiltonian systems X(a) into Hamiltonian forms X(a(a)} = X(a), directly
implies the Birkhoffian representation of Theorem 9.1 in the a-frame of the
observer. [n fact, Birkhoff’s equations (9.31) in the a-frame can be characterized
precisely via a noncanonical transformation a° = a of Hamilton's equations (9.22)
in the a-frame, i.e.,

aH(a) oaP 9B(a)
WY - —— = — la (@ - 1= (9.33a)
aatt satt PO daP
Hala) = B, (9.330)

(see Santilli (foc. cit. ), p.130 for details).

We are now sufficiently equipped to review Santilli's isosymplectic
geometry. To begin, let us recall that the geometry outlined above is strictly local-
differential. [n particuiar, the vector—fields cannot incorporate nonlocal-integral
terrns without the construction of a suitable, rather comnplex revision of the
geometry via an appropriate nonlocal-integral topology.

Santilli's new geometry is essentially the generalization of the symplectic
geometry intc a nonlocal-integral form which is mathematically simple and
physically effective, as well as permitting the direct representation of vector—fields
with nonlocal-integral components.

For this purpose, Santilli (1988b), (1991b) first rewrites the canonical realization
of the symplectic geometry in the following way. Consider again the original,

assuming instead the most general possible exact symplectic two-forms (Santilli (1982a)). The
isosymplectic geometry is the final expression allowing the representation of the external
terms also when of nonlocal-integral type (Santilli (1988b), (i991al).
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abstract cotangent bundle T*M(®), and let
[° = (L) = diag. (I, [, =T (9.34)

be its unit. Then, the canonical one form {9.1) can be identically written in terms of
the factorization

0 =8 =06xT: TM|” = TI{T'M’), (9.35)

while the canonical two—form (9.2) becomes
w=0 =d° =(@do)xT + 0dT = 0xT (9.36)
This implies that, in the realization T*E(r,®) of T*M(®) with Iocal chart a = {r,

p), we can exhibit the isotopic element, this, time given by the trivial identity T?,
directly in the canonical-symplectic tensor

@ w - Toua Way, {9.37)

Then, its contravariant version, the unit [°, is exhibited in the Lie-tensor of the
theory,

ot = MV (9.38)

The main idea of Santilli's isosymplectic geometry is that of reaching a
generalization of two-form (9.38) in which the trivial isotopy is replaced by the
most general possible isotopy, i.e.,

By =T, %@ ag,, (9.39)

under the conditions of characterizing an exact and therefore closed two—form.

In this way, the conventional, local-differential, topological structure of the
symplectic geometry is preserved in its entirety in the canonical two-form w, while
all nonlocal-integral terms can be incorporated in the isotopic element T.

The corresponding algebraic tensor is then of the type

GHY = H® a"(a), {9.40)
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narely, it is precisely of the Lie-isotopic type with the explicit identification of the
isounit directly in the structure of the Lie product, as desired for this study.

The topological consistency of the geometry then foliows from that of the
underlying Lie—Santilli algebra discussed earlier.

For clarity as well as for ready comparison of the results, Santilli foilowed
the presentation of the conventional exterior calculus by Lovelock and Rund (1975),
by preserving their notation, and the same will be done in this volume. A generic
2n-dimensional bundle will therefore be denoted T*M(®) with generic local chart x
=(x), i= 1, 2, .., 2n. We shall return to our a—coordinates later on for specific
physical interpretations.

To begin, let us submit the manifold M(®) to one of the infinitely possible
isotopic liftings into n—-dimensional isospaces M(f) over the isofields #, and let
T*M(V) be its “isocotangent bundle”, that is, the conventional bundle only referred
to isospace M. Introduce one of the infinitely possible, symmetric, nonsingular and
real-valued isounits of # in the original charts x

T =1 = aij) -ah - -ah - T (9.41a)
T = T = (Tij) = ) = (1) = (), (9.41b)

- For mathematical consistency (e.g., to preserve isolinearity, see Sect. 4),
conventional linear transformations on T*M(®R), e.g.,

X = Ax, or xi = Aij xJ, (9.42)
must be necessarily generalized on T*M{#) into Santilli's isotransformations

X = A%, or X = Air ’T‘rS x5, (9.43)

In the conventional case, the differentials dx and dx’ of the two coordinate
systerns are related by the familiar expressions

dx = Adx, or dx! = Aij dud, (9.44)

with the realization, say, for the coordinate transf o]rrnations X 2 x = xx
ax’ oax
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dx’ = —dx, or dx!' = —-  dxl (9.45)
Bx ax!

However, the same notion of differentials dx and dx’ becomes inconsistent in
the isocontangent bundle T*M(®). Santilli (foc. cit. ) therefore introduced the
generalized notion of isodifferentials dx and dX which hold when interconnected
by the isotopic laws

8% = Asdx, or axl = AL TR 8, (9.46)

with the particular realization, say, for the case of the isotransformations x = x(x)
X - o'
dx = —=*dx, or & = — Trs . (9.47)
r
x X

The full geometrical meaning of the above isotransformations and of the
isodifferential dx, will be evident later on when studying notions such as Santilli’'s
isoparallel transport and isogeodesics. At this moment we shall simply assume the
notions and derive their consequences.

Let ¢(x) be an isoscalar function on T*M@®). Then its isodifferential is given

by

o 8¢
do = —=*ax or dplx) = — T A (9.48)
dx oxT

where the partial derivative is the conventional one.

Similarly, Santilli defines X = (X} as a contravariant isovector-field on
T*NKR), that is, an ordinary vector—field although defined on an isospace. Then its
isodifferential is given by

aX _ ax!
X = ——xdx, or X' = —T WS (9.49)
ax axT
Thus, an isovector—field on T*M(R) transforms according to the isotopic laws
_ aX _ aX
® = —=Xix), or X = — T ) X5, {9.50)

X ox
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Note that, while for conventional transformations (9.42) on T*M(x,®) we have
9x'/ox = A, we now have for isotransformations (9.43)
axi _ ATl
— = ALTG o+ A — (9.51)
oxd ax]
By using the above results and the usual chain rule for partial
differentiation, one easily gets from law {9.51)

8XJ 2xi s o s aX!t
— - = — T XM+ — —Tir — =
axKk  adoxi axk axi axk xS

axl ax8  aTi,

o—_

ad ok axS

XT, {9.52)

One can see in this way that, in addition to the isotopy of the conventional
two terms of this expression (see Eq.s (3.5), p. 67, Lovelock and Rund, (loc., cit. )),
Santilli obtains an additional third term. Note that the quantity a)Tj / 8xK is not a
mixed tensor of rank (1.1), exactly as it happens in the conventional case.

From the preceding results one can then compute the isodifferential of a
contravariant isovector—field

. aXj
aX) = —TK.ax -
ox
a2l axi  8XT axl  oTi;
= i XS + —pl— x5 + — Xraxs (953
xS ax! ax! xS al s

A contravariant isotensor X of rank two on MR is evidently characterized
by the transformation laws
o K& ) N axl axd
X0 = —+ —+X 0, X = — 17— T5, XP), (959
ox ax axt xS

Similar extensions to higher orders, as well as to contravariant isotensors of
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rank (0.8) and to generic tensors of rank (r.s) are left as an exercise for the
interested reader.

By following Santilli, all preceding expressions (9.42)-9.54) have been written
in both, the abstract form and their realization in local coordinates, to illustrate
that the notion of isotransformations and isodifferentials do constitute isotopies, in
the sense that all distinctions between conventional and isotopic notions cease to
exist at the abstract, realization—free level.

Santilli then introduces the notion of one~isoform on T*M|(#) as the

quantity
) = Asdx = AT, (9.55)

and studies the algebraic operations of isodifferentials and one-isoforms. The sum
of two one-isoforms is the conventional sum. In fact, given two one—isoforms

%, 1= A+dx and 612 = B*dx, their sum is given by
&1+ 4,2 = (a+Bpax (9.56)

The isoproduct of one—isoform &; = A*dx with an isonumber A € # is the
conventional product, ‘

[

For the product of two or more one-isoforms é)lk = Ak*ax! k=123 .we
introduce the isoexterior, or isowedge product denoted with the symbol A, which
verifies the same axioms of the conventional exterior product, that is, distributive
laws and anticommutativity, i.e.

@' +82A853=8 1A 63+ 82463 (9.582)
A2+ o0 =8"282+81485 (9.58D)
1A% =-92A8 (9.58¢)

The product of two one-isoforms éll = A*ix and & i2 = B#dx shall be
called a two-isoform on T*M(x, R, and can be written
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~ = lag 2 = i j I'za,8 =

- i gl — AT i )axt A dxS =
=+(A T BTy - A TgB TH)ax"Adx® =

(Tl - Tl T axT A axd, (9.59)

=1rAiB-l

thus showing a clear deviations from the conventional exterior calculus (compare

with Lovelock and Rund {loc. cit. ), p. 132).
For the case of the isoexterior product of the one-isoforms Santilli obtains

the three-isoform

= _AI_

A2, 43 glll2ls il 2 73 Kl A axKe A axKs,
ll 12 1 2 3

where (see Lovelock and Rund (oc. cit)

i i

1 1

L sl 8

s'll2 = det. ( g 7L ) 9.61a)
ik 8'2f 52j2

PR N
i S

8!l : -
L. I Ia Iz
s'1213. _ get 52, 82 82 9.61b)
Jodg = 7T ) }1i Jzi LI ‘

83; 53, 53

i} 17 i3

etc. The extension to n—isoforms on T*M(®) is left to the interested reader.
Given n one—isoforms ¢ ik = Ak*ax, k = [, 2... n, they are said to be
isolinearly dependent when

AL A$P =0 (9.62)

Note that given n one-isoforms linearly dependent on M(x,®), their isotopic
images are not necessarily dependent.
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Evidently, in an n—dimensional isomanifold M(#) there exist a maximum of n
linearly independent one-isoforms as in the conventional case, with basis axl.
..axD, The space M(}) equipped with iso-oneforms is the cotangent space T*M ()

at a given point.
Similarly, two-isoforms are elements of an jsomanifold here denoted

T*M,(#) of +n(n ~ I)-dimension with basis dx! A d@xJ, i < j, as in the conventional
case. A similar situation occurs for p-isoforms
oy = A, T T2 0 TP adl Aad2 AL AaxP 063
1112...1p 1 2 P
and related isomanifolds T*Mp(fﬂ).

As an incidental note we point out without treatment the Grassmann-
isotopic algebra G, or isograssmann algebra, which is given by the direct sum

¢ = Ek —ol2.n T*M (). (9.64)

The necessary and sufficient conditions for a two—isoform (9.59) to be
identically null are that

Ky Ty, - T T2) = 0 (9.65)

A similar situation occurs for p—isoforms.
We now study the differential calculus that is applicable to p~isoforms. Let
$, = A*dx be a one-isoform. Santilli introduces the isoexterior derivative of &|

{also called isoexterfor differential} and denoted with acﬁl, as the two—-isoform

ala, TL) | : _
&y = ab, = — - dlr2, adiAaxk = (9.66)
ax'2 I
. . iy
_( 6A11 11 i oT it i o
VT TR T A ——A T2 Jaxli Adx2 =
ax 2 I 2 boaxl2 2
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i
" 3Ai - - oT !
_ 12 (—L 71 g2 4, ]

kikg a2 0 2 T iy

Tio . ) axK1 A axK2
Iz

from which one can see that d(f)l is no longer the curl of the vector field Ail, but

something more general, although admitting the conventional formulation as a

particular case for1 =1L.
The isoexterior derivative of a two—isoform

b, = A T T2 adl Aax2, (967)
iflp ~ 2

is given by the three—isoform

i
BAi i . i aT'l; . .
3= Aby = (—L2TL T2, T3 o+ 4 T2, T8+
oxl3 1 2 3 313 2 3
i

. AT 2 ; ' . . .

oA T —R2aig, ) adl AadZ aaxB, (9.68)

2 I axl3 3

It is easy to see that the isoexterior derivative of the isoexterior product of a
p-isoform ép and a g-isoform éq is given by

d( 6p A ci:q) = @) Ad, + 1P bp Alddy). (9.69)

Santilli then an isoexact p-isoform ép when there exists a {(p~1) form 6])_1
such that

b, - A, (9.70)

P
and isoclosed p-isoform <T>p when

dd, =0 9.71)
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A most significant property of the isosymplectic geometry can be expressed
as follows.

LEMMA 9.1 (Poincaré-Santilli Lemma; Santilli (1988b), 1991b)} Under sufficient
regularity and continuity conditions, the Poincaré Lemma admits an infinite
number of isotopic images, Le., given an exact p—form ¢p= dq>p_ ] » there exists an

infinite number of isotopies of ®p; into isoforms ép_ /

o 7 &L, 9.72)

with consequential isotopies of the p—form

y =2 & = dé

¢, = d@ P p—l) . (9.73)

B p-l
for which the isoexterior derivative of the isoexact p-isoforms are identically null,

d@ e, ) =0 (9.74)
PROOF: Consider an isoexact two—isoform

Then, under the necessary regularity and continuity conditions, its isoexterior
derivative

i
o _ . . oTl; . ,
= .62A1' 11.T‘2.Tl3-+aA11, R LR - S
adzaxis 1 20 Bady a3 20013
1

3 Aj . eT2; , . .
+— 1 oy —_—]2-1‘13 ) axll /"\t?lx“l2 l\dxl‘g* {9.76)

ax2 iz B
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is identically null for all infinitely possible isotopic elements, as the reader can
verify via simple but tedious calculaticns based on the antisymmetrization of all
indices. An iteration of the procedure then proves the lemma at any (finite) order p.

QED.

In short, the existence of consistent isotopies of the Poincare’ Lemma proves
the consistency of Santilli's isosymplectic geometry and underlying isoexterior
calculus.

The mathernatical relevance of Lemma 9.1 is provided by the fact that the
abstract, realization-free axioms

by = do, dPy = 0, (9.77a)
dg = dPy,  dP3=0, etc. ©.770)

admit the conventional realization based on an ordinary manifold, as well as an
infinite number of additional realizations for each given original, conventional
form which can be readily identified via Santilli's isomanifolds. The latter
realizations are generally inequivalent owing to the generally different isotopic
elements or isounits.

While the conventional Poincaré Lemma characterizes the geometric
foundations of the Galilei’s relativity, Einstein’s special relativity and Einstein’s
gravitation for the exterior dynamical problem, the Poincare-Santilli Lemma
constitutes the geometric characterization of the covering isotopic relativities Tor
the interior problem.

Note that the infinite possibilities of different isotopies (9.77) are
geometrically equivalent, but physically inequivalent, in the sense that they
characterize corresponding integro—differential systems (1.1) with inequivalent
soluticns.

We shall now consider some cases of exact isoclosed isoforms. Consider a
ong-isoform & on T*M,(). Then, dé, = 0, iff

2 (— gl g2y, Itiz y=0 (078

kiky ax2 L 2 T iy T2

namely, the isoclosure of a one-isoform does not imply that the conventional curl
of the vector A is nulL
Similarly, given a exact two-isoform &, = dé, the property dé, = 0 holds
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iff
i 82Ai. . . i d o7’ .
gz THigh g opls o T T Wb gk
17273 x'2 axi3 I I2 I3 axi2  axi3 2 .
i
3 Aj T2, .
+—.—]—Tilj — B2 i3 PR (9.79)
ax'2 | ax!3 3)

We now pass to the identification of the isosymplectic geometry. For this
purpose, let us review the interplay between exact symplectic two-forms and Lie-
Santilli algebras (see Sect. 6). Recall that a conventional two—-form on an even, 2n-
dimensional manifold T*My{®) with covariant-geometric tensor big

by = 40 4 dxil A dx2, 9.80)

12
characterizes, in its equivalent contravariant version, the algebra brackets among
functions A{x) and B{x) on T*M4{#)

X 8A ., OB
A°B = — Ql2 - ©.81)
ax'l ax'2

where the contravariant—algebraic tensor Q'1'2 s given by the familiar rule

o2 = (jo,

i J2[‘ (9.82)

Now, the integrability conditions for two-form {3.80) to be an exact
symplectic two-form are given by

L + A = 9838.

1112 121 0’ ( )

i R 1 B ] ) (9.83b)
ax'3 ox'l ax'2

The above conditions are equivalent to the integrability conditions
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liiz + ol2ll = g, (9.84a)
~ apl2l3 . a0isi) a0ijiy
alk—— + ql2K + glsk =0, (9.84b)
ax axk axK

for generalized brackets (9.81)) to be Lie-Santilli, i.e, verify the Lie algebra axioms
in their most general possible, classical, regular realization on 'T“*Mz(fﬂ)

[ABl + [B, Al =0, {9.85a)
(ABI;Cl + [BICI7Al + fic AlB] = o. (9.85b)

Thus, the exact character of the two—form &, = d, implies its closure dé,

= ( (Poincaré Lemma), which, in turn, guarantees that the underlying brackets are
Lie-Santilli, with the canonical case being a trivial particular case (see the analytic,
algebraic, and geometric proofs of Santilli (1982a), Sect. 4.1.5).

Santilli has established via Lemma 5.1 that all the above results on the
conventional exterior calculus persist under isotopies. A primary purpose of the
isosymplectic geometry is then that of identifying the isounit of the Lie-Santilli
algebra directly in the structure of the the two—isoform.

DEFINITION 8.1: Under sufficient continuity and regularity conditions, “Santilli’s
exact isosymplectic manifolds” are 2n-dimensional isomanifolds T'My (xR)

equipped with an exact and nowhere degenerate two-isoforms

$,= 40 . ) dxl1 A2 = (9.86)
2Tl
3 (Aj Ty ) .
= 3§, = ——dl72 adlAad: =
ax'2 2

BAi, i oT']

i i i T S
= Lorl 2 e, —diqh JadiAddz -
axz jl ]2 1 3)(12 ]2

i
1
arl.
1 ply o) axkn A adke
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ax'2 ax'2
which is such to admit the factorization

- k
&, = Ux*T2ay T2>0 (9.87)

where T, is the nowhere degenerate, symmetric and real-valued isotopic element
of T*M, (x#)} and

9A,  BA
Q. = —2- —] (9.88)
W2 il ax2
is Birkhoff’s tensor (7.3), with corresponding Lie-isotopic brackets
A ki oB
AJBl = —120,60 0 %) — (9.85a)
ax'1 ax2
-1 Siqd |
o =Ty, (O12) = oy ¢ I (9.89b)

where T, = 7‘2“' is the isounit of the universal enveloping associative algebra of the
Lie-isotopic algebra with brackets (9.89) on T*My (x.#). “Santillis isosymplectic
geometry” is the geometry of the symplectic-isotopic manifolds.

As an illustration, we shall now work—-out an explicit model of
isosymplectic—isotopic manifolds (loc. cit. ). For physical applications it is
sufficient to consider the canonical isosymplectic— manifold, i.e., the isomanifold
of Definition 9.1 where Birkhoff’s tensor Q is replaced by the simpler canonical

tensor w.
Let us consider again the physical realization of the abstract T‘“Mz(x,éﬂ)

manifold as the cotangent bundle T*E,(r,®) with local coordinates
a=@"=06p=>p) n=L2..20, i=L,2.,n (990
where r represents the Cartesian coordinates and p the linear mom-enta.

Then, we can introduce the canonical one-isoform on T*E(rf) of the

particular type
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& = Ry TH, i, (9.91a)

R° = (p,0), (9.91b)

T, = diag. (0%),...b%) > 0, b >0 ©991c)
Tlij = Sij b?; (no sum), (9.91d)

Its isoexterior derivative on T*E,(r,#) is given by

&y = 89, =
2 2
ab ab
=4 b2 b2 +(R°, —2 _Re —u-[—)]aa“lf\aa‘LZ
HiHg ~ M7 B2 g, K1 galla (9.92)

and it always admits the factorization

by = A8 = va  xT,)Y, dat1AdeH (9.93
2 1 wy 2wy 2
with
" LLop o2, av2,
Ty M2 = 027202, + 0 2 (R}, — - R, — ). (9.94)
daP da”

The isomanifold T*Eq{r,91) equipped with two~isoform (9.93) is isosymplectic
when T, coincides with its isotopic element.

Under these conditions, the generalized brackets characterized by structure

(9.93)
9A oB
w8l = — MVx1, N2 (9.95a)
dat! aaH2
1, = 1,7}, (9.95b)

are indeed Lie-Santilli and exhibit the isounit 1, of T*Ey(r,®) directly in their

structure, as desired.
A simple example is given by
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T, = diag. (0%}, ... b%) >0, x>0, (9.96)

The interested reader can work out an endless number of specific cases of
isosymplectic—isotopic manifolds of both Birkhoff-Santilli and Hamilton—Santilli
type. For specific examples, see Santilli (1991b).

We close this section with a comparative analysis of the isosymplectic
geometry of this section and the Birkhoffian-Santilli mechanics. In Sect. 7 we
outlined the isosymplectic two-forms, Definition 7.1; however, they were not
symplectic isoforms. In fact, the one-form on ™k l(r,ﬂl) of this section

é; = R (@) T fa) &x", (9.97)

formally coincides with those of Sect. 7 in a fixed local chart in which dx = dx.

However, forms (9.97) are characterized in Sect. 7 by the ordinary calculus
of differential forms. In fact, the main geometrical structure of Definition 7.1 is the
conventional exterior derivative of an exact conventional two—form,

dy = di®)). (9.98)

Since the Poincaré Lemma does indeed apply to the exact two-form 62, we have
do, = 0, {9.99)

and the isotopy of Definition 7.1 then follows.

Santilli brought the notion of symplectic isotopy to its most general possible
form, by introducing the isodifferential calculus of isoforms, with isoexterior
derivatives d, and then computed the two—isoforms

The Poincare-Santilli Lemma then ensures that

3%y = 0. (9.101).

The infinite isotopies of Definition 9.1 then follows.
The direct applicability of the isosymplectic geometry for the
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characterization of nonlinear, nonlocal and nonhamiltonian systems (1.1) then
follows from the isoanalytic representations of Sect. 7.

Moreover, the isosymplectic geometry offered pragmatic means for the
construction of a new generation of relativities. In fact, given Galilei’s or Einstein’s
relativity for the description of a local, Hamiltenian, exterior dynamical system
{Sect. 1) with canonical two-form w and Hamiltonian H, one can construct an
infinite number of covering, isotopic relativities for nonlinear, nonlocal and
nonhamiltonian interior dynamical systems via the same Hamiltonian H and the
tensorial product wxT subject to the condition of remaining a nowhere degenerate,
exact, symplectic two-form (see Santilli (1991b) for details).

I.10: ISOAFFINE GEOMETRY.,

1 shall now review Santilli's (1988d), (1991b) affine-isotopic geometry or isoaffine
geometry Tor short. The objective is that of achieving a generalization of the
current local-differential character of the affine geometry into a nonlocal-integral
form capable of treating systems of type (1.1), and identify the expected,
consequential generalization of the notions of curvature, parallel transport,
geodesic, ete.

The literature in the conventional affine geometry is predictably vast.
Among the' earliest references, the presentation by Schrodinger (1950) still has
considerable value. In this section we shall continue to follow the treatise by
Lovelock and Rund (1975) of which Santilli preserves the notation mostly unchanged
for clarity in the comparison of the results.

To our best knowledge, the isotopies of the affine geometry have been
investigated for the first time in Santilli (1988d), developed in more details in (1991b).
Their application to the isotopies of Einstein’s gravitation appeared in Santilli (1988d)
and (1991d).

The understanding of this and of the following sections requires a prior
knowledge of the following notions introduced in preceding sections: isofields #,
isovector spaces V and isometric spaces M, with particular reference to the
isoeuclidean space E(r5,R) and the isominkowski space Mix,HR).

The implications of isotopies for differentiable manifolds were identified in
the preceding section via the notion of isodifferentials dx and related isoexterior
calculus.

Santilli continued his studies by identifying the implications of
isodifferentials for the notions of connections, curvature, etc.

Let M(x,®) be an n—dimensional affine space (Lovelock and Rund (loc. cit. )}
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here referred as a differentiable manifold with local coordinates x = hi=12
.0, over the reals &, We shall derote: the conventional scalars on M{x.®) with ¢{(x)
contravariant and covariant vectors with X)(x) and Xj(x). respectively; and mixed
tensors of rank {r.s)

xrs) = ”2'"]"1( 1 k_,_...ks(")‘ (10.1)

Unless otherwise stated, all tensors considered on M(x,#) will be assumed
hereon to be local-differential and to verify all needed continuity conditions.

DEFINITION 10.1: The infinite class of isotopic liftings M(x,f}} of an affine space
Mix, %), called “Santilli’s isoaffine spaces”, are characterized by the same local
coordinates x and the same local-differential tensors X 5" of M(x,®) but now
defined with respect to the isotopic liftings of the field

Mix®) = MxA) : f =R, (10.2

for all infinitely possible isounits 1 in nxn dimension which are nowhere singular
and Hermitean, but otherwise possess an arbitrary, generally nonlinear and
nonlocal dependence on the variables x, their derivatives with respect to an
independent parameter s of arbitrary order, and any other quantity needed for
physical applications, such as density u of the interior physical medium
considered, its temperature T, its index of refraction n, efc.

1=1x %, % W, T, 0, .. (10.3)

in this and in the next two sections we shall study isoaffine spaces for
arbitrary isounits 1. Nevertheless, it may be recommendable to keep in mind
Santilli's intended use of the theory, that of attempting a more general formulation
of the interior gravitational problem, which is capable of recovering identically
the conventional gravitational theories for the exterior problem {see Santilli {1988d,
{1991d) for details).

As a result, the reader should keep in mind that:

1) The isounits 1 are intended to be different than the trivial unit I only in a
well identified region of space, generally given by the interior of the minimal
surface §° encompassing all matter of the body considered, including its boundary
{e.g., the interior of Jupiter)

2) The isounits 1 shall represent the nonlinear, nonlocal and nonlagrangian!®



J. V. Kadeisvili -119 - Santilli’s Isotopies

forces of the interior gravitational problem, as well as the generally inhomogeneous
and anisotropic character of interior physical media; and

3) All possible isounits T shall recover the trivial units I in the exterior of the
surface §°, so as to permit the recovering in their entirety of the conventional,
exterior gravitational theories.

Thus, to avoid major misrepresentations of Santilli's discoveries, the reader
should keep in mind throughout our analysis that the generalized geometries apply
only within physical media, while recovering the conventional geometries in empty
space by construction.

As a matter of fact, the transition from motion in a curved empty space, to
a curved space filled up with a physical medivm is precisely representable with the
transition from conventional to Santilli's geometries.

As done in the preceding sections, the isounit T will be assumed to be
nonsingular, reat-valued and symmetric, 11=1, 1 =@.}=0') =0

The isotopic element T = Tix, X,...) of the theory can then be written

1=1L T1=0))=-) (105)

A first salient feature of the liftings M(x, ) = M(x,f!) is that the conventional linear
and local transformations  i.e., the linear, right, modular, associative
transformations on M(x,®)

= AX (10.6)

must now ‘be necessarily generalized into the Santillis isolinear and isolocal
transformations on M{x,R), i.e., the right, modular, iscassociative transformations

studied in Sect. 4,
— def
= A*xx = ATx, (10.7)

where T is fixed.

[n turn, the lifting Ax = A*x has a number of consequences. First, it
permits the treatment of nonlocal-integral structures which would be otherwise
precluded by the conventional theory of affine spaces.

This is readily done via the embedding of all nonlocal-integral terms in the
isotopic element of the theory. The insensitivity of the affine geometry to the
topology of its unit then ensures the achievernent of a mathematically consistent
structure.

Secondly, isotransformations (10.7) are called isolinear and isclocal (Sect. 4)

16 see Footnote 3 of Sect. 6.
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in the sense that they verify all abstract linearity and locality conditions on M(xR).
Nevertheless, they are generally nonlinear and nonlocal when written in the
original space M(x%), ie.

X = A*x = ATXX &)X (10.8)

Santilli's liftings Ax = A*x imply that all conventional contractions of

indices are now lifted via the insertion of the isotopic element, i.e.,
alxd s Al T XK. (10.9)

Let us also recall that the use of conventional transformations (i0.6) on the
isotopic spaces M(x®) would violate the condition of (iso) linearity. This illustrates
the necessity of the liftings Ax = A*x.

Finally, we assume the reader is familiar with the fact that all distinctions
between conventional transformations (10.6) and their isotopic forms (10.7) cease to
exist, by construction, at the abstract, realization—free level. Thus, by their very
conception, isoaffine spaces are a more general realization of the mathematical
axioms of the conventional spaces.

This ultimate geometric equivalence ensures the mathematical consistency
of the liftings. As a matter of fact, the equivalence can be used to verify the
consistencies of conventional treatments, as we shall see.

Despite this axiomatic equivalence, the differences between the affine and
the isoaffine geometries are rather deep.

Recall in the conventional case that, given two contravariant vectors x| and
Xo ON M(x,®), their difference Ax is a contravariant vector iff the transformation is
jinear (as well as local).Similarly, Ax is a contravariant vector on M(xR) iff the
transformation is isolinear {as well as isolocal). The following result then holds(see
also Propositions 3.1).

PROPOSITION 10.1 (Santilli (1988d), (1991b)): For any given (sufficiently smooth)
nonlinear and/or nonlocal transformation on M(x,%), there always exists an isounit
1 under which the transformation becomes isolinear and/or isolocal, respectively,
on M(x®), # = ®1. Similarly, for any given coordinate differences Ax of two
contravariant vectors on Mx,%) which does not transform contravariantly, there
always exists an isotope M(x,#) of M{x,®) under which Ax transforms

isocontravariantly.

The left and right modular isotransformations are evidently defined by
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xt = xteal = xt7at (10.10a)
X = A¥X = AT (10.10b)

where t denotes conventional transpose. The inverse, right-modular
transformations are given by the isctopic rule

x = A lex=aTTTx, (10.t1)
where A_’I is the isoinverse, ie., it verifies the isotopic rules

ATea = axa™l =1, (10.12)
and, when considering the isotopy in the new coordinate system, Santilli puts

T =TxX.)= T %..). (10.13)

Note the preservation of the isotopic element for the left and inverse
isotransformations. This preservation is ensured by the assumed Hermiticity of the
element T and it is at the very foundations of the Lie-Santilli theory reviewed in
Sect. 6,17

fAB] = A*B — B*A = ATB - BTA. (10.14)

Mi(x,R) is then the correct isomodule for the isorepresentations of Lie-Santilli
algebras characterized by product (10.13} (App. D).

If the Hermiticity of T is relaxed, the right isotopic element becomes
different than the left one

def def
¥ =A>x=ATx % = t<al = xt1tat (10.15a)

T » Ti, (10.15h)

This signals the necessary emergence of the covering Lie-admissible theory
(Santilli (1967), (1968), (1978a) (1981a)} with basic product!8
17 Note the direct dependence of the Lie character of the theory from the Hermiticity

of the isotopic elerment T.
18 We here want to stress for the noninitiated reader that the Lie-admissible character of
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(A,B) = A<B - B>A = ATIB - BTA, (10.16)

verifying the axioms of the covering Lie-admissible algebra {Sect. b). In this case
the generalized affine space is the correct isobimodule of the Lie—admissible
algebra (App. D).

Note that in this case Santilli has two different isounits,

=7l <=7 (10.17)
and two different isofields
A =R, R=<4R {10.18)

or, equivalently, one single quantity ®”, representing both the right- or left-
modular—isotopic action depending on the assumed conjugation in the isofield.
We shall reserve the name of Santilli’s affine-admissible spaces (or
genoaffine !9 spaces) and the symbol <M”(x, ®”) to the emerging structure.
Santilli’s isoaffine spaces are conceived for the study of interior gravitation
as a whole, ie., in closed—isolated conditions. In fact, the antisymmetry of the
Lie-Santilli product (10.14) ensures the conservation of the total energy,

dH/dt = [H H} = HTH - HTH =9, (10.19)

and similar conservation follow for the other total quantities under a generalized
internal structure evidently represented by the isotopic element T. As a result,
isospaces Mi{x,R) are the fundamental ones of the analysis of the main text of this
volume.

Santilli’s genoaffine spaces instead imply the necessary study of gravitation
in open-nonconservative conditions. In fact, owing to the lack of antisymmetry
of the Lie-admissible product (10.16), we now have time-rate-of—variations of the
energy H of the considered interior particle

di/dat = H,H # 0, (10.20)

while the remaining system is considered to be external. The affine-admissible
spaces therefore are the fundamental ones on the still more general, Lie—admissible

the emerging theory essentially depends on the nonhermiticity of the isotopic element T.
19 See later on Figure 1 for the origin of this name.
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approach, which is briefly indicated in the appendices without detailed treatment.

SANTILLI’s CONCEPTION OF GRAVITATION

EXTERIOR GRAVITATIONAL PROBLEM:
EINSTEIN'S GRAVITATION
ON RIEMANNIAN SPACES

CLOSED INTERIOR GRAVITATION:
SANTILLI'S ISOGRAVITATION
ON ISORIEMANNIAN SPACES

OPEN INTERIOR GRAYITATION:
SANTILLI'S GENOGRAVITATION
ON GENORIEMANNIAN SPACES

FIGURE I: A schematic view of Santilli’s conception of gravitation. The birth of all theories
of relativities for the exterior problem can be identified with the first visual observation of
the Jovian system by Galileo Galilei in 1906. Santilli stresses in several of his writings (1978a),
(1981a), (1982a), (1988d), (1991d) that the birth of the new generation. of relativities for the
interior problem can be identified with the visual observation, this time, of Jupiter’s
structure, as offered by contemporary telescopes or by the recent NASA missions. Such a
visual observation reveals the following incontrovertibie physical evidence:
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a) Jupiter is a stable system when considered as a whole and, thus, it verifies
conventional total conservation laws;

b) Jupiter’s interior dynamics is essentially nonconservative, as established by
vortices with continuously varying angular momenta.

¢) In Jupiter’s structure we therefore have internal exchanges of energy and other
guantities, but always in such a way that they balance each other resulting in total

conservation laws.

d) In a way parallel to the above, the orbit of each constituent (say, molecular) of
Jupiter is unstable, but in such a way that the center—of-mass trajectory of the system is in
a stable orbit.

¢) Jupiter’s interior dynamics is intrinsically irreversible, but, again, in such a way
that the center—of—mass trajectory verifies in full the time reversal symmetry.

In order to achieve a guantitative representation of the above physical evidence,
Santilli (1978b) introduced the notion of closed nonhamiltonian systems, that is, systems
which verify total conventional conservation laws, nevertheless they possess nonlinear,
nonlocal, and nonhamiltonian internal forces as in systems (1.1). He then worked out a
number of theorems (Santilli (1985¢)), today called “Santilli’s No Reduction Theorems” which
prove the impossibility of reducing Jupiter to an ideal collection of conservative
constituents in stable orbits. This established the need beyond any credible scientific doubt
of a suitable generalization of Einstein’s gravitation for the interior problem which is
capable of directly representing the above features a)-e) without any idealistic reduction to
hypothetical conditions.

To state explicitly this basic point, the insistence in the exact validity of Einsteins
gravitation in the interior problem directly implies the acceptance of the perpetual motion
within a physical environment . In fact, the application of Einstein’s gravitation for an
interior test particle, say, a spaceship penetrating Jupiter’s atmosphere, necessarily implies
that the spaceship orbits inside Jupiter’s atmosphere with a conserved angular momentum,
trivially, from the necessary locally-Lorentz character of Einstein’s gravitation, with
consequently necessary local validity of the rotational symmetry and related conservation
of the angular momentum.

Santilli then entered into a comprehensive study of closed nonhamiltonian systems
at large, and of Jupiter’s structure in particular, at the classical Galilean level, by achieving
his isogalilean relativity (Santilli (1982a), (1988a), (1991d)}, at the relativistic level, by achieving
his isospecial relativity (Santilli {1983a), (1988c), (1991d)), and at the gravitational level Dy
achieving his isogeneral relativity (Santilli (1988d), (1991d)).

To understand the dimension and inter-relations of the studies, the reader should be
aware that Santilli {(foc. cit. ) proved the mutual compatibility of the isogalilean, isospecial
and isogeneral relativities; he duplicated his study into two classes, one of isotopic and a
second one of genotopic character (see below in this figure); and he studied this dual
isogalilean—isospecial-isogeneral theories at both classical and operator levels.

The reader can now understand the difficulties by this author in presenting such a
rather vast, diversified and interrelated scientific edifice encompassing a dual generalization
of contemporary classical and quantum theoretical physics. In order to avoid major
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confusions and misrepresentations, this author first decided to avoid any overview in the
Foreword {which would be incomprehensible to the noninitiated reader beginning with the
needed terminology); to restrict the review of this volume only to classical formulations;
and delay the operator formulations to a possible, future, second volume.

Secondly, this author decided to limit the presentation up this section to Santilli’s
{sotopies. This is motivated by the desire to bring the reader progressively into the
complexities of Santilli's mathematical and physical conceptions, as well as by the fact fact
that all advances reviewed untii now, including the isosymplectic geometry, have an interest
per se, independently from physical applications.

Moreover, and again contrary to general practices, this author decided to present
first Santiili's conception of interior gravitation and then their isolorentzian and, in our
sequence, isogalilean particularizations. This is due to the need, in the view of this Author,
to understand first Santilli's notion of isoparallel transport and isogeodesic, in order to really
understand his isospecial and isogalilean relativities. In fact, lacking such a prior knowledge,
the reader is not in a position to understand, say, the preservation of the geodesic character
in the transition from Galilei’s historical uniform motion in vacuum, to Santilli’s motion of
the same body within a physical medium.

' Finally, again for the purpose of minimizing possible confusions, this author elected
to present the discoveries of isotopic type in the main text of this volume, and those of
genotopic type in the appendices.

The reason why the mentien of the genotopic theories is mandatory at this point is
due to the fact that, as stressed by Santilli, no genuine advancement over Einstein's
gravitation is possible without a dual representation, one side, of the global stability and
reversibility of ‘the center-of-mass trajectory and, on the other side, of the nonlocal-
nonhamiltonian“internal forces, as well as of the interior irreversibility, as majestically
established by Jiipiter.

To understand the second family of generalizations, let us recall that, in his
historical memoir of 1978a, Santilli introduced two fundamental notions, each one with vast
implications for mathematics and physics:

1) ISOTOPIC MAPPINGS, which are the “axiom preserving mappings” studied in the
main text of this volume. The prefix “iso”in isosymplectic, isoaffine and isoriemannian
geometries, therefore, stands to indicate the preservation of the abstract axioms of the
original geometries, as now well known. The physically and mathematically most impoertant
isotopy is that of a conventional Lie algebra we have studied in the main text

AB - BA = [SOTOPY = ATB - BTA, Tf=T.

11} GENOTOPIC MAPPINGS, which were conceived by Santilli as “axioms inducing
mappings”. Therefore, the prefix “gemo” in genosymplectic, genoaffine and
genoriemannian geometries stands to indicate the alteration of the original axioms by
conception in favor of novel structures. More specifically, given a {generally
nonassociative) algebra U with elements a, b, ¢, ... and abstract product ab over a field F
which verifies a given set of axioms A (say, those of a Lie algebra, of a Jordan algebra, etc.),
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then Santilli (1978a) introduced, apparently for the first time, the notion of genefope UXof U
as the same vector space U, but equipped with 2 new product, say, axb which violates the
original axioms A and verifies instead a different set of axioms A’ In this sense, Santilli
~induces” new axioms from the original ones. The physically and mathematically most
important genotopy is that of a Lie algebra into a Lie-admissible algebra treated in this
App. A

AB - BA = GENQTQPY = AT{B - BTA, T{ # T.

As indicated in the text, the isotopy preserves the Lie character of the original
formulation, and therefore its emphasis is on total conservation laws. By contrast, the
genotopy alters the original Lie character, and it is requested when considering the more
general open nonconservative systems. In fact, as we shall outline in Appendix A, Santilli's
Lie—admissible formulations characterize the time-rate—of-variation of physical quantities.

We are now sufficiently equipped to begin the presentation of Santilli’s (1988d),
(1991d) dual generalization—covering of Einstein’s gravitation, called Santilli’s isogravitation
and genogravitation, according to the following main lines:

A) CLOSED INTERIOR GRAYITATIONAL PROBLEMS, which are studied via the
infinite number of possible isoaffine and isoriemannian geometries characterized by the
infinitely possible different interior physical media for each given gravitational mass
represented by the infinitely possible isotopic elements T = Tf for each given metric g . In
this case, the emphasis is in the CONSERVATION LAWS for total quantities, the STABILITY
of the system as a whole and of its center-of—mass trajectory, and the REVERSIBILI TY of
its center—of—-mnass trajectory in vacuurm, all this while permitting local internal NONLOCAL
and NONCONSERVATIVE, as well as NONHAMILTONIAN forces.

B} OPEN INTERIOR_GRAVITATIONAL PROBLEMS, which are studied via the
infinitely possible genoaffine and genoriemannian geometries with genotopic elements T #
Tt, and with different actions to the right and to the left (forward and backward in time). A
typical case is the description of a test particle while moving within the physical medium of
the interior gravitational problem, such as a spaceship penetrating within Jupiter’s
atmosphere. In this case, the primary emphasis is in the representation of the
NONCONSERVATIVE character of the test particle, the INSTABILITY of its orbit, and the
IRREVERSIBILITY of the process to avoid excessive approximation of physical reality.

C) EXTERIOR GRAYITATIONAL PROBLEMS IN VACUUM, which coincides with the

conventional Einstein’s gravitation by central assumption of Santilli's theories. In fact,
Santilli’s isogravitation and genogravitation are restricted by the central condition that their
isotopic and genotopic element T reduces to the identity when motion occurs in vacuum,
ie,
T, =]
r>8°
(where §° is the surface encompassing ali matter of the body considered, including its
possible atmosphere). Under the above condition, both the isoriernannian and the
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genoriemannian geometries recover the conventional Riemannian geometry, with the
consequential validity of the conventional Einstein’s gravitation.

Santilli's isospecial relativity will then naturally emerge in the local tangent planes,
and his isogalilean formulation can he easily derived via the techniques of isogroup
contractions. As indicated earlier, in the remaining sections of this volume we shall outline
the isotopic formulations, while the more general genotopic formulations will be presented
in the appendices.

The understanding is that all isotopic formulations are a particular case of the
genotopic ones at all levels of study, whether classical or quantum mechanical. This
illustrates the reason why, quite appropriately, the Estonian Academy of Science (1989) of
Tartu recently honored Santilli by including his name in a chart identifying some of the
most famous contributors in mathematical physics from 1800 to today, because of his
studies in Lie-admissible algebras, and with the paper (Santilli (1967)) which signals precisely
the birth of the Lie-admissible formulations in physics.

A Tinal aspect should be indicated for the receptive reader. As well known, Albert
Einstein found all the needed mathematics ready for the construction of both, his special
and general relativities. In fact, for the construction of the special relativity he found
available the fundamental Lie’s theory, the Lorentz and Poincare’ symmetries, and other
mathematical tools. Similarly, for the construction for his theory of gravitation he found
available the Riemannian geometry.

By contrast, a most remarkable achievement by Ruggero Maria Santilli, a theoretical
physicist, is that he had to construct, first, the novel mathematical tools needed for his dual
treatment of nonlinear, nonlecal and nonhamiltonian systems and, then, construct his
generalized Galilean, special and general relativities.

We now;study the arfine—isofopic geometry, or isoaffine geometry, ie.,
the isotopic 1liftings of the conventional geometry characterized by
isotransformations (10.8).

Recall from Sect. 9 that, in the conventional case, the differentials of the two
coordinates x and x’ are given by the familiar forms dx’ and dx with

interconnecting rule

dx’ = Adx ax! = Aij axl, (10.21)

But the same interconnection does not hold for the differentials dx and dx because
of property (10.7), i.e,, by central assumption of isotopy, dX = A dx.

Following Sect. 9, Santilli therefore introduces the generalized notion of
isodifferentials dx and dx when interconnected by the isotopic law

& = Axdx, o = Al T axk. (10.22)

Similarly, recall from Sect. 9 the isodifferential of an isoscalar ¢(x) on
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Mix,R)

ab o ..
dolx) = xqx = — T‘j dxJ (10.23)
ax ax!

where the partial derivative is the conventional one, as well as the isodifferential
of a contravariant isovector X = (X'(x}) on M(x5)

X N -
ax =—x*ax,  axt = — 1 &K (10.24)
ox ax)

The above quantity then imply the isotransformation laws of the
contravariant isovector
B ox o
) = —xXx), X!'= —T X*), (10.25)
9x ax!

Recall also that, while in the conventional (linear) case x’ = Ax, 8x/6x = A, we
now have on Mix,R)

axl — aTkr r
—"j = AIR T i + Aik — X
ox

- (10.26))
ax]

~ Similarly, Santilli has the isotransformations of a contravariant Isotensor
X1 of rank two on M(xR)
( x & &
2 i r $
R = —r—xx P, @ = —T p—T qqu(x). (10.27
o 8x axf xS

with similar extension to higher orders, as well as contravariant isotensors of rank
{0.5) and generic tensors of rank (r.s).

The reader should also recall from Sect. 9 the identity of the above
isoquantities with the conventional quantifies.

The following derivatives the isodifferential of a contravariant isovector-
field
7
. oX
ax = — Tk & -
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axk
. s T i :
&l axl  ax ax) el
= 'r‘ XFaxs + — T, — a8 + — X axs (1028
xS ax! Caxt ax3 axl  ax8

Santilli (Joc. cit. } then introduces the isocovariant (or isoabsolute)
differential BXT

bxl = axd + P X ax), (10.29)

under the condition that it preserves the original axioms (Lovelock and Rund

(foc.cit), p. 68), ie.,
I D(X] + Yl) = px! + DY), which can hold iff P is isolinear in XT;

2Dx! is isolinear in 8x5; and
3) DX transforms as a contravariant isovector.
By again using Lovelock-Rund’s symbols with a “hat’ to denote isotopy, we

can write
. N i I
oxl = axi+ ) T Xk axs, (10.30)
hk T S

where the s were called the component of an isoaffine connection.

By lifting the conventional procedure. one can readily see that the necessary
and sufficient conditions for the n3 quantities f‘m n to be the coefficient of an
isoaffine connection are given by

_ ax’ x4
F oo —18 xETR —TW, ax =
mp st axW
x) 22xd
r m
=—T r5T p Xanqaxq— ~ TiF XF xS +
ax x> ox!

axl T ]

n oX X
+ _ T r— ('Istax
ax! ax3 oxt

(10.31)

As in the conventional case, the [™s do not constitute a tensor of rank (1.2).
The extra terms in conditions (10.31), therefore, do not affect the consistency of the

isoaffine geometry, but constitute the desired generalization.
An important particular case cccurs when T is a constant, which is the case
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when the characteristic isotopic functions representing the interior physical
medium are subjected to a suitable average into constants (see next chapter). [n this
case the isotopy of the conventional terms persists, but the additional terms are
null. Finally, note that all conventional notions and properties are admitted as a
trivial particular case by the isoaffine geometry whenever T = L.

The extension of the above results to the isocontravariant derivatives  is
evidently given by

.= - S r N p
DXj = &) = PP T X T p OxP. (10.32)

As a result, the isocovariant derivative of a scalar coincides with the
isodifferential, as in the conventional case, i.e.,

Do = DXX;) = Ao (10.33)
The isoaffine connection is symmetric if the following property is verified

§ - 8§
Ma’n = fo’me (10.34)

The following property can be easily proved {but carries important physical
consequences).

PROPOSITION 10.2 (Santiili (loc. cit.)k The isotopic image fyJx of a conventional,
symmetric, arfine connection l"th = [‘kjh is not necessarily symmetry.

The isotopic liftings of all remaining properties of covariant derivatives, as
well as the extension to the isocovariant differential of tensors, will be left for
brevity to the interested reader.

It is easy to see that the isocovariant (iscabsolute) differential preserves the
basic axioms of the conventional differential, i.., (Lovelock and Rund {(loc. cit. ),
p.74)

AXIOM 1: The isocovariant differential of a constant is identically null; that of a
scalar coincides with the isodifferential; and that of a tensor of rank (r.s) is a
tensor of the same rank.

AXIOM 2 The isocovariant differential of the sum of two tensors of the same rank
is the sum of the isoabsolute differentials of the individual tensors. And

AXIOM & The isocovariant differential of the product of two tensors of the same
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rank verifies the conventional chain rule of differentiation.

By following again the pattern of the conventional formulation, and as a
natural generalization of the isocovariant differential, Santilli introduces the
Isocovariant derivative of a contravariant vector field XP

det_OXJ i h
A= N
[ hk

under which the isocovariant differential can be written

T

X, (10.35)

oxd = xlpy Tks &S, (10.36)

It is an instructive exercise for the interested reader to prove that the
isocovariant derivatives (10.35) constitute the components of a (1.1} isotensor.

It is also easy to verify that the isocovariant derivatives preserve the axioms
of the conventional covariant derivatives (Lovelock and Rund (foc. cit. ), p. 77k

AXIOM I' The isocovariant derivative of a constant is identically null; that of a
Scalar is equal to the conventional partial derivative; and that of an isotensor of
rank {r. s) is an isotensor of rank {r. s+1).

AXIOM 2! The isocovariant derivative of the sum of two tensors of the same rank
is the sum of the isocovariant derivatives of the individual tensors. And

AXIOM 3: The isocovariant derivative of the product of two isotensors of the same
rank is that of the usual chain rule of partial derivatives.

Axioms I, 2, 3 and I, 2, 3’ imply the most important result of this section,
which can be expressed via the following

PROPOSITION 10.3 (Santilli (loc. cit.) Under sufficient continuity conditions, all
infinitely possible isotopic liftings of an affine geometry coincide with the same
geometry at the abstract, coordinate—free level.

In actuality, the capability of our isotopies of preserving the basic axioms is
such that, the isotopic liftings can be used as a test of geometric consistency of a
conventional theory.

In fact, if a given property is not preserved under isotopy, the definition of
the property itself is geometrically incomplete . As we shall see in the next
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section, this is precisely the case of the historical Einstein’s tensor.

We now pass to the review of a central notion of the isoaffine geometry, the
generalized curvature, called by Santilli isocurvature, and the generalized torsion,
called isotorsion , which are inherent in the isoaffine geometry prior {o any
introduction of an isometric (to be done in the next section).

For this purpose, let us study the lack of commutativity of the isocovariant
derivatives on isoaffine spaces M(xf) with respect to an arbitrary, not necessarily
symmetric, iscconnection f‘th. Yia a simple isotopy of the corresponding equations
{see Lovelock-Rund (foc. cit. ), pp 82-83), and by noting that

_ p2 p q ]
XTng rzkapq &Gy - 12y T (1037
Santilli gets the expression
: a2 ] arzi
X' - xi - 1k
thlk [k Th axK oxh

1 I pm
+(f‘2kamr f‘zlrh “f‘zmh rf’zlrk) T1S XS -
el el pTyil g2l 28 )y, (1039
hk k'l 10" Th 1k ‘ '

DEFINITION 10.2 (Santilli (loc. cit.) The “isocurvature tensor” of a vector field X
on an n-dimensional isoaffine space Mix,R) is given by the isotensor of rank (1.3)

- af'y oy
R ] = - +
1hk axk axD
Joom p2r jopm g2t
TR S _ a'rf
+ 0 T - i ’11, (10.39)
axk rk b
while the “isotorsion tensor” is given by
7 1 (10.40)

el ol
ok =Tk ~ Tkns
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Expression (10.38) can then be written

j ) I ~ 1 msyl
X =R . T.X8 - TSX, . 10.41)
Thik Tk[h 1hk ° 8 Thk is (

Comparison with the corresponding conventional expression (Eq.s (6.9), p. 83,
Lovelock and Rund {loc.cit)) is instructive to understand the modification of the
curvature as well as of the torsion caused by Santillis geometrization of interior
physical media. As we shall see, this modification is the desired feature to avoid
excessive approximations, such as the admission of the perpetual motion within a
physical environment, which is inherent in Einstein’s gravitation from its local

Lorentz’s symmetry.
The extension of the results to a (0.2-rank tensor is tedious but trivial,

yielding the expression

]1 ! I oor sl 1 S _
Tth kah =R kT X + R T's X

- T W (10.42)
Similarly, for contravariant isovectors and isotensors one obtains

. - s - ~ T S .
Xintx = Nitch = R e T %~ Tk T8 Xjps (10.432)

— — S T S

Xatntk = Xifetn = Kine T -RT T X
a2 T

T Tk Xjits (10.43D)

Relations (10.42) and (10.43) will be referred to as the Ricci-Santilli identities.
Santilli (loc. cit.) then passes to the study of the properties of the
isocurvature tensor. The following first property is an easy derivation of definition

(10.39).
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PROPERTY I

The second property requires some algebra, which can be derived via a
simple isotopy of the conventional derivation (Lovelock and Rund {foc. cit. ) pp.
91-92).

PROPERTY 2:

. . . _«j o i a i
R + Kol * Bdm = Fenge + Folan + fidin

2j qf = 8 ]l 25 ~ ]l 28
* TlersThk TR T T+ T TsTrn t
o9t . aTY, CaTT. s
. N 5 .
] S 431 3 1 5, (10.45)

T O —1T +7 .
T orh gk 1tk gl horlgh ok

where, again, the reader should note the isotopies of the conventional terms, plus
two new terms which are important physical applications indicated earlier in which
the interior characteristic functions are averaged into constants.

Note that, for a symmetric isoconnection, the isotorsion is nuli and the
above property reduces to the familiar form

The third property identified by Santilli also requires some tedious but
simple algebra given by an isotopy of the conventional derivation {Lovelock and

Rund (loc. cit. ), pp.92-93), which results in
PROPERTY 3

!, +R!  + Rl )Y =

itp  jkplh jpnlk! Vi

—(arT Syl T spl T mspl
_(Sh kTt stp * Skar sth + SkhTI' stk)Yl *

1
+ Ri'pg Trlfp + Kfep Tetn *+ Rifpn Trllk)Yl +
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T T
+ & T r]‘p +8 pT ot SphTrlfk)TYj“, (10.47)
called by Santilli isobianchi identity , but which is now known as the Bianchi-
Santilli identity , and which can be written in a number of equivalent forms here
left to the interested reader (see an alternative expression in the next section).
Again, as it was the case for property (10.45), the Bianchi-Santilli identities
(10.47) for the case of a symmetric isoconnection reduces to

1 1 1 _
thkTp ' Rjkak ¥ ijth 0. (10.48)

This completes the identification of all primary properties of an
isocurvature tensor prior to the introduction of the isometric. Other properties,
such as the Freud identity (Freud (1939), Pauli (1981), Yilmaz (1990)), will be studied in
the next section because they require the isometric for their proper definition.

L11: ISORIEMANNIAN GEOMETRY

In this section [ shall review Santillis Riemannian-isofopic geomelry, or
isoriemannian geometry for short, which is the most general possible, nonlinear
and nonlocal geometry with a symmetric connection. The new geometry was
introduced, apparently for the first time, in Santilli (1988d), developed in more
details in Santilli (1991b) and applied to the generalization of Einstein’s gravitation in
Santilli (1988d), (1991d).

As predictable from the presentation of Fig. 1, Santilli conceived the study
only as preparatory for the construction of the more general Riemannian-—
admissible geometry , also called genoriemannian geometry , namely, the yet
more general, nonlinear and nonlocal gecmetry which can be constructed with a
connection on a bimodular, affine-admissible spaces <M>(x, <®>). The latter
geometry shall be ignored in this section for brevity, and only briefly indicated in
App. C.

To begin, let us perform the transition from the n—dimensional isoaffine
spaces M(x, ) of the preceding section, to the corresponding Santilli’s isospaces
Mix,gR) equipped with a (sufficiently smooth, real valued and nowhere singular)
symmetric isotensor g;; of rank (0. 2) on M{x,R), called by Santilli isometric, with
a dependence on the local coordinates x, their derivatives with respect to an
independent (invariant) parameter s of arbitrary order, as well as any additional
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quantity needed for specific physical applications, such as the density . of the
interior physical medium considered, its temperature T, its possible index of
refraction n, etc.

@ij(x, %% T, 0. = jS(x, X, % WU, T, 0, .. (11.1)

It is easy to see that isospaces M(x.g#) are a direct extension to an arbitrary
dimension n of Santilli’s isoeuclidean spaces E(r8%) in three-dimensions used for
the construction of the isogalilean symmetries Gy(3.1), as well as of Santillis
isominkowski spaces M''{xg#) in (3.1)-dimension used for the construction of
the isopoincare’ symmetries Ps(3.1) (Santilli {1991d). In this section we shall
continue our study of the general n—dimensional case, by keeping in mind that,
from a physical viewpoint, we are primarily interested in the isoeuclidean and
isominkowski subcases.

To begin, let us restrict our attention to the following isospaces.

DEFINITION [1.1 (Santilli {loc. cit.}); The “isotopic liftings” R(xg#) of a
conventional Riemannian space Rix,g,#) in n-dimension (sec, e.g., Lovelock-Rund
(1975) called “Riemannian-Santilli spaces” or “Santilli’s isorlemannian spaces’, are
the n—dimensional isoaffine spaces M{x,®) equipped with a (sufficiently smooth,
nowhere singular, real valued and symmetric) isometric g = Tg characterizing,
first, the isofield ® via the rules

g =glx, %, .) =Tk x.)gk), §eR, geR {11.2a)
f=a1 1=T1), {11.2b)

and then a symmetric isocaffine connection, called “Christoffel-Santilli symbols of
the first kind”

plhlk=§(a§;.k] +% - aéhk

— rl
—_— =T {11.3
axht ok axl kin

as well as the “Christoffel-Santilli symbols of the second kind”

12 = el = 3y (1.9

where the capability for an isometric of raising and lowering the indices is
understood (as in any affine space), and
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gl = kgrs)“'ﬂj. (11.5)

The “Riemannian—Santilli geometry”, or “Santilli’s isoriemannian geomelry”, is
the geomelry of isospaces RixgR).

In essence, the above definition is centered on the requirement that the
alteration (also called “mutation” in Santilli (1978b) glx) = T{xx %..) gl = glx, %,
%,..) of the original Riemannian metric g is characterized by an isotopic element T
which is the inverse of the isounit 1 of the theory.

This implies that the transformation theory of the conventional Riemannian
space must be lifted into the isotopic form of Sect. 10. [n turn, this ensures that the
isoriemannian geometry is isolinear and isolocal on R{x,g,R), although generally
nonlinear and nonlocal when formulated on R{x,g,®), as desired.

In order to avoid insidious topological problems, the reader should be aware
that both metrics g{x) and 8(x,%,%,...) can be nonlinear, but the nonlocal-integral
terms must all be embedded in the isotopic part T of the isometric g, and cannot be
admitted in the original Riemannian metric g(x). This implies the embedding of all
nonlocal terms in the isounit T = 1{x,%,%,....), thus ensuring the topological
consistency of the new geometry.

On physical grounds, the isotopies Rix,g®) = Rix,gf) imply that we have
performed the transition from the exterior to the interior gravitational problem.
Throughout the analysis of this volume, the reader should keep in mind that the
isotopic elements T (or isounit 1) assume their conventional unit value I = diag.
(1,1,.....1) everywhere in the exterior of the minimal surface S° encompassing all
matter of the interior problem (Sect. | and Fig. I, Sect. 10}, in which case R{x,g®) =
Rix,gR).

In this section we shall study the isoriemannian geometry per se, and
without any boundary condition on the isotopic element. The condition to recover
the conventional Riemannian geometry in the exterior problem will be imposed in
Sect. 2.

Note that each given gravitational theory can be subjected to an infinite
number of isotopic Iliftings which are expected to represent the infinite number
of possible, different, interior physical media for each given total gravitational
mass. This is the reason for the use the plural “isotopies”.

As indicated in Definition 11.1, the introduction of a metric on an affine
space implies the capability of raising and lowering the indices. The same property
evidently persists under isotopy. '

Given a contravariant isovector X' on R(x,gf), one can define its covariant
form via the farniliar rule
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Xi = ;¥ (11.6)

Similar conventional rules apply for the lowering of the indices of all other
quantities.

It is easy to see that the inverse of g, Eq.s (11.5), is a bona-fide
contravariant isotensor of rank (2. 0). Given a covariant isovector Xj on Rix.gH), its
contravariant form is then defined by

xi = gl X (1L.7)
Rules (11.6) and (11.7) can then be used to raise or lower the indices of an arbitrary
isotensor of rank (r. s).
From the definition of the Christoffel-Santilli symbols of the first kind, Eq.s

{113}, we have

921
— =l + f‘l]hk, (11.8)
o hlk

and
5 _agm pl rl (11.9)
Bifk ok hik Thk’ '

X

Thus,
g =0 g =0 {11.10)
Bjx - Eqg :

We reach in this way the following

LEMMA 1i.1 (Ricci-Santilli Lemma; Santilli (1988d), (1991b, d)) : All {sufficiently
smooth, and regular) isotopic liftings of the Riemannian geometry preserve the
vanishing character of the covariant derivative of the isometrics.

In different terms, the familiar property of the Riemannian geometry

= ( (1L.11)
gij|k

is a true geometric axiom because it is invariant under all infinitely possible
isotopies. As shown by Santilli {see below), this property is not shared by ail
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quantities of current use in gravitation.
The isotransformation law of the isometric g is given by

axP ax3
g;ix, %) = — T, X. )g (ix, ))T (f,x S (11.12)
! axi P ax)

where the isotopic elements TT. in the r.h.s. are again computed in the new
coordinate system as in Eq.s (10. 3.5

By repeating the conventional procedure (see Lovelock and Rund (foc. cit. ),
pp. 78-70} under isotopy, Santilli obtains the following expression for the
Christoffel-Santilli symbol of the first kind

| B By By
Flpg = — +— - — )= (11.13)
6xh axk axl
; 82T o xS *jp =y oxI axS axM
-5 T TP ¢ P PP
BT aghgek Sl gem TS b a ko gyl

o x> oxm axt ax® ox™

Loa & s ad or, A e o ok’
_— —

— )
adt axkK ol axK ax! axK ax! axP ax! ox

with a number of alternative formulations and simplifications, e.g., for diagonal
isotopic elements T, which are left to the interested reader for brevity.
The contravariant isometric glJ evidently verifies the isotransformation laws

g axl ax]
glix, x,...) = -—'Trp(i, %) gP9x, %} TS (x, %,..} —. (11.14)
axd

In order to proceed with our review, we need the following
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ON 11.2 (Santilli (loc. cit)} Given an isoriema

DEFINITI
dimension, the “isocurvature tensor” is given by
. 5
ihk K axP
s § omg2r. - 23 ™2l
+f‘ka rf‘lh f‘thT rf‘zlk""
T

21 Ty g @] M’y s

120 — 1 T ! el
axk rk o
and can be rewritten
IS .Y %ph % pk e
1k ak o axDax! axht ox!
N . s
peel s gt T
+ g (rprhTerIh r 1('rsr‘zlk)
r
5 i O @] o1’
+ r rh —1 | h
axk rk ax

the "Ricci-Santilli tensor” is given by

Ry = RS = glR
th = By ™ & Ciing

the “Einstein—Santilli tensor” is given by
gl = fi-48)R
1 i 1

and the “completed Einstein-Santilli tensor” is given by
S Lt

i i

where R is the “isocurvature isoscalar”

nnian space R(xg#®) in n

(11.15)

(1117

(11.18)

(11.19)
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R=R; :QHR, (11.20)

and & is the “isotopic isoscalar”

_,‘jh,lk I T .98 | ro.2s ,

JghJk Lk
rlrjk DN ish(gmg - g g™ (11.21)

We are now equipped to review Santilli {Ioc. cit. ) isotopies of the various
properties of the Riemannian geometry as available in various textbooks on
gravitation. From definition (11.16) we readily obtain

PROPERTY [: Antisymmetry of the last two indeces of the isocurvature

fensor

The specialization of properties (10.45) to the case at hand easily implies the
following

PROPERTY 2 Vam‘shfng of the totally antisymmetric part of the isocurvature
tensor

] i i
Bk * Ry + B = 00 (11.23)
or, equivalently,

Rimhk * Romkr * Ren = © (11.24)

The use of property (11.22) and Lemma 0.1 then yields

PROPERTY 3 Antisymmetry in the first two indices of the isocurvature fensor
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or, equivalently,

R (11.26)

Rynk = Ruay

From Definition {11.15} and the use of the Ricci-Santilli Lemma, after tedious
but simple calculations, Santilli obtains the following

PROPERTY 3: Bianchi=Santilli identity

Rj - 5! (11.27)

i j
R + R '
1kplh S1hkp

1hk]p 1phlk
where

j - b s r
8 fzrh(Ts]er1p Tstp

1 hkp
1] r 5 _ pf 5

1j ¢(pr S _ ol 5
+rr]k(TSTpr2]h Tslhf‘lp)+

j r ~ r
pl[k Fer(th[k leTh)

thfp

2]
r (lef Q'

+ r2 (Q (11.28)

plfh

and ' r
aT s

ril‘l‘p = ( ‘Isl )Tp (11.29)

For isotopic liftings independent from the local coordinates {but dependent
on the velocities and other variables, as it is generally the case, or for the
characteristic functions of the interior physical medium averaged into constants,
isodifferential property (11.27) assumes the simpler form

+ RJ =Q. {11.30)

] j
Rihtp * Ripnix ikp|h =
The Bianchi-Santilli identity can also be equivalently written in the general

case
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where the S-term is that defined by Eq.s (11.28), with the reduced form for the
isotopies not dependent on the local coordinates or constant

R 0. (11.32)

hktp ¥ Ripntk * Rukptn

"We now consider the isotopic liftings of Freud identity which was
originally identified by Freud (1949), first reviewed by Pauli (1958), and then
forgatten for a long time. The identity was “rediscovered” by Yilmaz (1990), Carmeli
et al. (1990), and finally studied in detail by Rund (1991). Santilli (1991b,d) followed
Rund’s treatment, and reached the following property we shall call

PROPERTY 5: Freud—-Santilli identity

vkl
U'kj + ok = , (11.33)
Bxl
where
V’k]j = iaé{grswk_rer]s _ Slj f‘zrks) .
2
N L ) (11.34a)
fk = IA’* - — k
Uj aéﬁ\( g ;-8 jG). (11.34b)
Tk
= “]k r2 14 1’2 - Tq r2 S (11.34¢c)
G’kj = At ij. At = V3. (11.34d)

A major result of Rund’s {loc. cit.) analytis is that the conventional Freud
identity holds for all symmetric and nonsingular metric on a conventional
Riemannian space of dimension higher than one. The same property cvidently
persist unde Sanbtilli’s isotopies. Thus, Property 5 is automatically satisfied for all
symmefric and nonsingular metrics on isoriemannian spaces of dimension higher

than one.
We are now in a position to identify the most salient consequences of



J. V. Kadeisvili - 144 - Santilli’s Isotopies

Santilli‘'s isoriemannian geometry. First, it is an instructive exercise for the reader
interested in acquiring a technical knowledge of the isotopies of the Riemannian
geometry to prove the following important property.

LEMMA 11..2 (Santilli (foc. cit.)} Einstein’s tensor

i _pi —ysl
G'j=R'; ~+&R (11.35)
does not preserve under isotopies the vanishing value of its covariant divergence
(contracted Bianchi identity)

G

— i — i =
ili = ®jli is‘th—o, (11.36)

]

that is, the isoinsteinian tensor (11.18) violates property (11.36)
i ] .
= l. P ]
Giti = Riny &a]RTi # 0, (11.37)
Therefore, Einstein’s tensor does not possess an axiomatically complete structure,
and the contracted Bianchi identity does not constitute an axiom of the
Riemnannian geomelry.

This rather unexpected occurrence has rather deep meaning for the now
vexing, open problem of the possible source to the field equations in vacuum (see
next section).

The following important additional property can also be proved via tedious
but simple calculations from isodifferential property {11.27).

LEMMA 11.3 (loc. cit.} The completed Einstein-Santilli tensor (11.19) does possess
an identically null isocovariant isodivergence, i.c.,
o (pl _isip sl -

hereon referred to as the “completed and contracted Bianchi-Santilli identity”.

By reinspceting the above findings, we can say that Einstein’s tensor G'; is
not “axiomatically complete” because it does not possess properties that are
invariant under all infinitely possible isotopies. However, if Einstein’s tensor is
“completed” by adding a suitable tensor with null covariant divergence, then it is
turned into a true axiomatic form invartant under isotopy.
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It is interesting to note that the Freud identity is a true geometric axiom of
the Riemannian geometry in the sense that it persists under isotopies, while the
contracted Bianchi identity is not an axiom of the Riemannian geometry, evidently
because not preserved by isotopies.

By following again Santilli (1991b), let us first identify the implications of the
above findings for the conventional theory of gravitation, and then study their
isotopies. For this purpose, we introduce the following

DEFINITION 11.3 (loc. cit.} The “completed Einstein’s tensor” on Rlx,gf) is given
by the expression

i i
Sj =R j 8 j
where R'- is the conventional Ricci tensor, R is the conventional curvature scalar
and 6 is given by the isotopic quantity 8, Eq. (11.21) for T=1, ie,

R -+ sij 0, (11.39)

_ jh Ik R
6=¢g ¢ erkf‘zlh—[“rjhl“lk)w

jih 1k i
=l e e - g™ (11.40)

But, the gbvariant derivatives of the 6~quantity are identically nuil (from the
conventional Rié(;i Lemma). We therefore have the following

COROLLARY 11..2.1 {loc. cit.; Einstein’s tensor can be axiomatically completed by

substracting the term #5 . @ with null covariant derivatives as per Definiton 11.3,
while preserving the null value of the covariant divergence, ie.,

i = (pi i i = (pi i =

=Ry—-#8;R-48,0,.=R"- 18, = (. 11.41

(e 40 Oy =Ry~ 28GR, =0 (114D

which is called the "completed and contracted Bianchi identity”.

The axiomatic structure which can be subjected to a consistent lifting is
therefore the generalized tensor (11.39), and not Einstein’s tensor.

1t should be recalled that Santilli's “completed Einstein’s tensor” has no
relationship to the “modified Einstein’s tensor” with the cosmological constant A,
i.e,, the familiar form (see, e.g., Pauli (1958))
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wml - pl i

Gy = Ry — #8'R + 8'jA. (11.42)
for numerous reasons. First, A is a constant in quantity (11.42), while € is a scalar
function in Eq.s (11.39). Secondly, tensor (11.42) leads to a static universe, as well
known, while this is not the case for Santilli's completion of Einstein’s tensor, as we
shall see. Third, the modified tensor (11.42) also does not possess sufficient
generality to constitute a geometric axiom invariant under isctopies.

At this point, it is important to identify the implications for the gravitational
equations prior to the addition of gravitational sources (to be done shortly in this
section).

A repetition of the analysis by Lovelock and Rund ({loc. cit. ), p. 313 and the
Theorem of p. 321) for the completed Einstein’s tensor leads to the following

THEOREM 11.1 (Santilli (foc. cit.): In a {conventional) four-dimensional Riemannian
space R(x,g5) the most general possible, axiomatically complete Euler-Lagrange
equations

Bl = o, (1143)
verifying the properties
gl = &, Eijl. =0, (11.44a)
]
lj = i] . . . = k \ .
EYV = E (gu, &,k gij’kl). gij, k agij/ax ,ete (11.44b)

(where the latter property also expresses the lack of source), are characterized by
the variational principle

ok = 8fLgp e, 8y ) O =
- ofAtR+0) -24) =0, AF = g (11.45)
and read
Bl = aAt(ARU - sgil(R+0)] +Agl) = 0, (11.46)
where R is the curvature scalar and 6 is quantity {11.40).

The reader will recognize in the above theorem the cosmological constant A,
as is well as its differentiations from our 6-quantity. The reader will also see the
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difference of the gravitational equations (11.50) with the corresponding Einsteinian
form.

The isotopies of the above property can be readily done, via the methods
illustrated earlier, thus reaching the following

THEOREM 11.2: In a four-dimensional isoriemannian space Rix,g,#), the most
general possible Euler-Lagrange equations

Bl = g, (11.47)
verifying the properties
i i 1
DR E]“ = 0, (11.48)
el els 5 & ) 5. =8 /xK  ete (11.48D)
ij ij,kgijkl Bij, x agij

where the latter property denotes absence of sources, are characterized by the
variational principle

sh=8f .5 .8 Jdx=

ij' %1j, K Tij, ki
= of BAR +8) - 28 = 0, At = @ (11.49)
and read
e - AR - 53T R + B0 + Agl), (11.50)

where R is the isocurvature isoscalar (11..20) and D is the isotopic isoscalar (11..21)

This completes our review of the conventional and isotopic Riemannian
geometry without sources.

The most general possible formulation of gravitation on an isoriemannian
manifold with sources, possesses the following structure.

THEOREM 11..5 (Santilli (foc. cit.): In a four-dimensional isoriemannian space
R(xgR) the mast general possible Euler-Lagrange equations

Eij = 0, {11.51)
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verifying the properties: 1) symmetric condition on the Euler-Lagrange tensor
o ii
g - g, (11.52)

2) the contracted Bianchi-Santilli identity

il
E N = Q, (11.53)

and 3/ the Freud-Santilli identity
av.rkl

ok, + @k, = , (11.54)
j j ol

are characterized by the variational principle

It

sk = of L@ t )dx

I‘k ?A ,T H]
ij gij,l( gij,l(l ij  ij
= of AIA(R +0) + 20 +piF + D]dx

il

= 8 A[AR + 2A +p(T + Bldx = 0, (11.55)

where A, A, and p are constants, t is the isotopic generalization of Yilmaz (1979)
stress—energy tensor, and

T = 3 + \0/p, (11.56)

is the source tensor. For the case A =p = ! and A = (, the Euler-Lagrange equations
are given by

PR BT PR P O (1157
or, equivalently,
LIPS PR L L) (11.58)
Throughout the analysis of these sections we have often considered interior
trajectories of "nonlagrangian” type. It is important to understand that this term is

referred to the lack of analytic representations in terms of a first-order
Lagrangian, i.e., a Lagrangian L depending at most on the first order derivatives of
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the variables, L = L{s, x, %). In this case the Euler-Lagrange equations are of second—
order.

The theory of Lagrangians of order higher than the first (with Euler-
Lagrange equations of order higher than the second), even though quite intriguing,
implies a rather deep revision of the analytic mechanics, e.g., for the construction
of the corresponding “Hamiltonian”.

A first way to understand the nonlagrangian character of Santilli’s
isoriemannian geometry, is by recalling that the “Lagrangian” equivalent of the
Birkhoffian mechanics is precisely of the second order (Santilli {1982a)).

The generally nonlagrangian character of the geometry under consideration
is then made clear by the following

COROLLARY 11.5.1 (loc.. cit.} The Lagrangians of Theorem 11.5 are first-order in
the metric tensor, L = L(g;j, gij K éij k})’ but generally of the second- or higher-
order in the coordinate derivatives, L = L(s, X, %...}

Euler-Lagrange equations of order higher than the second are avoided in the
iscriemannian geometry because all derivative terms are embedded in the
isometric of the theory, while the Euler—Lagrange equations are computed precisely
with respect to such isometric, and not with respect to the local variables and their
derivatives, as in the conventional case.

The analysis of this section is completed in the next section with the notions
of isoparallel transport and isogeodesics.

We close this section with a few complementary aspects. As well known, a
most important system of local coordinates is that introduced by Riemannian (1868}
with the name of “normal coordinates”, say,

x5 ylly) (11.60)

under which the Riemannian space R(x,g.®) is locally flat. In different terms, the
normal coordinates are such that, in the neighborhood of the point P° = (y°), all
coefficients of the connection sz“c, are identically null,

2102
P dy?) =0 (11.61)

Moreover, it has been proved in the literature that a system of normal
coordinates always exists for all affine spaces with a symmetric connection. We
can therefore introduce the following

DEFINITION 11.4 (Santilli (foc. cit.)) The “isonormal coordinates” of an
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isoriemannian n-dimensional space Rixg,#) are the coordinates y° Itx) such that, in
the neighborhood of a point y° !, all isoconnection coefficients are identically null

' ) =0 (11.62)
rs
Normal coordinates have a fundamental physical meaning in conventional
gravitational theories, because they allow the identification of the local Lorenfz
frames.
In the transition to an isotopic formulation of the Riemannian geometry, we
encounter another difference with fundamental physical implications.

LEMMA 11.6 (loc. cit.); The metric holding in the neighborhood of a point of the
isonormal coordinates of an Isoriemannian space is isominkowskian with null
isocurvature.

PROOF: Suppose that the transformations x = y“x) are such to eliminate the
space-dependence of the transformed isoconnection coefficients. Then, Eq.s (11. 86)
hold, but the local metric remains generally dependent on the derivatives y, ¥, and
other quantities, thus being of isominkowskian type. The lack of isocurvature
follows from the lack of local dependence on the coordinates. Q.E.D.

Stated differently, in the conventional case, the connection coefficient can
only depend on the local coordinates, 2 Is = Fzrls(x). The
recovering of the Euclidean metric 8 or of the Minkowskian metric under local
coordinates then follows.

In the isotopic case, the isoconnection coefficients depend on the local
coordinates x as well as all possible {or otherwise needed) derivatives and other
quantities, f‘2r s = F 14X, %, % W, T, n,..). Their transformation under normal
coordinates then ehmmates the coordinate dependence of the metric, but generally
leaves the dependence on the remaining variables, and we shall write

i oy Kl ayl
_ij r
= T (xgk)g xkE.) T (k%) — =
ok 1 x>
= g, 9. {11.63)

Needless to say, coordinate transformations of an isoriemannian manifold

xt = wl(x, X, %oy (11.64)
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admitting the Minkowskian metric may indeed exist, but they are generally
nonlinear and nonlocal. In fact, for the case in which the Riemannian geometry
generalizes the Euclidean setting with metric 8 = diag. (1,1,..,1), transformation (4.88)
via rule (4.87) would imply

x! @ij(x, X %) d = wl 8 WS, (11.65)

with similar results for the case of the Minkowski metric (see Chapter V of Santilli
(1991d)). Needless to say, the latter coordinates are considerably more difficult to
identify than the isonormal coordinates, although their existence is not excluded
here.

The central point remains that, in the isotopic case, reduction {11.65) is not
necessarily implied by the geometric conditions {11.62). The local isotopic metric
(11.63) then persists as the geometrically natural case.

As now familiar, we have initially considered a conventional gravitational
theory on Rix,gR) which, as well known, has null torsion, and have reached an
infinite family of isotopies all of which also have a nulf isotorsion on Rix.g#). In

fact, the original symmetric connection thsk has been lifted into an infinite
~ family of isoconnections which are also symmetric

S 5 -
TR Tn=0 2 5 o 5o M=o (e

However, the null value of torsion occurs at the level of Santillia
geometrical isospaces R(x,gR) which are not the physical space of the
experimenter, the latter remaining the conventional space-time in vacuum (see
Chapter IV for details of Santilli (1991d)).

The physical issue whether or not the isotopies of Einstein’s gravitation have
a non—null torsion must therefore be inspected in the physical space and not in the
geometrical isospace.

This can be easily done, e.g., by rewriting the isocovariant derivative of an
isovector on Rix,gR) as a conventional covariant derivative in the ordinary space
Rixg.®), ie,
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X o= — e X (11.67a)

[k ok T

21 _ 2 i ch
I = [ hk T r {11.67b)
[t is then evident that, starting with a symmetric isoconnection rhik on
R(x,g.), the corresponding connection "'y on Rixg®) is no longer necessarily
symmetric, and we have the following

LEMMA 11.7 : The isotopic liftings th'k > P thk of a symmetric connection
r 2h‘k on a Riemannian space RixgR) into an infinite family of isotopic
connections rzhlk on isoriemannian spaces RixgR) of the same dimension, imply
that the isospace always possesses a null isotorsion, but, when the isofopies are
projected into the original space, a non—null torsion generaily occurs.

The above property was first reached by Gasperini (1984a, b, ¢) via the
isotopy of Einstein’s gravitation in the language of conventional differential forms
on a conventional Riemannian space. The geometrization of the property into a
symmetric isotorsion on an isoriemannian space was achieved by Santilli (1988d),
(1991h).

At this point the advances in torsion made by Rapoport-Campodonico ((1991)
and quoted papers) become applicable to Santilli's interior gravitation. We regret
the inability to review these studies and reformulate them in terms of Santilli’s null
isotorsion.

Let us recall that any nonlinear and nonlocal theory can always be
identically written in an isolinear and isolocal form (Sect. 3). By reversing the proof
of Lemma 11.7, it is then easy to prove the following

COROLLARY 11.7.1: Under sufficient continuity and regularity conditions, any
gravitational theory on a conventional affine space R(x,%) with non-null torsion,
can always be written in an identical form on a suitable isoaffine space Rix,#) of
the same dimension with an identically null isoforsion.

Let us recall that the reasons which renders Einstein’s exterior gravitation so
effective for the characterization of the stability of the planetary orbits and other
exterior features are exactly due to the null value of its torsion. The same reasons
are then at the origin for the inability of the theory to represent the instability of
the interior orbits (see Fig. | of Sect. 10).

In turn, these results necessarily lead Santilli to two different, but
compatible theories: one for the exterior gravitational problem with null torsion,
and one for the interior gravitational problem with null isotorsion but non-null
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forsion , as outlined in the next section.

L.12. ISOGENERAL RELATIVITY

The final, and perhaps most significant, geometric discoveries which permitted
Santilli {1988d), (1991b, d) the achievement of a geometrically consistent
generalization of Einstein’s gravitation for the interior problem, consisted of the
isotopies of conventional paralle! transport and geodesic , which he called
isoparallel transport and isogeodesic .

Since the times of Galileo Galilei and his experiments at the Pisa tower (1609),
we know that the free fall of a body in Earti'’s gravitational field is geodesic only
in the absence of resistive forces due to our atmosphere. It is therefore well know

~that the trajectory of a test particle within a physical medium is not geodesic,
owing to the deviations caused by the forces between the body and the medium, as
illustrated, say, by a satellite of irregular shape during re-entry in Earth's
atmosphere. Moreover, it is also well known since Lagrange’s and Hamilton’s times
(Sect. 1) that the forces between the body and the medium are of nonlinear,
‘_nonlocal—integral and nonlagrangian—nonhamiltonian type, that is, of a type outside
“the representational capabilities of the conventional, local-differential, Riemannian
geometry. A fully similar situation occurs for parallel transport.

Thus, not only the conventional notions of geodesic and paraliel transport,

“but the Riemannian geometry itself is inapplicable to the motion of an extended
test particle within a physical medium.

After the the identification of a nonlocal-nonlagrangian generalization of
the Riemannian geometry reviewed in the preceding section, Santilli's was in a
pesition to achieve the generalization of parallel transport and geodesic for motion
of extended particles within physical media, most remarkably, in such a way to
preserve the original geometric axioms of the conventional quantities (see later on
Fig. 2 in this section).

Santilli’s isoparallel transport and isogeodesic are crucial for a true
understanding of his isotopic relativities for the interior problem. In fact, the new
relativities are based on the preservation of the axioms of the conventional ones. An
understanding of the relativity laws in the transition from motion in vacuum to
motion within physical media therefore requires the prior understanding of
Santilli's preservation of the axiomatic structure of geodesic motion and the
generalization instead of the underlying carrier space.

Finally Santilli's isoparaliel transport and isogeodesic are a prerequisite of
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another crucial aspect of the isotopic relativities, their reconstruction of exact
space~time symmetries, such as the rotational symmetry ©f(3), the Galilei symmetry
G{3.1) and the Poincaré symmetry P(3.1), when believed to be conventionally broken.

A typical example is Santilli's reconstruction of the exact rotational
symmetry O(3) for all infinitely possible deformations of the sphere . In fact, the
understanding on how the rotational symmetry can be exact, say, for the ellipsoids
xiblle + x2b22x2 + x3b32x3 = inv. requires the prior knowledge that the geodesic
character of the O(3) orbits on a sphere is preserved in the transition to the
corresponding orbits on a hyperboloid, provided that one performs the transition
from the conventional Euclidean space E(r,8®) to Santilli’s isospace E(r,8R).

These are the reasons why we have presented in this volume the geometrical
foundations of Santilli's isogravifation as a necessary condition for the frue
understanding of his simpler isospecial and isogalilean relativities.

To begin our review, let R{x,gR) be a conventional n-dimensional
Riemannian space. Under sufficient smoothness and regularity conditions hereon
assumed, a vector field X' on R(x,gR) is said to be parallel along a curve Cif it
satisfies the differential equation along C (see Lovelock and Rund (foc. cit.)

o ox! i
o' - X 0= (— + 2 X" axd = o, (12.1)
5

where I“zl-iS is a symmetric connection. Then, by recalling the notions of
isodifferential of Sect. I1.11, we have the following

DEFINITION 12.1 (Santilli (1988d), (1991b, d}} An isovector field X " on an n-
dimensional isoriemannian space R(x.g ) is said to be “isoparallel” along a curve C
on RixgR), iff it verified the isotopic equations along C

BY = xi 'I‘rs(x, %)% =
T

!
axi N
S+ 12 1 k) X ™ %) 130=0, (122
X

where I 2; ss the symmetric isoconnection and the T’ are the isotopic elements.

The identity of axioms (12.1} and ([2.2] at the abstract level is evident, again,
because of the loss of all distinction between the right, modular, associative
product, say Xx, and its isotopic generalization X*x = XTx.

To understand the physical differences between the above two definitions,
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let us introduce an independent (invariant) parameter s, such that the isovector
field x = Qx/ds is tangent to C, and let X' = X!(s). Consider the curve C at a point

P(1} for s = 5, and let X¥(1) be the corresponding value of the isovector field X! at
P(1).

Consider now the transition from P(1) to P(2), ie., from s | tos + ds. The
corresponding transported value of the isovector field X{2) = X¥1) + ax is said to
occur under an isoparallel displacement on Rix,g,®) in accordance with Definition
12.1, iff

X i
ad - — Tyax =12 T X qu ad, (123)
0

The iteration of the process up to a finite displacement is equivalent to the

solution of the differential equation
i i 5
ax _ ex . 21 1 ps O
S Ty— =—l“rSTpX q (12.4)
ds af T ds ds

By integrating the above expression in the finite interval (sl, 52), one reaches the
following

LEMMA 12.1 {Santilii (foc. cit.); The isoparallel transport of an isovector field Xi(s)
on an n—dimensional isoriemannian manifold R{x.g.#) from the point 5; to a point
Sp on acurve C verifies the isotopic laws

£ = 20 f 2 1) T 0 P T 5, 5.0 8005
I rs F 1 (125

; 2 20X dxd
22 - g = fl ax! =f — T & (126)

The physical implications are pomted out by the fact that the isotransported
isovector does not start at the value XY1), but at the modified value XXI)
characterized by Eq.s (12.6). Additional evident modifications are characterized by
the isotopic connection [?rl5 and the two isotopic elements T of the r.h.s. of Eq.s
{12.5).

where

These departures from the conventional definition can be better understood
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in a flat isospace via the following evident

COROLLARY 12.1.1{loc. cit.) In a flat isospace, such as the isominkowski space
M(x,7%) in (3.1)-space—time dimensions, or the isoeuclidean space Er,8) in 3~
dimensional space, the conventional notion of parallelism no longer holds, in favor
of the following flat isoparallelism

r2i = o, (12.72)
i ; 2 . ax! o x4
f@-2m=J =) 2—71 —& (12.7b)
fl fl P . Y as

Consider, as an illustration, a straight line C in conventional Euclidean space
RXE(r,8A), with only two space-components. Then a vector R) at s =t is
transported in a parallel way to R{2) at s = t, by keeping unchanged the

characteristic angles with the reference axis, i.e,

arK(r) aRK(r)
dx! + > a2, (12.8)

Rk - rKD) = [ 2
I ox ox

Under isotopy, the situation is no longer that trivial. In fact, assume the
simple diagonal isotopy

T = diag. (b %) by2(t) > 0. (12.9)

Then Eq.s (12.8) are lifted into the form

b2 ar2  (12.10)

k
R (r) Ry (r)
fka - % - 5 X b 20 arl + —
N ar

In figurative terms, a given straight and rigid arrow in 3-space is, first,
twisted under isotopy, and then transported in an isoparallel way, that is, in such a
way that the isotopic (rather than the conventional) characteristic angles with the
reference axis are preserved (see also the example of isorotation (Santilli (1991d),

Chapter I1I in particular).
It appears that this is exactly the physical behavior of parallel transport

within physical media. [n fact, one can imagine the rigid arrow as representing a
rocket under parallel transport along a straight line toward the center of Earth.
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During the motion in the empty space of exterior dynamics, the orientation of the
rocket in space remains evidently the same (conventional parallel transport in flat
Euclidean space). However, the moment the rocket penetrates Earth’s atmosphere,
its orientation in space is evidently changed depending on the local conditions
(shape of rocket, its density, etc.), even though we can still assume that the center
of mass of the rocket keeps moving in a straight line. These are exactly the physical
conditions represented by Santilli’s isoparallel transport in flat isospaces, Eq.s
(12.10)

The irreducibility of the notion of isoparallel transport to the conventional
notion can be illustrated even in the case of null curvature. In fact, consider for
simplicity the isominkowski-space M{x,i, %) with local coordinates x = (M), p = I,
2, 3, 4, and constant diagonal isotopy

= Tn, T = diag. (b 22 ,bs? b2 > 0. (12.11)
and introduce the redefinitions X = & (no sum) X)) = KH&),
Then Eq.s (12.7b) becomne
2 oMy | 4 , R . 4
f [ b Pdx = [T ———bh2ax, (12.12)
[ x9 1 &Y

., namely, the isotopy persists even under the simplest possible constant isotopy
":“(12.1 1), thus confirming the achievement of a novel geometrical notion,

By submitting the conventional treatment (Sect. 3.7 of Lovelock and Rund

. {loc. cit. )) to isotopies, Santilli then identified the integrability conditions for the

" existence of isoparallelism. By performing partial derivatives of Eq.s (12.7) with
respect to x! and then interchanging symbols, he obtains

ax' al‘Qi
S WL AL L
x5 axt axt
I : .
. i 2 i
Lp2i 9T . x ar”Trxp+
rs t - t t P
ox ax" 9x ax
aTI"
i _r n -i
w02 mpr2 P e 2 B xP (12.13)
ms 1 ax

from which the following property holds.

LEMMA 12.2 (Santilli (loc. cit.); Necessary and sufficient conditions for the
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existence of an isoparallel transport of an isovector X! on an n-dimensional
isoriemannian space R(xg,®) are that all the following equations are identically
verified

Pl xs =
Ring Ts X =0, (12.14)

where Rri - is the isocurvature tensor (Sect. 11.11, ie.

Ri - - +
i hk ok ol
2l ome2r _ p2i qpm p2T
+ 12 T AT th’l‘ l_l"21k+
ooart oeT,
er2l —21 - 12l > 1 (12.15)
axK rk D

The re-emergence of the isocurvature tensor as part of the integrability
conditions of isoparallel transport, can then be considered as a confirmation of
Santilli’s achievement of a novel mathematical notion.

We now pass to the review of Santilli’s isogeodesics. Let s be an invariant
parameter and consider the tangent X' = dx!/8s of the curve C on an n-dimensional
isoriemannian space R(x,gR). Its absolute isodifferential is given by

oxt = axl + 2 1P ad (12.16)
In accordance with Definition 12.1, DXi- remains isoparallel along C iff
byl = 0. (12.17)
We can therefore introduce the following

DEFINITION 12.2 (Santilli (loc. cit.): The “isogeodesics” of an n-dimensional
isoriemannian manifold Rix,g,#) are the solutions of the differential equations

a2y axP axd
—_— f‘z i (x % %) (x,x,i‘(..) —_— qu(x,x..it.) — =0,
as2 ds ds
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(12.18)

By recalling that ds = ds, it is easy to see that the isogeodesics of flat
isospaces remain the straight line (i.e., linear functions of s) while those of curved
isospaces remain Curves.

It is a simple but instructive exercise to prove the following

LEMMA 12.3 (loc. cit) The isogeodesics of an n-dimensional isoriemannian
manifold R(xgR) are the curves verifying the variational principle

sf as? = af ® j(x,x,x..) axd axlt = o. (12.19)

i

As indicated eartier, the notions of isoparallel transport and isogeodesic have
.-a truly fundamental role in Santilli's geometrization of physical media. Additional
comments are presented in Figure 2 below.

We are now finally in a position to briefly outline Santilli's isotopic
generalizations of Einstein’s relativity, which he submitted under the name of
“isogravitation (Santilli {(1988d), (1991b)), for the interior gravitational problem, ie.,
+the description of gravitation in the interior of the minimal surface S$°
Zencompassing all matter of the celestial body considered. The corresponding

&eoverings of Einstein’s special relativity and of the Galilei's relativity are evidently
iparticular cases for null isocurvature.

The generalization was first studied by Gasperini (19843, b, ¢} who
constructed the first gravitational theory with a local Lorentz—isotopic structure
following Santilli (1978a), (1982a), {1983a). Gasperini, however, formulated his studies
everywhere in space—time, thus reaching rather severe restrictions on the
admissible theories from existing gravitational experiments. Also, Gasperini
formulated his gravitational theory in a conventional! Riemannian space.

The isogravitation outlined below, first of all, restrict the isotopies to the
interior problem only, by therefore eliminating any restriction from exterior
experiments on the magnitude of the interior isotopy. Secondly, Gasperini’s studies
themselves have been generalized by Santilli by formulating them in his
isoriemannian spaces. In this way, Santilli regains the geodesic and torsionless
character of Einstein’s gravitation, but at a higher geometric level.

The physical motivations for the need of a suitable generalization of
Einstein’s gravitation for the interior problemn are beyond any credible doubt. The
general relativity was specifically conceived (see, Einstein (1916)) for the exterior
problem, e.g, for the decription of the planetary motion in our Solar systemn, which
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is well established to be local-differential. The Riemannian geometry is then
exactly applicable under these exterior conditions.

SANTILLI’S GEODESIC DESCRIPTION OF
MOTION WITHIN PHYSICAL MEDIA

A ;‘f\? ‘S‘W“ﬁ\
\f\m\ Y

1

A ‘\(;\ '\h

CONVENTIONAL-
EUCLIDEAN, )
MINKOWSK1 AND A \\\\TP
RIEMANNIAN
GEODESICS
SANTILLI'S
ISOECLIDEAN,
ISOMENKOWSKI AND
ISORIEMANNIAN
GEODESICS

FIGURE 2. The birth of the notion of gecdesic motion can be seen in Galilei’s historical
conception of uniform mgotion in vacuum, i.e., by the celebrated Galilei’s boosts

ry = +tvy, Pk = Px + mVv%y (@

As well known, Galilei established the above law by ignoring the friction due to the air.
Santilli's (1988d), (19916, d} equally historical discoveries essentially consist in the
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achievement of a geodesic characterization of the motion of free objects within physical
media in such a way to preserve the original axioms of the free motion in vacuum.

The fundamental tool in this achieverment is provided by the isospaces. In fact,
Santilli represents the transition from motion in vacuum to motion within a physical
medium via the transition from conventional Euclidean, Minkowskian or Riemnannian
space to his corresponding isoeuclidean, isominkowskian and isoriemannian Spaces,
respectively. By recalling that the conventional spaces provide a geometrization of the
vacuum (empty space), one can then see that Santillis isospaces provide a geometrization
of physical media.

Consider, as an example, the conventional Euclidean space E(r,5,% of Galilei’s boosts.
In this case the metric & = diag. (1, 1, 1} represents the homogeneity and isotropy of empty
space. Consider now Santilli's treatment. Then his isoeuclidean space E(r,88) provides a
geometrization of the medium because the isometric 8 = T8, T = Tt > 0, represents precisely
the inhomogeneity of the medium (e.g., due to its variation of density with height) as well
as its anisotropy (e.g., because of a possible angular momentum of the medium which

__evidently creates a privileged direction in the medium itself).

- In particular, the scripture & = T8 stands te indicate that the underlying space,
represented by 8, remains perfectly homogeneous and isotropic in Santilli’s theories, while
the isotopic element T represents the mutation of its geometrical characteristics caused by
a physical medium. Since T is nonsingular and Hermitean, it can always be diagonalized to a
form of the type

T = diag. (8,2 B,2 BS) (0)

“{where the B's, called characteristics B-quantities of the medium , are generally nonlinear

~ and nonlocal functions on all variables, By = Bk(t. T, p, D, ). They represent precisely the
interactions between the test body and the medium (see the isoanalytic representations of
Sect. 7).

The above explicit functional form of the characteristic B-quantities is needed for
the local behavior of a test particle within the medium consider. For the case of a global
behavior, such as for the propagation of light throughout our entire atmosphere, the B-
quantities can be averaged to constants, <|By [> = b, = const. (see Santilli (1988a), (1991d)

for details and applications).
Consider now Santilli’s isoboosts on Elr, 3R} (see Sect. 15 for their derivation)

re=rg * t°v° Bk—%t,r, Pk
(o)

Pr=py + mv B ALrp ),

where the B's are certain functions of the B's given in Thecrem 15.1.
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It is then evident that Santilli’s isoboosts {c) can represent the deviations from
motion in vacuum caused by the medium . Note in particular that the motion is no longer
necessarily uniform, because it can be either decelerated, or accelerated. In fact, when the
test particle penetrates a physical medium, it normally decelerates due to the drag force,
but it can also accelerate for media in highly dynamical conditions.

Qur objective here is to review the reasons why isoboosts (c), first of ali, constitute
an geodesic motion on isospace E(r,8,%) and, second, they preserve the axioms of the original
Galilef's boosts (Santilli (foc. cif. ).

The geodesic character is readily proved (under predictable restrictions on the B-

functions). In fact, the geodesics in E{r,8R) are characterized by the trivial expression dzrk /

dt2 = 0 whose only possible solutions are given precisely by the Galilei boosts {a). In the
transition to isospace E(r,8R), the geodesic equations are given instead by a2rk /a2 =0

which, by recalling property (9.47), do indeed admit non trivial solutions of form {c). Fully
similar cases occur in Santilli's isospecial and isogeneral relativities.

We remain with showing that the axiomatic structure of Galilei’s boosts is preserved
by Santilli’s generalization. This is readily seen via the use of the Lie-Santilli theory.
Consider the one-dimensional Lie group T(v°) representing Galilei’s boosts. Then, expressions

(a) are given by the familiar forms (see, e.g., Sudarshan and Mukunda {1974}

TVIr = r + UV, TOVIp = pp + mvy ()

Thus, from an axiomatic viewpoint, the Galilei boosts are characterized by the conventional,
modular, associative action Tiv") ry and T(v) py..

In the transition to Santilli's isogalilean relativity (Sect. 15), the isoboosts are
represented instead by the one-parameter Lie-isotopic group T{v°) with the same generator
and parameter of T{v%), but now expanded in the isoenvelope (Sect. 6). Expressions {c) are
then explicitly given by the now familiar modular, isoassociative actions

Thry =1 + UV Bk"z, T Mpy = pg * MmV° Bk—r‘: (e

The preservation of the geometric axioms of Galilei’s relativity by Santillis
covering isorelativity is then ensured by the fact that all distinctions between the
conventional modular actions (d) and their isotopic generalization (e} cease to exist at the
abstract, realization—free level.

The preservation of the original axiomatic structure is then confirmed by the
property that, for two sequential successions of Galilei’s boosts we have the familiar group
composition law

TV Tiv™) = TV +v°) {r

while for Santilli's isoboosts we have the covering, fully equivalent composition law of
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isotopic groups
TR = TV +v) (g)

In conclusions, Santillis has achieved a generalization of the algebraic, analytic and
geomnetric structures of Galilei’s, Einstein’s special and Einstein’s general relativities for the
most general known physical conditions: motion of extended-deformable particles within
physical media experiencing conventional, action-at-a-distance, potential forces, as well as
contact, short range, nonlinear, nonlocal and nonlagrangian-nonhamiltonian forces due (o

the mediurn itselfl .

In particular, the generalizations are such o preserve the axiomatic structure of
the original relativities, to such an extent that any distinction between the conventional
and Santilli’s relativities cease to exist al the abstract, realization—free level by conception .

In the transition to the interior problem, the physical conditions are
fundamentally different, to such an extent to render inapplicable the Riemannian
‘geometry itself, let alone Einstein’s conception of gravitation.

In fact, as recalled in Sect. 1, according to incontrovertible evidence, the
core of of a star undergoing gravitational collapse is composed of the wavepackets
of particles in conditions of total mutual immersion, and their compression in very
large numbers in a small region of space. This results in nonlinear, nonlocal, and

_nonlagrangian-nonhamiltonian internal interactions of type (1.1} which simply
fjequire geometries structurally more general than the Riemannian one.

The reader who is familiar with the isotopic geometries can now see that the

"j,lsotoplc liftings of Einstein’s gravitation permit the transition precisely from the

‘exterlor problem for a given gravitational mass, to the infinite possibilities of
interior gravitational conditions for each given total mass, evidently caused by the
infinitely possible interior media.

Let us begin by recalling the three basic representation spaces used in the
conventional approach to gravity:

1) The carrier space of Galilean exterior mechanics, the Kronecker product
of Euclidean spaces for conservative trajectories

fﬂth(]‘,S.fﬂ) : 8 = diag. {1, 1, 1), ) (12.20a)
=), 2=rlor = riaijrj =F 12 + r22 + r32 . (12.20b)
i=i,2,3 =xv,2

over the reals %;
2} The carrier space of relativistic exterior mechanics, the familiar
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Minkowski space Tor exterior trajectories
Mixn®) : 7 = diag. (1, 1, 1, ~1), (12.21a)
x=6H=(rxh, x4 = ¢t T eErRsA)
%2 = xtnx =xunuv xV = x12+x22+x32 —x42 =RZ; (12.21b)
mv =1234 Re®H
where ¢, represents hereon the speed of light in vacuury;, and

3) The carrier space of Einstein’s exterior gravitation, the Riemannian space
in the conventional (3.1}-space-time with a sym-metric connection and null tersion

Rixg®R) : g = g = {g;)) = (g,) (12.22a)
x =0 =(r, x%; %2 = xlgl¥)x = xugw V- RZ, (12.22b)
og og gy
gl =y wo . v WP, (12.22¢)
KoV ot oxY axP
_2p 2P =
Tupv =Py - 50, =0 (12.22d)

As well known, the largest groups of linear and local-differential isometries
of space (12.20) is the Galilei symmetry Gg(3.1). The largest group of linear and
local isometries of the Minkowski space (12 21) is the Poincaré symmetry Py(3.1).
The largest group of isometries of the Riemannian space (12.22) is known only
locally, i.e., in the neighborhood of a point and it is given aiso by P {3.1). The global
symmetry of spaces (12.22) was identified, apparently for the first time, by Santilli
{(19884), (1991D, d)).

The first contribution by Santilli’s isotopic formulations is provided for
conventional gravitational theories, and can be formulated as follows.

THEOREM 12.1 (Santilli (loc. cit.); The largest possible nonlinear but local-
differential group of isometries of the conventional Riemannian spaces (12. 22} with
metric gfx) are Santilli’s isopoincaré symmetries Pg(3.1) with isounits T = Tig=T1
For the case of Einsteinian theories of gravity, T > 0 and all isosymmetries P, (3.1)
are locally isomorphic to the conventional Poincaré symmetry P (3.1) {see Sect. 13
for details).
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Note that the above theorem is not purely formal, but permits the
computation of the explicit symmetry transformations in their finite form from
the sole knowledge of each given metric g{x), say, the Schwarzschild’s metric.

Also, recall the conventional nonrelativistic limit

P. (3.1)| = Gg(3.1). (12.23)

n co/R30

We can then say that the Poincaré-isotopic symmetries P, (3.1} admit a
nonrelativistic limit into a symmetry Gx(3.1) which are also locally isomorphic to
the Galilei symmetry Gg(3.1) whenever & > 0 (as it is the case for Einsteinian
gravitational theories),

=
Py(3.1 |c0/R=> Gx(8.1) ~Ggl3.1). (12.24)
Finally, recall that P_(3.1) admit the conventional symmetry PTI(S 1) as a local
relativistic symmetry, and g (3.1) as a local nonrelativistic symmetry (see Appendix
A of Santilli {1988c)).

This essentially summarizes the geometrical structure of the local and
- global symmetries of Einstein’s exterior gravitation.

Santilli's objective was then to reach an infinite class of symmefry-
.-preserving isotopies of Einstein’s gravitation for the interior dynamical problem,
“and interpret the isotopies, as now familiar, as representing the transition from
_.motion in vacuum to motion within a physical medium.

e Note that the axiom-preserving isotopies cannot be introduced for
Einstein’s gravitation because of the technical difficulties caused by the lack of
axiomatic completeness of Einstein’s tensor discussed in Sect. 11, although they can
be submitted for geometrically complete theories (see below).

To identify the structure of the isotopies of Einstein’s gravitation, let us

review the three basic isospaces of the analysis:

1Y) Santilli’s carrier space of the nonrelativistic?® interior mechanics, the

(flat} isoeuclidean spaces for nonlinear, nonlocal and nonlagrangian trajectories

AEXBR): & = &lr, 1, 1.) = Ts(r, 1.0 8=0;= (Sji). {12.252)

2V gantitli generally avoids the term “Newtonian” for the interior dynamical problem, and
uses instead terms such as “nonrelativistic”, “isogalilean” or “isonewtonian”, because of the
presence of forces in Eq.s (1.1) that are acceleration dependent and, as such, not considered
“Newionian” on strict grounds. It should be indicated that acceleration—dependent forces
possess rather intriguing and mostly unexplored implications (see, e.g., Assis (1990}, Graneau
(1990).
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= r5r = 3 i), (12.25b)

1
=7 —l = ] .
5= Ty + B = Ry >0 1¢>0 (12.250)
2) Santilli's carrier space of relativistic interior mechanics, the (flat)
isominkowski spaces for the relativistic description of nonlinear, nonlocal,
nonlagrangian and nonlorentzian trajctories

f=R13 1

MxAfk i = A ) = Toexdn = Gy) = ) (12260
@ = b A % .0 x = il % %) %Y = RZ, (12.26b)

fA=al, 1. =T. >0 xneMxn®, Re# (12.26¢)
n 0 n

Also called by Santilli isominkowski space of class, Ml AR,

Finally, we introduce

%) Santilli’'s carrier space of gravitational interior theories, the
isoriemannian spaces in (3.1)-dimension with a symmetric isoconnection and a null
isotorsion in the geometrical space, but a non-null torsion in the physical space of
the observer

RlegRk g = 8lx, ... =Tg(x, X,..T) g{x)

= @) = &) = (1,7 25, (12.27a)
2 = gl %) x = ik kdx = RS (12.27b)
8 a8 E
Pl = # B Ko Fw (12.27¢)
oxi oxv axP
P 2 P 2P _
U AR S (1227d)
P _ mop2P _m 020 (12.27¢)
Ty = TITAP, - T, rzcu?fo

As proved in Santilli (1988a), the largest possible nonlinear and nonlocal-
integral groups of isometries of the isoeuclidean space (12.25) are given by the
Galilei-isotopic symmetries (y(3.1). The largest possible nonlinear and nonlocal
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groups of isometries of the isominkowski spaces (12.26) are given by the Poincare—
isotopic symmetries Pﬁ(&!). The same methods then lead to the following

THEOQREM 122 (Santilli (1988d), (1991b, d))} The largest possible nonlinear and
nonlocal groups of isometries of the isoriemannian spaces are Santilli’s isopoincaré
symmetries Py (3.1) for isometrics g = Tg with (nowhere singular and Hermitean)
isounits T = T_I, which result to be locally isomorphic to the conventional
Poincaré symmetry PTI (3.1) for all infinitely possible, positive-definite isotopic
elements T,

g.

Therefore, the fundamentat space-time symmetry of Einstein’s gravitation is
not lost in the transition to interior gravitational problems, but merely realized in
the most general known, nonlinear and nonlocal, isotopic form (see Fig. 3 below and
Sect. 13 for more details).

In particular, in Appendix IV.A of Santilli (1991d) it is shown that, in full
analogy with property (12.23),

P=(3.1) = (3(3.1), : (12.28)
T e /R=0 8

Similarly, the global symmetry Pg(3.1) admits, locally, the relativistic

isosymmetry P4(3.1) and the nonrelativistic isosymmetry G(3.1). In this way, every
. major aspect c}} the conventional theory has been shown to admit an infinite
~ number of corresponding isotopic liftings.
' More particularly, isotopic spaces (12.25), (12.26) and (12.27) provide an infinite
number of coverings of the corresponding conventional spaces (12.20), (12.21) and
(12.22), respectively; similarly, isosymmetries Pg(31 n(s 1} and Gg(3.1) provide an
infinite mumber of coverings of the corresponding conventional symmetries Pg(3 1),
P (3.1) and Gg(3.1).

We are now sufficiently equipped to present the infinite number of isotopic
Iiftings of Einstein’s gravitation for the interior gravitational problem, called
FEinstein—isotopic gravitation, or isogravitation for short, which can be introduced
via the following generalized equations on isoriecmannian space R(x,gf} in standard
units (Santilli (1988d), (1991}, (1991d)

8k = af d*x AHR - 8TNY) =
=8 f a4y AR gV gp"prc - s M) = o, (12.292)

E=Tee Tg>0 (12.29b)
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T = [ = diag. (1,1,1,1), (12.29¢)
g|lr>R°
where:

1) Eq. (12.29a) represents the isotopic action on Rixg#) (Theorem 11.5), with R
being the isocurvature isoscalar and M the isoscalar of the conventional matter
tensor computed and contracted on R(x,g#). This first condition ensures the
achievement of a generalized theory of the interior gravitational problem, with
particular reference to the admission of nonlinear, nonlocal, nonlagrangian and
non-Newtonian internal trajectories, as well as a direct representation of the
inhomogeneity and anisotropy of the interior physical media, as evidently
permitted by the isotopic element Tg.

[1) Condition (12.29b), is imposed to preserve the topological structure of the
exterior treatment g = Tnn, ’I‘n > 0, also in the interior problem with g = ng, Ty >
0, thus- allowing the fundamental preservation of the Poincare’ symmetry as %he
universal symmetry for local and global, interior and exterior conditions.

I11) Condition (12.29c) implies that the isotopic element Tg acquires the
trivial unit value I = diag. {1,1,1,1) everywhere in the exterior problem, by therefore
guaranteeing that the isogravitation recover the conventional Einstein’s gravitation
identically everywhere in the exterior problem.

An inspection of the various metrics then implies that in the fransition
from the exterior to the interior problem there is the transition from a local-
differential dynamics with (variationally) selfadjoint interactions describing
motion in the homogeneous and isofropic vacuum, (o a nonlocal-integral
dynarnics with selfadjoint and nonselfadjoint interactions describing motion
within generally inhomogeneous and anisotropic interior physical media.

In different terms, Einstein’s exterior gravitation represents the trajectories
of dimensionless test particles in vacuum which, as such, can only have a local-
differential geometry with action—at-a—-distance dynamics on stable orbits, as well
known.

In the transition to our interior problem, we have instead the representation
of extended (and therefore deformable) tést bodies moving within resistive media
which, as such, demand a nonlocal-integral geometry and nonlagrangian dynamics.

The direct representation of interior physical media is evidently ensured by
the isometrics g{x, %, %, |, T, 1, ..J which can represent physical notions and events
essentially beyond the representational capabilities of Einstein’s gravitations, such
das:

a) the variation of the density p of the interior medium with the distance
from the center {inhomogeneity);

b) a preferred direction in the interior medium caused by the intrinsic
angular momentum of the body (anisotropy
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c} the local variation of the index of refraction n,

d) the local dependence of the speed of light ¢ = ¢ by{x.Xx M. T...) on the
physical conditions at end (when the medium is transparent);

e) the maximal causal speed which becomes a local quantity dependent on
the physical conditions at the point considered;
and numerous additional features typical of interior dynamics that are suitable for
direct experimental verification (see next section).

The reader should keep in mind the following chains of isotopies for the
exterior and interior problem, respectively,

8 = = T8 =g =Ty, (12.30a)

,].txs = ﬁ = T(1txa) = é = Tﬁ. (12303)

- which are important to understand Santilli's interpretation of the corresponding
" chains of relativities as one being the isotopes of the others (see Fig. 3 below).

By recalling that the Lic—isotopic liftings of Lie’s symmetries preserve, by
construction, the original generators (and parameters), the physical implications of

" the above results is expressed by the following property directly originating from
" the Lie-isotopic theory.

% THEOREM 12.3 (Santilli (loc. cit)): All global and local, conventional and isotopic
=¥ Poincaré symmetries of isogravitation (12.29) admit as generators the same,

conventional, total conserved quantities
P = [ M0 3y, (12.31a)
Y = [ MO - xVMHD) g3y, (12.31b)

Note that in conventional presentations of Einstein’s gravitation, the above
total conservation laws are deduced via rather complex methods, while in Santilli’s
approach the same conservation laws are directly derived from the global Poincare
symmetry.

Moreover, the conventional total conservation laws (5.14) occur under a
generalized interior dynamics as expressed in the following property (see Santilli
(19884) for details).

COROLLARY 123.1 (loc. cit.)} Isogravitation (12.29) characterizes the gravitational
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extension of closed-isolated systems with selfadjoint and nonselfadjoint internal
forces without subsidiary constraints, for which the total, conventional,
conservation laws are ensured by Santilli’s global isopoincare symmetry.

Next, we review the isotopic form of the principle of equivalence. For this
purpose, recall the isonormal coordinates of Sect. 1I, under which we have the
reduction of the isometric g(x, %, %..) to the tangent isometric 7%, X,..) of the flat
isominkowski spaces MI(xAR)..

The following formulation is then rather natural.

PRINCIPLE OF ISOEQUIVALENCE: Gravitational effects in the absence of the
source tensor MYV on Santilli’s isoriemannian spaces Rix,g.#) can be locally made
to disappear by transforming the isometric 2 into that 7 of the tangent isopoincaré
space, or in the neighborhood of an isonormal point y° at which

2Kty = 0. | (12.32)

The first formulation of the above principle was reached by Gasperini (1984a,
b, c), but expressed in a conventional Riemannian space, with consequential lack of
nonlocal internal interactions. The full formulation of the principle (and its name)
is due to Santilli (1988d), (1991b, d).

The primary novelty of the isoequivalence over the conventional
equivalence in vacuum is that, in the latter case the test particle can be made
locally free, while in the former case the test particle remains under the action of
the contact nonpotential interactions in the neighborhood of the point considered.

This leads to “Santilli’s (1988c), (1991d) No No-Interaction Theorem’; which
essentially establishes that, while a classical relativistic system of particies moving
in vacuum which is invariant under the Poincaré symmetry cannot admit
interactions (conventional “No-Interaction Theorem”), the corresponding
relativistic systems in interior conditions which is invariant under the isopoincare
symmetry cannot be reduced to a free form.

The isogeodesic character of Santilli’s interior trajectories has been discussed
in Fig. 2.

In conclusion, it appears that Santiili's isogravitation (12.29) is capable of:

1) Admitting a novel, global, isopoincaré symmetry P,(3.1} for the
characterization of the conventional Einstein’s gravitation, via the embedding of the
curvature in the isounit of the theory;

9) Directly representing the conventional total conservation laws (12.29¢) via
the generators of the global Poincaré-isotopic symmetry;

3) Not being detectable from the outside, because of the conventional
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character of the total conservation laws, as inherent in all closed nonselfadjoint
systems;

4) Recovering Einstein’s gravitation identically in the exterior problem;

5) Verifying all exterior experiments verified by Einstein’s gravitation

6) Preserving the geometries underlying Einstein’s gravitation in the
transition to the interior problem, including the affine geometry and the
Riemannian geocmetry, although realized in their most general possible form;

7) Representing the most general possible linear or nonlinear, local or
nonlocal, Lagrangian or nonlagrangian, Newtonian or non-Newtonian interior
trajectories;

8) Preserving the geodesic character, in the transition from the exterior to
the interior problem.

9) Predicting a new series of local and global interior phenomena which can
be subjected to direct experimental verification, such as the apparent isotopic
deviations from the Einsteinian Doppler’s redshift for light propagating within
inhomogeneous and anisotropic transparent media (see Sect. [3), and other interior
effects.

Unfortunately, Einstein’s exterior gravitation is afflicted by rather serious
. problematic aspects of numerous and diversified nature, including:

' A) Problems of geometric consistency caused by the incompleteness of
.. Binstein’s tensor {Lemma (11.2), the lack of invariance of the contracted Bianchi
.';".'.‘ identity under isotopies, and others; .

B) An apparent incompatibility of the sourceless character of Einstein’s field
- equations in vacuum,

Gy =0, (12.33)

with Maxwell’s electro-dynamics and the electromagnetic origin of matter, the
latter implying the necessary existence of a first—-order source Telmuv of

electromagnetic nature in the exterior of gravitational masses with null total
charge and electromagnetic phenomenology with modified exterior Tield equations
in vacuum  (Santilli (1974)

Gy = 8T TEM (12.34)

C) Numerous theoretical and experimental problems caused by the lack of
stress—energy tensor t5t" essw pointed out by Yilmaz (1958), (1971), (1977), (1979), (1980),

(1982), (1989), (1990a, b)) with modified field equations in vacuum
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slress
Guy = 8TE s (12.35)

and combined form

- Im stress
Gy = BT ITEM,, + 5 ) (12.36)

as well as other problematic aspects which have remained unresolved because of
lack of consideration by independent experts in the field.

Regrettably, we cannot review the above aspects to avoid a prohibitive
length of this manuscript. At any rate, it is an easy prediction that these aspects
will remain fundamentally unresolved until confronted by other experts in
gravitation and proved to be either correct or erroneous.

This unfortunate condition of the sector essentially leaves the exterior
gravitational problem in a state of “suspended animation”, without any possibility to
reach a true scientific conclusion at this time either in favor of Einstein’s exterior
equations (12.33) or in favor of its generalization (12.36).

The point to be stressed here is that the problematic aspects of Einstein’s
exterior gravitation do not affect Santilli’s interior isogravitation {12.29), first of all,
because it is a theory for the interior gravitational problem and, as such,
necessarily admitting of a number of sources and, secondly, because of the degrees
of freedom offered by its isotopic structure.

Santilli (1974), (1988d), (1991d) complete his gravitational studies with the
identification of the most general possible isogravitational theory, with an
axiomatically correct structure invariant under isotopies {that based on the
“cornpleted Einstein-Santilli tensor” of Sect. 11).

in particular, Santilli called the emerging model a “theory on the origin of
the gravitational field” because it eliminates the now vexing problem of
~unification” of the gravitational and electromagnetic field, by replacing it with
their “identification” , except for corrections due to the short range, weak and
strong interactions.

In particular, the study offer the possibility of identifying a conceivable
physical origin of Yilmaz's stress-energy tensor TSU'CSSPV as being an exterior

manifestation of the short range, weak and strong interactions in the structure of
matter.

These rather basic additional results by Santilli can be readily seen by
considering the case of the w° particle. Recall that any field is an origin of the
gravitational field. then, the gravitational mass of the ° is well established by
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quantum electrodynamics to be of primary electromagnetic structure.
Specifically Santilli (1974) proved that, even though the total charge and
electromagnetic phenomenology of the m° is null, the particle possesses in its

exterior a first-order source Telmw) originating from the electromagnetic fields of

its charged constituents, which is of such high value, to be of the order of
magnitude of the conventional Einsteinian mass source

Einstein ~ Telm
M w = T (12.37)

But the short range (s.r.), weak and strong interactions in the interior of the
m° also are a {quantitatively smaller) source of its gravitational field. This yields
Santilli’s hypothesis on the origin of the gravitational field

Einstein = Im sr
ME! uv-T“ew,+"tuV.

(12.38)
where the "hat” indicates that the quantities are of the interior problem.

In the transition from the interior to the extericr problem Santilli then gets
from hypothesis (12.38)

(pelm 4

— 7Telm stress
m, =T Y +f w (12.39)

2 Ir>¢8
In fact, the electromagnetic tensor is traceless and, as such, it cannot be confused
with Yilmaz's stress—energy tensor. On the contrary, the short range interactions
characterize a tensor possessing all the geometric characteristics of a stress—energy
tensor, including its lack of traceless character.

By keeping in mind all the various properties and definitions of Sect. 11 here
not repeated for brevity, the above results can be expressed by the following

THEOREM 12.4 (ORIGIN OF THE GRAVITATIONAL FIELD; Santilli (1974), {1985d),
(1991d): The most general possible formulation of isogravitation on isoriemannian
spaces R(x,g#) can be expressed via the following variational principle

sk = & d'x[R - sm(TeIM +15)]
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SANTILLPS GEOMETRIC UNIFICATION OF
EXTERIOR AND INTERIOR RELATIVITIES

EXTERIOR DYNAMICAL PROBLEM
Pn(3.1)
Bg3.1) > Gx3.1)

Gg8.1

Pﬁ(3' 1)

p.(. -
550 < vy G;B.1)

INTERIOR DYNAMICAL PROBLEM

FIGURE 3: A schematic view of Santilli’s {1988d), (1991b, d) final geometric
unification of Galilei’s, Einstein's special and Einstein’s general relativities for the
exterior problem, as well as their isotopic generalizations for the interior problern,
into one, ultimate, abstract symmetry, the isopoincaré symmetry P[3.11, which is
realized in isogravitation (12.29) or (12.40) in the following variety of ways of
increasing complexity and methodological needs:

A) As the linear and local, conventional symmetry Pn(s.l) of the tangent,
exterior gravitational problem in normal coordinates;

B) As the global, nonlinear but local isotopic symmetry Pg(s. 1) of conventional
Einstein’s exterior gravitation;
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C) As the nonlinear and nonlocal isotopic symmetry Pﬁ(s.l) for the isonormal
coordinates of the interior gravitation;

D) As the global, nonlinear and nonlocal isosymmetry Pg(S.l) for the interior
gravitation; and

E} As the Gatlilean GS(S.U and isogalilean GS(S.l) symmetries under isogroup
contractions (see Sect. 14).

The reader can now understand Santilli’s interpretation of Einstein’s general
relativity as an isotopy of the special relativity. In fact, the conventional Riemannian space
Rix,g,R) can be interpreted as an isotope of the Minkowski space (Sect. 3), Mixg ), g=Tn, &
=R, 1=T"L

This discovery as profound geometrical implications because it implies the
possibility of reducing both Einstein’s special and the general relativity to one single set of
abstract axioms. In fact, this property has allowed Santilli to achieve one single global
symmetry, the global isopoincaré symmetry Po(3.1) of Einstein’s gravitation, which admits
the conventional Poincare symmetry P, (3.1) of the special relativity as a particular case.

Along the sarme lines, one can see that Santilli's isogeneral relativity is an isotope of
= the isospecial, and both admit one single axiomatic structure characterized by the

isopoincaré symmetry Pé(&l), which admits as a particular case the symmetry Pﬁ(S.l) of the
isospecial relativity.

The isoriemannian geometry therefore permits the achievement of an ultimate
unity of mathernatical and physical thought characterized by the multiple infinities of
Poincare-isotopic symmetries which, for positive—definite isotopic elements T, are all
“locally isomorphic to the conventional one, P@(&l) w Pﬁ(S.l) - Pg(3.l) = Pn(3.l) {see next
section for details),

But the conventional relativities are a particular case of the isotopic relativities. One
reaches in this way Santilli’s ultirnate geometric unification of this figure.

In this way, Santilli has reached the remarkable synthesis of reducing all possible
exterior or interior, relativistic or gravitational, linear or nonlinear, local or nonlocal,
Lagrangian or nonlagrangian systems to one, single, unique geometric structure: the
isopoincare symmetry.

Y VRPRTIIN. ST, W,
- f atx M R oo * ST M em s 51 = 0 (12.400)
g="Teg, Ty > 0, g € Rixgn), (12.40b)

g
T, =1 = diag. (LLLYD, {12.40¢)

elm sr ¥R . . ;
where T and t °' are the electromagnetic and short range fields, respectively,
of all individual elernentary constituents of matier. Euler-Lagrange equations are
then given by

BV = RV - 4 gHVR - W - eV + W -
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= RMV - VR eV, + V) = 0 (12.41)

whose exterior limit in vacuum for the case of an astrophysical body with
nuil total electromagnetic phenomenology is given by Eq.s (12.36).

Isogravitation (12.40) evidently preserves all the properties of the simpler
form (12.29), including properties [-9 indicated earlier, with particular reference to
the preservation of the global and local, interior and exterior, exact isopoincare
symmetry (Fig. 3).

The most important mathematical advancement of the former over the
latter is the achievement of a geometrically and axiomatically consistent theory. [n
fact, isogravitation (12.29) was formulated under the specific assumption of
ignoring the incomplete geometric character of Einstein’s tensor, and other
problematic aspects.

NOTE ADDED IN 1997

Recently Santilli (Foundations of Physics, 21, 261, 1997) proved a theorem according
to which all geometries with non-null curvatures do not possess units of space and
time which are invariant under the symmetries of their line clements. As a resuit,
curvature does not appear to allow physically un—ambiguous measurements
because, e.g., one cannot conduct a meaningful measure of length with a stationary
meter varying in time.

In the same memeir Santilli also proposed a geometry preserving all possible
Riemannian and isoriemannian metrics, yet possessing invariant units. It is given by
re-expressing the isoriemannian geometry with isometric g = Tg, not with respect
to the isounit 1,4, = T~!, but rather with respect to the isounit Tyo; = Tyo™! where
Tt iS the 4x4 matrix in the factorization of of § into the Minkowskian metric 7, &

=Tg= Ttot“' in which case the isogeometry is isoflat, i.e., flat in isospace. He then

proved that, while 1 = Tl is not invariant as in ordinary geometries, the total
isounit Ty = Tyor ! i1 indeed invariant, as established by the Poincaré-Santilli
isosymmetry studied later on.

As a result of the latter advances, Santilli reformulated the entire
isoriemannian geometry into its isominkowskian form in which the generalized
metrics are the same, but the unit is Ty, In this latter formulation, the entire
formalism of this section remains unchanged and only the isounit is changed from
T=T to T = Tyor ™
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I.13: ISOSPECIAL RELATIVITY

We now pass to a review of Santilli’s isospecial relativities for classical relativistic
interior dynamical problems which, according to our approach (see Fig. | of Sect.
10}, will be here presented as a particularization of Santilli’s isogeneral relativities
on flat isominkowski spaces, because of the prior need of Santilli's isogeometries
for their true understanding.

The isospecial relativities were first proposed in Santilli (1983a) under the
name of Lorentz-isotopic relativities , and followed the construction in the same
paper of the infinite family of Lorentz-isotopic symmetries 0(3.1}) on Minkowski—
isotopic spaces, now known as Santillis isolorentzian symmetries . The isospecial
relativities were then subjected to a second detailed analysis in Santilli (1988d), and
received their final comprehensive presentation in Santilli (1991c, d).

It should be stressed that the brief review of this section is grossly
insufficient to acquire a technical knowledge of these new relativities, as the reader
will soon see, and the study of monographs Santilli (1991, d) is recommended.

Remarkably, Santilli conducted alone the construction of the isotopic
. generalizations of Einstein’s special relativity. In fact, despite the appearance of the
" nontrivial content of the paper (Santilli (I983a)), this author is aware of no additional
_contribution in the topic by other authors. A few independent contributions did
_appear in the literature, but on the applications of the new relativities, such as the
*paper by Aringazin (1989) on the “direct universality” (see Sect. 1) of the isospecial
“relativities; a paper by Mignani {1992) on the application to quasars of the prediction
of the new reiativities of the redshift of light propagating within inhomogeneous
and anisotropic transparent media; and a few others.

A first independent review of Santilli's isospecial relativities and their
applications has recently appeared authored by Aringazin et al. (1991). This review
has been particularly useful for the preparation of this manuscript, and it is
recommended as a useful complement of both, this book and Santilli's volumes
(1991c, d).

In fact, the primary emphasis of this volume is in Santilli’s novel
mathematical structures, while the emphasis of Aringazin et al. (1991 is primarily on
their physical applications. Also, this volume, as well as both volumes Santilli (1991c,
d) are strictly classical in their content, while the review by Aringazin et al. (1991)
presents a number of applications of Santilli’s relativities in particle physics.

In this section we shall restrict our review to the classical realization of the
isolorentzian symmetries, and defer their operator-matrix counterpart (Santilli
(1983a), (1989¢)) to some possible future volume.
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Moreover, we are primarily interested in the most general possible nonlinear,
nonlocal and nenhamiltonian realizations of the isolorentz symmetries on
isocurved spaces, and then in their specialization to the flaf isospaces.

Stated more explicitly, this section has been written along Santilli’s
conception as a necessary complement of the gravitational analysis of the
preceding section. [n fact, it provides, first, the global symmetries of exterior and
interior gravitational theories and, secondly, the relativities that are applicable in
the tangent planes of the interior gravitation.

In fact, we shall first review Santilli's construction of the isolorentz
symmetries in their form directly applicable to gravitational theories, and then
specialize them to the isotopies of the special relativity, The same approach will be
followed for the subsequent review of Santillis isopoincaré symmetries P(3.1).

To begin, let us recall that Santilli (1991d) classified isominkowski spaces into
the following classes:

CLASS I: MHx ), f = Tn, n = diag. (L. 1. 1.-1), when the isospace is flat and
T>0.

CLASS 11: MIKx, /), fj = Tn, which are also flat isospaces, but the positive-
definiteness of the isotopic element T is relaxed.

CLASS I1L: MI(x ), f| = Tn, which are curved isospaces and, as such, they
coincide with the isoriemannian spaces of the preceding section.

DEFINITION 13.1 (Santilli (loc. cit.); The abstract, “Santilli’s isolorentz symmetries”
also called “Lorentz—Santilli symmetries”, are defined on Minkowski-isotopic
spaces of Class 11

MR = MixgR): x =) = (r, x4), 1€ Eolr.GR), x4 =yt
(13.ta)

X2 = xuéuvx" = xlél 1x1+ x2§22x2 + x3§33x3 + x4§44x4, (13.1b)
§ = Ton = Diag. (g”, &y Bas g44), (13.1c)
n=diag. (I, I, 1, -1}, Ty =diag. @, 830 Ea3 ~844) (13.1d)
gy guu(x. X, |, T, 0. #0 and real-valued, (13.1e)
A= 9”2, ‘Iz = Tz_l, {5.1.1)

and are given by the isotransformations

X = A = A T,(xx..)x, Ty =fixed, (13.2)
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under the conditions that they form a simple six~dimensional Lie-Santilli group
0{3.1) with isotopic laws

AlwkAlw) = AlwkAiw) = Alw+w), we R {13.3a)

MO = AwiRt-w) = 1y = T, 113.3b)

and leave invariant isoseparation (13.1b).

The above transformations are called "abstract” because the space in which
they act is not physically defined. In fact, the individual elements él-lll can be either
positive or negative, thus characterizing either compact or noncompact groups.
Santilli conceived the above definition to study the global symmetries of gravity, as
well as to be effective for the classification of all possible isotopes 0(3.1).

The (necessary and sufficient) conditions for isotransformations (13.2) to
leave invariant isoseparation (13.1b) are given by

At A= AgAt =71, (13.4)
_or, equivalently,

f\thT]f\ = f\TzT}ﬁt = To, (13.5)
To obtain the conditions in a more explicit form, suppose that the original

Lorentz transformations X’ = Ax are realized with the familiar expressions xH = A”a
x4, eg. as in Schweber (1962). Then, the isotopic element and isounit can be written

a
To=(T, ) =T, =0, P = (Y, (13.6a)
1 Pp Yog? (136b)
2a 28 a

Lifting (13.2) can be written
xt = i 78 (13.7)
a B
and conditions (13.4) can be written explicitly
; B.p LG 4 8
Ay 'I‘[3 npoA T—la Mo (13.8)

Without proof we quote the following
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THEOREM 13.1 (loc. cit) Santilli's abstract isolorentz symmetries on isospaces

M5 8) Jeave invariant the isoseparation
. 2 = 5 24 = & V = 2
Xe =x ilguvx o+ guy XV = x4, {13.9)

or, more explicitly,

’ u' o » PR ,V = ad ~
X gW[x(r,p,..), pix, pi. X7 =x gaB(x,p,...) xB,

with nonsingular, Hermitean, sufficiently smooth and diagonal isomelrics

(18.10)

g=Tom n €MxnR), {(13.11)

under the sole condition that the isounits 1o are the inverse of the isotopic
elements Ty . All the infinitely possible isosymmetries {3.1) admit the connected
semisimple subgroups

SO(B.1): det(kg = +l, (13.12)
as well as the discrete invariant subgroups

H3.1): Det. (Ag)=-1, (13.13)

ess the following classical realization in the isocotangent bundie

and I Ioss é
M (x,gR) with local coordinatesa = @Y%)=, pp=12 .,4, i=12 ..,8
and Lie-=Santilli product
X A 8B @B 8A
[ABl= — gV — - — gV — (13.14a)

axH apV oxp apV
& = (|ggpl-DW, (13.14b)

1) the same (ordered set of} parameters of the conventional symmetry O{3.1), ie,
the Euler’s angles 0 and Lorentz boosts w, u = (wg) = B, w), k=1,2..,6

2} the same (ordered set of) generators of 0(3.1)
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k=12.,6, Hv=1234, x=123

3) the isocommutation rules of the Lie-isotopic algebra O(3.1) of 0(3.1) in terms of
brackets (13.14)

J-g J -g J +g J
va B gua av av
v g

O3.1X [Jw,‘ JaB]=§ {13.16)

4) with local isocasimir invariants

(o) _ (m _ ! (2 _ ap
%=1, ¢ (JWJ My, C (Eua JW I, (5.17)

vag

5] the Lie-Santilli group for the connected component

SOB.D: & = Au=*x=

ira j
w o) (B, Ji) @), def
(7L, e "k @ 2O 95 s i, (13.19
k IE g
_6) the invariant discrete subgroup §(3.1) characterized by the isoinversions
H31: Pex = Px = (r,x 4, (13.19a)
Tex = Tx =, —x 4, PTx = (-, -x4) (13.19b)

where P and T are the ordinary inversions, and
7) isosymmetries ({3.1) admit as maximal compact forms the orthogonal group in
four dimension O(4) as well as all its infinitely possible isotopies.

It is evident that the proof of this theorem requires a detailed knowledge of
the relattvistic formulation of all background mathematical tools, such as: fields,
isospaces, isotransformation theory, Lie—Santilli theory, Birkhoff-Santilli
mechanics, isosymmetries and the isosymplectic geometry2! which we cannot
possibly review here.

The following comments are now in order:

{} While the Minkowski space M{x,n®) with trivial unit [ is unique, there

exist infinitely many possible isospaces MIII(xg#) with isounits 1, = T, = because

21 particularly important is the knowledge of Santilli’s relativistic isosymplectic pecometry ,
because important to identify the integrability conditions for brackets {13.14) to be Lie~
isotopic. See Santilli (1991d).
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they represent the infinitely many possible, interior, inhomogeneous and
anisotropic physical media; _

2) While the Lorentz symmetry 0(3.1) is unique, there exist infinitely many
possible isolorentzian symmetries O(3,1} characterized by the infinitely many
possible isounits 1, which all possess the same dimension and simplicity of o(3.1);

3) In the same way as the Lorentz invariance cannot identify the explicit
value of a Lagrangian, the invariance under Santilli’s isolorentz symmetries cannot
identify the isometrics, which must be computed from the given local physical
conditions of the interior medium at hand;

4} While the Lorentz transformations are unique, there exist an infinite
number of different isolorentzian transformations {see below for examples),
characterized by the Lie-Santilli group (13.18};

5) Each of the infinitely possible isoloretzian transformations can be
computed in an explicit finite form via expansion (13.18), whose convergence is
assured by the assumed topological conditions {and essentially reduces to that of
the conventional expansions), with the understanding that the explicit computation
of the infinite series is not expected to be necessarily simpleZZ;

6) Each of the infinitely many isolorentzian transformations can be
computed via the sole knowledge of the old parameters and generators and of the
new metric {or, equivalently, of the new unit);

7} The isolorentzian transformations are formally isolinear and isolocal on
MIi(x g R), but generally nonlinear and nonlocal in Mx,nR

8) The lifting of the conventional symmetry O(3.1) into the isotopes O(3.1)
implies the generalization of the structure constants of the conventionai
formulation of Lie’s theory into Santilli’s structure functions (Sect. 6k

9) Except for the the needed topological restrictions, the isolorentzian
symmetries O(3.1) leave completely unaffected the functional dependence, of the
isometrics To;

10) The classical realization of the isolorentzian symmetries can indeed
admit nonlocal (integral) forms, provided that they are all embedded in the isounit
15, as permitted by the underlying isosymplectic geometry;

12} The isometrics g of isosymmetries 0(3.1) can be, as particular cases,
conventional Riemannian metrics. Therefore, Theorem 13.1 provides methods for
the explicit construction of the (generally nonlinear but local) symmetries of
conventional gravitational metrics such as the Schwarzschild’s metric. Thus
Theorem !3.1 is indeed formulated in such a way to be directly applicable to
gravitation, as studied in the preceding section.

Santilli {Joc. cit. } then studies the conditions for the local isomorphism

22 See the example of convergence to transcendental functions in the original proposal
Santilli (1978a).
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O(3.1) ~ 0(3.1). Note that, even though isocommutation rules ([3.18) appear to
coincide with the conventional commutation rules of 0(3.1) (see, e.g., Eq. (30), p. 41
of Schweber (1962)), they are generally different, e.g. because the topology of the
isometric g,,, is different than that of the Minkowski metric 7.

THEOREM 13.2 (Santilli (loc. cit)l All abstract isolorentzian symmetries 0(3.1) on
isospaces MI!I(x,g #) with invariant separation (13.1b) are locally isomorphic to the
conventional Lorentz symmetry 0{3.1) under the sole condition that the isometrics
g = To 1) possess the same topological properties of the Minkowski metric v, eg,
whenever the isotopic elements Ty or the isounits 1 9 = Tz'l are positive—
definite; otherwise, depending on the topology of the isounits, the Lorentz—isotopic
symmetries 0(3.1) are locally isomorphic to any other simple six-dimensional
group of Cartan’s classification, such as Of4) or 0(2.2).

Note that the positive definiteness of the isotopic element Ty holds in a
“number of conventional gravitational models.

COROLLARY 13.2.1: Einstein’s gravitation or any other gravitational theory (not
‘necessarily Riemannian) with metric g = Tn, T > 0, admits the conventional
- Lorentz symmetry as a global isotopic symmetry.

i Santilli then studies the explicit form of the abstract isolorentz

“transformations. The general form of the transformations for the case of the &(3)

“subgroups was computed in Santilli (1985b) (1988a), and it will be reviewed in Sect.
i3,

We shall therefore restrict our attention only to Santillis abstract isolorentz
boosts in the (x3, x4)—plane with parameter w and generator Jg,. Their most
general possible form computed from the Lie-Santilli group (13.18) for isometrics
(13.I¢) is given by

¥ =AWw=*x = Sé(w)x = (13.20)
1 0 0 0 T [«
01 0 0 x2
= ) # ) ) ) é
D0 0 cos - i g .43 3
W g 344*) €, /830 sin(w@ptd 44*) X
- 3
0 0 /8 ) sin{w, fo.ig 4 Bont & 4
A (333 g44) W, 845 344) cos (W 34 g“*) X
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Note that the elements of the isometric are completely unrestricted in their
functional dependence in the above derivation. Note also that Santilli’s abstract
isolorentz transformations admit as a particular case the conventional rotations in
four dimensions, trivially, for g, =+ 1{or=-1,p=1,23 4.

Note also that, according to the above results, the conventional rotations in
four-dimensions can also be interpreted as isolorentzian transformations in an
isospace of Class HI with isometric § =diag (1, 1, 1, 1)

This completes our brief review of the abstract Lorentz-isotopic
transformations as needed for the global symmetries of exterior and interior

gravitational theories.
We now pass to the review of the particular subclass of isolorentz

transformations that are physically relevant, those for the isotopies of the special
relativity.

DEFINITION 13.2 (loc. cit.) Santilli's abstract O(3.1) isosymmetries (or
isotransformations) are called “general isolorentzian symmetries” when they are
defined in the most general possible isospaces of Class I of the diagonal form

MAR) = Mlxg®: @ = # g0
= xlf)lle + x2522x2 + x3f)32x3 - x4b42x4, (13.21a)
g = Tym, m = diag(L,1,1,-1) (13.21b)
T, = diag. (6,2 5,2 B2 6,2 > 0, (1321c)
f’u = Bu("' % T, 1, ) > 0, (13.21d)
1, =Tyl >0 (13.21e)

and they are called “restricted” when defined on the Minkowski-isotopic spaces of
Class I with constant diagonal isometric

MxaR: 2 = #,,, (13.22a)

1]

MR R)
#y = Ty n = diag. (0,2 bs2 bg?, b2, (13.220)

T, = diag. (b2 by% bg® b2 >0, (13.220)
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bu = constants > 0, {13.22d)

Similar definitions hold for the general and restricted isolorentz transformations
on Minkowski-isotopic spaces of Class I1.

The reader should therefore keep in mind the notation and terminology
adopted by Santilli: whenever using generic elements g,,, we are referring to the
"abstract” Lorentz-isotopic transformations; whenever using the elements 6,2
are referring to the “general” isolorentz transformations; and, finally, whenever
using the elements b|.12 we are referring to the “restricted” isolorentz
transformations. The
most important distinction between the general and restricted isotransformations is
that the former are nonlinear and nonlocal, while the latter are always linear and
local. In fact, the isotransformations x"= A = AT x become manifestly linear and
local for T = constant.

“ Since we now deal with a physically identified space, we can assume for
- parameter w its conventional physical meaning given by a speed v along the third
axis, w = v. By recomputing again 1nf1mte series (13.18) for isometric {13.22b), the
general isolorentz transformations on Mlx,#) can be written (Santilli (1983a)

= AW)xx = Sé(v) X = {13.23)
1 0 0 0 x! )
o 1 0 0 x2
0 0 cosh (v by by ~{b,/bg) sinh (v by by x3
_0 0 —(63/]3 4 sinh (v 63 134) cosh (v 63 b i x4

But the functional dependence of the h-quantities is unrestricted in the
above derivation. We have therefore the following

LEMMA 13.1 (loc. cit.) The general isolorentzian trans—formations in isospaces M
Ty, .29 are given, in their broadest possible form along the third axis, by

I
X5 o= gl (13.24a)

x2 = 2 (13.24b)
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by
x3 = x8 cosh (v by B,) - x* —sinh (v b3 by) (13.24c)
b3
b
x4 = -x* —sinh (v B3 By + x* cosh (v b B). (13.24d)
by

The proof that the isotransformations (13.24) are indeed a particular case of
broader isotransformations (13.21), is an instructive exercise for the interested
reader, because it implies delicate topological aspects in the transition from
compact to noncompact settings. '

The local isomorphism between isotransformations (13.24} and the
conventional Lorentz transformations is evident, owing to the positive—definiteness
of the b-quantities. In fact, we have the following property.

THEOREM 13.3 (loc. cit} All infinitely possible, general, isolorentzian symmetries
0(3.1) on isominkowski spaces of Class I, Eq.s (13.2) are locally isomorphic to the
conventional Lorentz symmetry O{3.1).

We now pass to the review of Santilli's restricted isclorentzian
transformations {Definition 13.2). It is easy to see that when the b—quantities of
isotransformations (13.24) are constants, we have the following

COROLLARY 13.3.1 (loc. cit.) : All infinitely possible restricted isolorentzian
transformations in the (3-4/~plane of Minkowski-isotopic spaces of Class I with
constant diagonal isometrics can be written in the form 23

x1 =xl (13.25a)
x2 = x2 | (13.25b)
x3 = ¥63 - px9), (13.25¢)
x4 = 5x* - ), (13.25d)

23 1t is an instructive exercise for the reader interested in learning Santilli’s isospecial
relativity that the use of the different quantities B for Eq. {13.25¢) and B for Eq. (13.25d) is
correct and not a misprint.
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where
ey B - 3 » - LB (13.26a)
S A VAL S YO o
- 2 ~%
cosh{vbgb) = ¥ = (1 - B*) , (13.26b)
The

following property should be recalled here.

COROLLARY 13.2.2 {loc. cit.) The general (or restricted) isolorentzian symmetries
0(3.1) on isospaces M ¥{x,g.R) can reconstruct as exact at the isotopic level all
“* conventional breaking of the Lorentz symmetry, under the sole condition that the
" underlying generalized metrics g = T, M preserve the topology of the conventional
- Minkowski metric 7, i.e, To > 0.

An example of the restricted isolorentz metric is provided by the
«*deformation of the Minkowski metric worked out by H. B. Nielsen and 1. Picek (1983)
%1in the interior of pions and kaons, which resulted in the following deformation
("mutation” in Santilli’s terminology) of the interior Minkowski metric

To = diag. [(1 - a/3), (1 - a/3), {1 - a/3), (1 + a)] (13.27)

where the a~-quantity was cailed by the Nielsen and Picek the “Lorentz-
asymmetry parameter”. As one can see, the Lorentz symmetry is exact for metric
(13.27), provided that it is not realized in terms of the simplest conceivable Lie
product, but in terms of Santilli’s lesser trivial isotopic product (13.14). Similar
results hold for all possible physically achievable mutations of the Minkowski
metric, those of Class 1. Theorem [3.3 can therefore be called a technique for
reconstructing the exact Lorentz symmetry when believed to be conventionally
broken.

[t should be indicated that, while the Lorentz symmetry remains exact for
all interior generalizations of the Minkowski metric of Class [, this is evidently not
the case for isospaces of Class II and III.

[t is an instructive exercise for the reader interested in learning Santilli’s
relativities to compute other isolorentzian transformations for given explicit
functional dependence of the characteristic b-functions (see Sect. 15 for the
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isorotational subgroup). )

It is also instructive to show that the abstract, general and special
isotransformations do indeed leave invariant isoseparation (13.1b), {13.21a) and
(5.22a), respectively. It is finally suggested to the interested reader to verify that alf
general isolorentz transformations in the (34) plane can be cast in form {6.25). We
can equivalently say that the geometrization of the interior dynamical problem
characterized by 0{3.1) on isospaces M!(xg#) can be unified in form (13.25).

The following importan{ property is a consequence of the "direct
universality” of Birkhoffian mechanics (Sect. 6), as well as of the arbitrariness of
the b-functions.

COROLLARY 13.2.3 (loc. cit.): The general Lorentz—isotopic symmetries, and related
isotransformations, are “directly universal”, in the sense that they admit as
particular cases all possible generalizations of the Lorentz symmelry and related
transformations characterized by topology-preserving, linear or nonlinear, and
Jocal or nonlocal deformations of the Minkowski metric (“universality”) directly in
the frame of the observer (“direct universality”).

Santilli (1991d) then shows that all available preceding attempt at generalizing
Einstein’s special relativity are particular cases of his isospecial relativities.

The most notable example is the apparently first, true generalization of the
special relativity achieved by Bogoslovwski (1977), (1984}, which is called by Santilli
(loc. cit.) Bogosklovwski's special relativity, and the same terminology is adopted in
this book.

In essenice, Bogoslowski generalized the special relativity for homogeneous
but anisotropic conditions, although refereed to space iself. Also, his generalization
is based on conventional Lie techniques. .

Santilli's covering isospecial relativities bring Bogoslowski's special relativity
into a new light, and point out some of its possibilities that were grossly ignored by
the physics community24. In fact, they show that the anisotropy of the latter can
indeed be referred to interior physical media with very intriguing applications, such
as the possible confinement of quarks (see, e.g., Preparata (1981)). Moreover, the Lie-
Santilli's theory permits a vast simplification of the rather complex derivation by
Bogoslovski of his anisotropic generalization of the Lorentz transformations.

The fact that Bogoslowski’s homogeneous but anisotropic formulations are a
particular case of Santilli’s inhomogeneous and anisotropic theories, is evident.

We finally recall that the Lorentz-isotopic symmetries of this section are a

24 Despite the manifest value of Bogoslowski’s studies, this author is aware of no
significant, independent analysis of his relativity that has appeared in the literature, besides
those by Santilli (1988c), (1991d) and very few others.
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particular case of Santilli’s (1981a) broader Lorentz-admissible symmetries . The
former symmetrics are recommendable for the relativistic characterization of
closed-isolated composite systems such as Jupiter (Fig. | of Sect. 10} with nonlinear,
nonlocal and nonhamiltonian interior forces. The latter symmetries are more
effective for the description of a relativistic, extended test particle moving within a
physical mediuin, resulting in nonconservative conditions due to the most general
known external forces (Appendix E),

We now review the classical realization of Santillis (1988c) (199id)
inhomogeneous Lorentz-isotopic symmetries, also called Poincare’—isotopic
symmetries , or isopoincaré symmetries P(3.1).

Consider a set of N particles denotes with the symbol a = 1, 2,..., N, in
isominkowski spaces MII! ( x ) = MITHxgR) with local separation

2B Wy v K
X = (xa Xp )guv(x, v,a,t, T, 0. (xa X, ) (13.28)

DEFINITION 133 (loc. cit.): Santillis “abstract isopoincaré symmetries” P(3.1) are
the largest possible, ten—=dimensional isotopic group of isometries of isoseparation
. (13.28) which are isolinear and isolocal on isominkowski spaces MUL(xgR), but
. nonlinear and nonlocal when projected on the conventional Minkowski space
- MxnR). The “general isopoincaré symmetries” are the most general possible,
czsolmear and isolocal isosymmetries of isoseparation (13.28) on isominkowski
- spaces M Yx,gR). Finally, the “restricted isopoiincaré symmetries” are the most
.wgeneral possible, hnear and local isomefries of isoseparation (13.28) on
isominkowski spaces M (x,n R), with isometric M| independent from the local
coordinates and all their derivatives.

As is well known (see, e.g., Schweber (1962)), the conventional Poincaré group
possesses the structure of the semidirect product

P(3.1) = 031} e TE.1), (13.29)
where T(3.1) is the (Abelian) invariant subgroup of translations in Minkowski space.

The conventional Poincare transformations are given by the well known
tinear and local transformations on M(x,nR)

X = Ax +x,  AeOB.1), =KW en, (13.30)
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A classical realization of the Poincare’ simmetry for the case of N particles
with non—null masses is given by the ten (ordered) parameters

w=(w =6ux) k=[2..10 (13.31}
and generators in T*M(x,n,R)
X=X = (Jw, P k=1,2.., 10, (13.32a)

Juv = Ea Xau Pay ™ ¥ap Payr Pu = Z‘a pau, (13.32b}
with Lie algebra P{(3.1) characterized by the commutation rules in terms of
brackets (IV.4.16)

P(3.1) [JW,J aB] =, JBM " Mg Jﬁv " My Jap T oy (13.33a)
[JW,Pa] = Mg P, = M0 Pu {13.33b)
Ry, Pv] 0, wva =1234, (13.33¢c)

with Casimir invariants

A=, V-p?-pp P = Pl P (13.34a)
P=ww =W W W = g 1% (13.340)
Lie group structure -
PD: @ = (Tl e Yk @’ (ajxk) 9 }a, (13.35)
and discrete invariant subgoup
o(3.1): Px=(T, x4, Tx = (r,~x%, PTx = (-r, x9), (13.36)

The following isotopic liftings then occur.

THEOREM 13.4 (loc. cit.) The Poincare’ symmetry P{3.1) on the conventional
Minkowski space M(xn®) admits an infinite number of abstract isopoincaré
generah'ﬁfions P(3.1) on the infinite number of corresponding isominkowski
spaces M' (x,@R), with diagonal, nonsingular and Hermitean isometrics § = Ty 7,
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and isounit1y = Ty '. All isosymmetries P(3.1) admit the decomposition into the
semidirect product

P(3.1) = 0B.1)® T3.1), (13.37)

where the subgroups O(3.1) are the (simple/ isolorentzian subgroups of Theorem
13.1,

OBD:  x = Asx = AT 5%  ABA=AgAt = g7/, 13.38)
and the groups TY3.1) are the (isoabelian) invariant subgroups of isotranslations
3.0 x F =t =+ M kT, (13.39a)
pH = T)*pk = py, {13.390)

‘where the b—functions are generally nonlinear and nonlocal in all their arguments
to be identified below.
All isotopes B(3.1) admit the following classical realization for a system of N
_ particles in the isocotangent bundle T*NM1(xg#) with local charts a = (al) = (x, p) =
(x84, pal), i=1, 2,..., N:

" 1) The same ordered set of generators (13.31) of the conventional symmetry;
-:2) The same (ordered set of) generators (13.32) of the conventional symmetry;
3) the isocommutation rules in terms of the isotopic brackets (13.14)

P3.1x [Jw ; JaB] =2, %" 8a oy ™5 Jop * B T (13.40a)
[ Ty Pl= 80 P~ 8,,Pw (13.40D)
Py Pl =0 pv=1234 (13.40¢)

4) the local 25 isocasimir invariants

25 This local restriction is due to insufficient knowledge of the isoneutral elements (end of
Sect. 6). Note that the isocasimirs are elements of the field, as they should be. However, the
reader not familiar with isotopic techniques should keep in mind that, for the case of
matrix representations, the entire isocasimir is an invariant including the isounit (see, e.g.,
Santilli (1983a)). However, for the case of classical realizations via functions in isospaces,
only the functions multiplying the isounits are isoinvariants. In fact, even in the classical
case, the isounits are matrices.
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plo) T, = To7l, (13.41a)
(0 - p2 = 5 1, =
= pz = Py = 1o, 13.41b
¢ B3, M1 = B4R )T, (13.41b)
D - ap

5) The Lie-Santilli group structure for the connected part P,(3.1) = 80[3.1) ® T(3.1)
on T*MMI(x 3 R)

Wi o Iopd (ajxk) (@)

a={A, MN*xa ={(le i]11)xa =
3 2

= {Sa(0.0), Tex P &, (13.42)

6) the b—functions are explicitly given by

—2 “2 a _2 ~ s o 3 —2 ~ -~
= +
By, Bu X [13pL TP VA XX (6, =P PB]/SI + e
and
7) the invariant isodiscrete component is the same as that in 0@3.1), Le,

H3.1): P*x = (-1, i )y Tx = (r,—x 4), @+t *x = (-r, ~x4).
(

Despite the manifest similarities between the conventional Poincare’
symmetries and all its isotopes, the latter have non-trivial physical implications, as
iltustrated by the loss of the conventional Poincaré transformations, with
consequential need to generalize Einstein’s special relativity (see below).

The following property is by now evident.

COROLLARY 13.4.1 {loc. cit.): All infinitely possible general and restricted
isopoincaré symmetries P(3.1) on isominkowski spaces Mg ), are locally
isomorphic to the conventional Poincaré symmetry P(3.1).

It is understood that on isospaces of Class I or III the above isomorphism
are no longer guaranteed. As an example, the use of the classification of O(3.1} (Sect.
6) shows that some of isotopes P{3.1) on isospaces of Class II are locally isomorphic
to Ol4xT(4) or O2.2xT(2.2). This illustrates the need that, for all physical
applications, the isotopic elements T are positive—definite, thus resulting either in
the isoriemannian spaces MI(xg®) or in the flat isospaces Mlx, ) of the
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isospecial relativity (see below).

It is evident that the general and restricted isolorentz and isopoincare
symmetries constitute isotopic coverings of the corresponding conventional
symmetries in the sense indicated earlier.

Note the explicit dependence of the isometric on the local coordinates X.
Also, the composition law of two isopoincare transformations (A, , Ty}, k = 1, 2, is
given by

(R TP*lhg, T = (R xRy, Ty + Ry*Ty. (1345

Moreover, one should note for future use the isotopy of the group of
translations
x“un pV
v

Mg PV
T3.1) = elE 1 B

e F
which is at the foundation of Santilli (1983a) notion of electromagnetic wave
propagating within an inhomogeneous and anisotropic physical medium .

As it is the case for the conventional and isotopic Lorentz symmetries, the
isopoincaré symmetries are not freely defined in isospaces M!I(x&#), but rather on
the hypersurface of the constraints (see Santilli (1991d)).

 Finally, the Poincaré-isotopic symmetries of this section are a particular
case of Santilli’s (1981a) Poincaré-admissible symmetries, the latter being the most
general possible symmetries for extended-deformable particles under the most
general known nonconservative dynamical conditions.

" Santilli (1991d) then illustrates the physical implications of the isotopic
liftings of the Lorentz and Poincaré symmetries by identifying their implications
for the characterization of particles . In turn, this provides a number of
experimental grounds, first, for the identification of the physical conditions under
which the isotopies are applicable and, second, for the verification of the
quantitative predictions of the novel theory in the arena of its applicability.

As well known, Einstein’s special relativity characterizes particles as
massive points. But point are perennial geometrical objects. Thus, according to
contemporary relativistic views, elementary particles preserve their intrinsic
characteristics for all conceivable physical conditions in the Universe.

In his limpid writings, Einstein (1905) avoided such a manifestly excessive
assumption, because he identified quite clearly the arena of applicability of his
theories. Santilli therefore assumes as exact Einstein’s views, but not necessarily
those of his contemporary followers. In particular, throughout his analysis Santilli
assumes that elementary particles preserve their intrinsic characteristics under
Finsteinian conditions, ie.,

> T3 = e , (13.46)
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1) particles can be well approximated as being massive points;

2} when moving in the homogeneous and isotropic vacuum (empty space}

3) while experiencing only action-at-a-distance, local-potential (seifadjoint)
forces.

- In this volume we are interested in studying particies in Santillis
conditions, i.e.,
1) particles (and/or their wavepackets) which cannot be
approximated as being point-like, but require a representation of their
actual extended, and therefore deformable shape;

2} when moving within generally inhomogeneous and anisotropic physical
media;

3) while experiencing conventional, action—at-a—distance, local-potential
forces, as well as contact, short range nonlinear, nonlocal and nonhamiltonian
interactions with the medium itself.

A quantitative way of expressing the above notion is given by the following

DEFINITION 13.4 (Santilli (1988¢c, (1991d): A classical relativistic isoparticle is a
representation of one of the infinitely possible isopoincaré symmetries in
Minkowski~isotopic spaces Mix g8,

PE.I: x = {Alow) , TN+ x = (Aow) , TN Tox

ir,a j
= Tk % wi @ Tar (8, (ai))'lzl*x. (13.47a)
' w=x), X= (Jw By 13.47b)
-1
Mxgfk § = Tom, R=%L1,=T, >0, (13.47c)

Equivalently, Santilli’s classical nonrelativistic isoparticles are the generalization
of the corresponding classical Einsteinian particles characterized by the isotopic
lifting of the trivial unit I of the conventional Poincaré symmetry, into one of the
infinitely possible isounits 15 > 0 of the isopoincaré symmetries P(3.1).

The primary and most visible consequences of Santilli's generalized notion
of particle is that an isoparticle is no longer unique, but can exist with an infinite
number of different intrinsic characteristics 26.

26 The reader should not stricily refer the consideration at this point to an elementary
particle in quantum mechanics, because the formulations here are purely classical {although
all the classical features are magnified under quantization, see Santilli (1989, a, b, ¢, d)l.
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The best way to illustrate the above possibilities, is by considering an actual,
physical, extended test particle, such as a charged perfect sphere of a given radius
moving in vacuum under an external electromagnetic field. Under these conditions,
the test particle can be well approximated as being a massive point, and fully
treated via the Poincare symmetry, trivially, because the actual shape of the
particle does not affect its dynamical evolution,

Suppose now that the above test particle penetrates within a physical
medium, such as an atmosphere, at relativistic speeds. Then, the particle
experiences a deformation of its shape, say, into a prolate ellipsoid. Moreover, one
can see that the deformed shape is not unique, but depending on the local physical
conditions, such as pressure, density, speed, etc.

Thus, while the test particle has a unique configuration in vacuum
(Einstein’s conditions), the same test particle has an infinite number of different
configurations when moving within a physical medium {Santilli’s conditions).

Santilli (1978b) conceived his isotopies of the Lorentz and Poincaré
symmetries precisely to be able to represent the actual shape of the particle
considered, as well as all its infinitely possible deformations.

To make the reader aware of the nontriviality of the discoveries herein
reviewed, let us recall that the total magnetic moments of nuclei are still basically
unexplained at this writing, despite over fifty years of research. This is likely due to
the point-like abstraction of protons and neutrons which is inherent in the very
structure of contemporary theories.

- Santilli {1989a, b, ¢, d), {1991d) has shown that, once the proton and neutrons
are represented as they are in physical reality, extended charge distributions of
about IF {= 10713 cm), their deformability under sufficiently intense external fields
and/or collisions is consequential. In turn, the deformation of the charge
distribution of neutrons and protons implies a necessary consequential mutation of
their intrinsic magnetic moments.

The applicability of Santilii's concept of isoparticle offers the possibility of
resoclving the problem of the total nuclear magnetic moments via their mere
reduction to a (very small() deformations of the charge distribution of the protons
and neutrons, with consequential (generally small) alteration of their intrinsic
magnetic moments under nuclear conditions. =

For this and numerous other applications of Santilli’s isoparticle, we are
regrettably forced to refer the interested reader to the locally quoted literature. We

27 This point is recalled here because, as stressed by Santilli (1989a, b, c), it is an essentially
classical issues. We are referring here to the prediction of Maxwell electrodynamics of the
alteration of the magnetic moment of an extended, charged and spinning sphere when its
shape is deformed by external forces. In this way, the problem of total nuclear magnetic
moments can be first approach on purely classical grounds. Operator formulations shoutd
only be expected to provide refinements of the classical results.
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also refer the reader to the excellent review by Aringazin ef al (1991) of Rauch’s
experiments via neutron interferometry providing preliminary experimental
information supporting the possible alterations of the charge distribution of
neutrons with the consequential alteration of their magnetic moments.

The necessary conditions for the existence of Santilli's mutations were
identified in the original proposal (1978b) and can be now formulated as follows.

PROPOSITION 3.1 {Santilli (1988c): A necessary condition for the mutation of the
intrinsic characteristics of particles is that the local physical conditions at hand
imply a violation of the conventional Lorentz symmetry of nonlinear, or noniocal
or nonhamilfonian type. :

Santilli (19913) then identifies the necessary and sufficient conditions for a
mutation. An inspection of the invariants of the isotopies P(3.1) = P(3.1),

P2=Pltyy P¥ = p2=plg PV, (13.482)
(VhY [¥hY

W2=WH_ WY s W2 = Wi, W, wy-e . J%PPY
n wo W5 Wy -
W hady (13.48b)

yields the following:

PROPOSITION 13.2 (loc. cit.} A necessary and sufficient condition for the mutation
of the intrinsic characteristics of elementary particles is that the isometric g Is a
nontrivial isotopy of the Minkowski metricn, g=Ton, To#1, To> 0.

Finally, the reader should not assume that, under mutation, we lose
fundamental space-time symmetries. In fact, Santilli defines isoparticles via the
exact Poincaré symmetry. The only difference is that, while Einstein’s special
relativity implies the simplest conceivable realization of the Lie products, Santilli
assumes a lesser trivial realization. This leads to the following restriction on the
mutations evidently imposed by the local isomorphism P(3.1) ~ P(3.1).

PROPOSITION 13.3 (Santilli (foc. cit.)k All infinitely possible configurations of
Santilli’ isoparticles coincide with the conventional Einsteinian form of the same
particles at the abstract, realization—free level

In different terms, mutations are not arbitrary, but geormetrically restricted
to such a class that conventional and mutated intrinsic characteristics can be
unified at the abstract, realization—free level.
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Further advances in the topic require the isorepresentations of P(3.1} which
have not been studied at this writing.

The study of isoparticles aiso requires the relativistic generalization of the
various methods studied in Sections | to 9, which we cannot possibly review here.

We merely mention the case of a "free isoparticle”, which is characterized by

the isometric of the constant form

fi=§ - diag. (b2 by? b3?, - bg?), by = constants >0, (13.49)

and the Hamiltonian
H=ph ﬁuv P/ -ty (13.50)

{where A is a Lagrange multiplier for the invariance constraint), resulting in the
equations of motion

X, = by 2 oH/ep =/, (o sum) (1351a)
pu = —bu_2 oH/ax" = 0, (nosum) 1351b)
A= xuﬁwxv =-]. (1351c)

which are manifestly P(3.1)-isocovariant, nevertheless, they coincide with the
convent10na1 equations for a free particle.

..One can then see the capability of Santilli's isopoincare symmetries to
represent at this purely classical level the actual shape of the particle via the b—
quantities, evidently in space-time, as well as as to represent all its infinitely
possible mutations, e.g., via a suitable functional dependence on the b—quantities.

By
comparison, Einstein’s special relativity can achieve an indirect representation of
the shape of the particle only after the second quantization, the actual shape cannot
be represented, and all possible deformations are evidently eluded in order not to
violate the pillar of quantum mechanics, the O(3) symmetry.

A virtually endless number of local-potential, as well as nonlocal
nonpotential generalizations of the above case exist. We only recall the case of a
charged isoparticle under an external (evidently conventional) electromagnetic field,
which is representable by the following relativistic Hamilton-Santilli equations

-2 oH e
Ky = b'u ]:p pp_ - —A )/ (13.52a)
3
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p2 2 A e - (13.520)
=T T Tam e T A |
oH 1

o= - = - —ép-eA/c)Q -3¢t =0 A=m, (13.52¢)
o\ 2
H=(pt-eat/0 A, (p” —eA”) /2n -ictr, (13.52d)

It is easy to see that the above system is invariant with respect to the
isopoincaré symmetry, but it is manifestly noninvariant under the conventional
Poincaré symmetry. The system can be easily generalized to represent an extended
and deformable charge under the most general known interactions, those of linear
and nonlinear, local and nonlocal, and selfadjoint as well as nonselfadjoint type.

We refer the interested reader to Santilli (1991d) for brevity.

We now briefly outline Santilli’s isospecial relativities , which were
originally submitted in Santilli (1983a)} under the name of Lorentz-isotopic
relativities, and then developed in Santilli (1988c), (1991d).

Let us begin with the following:

DEFINITION 1135 (loc. cit.)} Santilli’s ‘general isospecial relativities” are given by
the generalizations of Einstein’s special relativity characterized by the general
isolorentz and isopoincare’ symmetries of Theorems 13.1 and 13.4 namely, by their
most general possible, nonlinear, nonlocal and nonhamiltonian realizations on
Minkowski-isotopic spaces Mlxg®R), or, equivalently, by the most general
possible, nonlinear and nonlocal realizations of the isounits 12 > 0. Santilli’s
“restricted isospecial relativities” are characterized instead by the most general
possible linear and local isolorentz and isopoincaré transformations on isospaces
Mix,gR) with isometric independent from the local variables and their
derivatives.

The reader should be aware from the beginning that, by central conception,
Santillis and Einstein’s relativities coincide at the abstract level by construction
(see later on Theorem 13.5). In particular, as we shall see momentarily, the main
postulates of Santilli’s relativities are given by an isotopy of the corresponding
postulates of the special relativity. '

Thus, all the deviations from conventional settings predicted by Santilli’s
relativities are, in the final analysis, a direct manifestation of the abstract axioms
of Einstein’s special relativity .
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To put it explicitly, in case any of the prediction of Santilli's isospecial
relativities is disproved by future experiments, this will Iikely imply a revision of
the axiomatic structure of Einstein’s special relativity.

With a clear understanding on these premises, let us now review the five
basic postulates of Santilli’s isospecial relativities on the following isospaces

MixgR):  x2 =t 8, )

= %! 612 xl +x2 By2 Z x3 B2 x3 - x? by x4,

=K bkz L 00642 t= 2 ~tc2t, (13.53a)
x=0x4 = ¢ O reBrGR) (13.53b)
g=Tom, (13.53¢)

1 = diag. (L,[,L-1) € MxnR), (13.53d)

Ty = diag. 6,2 B2 652, 5,2>0, A=87y, 15 =Ty, (13.53¢)
- ﬁu =Byl wauwmn . J>0 p=1234 {13.53f)
by = by=b3 = b, (1353g)
¢ = coby (13.53h)

where: conditions (13.53g) are assumed for the specific purpose of identifying the
relativistic effects of the interior dynamical problem, and separate them from the
effects due to isorotations O(3) reviewed in Sect. 15; conditions (13,.53f) are assumed,
in addition to the conditions Buz > 0, to permit the identification of the b—functions
with physical quantities; the quantities b, have the most general possible nonlinear
and nonlocal dependence in all permitted variables and quantities; the metric g is
that of the isocotangent bundle T*MUXAA), ie., it is such that brackets (13.14)
characterized by the inverse g7} verify the classical Lie-Santilli axioms (Sect. 6);
and Eq. (13.53h) represents the geometrization of the conventional speed of light in
vacuum ¢, as characterized by Santilli’s isotopies. '

The analysis for the restricted isotopies will be conducted in the isospaces of
the particular form

MG AR = ML (xA) (13.54a)



J. V. Kadeisvili -200- Santilli’s Isotopies

) = diag. (b)2, bs2, bs?, ~b42) = local constant > 0, 13.54b)

bp = Bll= constants > 0, by=by=bg=b, c=cyby. (13.54c)

Let us begin by studying the invariant speed under isotopies. For this
purpose we need first the maximal possible causal speed, which, as in the
conventional case, is characterized by the null isovector

ds? = ark 6% ark - dt c02642 dt =0, (13.55)
yielding the following

DEFINITION 13.6 (Santilli (1983a), (1989b)): The maximal, local, causal speed of
Santillis general and restricted isospecial relativities is the maximal speed of a
massive particle and/or of a signal verifying the principle of cause and effects,
given explicitly by

dr B
Vafax = IglMax ~¢, T4 (13.56)

The first fundamental postulate of the Santilli's relativities can then be
formulated as follows.

POSTULATE I (loc. cit.)} The invariant speed of Santilli's general and restricted
isospecial relativities is not given by the speed of light, but by the local, maximal,
causal speed for each given physical medium.

Consider two particles with identical speeds v| = vo = ¢ = ¢ Dy/b. Then,
their isorelativistic composition yields

2c
1+6

# ¢, (13.57)

Vot =

Consider, on the contrary, two particles with maximal causal speeds, v| =

Vo = Vo = c/b. Then their isorelativistic sum is given by
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- =V (13.58)

thus illustrating the postulate.

Einstein’s special relativity is a particular case of Postulate I because it
implies Vpjax = € = ¢ Nevertheless, it is remarkable to note that the invariant
quantity of the special relativity, strictly speaking, is not ¢, but the maximal causal
speed.

The plausibility of the above postulate is illustrated by the case of the
Cerenkov Ifight, where the speed of light in water is ¢ = ¢y/n < ¢y and the
electrons can travel at speeds higher than ¢, all the way to the limit speed ¢j.

Under these conditions, the speed of light ¢ cannot possibly be an invariant
of any relativity, irrespective of wether conventional or isotopic. In fact, ¢ varies
from medium to medium. Santilli*s maximal causal speed is instead an invariant. In
fact, since water is homogeneous and isotropic, we have b=y and Vpg,, = c504/6 =
Co- This provides an invariant explanation of the reason why electrons in water can
travel at speeds higher than the local speed of light.

The most visible departure of the iscspecial from the conventional relativity
is given by the following

POSTULATE II { loc. cit.} The maximal possible, causal speed for Santilli’s general
and restricted isospecial relativities can be smaller, equal or bigger than the speed
of light in vacuum c,,

by
B

A Y

VMax = €o Co (13.59)

depending on the Iocal physical conditions of the medium considered.

As one can see, Santilli’s studies therefore predict the theoretical possibility
of “breaking of the barrier” of the speed of light by causal, physical signals. The
proposal was originally submitted in Santilli (1982a), and then elaborated in (1983a),
(1988c) and (1991d).

A first example can be given via Nielsen-Picek metric (13.27) which yields
for the interior of light mesons '

Vi =€ (13.60)
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thus characterizing the maximal speed for the interior of pions

a = -38078, V. =09995¢, <c, (1360)
Ma

while, in the transition to the heavier kaons we have
a=+061x1075, V. =(1+08x105)¢, > ¢, (1362)
Max

The understanding is that the Nielsen-Picek calculations should be assumed
as strictly approximate and valid only at low speed (in fact, they result in a
constant isometric). Also, it is predictable that anomalous behaviors will increase
with the density of hadrons.

In fact, De Sabbata and Gasperini (1983) conducted explicit calculations
within the context of unified gauge theories, and reached the following value for
the propagation of a causal signal within the hyperdense medium in the interior of
hadrons

The reader is discouraged to approach these novel advances with the mind
set on Einstein’s conditions due to protracted use. Again, if we have a particle
moving in vacuum under action-at—a—distance interactions, we all know that it
takes an infinite amount of energy to accelerate the particle to c,.

We are however considering Santilli’s conditions, that is, motion of extended
particles within physical media. The reader familiar with the physics of the contact
interactions between the particle and the medium knows well that these forces do
not admit a potential energy. Yet contact forces are indeed fully capable of
producing accelerations. The possibility of passing the speed of light in vacuum
under these conditions without needing infinite energy is then consequential.

The implications are evidently far reaching in various branches of physics.
As an illustration, Postulate [I apparently perm,its the achievement of a frue quark
confinement , i.e.,, a confinement not only with an infinite potential barrier, but
also with an identically null probability of tunnel effects into free quarks. In fact,
if gquarks are physical particles propelled by the hyperdense medium inside hadrons
to travel at speeds higher than c,, they evidently cannot exist as free states in
vacuum (Santilli (1989b).

Intriguingly, all modifications of the interior Minkowski metric derived
from the phenomenological studies on the behavior of the meantife with speed
appear to confirm Santilli's fundamental hypothesis that the maximal causal speed
in the interior of hadrons is bigger than c,,.
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More generally, we have the following

PROPOSITION 13.3 (loc. cit) Any (topology preserving?®) modification of the
Minkowski metric implies a necessary alteration of the maximal causal speed
which can be smaller, equal or bigger than ¢, depending on the conditions at
hand.

The reader should be aware that the quantity c, is a universal constant for
Einstein’s special relativity, while the quantity Vagy s a local invariant for
Santilli’s isospecial relativities, evidently because it can only be defined in the
neighborhood of a given point, and it varies from point to point of each given
interior medium.

Notice also that the quantity ¢ = ¢,by is, in general, a geometric quantity and
does not necessarily represent a physical speed, evidently because the medium
considered can be opaque to all electromagnetic waves, yet permit the motion of
particles (see below).

This occurrence can be illustrated via the use, again, of Nielsen—Picek metric
(Iv.3.21). In fact, we have for kaons

c=coby = cfl+a) > ¢y, a>0, (13.64)

The point is that the above value does not necessarily represent the speed of
light, because in this classical approximation light cannot propagate inside a hadron
(photons and neutrinos do not exist at this classical level). Also note that a given
value of ¢ > ¢, is not sufficient, per se, to imply that the actual causal speed can
indeed be bigger than ¢, because that speed must be computed via quantity (9.5).

Needless to say, the quantity ¢ = cybg can indeed represent the speed of light
in particular transparent media, in which case we have

by = I/n, c= ¢/, (13.65)

where n is the index of refraction.
We now pass to the classification of isofourvectors in isominkowski space,

which can be presented as follows
Isotime-Tike, when x2 < 0, (13.66a)

Isonull when %2 =, (13.66b)

28 By "topology preserving” we mean any suff iciently smooth and nonsingular modification
of the Minkowski metric 1 which preserves its signature (+1, +1, +1, =1).
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Isospace-like, when  x2 > 0. (13.66¢)

Note that Postulate Il is insensitive as to whether the isopoincare
transformations are linear or not, and it is instead centrally depends on the
inhomogeneity between space and time, ie., in the differences

b~ by | (13.67)

The same situation holds for the mutation of the light cone implies by
expressions (13.66). In fact, irrespective of whether the b-quantities are linear or
nonlinear (and local or nonlocal) in their variables, we have

v

Max| b = 54 =Cy (13.68)

which is precisely the case of water.

Note that Santilli’s isoparticles traveling faster than ¢, within physical
media are not tachyons .In different terms, Santilli studies show that it is not
sufficient for a particle to travel at speeds bigger than ¢, to be a tachyons, because
it could be a physical particle verifying the law of cause and effect in interior
dynamical conditions. Thus, fo truly have a fachyons, one must have a local speed
bigger than the maximal causal speed at the point considered, whether in the
interior or in the exterior problem.

POSTULATE I (loc. cit.): The dependence of the time Intervals with speeds in
Santilli’s general and restricted isospecial relativities follows the “isotopic time-
dilation” '

) | v, 2K
At = YAty = Alg— g2 =

(1 -p2t, ¢ 2b,2 (13.69)

while the dependence of space intervals with speed follows the “isotopic space
contraction”

Al =5 1Al = Al -p2, (13.69)

The above postulate appears to be useful for a better understanding of the
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stability of nucleus, which is not fully understood at this writing. in fact, this is
due to the established instability of the neutron which possesses a mean life of
about 15, after which it decays in the familiar form

n=p+e + T (13.69)

According to the above evidence, ordinary matter in our environment should
be unstable and emit electrons, because of decays (13.69) of the neutron at least in
the periphery of nuclei. Numerous regenerative “interpretations” have been
submitted in the literature, but they are not fully convincing because, even though
plausible for neutrons in the interior of nuclei, they are inapplicable to the neutrons
in the periphery of nuclei.

Santilli’s isospecial relativitics apparently resolve this additional now vexing
problem of conternporary physics, because the meanlife of neutron becomes a local
quantity which, as such, is dependent on the local physical conditions at hand, and
may well increase under nuclear conditions up to the point of full stability of all
neutrons within a nucleus.

According to the current nuclear theories, neutrons are assumed to be
strictly Einsteinian when member of a nuclear structure. Their meanlife T then
behaves with speeds according to the familiar law

{
T=7YTy =Tg . (13.70)
? (1 - v2/c, 2

But the speeds of nuclear constituents are considerably lower than ¢ (in
fact, they are known to be much lower than the speeds of the atomic constituents).
We can therefore conclude that, except for small relativistic corrections, the mean
life of neutrons when members of a nuclear structure remains of the order of 15.
The problem of nuclear stability indicated earlier then follows.

in the transition to Santilli's isospecial relativities the situation is
fundamentally different, because now governed by the isotopic law

1
T=rT . (13.71)
® (1 - viPy/tcy b, 20t

An interpretation of the stability of the neutron when members of a nuclear
structure would then follow under suitable values of the nuclear interior
conditions.

We therefore have the following
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PROPOSITION 134 (loc. cit.): Any (topology preserving) mutation of the Minkowski
metric implies a necessary alteration of the behavior of the meanlife with speed
which can be bigger, equal or smaller than the Einsteinian behavior,

T=¥T, T = YTo (13.72)

AV

depending on the local physical conditions of the interior medium considered.

It is hoped the reader begins to see the plausibility of Santilli’s relativities. In
fact, their central physical idea is that the presence of a physical mediurm alters the
homogeneity and isotropy of the underlying vacuum. If this central hypothesis is
correct, it implies a necessairy modification of the Minkowski metric. The validity
of all postulates of Santilli’s relativity is then consequential.

Prior to dismissing the above context because of excessively protracted use
of conventional theories, the reader should be aware that numerous
phencmencological studies in particle physics result precisely in a modification of
the Minkowski metric, as it is the case for Nielsen and Picek (10982), De Sabbata and
Gasperini {1983) and numerous others. The above propositions then render Santilli's
postulates unavoidable on true scientific grounds.

It is also important to recall that, as proved by Aringazin (1989), isotopic
time—-dilation (13.71) is directly universal , that is, capable of including all possible
time dilation laws (universality), in the frame of the experimenter (direct
universality).

Thus other modified time dilations existing in the literature have been
proved to be a first approximation of Santilli's law (13.71) via one of its many
different, possible expansions truncated at a certain power (see the review in
Santilli (1991d)).

It should also be noted that, as it is the case for all considerations of this
section, Santilli formulated Postulate 11 solely for the behavior of the meanlife of
an unstable particle in the INTERIOR dynamical problem, and not to a particle
moving in empty space under Einsteinian conditions.

As a result, Postulate II is not infroduced in this volume for an unstable
hadron in a particle accelerator which, according to the experiments by
Grossmann et al. (1987), follows the Einsteinian law.

We pass now to the study of the notion of rest energy of an isoparticle.
Consider the fundamental isoinvariant of the theory
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k
P2 - p 625K - p2 = -m2c,4 (1373)
where

p=p =mu=(my¥cv, m,¥c) ' {13.74)
DEFINITION 13.7 (loc. cit.): The energy E of an isoparticle on isominkowski spaces
Ml(xg,R) is characterized by the fourth component of the isofourmomentum
according to the rule
E = Py (13.75)

and can be expressed in terms of the fundamental isoinvariant (13.73) in the form

E2 = mo2 ct+ pk bkz pX, (13.76)

We then have the following

POSTULATE IV (loc. cit); The rest mass m, of Santilli’s isoparticles on
isominkowski spaces MI(xgR) varies with speed according to the isotopic law

o . My 5 kakz"k
m = m, Y ="__2§__— , = 2 (13.77)
(1 -89 cob 4 Co
and the equivalent value of the energy E for at rest conditions is given by
E=m, c? = m, 002 642(x,p,u,'r,n.....), (13.78)

The above postulate has additional far reaching possible implications,
ranging from the possible identification of the hadronic constituents with physical
particles freely produced in the spontaneous decays, to the problem of the missing
mass in the Universe.

Again, this author would like to encourage the reader to move away a
mental attitude set for point-like particles in vacuum, and refer instead all Santilli's
studies, including the above postulate, to an extended particle inside a physical
medium.
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PROPOSITION 13.5 (Santilli (1983a), (1989b)): Any {topology preserving) modification
of the Minkowski metric implies a necessary alteration of the behavior m of the
rest mass with energy and of the energy equivalence E of the rest mass, which can
be bigger, equal or smaller than the corresponding Einsteinian quantities

~

f = m, £ Z E (13.79)

<

ANV

depending on the local physical conditions of the medium considered.
We now study the redshift under noneinsteinian conditions.

DEFINITION 138 (loc. cit.) Santilli’s “isoplanewave” is a conventional pIanewave in
Minkowski space M{x,n,%) under isotopic liftings to isominkowski spaces M gR)
with constant isometrics, 1e,

i K"Lf'luvxv
e

e L
o) = 5o = Ne 'k WX Nem Ref, (1350

where K is an isonull vector, ie,
R v
KHA,, K =0, K=k o/ wfc = 2m/h. (1381)

Note that the lifting is here considered solely for the restricted case, because
we are treating a global effect of given media (see Fig. 2 of Sect. 10

Suppose now that such an isoplanewave is detected by two observers S and
S, one at rest with respect to the medium, and the other in motion with respect to
it, at a relative speed v along the xO-axis.

As a specific case, the reader may think of ordinary light propagating within
our atmosphere which, being transparent, inhomogeneous and anisotropic, is an
ideal interior medium for our Lorentz—isotopic relativities. Observer S can be an
ordinary observer on our ground, and observer §' can be either moving in the
atmosphere or outside it.

Let a be the angle between k and x3 and let k’ w, and « be the
corresponding quantities for S.

From the manifest form-invariance of the isoplanewave under the Lorentz-
isotopic transformations,

KH 9, K = k' R, (13.82)

Wy LNy

it is then easy to see that
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kl=kl = x2 = 2 (13.832)

k3 = 703 - pk% = [kfcosa, B=vic, (13.83b)

k4 = 9k? - 3K3) = w/e, B = vb/ic.b (13.83¢)
' 04, .

This leads to the following

POSTULATE ¥ (loc. cit.} The Doppler’s frequency shift for electromagnetic waves
propagating within an inhomogeneous and anisotropic physical medium
transparent to it (isoplanewave) follows the “isodoppler’s laws”

& = wyll - Bcosal, (13.84a)
2
b“v
. + 2 Y
y=(1—32) , B = 5. (13.84b)
Coby o '
with isotopic aberration
cosa - B
cosa’ = — (13.85)
- 1-Bcosa

The above postulate offers genuine possibilities of resolving another vexing
preblem of contemporary physics, that of astrophysical bodies currently believed
to violate Einsteinian laws under Einsteinian conditions.

In fact, the redshift of certain far distant quasars has recently attained such
high valiues to require the assumption, under the Einsteinian redshift law

s

o =wyll-Becosa)l, B=v/c, (13.86)

that (portions of) quasars travel at speeds higher than c, up to speeds of the order
of 10c,, or more. But the quasars travel in empty space. Thus their center-of-mass
trajectory must be strictly Einsteinian in Santilli's views. The assumption that their
speeds is bigger than ¢, therefore constitutes a violation of Einsteinian laws under
Einsteinian conditions.

Santilli (1988c) suggested that the quasars redshift could be due in part to the
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propagation of light within their hyperdense, inhomogeneous and anisotropic
athmospheres. This could reduce the relative speed between the quasars and the
associated galaxy, without affecting the current views on the expansions of the
universe.

According to Santilli's views, the redshift from far distant quasars, as
measured on Earth, could be due to the superposition of:

1) a quantitatively nonignorable isotopic redshift caused by propagation in
the quasars” atmospheres;

2} a small isotopic redshift caused by propagation Over intergalactic
distances for which space is no longer empty, but filled up of radiations, dust,
elermentary particles, etc; and

3) a primary Einsteinian redshift caused by the conventional expansion of
the Universe.

Mignani (1992) conducted explicit calculations of the above possibilities, by
computing preliminary explicit values for the characteristic b-quantities, which
apparently confirm the Santilli’s predictions.

Mignani essentially assumed, as a first approximation, that quasars are at
rest with respect to the associated galaxy, and identified the following expression °
for the ratio b/by

bl +1P-1 @yt 1?1
B=— = X . (13.87)
by (wpr1B+l @+ 1P 1

where o] represents the measured Einsteinian redshift for galaxies and @'
represents the redshift for quasars assumed to be mutated. From
known astrophysicat data, Mignani {loc. cit. ) then computed the following
numerical values of the B—quantities

In summary, according to the above model, the Einsteinian expansion of the
Universe is unchanged, because it is that of the Galaxies, but the quasars violation
of Einstein’s special relativity by speeds higher than ¢q in vacuum is eliminated.

Needless to say, values (13.88) are only preliminary and in need of
considerable additional studies. Also, several other possibilities remain to be
explored, such as the possibility that the quasars are indeed expelied by the galaxies
but at Einsteinian speeds.

Despite that, Mignani’s results (13.88) have a potentially historical value. In
fact, they constitute the first numerical expressions for the characteristic B-
quantity of Santilli’s interior physical media reached in the literature. As such, they
have particular significance, e.g., for the experiments proposed to test Santilli’s
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isospecial relativities (see Figure 4 below).

GALAXY QUASAR B-VALUES J
NGC 522UB1 31.91
BSOI 20.25
NGC 470 63 87.98
63D 67.21
NGC 1073 BSO1 198.94 (13.88)
BSO2 109.98
RSO 176.73
NGC 3842 QS0t 14.51
Qs02 29.75
NGC 4319 MARK205 12.14
i NGC 3067 3C232 32.17

The content of the preced-ing topic imply the following

PROPOSITION 13.6 (loc. cit.; Any (topology-preserving) modification of the
Minkowski metric implies a necessary mutation &’ of the Doppler’s redshift which
can be bigger, equal or smaller than the Einsteinian value w’

o . >
W =m‘y(l—Bcos<a) = o =wy(l-pcosa) (13.89)
depending on the Jocal conditions of the interior medium considered.

It is evident that Santiili’s isospecial relativities relativities, if suitably
developed and experimentally confirmed, can indeed provide an infinite family of
coverings of Einstein’s special relativity, in the sense that:

A) Santilli’s isospecial relativities are constructed with mathematical
methods (the Lie-Santilli theory) structurally more general then those of Einstein’s
special relativity fthe conventional Lie’s theory}

B) the isospecial relativities represent physical conditions {motion of
extended particles within inhomogeneous and anisotropic physical media,
deformation of particles, etc.) which are structurally more general than those of
Einstein’s relativity (point-like particles moving in empty space, etc.} and,
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C) the isospecial relativities can approximate Einstein’s special relativify as
close as desired for 1, = I, and they all recover by construction Einstein’s
relativity identically for 1, = I

A visual inspection of Postulates I, II, III, IV and V proves the following
important property.

THEOREM 13.5 (loc. cit.k All possible Santilli’s isospecial relativities on isospaces
Ml(x3,%) coincide with Einstein’s special relativity at the abstract, realization—free
lfevel,

Santilli's remarkable achievements are therefore that, despite the generally
nonlinear and nonlocal dependence of the various physical quantities {invariant
speed, maximal speed, meanlife, rest energy, etc.), Postulates [, I, Ii[, IV and V
formally coincide with the corresponding Einsteinian forms at the abstract level.

This illustrate the point made earlier in this section, to the effect that any
experimental disproof of the prediction of Santilli's relativities will necessarily
dernand a revision of the basic postulates of Einstein’s special relativity.

Above all, it is remarkable that the “breaking of the barrier” of the speed of
light in vacuum by causal signals is ultimately permitted by the very Einsteinian
axioms, only realized in a more general way. Finally,
in appraising Santilli's relativities, the reader should keep in mind the golden rule of
mathematical beauty, which has served throughout the history of science as a solid
guidance for physical advances.

In fact, Santilli’s isotopic theories provide the most effective methods for
the quantitative treatment of dynamics within inhomogeneous and anisotropic
media. In case they arc disproved by experiments, we remain with the rather
elephantiac task of identifying different, but equally effective methods for the
treatment of the same problem.

As concluding remarks, let us recall that Einstein’s special relativity is based
on the following:

PRINCIPLE I: The homogeneity and isotropy of {empty) space;
PRINCIPLE II: The general invariance of the speed of light;
PRINCIPLE I1I: The general invariance of the physical laws under  the

broadest possible linear and local group of isometries of the
Minkowski space-time;
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CLASSICAL EXPERIMENTAL TEST OF
SANTILLPS ISOSPECIAL RELATIVITIES

FIGURE 4 A schematic view of the first experiment proposed by Santilli (1988c), (1991d) to
test the predictions of his isospecial relativities. As recalled in the text, the isotopies of
Einstein’s special'Telativity imply that {nonredshifted) light is redshifted when propagating
within an inhomogeneous and anisotropic medium. Santilli therefore proposed the measure
of light from a distant star before and after passing through our Earthly atmosphere, or
before and after passing through the atmosphere of other objects of our solar system, such
as Jupiter. The experiment is fully feasible nowadays, namely, the predictable redshift is
fully within the range of our measuring apparata.

To illustrate this point, Santilli (foc. cit. ) used Mignani’s (1992) data (13.88) on
quasars’s redshift, which yield the following average value for the characteristics B—
quantity

<|B|> = <|b/bgl> ~ 8464 (a
with corresponding average redshift of the quasars < |z |> ~ 1.25, while the average
redshift of the associated galaxies is given by <|z|> ~ 0.0125.
The limit assumption that the quasars are at rest with the associated galaxies then
implies that the average redshift caused by the hyperdense quasars atmospheres is given by

<|z]> - <]z|> ~ 124 (b)
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Santilli assumes the above average value as proportional; in first approximation to
the (average) density of the atmosphere. Then, the assumption that the quasars atmosphere
is up to 104 denser than our Earth’s atmosphere implies the following possible redshift

which is fully within current experimental capabilities.

A considerable variety of additional experiments can then be conceived. In fact, all
historical tests of Einstein's special relativity have been conducted in empty space, as well
known. The same experiments can therefore be repeated within physical media 23 (see
Santilli (1991d) for details).

from which all other aspects of the relativity can be derived (within inertial
reference frames).

But, as stressed by Santilli, inertial frames are a philosophical abstractions
because they do not exist in our Earthly environment, nor they can be attained in
our Solar or Galactic systems. Also, extended particles do not generally move in
empty space, but within physical media. The covering principles submitted by
Santilli (1983a), (1988c), (1991d) in an attempt to represent more general physical
conditions are:

ISOPRINCIPLE I: The inhomogeneity and anisotropy of physical media, with
the underlying space remaining homogeneous and isotropic;

ISOPRINCIPLE II: The local invariance of the maximal, speed of causal
signals within physical media, with the underlying invariant causal speed in
vacuum remaining that of light; and

ISOPRINCIPLE II: The local invariance of physical laws under the most
general possible nonlinear and nonlocal groups of isometries of isominkowski
spaces of Class I representing physical media, with the conventional linear and
local isometries on the Minkowski space being admitted as a particular case;

from which all aspects of the isospecial relativities can be derived, such as the
selection, among the multiple infinity of noninertial frames of the Universe, of the

29 The interested experimenter should always keep in mind the necessity of considering
inhomogeneous and anisotropic media for a valid test. In fact, as stressed by Santitli, his
isodoppler law implies that light passing through water or other homogeneous and isotropic
media i5 not redshifted at all. '
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subclass of equivalent frames characterized by the general, nonlinear and nonlocal
isopoincare symmetries.

Inertial frames are recovered as a particular case in first approximation
via the reduction of the general to the restricted isosymmetries (that is, from Fig. 2
of Sect. 11, via the averaging of the characteristic b-functions of the medium
considered to b-constants).

Finally, we should mention that the Lorentz-isotopic relativities considered
in this section are particular cases of expected, still more general Lorentz-
admissible relativities for the most general possible open-nonconservative
conditions (Santilli {1981a)).

NOTE ADDED IN 1997

Following the appearance of the memoir Santilli (Foundations of Physics 27, 691,
1997) the isogeneral and isospecial relativities are unified into only theory, that of
this section, which therefore includes also gravity when the isominkowskian metric
is equal to the Riemannian metric.

This unified formulation of the special and general relativities for both
exterior and interjor problems is requested not only by the lack of invariance of the
basic units of space and time for geometries with non-nuil metrics (see the note
added at the erjﬁ of the preceding section (p. 176), but also by other independent
needs.

For instance, curvature is a major obstacle in the inclusion of gravitation in
unified gauge theories of electroweak interactions. The formulation of gravitation
in a form axiomatically equivalent to that of the electroweak interactions, that is,
flat, provides serious grounds for a grand unified theories (loc. cit.).

Similarly, curvature is a major obstacle for a physically consistent operator
form of gravity. in fact, current quantum theories are nonunitary, thus having a
number of physical shortcomings, such as (loc. cit.k lack of invariance of the basic
units of space and time; lack of conservation of Hermiticity in time; lack of
invariant numerical predictions; etc.

Santilli’s formulation of gravity via his isospecial relativity offers again solid
scientific grounds for a resolution of the latter problems too. In fact they permit
the construction of an axiomatically consistent operator form of gravity obeying
the axioms of the conventional relativistic quantum mechanics (loc. cit.).
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1.14: ISOGALILEAN RELATIVITY

In our reverse order of presentation, we now review Santillis isogalilean
relativities for interior dynamical conditions, as a particular case of Santilli’s
isospecial relativities.

More specifically, we shall present the isogalilean relativities as an isogroup
contraction of the isospecial relativities. In this way, the content of this section wili
be a second necessary complement to the gravitational studies of Sect. 12, because
valid in their local tangent places in a nonrelativistic approxirnation.

Santilli's proposed the isotopic generalization of Galilei'’s relativity in his
historical memoir of 19783, as a particular case of his more general relativity of
Lie-admissible type. The generalized relativity was then studied in details, for the
nonlinear and nonhamiltonian but local systems, in the two monographs Santilli
(1978e) and (1982a) under the name of Galilei—isotopic relativities. The generalized
relativities were then extended to nonlocal systems in Santilli (1988a) and reached
their final formulation in the monographs Santilli {(1991c, d).

Again, as it had been the case for the generalization of the special relativity,
Santilli constructed his isogalilean relativities alone. In fact, rather oddly, no
independent researcher cared to write a paper on such a manifestly basic
advancement during its construction, despite the appearance of the monograph
Santilli (1982a) in the prestigious series “Text and Monographs in Physics” by
Springer-Verlag with the title of Chapter VI, p. 199, “Generalization of Galilei’s
Relativity”.

As of this writing, the only paper on the isogalilean relativities that has
appeared in print by independent researchers, to this author’s best knowledge, is
that by Jannussis, Miatovic and Veljanosky (1991) on explicit examples of the new
relativities.

To begin, let us identify the nonrelativistic limit of isominkowski spaces
MI(xgA) , which was studied first in Santilli (1988c), Appendix A.

Consider the fundamental isoinvariant of MI(xgR) in the form

2
| R
— ¥b 2 -l = -—; (14.0)
c k Co2
0
then it is easy to see that at the limit
R
€= — 3 {14.2)

Co
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we have the contraction
MoaRp e mg > ApRiroA) (143

namely, the isominkowski spaces contract into Santilli’s isoeuclidean spaces for the
space coordinates

Er6R: 2 = rtar, (14.40)
G =diag. 6,2 6,2 52> 0, (14.4b)
f = A, 1, =diag. (@7, 671, (14.40)

mulftiplied the isospace for time
-2

2 =162t > # =8, 1, = by , 145)
Thus,
I(x 8 =
M(x’g’m|R/co=>o R x Elr,3.4), (14.6)
which is a clear’isotopy of the conventional contraction
Nl o @ RpErss) (147)

Remarkably, Santiili (1988a) first identified isospace RyxE(r,87) as the
fundamental space of his isogalilean relativities, and then proved its compatibility
with the isominkowski soace in (1988c).

We now review the nonrelativistic limit of the isopoincaré symmetries P(3.1).
We shall use the isotopic generalization of the conventional techniques of group
contraction of the Poincare group P{3.1) into the Galilei's group G(3.1) (see, e.g.,
Gilmore (1974}

P3.1) = {O(3.1) ® T(3.1 =GE.1) = [0(3) @T(3)] x [T3) x T{1)] (14.8)

I R/cg=0
which was studied for the first time also in Santilli (1988c), Appendix A, via the
following

THEOREM 14.1 (Isotopic Indnii-Wigner contractions, (loc. cit)): Let § be a (finite-
dimensional) Lie-Santilli algebra defined on an isotopic field F of real or complex
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numbers, and consider its direct-sum decomposition as isovector space
g=8 0 8 (14.9)

Let Ufe) be an isotransformation on g which becomes singular at the limit € = 0,
and which is such that

00 * g, = &y (14.10a)
G+ g = 0. - (14.10D)

Then § can be contracted with respect to §, into a new isoalgebra g iff g,is a
closed subgroup of g, in wihich case:

1) 8 is a subalgebra of both gand g,

2) g becomes an Abelian invariant subalgebra of g; and

3) @ is non-semisimple.

The application of the above theorem to the isopoincaré algebra P3.1} is
straightforward. Consider the basis of B3.1%; decompose it as an isovector space in
the form

M3l =8, © § = U+ P +PJ@ g (14.11)

redefine it in the vicinity of the "north pole” (O,R) (see Gilmore (foc. cit. ) p. 451),
and perform the contractions

Jy = ml R/co=>0€kij Jij =Ekij(ripj Ty (14.12a)
Py = LiMjp e 0 Pk ~Pr H=LiMp, o oP4=P4~ E, (14.120)
- Li 4 _ 4
Gk—letR Jens30 Jk4/R leR 0(xkp X“p /R, (14.12¢)
Lik = L33,

where we have assumed a new nonrelativistic expression for the energy.

Then, it is easy to see that the isocommutation rules of K3.1), Eq.s (13.33), are
contracted into the isocommutation rules of the Galilei-isotopic algebras &(3.1), Eqs
(14.30) below, in exactly the same way as the commutation rules of K3.1) contract
into those of G(3.1).



J. V. Kadeisvili -219- Santilli’s Isotopies

The isotopic liftings of contraction (14.8) then identifies the structure of the
isogalilean group as follows

P31 = {0610 e 3.1 =3{3.1) = [O(3) T3 % [T(3) x T(1)]. (14.13)

Vr/eym0
The crucial local isomorphism between all infinitely possible isotopes G(3.1) and the
conventional group G{3.1) can therefore be inferred already from these introductory
remarks.

We now review Santilli's construction of G(3.1). As well known, the
conventional Galilei symmetry G{3.1) (see, e.g., Levy-Leblond (1971) or Sudashan
and Mukunda (1974)) can be defined as the largest Lie group of linear and local
transformations leaving invariant the separations

ta'_ tb = inV.,

- 8 fr. — tu)=i =
N ijIg —mp)=inv. at ty=tp (14.14)

i,j=12 3 FExy 2z, a=12..,N

in §Rt>< T*E(r,3,R), where R represents time, E(r,5,51) is the conventional Euclidean

space, and T*E its cotangent bundle {phase space), with metric & = diag. {1,1,1) over
the reals ®.
The explicit form of the celebrated Galilef transformations is given by

t' =t + t° translations in time (14.15a)
Iig = Iy + 1°, translations in space (14.15b})
r, =71, + t°v,  Qalilei bosts {14.15¢)

ia 1a I
r'y = R@)r,,  rotations. (14.15d)

A classical realization of G{3.1) for a system of N particles with non—null
masses, my # 0, a = 1, 2,..., N herein assumed, is characterized by the {ordered sets of)

parameters

w o= {wy) = 6;, v, ), k=12.10, i=123 {14.16)

and generators
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= (%) = U5, G, v Py H), (14.17a)
Iy = 2a€iim Mla Pmar P T 2, Pia (14.17b)
Gj = 2almgrjy ~ tpia)' H = p, Py, /2m, + Vi ph (14.17¢)

r i=123 k=12.,10, ab=12.,N

ab Ta=™ Ty

with canonical realization of the Lie algebra G{3.1) via the conventional Poisson
brackets

G(3.1): [J].,Jj] = €x e ,. 7 = ik P (14.18a)
[Ji,Gj] = €k Gps [Ji,H] = 0, : (14.18b)
[Gi,Pj] = §jj M, G, Hl = P, (14.18¢}
[Pi,Pj] = [Gi’Gj] = [pj,Hl = 0, (14.18d)
M = X, my 7 (14.18¢)
Casimir invariants

oo Wap2 v, 2= - GAPR (14.19)

and canenical realization of the group structure
GB.1}: & = gwa={explw, WP 8)(1( (14.20)

apL =9/3al, a = () = (ria , pia), = 1,2..6N,

where @tV is the canonical Lie tensor (Sect. 9).

As now familiar, the starting ground of the liftings G(3.1) = G(3.1) is the
infinite number of isotopes B(r,3,#) of the Euclidean space E(r,3®) which are
extended to the isocotangent bundle T*E(r,5,R). A nonhamiltonian system of N
particles, Eq.s (1.1}, is then introduced in such isospace with the familiar local

coordinates a= aM) = (ryg Peh =102 .. 6N k=123Fx v,z anda=12 .,
N.
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The system is then represented via the Pfaffian—Santilli variational principle
{Sect. 7} which is essentiaily based on the one-isoform on T*E;(r,3,) (Sect. 5)

¢ =6 xT) =Ry TWa, (14.21a)
R = (p0, T, = diag. 8 8), (114.21)
8 = diag. (b2 b2 bgd), by =bylt 1, p, P, ) > 0. (14.21c)

The isospaces for the treatment of the symmetries of the systems are
T*E,8.R) = T*E(r,GR), which are characterized by the two-isoform

Ty =[t Tma(a...) ] dat A da¥ = dIT)(a, . )R"], dat, (14.22a)

T, = Diag. (6, &), G = diag. (8,2 B, B3, By >0, (14.22D)

where the methods to construct the isometrics & from & are assumed to be known

(see Sect. 9).
The Lie—Santilli brackets characterized by two—forms (13.22) are given by the
now familiar expression in T*E{r,G.H)

( | oA nay v oB

A Bl = — @ — (14.232)
aat 2a aa¥ ,

1, = diag. €L, 67D, . (14.23b)

where i@ is the familiar canonical Lie tensor.
We are now equipped to introduce the following

DEFINITION 14.1 (loc. cit.) Santilli’s “general, nonlinear and nonlocal, isogalilean
symmetries” G(3.1) are given by the Lie-Santilli groups of the most general possible
transformations on #; x T*E(r,GH)

tag = tp =inv, (14.24a)

(rga= Ty B2t 7 p. )by - ) =inv. atty=tp, (14.24b)
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ta thR ¢ I p€ T'ERGH) (14.24c)

where i is an isotopic lifting of the conventional field Ry called Santilli’s “isotime
field", with explicit structure

f = Rl 1y = By 24ep)  By>0 (14.25)

T*E(r,G,A) is the isocotangent bundle for isosymplectic two-isoforms with
isometrics (14.22), and the four functions B, By Bz and By besides being

independent and positive-definite, are arbitrary nonlinear and nonlocal le.g,
integral) functions on all possible, or otherwise needed local variables and

quantities.
We now reproduce without proof the following

THEOREM 14.1 (loc. cit.) Santilli’s general, nonlinear and nonlocal, classical
realization of the Galilei~isotopic symmetries G(3.1) on fx T*E(r,GA) as per

Definition 14.1, can be written

t=t+tB 4_2, iso-time translations (14.26a}
re=rt r’ Eiuz, iso-space translations (14.26b)
oSt EVY B2, iso—Galilei boosts (14.26¢)
r = R)*r, isorotations, (14.26d)

where the B—functionsare generally nonlinear and nonlocal in all possible local
variables and quantities to be identified shortly. Moreover, the Galilei-isotopic
symmetries ((3.1) are characterized by the Lie-isotopic brackets (14.23a) with
explicit form
) dA 9B gA 9 9B
A"Bl= — B2 — - — B, ° — , (14.27)
or O9Pka  apy K
ka a O Tka

and possess the foilowing structure:
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1) the conventional Galilean parameters

w = (wy) = (6, 1%, v th k=12.10

and the conventional Galilean generators,
TEGGH) ie,

(14.28)

but now defined on isospace Ry X

Jj = Zaeijk TPy P = Za Piy (14.29a)
Gi = 2 m r. - tp) (14.29b)
H = py B 2p, /2my & Vi) (14.29¢)
b =lra - rgt= tr - 1 )8 20 - n (14.20d)
2) the Lie~Santiili algebra
Gl ;a) = € B 20, P - B PP (1430
[J1 :Gj] = € Bj"z G, LBl =0, (14.30Db)
CRIEES MBj_z, (G, 7Bl = o, (14.30¢)
1Bl =0, (14.300)

P Ppl=1Ilg..Ggl=1Ip
i ] P77

3) the Lie-Santilli group

wg wH®

63D = {[er
3
4) the local isocasimir invariants

C(O) = '[2’ C([]

= (PGP - MH} 1,

O'V(

x1,% (@ X )(a,)
2 W 1), (514.31)

(14.31a)
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C(zl =(MJ - G/\P)Q ={MJ - GAP)G(MJ-GAP)}'IZ (14.31H)

5) the explicit expressions of the Bj functions

B‘i_z(f) =|3.i'2 + 1% [Bi‘2,“Pj] 12+ 11 (B2 TPy TPl / 31+

(14.32a)
B2v) = B2 + v B2 GI/2 + v°_v* B 2]G_17Gy +

1 i i m” n'Pt Yy’ Ul T

(14.32b)
while 34_2(1‘") is the solution of the algebraic equation
s 2 ' x1,7 (6 W)

i+ B, ) = {e Lo Vi (14.33)

3

The isogalilean symmetries so constructed result to be all locally isomorphic to
the conventional Galilei symmetry under the conditions of sufficient smoothness,
nonsingularity and positive-definitness of the isounits. Finally, all isosymmetries
G{(3.1) can approximate the conventional symmetry G(3.1) as close as desired
whenever the isounits approach the conventional unit, and they all admit the
conventional symmelry as a particular case by construction.

The preceding results evidently include as a particular case the
characterization of the isoeuclidean symmetries E(3) = O(3) @ T(3), as well as of the
isorotational symmetries &(3) of the next section.

It is an instructive exercise for the interested reader to prove that the
infinite family of isosymmetries G(3.1) so constructed do indeed verify the
conditions of Definition 14.1 and, in particular, do constitute isosymmetries of

invariants (14.24).
COROLLARY 14.1.1: In the particular case of constant isometrics 8, we have

RTE (13 R) = RTRGR) = RXTEESH) (13.344a)

g = G = diag. (b]2 b2, bg?), by = const. > §; (14.34b)
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1, = by? = const. > 0, (14.340)
the B~quantities coincide with the diagonal elements of the isounits,
B o) = B7Av) = B2=p;2 By A = b2 (14.35)

and the general isogalilean transformations become the linear and local isogalilean
fransformations

v =t e+t 72 (14.36a)
rp=1 4 b7 (14.36b)
rpeTot t°V°; b2, (14.36¢)

' = RO)*r. (14.360)

called Santillis “restricted isogalilean transformations”.

The latter isotransformations have important implications from a relativity
viewpoint., bec{ihse they imply the possibility of preserving the inertial frames.

We novx_f"f*pass to the review of Santilli’s isogalilean relativities. As well
known, the cofnventional Galilei relativity (see, again, Levy-Leblond (1971) or
Sudarshan and Mukunda (1974)) is a form~-invariant description of physical systems
under the Galilei's symmetry G(3.1) or, equivalently, under Galilei’s transformations
(14.15)

The relativity is verified in our physical reality only for a rather small class
of Newtonian systems, called by Santilli (1982a) closed selfadjoint systems. These
are systems (such as our planectary system) which verify the conventional total
Galilean conservation laws when isolated, and can only admit internal forces of
local (differential) and potential (selfadjoint) type without collisions.

For all remaining Newtonian systems, Galilei’s symmetry is violated
according to a number of mechanisms classified by Santilli (1982a), pp. 344-348, into

isotopic, selfadjoint, semicanonical, canonical and essentially seifadjoint breaking.

In the final analysis, the limitations of Galilei's relativity are inherent in its
mathematical structure. In fact,
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1) The linear character of Galilei’s transformations is at variance with the
generally nonlinear structure of the systems of the physical reality of the interior
dynamical problem, as established by incontrovertible evidence;

2) The Jocal {(differential} character of Galilei’s relativity is at variance with
the generally nonlocal  (integral) nature of the systems in our Earthly
environment;

3) The strictly Hamiltonian (canonical) structure of Galilei’s relativity is at
variance with the generally nonhamiltonian character of physical systems of our
reality;
and other reasons.

An infinite family of isofopic generalizations of the Galilei symmetry, under
the name of Santilli’s isogalilean symmetries G(3.1) has been reviewed in this
section. Their main features are the following:

A} The isogalilean symmetries characterize the more general class of closed
non-selfadjoint systerns . These are systems (such as Jupiter) which verify the
conventional, total, Galilean conservation laws when isolated, while admitting the
additional class of nonlocal, nonhamiltonian and nonnewtonian internal forces as
in Eq.s (1.1).

B) The isogalilean symmetries possess structure (14.13}, and resuit to be
locally isomorphic to the conventional symmetry G{3.1} under the positive-
definiteness of the underlying isounits, by admitting the latter as a particular case.
In this sense, ({3.1) provides an infinite family of Lie-Santilli coverings of G(3.1)

C} All symmetries G(3.1) can be explicitly constructed via the Lie-Santilli
theory, that is, via the use of the same parameters and generators {conserved
quantities} of the conventional symmetry, but via the most general possible, axiom-
preserving realizations of Lie-Santilli algebras and groups. In this way, an infinite
number of symmetries G{3.1) can be constructed for each given Hamiltonian H = T
+ ¥ (i.e,, for each given potential-selfadjoint forces), as characterized by an infinite
number of possible interior physical media.

DEFINITION 14.2: Santilli’s “general, nonlinear and nonlocal, isogalilean relativities”
are the a form-invariant description of physical systems under the isogalilean

symmetries G(3.1) on isospaces RxT*Er,GH), R = R 1y = diag. @ 6™, R = R
1, 6> 0,19 > 0,1y > 0, with corresponding, infinite family of general isogalilean

transformations (14.26). Santilli’s ‘restricted isogalilean relativities” occur for the
linear and local subclass of isotransformations (14.36).

To begin the understanding of Santilli’s isogalilean relativities, one should
keep in mind that the isotopic formulations were conceived and constructed by
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Santilli in such a way to coincide with the original formulation at the abstract,
realization—free level. The reader should therefore expect that the isogalilean
relativities coincide, by construction, with the conventional relativity at the
abstract, coordinate—free level

As reviewed earlier, the generalized physical laws characterized by the
isogalilean relativities are given by the modification of the Galilean laws caused
by the addition of contact, nonlinear, nonlocal and nonhamiltonian forces between
the particles and the interior physical medium.

The best illustration was given in Fig. 2, Sect. 12, via the generalization of the
celebrated Galilean law for the uniform motion in vacuum

RS PR S A {14.37a)
p; = pj + MV, (14.37h)
into Santilli’s isoboosts
=1y + v B 2T, (14.382)
pi = p; +mviB At 1, p. (14.38b)

which represent jprecisely the behavior of an extended particle with original speed
v° in “free motion” within a physical medium, that is, when all potential forces are
null, but the particle is subject to the contact forces with the medium.

One can then see that, while the original law (14.37) describes the uniform
motion in vacuum, Santilli's covering law (14.38) describes a decelerated or
accelerated motion, depending on the physical conditions at hand.

A fully similar situation occurs for ail other physical laws. The case of the
generalized rotations is reviewed in the next section.

To understand the equivalence of Galilean law with Santilli's coverings, we
note that, despite the nonlinearity and nonlocality of the latter, all isogaiilean
transformations (14.38) locally coincide with the conventional transformations
(14.37) ie. they coincide at a given, Tixed valuet, T, p, ... of the local variables

B 20T, p.) =t°=cost, B LT P.) =17, (14.39)

oy

Qi

=l
]

v ° = const, R(B)E— R@). {14.39b)

e
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A similar situation evidently holds for the physical laws, namely, we can
state that the physical laws characterized by Santillis isogalilean relativities are
locally equivalent to the laws of the conventional Galilci relativity.

Second, we recall that the topological structure of Galilei's law (14.37) is
given by

T(v°) r = -1 v, TV p - mv°i' (14.40a)
e @G )

TW) = IEV e J)( K, (14.40b)

TV TV = TV +v*), . (14.40¢)

while the corresponding structure of Santilli's covering law (14.38) is given by

N *1 = rj-t° v B T(v)*p, P~ lEi_?‘, (14.41a)
91,7 6 G) @)

7 = “ek,vjm b 1p) (14.41b)

v WTiv) = T + v (14.41c)

The identity of laws (14.37) and (14.38) at abstract, realization—free level is
then evident.

However, the above local and global equwalences are still insufficient for a
true understand of Santilli’s isogalilean relativities.

It is at this point were our reversed order of presentation acquires its full
light. In fact, Santilli’s primary and most important conception of his generalized
relativities is that of novel GEOMETRIC character.

In fact, the understanding of the physical equivalence of laws (14.37) and
(14.38) requires the knowledge that,

in the same way as the Galilean uniform motion (14.37) is a geodesic in Euclidean
space Efr,5,%), Santilli’s isouniform motion (14.38) is an isogeodesic in the
isoeuclidean spaces E(r,8#) (see Fig. 2 of Sect. 11 for more details).

[n this way, and only in this way, the reader can understand that Santilli
constructed his coverings of the Galilei relativity in such a way to preserve the
underlying axioms, and realized them via more general geometries.

The reader interested in acquiring a technical knowledge of Santilli's
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isogalilean relativities is therefore suggested to study them via a particularization
of the isoriemannian geometry of Sect.s 11 and 12 for nuli isoconnection
coefficients.

We have reached in this way the most important physical result of this
section, which can be expressed as follows:

THEOREM 14.2 (loc. cit.): All possible Santilli’s isogalilean relativities on
Re<T*E(r,GR) coincide with the conventional Galilei relativity on #yxT*Elr8®) at
the abstract, realization—free level, that is. at the abstract limit considered:

a) all infinitely possible isogalilean symmetries G(3.1) coincide with the
conventional Galilei symmetry G(3.1) {global aspect}

b) all infinitely possible isogalilean transformations (14.26) locally coincide with the
conventional transformations (14.15) (local profile} and

¢) all physical laws of Santillis isogalilean relativities coincide, by construction,
with the conventional Galilean laws (physical profile)

Despite such mathematical and physical unity, the differences between
Santilli"s and Galilei’s relativities are nontrivial.

To begin the illustration of this point, let us recall that Galilei’s relativity
solely applies to inertial frames and establishes the equivalence of all inertial
frames, as well known.

On the contrary, Santiili’s relativities strictly apply to noninertial frames, by
conception, that.is, they have been conceived to be applicable to actual physical
frames of our Earthly environment which, as well known, are precisely noninertial.

Moreover, Santilli’s relativities establish equivalence subclasses of
noninertial frames, those with respect to the center-of-mass frame of the system
considered, each class being characterized by each relativity (i.e, by each physical
medium). The understanding is that different systems imply different subclasses of
isotopically equivalent frarmes.

As Santilli puts it, physical events can occur in the Universe according to a
multiple infinity of noninertial conditions. The isogalilean relativities essentially
indicate that all these noninertial frames cannot be reduced to one single class of
equivalence, but require their classification into subclasses of frames.

Moreover, Santilli has shown that only a portion of all possible noninertial
frames are isotopically equivalent to the observer’s noninertial frame at rest with
the interior medium considered, because the remaining classes of equivalence have
the more general Lie-—admissible character.

But the isogalilean relativities are coverings of the conventional one. This
means that the conventional inertial aspects are not lost, but fully included and
actually generalized in the broader isotopic setting. In fact,
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for the case of the restricted isogalilean relativities of Definition [4.2, the
underlying isotransformations (14.36) are linear, thus preserving the inertial
character of the reference frames.

Also, Santilli points out that such a linear—inertial character always holds for
global-exterior observers, ie., for the description of interior effects as a whole, in
which case the characteristics B—functions are averaged into constants (Fig. 2 of
Sect. 12). On the contrary, the nonlinear-noninertial character emerges only localty
in the study of individual interior trajectories.

This elaborates in more details the abstract equivalence of Santilli’s and
Galilei's relativities, because the latter is indeed a global description in the indicated
Sense.

We now briefly outline the application of the isogalilean relativities for the
characterization of physical systems. Recall that nonselfadjoint systems (LI} are
called “closed” when they are isolated from the rest of the Universe and therefore
verify all total Galilean conservation faws.

LEMMA 14.1 (loc. cit. Necessary and sufficient conditions for the isoinvariance of
closed nonselfadjoint systems (1.1) under the symmetries G(3.1) with isounit 15 are
that: 1) they can be consistently written in isospace Rp<T*Elr,G A} 2) they admit the

representation in terms Birkhoff-Santilli equations

daM oH
— = o1, M) . (14.42)
dt 2’

where 1, is the isounit of G(3.1): and 3) the Hamiltonian is an isoscalar

H = pj, Gij(t, T, Py pjafzma + Virgp)h (14.433)

T, = [(I‘ia - l‘ib) Gij(r,p,...) (l'ja - l‘lb)] (14.43b)

ab

Translated in a physical language, Santilli’s isogalilean relativities imply a
new notion of composite system, with far reaching implications, not only

classically, but also quantum mechanically.
Recall that the conventional Galilei’s relativity provides a form-invariant

description of the following closed selfadjoint systems in Ri*T*Elr,5,R)

i /m
a=0n= ( ka ) = = = (=Mt a) =( Pha a) (14.44a)
Pka SA(r)
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axX. gxj _
Xt a) = il bt — =0 (14.44b)
oatt ot

k=123 a=123.,N p=12.,6N

where the X's represent the familiar, total, Galilean, conserved quantities

Xy =H="Tip) + V1), (14.45a)

(Xp X3, X9 = (B) = X3 by (14.45b)
Xy, Xg X) = M) = X 1, APy (14.45¢)
(X Xgr X10) = (G = Za(ma fra = tPy,h (14.45d)

The content reviewed in this volume has established that Santilli’s isogalilean
relativities provide instead a form-invariant description of the more general
closed nonselfadjoint systems on R4 T T*L{r,6.R)

. ,
a=( - ( ka ) I = (M a48.))
Pra
/m,
- (pka a ) (14.46a)
SA 0+ FSA L pp )+ Sodo FAt b )

X aX;
X, = ST R, (14.46b)

dat ot

i=1,2.,10, k=101238 a=L2.,N p=1L2..,6N,

where the X's are exactly the same as in Eq.s (14.45).

To understand this occurrence, recall that in the conventional Lie theory, the
generators represent total conserved quantities. But the generators and parameters
are kept unchanged as a central condition of the Lie-Santilli theory3C. One

30 The mathematically oriented reader can now see the far reaching physical implications
of an elementary mathematical property reviewed in Sect. 3, namely, thal the basis of a
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therefore reaches the conclusion that the isotopic liftings of the conventional
Galilean symmetry G{(3.1) guarantee the transition from a closed selfadjoint to a
closed nonselfadjoint systems.

Stated differently, generalized systems {14.46) are, in general, systems with
subsidiary constraints given precisely by the total conservation laws. This is the
way they were originally identified (Santilli (1978b)) and treated (Santilli (1872a)). The
advance made in Santilli (1988a), (1991d) is that of removing their constrained
character via the imposition of the isogalilean symmetries.

The emergence of a novel concept of composite system is then evident. It is
important to indicate some of their physical implications, so as to provide the
reader with an indication of the possible classical and quantum mechanical
applications,

[n essence, the contemporary concept of (nonrelativistic) composite system
is represented, classically, by the planetary structure, and, quantum mechanically,
by the atomic structure. In both cases:

a) the individual constituents are in stable orbits;

b) the interactions are at-a-distance, potential type; and

c) the center of the system can only be occupied by a mass much bigger
than any of the peripheral constituents.

Santilli’s composite systems are more general than the above ones. In fact,

a) the individual constituents are in generally unstable orbits;3!

) the mutual interactions are, not only at-a—-distance, but also of the actual,
mutual contact; and

2) the center of the system, called “Santilli’s isocenter”, can be a particle of
arbitrary mass, including a mass much smaller than that of the peripheral
constituents {Santilli (1988a), (1991d).32

The reader can now understand the physical implications. As an example,
the entirety of hadron physics has been developed until now as a closed selfadjoint
systems with individual constituents in stable orbits, trivially, because all these
theories are conventionally Lagrangians or Hamiltonians.

But, the wavepackets of all massive particles, including the hadronic
constituents, must have a dimension of at least IF, that is, of the order of the
dimension of all hadrons Thus, hadrons are constituted by constituents in
conditions of total mutual penetration, resulting precisely in the historical open
legacy of their uitimate nonlocal structure.

-

vector space is left unchanged by Santilli’s isofopies.

31 Except for the case N = 2 for which only one stable orbit is admissible and that orbit i
the circle. Note that the case N = | does not exist because one single isolated particle is free
and cannot experience any interaction, whether selfadjoint or not.

32 This is only one of the many physical implications of the contact internal forces,
evidently because they can literally constrain a lither particle at the center.
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This renders Santilli's notion of composite system directly applicable to the
hadronic structure. As a matter of fact, as clearly stated in memoir (1978a,b), he
entered into the laborious process of generalizing all current relativities precisely
for the purpose of attempting a more adequate representation of the hadronic
structure and, possibly, the identification of the hadronic constituents with suitably
altered forms of ordinary particles.

As an example, Rutherford’s original conception of the neutron as a
"compressed hydrogen atom” (i.e., as an ordinary electron compressed all the way to
the center of the proton, say, in the core of a star) was claimed to be fundamentally
inconsistent within the context of conventional quanturmn mechanics. On the
contrary, Santilli (1989a, b, ¢, d) has shown that the hypothesis is fully consistent if
treated via his isogalilean and isospecial relativities. In fact, Rutherford’s electron
cannot possibly be an ordinary Galilean or Einsteinian “center”, but it can indeed be
“Santilli’s isocenter”.

We regret the inability to review the two-body and three-body closed
nonselfadjoint systems to avoid an excessive length of this volume, and we refer
instead the reader to Santilli (1991d), and Jannussis, Miatovic and Veljanosky (1991).

Another effective way of appraising the possible physical relevance of any
covering relativity is by identifying its implications for the characterization of a
particle.

DEFINITION 14.3 (Santilli (1989): A nonrelativistic isoparticle is an isorepresentation
of one of the;infinitely possible Isogalilean symmetries G(3.1} on isospace
A<TE(,GRA) . Equivalently, a nonrelativistic isoparticle can be defined as the
generalization of the conventional notion of particle induced by the isotopic
liftings of the units

=1ef =71 efy, (14.47a)
[ €TErSR) = 1y =diag (67L& e T'ErGH). (14.47b)
8 =diag. (11,1) = G=diag. (8", By72, B39 > 0. (14.47¢)

The above definition is intended to express the need, first, to represent the
actual shape of the particie considered and, consequentially, of all its infinitely
possible deformations. As a result, when a particle is realistically represented, it can
possess an infinite number of different intrinsic characteristics depending on the
infinitely possible local conditions.
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The simplest possible case is the nonrelativistic particularization of the “free
relativistic isoparticle” of the preceding section, which is characterized by the the
constant isometrics

8 = G = diag. (b2, bgz, b3?), b= constants >0, (14.3)

and Hamilton—-Santilli equations
t = by CoH/ap, =pym=v; (14.42)

pi=-b CoH/or; =0 (14.4b)

Thus, the isogalilean equations of motion are, in this case, identical to those
of the conventional Galilei’s relativity. Nevertheless, the use of the isogalilean
relativities permits the direct representation of:

1} the extended character of the particle;

2) the actual shape of the particle considered; and

3) an infinite class of possible deformations of the original shape;
all the above already at this primitive, classical, nonrelativistic level33.

An endless number of additional examples can then be worked out with the
inclusion of any combination of conventional, local-potential, as well as nonlocal-
nonpotential interactions (see the exampleS at the enD of Sect. 7, and Santilti (1991d).

By recalling the “Theorems of Direct Universality” of Santilli’s isotopic
formulations for systems (1.1), we have the following important property:

PROPOSITION 14.1: Whenever applicable, all Santilli’s general and restricted
isogalilean relativities are exactly valid for the systems of our physical reality.

To state it differently,

Santilli’s classical isogalilean relativities do not need any experimental verification
because verified by construction by the systems of our physical reality.

We can now reverse our order of presentation as follows:

I) assume the isogalilean relativities as the fundamental ones;

11) construct the isospecial relativities as derived from a first generalization;
and

33 In addition, there is the emergence of a form of mass-renormalization also within a
purely classical context (see Santilli (1991d), Appendix I1LA).
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IIT) construct the isogeneral relativities as the final generalization on
isocurved isospaces.
with evident enclosure properties

SANTILLIS SANTILLI'S SANTILLI'S
ISOGENERAL O ISOSPECIAL = ISOGALILEAN
RELATIVITIES RELATIVITIES RELATIVITIES

Then,

Owing to the deep compatibility and inter-relations of Santilli’s covering relativities,
the established exact validity of the isogalilean relativities provide rather solid grounds
for the exact validity of the remaining isospecial and isogeneral relativities.

The understanding is that the experiments proposed in the literature for the
verification of the isospecial relativities are necessary for the final resolution of the
issue.

I.15: ISOROTXTIONAL SYMMETRIES

In this section we shall review Santilli's infinite family of classical, isotopic
generalizations O{3) of the rotational symmetry O(3) on isoeuclidean spaces Bir,3$),
called Santiili’s isorotational symmetries, or rotational-isotopic symmetries .

Isosymmetries {3} were introduced, apparently for the first time, in Santilli
(1978a);, expanded in Santilli (1982a)l and finally studied in details in Santiili (1985b) in
their abstract, and therefore nonlinear and nonlocal version. The classical nonlinear
and nonlocal realizations of 0(3) were studied for the first time in Santilli (1988a)
and then expanded in Santifli (1991d).

Regrettably, we shall be unable to present, for brevity, the isorepresentation
theory of O(3), which has been studied within the context of the covering isounitary
symmetries SO(2) in Santilli ({1989), jointly with other liftings of the conventional
theory, e.g., the iso—Clebsh—Gordon coefficients, etc.

We believe that this topic is the final necessary complement of the analysis
of this volume, because it constitutes the central part of Santilli's isogeneral,
isospecial and isogalilean relativities.

Stated in a nutshell, the conventional rotational symmetry provides a
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theory of rigid bodies, as well known. Santilli’s covering isorotational theory
provides instead a theory for extended and therefore deformable bodies. In
particular, the theory of isorotations establishes the preservation of the exact O(3)
symmetry for all infinitely possible deformations of the sphere as clearly
established in Santilli (1985b), contrary to a rather widespread, erroneous belief in
both mathermatical and physical circles.

We felt obliged to mention in the preceding sectlons the scarcity of
independent investigations on Santilli's isotopies. We should now stress that Santilli
is the originator (in 1978) and sole contributor in both the O(3) and D(2) symmetries
to this writing (1992) without any contribution by independent researchers .

At first, this author could not believe such an occurrence, because the
rotational symmetry is the most fundamental part of all of contemporary physics.
The birth of a structural generalization of the rotational symmetry with
fundamentally novel capabilities was not expected to remain ignored. But that's as
it has been. In fact, library searches and consultations with experts in the field have
confirmed the lack of independent contributions on isosymmetries 0(3} and 0(2) to
this writing.

This review has been derived from Sect. I11.3 of Santilli (1991d). To begin, it
appears recommendable to outline first the main results of the abstract
formulation of isorotations, and then pass to their classical realization. A necessary
prerequisite for the understanding of this section is a knowledge of Sect:s I to 9.

DEFINITION 15.1 (Santilli (1985a), (1988a)): The “rotational isotopic groups” O{3), or
“isorotational groups”, are the largest possible isolinear and isolocal groups of
isometries of the isoeuclidean spaces

BeAR): 3 = T rtdr, A=A 1=T!=3%"! (15.1a)
det. T = det.8 #0, T = T, (15.16)
= @301 = Gl = 1@dn = [ Sij(r, t,1,.) tlli, (15.1¢)

characterized by: the right, modular-isotopic transformations

= Rlelr = ROISF, & = fixed, (15.2)

where the 6's are the conventional Euler’s angles, whose elements R(0) verify the
properties '
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RRE=RUR =1, (153)
or, equivalently, Rt = R\ and verir 'y the isotopic group rules
RO =1 =57, (15.4a)
RlO#RIE) = ROMR) = Rio+ 6), (15.4b)
R(OMR(-0) = 1, {15.4¢)

Equivalently, the isorotational groups O{3) can be defined as the isosymmetries of
the infinitely possible deformations of the sphere representable via the particular
realization of the isometric

8 = diag. (g ;- 8y 833) (15.5a)
P2 - T 8 T] ¥ To8pply * I38sgTs, (15.5b)

Isogroups O(3) resulted to be tridimensional simple Lie groups which can be
constructed from the sole knowledge of the isometric 8 via the conventional
(matrix) generators and parameters of the rotational group O(3).

From Egq. (15.3} it is easy to sce that isorotations satisfy the conditions
det(RB) = = I (15.6)

Therefore, O(3) is characterized by a continuous semisimple subgroup
denoted SO(3) for the case det (R®) = +1, and a discrete invariant part for the case
det (R3) = -1 representing the isoinversions. (see below).

Each one of the infinitely many possible SO(3) subgroups can be essentially
characterized as follows. The abstract, enveloping isoassociative algebra & of Sect. 6
is now realized in the form & characterized by the isounit 1, the conventional
generators J, , k=1, 2, 3, of SO(3) in their fundamental, 33 representation, and all

their possible polynomials, resulting in the infinite dimensional basis of the
Poincaré-Birkhoff-Santilli-Witt Theorem
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HSO@): 1 Jy, Jwj =) JWpdg (2§ E K, (15.7)

The isocommutation rules of the Lie-isotopic algebra SO(3) of SO(3) were also
studied (foc. cit. } and shown to be reducible to the form

[31:3]]2 :}1*3] - jj*:]i= 313:]] —_:IjS:Ii =€ijk:]k‘ (15.8)

under a suitable redefinition Jy of the generators Jy (see below), where the tensor
eijk is the conventional totally antisymmetric tensor characterizing the structure
constants of SO(3).

The Lie-Santilli groups SO(3) were obtained via an isoexponentiation of

structure (15.7) in §, resuiting in the expression

OB : R6) - {eEJ 1Oy T2%21 %) (15.9)

which can be rewritten in the conventional associative envelope £ of SO(3)

J 50 6, 8J
SO@) - R = ( kK1 = x k)
nk=l,2,3 e[E 1 k=1,23 el&
' 5@11 - 1558 (15.10
The isorotations can then be written in the simpler form
r = Rigkr = Syloir, (15.11)

which is useful for computational convenience. The understanding is that the
mathematically correct form remains the isotopic form (to prevent the violation of

the Hinearity condition).
The discrete part is characterized by the now familiar isoinversions

Per = Pr=-, (15.12)

where P characterizes the conventional discrete components of O{3).
The notion of isorotation groups was turned into that of isorotational
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symmetries by noting that, under the conditions of Definition 15.1,
isotransformations (15.4) leave invariant, by construction, the separation in E{r,3)
(Theorem 8.1), i.e.,

12 = w8y = ()= 2 (15.19

The above result holds in view of the property

¢
Sy 853 = 3, (15.14)

which is identically verified for all possible metrics § of the class admitted, plus
similar identities for the isoinversions.

The capability for the isorotational symmetries O(3) to leave invariant all
possible ellipsoidical deformations of the sphere, Eq.s {15.5), then trivially foilows
from invariance (15.13).

By using Eq.s (15.9) or {3.10), it is easy to compute a general isorotation (8.66)
around the third axis, ie,

0 0 l

codloge gl gaofe; i3 gt 0
Syl0) = ( 0 )

The above notion of abstract isorotational symmetry then leads to the following
property anticipated in Sect. &

LEMMA 15.1 (Santilli (loc. cit.} The abstract isotope O(3) of O{3) with a nowhere
singular, Hermitean and diagonal isometric (15.5a) of unspecified signature
provides a single geometric unification of all possible simple, two—dimensional, Lie
groups of Cartan’s classification.

All physical applications of the isorotational symmetries, and their use
within the context of isotopic relativities in particular, were restricted by Santilli to
the infinite class of isotopes

O3): sig.d = (+1,+1,+1), & > 0. (15.16)
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This essentially implies the restriction only to those isotopes O that are locally
isomorphic to O(3). Only the isoduals

0d(3) sig. 5 = (-1,-1,-1}, 8 <0, (15.17)

were considered by Santilli for the construction of the corresponding isodual
relativities which we have not considered for brevity34.

The terms “isorotations” or “rotational-isctopic transformations” are
therefore referred to in this volume, specifically, to those characterized by
positive-definite isometrics 8.

By recalling that all nonsingular and Hermitean metrics and isometrics can
be diagonalized, all positive-definite isometrics can therefore be written in the
diagonal form

8 = diag. (b;% by2, bs?) {15.18a)
by = byt pp.d > 0, (15.18b)

which is assumed hereon as the basic form.

The first physical motivation for the restrictions of the isometrics 3 to be
positive-definite is the following. As well known, mathematically we can indeed
deform the sphere

l'.2 = I'II'I + I'2T2 + I'3T3 > 0, (I519)

into all infinitely possible compact {ellipsoidical) and noncompact (hyperboloid)
forms

r2 =gt = O (15.20)

_—

3% gantilli’s notion of isoduality has truly intriguing possibilities in particle physics because
it permits the possibility of reconstructing exact discrete symmetries, of course, at the
isotopic level, when believed to be conventionally broken. This includes the possibility of
reconstructing parity as exact symmetry for weak interactions via the simple embedding of
all parity-violating terms in the isounit as well as in the additional degrees of freedom of
operator formulations offered by the isotopy of the Hilbert space (Santilli (1983b), (1985¢),
(1989). Note the necessary use of the Lie-Santilli theory for the very formulation of the
notion of isoduality, let alone its treatment, because it requires the nontrivial isotopic
product ATB -BTA = A (-I) B~ BD A
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which then produce the classification of all possible, compact and noncompact
isotopes reviewed in Sect. 6.

However, on physical grounds, a given sphere can only be deformed into
ellipsoids, and there exists no known physical process capable of turning a sphere
into a hyperboloid.

Additional reasons are of geometrical nature, and are motivated by Santilli
intent of reaching the unification of isotopic and conventional theories at the
abstract, realization—free level.

Along these lines, one note that a most salient geometric axiom of the
conventional theory of O(3) is the positive-definiteness of its invariant, Eq.s (15.19).
In order to achieve an isotopic theory of O{3) capable of coinciding with that of O(3)
at the abstract level, Santilli therefore preserves the same axiom.

Some of the main properties of isorotaticns can then be expressed as follows

THEOREM 15..1 (Loc. cit.) Santilli’s isorotational symmetries O3} of all infinitely
possible ellipsoidical deformations of the sphere on the isceuclidean spaces E(r,8R),

f=a,1=23L5>0, verify the following properties:

1) The groups O{3) consist of infinitely many different groups corresponding to the
“infinitely many possible deformations of the sphere {explicit forms of the
Yisometric 8), Eq. (3.18a}

-2) All isosymmetries O(3) are locally isomorphic to O{3) under conditions (3.18b)
herein assumed; and

3) The groups O{3) constitute “isotopic coverings” of O{3) in the sense that:

3.a) The formers are constructed via methods (the Lie-isotopic theory) structurally
more general than those of the latter (the conventional Lie’s theory}

3.b) The formers represent physical conditions (deformations of the sphere;
inhomogeneous and anisotropic interior physical media; etc.) which are broader
than those of the conventional symmetry (perfectly rigid sphere; homogeneous and
isotropic space; etc.); and

3.c) All groups O(3) recover O(3) identically whenever 1 = I and they can
approxirmate the latter as close as desired for T~ I.
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A first illustration of the nontriviality of the above results can be expressed
via the property indicated at the beginning of this sections, namely, that the
isorotational symmetries reconstruct as exact the O(3) symmetry for all possible
deformations of the sphere.

Note that, for general ellipsoids (15.18} the “rotational symmetry” is exact,
but the “conventional rotations” do not constitute a symmelry any longer. This
occurrence is at the foundation of the need for Santilli’s isorelativities.

The latter aspect is rendered necessary by the following property.

COROLLARY 15.1.1 {foc. cit.; While conventional rotations are trivially linear and
local in Elr,8,8) Santilli’s isorotations are formally isolinear and isolocal in Efr,8%),
but generally nonlinear and nonlocal in Er.5%), ie.,

r = Rlexr = RO} B, 5, 1,101 {(15.21)

A further important result is the isotopic generalization of the conventional
Euler’s theorem on the general displacement of a rigid body with one point fixed
(see, e.g., Goldstein (1950)), which we can express via the following

THEOREM 15.2 {loc. cit.): The general displacement of an elastic body with one
fixed point is an isorotation ({3) around an axis through the fixed point.

In different terms, isorotations characterize not only a rotation of a given
body, but also, jointly, its possible deformations. Thus, while the theory of
isorotations characterizes efastic bodies, as indicated earlier.

This completes our review of the abstract treatment of the isorotational
symmetry O(3). We are now sufficiently equipped to review Santilli'’s classical
realizations of the isorotations O{3} under the conditions of: 1) being directly
applicable to classical, closed, nonrelativistic, nonselfadjoint systems (14.46); 2)
permitting the achievement of the conservation of the total angular momentum via
the invariance of the systems under isorotations (without any need of subsidiary
constraints), and 3) allowing the inclusion of nonlocal internal forces.

The phase space of the theory is the cotangent bundle T*E(r,8,R) with the
familiar local coordinates

a = () = (ry, Pya) (15.22)

w=12.,6Nk=023Exy2a=12.,N

Isospaces T+E(r,3) are then equipped with the one-isoforms (Sect. 9)
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&y = R TH, da” = pjg §y;dr,, (15.23a)
R = (o0, T =@F)= diag@®3) (15.23b)

which is the fundamental space for the representation of systems (14.66) via

Pfaffian—Santilli variational principles.
To study the isosymmetries of the systems we have to consider the isospace

’I““Ez(r,S,éfi) of two—isoforms constructed from ene-isoforms
- — a 2 AV
by = 3] =ty T%, @M ABY, (15.24)

where w,), is the canonical symplectic tensor, and the isotopic element Ty is
_generally different than 'T‘l, with the explicit form (9.94)

- ab? ab2
(T = (2P 02, + PR, — -k, — P )=
daP sa¥
def
= diag (6, @), G =diag.(B,% B2 B4 > 0, (15.252)
(b2) = 6% = 6.8 (15.25b)
The isospace vsed in the classical isosymmetries is then given by
TEMr SR = TREOR): 1 = [5Gyt 1, p) 1y 11,y (15.260)
1, = (M) = giag 671 67D, (15.26b)

Thus, the actual invariant of the isorotational theory under study is

invariant (15.26a).
By recalling the interplay between geometry and algebras of Sect. 9, the Lie-

Santilli brackets of the theory are given by

oA aB
[A7Bl = — M%1,Y — (15.27)
aaH aa”
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oA oB 0B } oA
= — —B, 4, r1,pJ - B, At 1. p.)

oy, 9Pka Orya pya

Our objective is that of reviewing the theory of isorotations O(3) via brackets
(15.27). For clarity, we shall proceed in stages, and begin with the study first of the
case of constant isometrics

8 = diag. (b)2 by bg?) (15.282)
by = constants > 0, (15.28h)

for which T| = T,, and the Lie-isotopic brackets (15.27) assume the simpler form

) A B 8B  _ 0A
AJBl = — b2 — - — b Z — (15.29)

2 Pra Ika 9Pya

To identify the Lie-Santilli algebra SO(3) characterized by brackets {15.29),
Santilli computes first the fundamental Birkhoffian commutation rules which
are readily given by

;o) bropl ) o &
(fa 2= ( A ) =(le)=( . ) (15:30)
[pifrj] [pif pj] -5 0

Next, Santilli introduces the generators of the Lie-isotopic algebra SO(3) of
SO(3) which, as now familiar, are given by the conventional generators of 0(3), ie.,
by the components of the angular momentum

J p (15.31)

k- %kiifi P

Santilli calls the above quantities the components of the Birkhoffian
angular momentum to emphasize the fact that they characterize a generalized
notion because no longer defined on T*Eq(r,8R), but on T*E,r.8R).

Thus, while the magnitude of the Hamiltonian angular momentum is given
by the familiar expression
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J=1J {15.32)

the magnitude of the Birkhoffian angular momentum is instead given by

2 _ 1o . 2
Jo=m=J Sij Jj=J b J,. (15.33)

Note that the interpretation of components (15.31) as isoscalars in R would
imply the expressions

jk =& Tt by = =(e S pj)l T (15.34)

called the trivial isotopy (Sect. 8) hecause it does not provide a generalized
invariance, as the reader is encouraged to verify.

Also, the reader should keep in mind that we are dealing with the classical
realization of SO(3), rather than its matrix realization as in Santilli {1985b). This
implies that the generators of the isosymmetries must be ordinary functions, while

quantities (15.34) are matrices.

| To compute the isocommutation rules of SO(3), Santilli first computes the
“isocommutation rules between the angular momentum, and the local variables,
resulting in the expressions

] ce b2:
[Jk’ ri] =€y ) T (15.35a)
. )
U ol = ey py (15.35b)

{(where there is evidently no summation on the i-index).
The desired isocommutation rules of the (compact) isorotational algebra
SO(3) are then given by (Santilli {198%a), (1991d))

-~k 2
sSO3) [Ji, Jj] = c]ij Jk 1]k bk Jk {15.36)

which, under the redefinition

Iy =Py bgdy B =bybgdy g = b by (15.37)
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can be written

[31. . Jj] = € I (15.38)

This confirms the existence of a classical realization of the isocommutation
rules of SO(3) possessing the same structure constants of SO(3). In turn, this
confirms the local isomorphism between all possible isotopes SO(3) of ciass (15.28)
and SO{3} in accordance with Theoremn 3.1.

The isocenter of the enveloping algebra (Sect. 6) is given by the isounit,
which is the zero—order isocasimir, C® = 1, and magnitude (15.33} of the

Birkhoffian angular momentuin, C(z) = J2 , as expected. [n fact,

(2 J] = {Jk bk Jk, Jl = z.eklJ Iy J] = 0 (15.39)

Note that the isosquare of J has the particular geometrical significance

J2 = (det 8) J2, (15.40)
with intriguing implications in particle physics we hope to indicate at some future
time39,

Note also that JZ = Jidy is not an isocasimir of Lie-Santilli algebra {£5.36)

or of (15.38), as the reader can verify. This occurrence is important inasmuch as it
confirms the correctness of isosquare (15.33).

The occurrence also indicates that expression (15.38) of the isocommutation
rules has a primary mathematical significance, inasmuch as it is formally
identical to the conventional commutation rules. However, the isocommutation
rules of direct physical significance are those in the physical angular moments J,
i.e., rules (15.36).

The classical realization of the Lie-Santilli group SO(3) by

bay, Yad, /0AY) (o/al
S003): UL, e e AN G

33 1t essentially implies a possible mutation of the conventional discrete values of the spin
0,+4, £ 1, .., into mutated values 0, £ § A, £ 1 &, .., A = det 8, which is however valid only for
ONFE ISOPARTICLE INSIDE HADRONIC MATTER, such as a proton in the core of a star
undergoing gravitational, collapse, and not for an isolated particle in vacuum (Santilli
(1989b)). This possible internal mutation of spin is then at the basis of the interpretation of
the total spin # for Rutherford's historical conception of the neutron as a “compressed
hydrogen atom”, as well as for the possible interpretation of the hadronic constituents with
physical, ordinary particles freely produced in spontaneous decays (Santilli (1978b), (1981a).
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def
= 53001, (15.41)

where the exponentials are expanded in the conventional associative envelope £ for
simplicity.

Note the true realization of the notion of isotopic lifting of a Lie symmetry,
i.e., the preservation of the original generators and parameters of the symmetry,
and the isotopic generalization of the structure of the Lie group via the liftings I
> 1.

The computation of examples is straightforward. For instance a (classical)
isorotation around the third axis is given by (Santilli {foc. cit. ))

I = Rloghr = Sgleghr = (15.42)
! (8,b b} — b2'(0bb)
I'l I‘lCOS 501 0o 1'2-—-51n 301 Do,
by :
= l"2 = Fy —-—sm(63bib2) + I'2005(63b1b2)
2
'3 r3

... The proof of the invariance of isoseparation (15.28) under the above
transformation is an instructive exercise for the reader interested in acquiring a
knowledge of Santilli’s relativities. The computation of other examples can be
readily done via Eq.s (15.41).

Note that the convergence of series (15.41) into finite transformations of type
(15.42) is reduced to the convergence of the original series prior to the lifting.
Note also the appearance of the isotopic elements by directly in the angles of

isorotation. This occurrence is useful for the reconstruction of the exact rotational
symmetry according to the rule

Ottam. = %lBirk.PiPy (15.43)

which has important applications in particle physics (see the Figure 5 below)

In different terms, the deformation experienced by the body considered,
and represented by the b-quantities, is compensated by the isorotation in such a
way that the combination of the deformation and isorotation equals the angle of
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rigid rotation. In this way, the exact rotational symmetry of a rigid body, the Lh.s.
of Eq.s (15.49), is decomposed into a product of an isorotation and the b—quantities
of the same value.

This is the realization in Birkhoff—Santilli mechanics of the property that all
distinctions between conventional and isotopic symmetries cease to exist at the
abstract, realizationfree level.

We now pass to the application of the general theory of isoinvariance
outlined in Sect. 8, to the isorotation of closed nonselfadjoint systems (14.66). For
this purpose, we have to verify first that the J's are indeed the generators of
isorotations.

Consider an infinitesimal isorotation 80 around a fixed axis with unit
isovector n=(n, n,, n,)in £ 3R) ie,

23
r, STt 80 €™ Ty {15.44a)
P, = D * 80 € ™ Py (15.44Db)
The isoexponentiation of the above quantities yields the relations
[e|E_86 ) r, = Tg = 8 [neJ ; rk] =r, +80 €ty M T (15.45a)
{ele“se n+Jy P, ~ P 80 [+, pyl = p, +80 €ij M Py {15.45b).

where the * product is evidently that in E{r,8%). This confirms that the
conventional components of the angular momentum are indeed the generators of
the isorotations.

The notion of isorotational symmetry is then given by a simple isotopy of
the conventional one (Definition 8.3). In fact a Birkhoffian B(r, p) is invariant under
an isorotation around the n—axis iff it verifies the invariance property

Blr, p) = B(r+89nAlJ, p+ 80 nAJ)

- ek:_ae "y B, ), (15.46)

where A is the vector product computed in T*£{r,8R), which can hold iff
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k.“BJ =0 k=123, (15.47)

[y
For a more rigorous and general presentation, see Theorems 8.2 and 8.3.

We reach in this way the rather simple conclusion that a Birkhoff-Santilli
vector-field is invariant under isorotations when properly written in T*E(r,8,#),
i.e, when all operations of contraction, power, etc. are properly made with the
isometric 8, as in the following Hamiltonians

P.. 8,

B=H-="Tp + Vi) = _aliyPa Vi), (15.482)
2ma
3
_ . 15.4
= By lal| (15.48b)

Finally, note from Theorem 8.3, that conditions (15.47) are necessary and
sufficient for the complete invariance of nonlinear, noniocal, nonhamiltonian and
nonnewtonian systems (14.66) represented via the Hamilton-Santilli equations.

We now pass to a review of isometrics with a nontrivial functional
dependence, namely, for general brackets (15.27).

It is easy to see that the isocommutation rules remain structuraily
unchanged under the generalization herein considered, with the only replacement
of the b- with the B—quantities, e.g.,

~ = 2 T
[Ji, rjI Eijk Bj Ty, [Ji, pjl = llk J pk {15.49)

The general isocommutation rules of Santilli’s isorotational algebras SO{(3)
are then given by

s~k - 2
SO(3): [Ji,Jj]—Cij . p,.) I €k B, (r.p,..) o (15.50)

and provides another illustration of the structure functions of the Lie-Santilli
theory {(Sect. 6). The reformulation of the above algebra to reach the same structure
constants of the conventional symmetry, as in Eq.s (15.38), is here left as an
instructive exercise for the interested reader. ‘

As one can see, under the condition of positive—definiteness of the isometric
G, all infinitely possible isotopes SO(3) remain isomorphic to SO(3), by therefore
preserving the semisimple and connected properties of SO{(3).
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The study of the global isocasimir invariants, that is, the isocasimirs valid
everywhere in T*E5(r3#), under a nontrivial functional dependence of the

isometric, is involved on technical grounds, inasmuch as it requires a deeper
knowledge of the Birkhoffian realization of universal enveloping isoassociative
algebras and related isoneutral elements (see the remarks at the end of Sect. 6)..
It is easy to see that, in this local sense, the isocasimirs of realization (15.50)
persist, i.e., are given by
o1, P - 2o (1551)
a 2

A simple example of a global isocasimir is given when

C(o

B, =B, =By =B(p), T, = B4, 1, = B2, (1552
in which case the magnitude of the angular momentum

£ =167 =8 J2 (1553

is indeed a neutral element of the Lie-isotopic envelope, as the reader can verify.
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EXPERIMENTAL TEST OF SANTILLI’S RELATIVITIES
IN PARTICLE PHYSICS
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FIGURE 5: A central capability of Santilli (1991d) relativities is that of representing the actual
extended character of a particle, say, an oblate spheroidal ellipsoid, as well as all its
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infinitely possible deformations. When applied to a hadron, Santilli’s relativities therefore
predict that their intrinsic magnetic moment can be altered (mutated) under sufficiently
intense external forces.

Rigid bodies do not exist in the physical reality. As a result, the amount of
deformation of the charge distribution of a hadron, say a neutron, under given external
forces is open to scientific debate. But the existence of the deformation itself under
sufficient external forces is beyond any credible doubt.

Once the deformability, even minimal, of the charge distribution of a neutron is
admitted, the mutation of its intrinsic magnetic moment is a mere consequence of
Maxwell’s electrodynamics.

Intriguingly, these fundamental predictions of Santilli's relativities are confirmed in
a preliminary way by series of experiments conducted by H. Rauch and his associates (see
the reviews by Rauch (1981), 1983) and quoted experimental papers).

These experiments have been studied via the operator formulation of isotopic
theories by Santilli (1981}, {1989), Eder (1981) and (1983}, and others. However, it is important to
show that the classical methods presented in this volume can already provide an
approximate, yet quantitative and physically meaningful representations of the
experimental data.

A neutron interferometers is essentiaily constituted by a neutron beam which is
subjected to a coherent splitting inlo {wo branches via a perfect crystal, and then their
recombination. The neutron beam is generally monochromatic, unpolarized and with high
flux. The perfect crystal is generally given by a Si crystal with extremely low impurities
which allows theachievernent of angles of separation of the two branches sufficiently wide
to permit experiments in one branch or in both. '

In his experiments, Rauch used: a thermal neutron beam with a cross section of

about 2x1.4 mmz; a characteristic wavelength of the crystal of 1.83 A% about 1 cm of
electrornagnetic gap; and a magnetic field of the intensity of 7,496 G which is calibrated to
produce two, complete and exact spin—flips, say, around the third axis (63 = 720°), for

neutrons with their conventional magnetic morent

Hp= - 191304211 £ 0.0000011 2t/2mic. (1
The experimenters filled up the electromagnet gap with Mu-metal sheets for the
primary purpose of reducing stray fields. It is this latter rather accidental feature that
renders the experiments truly fundamental, inasmuch as they test the rotational symmetry
of the neutrons under EXTERNAL38 magnetic and nuclear interactions
The best available measures currently available are given by (Rauch (foc. cit. }

B = 71587 + 38, (2a)

36 A primary emphasis must be given to the external character of the target and,
consequently of the fields because, if one considers the system neutron plus nucleus, no
mutation is possible.
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max mi

63 = 719.67, 63 N 71207, (2b}

It should be indicated that the above measures do not establish the violation of the
conventional rotational symmetry because the deviation should be of the order of at least
four times the statistical error to achieve a sufficient degree of confidence. Thus, to
establish the vatue 715.87°, the error should be of the order of % 1°.

Despite this unsettle nature, the implications of the above measures are intriguing
because:

1) Measures (2) do not confirm the exact rotational symmetry for the neutrons in
the open conditions considered, by indicating a conceivable violation of about 12,

2) None of the median angles measured by Rauch coincide with 720° On the
conltrary, all experiments show a median angle consistently lower than 720° an occurrence
called "angle siow-down effect” (Santilli (1981)). )

3) The measurements of the intensity modulation for measures (2) do not confirm
the exact rotational symmetry because the modulation curve does not appear to be an
exact co-sinusoid,
as well as for other reasons.

Measures (2) are therefore valuable or the following reasons. First, the reader should
keep in mind that the best possible origin for an angle ?)3 different than the expected 720° is

the alteration of the magnetic moment (1), i.e., the mutation of this figure
Ky 2 Ay (3)

., In turn, such an alteration of the magnetic moment can best occur under the
d_éji: ormation of shape indicated earlier.

~ Furthermore, it is important to achieve a theoretical representation of Rauch’s
experiments as a basis for the future finalization of the numerical amount of mutation
under given external forees.

Note that the true symmetry tested by Rauch at the particle level is the spinorial
SU(2) symmetry, rather than the rotational O{3) symmetry. Nevertheless, the issue deserves
an analysis, first, within the context of the rotational symmetry O(3), prior to a study within
the covering SU(2) extension, in order to separate the rotational from the spinorial
contribution, besides the classical from the quantum mechanical one.

Santiili {1988a), (1991d) therefore provided a representation of Rauch’s experiments via
his isogalilean relativities which, even though only classical and nonrelativistic, is
nevertheless direct and quantitative, by therefore focusing the attention of the
experimenters in the classical origin of this event.

Recall that there are no “contact interactions” between the neutron beam and the
Mu-metal nuclei. Thus, we can effectively use the case of extended and deformable
isoparticles under external pofential forces only.

We conclude this section with the remark that the general, nonlinear,
nonlocal isorotational symmetries O(3) on isospaces E(r,5,f) are the global
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symmetries of the space component of the conventional and isotopic theories of
gravitation.

TEESR: & = /1, 1 =1,=1 = diag. 671,87} (4)
8 = diag. (b 12. b22, b32). b, = constants > 0. {db)

and the iscanalytic representations given in the text.

Santilli’s treatment is independent from the explicit form of the external potential
v(r) and is essentially based on the assumption that the external field implies the
deformation of the shape

§=diag. (1,1, 1), V=0 = ¥&=diag. ("2 132 b3?), V1, )

under the conditions of being volume preserving,
Suppose that T*E(r,8,#1) is the conventional phase space of the neutron beams. Then,
the isogalilean relativities uniquely follows by assuming the isospace

b 12 b22 b32 = b'[zb'zzb'sz, (5)

Since we have at best a small deviation, it is reasonable to assume that the mutation
of shape is also small. In first approximation, Santilli therefore assumes from data (2) that
the deviation is of the order of

716°/720° = 0.9944, ]

which can be also assumed to be of the order of magnitude of the {evidently average)
oblateness caused by the external nuclear fields.

Then, Santilli's purely classical and nonrelativistic treatment implies that mutation
(5) for values (7) under condition (6}, assurmes the numerical values
8 =diag. (1,1,1, V=0 = §& = diag. (1.0028, 1.0028, 0.9944), V0 {8

with consequential mutation of the magnetic moment of the order of
6 x 1073, ie,

Kp ~ -l913ev2mpc, = [ ~~1.902 et/2mpc,, {9

which does indeed provide a first, approximate, but quantitative interpretation of Rauch’s
data (2).
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Intriguingly, Santilli's isogalilean relativities are not only capable to represent
measures (2), but also the “angle slow—down effect” (Santilli (1981)}, namely, the fact that the
median angles measured by the experimenters during the several years of the conduction of
the tests have been consistently fower than the needed 720°,

In fact, mutated value {9) is fower than the original valuer (1), thus implying angles
of spin—flips necessarily lower than 720° for a magnetic Tield of 7,946 G.

Moreover, the conventional rotational symmetry is evidently broken for values (2.
Nevertheless, Santilli’s isogalilean relativities reconstruct the exact rotational symmetry for
the deformed neutrons. This is another aspect that warrants an identification, first, at the
primitive Newtonian level, and then at the operator counterpart.

For this purpose, Santilli considers the subgroup of ({3.1) given by the isorotational
symmetries O(3). As now familiar, the isotopes O(3) provide the form-invariance of all
possible ellipsoidical deformations of the sphere, while being locally isomorphic to the
conventional rotational symmetry O{3). This establishes the reconstruction of the exact
rotational symmetry for deformed charge distributions (8), of course, at the isotopic level.

However, the mechanism of such reconstruction deserves a deeper inspection
because important for Rauch’s experiments. For this purpose, Santilli considers the
isorotation around the third axis, Eq.s (15.42),

The reconstruction of the exact rotational symmetry is then based on mechanism
(15.43) originating from the values b| and b, of Eq. (8) and Rauch’s median angle (2}, i.e.,

¥ = by b29~°493= e = 120 (12)
| b= b5 = 1.0028

namely, Santilli's geometric isospace E(r,8,%) reconstructs the angle &'y = 720° needed for

the exact rotational symmetry from an actual rotation of 93 =714° in our physical space
Er85).

In conclusion, Santilli's isogalilean relativities can:

a) directly represent the actual shape of the neutron;

b} directly represent all possible deformations of said¢ shape caused by sufficiently
intense externat fields and/or collisions;

¢) directly represent the consequential mutation of the intrinsic magnetic moment
of the particle;

d} directly represent the “angle slow-down effect” because of the decreased value of
the magnetic moment, and

e) reconstruct the exact rotational and Galilei symmetries at the more general
isotopic level.

The advances permitted by Santilli's relativities over the conventional relativities are
then incontrovertible.

Not surprisingly, the operator and relativistic treatments f{see Santilli {1989, b, ¢, d))
confirm in full the above classical and nonrelativistic results.

Santilli (1981%) therefore proposed the resolution of the issue via the repetition of
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Rauch's experiments along the following primary lines:

PROPOSED EXPERIMENTS:

1) REPEAT RAUCHS EXPERIMENTS WITH THE BETTER ACCURACIES CURRENTLY
AVAILABLE. In fact, the reduction of the current error of about 80Z would establish
Santilli’'s mutation of the magnetic moment.

11) REPEAT RAUCH'S EXPERIMENTS WITH A MULTIPLE OF TWOQ SPIN FLIPS
Apparently, current neutron interferometers can reach up to fifty spin flips and more. Since
the phenomenon of mutation is expected to be nonlinear, the increase of the number of spin
flips is expected to produce a higher deviation, which could therefore resoive the issue even
the with accuracy of measures {2).

11} REPEAT RAUCH'S EXPERIMENTS WITH A HEAVIER NUCLE] In fact, the
mutation is also expected to be nonlinearly dependent on the mass of the nuclei in the
electromagnet gap. The use of metal heavier than that used so far could also resolve the
issue.

in these experiments, SANTILL! SUGGESTS THE MEASURE NOT ONLY OF THE
MEDIAN ANGLE _BUT_ALSQ THE PLOTTING OF THE CURVE OF THE [NTENSITY
MODULATION AND OF I'TS PHASE WITH THE POLARIZATION.

The implications of Santilli’s prediction of a mutation of the intrinsic magnetic
moments of particles under sufficient external forces, are manifestly far reaching. We here
mention the possibility of : finally resolving the vexing problem of the total nuclear
magnetic moments mentioned in Sect. 13; implying, sooner or later, a revision of nuclear
physics; permitting fundamentally new structure models of hadrons; etc.

The societal implications are also considerable. In fact, it is possible that the current
inability to achieve the controlled fusion with a positive energy output is due precisely to
the currently used Einsteinian representation of protons and neutrons as abstract, perennial
and immutable points. Such a representation is evidently exact during the cormnpression
phase of the plasma. However, the representation becomes highly questionable at the instant
of initiation of the fusion process precisely because of the activation at that instant of
Santilli's mutation, this time, with short range, nonlinear, nonlocal and nonhamiitonian
interactions.

At any rate, the experimental confirmation of Rauch’s measures (2) would invalidate
the very conception and design of the current magnetic bottle, trivially, because they are set
on intrinsic magnetic moments (1) which would be altered at the very initiation of the
fusion process.

This author therefore concludes the main text of this book with the hope that
Santilli’s relativities will indeed be developed by mathematicians and theoreticians in the
field, and its experimental tests conducted in the near future. In the final analysis, we are
referring to aspects of contemporary knowledge so fundamental, to dwarf, by comparison, several
other, currently preferred, mathematical, theoretical and experimental research.
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APPENDIX ILA: LIE-ADMISSIBLE STRUCTURE OF HAMILTON'S
EQUATIONS WITH EXTERNAL TERMS

No in depth knowledge of topic of this volume can be achieved without a study of
the analytic, algebraic and geometrical structures underlying the equations
originally submitted by Hamilton {I834) for the interior dynamical systems (1.1),
those with external terms

oHt, r, p)
fkg = ——— = Pya/Myp (A.la)

Pya

BHit, r, p)

o Pka =——— * Fra - (A.Ib)

s ka
H = PP,/ 2mg + VD) (A.Lc)
Fya = FNSAka(t, T, p Pt t fc dciFNSAkat, L, P Do) (A.1d)

k=1,23(=xyv12, a=12.,N

As one can see, the above equations verify a rather simple “direct
universality” for the representation of all possible systems (L.I) in the coordinates of
the experimenter, because the Hamiltonian H represents all local and potential
forces, while the external terms Fy , represents all remaining nonlinear, nonlocal
and nonhamiltonian forces.

However, in so doing, the Hamiltonian H is necessarily nonconserved (Sect.
10} and, for this reason, the equations characterize an open nonconservative system.

In this appendix we shall also review the algebraic structure of the most
general possible nonautonomous Birkhoff’s equation (7.1 1) in T*E(r,6,R) with local

coordinates a = (al) = (r, p) = {ry, py
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oBlt,a)  OR, a)

b = HV(ta) [ + L wy=12.N, (A.2a)
gV at
Qv = (|0aBJ'1PV, (A.2b)
aR.{t, a) aRu(t,a)
= - , : {(A.2c)
G dak da¥

The algebraic structure of Eq.s (A.1) was identified, apparently for the first
time in Santilli ({1967), (1968), (1969)). The studies were then continued in Santilli
(1978a). A comprehensive presentation can be found in Santilli (1981a), including the
identification of an underlying geometric structure and the extension of the results
to Eq.s (A.2).

In this appendix we shall outline the algebraic properties of Eq.s (A.1) and
(A.2), as well as point out in more details the reasons why the restriction of the
studies of interior trajectories solely to the isotopic treatments is insufficient, and
the additional use of the complementary Lie—admissible formulations is
recommendable. Further properties wiil be briefly outlined in the subsequent
appendices. The content of these appendices is essentially derived from the
appendices of Santilli (1991b).

To begin, the conventional Poisson brackets [A.B] of Hamilton’s equations
without external terms are generalized for Eq.s (A.l) in a form, say AXB, which is
explicitly given by

oA

AxB =I[AB] + Fya: (A3)

appa

PROPOSITION A.1. (loc. cit.): Brackets (A.3) of Hamilton'’s equations with
external terms violate the conditions to characterize any algebra.

PROOF. Brackets (A.3) violate the right scalar and right distributive laws (5.1),
ie,

ax(BxCQ) = Ax{axB) = (axAB, (A.4a)

(AxBlxa # Ax(Bxa) # (Axa)xB, (A.4b)

and
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{A +BXC = AxC + BxC, {4.5a)
Ax(B+C} # AxB + AxC, (A.5b)

As a result, they do not characterize an algebra as commonly intended in
contemporary mathematics (Jacobson (1962).QED

In different terms, in the transition from the comtemporary Hamilton's
equations to their original form with external terms, we have the loss, not only of
the Lie algebras, but more precisely of all consistent algebraic structures.

Exactly the same situation occurs for the quantum mechanical treatment of

nonconservative forces via nonhermitean Hamiltonians Hg HdT (Santitti (1978b}). In
fact, under these conditions, the conventional Heisenberg's brackets among
operators A, B, ... on a Hilbert space 3¢, [A,B] = AB — BA, over a complex field C are
generalized into a form, say AXB, which is evidently defined by the new equations
of motion

iA = AXHq = AHgl -HgA, h=1, (A6)

Again, the nonconservative Heisenberg's brackets AXH, not only lose the Lie
algebra character of conventional quantumn mechanics, but do not characterize
any consistent algebra, because they violate the right scalar and right distributive
Iaws, as the reader is encouraged to verify.

This is not a mere mathematical occurrence, because it carries rather deep
physical implications. For instance, the notion of angular momentum can be
consistently defined in conventional (classical and quantum) Hamiltonian
mechanics, and treated via its underlying Lie symmetry O(3).

In the transition to Hamilton's equations with external terms (A.1) and their
operator counterpart (A.6), we have lost aif Lie algebras, let alone that of the
rotational symmetry. This has the direct consequence that, even though the use of
angular momenta is kept for Eq.s (A.6) according to a rather widespread use in
contemporary particle and nuclear physics, the reality is that the notion has lost all
necessary background for its definition, let alone its quantitative treatment.

In fact, it would be inconsistent to use one product AXH for the time
evolution, and a different product, say, [AHI for the characterization of physical
quantities such as the angular momentum. This is
due to the well known, ancient rule of dynamics whereby the product of the
algebra characterizing a given theory, whether classically or operationally, must
coincide with that of the time evolution law.

To put it explicitly, a2 statement to the effect that, say, a particle described
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by Eq.s (A.6) has spin one, is not mathematically substantiated, because of the loss
of any algebra for its treatment, and physically unfounded, because the spin of
particles in open nonconservative conditions is ultimately unknown at this writing.

Exactly the same situation occurs for the nonautonomous Birkhoff’s
equations (Santilli (1981a)). In fact, Birkhoff’s brackets [A ", B] for the autonomous
case (Sect. 8),

oA oB
[A7B] = — (M) — (A7)
da ga”

have to be generalized for Eq.s (A.2) in the form

9A 9
AGB = [A7 Bl + — d“’E
ot at (A.8)

which again violate the right scalar and distributive laws.

Equivalently, one can say that for, the case of time—dependent R—functions,
Birkhoff’s equations can be expressed with the (2N+1)x(2N+1) contact tensor (Sect. 9)
which, being odd-dimensional, do not admit a consistent contravariant (Lie)
counterpart.

The reader should therefore be aware that the isofopies of conventional
relativities are inapplicable to the nonautonomous Birkhoff’s equations, because of
the loss of a consistent algebraic structure, let alone the loss of their Lie-isotopic
character (Santilli (loc. cit.)).

The above occurrences evidently create the problem of identifying the
relativities which are directly applicable to open, noncenservative, nonautonomous,
interior systems, such as oscillator with a time~dependent applied force, etfc.

In turn, the above relativities cannot be identified without first
reformulating Eq.s (A.I) and (A.2) in an analytically identical way (to avoid the
alteration of the equations of motion) which is however admitting of a consistent
algebraic structure. _

This problem signals the birth of the Lie-admissible algebras in physics
(Santilli (1967) 37, In fact, on one side, the consistent brackets for Eq.s (A.1), say,
(A,B), cannot be antisymmetric, to permit the representation of the time-rate-of-
variation of the energy

ol

37 This is the quotation Santilli (1967) in the historical chart of the Estonian Academy of
Sciences at the end of these appendices.
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H = (H,H) = Fka = VkaFka, (Ag)
Pya

while, on the other side, Lie algebras cannot be evidently abandoned, because they
must be admitted as a particular case for null nonselfadjoint forces, i.e.

(A,B) | Fea 0 (A,Bl. {A.10)

This problem was originally studied in Santilli ((1967),(1968), (1969)) and then
reinspected in Santilli (1978a), where it was pointed out that conditions (A.10)
identify the so—called general Lie-admissible algebras.

According to Albert (1948) an algebra U with (abstract) elements a,bg,...and
(generally nonassociative, abstract) product ab over a field F

U: ab = nonassociative (A.11)

is called a Lie-admissible algebra (Sect. 5) when the attached algebra U, which is
the same vector space as U, but equipped with the product IS LIE,

U [a.blu = ab - ba, (A.12)

Evidently, all associative algebras A are Lie-admissible, resulting in the
familiar L1e product [a,bly = ab - ba, where now ab is associative.

All'Lie algebras L with (abstract) product ab are also Lie-admissible, because
[a,bl, = 2{A,B] 4+ Where now ab is nonassociative. Thus, Lie algebras are contained in

Lie-admissible algebras in a two-fold way, first, in the classification and, second, as
the attached antisymmetric algebras.

The most general possible algebras of the type considered are by Santilli
(1978a) the general Lie-admissible algebras when they verify no condition other
than the Lie~admissibility law (A.12).

The first classical reatization of the Lie—admissible algebras in physics was
introduced in Santillj {1978a, ¢} and then worked out in more details in Santilli (1981a)
Let A, B be (nonsingular, sufficiently smooth) functions in RxT*E(r,8R). Then the
brackets

dA oB
(AB) = — siVta) — (A.13)
dat oa”

over the reals R characterize a Lie-admissible algebra U when the attached
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antisymmetric brackets

U {A.BJU ={sB) - (B,A) (A.14)

are Lie, or, equivalently, when the attached antisymmetric tensor
quv - g - v (A.15)

is Birkhoffian.
Now, the direct way of writing brackets (A.3} in an algebraically consistent
way is by introducing the tensor in R*T*E(r5R)

Mta) = o + ta), (A.16)

where @V is the (totally antisymmetric) canonical Lie tensor (7.16), and stV is the
totally symmetric tensor

s = (V) = diag.{0,9), s=F/(oH/op) (A.17)

The brackets {A,B), when written in form (A.13) with the S-tensor given by
symmetric form (A.16), first of all, verify both right and left scalar and distributive
laws, and, secondly, they characterize a Lie-admissible algebra because the attached
brackets are Lie :

(AB) - (BA) = 2{ABl SHV - g4 =2uhV. (A.18)
Finally, the equations of motion are not altered when rewritten in terms of
tensor (A.16), i.e.,

aH(t, a)

al = ghv = (a, H), {A.19)

9a”
called Hamilton—-admissible equations (Santilli (1981a)). In fact, we have

fya = 8H/0Dkq, (A.20a)

Prg = ~OMON+ 5y 0 oH/op, = - oH/oRyy +Fy . (A-20b)



J. V. Kadeisvili -263 - Santilli’s Isotopies

In particular, the brackets (A,B) preserve the CORRECT time-rate-of-
variation of the Hamiltonian

H = HH) = viFq (A.21)

as desired.

The regaining of a consistent mathemnatical structure carries rather
intriguing physical implications.

As an example, Eq.s {A.1) do not admit a consistent exponentiation into a
finite group . On the contrary, when written in their equivalent Lie—admissible
form (A.19), they can be easily exponentiated into the form

tosHVa H) (8 )
T PY (A.22)

A

In particular, the above structure leaves invariant the equations of motion.
In fact, from a general property of vector-fields on manifolds, we have

tOSW(aVH) @)
Mta) = {elA e = rita) (A.23)

For this reason, structures of type (A.22) constitutes an intriguing generalization of
the notion of Lie-Santilli symmetry (Sect. 9) known as a Lie-admissible symmetry
(Santini {foc. cit. ).

The physical differences with the conventional approach are, however,
rather deep. In fact, the conventional Lie and Lie—isotopic symmelries represent
the conservation of the energy and other quantities. In the more general case
under consideration here, we can say that the broader Lie-admissible symmeltry
characterized by the Hamiltonian as generator represent the time-rate—of-
variation of the energy

tostY (3 W (@ )
H=Hita) - (g Y B HrE) = vy R (A.24)

A

Moreover, exponentiation (A.19) admits the following explicit form
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tOsH (6 H) (@ ) 02
{e Vo HYA= A+tOAH/I + t WA/ + ... (A.25)

N

namely, symmetries {A.19) admit non-Lie, Lie-admissible algebras in the
neighborhood of the identity. This signals the possibility of generalizing the entire
Lie’s and Lie—isotopic theories in a yet more general Lie-admissible theory (Santilli
(1978a), (1982a)).

The mathematical and physical covering character of the Lie-admissible
formulations over the Lie—isotopic and Lie formulations is then evident.

By recalling that the symmetry characterized by the Hamiltonian as
generator is the time component of the Galilei and of the Galilei-isotopic
relativities, symmetry (A.23) can then be considered as the time component of
conceivable, still more general relativities, tentatively called Lie-admissible
relativities {loc. cit. ) for open nonconservative systems, in which the form-
invariance characterizes, this time, the time-rate—of-variation of Galilean
quantities. The understanding is that the studies on Lie-admissibility are
considerably less advanced than the corresponding Lie-Santilli theories, and so
much remains to be done.

The identification of the algebraic structure of the nonautonomous
Birkhoff's equations (A.2} is now easy (loc. cit.). Introduce the generalized tensor

H¥(ta) = WV@a) + THVt,a), (A.26)

where MV is the (totally antisymmetric) Birkhoff’s tensor (A.2b), and ™V is given
by the totally symmetric form

T=(t") = diag{0,0), o=(8R}/(3,B) (A.27)

Then, the generalized brackets

DA aB
(A" B) = — §Mta)— , (A.28)
dak da¥

are algebraically consistent and Lie-admissible, as one can see, thus resulting in the
generalized equations '
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oB(t, a) m aB(t, a)
aHt = &(t, a) .= {O™Va) + T (¢ al g {A.29)
aa¥ aaV

called Birkhoff-admissible equations (Santiili (1978a), (1981a)) and which evidently
constitute a covering of both Birkhoff's and Birkhoff-Santilli equations.

In particular, the transition from brackets (A.13} to (A.28) is an example of
Lie-admissible isotopies (Sect. 5).

For further studies, we refer the interested reader to Santilli (1981a), where
one can see the elements for a further generalization of Birkhoffian mechanics into
a covering discipline, tentatively called Birkhoffian—admissible mechanics.

The operator counterpart of Hamilton-admissible equations (A.16) was
achieved in Santilli {(1978b). We shall here briefly outline it, because the operator
Lie—admissible equations possesses considerable guidance value in the study of the
abstract Lie-admissible formulations.

The most salient physical difference in the transition from closed—isolated—
stable systems to open—nonconservative—unstable systerns is the appearance of
irreversibility, ie., the lack of invariance of physical processes under time
reversal. As an example, the trajectory of Jupiter in the Solar system is manifestly
reversible, while the trajectory of a satellite penetrating Jupiter’s atrosphere is
manifestly irreversible. Corresponding similar situations occur at the particle level.

By following Santilli (1991b), consider then the forward direction in time,
and dencte it with the symbol ” > “. Let £ be the conventional enveloping operator
algebra of quantum mechanics with operators A, B, ... and trivial associative
product AB on a Hilbert space 3¢ over the field of complex numbers C.

Introduce the isotope £ of £ (Sect. 5) describing the motion forward in time

£ A>B = AT”B, (A.30)

which is characterized by a nowhere null and sufficiently smocth, but
nonhermitean operator T, with isounit for motion forward in time

P = (A.312)
[PSA = ASIZ = A, VA eE, (A.31b)

Introduce now the isotope <E for motion backward in time, which is
denoted with the symbol ” <”,
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<& A<B = A<TB, (A.32)

characterized by a different isotopic element <T # T, with isounit for motion
backward in time

<1 = <)l (A.33a)
<I<A = A<<T, (A.33b)

Finally, assume that the forward deséription via envelope & is the time
reversal of the backward one <£. This can be done by assuming

P = (<ol (A.34)

LEMMA A.1 {loc. cit.)The axiomatic structure of irreversibility from the
algebraic viewpoint can be expressed via isoassociative algebras with two different

isounits 7 = (<I) / = <I and related isofields, one for the motion forward in time
> and the other for the motion backward in time <I.

It is an instructive exercise for the reader interested in learning the
techniques of this volume to prove that structures (A.30)-(A.34) are indeed invariant
under isotopy and, thus possess an axiomatic character.

Lemma A.l is of particular guidance value in studying abstract problems,
i.e., the identification of the generalization of the Riemannian geometry needed for
the Lie—admissible formulations (Appendix C).

Under envelopes £ and <, the time evolution is given in infinitesimal form

by
iA = (ATB) = A<H - H>A = A<TH - HT”4, h=1, (A.35)

with finite version

. i
<I { 1t<H] iH>t

e

which were proposed, apparently for the first time, in Santilli (1978b), p. 746.
It is easy to see that Eq.s (A.35) are Lie-admissible. In fact, their attached

117, (A.36)

Alt) = < Al0) > [eIE
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antisymmetric bracket is precisely the brackets of the Lie—Santilli time evolution in
operator form (Sect. 6)

iA = [A B] = ATB - BTA, (A.37a)
T = <T + T, (A.37b)

This shows again, this time at the operator level, the complementarity of the Lie—
Santilli and Lie~admissible formulations.
In particular, structure (A.36) is an operator realization of the Lie-admissible

groups (A.22).
It should be stressed that, by no means Eq.s (A.35) aiter the physical content

of conventional nonconservative systems (A.6). In fact, Eq.s (A.35) merely provide
the identical reformulation of the systems but, this time, in an algebraically
consistent form.

In fact, the nonhermitean Hamiltonians Hy of current use in physics are

generally the sum of a Hermitean term H and a dissipative nonhermitean term

Hg=H+ H_ . (A.38)

The de51red algebraically consistent, but physically identical reformulation of
systems (A 6) is then given by (Santilli (Joe. cit. ))

= <TH,  Hyq = HT?, (A.39a)

iA = AHS' - HA = A<H - B>A. (A.39D)

where now the Hermitean operator H evidently represents the nonconserved

energy.
The similarities of the above operator formulation with the corresponding,

classical, Birkhoff’s and Birkhoff-admissible formulations, are remarkable, thus
establishing the applicability of the complementary Lie-Santilli and Lie—admissible
formulations at both the classical and operator level.

Thus, by no means, the isotopic relativities presented in the main text of this
volume can be considered as the final relativities, because of the expected existence
of the more general Lie—admissible relativities.
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APPENDIX L.B: SYMPLECTIC-ADMISSIBLE GEOMETRY

As stressed by Santilli throughout this studies, physical theories in general, and
relativities in particular, are a symbiotic expression of analytic, algebraic and

geometric formulations.
The analytic and algebraic structures of the Birkhoff-admissible equations

{A. 29) have been indicated earlier. It may therefore be of some value for the

interested reader to outline the geometric structure of the Lie-admissible algebras.
This problem was studied in Santilti (1978a} and (1981a), and resulted in the

submission of a new geometry under the name of symplectic-admissible

geomelry.
Recall that the direct geometric structure underlying Birkhoff's brackets

(Sect. 7) in T*E(r,53) with the now usual unified notation a = (@) = (r, p) . =i, 2, ...
2n,

ATBl = — Ma) —, (B.1)

is the symplectic geometry also on T*E(r,3%) characterized by the exact, symplectic,
Birkhoffian two~forms

Q = + 0, fa) da A da”, (B.2)

where the algebraic-contravariant and geometric-covariant tensors are
interconnected by the familiar rule

o = lnagl—l)w. (B.3)

In the transition to the Birkhoff-isotopic brackets on isospaces T*E,r.58)
with isounit 1, (Sect. 8),

0A oB
(A7Bl = — o*a)1Ma) — (B.4)
aaH ¥
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we have the transition to the isosymplectic geometry (Sect. 9) characterized by the
isoexact two-isoform

G =4 'Iua(a) Qg (a) dakt A da” (B.5}

where, again, the algebraic and geometric tensors are interconnected by the rule
a - l

@9 9,") = QP Q. (B.6)

The problem of the geometry underlying the Birkhoff-admissible brackets
(B.28), ie., :

dA aB
(ATB) = — &Mta) ——, (B.7a)
dak F:P\d
S = iV UV (B.7b)
oY = - Yk (B.7¢)
HY = P (B.7d)

o

was resolved via the introduction of a geometry more general than the symplectic
and the isosymplectic ones.

We cannot possibly review these studies in detail here. Nevertheless an
outline of the central ideas may be of some volume for the interested reader.

The first point to realize is that the symplectic geometry and related
exterior calculus, whether in their conventional or isotopic formulations, are
intrinsically unable to characterize the Lic-admissible algebras.

This is due to the fact that the calculus of exterior forms is essentially

antisymmetric in the indices, while the Lie-admissible tensors $*¥ are not, and the
same occurs for the covariant counterpart

Sfta = (8%, = +8

- ®.8)

W

In fact, the construction of a conventional exterior two-form with the
above tensor implies the reduction
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Sy ddt Ada” = 40y, dd A da”, (B.9)

namely, the symplectic geometry automatically eliminates the symmetric
component of the S-tensor, thus characterizing only its Lie content.

The main idea of Santilli's symplectic-admissible geometry is that of
generalizing the conventional exterior calculus, say, of two differentiais

datt A da¥ = - da¥ Adat, (B.10)

into a more general calculus of differentials dat and da¥, called exterior-
admissible calculus , which is based on a product, say © which is neither totally
symmetric nor totally antisymmetric, but such that its antisymmetric component
is the conventionai exterior one,

dat oda¥ = dat Ada¥ + da¥xda", (B.11a)
dat A da¥ = - daV A dal, (B.11b)
" Qatx ga¥ = da¥ x dat, {B.1lc)

This allows the introduction of the exterior-admissible forms via the
sequence

5, = ¢la), (B.[2a)
§ = §, (B.12b)
32 = §,, dd* o da”, (B.12¢)

The exact exterior—admissible forms are then given by

00
§ =d§; = — dat, (B.13a)
oal

oA,
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%2 = d§; = — datoda {B.13Db)

The calculus of exterior-admissible forms can indeed characterize the Lie—
admissible algebras in full, because they characterize, not only the antisymmetric
component of the Lie-admissible algebras, but also their symmetric part, via the
two-forms

8, =8, lta) da* o da¥ =

- 0 dat Ada¥ + T, 0t a) dab x da (B.14)

Structures (B.[4} were called by Santilii {loc. cit.) symplectic-admissible
two-forms because their antisymmetric component is symplectic, in a way fully
parailel to the property whereby the antisymmetric part of the Lie—admissible
algebras is Lie. Spaces T*E(r,8,%) when equipped with two—form (B.16) were called
symplectic-admissible manifolds and the related geometry was called
symplectic—admissible geometry.

As incidental comments, note that the dependence on time appears only in
the symmietric part, as needed for consistency in the symplectic component. Also,
under inversion (B.8), we generally have

€,,) = @, 7, = @B, (B.15)

which is a rather intriguing feature of the generalized geometry here considered,
whereby the symplectic content of a Lie~admissible tensor is more general than the
symplectic counterpart of the antisymmetric component of a Lie-admissible tensor
{see Santilli (foc. cit) for details).

The most salient departure of the exterior-admissible calculus from the
exterior calculus in its conventional or isotopic formulation (Sect. 9) is that the
Poincare’ Lemma no longer holds, i.e., for exact symplectic-admissible two—-forms
we have

Sz = dSl, (B[6a)

ds, = dd§) = 0. (B.16b)
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In actuality, within the contest of the exterior-admissible calculus, the
Poincare’ Lemma is generalized into a rather intriguing geometric structure which
evidently admits the conventional Lemma as a particular case when all symmetric
components are null.

The geometric understanding of the Lie-Santilli algebras requires the
understanding that the validity of the Poincaré Lemma within the context of the
isosymplectic geometry is a necessary condition for the representation of the
conservation of the total energy under nonhamniltonian internal forces, as studied
in the main sections of this volume. ' _

By the same token, the geometric understanding of Santilli's more general
Lie-admissible formulations requires the understanding that the lack of validity of
the Poincaré Lemma within the context of the symplectic-admissible geometry is
a necessary condition for the representation of the nonconservation of the energy
of an interior dynamical system.

APPENDIX LC: RIEMANNIAN-ADMISSIBLE GEOMETRY

According to Santilli, there is little doubt that future historians will consider our
contemnporary studies in gravitations as being in their first infancy.

Among a rather large number of problems that remain to be solved in
gravitation, a further open problem is the representation of the dichotomy
constituted by the time-reversible exterior dynamics with a clearly irreversible
interior behavior. ' .

This is majestically illustrated, e.g., by Jupiter (Figure 1) whose center-of-
mass trajectory in the solar system is reversible, while the interior dynamics is
manifestly irreversible.

it is at this point that the dual use of Santilli’s Lie-isotopic and Lie-
admissible formulations becomes useful. In fact, the Lie—isotopic formulations are
ultimately reversible in their structure, because they provide a global treatment of
nonhamiltonian systems via Hermitean isounits. By comparison, the Lie-
admissible formulations are intrinsically irreversible even when the Hamiltonians
are reversible.

Santilli refers to formulations that are structurally reversible or irreversible,
rather than the achievement of reversibility or irreversibility via the selection of
suitable Hamniltonians. In fact, Lie-isotopic formulations are irreversible
irrespective of the sclected Hamiltonian.

The dual representation of reversible center—of-mass-trajectories versus
irreversible interior dynamics, is then permitted by the complementarity of the
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Lie-isotopic and Lie-admissible formulations via inter-relations of type (A.37).

Note the necessity of the Lie-isotopic formulations for this
complementarity. In fact, reversible, conventionzally Lie formulations for the
global-exterior description are not compatible with irreversible, Lie-admissible,
interior descriptions because their attached Lie algebra is of Lie—isotopic character,
as clearly expressed by Eq.s (A.37).

A Tirst characterization of irreversibility was provided in Appendix A, via
different isounits for motion forward I> and backward <I in time. A further
approach to irreversibility will be provided in Appendix D via the notions of
inequivalent right and left isorepresentations.

In this appendix we indicate a conceivable generalization of the Riemannian
geometry, under the name of Riemanniar—admissible geometry, originally
submitted in (Santilli (1991b}) which provide an irreversible description of interior
gravitation in a way compatible with the reversible description provided by the
Riemannian—isotopic geometry of Sect. 1L

In Sect. 10 we introduced the notion of affine—admissible manifolds as the
manifolds “M{x, <®”) which possess the same dimension, local coordinates and
continuity properties of a conventional affine manifold M(x,®), but are defined over

an isofield “®> with two different isounits > and <I for the modular-isotopic
action to the right and to the left, respectively

xZ = A>x = AT?x, I = (T, {C.1a)
o= xeh = x<TA, <= Sl {C.1b)
> = (<, (C.tc)

DEFINITION C.1 (loc. cit) A "Riemannian-admissible manifold” is an
isoriemannian manifold (Definition 11.1) with inequivalent isomodular actions to
the right {forward) and to the left (backward), here denoted with <R>(x,<g> <#°),
namely, a manifoid characterized by the “isometrics for motions forward and
backward in time”

T>{x, %, %...) g(x), (C.2a)

[l

<Tix, %, %) gX), {C.2b)

of*
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™ = (<77, (C.2c)

and equipped with two nonequivalent, nonsymmetric, isoaffine connections, one
for the modular-isotopic action to the right (forward) and the other to the left
(backward), called “Christoffel-admissible symbols of the first kind for motions
forward and backward in time’,

> > >
21 _ % % %k
~'hik = ® -

) = >l (C.3a)
axh axK ax! klh

g ¥En Ok
<Pl = 4 s ) = <l (C.3b)

ad axK axl

with corresponding “Christoffel-admissible symbols of the second kind”

r'>2 i -

>ij >l - 221
b K gl hik I (C.4a)

kh
<2 b _ o«if <pl = <2 i
(20 = <l P g- <y (C.4b)
where the capability for an isometric of raising and lowering the indices is
understood (as in any affine space), and

>ij = yo> v
gl =fg” ) 1 (C.5a)

<l = |(<grs)_1| i) (C.5b)

Santilli's “Riemannian-admissible geometry” is the geometry of spaces
R>{x,<g”,<R).

The construction of the Riemannian—admissible geometry can be done via
the appropriate generalization of the isoriemannian geometry presented in Sect. 11,
with particular reference to the isoconnection which, besides being different for
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the right and left modular-isotopic action, are now necessarily nonsymmetric.
Comparison of the above setting with that of Proposition A.l and D.1 then
yields the following

PROPOSITION C.I (loc. cit.) An axiomatization of irreversibility in interior
gravitation {onlyl is provided by inequivalent modular-isotopic actions to the right
(forward in time) and to the left {backward in time) with necessarily
nonsymmetric isoaffine connections.

Regrettably, we cannot study the Riemannian—admissible geometry in the
necessary details to avoid a prohibitive length of this volume. It is however hoped
that geometers in the field will indeed develop this new geometry for, in the final
analysis, it is so general to encompass and include as particuiar cases all generalized
geometries presented in this monograph.

The first generalization of Einstein’s gravitation with a Lie—admissible
structure was achieved by Gasperini (1983) in the full spirit of the formulations: to
represent interior, nonconservative, irreversible trajectories, as well as a covering of
the Lie-isotopic lifting of Einstein’s gravitation on conventional manifolds
(Gasperini (1984a,b,c)).

Additional important gravitational studies of Lie-admissible type were
conducted by Adler (1978), Jannussis (1986), Gonzalez-Diaz (1986), Nishioka ((1985),
(1987), and others.

APPENDIX LD: GENOREPRESENTATIONS

A deep understanding of Santilli's Lie-isotopic and Lie—admissible algebras cannot
be reached without an understanding of the structure of their representation
theories. In turn, the latter have well known, profound implications in physics,
inasmuch as they characterize the notion of particle reviewed in the next appendix.

Santilli’s Lie-isotopic and Lie-admissible formulations impty an intriguing
sequence of generalizations of the representation theory along the following main
lines:

A) REPRESENTATION THEORY OF LIE ALGEBRAS: characterized by one-
sided, left or right, modular representations, generally called “representations’;

B) REPRESENTATION THEORY QOF LIE-ISOTOPIC ALGEBRAS: characterized
by one sided, left or right modular-isotopic representations, called
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“isorepresentations” %6, and
C) REPRESENTATION THEORY OF LIE-ADMISSIBLE ALGEBRAS:
characterized by two-sided, left and right, modular-isotopic representations, called

two —sided isobirepresentations , or genorepreseniations 38 for short, first
introduced in Santiili (1979}

By following the presentation in Santilli (1991b), consider a nonassociative
algebra U over a field F. The right and left multiplications in U {Albert (1963),
Schafer (1966)) are given by the following linear transformations of U onto itself as a
vector space

Ry: a=ax, or aRy=ay, (D.la)
Ly: a=xa or aly=xa, (D.1b}

for all a, x e U, and verify the following general properties

(aa)R, = faa)x = alax), or aRy = Rgye {D.2a)
aRiy 4 y) = alx + y) = aRy + aRy - alR, + RYJ

or Ry 4 y) = Ry + Ry (D.2b)

with evident similar properties for the left multiplications L.
When the algebra is associative, we have the additional propertics

l

alxy) = (axly, or aRyy = aR,R,. or Ry, = R.Ry, (D.3a)
(xyla = xlyal, or alyy, = alyly, o Lyy = LyLy. (D.3b)

The above properties imply that the mapping a = Ry (@ = Lg) is a
homomorphism (antihomomorphism) of A into the associative algebra v(A) of all
linear transformations in A. Thus, they provide a right representationa = R; or a

left representation a = Ly, respectively, of A, also called left or right HomAF{VT).

38 The aigebraic meaning of Santilli's (1978a) “isotopic and genotopic mapping” Wwas
reviewed in Figure | of Sect. 10. These terms are now used (o indicate the “preservation”
and "alteration”, respectively, of the axiomatic structure of the representation theory of Lie
algebras.
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for T =R, L.
If the algebra A contains the identity I, we have a one-to-one (or faithfui)

representation because Ry = Ry, implies [ Ry = I Ry, which can hold iff a = b. When
the space L is the algebra A itself, we have the so-cailed adjoint (or regular)

representation.
In the case of nonassociative algebras, the mapping a = Ry is no longer a

homomorphism, and this illustrates the reason for the study of the representation
theory of Lie algebras via that of the underlying universal enveloping associative
algebra, as done in the mathematical literature {see, e.g., Jacobson (1962)), but
generally not in the physical literature.

Consider now an isoassociative algebra A over an isofield F with isounit 1
and isoassociative product asb. Introduce the right and left isomultiplications

Ry:a=axx,  or awR =aw, (D.4a)
[x:a=xxa, or atl, =x+, (D.4b)

for all a € A. [t is then easy to see that properties () are lifted into the forms
a*Ry = Rgwx, Rix+y) = Ry * Ry, (D.5a)
Ryey = ReRy, TRy =R = a=b, (D.5b)

with similar properties for the left isomultiplications.

It is easy to see that the mapping & = Ry characterizes a right, faithful,
isorepresentation of A in the isoassociative algebra V(A) of isolinear
transformations of AR, and denoted HomﬁF(VR), with similar results holding for

the left iscrepresentations.
The nontriviality of the isotopy is made clear by the following

LEMMA D.1 (Santilli (1991b): Isorepresentations of isoassociative algebras A over an
isofield F are isolinear in V but generally nonlinear in V.

Namely, the transition from Lie algebras to Lie—Santilli algebras generally
impiies the transition from linear and local to nonlinear and nonlocal

representations.
A module of an algebra U over a field F, also called U-module, (Schafer

(1966)) is a linear vector space V over F together with a mapping UxV = V denoted
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with the symbol (a,v) = av which verifies the distributive and scalar rules
alv+t) =av +at, fa+ blv =av + by, (D.6a)
alay) = laav) = (aavh (D.6b)

as well as all the axioms of U, for allabe U, vite V,anda€F.

The mappings a = Ry = av and a = Ly, = va clearly show that the space Vis a
left and right U-module.

The above notion of module implies only one action, e.g., that to the right. In
order to reach a two-sided action, consider an algebra U over a field F. Let V be a
vector space over F. Introduce the direct sum S =U @ V in such a way that Sisan
algebra verifying the same axioms of U while V is a two sided ideal of 8. This can
be done as follows (see, e.g., Schafer (1966)k

1) retain the product of U;

2) introduce a left and a right composition av and va, for all

elements a € U and v € V which verify all axioms of U {including  the and
right and left scalar and distributive laws) and

3).to cornplete the requirement that V is an ideal of §, assume vt= tv = 0
for all elements of V.

When all the above properties are verified, V is called a two-sided, left and
right module, or a bimodule of U, and the aigebra S is called a split null
extension of U (loc. cit).

Bimodules clearly provide a generalized, left and right representation theory
of all algebras, whether associative or nonassociative. It.is important to understand
why bimodules are not needed for the representation theory of Lie algebras (i.e., for
the conventional notion of particles) and of Lie-isotopic algebras (i.e., for Santilii's
isoparticle outlined in the main text), but they become essential for the covering
Lie-admissibie algebras.

A bimodule V of a Lie algebra L or Lie-bimodule (Santilli (1979a)) is
characterized by left and right compositions av and va, a € L, v € V, verifying the
properties

av= —va, (D.7a}
v(ab) = {valb - (vbla, (D7)

which can be identically expressed via the left and right multiplications
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L= -Ry (D.8a)
Rap = RaRp - RpRa (D.8b)

The mappings a = R; and a = Ly then provide a left and right
representation, or a birepresentation, of the Lie algebra L. over the bimodule V
as a HomLgl{vg, V).

However, owing to property (D.8a), the left representation is trivially
equivalently to the right representation, Ry = - L,. This is the reason why only one-
sided representations of Lie algebras are significant in physics.

The notions of isomodules and isobimodules (which were introduced for the
first time in Santilli {1979a), and do not appear to have been treated in the
mathematical literature, to the author’s best knowledge, see the bibliography by
Balzer et al. (1984)) can then be defined via the one sided and two-sided isotopic
liftings, respectively.

According to Santilli {foc. cit. ), a Lie-isobimodule is therefore an isovector
space ¥ with left and right isocompositions asv and v*a verifying the distributive
and scalar laws, and the rules

ary =—y¥, (D.Sa)
vHaxh) = (veakb - (v+bMa, (D.9b)
or, equivalently in terms of isomultiplications

Ra = - [,a, {D.10a)
Ra*b = Ra*Rb - Rb*Ra’ (D.10b}

which characterizes an  isobirepresentation of a Lie-isotopic algebra L as
HomLg{(¥p,¥1). However, the left and right representations are again equivalent
because of the property Ra = - [,. Thus, only one-sided isorepresentations are
needed for the physical applications of Lie-Santilli algebras.

The notion of isobirepresentations on bimodules becomes necessary when
passing to the study of the covering Lie—admissible algebras U (Santilli {I979a)). In
fact, in this case, the action to the right is no longer equivalent to the action to the
left, thus resulting in a much richer structure. In this case a Lie-admissible
birmnodule V has the right and left compositions av and va, such that the attached
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composition aov = av — va verifies the conditions
aoy = - vog, (D.11a)
volaoh) = (voaleb — (voalob, {D.11b)

which can be equivalently expressed via the right and left multiplications
Rab-ba + Lab-ba = [Rg ~ LRy — Lyl (D.12)

and they characterize a left and right isobirepresentation of a general Lie-
admissible algebra U as HomVgVpg, ¥p).

Santilli (loc. cit. ) formulated similar structures for commutative Jordan
and Jordan—-admissible algebras and for other algebras (Sect. 5), but their study is
not considered here for brevity.

By recalling Propositions B.1 and C.I the following property is evident.
PROPOSITION D.1 (Santilli (1991b)} An axiomatization of irreversibility from the
viewpoint of the representation theory is provided by genorepresentations of Lie=
admissible algebras, that Is, by modular-isotopic representations with inequivalent
axioms to the right and to the left on bimodular vector spaces.

The reader should note the rather remarkable unity of mathematical and
physical thought provided by Propositions B.1, C.1 and D.1.

APPENDIX LE: GENOPARTICLES

Santifli's sequence of representations, isorepresentations and genorepresentations of
the preceding appendix were conceived for the characterization of the following
sequential physical notions:

A) "PARTICLES", which are characterized by conventional representations of
Lie algebras, and consist of the Einsteinian notion of massive point moving in a
stable orbit in vacuum under action—at—a—distance, local-potential interactions;

B) “ISOPARTICLES™39, which are Santilli’s more general notion of particie

39 santilli's notions of “isotopic and genotopic mappings” were recalled in the preceding
footnote, The terms “isoparticles” and “genoparticles” then stand to indicate the
“preservation” and “alteration” , respectively, of the axiomatic structure of the Einsteinian
concept of particle.
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reviewed in the main text, characterized by isorepresentations of Lie-isotopic
algebras, and consist of extended-deformable particles in stable orbit40 under the
most general known, linear and nonlinear, local and nonlocal, potential and
nonpotential interactions; and

C) "GENOPARTICLES39, which constitute Santilli’s most general notion of
particle, characterized by genorepresentations of Lie-admissible algebras, and
constitute extended—deformable particles under the most general dynamical
conditions conceivable at this writing, that is, in nonconservative-unstable orbits
while moving within a physical medium under linear and noniinear, local and
nonlocal, and Hamiltonian and nonhamiitonian external forces.

From the content of Appendix D, we can say that

Einstein’s notion is a linear, local, one-sided, conventionally modular
representation of a Lie algebra.

The Lie-isotopic theory outlined in the main text implies a nontrivial
generalization of the preceding notion. [n fact,

Santilli's isoparticle is a nonlinear, nonlocal, one-sided, modular—isotopic
representation of a Lie—isotopic algebra.

The Lie=admissible formulations outlined in this appendix imply the
following further generalization

Santillis genoparticle is a nonlinear, nonlocal, two-sided, modular—isotopic
representation of a Lie-admissible algebra.

40 Recall that the Lie-isotopic algebras preserve the antisymmetry of the product of Lie
algebras. As such, they characterize conserved quantities which, when representing physical
entities, imply stable orbits. As stressed repeatedly by Santilli (1978a, b), (1981a), {1982a}, (1991b,
d) to prevent physical misrepresentations, the effective treatment of a particle in an
unstable (say, decaying) orbit with all algorithms at hand representing physical quantities
{e.g., the Hamiltonian H represents the energy of the particle, p represents the linear
momentum, etc.), requires the use of the Lie-admissible formulations. These aspects have
profound implications for the hadronic structure, which we hope to review in a possible
operator sequel of this volume. In fact, they imply that the hadronic constituents are
“isoparticles” only when in stable orbits, otherwise they are “genoparticles” (Santilli (1989a, b,
¢, d)). Needless to say, the two formulations are interchangeable, in the sense that Lie—
isotopic formulations can also represent stable orbits, but then the algorithms at hand must
necessarily lose their physical meaning (e.g, H = { a exp (8 +2) } ), and this illustrate the
insidious possibility of misrepresenting physical results and implications.
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It should be mentioned here that we are referring to one of the most
complex and, by far, unexplored notions of contemporary mathematics, Santilli's
isobirepresentations“. as expectedly needed to represent some of the most
complex physical conditions in the Universe.

On physical grounds, the implications are rather deep. Recall that for
Einstein’s special relativity a particle is a massive point which, as such, is a
perennial and immutable geometric concept. Moreover, the orbits of Einstein’s
particles are necessarily stable, as trivially requested by the exact character of its
rotational subsymmetry.

As shown in Santilli {1988a, ¢} the Lie-isotopic theory can instead represent
the actual shape of the particle considered, as well as all its infinitely possible
deformations. Thus, an isoparticle can have an infinite number of different
intrinsic characteristics, depending on the infinite number of different interior
conditions, and as permitted by the infinite number of isotopes of the Galilei
symmetry. However, an isoparticle should always be restricted to a stable orbit

The more general Lie-admissible theory outlined in these appendices
implies a further physical generalizations. In fact, besides representing the actual
shape of the particle considered and all its possible deformations, Santilli’s
genoparticle are in unstable orbits, and possess an intrinsically irreversible
evoiution.

Now, Einstein’s notion of particle is unquestionably exact for the arena of its
original conception, say, for an electron in an atomic cloud. The inapplicability of
the same notion in Santilli’s conditions is beyond any credible scientific doubt. In
fact, the insistence, say, in the characterization of a proton in the core of a star
undergoing gravitational collapse via EinsteinUs notion of particle, would imply
that the proton considered freely orbits inside the core of the star with a conserved
angular momentum.

The quantum leap in mathematical and physical knowledge offered by
Santitli's Lie—isotopic and Lie—admissible formulations is then manifest.

It is evident from the outline of this volume that Santilli’s Lie-admissible
formulations include, as particular cases, the Lie—isotopic and the conventional Lie
formulations. This illustrates the primary mathermatical and physical significance
of the Lie-admissible formulations over the Lie-Santilli and the conventional Lie
formulations.

41 g this author’s best knowledge, only the following isorepresentations of Lie-isotopic
algebras have been investigated until now:

a) Isorepresentations of 03), Santilli (198%al;

b) isorepresentations of SO(2) (Santilli (1989b);

o) fundamental isorepresentations of SO(3) (Mignani and Santilli (1991}

no study on the representations of the Lie—admissible algebras has appeared to this writing
besides, their proposal (Santilli (1979a)).
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Besides constructing, alone and as a theoretical physicist, the entirety of the
Lie—isotopic formulations including their physical aPplications outlined in the main
text, Santilli was the first to identify the application of the Lie-admissible algebras
for the characterization of the algebraic structure of the historical Hamilton's
equations with external terms (App. A) at a time, 1967, when only two additional
mathematical papers had appeared in rather obscure journals, besides that by
Albert (1948).

Santilli subsequently identified the operator counterpart of the above
historical equations with external terms, which resulted in his Lie~admissible
generalization of Heisenberg’s equations (1978b), with consequential proposal to
construct a generalization of quantum mechanics via the Lie—admissible
generalization of the current Lie structure.

These studies resulted in a new generation of covering mechanics and
relativities for interior dynamical conditions fundamentally beyond the technical
capabilities of contemporary relativities.

On mathematical grounds, Santilli remains to this day one of the primary
contributors in the study of Lie-admissible algebras. in particular, he was the first
to formulate the Lie-admissible generalization of enveloping associative algebras,
Lie algebras, and Lie groups. Santilli was also the first to introduce the notion of
isobimodule and formulate the representation theory of Lie-admissible algebras
outlined in the preceding appendix (Santilli (1979).

By keepiijg in mind the far reaching physical implicaticns of these studies as
outlined in this '\f{olume, the above events fully justify the listing of Santilli with the
year 1967 in thelf;historical chart prepared by the Estonian Academy of Science
{reproduced below), among the most illustrious contributors to algebras and physics
from Gauss (1820) until this day.
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PART II:

LIE-SANTILLI ISOTHEORY

1997
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IL1. INTRODUCTION

I1.1.1. Limitations of Lie’s theory.

As it is well known, Lie’s theory has permitted outstanding achieverments in
various disciplines. Nevertheless, in its traditional conception [30] and realization
(see, e.g., [15]), Lie's theory is linear, local-differential and canonical-Hamiltonian.
As such, it possesses clear limitations,

An illustration is provided by the historical distinction introduced by
Lagrange [29], Hamilton [14] and other founders of analytic dynamics between the
exterior dynamical problems in vacuum and the inferior dynamical problems
within physical media. Exterior problems consist of particles which can be
effectively approximated as being point-like while moving within the homogeneous
and isotropic vacuum under action-at—a—distance interactions (such as a space-ship
in a stationary orbit around Earth). The point-like character of particles permits
the exact validity of conventional local-differential topologies (e.g., the Zeeman
topology in special relativity); the homogeneity and isotropy of space then allow the
exact validity of the geometries underlying Lie's theory (such as the symplectic
geometry); and the action—at-a-distance interactions assures their representation
via a pofential with consequential canonical character.

Interior problems consist instead of extended, nonspherical and deformable
particles moving within inhomogeneous and anisotropic physical media, with
action—at—a—distance as well as contact-resistive interactions (such as a space—ship
during re-entry in Earth’s atmosphere). In the latter case the forces are of local—
differential type (e.g., potential forces acting on the center-of-mass) as well as of
nonlocal-integral type (e.g., requiring an integral over the surface of the body), thus
rendering inapplicable local-differential topologies; the inhomogeneity and
anisotropy of the medium imply the inapplicability of conventional geometries for
their quantitative treatment; while contact-resistive interactions violate Helmholtz's
conditions for the existence of a potential {the conditions of variational



J. V. Kadeisvili —-286- Santilli’s Isotopies

selfadjointness [109]), thus implying the noncanonical character of interior systems.

We can therefore say that Lie’s theory in its conventional linear, local and
canonical formulation is exactly valid for all exterior dynamical problems, while it
is inapplicable (and not "violated”) for the more general interior dynamical
problems on topological, geometrical, analytic and other grounds.

11.1.2. The need for a suitable generalization of Lie’s theory.

Lies theory is currently applied to nonlinear, nonlocal and noncanonical systems
via their simplifications into more treatable forms, e.g., via the expansion of
noniocal-integral terms into power series in the velocities and then the
transformation of the system into a coordinate frame in which it admits a
Hamiitonian via the Lie—Koening or the Darboux Theorems [110].

However, however, nonlinear, nonlocal and nonhamiltonian systems cannot
be consistently reduced or transformed into linear, local and Hamiltonian ones. An
illustration exists in gravitation. The distinction between exterior and interior
gravitational problems was in full use in the early part of this century (see, e.g.
Schwarzschild’s two papers, the first celebrated paper [119] on the exterior problem
and the second little known paper [120] on the interior problem). The same
distinction was also kept in early well written treatises in the field (see, e.g., [4] (38).
The distinction was then progressively abandoned up to the current treatment of
all gravitational problems, whether interior or exterior, via the same local-
differential Riemannian geometry.

The above trend is based on the belief that interior dynamical problems
within physical media can be effectively reduced to a collection of exterior
problems in vacuum (e.g., the reduction of a space-ship during re-entry in our
atmosphere to its elementary constituents moving in vacuyum).

[t is important for this study to know that the exterior and interior
problems are inequivalent, and the latter is not exactly reducible to the former.
The inequivalence is established by the fact that the exterior problem is focal-
differential and variational selfadjoint (109}, while the interior problem is
nonlocal-integral and variationally nonselfadjoint lloc. cit.. This establishes the
inequivalence on: topological grounds {because the conventional topologies are
inapplicable to nonlocal conditions); analytic grounds (because of the lack of a
first-order Lagrangian); geometric grounds (because of the inapplicability of
conventional geometries to characterize, say, locally varying speeds of light); and
other grounds (see monograph [116} for comprehensive studies).

The irreducibility of the interior to the exterior problem is established by
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the so—called No-Reduction Theorems [65] which prohibit the reduction of a
macroscopic interior system (such as a satellite during re-entry) with a
monotonically decreasing angular momentum, to a finite collection of elementary
particles each one with a conserved angular momentum (see also [116] for
comprehensive studies here omitted for brevity).

On geometrical grounds, gravitational collapse and other interior
gravitational problems are not composed of ideal points, but instead of a large
number of extended and hyperdense particles (such as protons, neutrons and other
particles) in conditions of total mutual penetration, as well as of compression in
large numbers into small regions of space. This implies the emergence of a
structure which is arbitrarily nonlinear {in coordinates and velocities), nonlocal-
integrat (in various quantities) and non—hamiltonian {variationally nonselfadjoint).

Additional insufficiencies of the current formulation of Lie’s theory as well
as of its underlying geometries and mechanics exist for the characterization of
antimatter. In fact, we possess today effective metheds for the characterization of
antimatter only at the operator level via charge conjugation. These methods do
not have a counterpart at the classical level because charge conjugation is
antiautomorphic and no corresponding map exists in the classical realization of
Lie’s theory, as well as in its underlying carriers spaces, geometries and mechanics.
There is therefore the need of achieving first a consistent antiautomorphic
characterization of antimatter at the classical-astrophysical level, and then at the
level of its elementary constituents.

Similar ¥occurrences have recently emerged in astrophysics,
superconductivity, theoretical biology and other disciplines. These occurrences
establish the need for a generalization of the conventional Lie theory which is
directly applicable (i.c., applicable without approximation or transformations) to
nonlinear, integro—differential and variationally nonselfadjoint equations for the
characterization of matter, and then possesses a suitable antiautomorphic map for
the effective characterization of antimatter.

11.1.3: Santilli’s isotopies and isodualities of Lie’s theory.

[n a seminal memoir [52] written in 1978 (see also memoir [53] and paper [54]
written in the same year) when at Harvard University, the theoretical physicist
Ruggero Maria Santilli proposed a step-by-step generalization of the
conventional formulation of Lie's theory (that is, a generalization of envelopes,
algebras, groups, representation theory, etc.) specifically conceived for nonlinear,
integro-differential and noncanonical systems. The generalized theory was
subsequently studied by Santilli in over one hundred papers (mostly published in
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the physical literature), including studies on the structure of the theory and its
applications in various fields (see representative papers [52-108), and then
additionally studied in ten monographs [109-118]. The new formulation of Lie’s
theory which has emerged from these studies is today called the Lie-Santilli
isotopic theory or isotheory for short (see papers {1}, 2} (8], [11], [12], [16]-(23], [25]
[32), [33], [35/37), [401-43], [122]-1125), independent monographs [3], [24], [31], [121] and
additional references quoted therein).

A main characteristic of the Lie-Santilli isotheory, which distinguishes it
from other generalizations, is its isotopic nature intended (from the Greek meaning
of the word) as the capability of preserving the original Lie axioms. More
specifically, Santilli's isotopies [52}-{54] are today referred to maps of any given
linear, local and canonical structure into its most general possible nonlinear,
nonlocal and noncanonical forms which are capable of reconstructing linearity,
locality and canonicity in certain generalized isospaces and isofields within the
fixed Inertial coordinates of the observer.

These properties are remarkabtle, mathematically and physically, inasmuch
as they permit the preservation of the abstract Lie theory and the transition from
exterior to interior problems via a more general realization of the same theory. We
assume the reader is aware of the array of novel problems raised by the above
definition of isotopies, such as the representation of nonhamiltonian vector fields
in the coordinates of the observer without Darboux’s transformations to an
equivalent Hamiltonian form, because the latter, being nonlinear images of the
coordinates of the observer, are not realizable in experiments as well as noninertial
and, as such, are not usable in practical applications (see the preceding article (100]
by Santilli for the solution of this and the other problems connected with the above
definition).

It should be indicated that Santilli submitted his isotopic theory in memoir
[52] as a particular case of a yet more general theory today called Santilli’s Lie-
admissible theory or Lie-Santilli genotopic theory, where the term genotopies
was introduced {from its Greek meaning of "inducing configuration”) to denote the
characterization of covering Lie—admissible axioms.

In fact, Santilli initiated his research during his Ph. D. studies in theoretical
physics at the University of Turin, [taly, by introducing in 1967 [47] a new notion of
Lie-admissible algebra with its explicit realization. These early studies in Lie-
admissibility were then continued in papers [49H53), [55]-[58], and numerous other,
as well as in monographs [111], [112].

In essence the first notion of Lie-admissibility is due to the American
mathematician A. A. Albert (see the historical notes of ref. [52)) and is referred to a
nonassociative algebra U with elements a, b, ... and (abstract} product ab whose
attached antisymmetric algebra U™, which is the same vector space as U but
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equipped with the product [a, bly = ab — ba, is Lie. As such, the algebra U does not
necessarily contain a Lie algebra in its classification, thus resulting to be
inapplicable for the construction of mathematical and physical coverings of Lie’s

theory.
In fact, Aibert was primarily concerned with the requirement that U should

contain Jordan algebras as particular cases, and conducted his studies with the
quasiassociative algebra with product

(a,b) = xab+(l-A)ba, (1.1)
where X is a non—null scalar, which yield a commutative Jordan algebra for A =+
and ab associative, but which does not admit a Lie algebra under a finite value of A

The second notion of Lie—admissibility was introduced by Santilli in paper
[47] as the preceding definition, plus the condition that the algebra U admits Lie
algebras in their classification or, equivalently, that the product ab admits as a
particular case the Lie product. This definition was presented via the realization of
the flexible Lie-admissible algebras with product

(a,b) =xab-pba, (£.2)
where A, i and )\+ | are non—null scalars, under the conditions that
fably = (ab)-(ba)=(x+plab-ba), (13

is Lie, plus the condition that the product (a, b} admits the Lie product as particular
case. The latter conditions are easily met for A = |1 and ab associative.

To the author’s best knowledge, paper (47] initiated in 1967 the studies in the
so—~called "q—deformations” subsequently conducted in the 1980's by a large number
of authors with the simpler product

{a,b)=ab-qba, ArA=1, u-=4q, (1.4)

(although papers in the latter field rarely quote [47]). Santilli also identified in paper
[49] of 1969 the first Lie—admissible structure on record of classical dynamics for
dissipative systems, thus illustrating the physical need of his "want of a Lie algebra

content” [47].
Subsequently, in memoirs (52), {53 of 1978, Santilli introduced the realization

of the general Lie-admissible algebra U with the product
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{a,b) = axRxb - bxSxa, (1.5)

where axR, Rxb, etc. are associative, and R, S, R+S are nonsingular but otherwise
arbitrary operators with scalars values X and p as particular cases. He then
discovered that the attached antisymmetric algebras were not conventionally Lie
with the familiar commutator axb — bxa, but were instead characterized by the
product

[a,b}0=(a,b)-(b.a)=a’<T’<b‘b"Txa, T=R+8S, {1.8)

which he called Lie-isotopic [52), [53]. This resulted in the third definition of Lie-
admissibility, today called Albert-Santilli Lie-admissibility, which refers to a
nonassociative algebra U which admit Lie-Santilli isoalgebras both in their
attached antisvinmetric form U™ as well as in their classification.

Jointly, Santilli identified in the same memoirs a classical [52] and operator
(53] realization of the general Lie—admissible algebras, thus establishing the
foundations of a structural generalization of Lie-admissible type of analytic and
quantum mechanics and of their interconnecting map, of which in this paper we
shall merely study the isotopic particular case occurring forR=8=T= T' #0.

Albert-Santilli notion of Lie—admissibility can be considered the birth of the
Lie—Santilli isotheory, and can be found in Sect. 3 (particularly Sect. 3.7} of ref. [52]
and in Sect. 4 (particularly Sect. 4.14 ) of ref. {531 In fact, Santilli recognized that the
antisymmetric brackets (a, bl; attached to the nonassociative algebra U with
product (a, b} = axRxb — bxSxa can be identically rewritten as the antisymmetric
brackets attached to an associative algebra A with product axTxb,

[a,bly =lablg (1.7
C: (ab)=axRxb - bx8xa, A:axTxb, T=R + 8

The latter identity signaled the transition from studies within the context of
nonassociative algebras (done by Santilli until 1978), to genuine studies on the
generalization of Lie’s theory (done from 1978 on) via the isotopies of
associative enveloping algebras and related Lie algebras, Lie groups,
representation theory, etc.

In fact, Santiili then discovered that the quantity 1 = T"! is indeed the
correct left and right unit of the isotopic envelope A. The Lie-Santilli isotheory
can therefore be initially conceived as the image of the conventional theory under
the lifting of the trivial unit | of conventional use to a well behaved but
otherwise arbitrary unit 1.
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This conception permitted Santilli to identify all main lines of the isotheory
already in the original proposal [52], which include: the isotopies of universal
enveloping associative algebras (including the isotopies of the fundamental
Poincare-Birkhoff-Witt and Baker—Campbell-Hausdorff theorems), the isotopies of
Lie algebras (including the isotopies of the celebrated Lie's first, second and third
theorem); the isotopies of Lie transformations groups; and other isotopies.

The original proposal [52] also included the remarkable property of the Lie—
Santilli isoalgebra of unifying compact and noncompact simple Lie algebras of the
same dimension (see ref. [52], Definition 3.7.2 on the isotopic envelope characterizing
nonisomorphic Lie algebras with the same basis and changing instead T, and the
isotopic unification of O{2.1) and O3) in p. 289). All subseguent developments,
including this presentation, have essentially been refinements of these foundations
introduced in the original proposal {52], [53}

By the early 1980's Santilli recognized that the available Lie, Lie-isotopic and
Lie—admissible formulations could only be applied to matter and not to antimatter
for the reasons indicated in Sect. [.B. He then reinspected his isotopies and in papers
[62), [63] (written in 1983 but published in 1985 because of quite unreasonable
editorial obstructions by various physics journals reviewed in p. 26 of [62]) he
discovered that, once the elementary unit +1 is abandoned in favor of an arbitrary
quantity 1, the latter unit admits in a natural way negative values. He also
discovered that the map 1 > 0 = 19 = -1 < 0 is antiautomorphic precisely as the
charge conjugation, and called it isoduality in the sense of being a form of duality
which necessarily requires the isotopic generalization of the unit.

In the safhe papers [62], [63] he reformulated the Lie-isotopic theory for
negative units 19 which is today called isodual Lie-Santilli isotheory, and
introduced a number of novel notions, such as isorotational symmetry O(3) and
its isodual O%3) which leave invariant the conventional ellipsoids with positive
serniaxes, and the new isodual ellipsoids with negative semiaxes, respectively. He
then proved the isomorphism {3} ~ 0(3) {and the anti-isomorphism between 0%3)
and O3, thus disproving the rather popular betief that the rotational symmetry is
broken for the ellipsoidical deformations of the sphere (which is correct only under
the assumption of realizing Lie's theory in its simplest conceivable form, but
incorrect otherwise, as illustrated in Sect. 3.E).

Despite these advances and as admitted in private communications, Santilli
abstained from indicating in papers [62], (63 the applicability of the isodual theory
for the characterization of antimatter because of its rather deep implications such
as a causal motion backward in time, the prediction of antigravity for antiparticles
in the ficld of matter, and others.

After due studies, the above reservation were resolved, and Santilli first
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applied his isodual theory for the characterization of antimatter in monographs
[113] [114] of 1991. The equivalence between isoduality and charge conjugation was
first proved in paper [84] of 1994. Some of the far reaching implications of
isoduality were studied in papers (86], [87] of the same year. The first comprehensive
treatment of isoduality appeared in the 1994 edition of monograph {116]. The
mathematical and physical studies based on isoduality are now rapidly expanding.

The culmination of Santilli’s isotopies and isodualities can be seen in the
emergence of new notions of space-time and internal symmetries for matter, and
their isodual for antimatter which, in turn, culminate in the isotopies and
isodualities of the Poincaré symmetry, first proposed by Santilli in paper [59] of 1983
(see paper [79] of 1993 for the iatest comprehensive study including its isospinorial
covering). The isotopies of the SU(3) symmetry were first studied in paper {34 of
1984 and those of the quark theory in paper {90] of 1995.

The new space-time isosymmetries imply corresponding new classical and
quantum mechanics and have far reaching implications, such as: the first exact-
numerical representation of the magnetic moment of the deuteron (85} (which has
escaped quantum mechanics for three quarters of a century despite all possible
relativistic and tensorial corrections); the first exact-numerical representation of
the synthesis of the neutron inside new stars from protons and electrons only [95]
(which cannot be treated quantitatively by quantum mechanics and quark theories)
the consequential prediction of a new source of clean, subnuclear energy called
"hadronic energy” [88] (all predictive capacities for new energies based on the
conventional Poincare symmetry were exhausted during the first half of this
century); and other novel applications, verifications and predictions [116], [118].

In view of the above advances, Santilli received various honors, including
the Nomination in 1989 by the Estonia Academy of Sciences among the most
illustrious applied mathernaticians of all times, jointly with Gauss, Hamilton, Cayley,
Lie, Frobenius, Poincaré, Cartan, Riemann, and others, the only member of [talian
origin to enter in the list {see the charts of pages 6-7 of ref. [31]. Quite
appropriately, the Nomination lists Santilli's first paper [47} on Lie-admissibility
written at the University of Turin, Italy, from which everything else foliows.

This Part II is solely devoted to the Lie-Santilli isotheory with a few
indication of its isodual. In Sect. 2 we shall present the latest formulation of
isotopies and isodualities of mathematical methods based on memoir (100l A
comparison with the corresponding formulation of Part [ is instructive. The
isotopies and iscdualities of Lie’s theory are presented in Sect. 3.

As an illustration of the capabilities of the Lie—Santilli isotheory, we review
in Sect.s 3.D-3.F the “direct universality” of the Poincare-Santilli isosymmetry, that
is, the achievement of the symmetries of all infinitely possible, well behaved,
nonlinear, nonlocal and noncanonical generalization of the minkowskian line
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element (universality), directly in the coordinates of the observer (direct
universality). This universality includes as particular case the symmetry of ali
possible gravitational models in (3+1)-dimension with consequential unification of
the special and general relativities and emergence of a novel quantization of gravity
via the unit of relativistic quantum mechanics without any need of a Hamiltonian
[79], [98]. A number of intriguing open mathematical problems will be identified
during the course of our analysis and in the final section,

A comprehensive mathematical presentation of the Lie—Santilli isotheory up
to 1992 is available the monograph by Sourlas and Tsagas [I21] A historical
perspective is available in the monograph by Lohmus, Paal and Sorgsepp [31]. The
study of continuity properties under isotopies was initiated by Kadeisvili [22]. The
first identification of isomanifolds (today called Tsagas-Sourlas isomanifoldd was
done in ref. [122] which is a topological complement of these algebraic studies.

The author presented the continuous advances in the Lie-Santilli isotheory
in reviews [24,25,26]. The present review is a further update over the preceding ones
in various details.

[n this review we can only quote contributions on the generalization of Lie's
theory based on the broadening of the unit and we regret our inability at this time
to quote the rather numerous contributions on different generalization based on
the conventional unit. The author would be grateful to any colieague who cares to
bring to his attentlon additional relevant literature for quotation in future works.

The author also regret the inahility, to avoid a prohibitive length, to indicate
the rather mtrlgumg connections existing between the Lie-Santilli isotheory and
other generahzed formulations, such as the Kac-Moody algebras, superalgebras,
guantum algebras etc., whose study is left to interested mathematicians.

II.2: SANTILLPS ISOTOPIES AND ISODUALITIES OF
CONTEMPORARY MATHEMATICAI. METHODS

II1.2.1. Introduction.

Santilli has made some of his most momentous advances in pure and applied
mathematics by discovering that the formulation of contemporary mathematics with
a well defined left and right unit is dependent on the assumption of the simplest
conceivable realization of the unit, the scalar number [ = +i or the n—dimensional
unit matrix I = Diag. (1, §, I, ... ).
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In his memoirs of 1978, Santilli (52}, [53] therefore suggested the reconstruction
of contemporary mathematics with respect to a quantity 1 of the same dimension of
the conventional unit I, but with an unrestricted functional dependence of its
elements in time t, coordinates x, their derivatives of arbitrary order, and any needed
additional quantity such as local density ., temperature T, index of refraction n and,
for operator theories, wavefunctions & and their derivatives (52, (53], [115),

[ = 1=1x % %4 o, 8¢, 1, w0, .)= T7! 2.1

Jointly, Santilli suggested the lifting of the associative product AXB among generic
quantities A, B (e.g., numbers, vector fieids, operators, etc.), into the form

AXB ~—~ A%B=AxTxB. (2.2)
in which case 1 =T"! is the correct left and right generalized unit of the theory,
1%A = AXT = A, (2.3)

for ali possible elements A of the considered set.

For consistency, the entire original mathematics must be reconstructed in
such a way to admit the quantity 1 as the correct left and right unit. This implies the
reconstruction of numbers and angles, fields and number theory, functional analysis
and differential calculus, algebras and geometries, etc.

In reality, rules (2.1)-{2.3} lead Santilli to the discovery of seven different
structural liftings of the contemporary mathematics, which can be outlined as
follows*%

1) Isomathematics [52], which occurs when 1 preserves all the topological
characteristics of I, e.g., nowhere-degeneracy, Hermiticity and positive-definiteness.

2} Genomathematics (52], which occurs when 1 is invertible but non-
Hermitean (e.g., a real-valued but non-syrmmetric matrix}

3) Hypermathematics (73], which occurs when 1 is a (finite or infinite),
ordered set of invertible, generally non—Hermitean quantities.

In conventional mathematical and physical formulations, the systems are
identified via the sole knowledge of the Hamiltonian H (or of the Lagrangian L). In
Santilli>s methods, the identification of systems requires the knowledge of two
different quantities, the Hamiltonian H {or Lagrangian L) and the generalized unit 1.

[somathematics has resulted to be effective for the representation of closed-

42 A readable outline can be found in Page 18 of the Web Site M. Battler, M. McBee, and 3.
Smith hitp://home1.gte.net/ibr/.
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isolated systems of particles verifying the usual total conservation laws, with
conventional interactions represented with H (or L) plus internal nonlinear, nonlocal-
integral and nonpotential-nonhamiltonian interactions represented with 1. Since all
known action-at-a—distance interactions are reversible (i.e., invariant under time
reversal), this first class of systems is globally reversible, namely, their center—of-
mass trajectories are reversible from the property of the isounit T = 1T which is then
generally assumed to be time-reversal invariant, i.e. T(-t) = 1t).

Genomathematics applies for the representation of open—nonconservative,
nonlocal and non-Hamiltonian systems in irreversible conditions. in this case the
Hamiltonian H {or Lagrangian L} remain fully reversible, while irreversibility is
represented via the axioms of the theory from the property T # 1. As we shall see
better in Chapter 7, genomathematics therefore represents irreversible systems
irrespective of whether 1 is time—dependent or not.

Hypermathematics is significant for quantitative representations of more
complex multivalued systems, e.g., of biclogical type.

Moreover, in 1985 Santilli (62}, [63] discovered a new anti~isomorphic map of a
generic quantity A (again, numbers, vector fields, operators, etc.) into its anti-
Hermitean form

A = A% = —af (2.4)

which he called”isoduality, and which was relegated by this author in the first
edition of this book in 1992 to a possible re~-interpretation of the inversions (see the
first edition, pages23, 24).

Momentous advances have been done by Santilli since that time with the
constructions of the foundations of yet novel isodual mathematics and their use for a
basically novel theory of antimatter.

On physical grounds, Santilli [84,106-108] lamented the dramatic disparity
existing in the physics of this century between the treatment of matter and
antimatter. In fact, matter is represented at all level of current mathematical and
physical knowledge from Newtonian mechanics all the way to second quantization,
while antimatter is represented only in second quantization.

This disparity in treatment implies predictable shortcomings. For instance,
Santilli [loc. cit.] proved that the operator image of the current representation of
antimatter is not the correct charge conjugate state, but rnerely the state of a
particle with reversed sign of the charge. This is evidently a consequence of the use
in conternporary physics of only one channel of quantization, that for particies.

Deeper shortcomings of the current theory of antimatter were identified by
Santilli [105] in the problem of unified gauge theories with the inclusion of
gravitation, which we can review only after acquiring the technical background.
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To resolve these shortcomings, Santilii therefore constructed a novel theory of
antimatter which is applicable beginning at the Newtonian level, has its own channel
of quantization, and then admits an operator formulation which is equivalent to that
provided by charge conjugation [84,106-108]

The guiding principle was the property of charge conjugation of being anti-
automorphic. He therefore looked for all possible maps which:

1) were also anti—automorphic {or, more generally, anti-isomorphic) like
charge conjugation;

2) while charge conjugation is solely applicable at the operator level, the
needed map had to be applicable at all classical and quantum level; and

3) the emerging new theory had to represent all available experimental data on
antimatter, including the equivalence to charge conjugation at the operator level.

The isodual map (2.4) resulted to verify ali the above conditions. In fact, map
(2.4) implies, first, the isoduality of the basic unit

1 - 19=-1f, (2.5)

with consequential isoduality of the product of generic quantities A, B,
A%B - AUsdpd = (—Al)x(-1)x(~8), (26)
under which 19 = (197! is, again, the correct right and left generalized unit,
10%d A0 = pd5d1d = . (2.7)

For consistency the totality of the original mathematical methods must be
subjected to the isodua! map, thus resulting in still new isodual mathematics, with yet
new numbers and angles, new vector and metric spaces, new f unctional analysis and
differential calculus, new algebras and geometries, etc.

Most importantly, the isodual mathematics resulted to be anti-isomorphic to
the original mathematics, as desired, thus verifying the crucial condition 1) above.
Conditions 2) and 3) will be studied later on.

For readers who are still skeptical on the existing of yet novel mathematics, it
is sufficient to note that a mathematics with negative unit is conceptually,
topologically and geometrically different than a mathematics with positive unit,
thus warranting separate studies.

These studies on antimatter lead Santilli [100] to the identification of the
following four additional novel mathematics:

4) Isodual mathematics 1100], which is the isodual image of the conventional
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mathematics used for the characterization of antiparticles in vacuum;

5) Isodual isomathematics [100], which is the isodual image of the
isomathemnatics, and it is used for the study of antiparticles in interior conditions
with global reversibility;

6) Isodual genomathematics [100), which is the isodual image of the
genomathematics used for the characterization of antiparticles in interior conditions
and irreversible global behavior; and

7) Isodual hypermathematics [100], which is the isodual image of the
hypermathematics used for the description of complex multivalued systems systems.

It should be indicated for clarity Santilli’s insistence on the fact that the iso—
geno~ and hyper-mathematics do not constitute “new” mathematics because, by
conception and construction, they verify exactly the same abstract axioms of the
contemporary mathematics with a unil, thus being “new realizations” of existing
axioms. The isodual iso-, geno- and hyper-mathematics verify the abstract axiom
of the isodual rnathematics and, as such, are anti-isomorphic to the preceding ones.

In turn, this mathematical conception has rather intriguing and far reaching
physical implications. As an example, the new realizations of the abstract axioms of
guantum mechanics permitted by the iso—-, geno— and hyper-mathematics have
resulted to be a form of “completion” of quantum mechanics much along the
historical teaching of Einstein, Podolsky and Rosen, as indicated in memoir [101]
beginning with the title.

What is rather remarkable is that Santilli identified each of the seven new
mathematics because of specific physical or biological needs and also constructed
the foundations of each of them as necessary pre—requisite for his novet applications.

Needless to say, despite the volume of research conducted to date, the studies
are still at their initiation and so much remains to be done, Also, in this monograph
we cannot possibly study all the above new mathematics and their applications, and
are therefore forced to restrict our attention to more specific goals.

In this Part I1 we shall solely study the isomathematics and its isodual, with
the iscdual mathernatics being a simple particular case. An outline of the current
formulation of the broader genomathematics and hypermathematics cannot be made
for brevity (SEE REF. [100,101]).

11.2.2: Classification of isomathematics

The iso— (as well as the geno- and hyper) ~mathematics has a rich structure requiring
an internal classification for proper study of the various individual aspects.

When generically referred to a formulation with a Hermitean unit,
isomathematics was classified by this author [22] into the following classes, today
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called Kadeisvili's Classes:

Class I (with generalized units that are smooth, bounded, nondegenerate,
Hermitean and positive-definite, characterizing the isotopies properly speaking);

Class I (the same as Class | aithough 1 is negative—definite, characterizing
isodualities);

Class III (the union of Class [ and I}

Class IV (Class I1I ptus isounits admitting zeros); and

Class V (Class IV plus unrestricted generalized units, e.g., realized via
discontinuous functions, distributions, lattices, etc.).

All isotopic structures identified below also admit the same classification
which will be omitted for brevity. In this monograph we shall generally study
isotopies of Classes I and II, at times treated in a unified way via those of Class III
whenever ne ambiguity arises.

Santilli’s isomathematics of Classes [V and V are vastly unexplored at this
writing. This is unfortunate because we know today that, the zeros of the isounits
represent gravitational singularities, and have other intriguing physical meanings.

I1.2.3: Isotopies and isodualities of fields

Santilli’s first important contribution to mathematics has been the identification of
new numbers and fields with arbitrary units, which he presented for the first time at
the meeting on Differential Geometric Methods in Mathematical Physics held at the
University of Clausthal, Germany, in 1980 (see the latest study {73] and the general
presentation in {115]). The basic isotopies are therefore those of fields from which all
other isotopies can be derived in a unique and unambiguous way via mere
compatibility arguments.

Let F = F(a,;+,%) be a field (hereon assumed to have characteristic zero) with
elements a, b, ..., sum a + b, multiplication axb =ab, additive unit 0, multiplicative unit
I, and familiar properties a + 0 =0+ a =a, axl = |¥a =a, V a € F, and others. We have
in particular: the field R(n+x) of real numbers n, the field Clc,+) of complex
numbers ¢, and the field Q{q,+x) of quaternions q.

Definition 2.1 [73} “Santilli’s isofield” of Class Il ¥ = F@,+X) are rings with
elements & = axl, called “isonumbers”, wherea € F,and 1 = 1?71 is a Class Il
element generally outside F, equipped with two operations (+, %), the “isosum” +
which is equivalent to the conventional sum of F and the new ‘isoproduct” %

axb = axTxb, 1 =17, (2.8)
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which is such that 1="T"" js the left and right unit of F,
Txa=2a%T =3,V aeF (2.9)

in which case {only)1 is called “isounit” and T is called the “isotopic element”.
Under these assumptions F is a field, i.e, it satisfies all properties of F in their
isotopic form for all possiblea,b,c € F and3,b,ce F
1. The set F is closed under the isosum,a +b=(a+bMl e Iy
2 The isosum is commutative,a +b=0+3
3. The isosum is associative,a+(b+cl=@+b+¢;
4. There is an element 0 = 0 in F called ‘additive isounit” which is such thata +
0=0+a=4%a a
5. For each element a € F, there is an element — d € F, called the “isoopposite
of &, which is such thata+ (- 3) = 0
6. The set I is closed under ithe isoproduct, a%b € F;
7. The isoproduct is generally non-isocommutive, a%b = ba, but
“jsoassociative’ax(bx¢) = (AXbke;
8. The quantityl in the factorization i = a¥l is the “multiplicative isounit” of F
as per Eq.s (2.9);
9. For each element 3 € F, there is an element 5"1 € P, called the “isoinverse”,
which is such thataxa ') = @ '%a = 1;
10.The set F is.closed under joint isosummn and isoproduct,

"

ax(b+ &) e B, (a+B)%¢eF; (2. 10)
11. All elements a, b, ¢ € F verify the right and left “isodistributive laws”
ax(b+c)=axb+akg, (a+b)%¢=a%kg+bxe. 2.11)

When there exists a least positive isointeger p such that the equation pXa = 0
admits solution for all elements 3 € F, then F is said to have “isocharacteristic p".
Otherwise, [ is said to have “isocharacteristic zero”. Unless otherwise stated, all
isofields considered hereon shall be Class 111 isofields of isocharacteristic zero.

The above definition contains as a particular case the isonumbers (of Class I),
a =2 =ad,1=1 50 with related isofields F; = F = F&,+%), and the isodual
isonumbers (of Class I1) 3 = 3% = 2%, 1 = -1 < 0 and related isodual isofields Fyy =
td = F‘d(éd,+,?<d). Whenever no subscript is indicated, isofields are referred to those of
Class 1. Definition 2.1 therefore implies:
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a) The conventional fields R(n,+x} of real numbers n with unit1 = +;

b) the conventional field Clc,+%) of complex numbers ¢ = n +ixny with unit T =
+1;
¢) The conventional field Q{q,+) of quaternions q also with unit1=+;

d) The isodual field Rnd+x3) of isodual numbersnd = nxI9 with isodual
unit 14 =-1;

e) The isodual field CYcd,+x%) of isodual complex numbers ¢ = T = -n; +
ixny with isodual unit 19 = -;

f) The isodual field Qd(qd.+.><d) of isodual quaternions with isodual unit 19,

g) The isofield R(fi,+%) of isoreal numbers fi = n¥l with isounit T as in Eq.s
@.1)

h) The isofield OC,+X) of isocomplex isonumbers ¢ = ¢4 with isounit 1;

i) the isofield QG,+%) of isoquaternions 4 = <1 with isounit T (see (73] for the
1sooctonions);

1) The isodual isofield R +59) of isodual isoreal numbers 1 = 19 = —nx
with isodual isounit 1 = ~1;

m) The isodual isofield ¢9@4 +3d) of isodual isocomplex numbers ¢ = odd =
—ox1 with isodual isounit 1%;

n) The isodual isofield Q%Gd+5d) of isodual isoquaternions =gl x19=-
q'*1 with isodual isounit 19 (see Ref. [73] for the isodual isooctonions).

The following property can be trivially proved:
Proposition 2.1[73}: Isofields Fa+X) (of Class I} are locally isomorphic to the

ordinary fields Fla,+x) and the lifting F — F is therefore an isotopy. Isodual
isofields £9a9 +39) (of Class II) are instead anti-isomorphic to Fla,+.

Note that, the multiplication for the isonumbers is
axh =axTxb = (axbxl, {2.12)
while that for isodual isonumbers is
a0xdpd = 30x M xpd = —(alxpl)x1, (2.13)

It is evident that all operations dependent on the multiplication on F are
generalized in a simple yet unique and significant way on fa,+%) and, separately, on
£9(30 +%7d), thus yielding isotopies and isodualities of powers, quotients, square roots,
etc. We therefore have the following isopower, isosquareroot and isoquotient,
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al = a¥a%. .. ¥3 = (a")x1, | (2.14a)
at = atx1t (afP= (3hW(Eh =3, (2.14b)
a7b = (a/b)x1 = &, &4 = &%b, (2.14¢)

with the corresponding isodual isopower, isodual isosquare root, and isodual
isoquotient

3d0d — zdsdd,d  did - (aTn)x'[d, (2.15a)

adH _ adikq (gdidPdo (gdidysd(pdidy —5d (o50)

30 /9pd = (a9 /pd)x1d = ad, 30 = adxdpd, {2.15¢)

We have in this way the following novel inferpretation that the imaginary unit
i = (-1} is the ordinary square of the isounit unit 19 = -1, i = (1% [106].
Note that isounits1 and, independently, isodual isounits 19, satisfy all axiomatic
condition for a unit,

M=1%1% %1 (n-times) = 1, T=1, 1/1=1etc. (2.160)

10 7d =14 %d1d 54 2470 (ntimes) = 19, 19¥ =19, 197090 =19 ere. (2.16D)
The isonorm and isodual isonorm are defined respectfully by

1a] = |a|x1, 1a%19 = |a}x19, (2.17)

where | a | is the conventional norm. As a result, isonorms are positive-definite while
isodual isonormes are negative—definite.

This implies that all quantities which are conventionally positive, become
negative—definite under isodualities. When represented with the isodual theory,
antimatter has the opposite charge of matter, as well as negative mass, negative
energy, negative (magnitude of the) angular momentum, negative dimensions,
negative entropy, etc., and, inevitably, moves backward in time (negative time).

Note that all conventional objections against negative masses and time are
inapplicable to the isodual theory, trivially, because they are tacitly referred to
conventional positive units. In fact, negative characteristics referred to negative
units are fully equivalent on all grounds (including causality), although anti-
isomorphic, to posifive characteristics referred to posifive units.
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While studying the isodual numbers, Santilli (84,106=108] discovered a new
invariance which has resulted to have a fundamental physical relevance, from
Newtonian mechanics all the way to unified gauge theories inclusive of gravitation,
and which can be introduced as follows:

Definition 2.2 [loc. cit}l A generic quantity A (i.e, a number, a matrix, an operator,
etc.) is said to be “isoselfdual” when it is invariant under isoduality (2.4),

A s AY = -l {2.18)

As we shall see later on, Santilli discovered the above new invariance in the
* conventional Dirac equations because Dirac’s gamma matrices are isoselfdual, Ty =
Y, 4 This so simple a mathematical property has far reaching physical implications.
As we shall study later on, it implies that, contrary to popular beliefs throughout this
century, the conventional Poincaré symmetry “cannot” be the true, axiomatically
correct symmetry of Dirac’s equations because it is not isoselfdual.

At this stage we merely present as an illustration the fact that the

conventional imaginary unit i is isoselfdual,

d=-1=i. (2.19)

The latter occurrence explains better the correct isodual conjugation for complex
numbers,

A= (np+ixny = nd 49 {9xdny? = —nj+ixn,. (2.20)
Note that the isotopies and isodualities are restricted to the product, as
indicated by the preservation of the symbol + and the change of the symbol X in

(3, +%) and F9(39+%9), This is due to the fact that the lifting of a field into the form
f{3,%% inclusive of the lifting of the sum, such as

a+b — a+b=a+tK+b, (2.21)
with corresponding lifting of the additive unit
0-+0=-K, K>0 KeF (2.22)

generally implies the loss of the original axioms, such as the loss of closure under the
distributive law. Therefore, the lifting of the sum is not an isotopy [73l. Moreover,
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series which are convergent on F(a,+x) as well as on F(a,+X), such as the
exponentiation I + a/ll + a%/2 + ... = €8 become divergent under the liftings of the
sum

FalF ek =, (2.23)

For this reason the isotopies and isodualities of the sum are not used in applications
(see Ref. [129] for their mathematical study).

Despite its simplicity, the lifting FF — F has significant implications in number
theory itself. For instance, real numbers which are not conventionally prime under
the tacit assumption of the unit | can become prime under a different unit. [n fact,
the number 4 is prime under the isounit1=3.

This iltustrates that most of the properties and theorems of the contemporary

number theory are dependent on the assumed unit and, as such, admit intriguing
isotopies yielding the isonumber theory [115]
As an example of application of Santilli’s isonumbers independent from those
studied in this volume, the isotopies permit the conception of a new generation of
cryptograms called isocryptograms [115], which are expected to be more difficult to
break then conventional ones because of the availability of an infinite number of
different units which are not admitted by conventicnal cryptograms via the
conventional number theory.

To prevent misrepresentations of subsequent sections which often remains
undetected, the reader is recommended to get acquainted with the new numbers prior
to the studies of subsequent aspects. For instance, the traditional statement two * two
= four” has no correct mathematical meaning in Santilli’s theories because it lack the
identification of the assurmed unit as well as of the assumed product. And in fact,
under the generalized unit 1 = 3, “two % two = twelve”, the understanding is that, in
general, "two % two = integro—differential quantity”.

Similarly, the reader should keep in mind that the ordinary negatwe numbers
-n € R have no connection with Santilli’s isodual numbers n¢ = -n € RY. This is
evidently due to the fact that the isodual unit 19 = -1 is not the unit of negative
numbers in R because 19 x (-n} = +n = -n.

In closing this section it may be useful fo visualize with specific examples
already in these introductory aspects the types of isounits used in applications. A
most important property of the isotopies Fla,+»} = F{a,+%) is that the isounit 1 can be
outside the original field. This implies in particular that, starting from conventional
real numbers n € R, the isoreal isonumbers ©i € Rcan be matrices whose elements are
nonlinear integro—differential functions.

The latter degrees of freedom in the selection of the isounit is of paramount
importance in practical applications. In fact, while a Hamiltonian H or a Lagrangian L
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represents all possible action—at-a-distance interactions, the isounits can represents
all characteristics which are outside the representational capabilities of H or L.

One of the simplest possible example is the use of the isounit for the
representation of extended, nonspherical and deformable shapes, which is evidently
outside any realistic possibility of being represented with H or L. In fact, extended,
nonspherical and deformable shapes of ellipsoidical type are represented with the
diagonal isounit

1 = diag. (%, 0% ng?), (2.24)

where the quantities nk2 are real valued and positive-definite functions of local
quantities, such as the intensity of external fields, the local pressure, etc., while more
general shapes are represented with nondiagonal realizations. '

The representation of extended-deformable particles with local-differential,
nonpotential forces is done with isounits of the type

1 = diag. (02, n? n)xe flox ), {2.25)

where the diagonal matrix represents the shape of the particle and the exponential
function represents the nonpotential forces {see later on Sect. 2.8 for examples).

An illustration of nonlocal-integral forces (i.e., forces depending on a surface
or volume integral) is given by the Animalu isounit,

d% ¢1(x) &%)
1= {ef e

) x diag. (1, 1, 1}, (2.26)
which permits a quantitative representation of the attraction among the two identical
electrons of the Cooper pair in superconductivity in a way conform with
experimental evidence [95], where b4 and ¢, are the wavefunctions of the two
electrons with related spin orientation 1 and |.

In general, the isounit used in application is a diagonal matrix with the
dimension of the carrier space {two-, three— and four—dimension for problems in the
plane, space and space-time, respectively) whose elements have a generally linear and
nonlinear, local-differential as well as nonlocal integral dependence on local physical
quantities.

In summary, Santilli main discovery in Ref. [73] is that the abstract axioms of
a field do not require that the basic unit must necessarily be the trivial number +|,
because it can also be an arbitrary nonsingular and Hermitean quantity, yielding the
isofields and iscdual isofields.

As outlined in Chapter 7, Santilli moreover showed that the same axioms of a
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field do not necessarily need a Hermitean {73 or a one-valued units [100]. This lead to
the the additional discovery of the genonumbers with non-Hermitean units, and the
hypernumbers with nonhermitean multivalued units.

The reader is suggested to meditate a moment on the following aspects
implied by the presentation of this section, that the entire contemporary
mathematical knowledge is not apparently applicable for quantitative studies of
antimatter, or that the same mathematical knowledge is based on the simplest
possible unit +1 which has essentially remained unchanged since its inception dating
back to biblical times.

One can therefore see the horizon of new possibilities permitted by the
generalization of such a fundamental notion.

I1.2.4: Isotopies and isodualities of metric and pseudo-metric spaces

Santilli’s second important contribution to mathematics has been the identification of
a structural generalization of the conventional notions of vector and metric (or
pseudo—metric) spaces, first presented in paper [59] of 1983 (see monographs [115] for
sdetailed treatments). In this section we shall review the main lines of the isotopies of
smetric {or pseudo-metric) spaces.
: Recall that conventional metric spaces are defined over a field. It is then easy
-to see that the lifting of a field requires, for necessary consistency, a corresponding
lifting of metric spaces. In turn, such a lifting is at the foundation of the
representation of nonlinear, nonlocal-integral and nonharmiltonian systems.

Let S = S(x,g,R) be an N-dimensional metric or pseudo—metric space, with local
chart x = XX}, k = 1, 2, ... n, n~dimensional, nowhere singular, real-valued and
symmetric metric g = g(x, ..) and invariant separation between two points x, y € S
over the reals

(x-y)2=(xiwyi)gij(kj—yi)eR(n.+.><). (2.27)
where the convention on the sum of repeated indices is assumed hereon.

Definition 2.3 [59, 115): “Santilli’s isospaces” of Class I § = 8(x,gR) are N-
dimensional metric or pseudo-metric spaces defined over an isoreal isofield of Class
1T R(7+% with a common NxN-dimensional isounit 1 of the same class, equipped
with the “isometric”

G=gx1 = (g;)=1 = (Txg)x, 1=11, (2.28)
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local chart in contravariant and covariant forms
x={xk}={xKkx1), %k=8ki'>ki=1‘kr6rixi><'l, X, x € E; (2.29)
and “isoseparation” among two pointsx, y € § on the isoreals
(%-§P = (x-$H%Gy%(X-99) =
=[(x—y)i><§ijx(x—y)j])<'le R. (2.30)

Note that the isoseparation, for consistency, must be an element of the
isofield, that is, must have the structure of a number n multiplied by the isounit 1.
Similarly, on rigorous mathernatical grounds, the "isometric” must be expressed by an
“isomatrix”, namely, its elements must also be isoscalar, thus having the structure n=
n®l. These isoscalar characters are expressed by the isomultiplication

52 = %K %% = (xkx1)xTx(xx1) = (Fxx)xT =nxl. (231

But the contraction over the repeated index k is in isospace,. We recover in this way
the isoseparation of Def. 2.3,

= (xKxxg )xT = (xxgxxd )T, (2.32)

Because of the above occurrences, whenever no confusion arises, isospaces
can be practically treated via the conventional coordinates xK rather than the isotopic
ones %K = x!x1, and with the isometric g rather than G = gxI, with the understanding
that the mathematically correct formulation is that in terms of the isoccordinates X=
x<1 and isometrics G = gx1.

Under the above understandings, Definition 2.3 includes:

a) The ordinary spaces S(x ,g.R) over R with unit1 =1 = Diag. {1, 1,

b) The Isodual spaces SHxdglRY) w1th isodual coordmates xd = —x and
isodual metric g = — g over the isodual field RY with isodual unit 19 = diag. (-1, -1, -
1); :

c) The isospaces of Class I 3; = A = 8&g,R) with isocoordinates % = x<1 and
isometric § = Txg over the isofield of isoreal numbers R with common NxN-
dimensional isounit T; and

d) The isodual isofieids Sy1 = 8¢ = 39339 RY) with Jsodual Isocoordinates X
= —X and isodual isometric gd —g over the isodual isofield RY.

Each of the above four classes can then be referred to Euclidean,
Minkowskian, Riemannian, Finslerian and any other metric or pseudo—metric space of

~d
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the contemporary literature.
The first important property of the lifting S(x,g,R) = 8(x,g,R) is that the joint
liftings I ~1="T"! and g — g = Txg preserves all original geometric axioms.

Proposition 2.2 [59: Tsospaces S&kgR) (isodual isospaces S9(334RY) are locally
isomorphic (anti-isomorphic) to the original spaces Skx.gR) {s9,x4,g%R9).

The physical implications of the above simple geometric property are far
reaching, as we shall see. As an illustration, recall that all conventional spaces are
exactly valid for exterior dynamical problems in vacuum and do not have the
functional dependence necessary for an effective representation of interior
dynamical problems, such as an arbitrary nonlinearity in the velocities, nonlocal-
integral effects, etc.

Santilli [59,115,116] therefore achieved the capability of quantitative treatment
of interior dynamical problems via conventional geometric axioms, thus achieving a
remarkable geometric unification of exterior and interior problems.

For instance, the Riemannian geometry possesses a metric g(x) with the sole
‘dependence on the local coordinates and a limited capability to incorporate velocity
effects from its affine connections. Santilli showed that the isotopies permit the
enlargement of the Riemannian metric fo an arbitrary functional dependence

go— g = Txg = glt, x, %, %, &, 84, 80, W, T, 0, ...), (2.33)

-under the sole condition that the isotopic element is of Class L.

The issues immediately raised by the above results is then: why use the
conventional Riemannian geometry for interior gravitational problems with a sole
functional dependence of the metiric on the coordinates when the covering Riemann—
Santilli isogeometry is characterized by the same axioms, yet admits an unrestricted
functional dependence of the metric Tfor more realistic representations of interior
problems ?

Another illustration of the implications of Proposition 2.2 is the fact that the
isotopies 7| = Txn of the Minkowski metric 1 = diag. (1, {, I, =1) includes all possible
Riemannian metrics g(x) = #(x}) = Tx)xn under the Minkowskian axioms. This
permitted Santilli the achievement of a classical and operator geometric unification
of the special and general relativities with the axioms of the special, with far
reaching implications for quantum gravity, unified gauge theories, etc.

Ancther important property of isospaces is that they imply the alteration
(called "mutation” [53) of the basic units of the original space.

Consider the Euclidean space E(r,5,R) with coordinates r = {x, y, z} and metric &
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= diag. (1, 1, 1) over the reals R = R{n,+%). Its basic geometric and algebraic unit {that
is, the unit of the space and of its group of isometries) is the quantity I = diag. (1, I, 1)
which represents in a dimensionless form the units of the Cartesian axes, e.g., +1 cm,
+1 c¢m, +1 cm. By recalling that the isounits of Class I can always be diagonalized, the
isotopies then imply the lifting

[ = diag. (+1 cm, +1 cm, +1 cm)~ 1 = diag. (+n,% cm, +n,2 cm, +ngZ cm ), (2.34)

namely, not only the value of the unit in each Cartesian axis is changed, but different
Cartesian axes have generally different units.
As a result, isospaces imply simple, yet unique and nontrivial generalizations
“of conventional notions, such as that of the sphere (see next chapter).
Moreover, for consistency, isospaces must have the same isounit of the
underlying base field. This leads to the following structure

fsoinvariant = [ Length 12 x [ Unit P. (2.35)

As we shall see, the above occurrences have additional rather profound geometrical
and physical implications, including new symmetries expressing the degrees of
freedom of the unit, new predictions, a new form of locomotion called “geometric
propulsion” and others.

Note that conventional spaces have a unit I = diag. (1, 1, 1, .. ) which is
different than the unit [ = +] of the base field. The same conventional fields can
however be trivially reformulated for the unit I = diag. (1, 1, ...} of the space, in which
case (only) they are admitted as particular case of the isospaces and verify structure
{2.29) of the basic invariant. Such a redefinition is hereon assumed.

The isodual spaces and isospaces have even more intriguing characteristics
and, consequential implications. In fact, The fundamentals mathematical and
physical quantity of the isodual Euclidean space E%9%9,RY) is the isodual unit =
diag. { =1 cm, -1 ¢m, -1 cm), namely the space EY is defined over negative-definite
Cartesian units. The isotopies of EJ then lead to the lifting

19 = diag. (-1 em, -1 cm, -1 cm)~> 1 = diag. {-n 2 em, ny? em, -nz2 em), (2.36)

namely, the space is defined over units which are not only arbitrary and different for
different axes, but alsc negative-definite.

Yet another important difference between spaces and isospaces is that the
former admit only one interpretation, the conventional one over the reals, while the
latter admits two interpretations, the first over the isoreals {i.e, computed with
respect to the isounit 1), and the second when projected in conventional spaces (e,
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computed with respect to the conventional unit).

This simple geometric occurrence is at the foundation of Santilli's unification
of the Minkowskian and Riemannian geometries studied in the next chapter. As
indicated earlier, the isotopies of the Minkowskian space with isometric f} = T>n
admit as a particular case all possible Riemannian metrics ) = T{x)xn = g{x). The
isominkowskian space admits two interpretation, the first over the isoreals, in which
case the Minkowskian axioms occur, and the second when projected over
conventional fields, in which case the Riemannian axioms are recovered in their
entirety.

The projection of isospaces on conventional spaces can be easily computed for
diagonal metrics and isotopic elements via the use of a new conventional space
S(%,g,R) over the reals with coordinates

Ek = Xk X Tkkllz, (2.37)
" under which we have the identity
Xi x éu x Xj = Ei X gl] x ij s (238)

.:As we shall see, the above simple rule has considerable pragmatic value in
.applications.

5 In order to prevent possible misrepresentations, the reader is suggested to
medltate a moment on the above properties prior to initiating the study of additional
aspects For instance, the study of the geodesics of isospaces via conventional units
leads to a host of inconsistencies which generally remained undetected by the non-
initiated reader.

I1.2.5: Isotopies and isodualities of continuity, manifolds and topology

The notion of isocontinuity of Class I on an isospace was first studied by Kadeisvili
[22] and resulted to be easily reducible to that of conventional continuity. In fact, an
isofunction has the structure T(%) = f(x)<l. Then, the isomodulus ['T(x} |"of an
isofunction (X) on isospace 3(x,g,R) over the isofield R(},+%) is given by the
conventional modulus | T} | multiplied by the a well behaved isounit 1,

TR T = [t |x1. (2.39)

As an illustration, an infinite sequence T, T5, ... is said to be strongly isoconvergent



J. V. Kadeisvili -310- Santilli’s Isotopies

to T when
Limg ol -1 =0, (2.40)

while the isocauchy condition can then be expressed by
[Ty ~ a1 < 8=8xT, (2.41)

where & is real and m and n are greater than a suitably chosen N(8). The isotopies of
other notions of continuity, limits, series, etc. can be easily constructed [26]. Note that
functions which are conventionaily continuous are also isocontinuous. Similarly, a
series which is strongly convergent is also strongly isoconvergent.

However, a series which is strongly isoconvergent is not necessarily strongly
convergent (ref. [115], p. 271). As a result, a series which is conventionally divergent
can be turned into a convergent form under a suitable isotopy. This mathematically
trivial property has rather important applications, e.g., for the reconstruction of
convergence at the isotopic level.

The isodual isocontinuity of Class I is a simple isodual image of the
preceding notion and its explicit form is left to the interested reader.

The notion of an N-dimensional isomanifold and isotopology of Class I
were first studied by Tsagas and Sourlas [122]. These authors also introduced a
conventional topology on an isomanifold. The latter was lifted into an isotopology
by Santilli [100).

All isounits of Class | can always be diagonalized into the form

1 = diag. (02 0% .. n?),  mltx.)>0, k=12.,N, (242
Consider then n isoreal isofields Ry (f,+%) each characterized by the isounit Ty = 2
with (ordered) Cartesian product

R.N = RIXRZX...XRN. (2.43)

Since Ry ~ R, it is evident that N ~ RY, where RN is the Cartesian product of N
conventional fields R(n,+x). But the total unit of RV is expression (2.33). Therefore, one
can introduce a topology on N via the simple isotopy of the conventional topology
on RN,

= (g, &Y R;}, (2.44)

where R; represents the subset of R” defined by
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A ~

Ki = [P=(a1, a2,...,ﬁn)7fli<éi.§2, ....'én<rfli, f]i,l‘ﬁi,aKER}. (245)

As one can see, the above topology coincides everywhere with the
conventional Euclidean topology T of R" except at the isounit 1. In particular, T is
everywhere local-differential, except at 1 which can incorporate integral terms. The
above structure is called the Tsagas—Sourlas-Santilli isotopology or integro-
differential fopology.

Definition 2.4 [122,100} A “topological isospace” of Class I T(R™M) is the isospace of
Class I R™ equipped with the isotopology T. A “Cartesian isomanifold” of the same
class MRN) is the isotopological isospace T(R™) equipped with a vector structure, an
affine structure and the mapping

T:R"—~R", T:3 —»1T@)=3 VviaceR. (2.46)

An “isoeuclidean isomanifold” of Class 1 ME(X,3,R) occurs when the N-dimensional
isospace £ is realized as the Cartesian product

ExBR) ~ Ry xRyx .. xR, , (2.47)

“ and equipped with the isotopology T with isounit (2.34).

For all additional aspects of isomanifolds and related topological properties we
refer the interested reader to Tsagas and Sourlas [122] and to Santilli [100]. The
extension of the results to n isodual isotopology is trivial and will be assumed herein.

IL2.6. Isotopies and isodualities of functional analysis

The data elaboration under isotopies require a step—by-step lifting of all aspects of
functional analysis into a new discipline called by Kadeisvili [22] isofunctional
isoanalysis. This includes the isotopies of conventional and special functions,
distributions and transforms.

For instance, the conventional Dirac delta distribution has no meaning under
isotopy, mathematically, because of the loss of applicability of the conventional
exponentiation and, physically, because particles are no longer poini-like. The
isodirac distribution [23] is the reconstruction of the conventional distribution for
an unrestricted unit permitting a direct treatment of the extended character of
particles. The Fourier transform, Legendre polynomials, etc., also admit simple yet
unique and unambiguous isotopies with important applications in various disciplines.

Regrettably, we are unable to review the isofunctional isoanalysis in details
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and are forced to limit ourselves to a review of the following basic notions (see
monograph [115] for detailed presentation as of 1993).

Recall that in the transition from the two-dimensional Euclidean to the
Riemannian geometry there is the loss of the trigonometric and hyperbolic functions
due to curvature. Under isotopies the situation is different. In fact, we can represent
all possible two-dimensional Riemannian metrics in an isoeuclidean space which, as
such, satisfies the axioms of flatness in isospace (see next chapter), thus permitting
the reconstruction of trigonometric and hyperbolic functions for all possible

Riemannian metrics [115).
To outline the latter reconstruction, consider the Three—-dimensional

isoeuclidean isospace E = ET,5,R)
E=BESR): T=(r%1), & = Txs, 5=Diag(,1 1),
1 = Diag. (n)2 ny%, ng?). (2.48)

An isoline on E over R is the conventional topological notion although referred to
isopoints with values T = r<1 on an isofield R. An isostraight line in the isoeuclidean

{x, yHisoplane has the form

~ A

akx + bxy + & =0, xyeE, &bceR, (2.49)
although, its projection into E over R is given, in general, by the curve
[axy/nyr,.) + bxy/ny(r,..) + cIxl =0 (2.50)
Intersecting isostraight isolines then permit a unique and consistent definition of
iscangles @ which is impossible in the Riemannian treatment of gravity.
The study of the isoeuclidean geometry has established that conventional
numerical value of angles are preserved under isotopies, i.e., isotopies map parallel
(perpendicular) straight lines into isoparallel (isoperpendicular) isostraight isolines.

The projections of the isoangles & on the (%, ¥}-isoplane and the angle § with
respect to the Z-axis into E over R assume the forms

b =0¢x1,, 8= oxly . {2.51a)
‘I{p = I/nlxnz T¢ = nIan, 13 = l/l'l3, Te = ng. (2.51b)

The isotrigonometric functions are given by (dg,5n]
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isosind = nyxsind, isocosd = mj*cosd, (2.52a)
isosinZd + isocos2d = n, “Aisocos?d + ny isosin%d =
= cosZa +sinfd = 1, (2.520)

where we have ignored the factorization by the isounit for simplicity. The

isospherical coordinates can be written [loc. cit]*3
x = rxnpxsin{6/ng)cos (d/npxny) (2.53a)
y = rxnyxsin{6/ng)sin{¢$/n*ny), (253b)
z = rxngxcos{6/ng), (2.53¢)

We also have the isopythagorean theorem for an isoright isotriangle with
isosides A and B and isohypothenuse D [115]

B2 = DXD = A2+ B2 = AXA + B % B e R, (2.54)
Which is trivial on E over R. However, its projection on E over R is not trivial, because
-it implies the following property among a “triangle” whose sides are curves with only
two intersections.

B2 = [AxA/nAtrt,.) + BXB/nd&tr,i,.11x1, (255

When the isoplane is pseudo—-metric with signature (+, -) we can introduce the
isohyperbolic functions and related property [4g,5h]

isocosh @ = nyxcosh(a/n;xny), isosinhd = ny*sinh{a/n xny), (2.
isocosh® & - isosinh? & = 1, (2.56)

As additional elementary isofunctions we have [[15} the isoexponentiation
{see Sect. 3 for its derivation)

43 see monograph [116], Sect. 5.5 with a more general definition of isospherical coordinates
with a "hidden” degree of freedom expressed via a free parameter which is absent in the
conventional spherical coordinates.
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8x =¥ = Ix{eTn =1x(eT*¥}, @257

where ¢* is the ordinary exponentiation,; the isologarithm of an isonumber a on
isobasis & = ex],

log a = Tlog,a. (2.58)

with axiom-preserving properties

" lso]ni3 a

e = a, [solne =1, Isolnl = 0, (2.59a)

Isoln(a%b) = Isolna + Isolnb, Isolma/b = Isolna- Isolnb, (2. 59b)

lsolna’l = -Isolna, BX%Isolna = Isolna?, etc; {2.59¢)

the isotrace and isodeterminant of an isomatrix A = AX], where A is an ordinary
matrix

IsotrA ={ Tr A)x1 Isodet A = [Det(AxT)] x1, (2,60
with axiom—preserving properties
{sotr (AXB) = (Isotr A)% (Isotr B), Isotr (BXA B 1) = Isotr A, (2.61)

|
Isodet (AXB) = (Isodet A) % (Isodet B), Isodet (f\:[) = (Isodet A) ,
(6.3.20e)

Isodet (8A) = glsotr & (2.62)

and others isofunctions the reader can easily construct when needed. For special
isofunctions and isotransform, we have to refer the readers to monograph [115]
for brevity.

The isodual isofunctional isoanalysis is the image of the isoanalysis under
isoduality and inclusion isodual conventional and special isofunctions and
isotransforms the reader can easily construct via the isodual map (2.4) applied
systematically to the entire theory, including isonumbers, isospaces, etc.

The reader should however be aware that the elaboration of the isotheories
with conventional functional analysis (e.g., the use of conventional trigonometry,
logarithms, exponentiations, etc.) leads to a number of inconsistencies (such as the
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violation of isolinearity) which often remain undetected by the noninitiated reader.

I1.2.7: Isotopies and isodualities of differential calculus

Santilli’s third important contribution to mathematics has been the identification of
an isotopic generalization of the conventional differential calculus first presented at
the 1994 Infernational Workshop on Differential Geometry and Lie Algebras, held in
Thessaloniki, Greece, and then published in ref. [100] (although the new differential
calculus is implicitly contained in the first edition of monographs [116] of 1994).

The lifting of the differential calculus has then permitted the achievement of
axiomatically consistent the isotopies of virtually all mathematics used in
quantitative sciences, including: Newton’s equations, analytic and quantum
mechanics, differential geometries, etc.

The isodifferential calculus has therefore fundamental relevance for the

studies herein considered. In fact, studies on isotopies prior to its appearance in
memoir [100] are not invariant and, as such, they are not acceptable on axiomatic as
well as physical grounds.
- Let E(x,8,R) be the ordinary N-dimensional Euclidean space with local
coordinates x = xK}, k = 1, 2, ..., N, and metric 8 = diag. (1, 1, 1) over the reals Rin,+x).
Let E(x8,R) be its isotopic image with local coordinates X = (%K) and isometric § =T
over the isoreals R{fi,+X). Let the isounit be given by the NxN matrix of Class III, 1 =
1) = ) = T8 = (1! = (1)} whose elements have a smooth but otherwise
arbitrary functional dependence on the local coordinates, their derivatives with
respect to an independent variable and any needed additional quantity, 1 = 1(x,...). The
following properties then hold from Definition 2.2:

f(k = ka] 'ik = Ski ;(i = Tki 811 ;(J = Tkl 81] ijT = Tki Xi . Xi = Slj Xj,

RIXAFR] = Xy xy M = RFARR; = Ry = %%k, Bl = (B 1T

]

xiXSijx x} =xi><8ij><xj = xixxj = xpdd, sU={(8y, ' M. (2.63)

Definition 2.5 [100]: The ‘first-order isodifferentials” of Class Il of the
contravariant and covariant coordinates ¥ and Xy, on an isocuclidean space E
equipped with Kadeisvili’s isocontinuity are given by

A% =10t x Dk, A% = T x ) dy, (2.64)
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Let (%) = £f(x¥1 be a sufficiently smooth isofunction on a closed domam Dlx k) of
contravariant coordinates %K on E. Then the “isoderivative” at a point ak e DEK) is

given by

ok AR A Hak + a%k) - 135
69 = kT T T Mg T gk

{2.65)
where 3tX)/ 3%k = (Bt(R)V/o%KM is computed on E and "l“kiaf(x)/axi is the projection
in E. The “isoderivative” of a smooth isofunction t(X) of the covariant variable %y
at the point 3, € Dix;) is given by

31 81l Wy + ) - TE,)

" a =Tkl . =Lima.
bh B oy B BOb T gy

T’@k)=

(2.66)

The above definition and the axiorn—preserving character of the isotopies then
permit the lifting of the various aspects of the conventional differential calculus. We
here mention for brevity the following isotoples the isodifferentials of an
isofunction of contravariant (covariant) coordinates ¥ (%) on Ex3,R) are defined
via the isoderivatives according to the respective rules

ot ,
d Mcontray, = % axk =Ty lx
ok

- ijdicl = [af0 1x1 ,
axl

ot

fXhcovar. =2 ARy =¥
éxk axi

xTyd xdk; = [dfl) %1 (2.67)

an iteration of the notion of isoderivative leads to the second-order isoderivatives

3% 1% Pk ¥ 1) C ok & f(x)
K2 ='T‘kl'Tk-] "y 2=lli'lj
X ax! oxJ 3 Xy axj 9x;

(no sumson k

{2.68)
and similarly for isoderivatives of higher order; the isolaplacian on E8R) is given
by

A= B %K = ¥ xpyxdl = alxgyxal = My xakxg;xal, (2.694)

3 = OB, oy = araxK, etc. (269B).
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and and results to be different than the corresponding expression on a Riemannian
space Rx,g,R) with metric glx) =8, A =8"1/2x 9; % 8172 3iix 8

A few examples are in order. First note the following properties derived from
definitions (2.31) and (2.32),

ax /ol = Sij=8‘jX'[, o%; 7 0% = 8, o /%=1, 3&1/?&]- = Tij. (2.70)

Next, we have the simple isoderivatives

- o o .'
DY BERBF | oWleyd

. x1 = 2xTixxixT = 2%,

p el ax’ ox!
9 In §X) 2 In ¢x) 1 93X
= Tlx — 1 = A, (271)
ok ax! Jx) 9 Xk

and similarly for other cases.
For completeness we mention the (indefinite) isointegration which, when
defined as the inverse of the isodifferential, is given by

fa;<=fﬂas<=faf=s<. (272)

namely, | = f T. Definite isointegrals are formulated accordingly.

The above basic notions are sufficient for our needs at this time. The class of
isodifferentiable isofunctions of order m will be indicated C™,

The isodual isodifferential calculus is the isodual image of the preceding one,
in which all quantities and all operations are subject ted to the isodual map.

An important property is that Santilli's isodifferentials and isoderivatives
verify the condition of preserving the basic isounit 1. Mathematically, this condition
is necessary to prevent that a set of isofunctions (), §(X), ..., on E(x3,R) over the
isofield R(f,+%) with isounit T are mapped via isoderivatives into a set of isofunctions
11%), §€x), ..., defined over a different field because of the alteration of the isounit.
Physically, the condition is also necessary because the unit is a pre-requisite for
measurements. The lack of conservation of the unit therefore implies the lack of
consistent physical applications.

As an example, the following alternative definition of the isodifferential

Ak = a (1) =[(a, 1% ) + 151 axd = WK axd, (273}

would imply the alteration of the isounit, 1 = W # 1, thus being mathematically and
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physically unacceptable.
Nevertheless, when using isoderivatives on independent isomanifolds, say,
isoderivatives on coordinates and time, the above rule does not apply and we have

2000 %) = I3 TR = B Tellt, x, .03 fit, x) 1. (274)

Additional properties of the isodifferential calculus will be identified during the
course of our analysis.

Note that the ordinary differential calculus is local-differential on E. The
isodifferential calculus is instead local-differential on £ but, when projected on E, it
becomes integro—differential because it incorporates integral terms in the isounit.

I1.2.8. Isosympiectic geometry

Another important mathematical contribution made by Santilli has been the
identification of a novel formulation of the symplectic geometry, originally
submitted in memoir [66] of 1988 under the name of isosymplectic geometry and
subsequently developed in various works (see the review in [115]) which possesses
applications much broader than those of the conventional formulation.

The original construction was based on the isotopic degrees of freedom of
the product, as outlined in Sect. [.9. In this section we shall outline the
isosymplectic geometry as formulated in Ref. [100] via the isotopic degrees of
freedom of the exterior calculus. A comparison of the two formulations is
instructive to see the advances.

The symplectic geometry (see ref.s [109] for a review and comprehensive
literature) is the geometry underlying Lie’s theory. Santilli studied the isotopies
herein reviewed because no genuine broadening of Lie’s theory is possible without a
corresponding compatible generalization of the symplectic geometry.

As the reader can see, the conventional and isosymplectic geometries
coincide at the abstract, coordinate—free level to such an extent, to require no
change in the symbols, and only their broader realization as compared to the
conventional one. We therefore have in essence two different realizations of the
same abstract geometric axioms, the isotopic realization being broader and
admitting of the conventional realization as a particular case.

Despite this abstract unity, it should be noted that the conventional
symplectic geometry in its canonical realization permits a direct representation
(i, a representation in the coordinates of the observer) only of (well behaved)
local-differential and Hamiltonian systems. By comparison, the isosymplectic
geometry in canonical realization is directly universal for all well behaved,
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nonlocal-integral and nonhamiltonian systems.

The latter direct universality is important in view of the physical
problematic aspects caused by the practical use of Darboux’s transformation of
systems which are nonhamiltonian in the inertial coordinate b = (x, p) of the
observer to other coordinates b’ = b{b) = (x{x, p), pix, p)) in which the systems
become Hamiltonian.

As stressed by Santilli in various publications [110], [115], {100}, Darboux’s map
b — bib) is necessarily nonlinear and noncanonical. As such, the new coordinates b’
are not realizable in actual experiments and, if used for mathernatical purposes,
they imply the violation of Galilei’s and Einstein's special relativity because the
transformed systemns b’ are highly noninertial.

The primary meaning of the isosymplectic geometry remains that of being
the geometry underlying the Lie-Santilli isotheory. However, in so doing, there is
the emergence of an alternative to Darboux’s theorem in the sense that the
iscgeometry in isccanonical formulation results to be directly universal, thus
“capable of representing all systems of the class admitted directly in the inertial
frame of the observer without any need of Darboux’s map.

In this section we shall the main elements of the isosymplectic geometry in
,‘local realization by closely following ref. [100l Unless otherwise stated, all

quantltles are assumed to satisfy the needed continuity conditions, e.g., of being of
’:class €™ and all neighborhoods of a point are assumed to be star-shaped or have an
“equivalent topology. Topological aspects are deferred for simplicity to the next
_section.
Let M(E) = M(E(S,R) be an n-dimensional Tsagas-Sourlas isomanifold [44,45]
‘on the isoeuclidean space E(iSR) over the isoreals R = R(i,+X) with nxn—
dlmensu)nal isounit 1 = (%), 4, j= , n, of Kadeisvili Class I and local chart X =
{x%). A tangent Jsovectorfi at a pomt m € M(E) is an isofunction defined in the
neighborhood R} of M with values in R satisfying the isolinearity conditions

K Aa%T+BRg) = a% KM +B*R@),
R %8 = 100 % K@ + i) %K), (275)

for all T, g € M(£) and a, B € R, where % is the isomultiplication in R and the use of
the symbol © means that the quantities are defined on isospaces.

The collection of all tangent isovectors at m is called the tangent isospace
and denoted TMIE). The tangent isobundle is the 2n-dimensional union of all
possible tangent isospaces when equipped with an isotopic structure (see below).

The cotangent isobundle T*M(E) is the 2n—dimensional dual of the tangent
isobundle with local coordinates b = (BM) = (&K, Phu =12 .,2n,. Since p is
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independent of X%, the isounits of the respective differentials are generally different,
i.e, we can have dx =1dx and dp = Wdp, 1 # W, in which case the total isounit of
T*M(E) is the 2n—dimensional Cartesian product 1 =1xW.

Since the isomomentum is covariant with isodifferential dp, = Txdpy,
Santilli [100] assumes the following particular form of the isounit of the cotangent
isobundle

1 n*n

O
12 = 02“9 = ( ) = Tz_l =(T2I_|_v)—l '[ = Tul, (276)
O Toxn

where 1 is the isounit of the coordinates dx = 1dx, and T is the isounit of the
momenta, dp = Tp = 17!dp. In different terms, we select the particular case in
which W =171

An isobasis of T*M(E) is, up to equivalence, the (ordered) set of
isoderivatives 3 = (8/36"] = {Ty,"8/6b"). A generic elements X € T*M(E), called
vector isofield, can then be written X = RMrf)) 3/88" = X T, "o/abk.

The fundamental one-isoform on T*NIE) is given in the local chart b by

8= B3 = ROIH, ¥ = paik = p1a, R =(0). @77

The above expression, which can be written 8 = pdx = py ijclxJ to emphasize the
differential origin of the isotopies, should be compared with the originally proposed
one-isoform = pXdx = p, T¥; dx! [13] obtained via the isotopic degrees of freedom
of the product. The preference of the isodifferential calculus over the
isomultiplication is then evident for a geometric unity of the conventional and
isotopic formulations.

The space T*M(E), when equipped with the above one-form, is an isobundle
denoted T *M(E). The isoexact, nowhere degenerate, isocanonical isosymplectic
two—isoform is given by

B=20 = $ 3@, M) = 4wy, WA =
= @R Ay = Waki A TPy = dkEAdR (2.78)

The isomanifold T*M(E), when equipped with the above two-isoform, is called
isosymplectic isomanifold in isocanonical realization and denoted T*M(E). The
isosymplectic geometry is the geometry of the isosymplectic isomanifolds.

The last identity in (3.4) show that the two-isoform & formally coincides
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with the conventional symplectic canonical two—form w, and this illustrates the
selection of isounit (3.2). The abstract identity of the symplectic and isosymplectic
geometries is then evident. However, one should remember that: the underlying
metric is isotopic; Py = Ty'p;, where p; is the variable of the conventional canonical
realization of the symplectic geometry; and identity & = w no longer holds for the
more general isounits 1, = 1xW, 1 = W™,

Note that the isosymplectic geomelry has the Tsagas—Sourlas Integro-
differential topology and, as such, it can characterize interior systems when ali
nonlocal-integral terms are embedded in the isounit.

A vector isofield X(r) defined on the neighborhood R(rfi) of a point M €
To*M(E)} with local coordinates b is here called a (local) Hamilton-Santilli isofield
when there exists an isofunction A on R{rfi) over R such that

o= 4af, e,
Wy V(i) At = AAm) = (BA / dBH} AB, (2.79)

We are now equipped to present the main result of paper [100], Santilli’s
“alternative to Darboux’s Theorem for the representation of nonlinear, nonlocal-
“integral and nonhamiltonian interior systems within the fixed coordinates of their

experimental observation, which can be formulated as follows.

-""j’-'l‘heorem 2.1 (Direct Universality of the Isosymplectic Geometry for Interior Systems

“[1001): Under sufficient continuity and regularity conditions, all possible vector
fields which are not (locally) Hamilton in the given coordinates are always
Hamilton=Santilli in the same coordinates, that is, there exists a neighborhood N(m)
of a point m of their variable b = (x, p) under which Eq.s (3.5) hold.

Proof. Let XH(B) be a vector field which is nonhamiltonian in the chart b,
and consider the decomposition

R} = M0 X,40), (2.80)
where the 2nx2n matrix (f¥,)) is nowhere degenerate and X, is the maximal, local~
differential and Hamiltonian sub-vector field, ie., there exists a function H(b) and a
neighborhood N{m) of a point m of b = (x, p) such that

top XoPlm) db® = dHm) = (8H /8 b*) 3%, (2.81)

and all nonlocal-integral and nonhamiltonian terms are embedded in [*. Then, there
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always exists an isotopy such that
Gy RV BB = 0y, D900 R B @B =
= aneh) = (oA/opMant = TPoH/otP) avt. (282

In fact, the script X" is only a unified formulation in 2n dimension of two
separate terms each in n-dimension. Therefore, the quantity [> has the structure

Ao O
r=( wn nn). (2.83)
Onxn Brxn
The identification -
2l 0
1= ( - ) (284

Oﬂxl'l A nxn

then implies
Mooy T = wgp, (2.85)

and identities (3.8) always exist. q.e.d.

_ Corollary 2.1.A: For all Newtonian systems we have A =81 ie , the 2n-
dimensional isounit of the cotangent isobundle has structure (2.90).

Proof. All Newtonian systems in the 2n-dimensional, first-order, vector field
form can be written in disjoint n—component

dx/dt p/m
( ) = ( ) = Xy = (KHw)) (2.86)
dp/dt FSA 4 pNSA |

where SA (NSA) stands for variational selfadjointness (nonselfadjointness), ie., the
integrability conditions for the existence {lack of existence} of a Hamiltonian [109].

Tgllélg FSA = - 3H/8x, with H = p2/2m + V{x), while there is no such Hamiltonian for
Fe

Then, the isohamiltonian representation explicitly reads

(o 7) Camma)- (ool )0 -

I 0
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-BP4 oH / ox BoH / ax
= = = . {2.87)
A p/m oH / dp ASH/ dp

From which we have the general solution
T =B = 1+FSA/FSA = 71 = 171 (2.88)

where the last identity follow from the fact that, since 8H/8p = p/m, A remains
arbitrary and can be therefore assumed to be A = BL. q.e.d.

The above results confirm, this time on independent geometric grounds, the
corresponding results achieved in Sect. 2.5 on analytic grounds, thus confirming the
overall unity of isotopic methods.

Santilli [100] completes his study by showing that the above geometric
isotopies do indeed preserve the remaining axiomatic properties of the symplectic
geometry. For this it is sufficient to prove the preservation under isotopies of the
Poincare Lemma and of Darboux’s Theorem.

To prove the preservation of the Poincaré Lemma one can easily construct
isoforms cﬁp of arbitrary order p. The proof of the following property is a simple
isotopy of the conventional proof (see, e.g., [20]} via the use of the isodifferential
calculus.

Lemma 2.1 (Poincare - Santilli Lemma [100]): Under the assumed smoothness
and regularity conditions, isoexact p—isoforms are isoclosed, i.e.,

ad, = a(3p) = 0. (2:89)
The nontriviality of the above result is illustrated by the following

Corollary 2.1.A: Iscexact p-isoform are not necessarily closed, i.e., their
projection in the original tangent bundle does not necessarily verify the Poincaré
Lemma.

By comparison, we should mention that the original formulation of the
isopoincaré lemma [32,37], that via the isotopic degrees of freedom of the product,
did verify the Poincaré lemma in both the conventional and isotopic bundle.

To prove the preservation of the Darboux’s Theorem [9], consider the
general one—-isoform in the local chart b
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&b) = R,(B) A = R, () 1M 4t b, db/dt, ..} db”, (2.90)

where
R ={Px D Q& PI. (291}

The general isosymplectic isoexact fwo—isoform in the same chart is then
given by

Qb = § a(R,BraBY) =40, & b ab/at, ) a6 Aab”,

Ouv:anv _W “TZJ‘GR”.
A6k R g Sl 2b%

(2.92)

One can see that, while at the canonical level the exact two—form o and its isotopic
extension @ formally coincide, this is no longer the case for exact, but arbitrary
two forms Q and () in the same local chart.

Note that the isoform € is isoexact, @ = @8, and therefore isoclosed, 4G = 0
(Lernma 3.1), in isospace over the isofield R. However, if the same isoform Q is
projected in ordinary space and called Q, it is no longer necessarily exact, O = d6
and, therefore, it is not generally closed, dQ # 0.

Recall that the Poincaré Lemma dQ = d(d®) = 0 for the case of Birkhoffian
two—form Q (Sect. 2.4) provides the necessary and sufficient conditions for the
tensor Q* = [ ( Q) ™ to be Lie {110l. It is easy to prove that this basic property
persists under isotopy, although it characterizes the broader Lie-Santilli isotheory.
We therefore have the following

Theorem 2.2 (General Lie-Santilli Brackets [100]): Let Qf) = d6 = G(Ruaﬂl) =
JAPAGEY  be a general exact two-isoform. Then the brackets among
sufficiently smooth and regular isofunctions A(B) and B(6) on T,*M(E)

LYY B
[AB] . = o
B
3Ra _ éﬂﬁ -1 uy
o = [ ( o oo ) ] . (2.93)

satisfy the Lie-Santilli axioms (Sect. 11.3.3) in isospace (but not necessarily the
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same axioms when projected in ordinary spaces).

The above theorem establishes that the isosymplectic geometry is indeed
the geometry underlying the Lie-Santilli isotheory, as discussed in more details in
the accompanying paper by Kadeisvili [16]. In particular, the isocanonical two-
isoform characterizes the isocanonical realization of the Lie-Santilli brackets
studied in the next section, while brackets (2.93) are the most general possible ones.

Even though we cannot use Darboux’s theorem in practical applications for
the reasons indicated earlier, it is nevertheless important for completeness to prove
that it admits a simple yet significant isotopies.

Theorem 2.3 (Darboux-Santilli Theorem): A 2n-dimensional cotangent
isobundle T,*M(E) equipped with a nowhere degenerate, exact, ¢ two-isoform €
in the local chart b is an isosymplectic manifold if and only if there exist
coordinate transformations b = b’ (b) under which Q reduces to the isocanonical
two-isoform @), ie,

o+ oY
%’—a (BB gb_ﬁ = ga- (2.94)

Proof. Suppose that the transformation b —+ bTb) occurs via the following
intermediate transform b — §7B) — b{b"(b)). Then there always exists a transform b
—, B such that

(3B /8B ) () = 1P4(B(B"), (2.95)

under which the general isosymplectic tensor qu reduces to the Birkhoffian form
when recompute in the b char

BbH Y o, o,
O (56 = - )
W @ B | an® oy 1B

=0 2.
=0 299

The existence of a second transform b” —~ B reducing Qgg to gy is then known to
exist (see, e.g., [80). This proves the necessity of the isodarboux transform. The
sufficiency is proved as in the conventional case [109]. g.e.d.

The nonlinear, nonlocal and noncanonical character of the isotopies is
evident from the preceding analysis. [t is important to point out that linearity,
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locality and canonicity are reconstructed in isospace over isofields, as studied later
On.

The isotopies of the remaining aspects of the symplectic geometry {Lie
derivative, global treatment, symplectic group, etc.) can be constructed along the
preceding lines and are omitted for brevity. The isosymplectic geometry is also
expected to admit a genotopic and hyperstructural extensions although they are
not studied in here for brevity (see {100,101].

We should mention that the preceding formulation of the isosymplectic
geometry is solely restricted for the representation of matter. The characterlzatlon
of antimatter is made via the antiautomorphic isodual map 1y — 1,% = -15. This
permitted Santilli the discovery of the isodual isosymplectic geometry [100] which
is characterized by isodual coordinates b9, isodual isodifferentials 2989, isoduat
one-isoforms &4 Bd, }, isodual two—isoforms wd. isodual cotangent isobundle
TMYED, and similar isodualities.

One should keep in mind that the isodual isosymplectic geometry admits as
a particular case Santilli’s isodual symplectic geometry, which is a novel anti-
isomorphic image of the conventional geometry.

The proof of the following property is instructive

Lemma 2.2 [100,101}: Isosymplectic one-, two- and p-isoforms are isoselfdual, ie.,
invariant under isoduality.

The above lemma establishes that the mathematical structure of the
conventional symplectic geometry is applicable for the characterization of both,
particles and antiparticles when formulated in spaces and their isoduals,
respectively.

Note that the use of the conventional symplectic geometry for the
characterization of antiparticles leads under symplectic quantization to the
physical inconsistencies recalled earlier {an operator image which is not the charge
conjugate particle, but merely a particle with a change in the sign of the charge).
The study of other aspects is left to the interested reader.

In closing we mention the remarkable abstract unity of the conventional
symplectic geometry and Santilli's isosymplectic geometry and its isodual which
could be all expressed with the same abstract symbols, which are then
differentiated via different reafizations.

In short, Santilli has proved that, contrary to a rathe popular belief in
mathematical circles, the contemporary formulation of the symplectic geometry is
far from being the most general one, because it admits the isosymplectic
formulation, as well as the yet broader genosymplectic and hypersymplectic
realizations [100,101].
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11.2.9; Isotopies and isodualities of Newtonian mechanics.

As it is well known (see, e.g. [13}, Lie’s theory admits two fundamental realizations,
one in classical and one in quantum mechanics, with interconnecting map given by
the naive or symplectic quantization.

The preceding isotopies were introcduced by Santilli for the construction of
step-by-step isotopic generalizations of classical [62] and quantum [61] mechanics
and their interconnecting maps. The new mechanics have been conceived for the
most general possible, nonlinear, nonlocal and noncanonical, interior dynamical
problems. They reached maturity of formulation only recently in memoir [100}
following the advent of the isodifferential calculus.

It is important to review at least the essential elements of the isofopic
classical and operator mechanics because they provide corresponding realizations
of the Lie-Santilli isotheory used in applications. As a matter of fact, Santilli
proposed the isotopies of Lie’s theory precisely for quantitative treatments of the
above generalized mechanics.

To conduct our outline, we shall keep using Santilli's notation {[100], [115]} of
putting a “hat” on all quantities belonging to isotopic formulations, while
conventional symbols are used for quantities belonging to conventional
formulations (see [72] for details).

_As it is well known, conventional classical mechanics is formuiated in the
configuration space via the seven-dimensional space E{t,5 R¥E(x,8R)xE(v,8,R} where
t is'time, x = {xK} represents the space coordinates and v = [vX} represents the
velocities, the latter being independent from the former.

The Class I isotopies of classical mechanics in configuration space require
their formulation in the isospace

SGxV) = EGK) x EGSR) x EVSR), (2.97)
characterized by the total isounit
TtOt = llt x 'IX XTV f (298)

where: 1, = T, is the {one—dimensional) isounit of time and 1, = 17! is the (three-
dimensional) isounit of space and 1, is the three-dimensional isounit of the
velocities hereon assumed to coincide with Tr for simplicity. By assuming that
the isotime is contravariant we have t = t<1;, while for the space components we
have the general rules



J. V. Kadeisvili -328- . Santilli’s Isotopies

% = {xk]x'I = [Xk} ' gfk = Ski y = Tkix Su x 3‘(1 = Tki Xi X}I ’
V= = K, U =8 P =TIy X1, (2.99)

The isodifferential calculus on 8(t,x,V) is then based on the following space
and time isodifferentials and isoderivatives,

=T edt, @K = Pxdkl, @ = Tl xdk,
ﬁ?’k = '{ki x dVi R ai"k = Tki X dg’k ,
A/t =1, d/at, & 83K = Ty x a/ox! , 3/0% =1¥; xa/dk;,
a/8vK = 1y x afavi, 378, 1K x 8/, (2.100)

with basic properties (where we shall ignore hereon for simplicity of notation the
isoquotients and the consequential final multiplication by 1)

BRI/BK = 8, 3k /3K =8d, /8y =1, 8K /8% = T,
(Vg7 etk =2by, (2.101)

The fundamental dynamical equations are then given by the Newton-Santilli
isoequations on 8&1,9), first submitted by Santilli in memoir [100], p. 31, Eq.s (2.5)

vy 20,41 art 30,1 A
m % - , + = (2.102)
dt ot at 3k
) dv; puUL ) A 3 Uyt 1)
=t {m— - : + C _FMARry | =0

dt ars dt or!

where m = mxl; is the .isomass, ie., the mass in isospace, and NSA stands for
variational nonselfadjointness, i.e.,, the violation of Helmholtz's integrability
conditions for the existence of a potential (see volumes (109] for detailed studies).
The first main function of the above equations is to turn dynamical
equations which do not admit a Lagrangian or a Hamiltonian representation in the
(t, r, v} coordinates of the experimenter into an isotopic form which is indeed
representable with the Lagrange’ and Hamilton’s equations on isospaces over
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isofields. This objective is achieved by embedding all nonpotential forces in the
differentials, il.e., representing the deviations from the geometry of empty space
by the isogeometry.

The second main objective of Eq 5 (2.102) is to lift the historical Newtonian
representation of “massive points” into the representation of expended,
nonspherical and deformable bodies with a shape represented precisely by the 1-
mafrix, e.g., with explicit diagonal form for spheroidal ellipsoids

1 = Diag.(n)% ny?, ng?), (2.103)

with non diagonal expression for more complex shapes.

The third main objective of Eq.5 (2.102) is to extend the strictly “local-
differential” character of the historical equations (as necessary from the underlying
Euclidean topology) into a form admitting of “nonlocal-integral interactions”, i.e.,
interactions representable with surface or volume integrals, as typically occurs for
resistive forces, and as permitted by the Tsagas—Sourlas—Santilli integro—
differentizal topology, provided that all integral terms are embedded in the isounits.

Recall that the actual size and shape of a body has no impact in its
dynamical evolution when moving in vacuum. This is not the case when the same
body moves within resistive media, where the size and shape of the body directly
affect its trajectory.

The new class of systemns represented by Eq.s (2.102) is given by extended,
nonspherical and deformable bodies moving within resistive media whose center of
mass trajectory is conventional, i.e., local-differential, while admitting integral
corrective ferms due fo the shape.

As a specific exampie, consider an criginally spherical body of mass m
which moves along the x-axis within a resistive medium (say, gas or liquid) by
acquiring an ellipsoidical shape ¢ with semiaxes (a2, b4, c. By ignoring potential
forces for simplicity, suppose that the body experiences only a nonlocal-integral
resistive force of the type F,"°A = - yv 2]  do %(o,..), where NSA stands for
variational nonselfadjointness [49], ¥ > 0 and ¥ is a suitable kernel. The above
systems can be directly represented in isoconfiguration space S(t,x¥) via the
Newton-Santilli equation

mxgv, /dt =0, Le,mxd(TXv,)/dt = (2.104)
= T Xx[mxdy,/dt +mxT* (dTX/dt)xv [= 0,

m=m, =1, 1,*= diag@? b2 )exp{—'ytvxfodoff(c,...)}.
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The interested reader can then construct a virtually endless number of other
examples. Note that, by comparison, the conventional Newton's equations can only
represent point-like particles under local-differential interactions. By recalling
that the terms “Newtonian mechanics” are referred to point-particles under local—-
differential interactions, the emerging new mechanics for extended-deformable
particles under integro-differential interactions shall be referred to as the
Newton-Santilli isomechanics.

Recall that the notion of isoduality of Sect. 2.1 also applies to conventional
formulations, including conventional mechanics. This has permitted Santilli to
identify new anti-isomorphic images of conventional Newtonian, Lagrangian and
Hamiltonian mechanics for the representation of antimatter first submitted in
memoir (5g].

The isoduality of the ordinary Newton’s equations are defined on the
isodual space

S99 xdvd) = %t R xEYxI 54 RIx EXvE,89RY) , (2.105)
with isodual unit

=1 xdxd 1d=-1,  19=diag (-,-1,-1) (2106)

yielding the Newton-Santilli isodual equation (Ref. [100}, p. 39, Eq.s (2.23),

ddv, 4 g4 Auded xdvh 8 udd, x4, vI)
mUxd - + = 0. (2107
gdd g8 pdkd adykd

are are used in this study for the representation of antimatter in exterior
conditions in vacuum.

It is an instructive exercise for the interested reader to prove that Newton's
equations change sign under isoduality (this requires the isoduality not only of all
multiplications, but also of all quotients). However, such a negative value is
referred to a negative unit, thus establishing their equivalence to the positive
value of the conventional equations referred to positive units. Note that under the
above representation, antimatter possesses negatfve masses, and moves backward
in time.

It has been shown in Ref.s [105,106] that Eq.s (261} represent the totality of
the experimental data on the classical behavior of antiparticles.

The isodual isonewton equations are defined don the isodual isospace

89193939 = pdgd R HedR0 30 RIEIRISIRY) (2.108)
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with isodual isounit
Tdtot = /ldt x Td x'Id’ Ttd = —1t' 1d = "'/I, (2.109)
can be written (Ref. [5g), p. 39, Eq.s (2.24),
ady 8 @d ¥odpd x4 99 ad0dgd, 4, V9

md xd - + = 0. (2110
ghd ad advkd adykd

and are used in this study for the treatment of antimatter in interior conditions.
For all details and examples of the emerging Newton-Santilli isomechanics,
we refer the interested reader for brevity to memoir [100].

11.2.10. Isotopies and isodualities of Lagrangian mechanics.

In memoir [100] Santilli has shown that all possible iscequations (2.56) admit
a direct analytic representation, that is, a representation via a first-order action
functional in isospace over isofields (universality), directly in the coordinates of the
experimenter (direct universality).
.First, we note the following:

Theorem 2.4 (Direct Universality of first-order isoactions)[100 Under
sufficient smoothness and regularity conditions, all possible action functionals of
arbitrary (finite) order in the Euclidean space S{txv} =E(t,R;>E(x8,R*E(v,8R)} can
always be identically rewritten as first-order action isofunctionals of Class I {or
isoaction) on isospace 8(t.x,v) =E@)<E(x5,RIXE(V,5R) in the coordinate of the
observer

t t
A= f estnva = Ty faiene,
L= X%y x%- 0%, D& 4 - 0,0, @110

In fact, the above identity is overdetermined because, for each given L, there
exist infinitely many choices of i, Ty, Ty, Oy and 0,. We shall assume that integral
terms are admitted in the integrand provided that they are all embedded in the
isometric to be compatible with the Tsagas—Sourlas isotopology.

The isovariational calculus is a simple extension of the isodifferential
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calculus (see memoir [5100 for details). The isotopies of the historical works by
Euler’s [17b] and Lagrange [17¢c] then lead to the following:

Theorem 2.5 (Euler-Santilli Necessary Condition) [loc. citl: A necessary
condition for a Class I isodifferentiable isopath P, in isospace 8(tx,V) to be an
extremal of the action isofunctional A of the same class is that all the following
equations (Ref. [100], p. 44, Eq.s (2.41)

a ALEY am‘r,gr)) -
= =0, 2.112
& aek a~§<°

Llbo) = {

are identically verified along Py,

Along lines similar to those of the current literature, Eq.s (2.66) shall be called
Euler-Santilli isoequations of Class 1 when dealing with variational-optimization problemns
and Lagrange-Santilli isoequations of the same class when used for the description of
dynamical systems,

When explicitly written, the isoequations (2.66) characterize the the Newton-
Santilli isoequations (2.56) according to the identifications

da oL&rv o L& T, V)

dt 3k XS
dvy 0D @ il 0,41 A
= mX - _ + . (2.113)
dt att at 3tk

The reader should keep in mind the “direct universality” of isoequations
(2.66) for all possible, well behaved, nonpotential and integro—differential systems,
which is evidently important for studies in the interior problem of interest for this
monograph.

The isodual Lagrange-Santilli equations for the characterization of
antimatter in vacuum are defined on structures (2.59), (2.60) and are given by [loc.
cit)

d®  a9rdd 9 v 54 pded 9 v

dy = - dy -
L3P ,9) {ddtd o i Yo =0, (2114

and they provide a direct analytic representation of the isodual newton-Santilli
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equations (2.61).
The isodual Lagrange-Santilli isoequations for the characterization of

antimatter in interior conditions are defined on structures (2.62), (2.63) and are given
by lloc. cit.]

4p.d ad adrdpd 39 39 pdrdpd 34 9 .
LB = {ad}d T g Jooh =0, @)

It is evident that the latter equations provide a direct analytic representation
of the isodual Newton—Santilli isoequations (2.64} for antimatter in interior
conditions, and they contain as particular case the isodual Lagrange equations.

I1.2.11. Isotopies and isodualities of Hamiltonian mechanics.

The Class [ isotopies of the Legendre transform based on the isodifferential
calculus were introduced for the first time in memoir [100]. They are defined on the
isospace

8t % p) =E® =ETSR)xEPSR), (2.116)

with total isounits
Tot = Tex%xlp = e xI=T, (2.117)

where momentum isounit Tp is assumed to be equal to the space isotopic element
T, because of the covariant character of p.

It should be indicated that, in view of the independence of the variables Py
from TX, we can introduce a new isounit W = 27! for the isospace E(p,5,R) which is
different than the unit T =T"! of isospace E(,3,R), in which case the total unit is 15
= 1pdxW. Selection (A.10} is based on the simplest possible case W =T which is
recommendable from the geometric isotopies of Part 4. Other alternatives belong
the the problem of the degrees of freedom of the isotopic theories which is not
studied in this paper for brevity.

We therefore have the following isodifferentials and iscderivatives

at = I dt, A =xdit, HIBT = 8x1, etc,

apy = Tydxdpy, A = Wxdpl, ;70 = §xU, etc., (2118)
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The isocanonical momentum is then characterized by [100]

LT, W)
Py = ——— =mky - Ok D, (2.119)
39K

under the following regularity condition in a (2n+1}-dimensional region D of
isopoints &, 7, p)
L, T, 9)
pet.( ———— ) © = 0. (2.120
aviavl

thus admitting a unique set of implicit isofunctions ¥% = tX(t, T, p). The isolegendre
transform can then be defined by [5gl

(55D = b VL1 ) - AXAXHEE P VT D + (2.121)

O DR T P+ Ot D = P X PR 2%+ PR DX Py + 04, D= AL T, P
By using the unified notations

b=} ={7 p ), &* = B/t (2.122)

R = (R} = {P0), p=L2..2n, k=L2..n (2.123)

the isotopies of the celebrated Hamilton principle lead to the following:

Theorem 2.6 (Hamilton-Santilli Necessary Condition) {1001: A necessary
condition for an isofunctional in isocanonical form whose integrand is sufficiently
smooth and regular in a region of points ({, b, ¢)

7£2 'tz
A=y @porata - 10y = Ty am, st - R @) (2120

to have an extremum along an isopath P, is that all the following "Hamilton—
santilli isoequations” hold in the disjoint or unified notations

ark AR, T, ) by A, T, P
= —_ = = —— (2.125a)

dt My i1 3k
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d 3AG4, D
By X = : (2.125b)
dt T
d Bt 3 Ak, b)
E" = WX —aﬁv'—, (2.1250)
By = 0y X1, G = @1, (2.1250)
3R° 5R° 0 X -1
(o) = (=2 - =) = (™), (2.125
QRO BRO -1 0 b4 I
(@f)- (=% - =L) - (VY e
35” 35" "'[NXN ONXN
with integrated form
-t %d A% R
b = (& WOy (2.126)

Note that the latter quantities are the conventional covariant and
contravariant canonical tensors, respectively, which held in view of the identities
originating from properties (2.72) and values (2.76)

aRr°, /ot = aRr7, / oM (2.128)

The equivalence of Santilli's isolagrangian and isohamiltonian equations
under the assumed regularity and invertibility of the isolegendre transform can be
proved as in the conventional case {see, e.g., Ref. 109] Sect. 3.8).

The novel brackets characterized by the isohamilton’s equations between
two isofunctions A(B), B(B) on the phase isospace, first achieved in Ref. [100], can be
written

EY B oB %A A 8B 8B 0A
% - % =( - ), (2.128)
** oy Wk 3, ok apg o apy

[AJB] =

and they formally coincide with the conventional Poisson brackets. The
verification of Lie's axioms by the above brackets on isospace over isofields is
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evident. The isobrackets then provide the fundamental classical realization of the

Lie-Santilli isoalgebras (see Part 3).
Note that the projection of the above brackets in conventional space over

conventional fields is given by

dA 9B ) oA
(A, B]Isotopic = iik(t, L, p, .. By - T]-k(t, Lp .. By ——
or; 3p; orTj ap;
(2.129)

do not verify the Lie axioms (because they
generally violate the Jacobi law). This illustrates again, this time from an algebraic
profiles, the structural differences of the isotopic theory in its dual formulation,
that on isospace over isofields and that projected on conventional spaces over
cenventional fields.
Brackets (2.81) can be written in unified notation (2.76)

LY B dA oB dA 9B
[4,B] = SGHVx = % uamuvx']“vﬁ = x®Bx
apH i abe ahP  ah? abP

(2.130)

where

, again, all contractions are on isospace and the last identity occurs in view of the
properties for diagonal isounits

T2 1} = . (2.131)

It is also possible to show that isohamiltonian equations in their
isoexponentiated form provides a classical realization of the Lie-Santilli isogroups
(see Part 3).

The isotopic Hamilton-Jacobi equations, identified for the first time by
Santilli via the isodifferential calculus in memoir [100], are given by

;N EY Y
+ A, x,p =0, — - =0, — = 0,(2132
2t ak Py

plus initial conditions 34/3%°% = Py °, where ¥° and 1° are iso constants, and they are
at the foundation of the isoquantization of the theory studied later on.

An important property of the Hamilton—-Santilli isomechanics is that it is as
invariant as the conventional Hamiltonian mechanics. In particular, the
isocanonical isotransforms are defined via the invariance of the Lie—Santilli
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isotensor under the transforms b — B(b)

ap M a6V
GHY = BV x1 = % Bz

op® ap?

Hy {2.133)

H
tof)

The study in details of the above isotransformation theory is suggested to the
reader interested in learning these new methods.

Note the abstract identity between the conventional and isotopic
mechanics. Since the isounits are positive—definite, at the abstract level there is no
distinction between dt and dt, dx and 4%, etc. Therefore, the isonewton, isolagrange
and isohamilton equations coincide at the abstract level with the conventional
equations. This illustrates again the axiom—preserving character of the isotopies.

Note the direct universality of Santilli's isohamiltonian mechanics in the
fixed inertial frame of the observer, which should be compared with the
corresponding Jack of universality of the conventional Hamiltonian mechanics.
This direct universality permits an alternative formulation of Darboux’s theorem of
the symplectic geometry outlined in the next appendix, according to which, under
the needed smoothness and regularity conditions, all possible locally
nenhamiltonian systems can always be locally isohamiltonian.

The isodual Hamilton-Santilli equations are defined on structures

s9t9,x4 p9) = EY(td RY XEYxY 54 Rx E4pd 84 RY) , (2.134)
with isodual unit
G =19 x0xd, 198=- 19 = diag. (-1, -1, 1),  (2.135)
can be written
dbv, 9 ¢ Auded,xd v adyded xd, v9
mYxd - + = 0. (2.136)
d%d  g40  gdykd 0,kd

where H® = -1, as the reader is encouraged to verify. The above equations provide
an isocanonical representation of the iscdual Newton—Santilli isodual equations
(2.107).

The isodual hamilton-Santilli isoequations are defined don the isodual
ispspace
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8909 x4 5% = pIrd RY XEARI, 5O RIEIHIZERT) , (2.137)

with isodual isounit

M =10 x13x1 8 = 19x19x 14, 19=-1, 19=-1=(14], (2138)

can be written

g g 20 AR
Wy X 260 = __3dgm ) (2.139}

where again Rd=-n and they evidently represent the isodual isonewton equations
(2.110).
The isodual Hamilton—Jacobi-Santilli equations [100] are evidently given by

d 1
Al =f ) dzd( pd x4 ddrdk - HIx8 gdtd) = -4, (2.140a)
1
gd Ad dd o g g9 ] pdad )
— + HYt% x4 p% =0, -p% =0, = 0, (2.140b,
54 ¢d ok a8pd,

and they are fundamental for the characterization of the isodual image of quantum
mechanics, while the isodual Hamilton—Jacobi-santilli isoequations can be written

[loc. cit.]
d
id =f ) djfzd pd, 54 gdpdk - pdsdgdtd) = -3, (2.141a)
39 ad l pdzd pdpd
— + 9 34 59 = 0, -pd =0, = 0,(2.141b)
ad4d aAthdk k 2458,

Note the complete equivalence in the treatment of matter and antimatter
beginning at the primitive Newtonian level which then persists at all subsequent
level including quantization, quantum field theory and electroweak interactions
(100,101].

For completeness, we mention that Santilli had already achieved in
monograph [110] the direct universality for the representation of nonconservative
Newtonian systems via the use of Birkhoffian mechanics, but under the condition
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that they are (well behaved and) local-differential (as necessary from the use of
the conventional symplectic geometry).

In memoir [100] Santilli first, extended the above direct universality to
include nonlocal-integral systems; and, second, he reduced the representation to a
form admitting the conventional canonical structure .

Both results are important for this volume. In fact, the representation of
generally nonlocal-integral systems is essential for an effective study of interior
dynamical systems at both classical and operator levels, as we shall see. Moreover,
the quantization of Birkhoffian mechanics yielded no meaningful operator
mechanics. The latter impasse was resolved precisely in memoir [100] via the
isphamiltonian mechanics.

The connection between Birkhoff’s equations and the Hamilton-Santilli
isoequations is intriguing. Recall that the former are characterized by the most
general possible, nowhere degenerate, exact symplectic structure

Qb = &R, /b - &R /ot (2.142)

and can be written

dp¥ 8H(t, b)

(b) X —— =
Oy dt ot

(2.143)

It is‘'then easy to see that the above equations are reducible to the Hamilton—
Santilli iscequations via the factorization of the general symplectic structure into
the conventional symplectic structure and a factor interpreted as the 2N-
dimensional isounit [100]

Q) = 1%, xay, . (2.144)
In fact, under the latter decomposition, Eq.s (2.93) reduce to
av’ 8H(t, b) SH(t, b)

X —. = "I‘ua X
dt ap< oL+

(2.145)

Wy

namely, they reduce to Eq.s (278b) for 1, = L.
The reader should keep in mind that the direct universality of the

Hamilton—Santilli isoequations establishes the corresponding direct universality of
the Lie-Santilli isotheory in classical mechanics with a corresponding direct
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universality for operator formulations indicated later on.

I1.2.12: Isotopies and isodualities of quantization

As it is well known, quantum mechanics provides the fundamental operator
realization of Lie’s theory. It is therefore important to outline the operator
realization of the Lie-Santilli isotheory which was first proposed in ref. [53] under
the name of hadronic mechanics and then studied in numerous subsequent papers
(see ref.s [116] for a comprehensive presentation), but reached maturity of
formulation only in the recent memoir {101} following the appearance of the
isodifferential calculus in the preceding mernoir [100].

The reader may be interested in knowing that hadronic mechanics was
specifically built for the problems of structure and interactions of strongly
interacting particles generically called hadrons. Recall that quantum mechanics is
strictly local-differential and potentiai-Hamiltonian. As such, it has resulted to be
exactly valid for electromagnetic and weak interactions, although there are
historical doubts whether the same discipline can also be exact for strong
interactions.

This is due to the fact that the range of the strong interactions coincides
with the size (charge distribution) of all hadrons. As a result, a necessary condition
to activate the strong interactions is that the hyperdense hadrons enter into
conditions of mutual penetration-overlapping, thus resulting in the most general
known systems which are nonlinear in the wavefunctions (and possibly their
derivatives), nonlocal-integral {(over the volume of overlapping} and nonpotential-
nonhamiltonian and, therefore, nonunitary (because of the contact interactions
which are absent in the electroweak interactions). In turn, any nonlinear, noniocal
and nonunitary study of strong interactions requires a structural revision of
quantum mechanics beginning with its topology.

The understanding is that the approximate validifty of quantum mechanics
for strong interactions is unquestionable. We are therefore referring to
corrections of the quantum descriptions due to internal nonlinear, nonlocal and
nonunitary effects.

Santilli [53] proposed the construction of the isotopies of quantum
mechanics under the name of hadronic mechanics precisely for the treatment of
the latter contributions in a form which preserves the original quantum mechanical
axioms.

The fundamental dynamical equations of hadronic mechanics can be
uniquely and unambiguously derived from the Hamilton-Santilli isomechanics via
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the isotopies and isodualities of conventional naive or symplectic quantization.
Recall that the naive quantization can be expressed via the mapping (for h =
1)

A:fttz(pkdxk—-]-ldt) — _ixhx]-fn{]f(t,)():—ian(}J(t,x) (2.146)
1

under which the conventional Hamilton—Jacobi equations are mapped into the
Schridinger’s equations,

A+ H=0 — ix3 ¢ = Hxy,
A - P =0 = —ixXq{Yy=pXb. (2.147)

By recalling the seven classes of new mathematics (Sect. 2.1), the above
maps has been subjected to seven different liftings each one characterizing a novel
mechanics. By including the conventional quantum mechanics as a trivial
particular case for1 h, the terms “hadronic mechanics” are today referred to eight
branches, the conventional, isotopic, genctopic and hyperstructural mechanics, plus
their four isoduals.

The first four formulations all obey the same abstract axioms, by
conception and construction. For this reason, santilli insists that the isotopic,
genotopic and hyperstructural mechanics do not constitute “new mechanics” , but
merely “neéw realizations” of the abstract axioms of quantum mechanics. In
particular,”they constitute a form of “completion” of quantum mechanics much
along the'historical argument by Einstein, Podolsky and Rosen, as indicated
beginning from the title of memoir [101]. The above mechanics are used for the sole
characterization of particles. The isotopic, genotopic and hyperstructural branches
have also provided a novel operator realization of gravity for matter for physical
conditions of increasing complexity.

The remaining four branches (isodual quantum, isodual isotopic, iscdual
genotopic and isodual hyperstructural mechanics) are anti-isomorphic to the
preceding ones. As such, they have resulted to provide an intriguing novel
characterization of antiparticies [101,105,106]. the latter branches have also
provided an intriguing and novel operator form of gravity for antimatter with
conditions of increasing complexity. In this section we can only review only the
following three new quantization.

1) Naive isodual quantization. It is characterized the mapping of the
isodual action (2.140a)
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d 1
Ad = f : dzd (pd, xd qdrdk — ydxd gd 1) — —Oxdpd 1ndyd(d, 9. (2.148)
1

where one should remember that 19= =i, hd = —f =, Lndapd =- med, zbd = —«pT,
under which the isodual equations (2.140b) are mapped into the operator form,

ad Ad
+ péd x4 pcl) =0 - xd atd de - pd xd ‘f’d,
o ¢d
5d,d
ddk =0~ -ixdad gl = phydyl, (2,149)
8%

which characterize the isedual quantum branch of hadronic mechanics. The
latter is a novel, hitherto unknown, anti-isomorphic image of quantum mechanics
identified by Santilli [101,105,106] for the characterization of antiparticles in
vacuurn.

Its fundamental assumption is the lifting of the unit of quantum mechanics,
Planck’s constant, under isoduality,

h=1 > 19=-1, (2.150)

and the reconstruction of the entire theory in such a way to admit the new unit @
as the correct, left and right unit at all levels. This implies the change of the sign of
all characteristics of particles, that is, not only of the charge, but also of masse,
energy, time etc., in a way fully analogy with the classical Newtonian counterpart
of Sect. 2.8.

The reader should be aware that the above new quantization resolves the
following historical shortcoming of contemporary theoretical physics. Recall that,
prior to Santilli’'s studies, heretical physics used only one quantization. as a result,
the operator image of contemporary classical descriptions of antiparticles is not the
correct charge conjugate, but instead the state of an ordinary particles with the
mere change of the sign of the charge.

By constructing a new theory for antiparticles which begins at the
Newtonian level and then continues with its own quantization, Santilli has resolved
this historical impasse. In fact, at the operator level isoduality has resulted to be
equivalent to charge conjugation, as we shall review later on.

2) Naive isoquantization. 1t is characterized by the map of the isoaction
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(2.124)
A-f Rl e -ara > -i%lsom#R R =-1x1La iR @is)

where = i¥] and we have used the notion of isologarithm, Isoln § =T x Ln &. This
implies the map of the Hamilton-Jacob-Santilli isoequations (2.132) into the

operator forms
A +RA=0 - %3y =H%F = AxTx,
WA =P =0 = “I%{ b = pXE = pxTxP, (2.152)

which are valid when 1 is independent from space and time coordinates, otherwise
A is replaced by the more general operator AE! inclusive of the latter effects {128].

The above equations have the desired manifest isotopic structure first
discovered by Mignani and, independently, by Myung and Santilli (see Ref. [116] for
details and literature). They constitute the fundamental isoschrédinger’s equations
of the isotepic branch of of hadronic mechanics which is used for the
characterization of particles in interior conditions, operator gravity of particles and
other applications.

The rigorous operatoer map is given by the isotopies of symplectic
quantization [116] and yields exactly the same results.

As one can see, the fundamental assumption of isoquantization is the lifting
of the basid:unit of quantum mechanics, Planck’s unit, intc a matrix with nonlinear,
integro—differential elements

=1 - 1T=1Uxx¢.)>0, {2.158)

and reconstruction of the formulation in such a way to admit 1 as the correct left
and right unit at all levels. Nevertheless, as we shall see shortly, the criginal value h
is recovered identically from 1 under the applicable expectation values. this will
confirm the “hidden” character of the isotopies.

2) Naive isodual isoquantization. It is characterized by the map of the
isodual isoaction (2.141a)

" d o .y cgads N nds .
ad =f %,d 2 (69, xathck - ndsdand) — 3028 [sond 4909, 39 =
1

=-ix1% x Ln §909, 39, (2.154)
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under which the isodual Hamilton-Jacobi-Santilli isoequations (2.141b) are mapped
into the operator forms

M A0+ pd =0 - %030 = Add gl = pdx I gd,
adk;\d - f’dk =0 - _qudgdka,d = f)dkxdﬁ;d = f)dkx'fdxﬁjd,(zl%)

which characterize the isodual isotopic branch of hadronic mechanics, and it is
used for the characterization of antiparticies in interior conditions, operator gravity
for antimatter, and other applications.

This third branch is evidently characterized by the lifting of Planck’s
constant

=1 - 10 =19, xx%a..)<0, (2.156)

under which all characteristics of the isodual branch change sign, and the
reconstruction of the mechanics to admit 1¢ as the left and right unit at all levels.

11.2.13. Isetopies and isodualities of quantum mechanics.

As indicated earlier, hadronic mechanics has reached maturity of formulation only
in the recent (104 pages long) memoir {101]. To avoid a prohibitive length, in this
section we shall outline the mathematical structure of the three branches of
hadronic mechanics under consideration here. For clarity, only nonrelativistic
hadronic mechanics will be considered in this section. relativistic extensions will
be indicated later on.

Let £ be the enveloping associative operator algebra of quantum mechanics
with elements A, B, .., unit h = [ and conventional associative product AXB = AB
over the fields of complex numbers C = Clc,+,%), and let 3 be a conventional Hilbert
space with states | >, | ¢ >, ... and inner product < ¢ | ¢ > = [ a3xlit, Keft, x) over
C.

1) Mathematical structure of the isodual guantum branch. 1t is given by

the isodual enveloping associative algebra &9 with elements Ad = —AT, BY = -B],
isodual unit 19 = -1, and isodual product

AGdpd = 240 x [ xgd = (aTx BT}, (2.157)
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over the isodual field C% = ¢3(c%+ @), 9 = ¢, equipped with the isodual Hilbert
space 39 with isodual states |  >9 = -{ ¢ >/, and isodual inner product over ¢4

<o|x[g>8 = <o xIx|gp>Ix@ ecl (2.158)
We then have the isodual eigenvalue equations
HI x| >0 =g x4y >9, (2.150)

characterizing negative energies Ed=-E< 0, a5 desired.
The isodual elgenvalues are then given by

<Apdsd = cydxdpdxd |0 Aoylxd|y>d = g4=-E, (2160

thus recovering the isodual eigenvalues, as needed for consistency.

The above isodual theory stems from a novel invariance, the isoselfduality
of the normalization of the Hilbert space [101,105] namely, its invariance under
isoduality (Sect. 2.3)

<P|xj>xI = <pfxx|p>dxd, (2.161)

-which assures that all physical laws of particles also holds for antiparticles.
For remaining aspects of the isodual branch of hadronic mechanics we refer
the reader to'Ref.s [101,105]
Note that invariance (2.161) has remaining undetected throughout this
century. This should not be surprising because its identification requires the prior
discovery of new numbers, those with negative units.

2) Mathematical structure of the isotopic branch. 1t is characterized by

1) the Class I lifting of the (space) unit [ =1 ="T"!> 0 with consequential
isofields of real R = R({,+%) and complex isonumbers € O, +%);

2) The corresponding lifting of the quantum mechanical representation
spaces, such as the Euclidean E(x,5,R) spaces into their isotopic form E(x,3,R),

3) The lifting of the enveloping operator algebras £ into the enveloping
isoassociative algebra t with the same original elements A = A, B = B, .., only
written in isospace, now equipped with the isounit T and the isoassociative product

AXB = AxTxB, (2.162)

as well as the lifting of the Hilbert space 3¢ into the isohilbert space X with
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isostates | §# >, | & > , ... and isoinner product , first identified by Myung and
Santilli (see ref. [116] for details and literature)

R <dfd> = <d|xTx|F>xT € CE+¥. (2.162)

The main equations of hadronic mechanics defined in terms of the above
mathematical methods are explicitly given by:the isoschrddinger equations for the
Iinear momentum :

—ix % = —ixTlo it 1) = PRl ) = Pex TxPG %, (2163)

and the related fundamental isocommutation rules

A~ A

[ il = pyxxd - d%p = -8, [P p;] = (¥;x]=0, (2164
{(where we have used properties (2.46); the isoscrodinger equation for the energy
%3 §t, %) =iTyx o, 4ft, xh= A% P, X} =
= AxTx{fx) = EXJ} % = Ext, %,
A=A, £=Ex1cRhi*x®, E € R+, (2.165)
and the isoheisenberg equation
iaQ/at =[Q/Al = Q%A - A%XQ = QxTxA - A, TxQ. (2166
with integrated form
Q) = e BXTXix o) xeixtxTxR (2.167)

first identified by Santilli in the original proposal to build hadronic mechanics [53]
and generally called Heisenberg-Santilli equations.

It should be recalled for subsequent needs that the condition of
isohermiticity on an isohilbert space coincides with the conventional Hermiticity,
AT = i As a consequence, all operators which are Hermitean—observable in
quantum mechanics remain so in hadronic mechanics.

For the isotopies of the remaining aspects of quantum mechanics we refer
for brevity the interested reader to monograph [116]. We here merely indicate that,
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for isounits of Class I, all distinctions between quantum and hadronic mechanics
cease to exist at the abstract, realization—free level for whichR~R,C~(, E~¢ E ~
E, 3¢ ~ 3, etc. This ultimate abstract unity assures the correct axiomatic structure
of hadronic mechanics to such an extent that criticisms on its structure may
eventually result to be criticisms on quantum mechanics.

The advantages of hadronic over quanturn mechanics are sirnilar to those of
the Hamilton—Santilli over the conventional Hamiltonian mechanics. In fact,
quantum mechanics can only represent (in first quantization) point-like particles
under action—at-a—distance interactions. By comparison, hadronic mechanics can
represent (in first isoquantization) the actual nonspherical shape of hadrons, their
deformations as well as their nonlocal-integral interactions due to mutual
penetrations of the hadrons. The possibilities for broader applications in various
disciplines are then evident.

3) Mathematical structure of the isodual isotopic branch.

The isodual Hamilton—Santilli isomechanics is mapped via naive
isoquantization into the isodual hadronic mechanics which is based on: 1) the
isodual isofields of isoreals RY(1d,+%9) or isocomplex numbers {4(E0,+59) (Sect. 2.B);
2) the isodual envelope £ with isodual isounit 19 = -1, isodual elements A9 = -A, B4
= -B, etc., and isodual product A9%4pd = —ATB; the isodual isohilbert space 38
with isodual isostates | § >% = - < & | etc. and isodual isoinner product <& | 79| §>19
over C4. .

In particular, at this operator level, the isodual map has is equivalent to
charge conjugation {see [105] for brevity), although with a number of differences.
For instance, charge conjugation maps a particle into an antiparticle in the same
carrier space over the same field, while isoduality maps a particles in a given
carrier space over a given field into a different carrier space over a different field
(the isodual ones}); charge conjugation changes the sign of the charge but preserves
the sign of energy and time, while isoduality changes the signs of all physical
characteristics, although they are now defined over a field of negative-definite
norm; etc.

Note that the naive (or symplectic) isoquantization apply for all possible
isoaction (2.51). By recalling the direct universality of the Hamilton-Santilli
isomechanics, one can therefore see that hadronic mechanics is also directly
universal for all possible (well behaved), integro—differential, operator systems
which are nonlinear in the wavefunction and its derivatives and nonhamiltonian
[116].

In fact, the isoscrédinger’s equations can be explicitly written

i xT{t, % B . dx 9 | §> = R, X P x Tl X, By O, o, 004, .0 x| > {2.168)
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The unrestricted functional dependence of the isotopic element then implies the
following:

Theorem 2.7 (116} Hadronic mechanics is “directly universal’, that is, capable of
representing all possible, well behaved, nonlinear, nonlocal-integral and
nonpotential-nonhamiltonian operator systems {universality), directly in the
coordinates of the observer (direct universality).

This property is remarkable inasmuch as it establishes the direct
universality of the Lie-Santilli isotheory also in its operator realization. Note the
mechanism in achieving the above direct universality, which is first referred to a
well behaved, but otherwise arbitrary nonlinear, nonlocal and nonhermitean
operator t, %, D, &, s, ...). Then the latter operator is decomposed into the product
of two Hermitean operators O = AT under the condition that all nonlinear nonlocal
and nonhamiltonian terms are embedded in the isotopic element T. Finally, the
underlying methods are reconstructed with respect to the unit 1=11s0asto
reproduce Hermiticity in isohilbert space.

For the isotopies of the remaining aspects of quantum mechanics we refer
for brevity the interested reader to monograph [116]. We here merely indicate that,
for isounits of Class I, all distinctions between quantum and hadronic mechanics
cease to exist at the abstract, realization—free level for which R~R, C~C, E~E E ~
£, 3¢ =~ 3, etc. This ultimate abstract unity assures the correct axiomatic structure
of hadronic mechanics to such an extent that criticisms on ifs structure may
eventually result to be criticisms on quantum mechanics.

As a result, all properties holding for quantum mechanics also hold for
hadronic mechanics. For instance, the condition of Hermiticity on 3® over €
coincides with that on 3C over C. Thus, all quantities which are observables in
quantum mechanics remain observable for hadronic mechanics.

Finally, we mention that hadronic mechanics: preserves conventional
physical laws, such as Heisenberg’s uncertainties, Pauli's exclusion principle, etc,;
provides a concrete and explicit realization of the theory of "hidden variables”; and
ultimately results to be a form of “completion” of quantum mechanics much along
the historical teaching of Einstein, Podolsky and Rosen. For all these aspects, we
suggest to consult memoir [101] for brevity.

The advantages of hadronic over quantum mechanics are similar to those of
the Hamilton—-Santilli over the conventional Hamiltonian mechanics. In fact,
guantum mechanics can only represent {in first quantization) point-like particles
under action—at-a-distance interactions. By comparison, hadronic mechanics can
represent (in first isoquantization) the actual nonspherical shape of hadrons, their
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deformations as well as their nonlocai-integral interactions due to mutual
penetrations of the hadrons. The possibilities for broader applications in various
disciplines are then evident.

11.2.14: Isolinearity, isolocality, isocanonicity and isounitarity

In Sect. Il.1 we pointed out that the primary limitations of the contemporary
formulation of Lie’s theory are those of being linear, local and canonical. The
classical and operator realizations identified earlier indicate rather clearly that the
Lie-Santilli isotheory is nonlinear, nonlocal and noncanonical, as desired.

It is important to understand that such nonlinearity, nonlocality and
noncanonicity occur only when the theory is projected in the original space over
the original fields because the theory reconstructs linearity, locality and canonicity
in isospaces over isofields (see [115] for all details and references).

Let S(x,F) be a conventional vector space with local coordinates x over a field
F, and let x’ = A(w)x be a linear, local and canonical transformation on S(x,F), w € F.
The lifting S(x,F) — 8(x,F} requires a corresponding necessary isotopy of the
transformations [52]

-

o= AWXX =AW xTx% T fixed, Xxe$&P, w = wl eR 1=T71, (2.169)

_called isotransforms, with isodual isotransforms ¥ = A4wWIxO% = - AWK
It is easy to see that the above isotransforms satisfy the condition of
linearity in isospaces, called isolinearity

A%(a%x + B%y) = A% (A%X) + B+(A%y), vX ye8&Pabef, (2170

although their projection in the original space S(x,F} are nonlinear because x' = AT(x,
oo )X,

Lemma 2.3 [116]: All possible {well behaved) nonlinear, classical or operator
systems of equations or of transformations always admit an identical isolinear
reformulation

The above property illustrates the primary mechanisms according to which
the Lie—Santilli isotheory applies to nonlinear systems. In fact, as we shall see
shortly, the latter theory is isolinear and, as such, it is capable of turning
conventionally nonlinear systems into identical forms which do verify the axioms
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of linearity in isospace, with evident advantages.

Isotransforms (2.74) are also isolocal in the sense that the theory formally
deals with the local variables x while all nonlocal terms are embedded in the
isounit, namely, all nonlocal-integral terms disappear at the abstract, realization—
free level. Nevertheless, the theory is nonlocal when projected in the original space.

Similarly, isotopic theories are isocanonical because they are derivable
from the isoaction (2.124) which is of canonical first-order type in isospace and
coincides at the abstract level with the canonical action.

Finally, nonunitary transforms on I, uxul # I, can always be identically
rewritten as the following isounitary transformations {101]

U =0<t2 yxyl = oxof = ofxu =1, 2.171)

As a matter of fact, any conventionally nonunitary operator U, uxul =1 » I, on I
always admits an identical isounitary form on 3 via the simple rule U = 0TV/2

IL3. LIE-SANTILLI ISOTHEORY AND ITS ISODUAL

I1.3.1. Statement of the problem.

As recalled in Sect. IL1, Lie’s theory (see, e.g., [I5] for a mathematical
presentation and [13] for a physical formulation} is centrally dependent on the basic
n—-dimensional unit [ = diag. (1, 1, ..., I) in all its major branches, such as enveloping
algebras, Lie algebras, Lie groups, representation theory, etc.

The main idea of the Lie-Santilli isotheory 152], [53], [110] is the
reformulation of the entire conventional theory with respect to the most general
possible, integro—differential isounit Ux, %, %, ...) = 11 {Fig. 3.1). The Lie-Santilli
genotheory [loc. cit] occurs when the Hermiticity of the theory is relaxed, 1 =11,
and the hypertheory [105], [106] occurs when, in addition to relaxing the
Hermiticity, the generalized unit is multivalued. This paper is primarily devoted to
the isotheory with only marginal comments on the broader genotheory and
hypertheory.

The following introductory comments are in order. We should note from the
outset the richness and novelty of the isotopic theory. In fact, the conventional Lie
theory has only one formulation. By comparison, the Lie=Santilli isotheory can be
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classified into five main classes I, II, [I[, IV and V as cccurring for isofields,
isospaces, etc., and admits novel realizations and representations.

THE STRUCTURE OF LIE’S THEORY

UNIVERSAL ENVELOPING

ASSOCIATIVE ALGEBRAS
LIE LIE REPRES.
ALGEBRAS GROUPS THEORY

FIGURE 3.1: A reproduction of Fig. 4.1.1, p. 124, ref. [115] illustrating that the isotopies of Lie's
theory are not studied within the context of nonassociative algebras but are based instead
on the isotopies of the enveloping associative algebra, from which the entire isotheory can
be constructed, including isoalgebras, isogroups, isorepresentations, etc., as conceived in
Santilii’s original proposal [52] The dominant motivation of the proposal was of purely
physical character and consisted in achieving methods for the construction of the most
general possible nonfinear, nonlfocal, and noncancnical transformations groups and
Symmelries in such a way to preserve the abstract axioms of the contemporary linear,
local, and canonical Lie transformation groups and symmetries. This unity of
mathernatical thought then permitted Santilli to preserve the abstract axioms of
conventional physical laws also for structurally broader systems. In particular, the
isotopies of Lie's theory permit the applicability of the abstract axioms of Galilei’s and
Einstein’s relativities also for nonlinear, nonlocal and noncanonical systerns. Mathematicians
should be aware that the use of other generalizations of Lie’s theory {e.g., quantum
deformations) imply the loss of the above unity. In turn, this implies the violation of
conventional relativities by the generalized formulations, thus creating the rather sizable
problerns of first identifying their replacements and then establishing them experimentally.

Second, we should point out the inequivalence of the conventional and
isotopic formulation of Lie's theory in the following sense. Recall that, when
formulated via Hermitean operators on a Hilbert space, Lie's theory is inclusive of
all equivalence classes characterized by unitary transforms which, evidently
preserve the fundamental unit, UxUT = Ulxu = 1. Being based on a generalized unit 1
# [, the Lie-santilli isotheory is therefore outside the equivalence classes of the
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conventional formulation. In fact, the former is derivable via nonunitary
transforms of the latter,

uxuT=1=1"=1, T =(uxuly! =17,
UxIxUf =1, uxaxBxyl = AxTxB
Ux(AxB - BxA)xUl = AxTxB" - BxTxa -
A'=UxaxUl B =uxBxul, (3.1)

where one should note that the isounit and isotopic element have the correct
Hermiticity property and interconnection.

The above inequivalence has rather profound implications, such as the fact
that weights and, more generally, the representation theories of the Lie and Lie-
Santilli theories are inequivalent. This can be see from the fact that nonunitary
transforms do not preserve weight, e.g., because they do not preserve eigenvalues

Hx[¢g>=Ex|¢g> = HxTx|§>=E’'%|§>, E'#E,
H =UxHxUT = H'T, &' = UxExUT, [§> = Ux|d>. (3.2)

The nontriviality of the Lie and Lie—Santilli theories is then illustrated by the
fact that familiar spectra of eigenvalues, such as the discrete spectrum of the
rotational group SO3)E =0, |, 2, ... is lifted into a generally continuous spectrum E'
= UxExUT of the isorotational group SO(3), as we shall illustrate in section 3.6, even
though the two groups are locally isomorphic for Class I isotopies, SO{(3) =~ SO(3).

The apparent discrepancy caused by isomorphic groups with inequivalent
representations is instructive for the reader first exposed to isotopies. In fact,
conventional theories admit only one formulation, while all isotopic theories admit
two different formulations, the first on isospaces over isofields, and the second
given by their projection on conventional spaces over conventicnal fields.

As shown by Santilli in ref.s [115), [116], when the isotopic groups are
formulated on their appropriate isospaces over isoficlds, they coincide with the
conventional groups, including the identity of the preservations and related
weights, while inequivalent representations and weights emerge only when the
isogroups are projected in carrier spaces and fields of the conventional groups.

The above occurrence becomes clear if one recalls that the map from
groups to isogroups is characterized by the underlying map of the unit, 1 - 1.
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Therefore, conventional weights E and their isotopic images E "= UxExUT are
manifestly inequivalent when both are considered with respect to the same unit L.
However, the weights E = ExI and E’ = EXI = Ex(UxUT) are manifestly equivalent
when each is represented with respect to its own unit 1 and1 = UXUT, respectively.

Despite the above mathematical equivalence, isorepresentation have far
reaching physical implications. This is due to the fact that physical events occur in
our space-time and not in isospace. As a result, the physically significant
isorepresentations are the projections in the original Lie space, and their
formulaticn in isospace has purely mathematical significance.

To avoid ambiguities and misrepresentations, the correct formulation of the
Lie-Santilli isotheory therefore requires the identification of the underlying spaces
and fields. Throughout this section, unless otherwise stated, the Lie theory is
formulated in the conventional spaces and expressed via conventional symbols, I, A,
B, ... AxB, etc., while the isotheory is formulated in isospaces over isofields and
expressed with the symbols 1, &, B, ..., A%B, etc. When using conventional symbols
for the isotopic theory we means its projection in conventional spaces.

The next topic which warrants advance comments is the invariance of the
Lie—Santilli isotheory within its own isotopic context. We have recalled earlier that
the conventional unit [ is the fundamental quantity of the conventional Lie's theory
verifying the familiar properties M=[x[x . x[ =], it = I, I/I = I, etc. Moreover, the
unit is a trivial first infegral of the equations of motion, e.g., i dI/dt = [I, H] = IxH -
Hx[ = H - H = 0. Moreover, the conventional unit is invariant under the group

“transformations .it characterizes, e.g., for unitary transforms we have uxIxyT =
Ukixu=1.

In Sect. 2 we have shown that the fundamental unit of the Lie-Santilli
isotheory, the isounit 1, does indeed preserve the axiomatic properties of the
conventional unit, and it does indeed remain a first integral of the equations of
motion,

MW =1%1% .%T=1,1%=1, M =1, et
id1/8aT=1%A-AX1=A-A=0. (3.3)

What remains to point out is its invariance. In this respect, it is easy to see
that the isounit is not invariant both unitary as well as nonunitary transforms. In
fact, under a unitary transform, UxUT = UfxU = 1, we have UxIxUT = 1" # 1 and,
similarly, under a nonunitary transform, Wxw! = [, we have WxixwT =1 =1.

However, the isounit is invariant under isounitary transforms (Sect. 2.6). In
fact, any nonunitary transform wxw! = I can always be identically written in the
isounitary form
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W=wWxT/2 wxw = wxwl = wixw =wisw =1, (34

under which we have the invariance, not only of the isounit, but also of the isotopic
products

wxTxWl =1, WwWxAxpxw = axp,
Wi AXB - BXA)XW T = A%f - Br% A,
A= wxAsw T, &= wsw T, (3.5)

Note that the isounit and isotopic element are not only invariant, but left
numerically unchanged.

The above occurrence illustrates once more the necessity of lifting the
entire mathematical structure of Lie’s theory for the correct formulation of the
Lie-Santi!li isotheory, without any exception known to this author.

It is remarkable that all the preceding properties persist under the
broadening of the isotheory to its genotopic and hyperstructural coverings as the
reader may verify.

I1.3.2. Isoenvelopes and their isoduals.

In this section we study the universal enveloping isoassociative algebras (or
isoenvelopes for short) for the case of Class III over an isofield of characteristic
zero of the same class, as first formulated by Santilli in memoir [52] of 1978 and
then presented in monograph [110] {for independent studies see [25], [121]. The use of
Class III implies a unified formulation of the isotopies of Classes | and II and
permits the unification of the envelopes of simple, compact and noncompact Li¢
algebras of the same dimension into one single isotope.

To begin, let £ = E(L) be a universal enveloping associative algebra of an N—-
dimensional Lie algebra L(see, e.g., ref. [15]) with generic elements A, B, C.... , trivial
associative product AxB = AB (say, of matrices) and unit matrix in N-dimension [ =
diag. {1, I, ..., 1).

Let the (ordered) basis of L be given by {X;} , k = 1, 2, .., N, over a field
Fla,+x). An {ordered) standard monomial of dimension n is the product of n-
generators XXX ... *Xy with the ordering 1= j =... £ k. The infinite-dimensional
basis of £(L) is then expressible in terms of monomial and given by the Poincaré-
Birkhof f~Witt theorem [loc. cit.]
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I, Xy X xX; (=), Xp xXj x X (i2j=k) . (3.6)

The universal enveloping isoassociative algebra, or
isoenvelope) EL) of the Lie algebra L [52] {see Fig. 3.2) coincide with & as vector
spaces (because the basis of a vector space is unchanged under isotopies). The basis
of &) is therefore constructed with the same generators Xy only computed on the
new isospace 3(%,F(a,+%)), denoted Xy and now equipped with the isoproduct A%8 so
as to admit 1 = 77! as the correct (right and left) unit

tE . A%XB = AxTxB=ATB, T fixed,

T4 =A%1 =4 viet 1=171 (3.7)

=23

The (ordered) standard monomials of dimension N of (L} are then mapped into the
(ordered) standard isomonomials of the same dimension XXX .. Xk, 1= j= .. 5k
of &L,

A fundamental property from which most of the Lie-isotopic theory can be
derived is the following

Theorem 3.1 (Poincare’-Birkhoff-Witt—Santilli Theorem [52], [110]): The
cosets of 1 and the standard isornonomials form an infinite-dimensional basis of
the universal enveloping isoassociative algebra t(L} of a Lie algebra L of Class III

s

1 . Kk- Xi X X] {i= j), Xi X X] X Kk (i= is k), {3.8)

A detailed proof can be found in ref. [110], pp. 154-163, or ref. [121], pp. 74-93,
and it is not repeated here for brevity {although its knowledge is assumed for more
advanced treatments).

Algebraically, the above theorem essentially expresses the property that non
singular isotopies of the basic product, ie.,

AxB: (AXBXC = Ax(BXC) &> AXB: (AXBRC = AX(BXC), (3.9

imply the existence of consistent isotopies of the basis. Note the abstract unity of
the conventional and isoenvelopes. In fact, at the level of realization—free
formulation the “hat” can be ignored and bases (3.6) and {3.8) coincide. Nevertheless,
the isoenvelope &L} is structurally broader then the conventional envelope (L), e.g.,
because it unifies compact and noncompact structures as shown below, and this
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begins to illustrate the nontriviality of the Lie—Santilli isotheory.

Theorem 3.1 and isobasis (3.8) have important mathematical and physical
implications. Recall that the conventional exponentiation is defined via a power
series expansions in £
e ™K o L w1+ (w0 X AWK/ 2+ s W Flas).

(3.10)

The above exponentiation is then inappticable under isotopies because the quantity
[ is no longer the basic unit of the theory, the conventional product * has no
mathematical or physical meaning, etc.

[n turn, this implies that all quantum mechanical quantities depending on
the conventional exponentiation, such as time evolution, unitary groups, Dirac’s
delta distributions, Fourier transforms, Gaussian, etc. have no mathematical or
physical meaning under isotopies and must be suitably lifted.

[sobasis (3.8) then permits the following

Corollary 3.1.A [52} The “isoexponentiation” of an element X € ¥ via isobasis (3.8)
over an isofield Fa,+%) is given by

dwk® dwX iwx¥X iwX
e Ee =eE Eee =

=1+ (WER/M+EWXR X (WwkR/2+.... =

w e Fa+%.

=1x{e
WxR = (wx1)xTxX = wX, XS(S:,FI&,+§<)) = X Pla+x) - (3.10)

The nontriviality of the isotopies of Lie's theory is clearly expressed by the
appearance of the nonlinear, nonlocal and noncanonical isotopic element T{t, x, X,
%, ..) directly in the exponent of isoexponentiations (3.10). This is sufficient to see
that the Lie-isotopic space-time and internal symmetries are nonlinear, nonlocal
and noncanonical, as desired.

One should keep in mind the uniqueness of isoexponentiation (3.10) which
implies the uniqueness of related physical laws This property should be compared
with the Jack of uniqueness of the exponentiation in other theories, e.g. the so-
called q—deformations.

The isodual isoenvelopes EHLI) [62], [115} are characterized by: the isodual
basis and the isodual parameters ‘

Xdk=—5(k, V‘\:’d = Wpld = "'VIC’. (3“)
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Corollary 3.1.B: The “isodual isoexponentiation” is the isodual image of
isoexponentiation (4.3.6) on the isodual isofield FAw3 +%3)

dﬁ,d gdxd _ ].dv@,d ;(dxd
Note that the preservation of the sign in the exponent is only apparent, i.e.,

when projected in an isofield, because, when properly written in the isodual
isofield, one can use the expression

- id wd %0 ¢d
e 2d
[scdual isoexponentiations play an important role for the construction of the

isodual isosymmetries for antiparticles. The following property is trivial from the
analysis of Sect. 3.1

ad ! = (e XTWy (3.12)

d

TIXTW g (3.1

= -{e

Corollary 3.1.C: Envelopes are isoenvelopes are not unitarily equivalent.

It is easy to see that Theorem 3.1 holds for envelopes of Class III, as
originally formulated {52, thus unifying iscenvelopes & and their isoduals 4 and
permitting the unified representation of nonisomorphic Lie algebras of the same
dimension. To clarify this aspect, recall that a conventional envelope &(L) represents
only one algebra (up to local isomorphism),

L = [HU]". (3.14)

The study of a nonisomorphic Lie algebras then requires the use of a different
basis X'y, resulting in a different envelope E{L). Thus, in the conventional Lie
theory nonisomorphic Lie algebras of the same dimension are represented via
different bases and different envelopes.

This scenario is altered under isotopy because the isoenvelopes are now
characterized by two quantities, the basis Xy and the isounit 1. We therefore have
the novel possibility of using the same basis and changing instead the isounit. In
fact, one isoenvelope L) of Class III with a fixed N-dimensional basis X and an
arbitrary N—-dimensional isounit 1 represents a family of generally nonisomorphic
Lie algebras [ as the attached antisymmetric algebras

L ~ [HLI™. (3.15)
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In particular, it was proved in the original proposal [52] that, the isoalgebra L
constructed via the above rule is not in general isomorphic to the original algebra
L, L » L, unless the isotopic element is positive—definite.

Theorem 3.1 therefore offers the possibility of unifying of all simple Lie
algebra in Cartan’s classification of the same dimension which was presented as a
conjecture. This would imply in particular the reduction of compact and
noncompact structures of the same dimension to only one isotopic structure, and,
for each given structure, the reduction of linear and nonlinear, local and nonlocal,
canonical and noncanonical realizations to one primitive algebraic notion, the
isoenvelope &(L) (see Fig. 3.2 below for more details).

The above conjecture was illustrated in the original proposal [52] with an
example that is still valid today. Consider the conventional Lie algebra so(3) of the
rotational group SO(3) on the Euclidean space E(r,8,R) with unit [ = diag. (1, I, 1). The
adjoint representation of so3) is given by the familiar expressions

000 00 -l 010
Jh={ oot }, Jy=l 00 0}, J=|-100 ) (3.16)
0-10 10 0 000

The universal enveloping associative algebra E(so3)) is then characterized by the
unique infinite-dimensional basis from the conventional Poincaré-Birkhoff-Witt
theorem [15]

L oJge gixdjlisd, Jxdyxd (=j=k), .. (3.17)
and characterizes only one algebra as the attached antisymmetric algebra
[E(s0(3)) ] ~ s0(3). (3.18)

The isotopies &(so{3)) of the envelope Eso3)) of Class III are characterized by
the the lifting of the basic carrier space Elr,5,R) into the isoeuclidean space Ef,5,R)
with isometric, isotopic element and isounit

§=1"Ts, T= diag. (g“, g99, g33) , 1= diag. (g“—[, 822_1, g33-1) ' (3.19)

where the characteristic quantities gy are real-valued, non—null but otherwise
arbitrary functions of the local coordinates gy(t, I,. I, ¥, ...) which, as such, can be
either positive or negative. From Theorem 3.1, the isoenvelope E(=o(3)) is then
characterized by the original generators (3.16) although expressed now in terms of
the isoassociative product Ji%J; = JT=J; and isounit 1 with unique infinite-
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dimensional basis
T, K, JpXTxJjis), JpxTxJxTxg (j=jsk), . (3.20)

It is now easy to see that the algebra characterized by the attached
antisymmetric part of &so(3) is not unique, evidently because it depends on the
explicit values of the characteristic quantities gy. [t was shown in ref.s [52, [110]
that the isoenvelope Eso{3)) unifies: all possible compact and noncompact three—
dimensional Lie algebra of Cartan classification, the algebras 80(3) and so(2.1); all
their infinitely possible isotopes s0(3) and so{2.1); the compact and noncompact
isodual algebras so¥3) and so¥3); as well as all their infinitely possible isodual
isotopes s6%(3) and s6%(2.1), according to the classification

sol3) for T = diag. (1, 1, 1);
© sol2.1) for T = diag. (I, -1, 1%

: sol3) for sign. T=(+, +, +};
[E(s0(3)T : sol2.1) for sign. T ={+, -, +) (3.21)
s0%(3) for T = (-1, -1, -1}
s0%2.1) for T = diag. (-1, +1, 1)
§6%3) for sign. T = (-, -, %
s6%2.1) for sign. T = (-, +,-).

The unification of all simple Lie algebras of dimension 6 in Cartan’s classification
was also identified by Santilli in ref. [59] and it will be studied later on. The general
case of isotopic unification is studied by Tsagas [124]

The isoenvelopes are denoted ¢(L) and not &) to stress the preservation of
the original basis of L under isotopies, as well as to emphasize the existence of an
infinite family of isoenvelopes for each original Lie algebra L.

The isoenvelope outlines above was further developed by Santilli [115] into
the genoenvelope in which the product is ordered either to the right or to the left,
resulting in two different structures

E>: ‘I> =S_l, Xi>xj’i§j’ Xi>xj.>xk’i§j‘=:k’ Xi>Xj=XixSij'
kN =R, X <X is), X <X<X,i2j5k, Xj<Xj = xixf{xxg,

(3.22
interconnected by the conjugation £ = { <% Y, and defined over the respective
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fields to the right and to the left (Sect. 2.3). The important property is that, as the
reader can verify, each of the above two envelopes verifies the Poincaré-Birkhoff-
Witt-Santilli Theorem.

In particular, the above infinite bases permit the definition of two
exponentiations, one to the right and one to the left

i Xx
A>1Xw

=P+ (Xxw) J1+ (DXW) > (X0w) 7 2+ = (@ XDW >

f wxX

<@ A x (e WX,

o+ w0+ wxX) < GwxX)/ 2+ ..., =
(3.23)
with similar dual genotopies of the remaining aspects.
The genoenvelopes, in turn, can be further enlarged into the hyperenvelopes
(106 in which the generalized units and multiplications are not only ordered to the
right and to the left but are also multivalued,

®). > =% {x; &) {Xj}={xi}><{S}x{Xj}.iéj, ete.
<8 <1 = 1, X} (<} {XJ-]= {Xi]X{R}X[XJ—}, i=j, etc. (3.24)
where { ...} denotes a finite and ordered set as in Sect.s 2.1 and 2.2. [115].

UNIVERSAL ISOASSOCIATIVE ENVELOPING ALGEBRAS

o
N

SO(3)
{c} (d}

T E- ?’R
§

FIGURE 3.2 A reproduction of Fig. 4.3.1,p. 140, ref. [115]. The universal enveloping
associative algebra E(L) of a Lie algebra L [15] is the set (¢, T) where £ is an associative
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algebra and T is a hormomorphism of L into the antisymmetric algebra £ attached to & such
that: if & is another associative algebra and 7' is another homomorphism of L into & ~ a
unique isomorphism 7y between £ and & exists in such a way that the diagram (a) above is
commutative. The above definition evidently expresses the uniqueness of the Lie algebra L
(up to local isomorphisms) characterized by its universal envelopes EL). With reference to
diagram (b) above, the universal enveloping isoassociative algebra (L) of a Lie algebra L
was introduced [52] as the set {(£, 7), i, &, 7] where: (£, T) is a conventional envelope of L; i is
an isotopic mapping L — iL =L » L; ¥ is an associative algebra generally nonisomorphic to &
* is a homomorphism of L into £7; such that: if &’ is another associative algebra and T
another homomorphism of L into & 7, there exists a unique isomorphism ¥ of ¥ into ¥ with
T’ = ¥7, and two unique isotopies i = ¢ and 1¥ = ¥. A primary objective of the isotopic
definition is the achievernent of the lack of uniqueness of the Lie algebra characterized by
the isoenvelope or, equivalently, the characterization of a family of generally
nonisomorphic Lie algebras via the use of only one basis. The illustration of the above
notions for the case of the rotational algebra sol3) studied in the text is straighforward and
can be expressed via the diagrams (¢} and (d) below

e T - ?[
N S :
L
(a) (b)
where the isotopy is given by 1 = diag. (1, 1, 1) =1 = diag. (1, -1, 1). The above definition then

provides all infinitely possible isotopes and isodual isotopes.

We can the introduce the hyperexponentiations to the right and to the left

@) VW L 00wy s

t

<"V o (g RN (3.95)
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The interested reader can then work out the remaining aspects of the
hyperenvelopes.

Note that envelopes to the right and to the left are trivially equivalent and
the same happens for the isoenvelopes. On the contrary, genoenvelopes to the
right and to the left are not equivalent and the same happens for the
hyperenvelopes. This illustrates the emergence in the latter cases of a much
broader representation theory. In fact, conventional envelopes can be studied via
one-sided moduli (yielding the ordinary representations), the isoenvelopes require
one-sided moduli (yielding the isorepresentations), while genoenvelopes require
two-sided bimoduli (yielding the birepresentations), which are not reducible to a
one-sided form as in the preceding cases, and the hyperenvelopes require two-
sided hypermoduli (yielding the multivalued byrepresentations).

Recall the conjecture that all possible Lie algebras of Cartan’s classification
with the same dimension may be characterized by one single isoenvelope {or
genoenvelope) [52], [124]. We then have the conjecture that hyperenvelopes may
unify all possible simple Lie algebra of the Cartan classification of arbitrary
dimension into one single structure[115].

For additional studies we refer the reader to monographs [115], [121].

I1.3.3. Lie-Santilli isoalgebras and their isoduals.
We are now equipped to introduce the following

Definition 3.1 [52], [115]: A (finite-dimensional) isospace L over an isofield
Fa,+%) of isoreal numbers R(i,+%), isocomplex numbers C(C+%) or
isoquaternions Q§.+%) with isotopic element T and isounit 1 = Tl is called a
“ie-Santilli isoalgebra” over F when there is a composition [A"B] in [ called
"isocommutator”, which verifies the following “isolinear and isodifferential rules”
forall 3, befand A B Cel

[a%A + BXB Cl = a%[A;C] + B% [BC]
[A%B;¢]=A%[B C] + [A7CI%B. (3.26)

and the “Lie—Santilli isoaxioms’,
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[A7B]=-{B &],
[AJIB;CII +IBJICTA)) + [CTLATBI] = 0. (3.21)

Note that the use of isoreals, isocomplexes and isoquaternions preserves the
associative character of the underlying envelope. The use instead of isooctonions
0(0,+,%) (Sect. 2.3) would imply the loss of such an associative character and, for
this reason, isooctonions have been excluded as possible isofields in Definition 3.1 in
a way fully parallel to conventional lines in number theory. Nevertheless, one
should keep in mind that the Lohmus-Paal-Sorgsepp octonionization process [31]
resolves the above problematic aspects.

In the original proposal [52] Santilli proved the existence of consistent
isotopic generalization of the celebrated Lie’s First, Second and Third Theorems.
For brevity, we refer the interested reader to ref. [110}, pp. 163-184 or to the ref.
[121], Ch. II. We here quote the Isotopic second and third Theorems because useful
for the speedy construction of realizations of isoalgebras (see later on for more
other realizations).

Theorem 3.2 (Lie-Santilli Second Theorem [52], [110]): Let X = Xy} k=1, 2,
... N, be the {ordered set of) generators in adjoint representations of a Lie algebra L
with commutation riles

: - - ok
L: LX,X1= X% X - X xX= G % (3.28)

where Cijk are the “structure constants”. Then, one realization of the Lie-isotopic
images L. of L is characterized by the same generators X now computed in
isospaces over isofields with isocornmutation rules '
L: [XI:X]] = XI'*XJ - XJ;CXI = XixTij - ijTxXi =
= Xi x T(X, X, L% Xj - X] X T(X. X, X Xi = Cijk(t, X, X, g ® Xk =
Cijk(x' X, X Xk . {3.29)

where the Cijk are the "structure functions” in the isofield.

Theorem 3.3 (Lie-Santilli Third Theorem [loc. cit.]): The structure functions
Ci}-k of an isoalgebra L. satisfy the conditions

Ciik = - Ciik, (330)
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and the property (when commuting with the generators)
CP* Cd + PRy T PR CHA = 0. (3.31)

It is important to illustrate the above thecrems with an example. Consider
the generators of the suf2) Lie algebra in their adjoint representation, which are
given by the celebrated Pauli’s matrices and related commutation rules

(o) = (0) )
o = , Oy~ , Og3=
: I 0 2 i 0 3 o0 -l

log.0q] = op*xop — opy*0, = 21 €ymy Ok (3.32)

Theorem 3.2 states that the same generators oy , when written in isospaces over
isofields, can characterize one realization of the isoalgebra si2) via the lifting of
the structure constants into suitable functions.

This property is readily verified by introducing a Class Il isotopic element
assumed diagonal for simplicity, and then identifying the structure functions under
which the algebra is closed. By ignoring for notational simplicity the rewriting of
the basis in isospace, we have the following illustration of the Lie—Santilli Second
Theorem [115}

log om] = OpxTx0g — O XTxo, = 20X Txoy,

gn 0
T = 'gkk# O, A=detT=gllg221

0 g
'i=( gut 0 ) _ A'l( g22 0 )
0 ggp! 0 g
. 820/81p 0
Eijk = Eijk( 22/ i . (333)
0 g1/82

Note that the original structure “constants” C; K are elements of a field
Fla,+*) and, as such, are ordinary numbers. On the contrary, the structure
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“functions” C;;* are now elements of the isofield F(@&,+% and, as such, are
isonumbers and, thus, matrices. As such, they should be called more properly
structure jsofunctions, where the prefix “iso” stands precisely to represent their
matrix character.

Note finally that Theorem 3.2 provide only one method for the speedy
construction of an isotope L of a given Lie algebra L In general, the above methods
is not applicable because Lie and Lie-isotopic algebras are connected by a
nonunitary transform (Sect. 3.1), thus impltying different generators. In fact,
another way of constructing Class I isotopes L of a given Lie algebra L is by
generalizing the generators Xy and keeping instead the old structure constants. This
alternative approach is used in a number of applications because it ensures the
local isomorphism L ~ L ab initio, while lifting original algebra into the desired
nonlinear, nonlocal and noncanonical form.

It should be noted that Theorems 3.2 and 4.3.3 were conceived for specific
physical needs. Recall that the generators of a Lie algebra represent physical
quantities, such as linear momentum, angular momentum, energy, etc. As such,
these quantities cannot be changed under isotopies, thus explaining the preservation
of the original basis. An additional motivation is that, among all possible
realizations, the method of Theorem 3.2 results to be most effective in the
computation of the symmetries of nonlinear, nonlocal, noncanonical systems, as we
shall see. i

It is easy to prove the following:

Theorem 3.4 [110]: The isotopies L = L. of an N-dimensional Lie algebra L
preserve the original dimensionality.

In fact, the basis e , k = 1, 2, .., N of a vector space and, thus, of a Lie
algebra L is not changed under isotopy, except for renormalization factors denoted
€y. Let then the commutation rules of L be given by

le;ey] = Cfey (3.34)
The isocommutation rules of the isotopes L are
[éi :Vé] ] = éi x T x é] - E] x T xéi = Cijk(t, X X, R ék . (3.35)
One can see again in this way the necessity of lifting the structure "constants” into
structure “functions”, as correctly predicted by the Lie—isotopic Second Theorem.

We now review a few basic notions of Lie-isotopic algebras L which can be
derived via an easy isotopy of the corresponding conventional notions, as first
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studied by Kadeisvili [25]. The Lie-Santilli isoalgebras L are said to be:
a} isoreal (isocomplex} when F = R (f=C);
2) isoabelian when [A;Bl=0,V A,Be[;
3) A subset Ly, of Lis said to be an isosubalgebra of L when

(Lo Lol C© Ly (3.36)
4) An isoideal occurs when
[L7L,] € Ly (3.37)

5) The isocenter of a Lie-isotopic algebra is the maximal isoideal L, which
verifies the property

[L7L,] = o (3.38)

Definition 3.2 [25]: The “general isolinear and isocomplex Lie-Santilli algebras’,
denoted with GL(n,C), are the vector isospaces of all n*n complex matrices over
C@,+9), and are evidently closed under isocommutators. The “isocenter” of
GLInG} is then given by ¢X1, v & € C. The subset of all complex n*n matrices with
null trace is also closed under isocommutators, it is called the “special, isolinear,
isocomplex, Lie-isotopic algebra’, and denoted SUnfC). The subset of all
antisymmetric >n real matrices X, xt= =X, is also closed under isocommutators,
is called the “isoorthogonal algebra’, and is denoted ().

By proceeding along similar lines, one can classify all classical, non—
exceptional, Lie-Santilli isoalgebras into the isotopes of the conventional forms,
denoted with A, , B, , C,, and Dy, according to the general rules [25]

Class A, = Stn, &

ClassB, = O@ntl, €

Class &, = SPn, &} and

ClassD, = On, Q. (3.39)

plus the isoexceptional algebras here ignored for brevity.

Each one of the above iscalgebras then needs its own classification
(evidently absent in the conventicnal case), depending on whether T is positive-
definite {Class 1), negative definite (Class I1), indefinite (Class III), singular {IV} and
general (Class V), as well as whether of isocharacteristic zero or p, thus illustrating
the richness of the isotopic theory indicated above.
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The notions of homomorphism, autornorphism and isomorphism of two
Lie—isotopic algebras L and [ are the conventional ones. Similarly, all properties of
Lie algebras based on the addition, such as the direct and semidirect sums , carry
over to the isotopic context unchanged (because of the preservation of the
conventional additive unit 0).

By following Kadeisvili [25] we now introduce an isoderivation D of a Lie~
isotopic algebra L as an isolinear map of L into itself satisfying the property

DILATB]) = [DA)B] + [A]DB}] VA BeL. (3.40)

If two maps Dy and D, are isoderivations, then aXD,+ B%D, is also an isoderivation,
and the isocommutators of D, and B, is also an isoderivation. Thus, the set of all
isoderivations forms a Lie-isotopic algebra as in the conventional case.

The isolinear map ad{l) of L into itself defined by

Isoad AB) = [A]B], Vv A BelL, (3.41)

is called the isoadjoint map. It is an isoderivation, as one can prove via the Jacobi
identity (3.41). The set of all ad(A) is therefore an isolinear Lie-isotopic algebra,
called isoadjoint algebra and denoted [, . It also results to be an isoideal of the
algebra of all isdderivations as in the conventiconal case.

Consider the isoalgebras

(O=f, (W=(t0 200 2=t ere, (3.42)

which are also isoideals of L. L is then called isosolvable if, for some positive
integer n, 1 =g
Consider also the sequence

Lo=L ILp=[Ly)L]l, “Ly=[Ly L], etc. (3.43)

Then L is said to be isonilpotent if, for some positive integer n, t(n) = (. One can
then see that, as in the conventional case, an isonilpotent algebra is also isosolvable,
but the converse is not necessarily true.

Let the isotrace of a matrix be given by the element of the isofield

Isotr A = (TrA)1 eF, (3.44)

where TrA is the conventional trace. Then
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Isotr (A % B) = (Isotr A) % (Isotr B),  [sotr (BXA%B ™ 1)=1Isotr A . (3.45)

Thus, Isotr A preserves the axioms of Tr A, by therefore being a correct isotopy.
Then, the isoscalar product

(A7B) = Isotr[(Isoad &) % (Isoad B)] (3.45)

is called the isokilling form as first studied by Kadeisvili [25]. It is easy to see that (
A 7B is symmetric, bilinear, and verifies the property

(lsoad X ()72} + (¥, Iscad X(2) = 0, (3.46}

thus being a correct, axiom-preserving isotopy of the conventional Killing form.

Let ey , k = 1, 2, .., N, be the basis of L with one-to-one invertible map ¢ —
& into the basis & of L Generic elements in L can then be written in terms of
local coordinates X, v, z,

A AA

A=xiéi,B=y1éj, C=2Kgy = [ﬁfB]=xiyj[ei,ej] =

= xIx ¢ jk ey - (3.47)
Thus,

[1soad A (B)1% = [A7BF = Cijk x (3.48)

We now introduce the isocartan tensor éij of a Lie—isotopic algebra L via the
definition (A 7B ) =g;;x' y! yielding

Bt x, %, % ) = Gl TyP. (3.49)

Note that the isocartan tensor has the general dependence of the isometric
tensor of Sect. 2.4, thus confirming the mutual consistency among the various
branches of the isotopic theory. In particular, the isocartan tensor is generally
nonlinear, nonlocal and noncanonical in all variables x, X, X, ... .

The isocartan tensor also clarifies another important point of the preceding
analysis, that the isotopies naturally lead to an arbitrary dependence in the
velocities and accelerations, and their restriction to the nonlinear dependence on
the coordinates x is manifestly un—necessary.

The isotopies of the structure theory of Lie algebras then follow, including
the notion of simplicity, semisimplicity, etc. (see the monograph [24]} Here we limit
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ourselves to recall the following

Definition 3.3 [25]: A Lie—isotopic algebra L is called “compact” (“noncompact”)
when the isocartan form is positive— (negative-) definite.

Numerous additional, more refined definitions of compactness and
noncompactness are possible via the isotopies of the corresponding conventional
definitions [15], [126] but their study is left to interested mathematicians.

We now study a few implications of the isotopic lifting of Lie’s theory.

Lemma 3.1 [52], [110]: The isotopes of Class III L of a compact (noncompact)
Lie algebra L, are not necessarily compact (noncompact).

The identification of the remaining properties which are not preserved
under liftings of Class 1l is an instructive task for the reader. For instance, if the
original structure is irreducible, its isotopic image is not necessarily so even for
Class I, trivially, because the isounit itself can be reducible, thus yielding a
reducible isotopic structure.

Definition 3.4 [62):Let L be a Lie-isotopic algebra with generators Xy and
isounit 1 = T > 0. The “isodual Lie~isotopic algebras” L3 is the isoalgebra with
isodual generators X% = Ry conventional structure functions over the isodual
isofield Fd(?id,t%fj) with “isodual isocommutators”

(R %1 = - (%9789 == 1% 07X = 6 f &0 =- &K R (850

When the original algebra is a Lie algebra L the "isodual Lie algebra” is given by
the structure 19 over the isodual field Fd(ad,+,xd) with “isodual commutators”

[X],Xj]d=xl XdXJ—X]deI=—[Xl,KJ] =-C]JKXK (35[)

L and L9 are then anti~isomorphic. Note that the isoalgebras of Class 11
contain the isoalgebras L and the isoduals L3, The above remarks therefore show
that the Lie—isotopic theory can be naturally formulated for Class III, as implicitly
done above.

Note the necessity of the isotopies for the very construction of the isodual
of conventional Lie algebras. In fact, they require the nontrivial 1ift of the unit I -
19 = (-I), with consequential necessary generalization of the Lie product AB — BA
into the isotopic form AXTxB — BxTxA.
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The following property is mathematically simple, yet carries important
physical applications.

Theorem 3.6 [52], [115]: All infinitely possible, isotopes L of Class I of a (finite-
dimensional) Lie aIgebra L are locally isomorphic'to L, and all infinitely possible
isodual isotopes td of Class II are locally isomorphic to Ld

The simplest possible proof is via the redefinition of the basis 2 = X =
X1, under which isotopic algebras L acquire the same structure constants of Ly

[XI:K]] - [XI’I:X’J] = [X].X]n = Cijkx’k' (3.52)

We should however mdlcate that, even though the above reduction is possible, in
general we have C # G K1 thus rendering inapplicable the realization X' = X 1.
Also the reallzatlon Xk Xyl does not yield the desired nonlinear-nonlocal-
nonhamiltonian isosymmetries as we shall see in Sect. 4.6.

Despite the local isomorphism L ~ L, the lifting L = L is not mathematically
trivial because these two algebras are not unitarily equivalent. The physical
relevance of the isotopies originates precisely from their local isomorphism,
because it permits the construction of nonlinear, nonlocal and noncanonical
isotopes of the rotational SO(3), Galilean ((3.1), Lorentz 0(3.1), Poincare P(3.1), SO(3)
and other space-time and internal symmetries which are locally isomorphic to the
original algebras [116].

We now illustrate the results of this sections with the isotopies and
isodualities of the rotational algebra sol3) with generators in their adjoint form
(3.16)). For this purpose, the isounit and isotopic element of Class 111, can be realized
in the form

1 = diag. (£, 2t by 22bg 2, bt L. # 0,
5 = T = diag. {£1;2 £by2 + bsd), (3.53)
The Isotopic Second Theorem 3.2 then yields the isocommutation rules
D730 = xTx]y - JyxTxy; = Gij Kt r, 1,1, xTxY,, (354
where the J's are the conventional adjoint generators and the s are the structure functions.

It is easy to see that all possible isoalgebras (3.54) are given by [63}
1) sol3) for T = [ = diag. (I, 1, 1) with commutation rules
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[J| ,J2] = J3, [J2,J3] = le [J3,J[] = J2; (355))
2) sof2.1) for T = diag. (1, -1, 1) with rules
Dl :32] = 33, [32 ::]3] = —jl , [33 ::]l] = 32; (356)

3) An infinite family of isotopes s6{3) isomorphic to so{3) for
'T = diag. (b12, b22, b32) with rules

0,030 = 15205, 00050 = 0,23, 573, = b2, (357)

4) An infinite family of isotopes so{2.1) isomorphic to so{2.1)} for
T = diag. (b,2 -by2 bs? and rules

0, 7% =132 33, D73 =-123, 03731 = b23y; (3.58)
5} The isodual so0%3) of so(3) for T = diag. (-1, ~1, ~1) and rules
0,70 =Yg, Dpi0l = =3y, D303 = 0y (3.59)
6) The isodual so%(2.1) of sof2.1) for T = diag. (-1, 1, -1} and rules
003 = Vg, 0000 = 3, 0309 = 05 (3.60)

7) The infinite family of isotopes s0%3) ~ so%(3) for
T = diag. (-b;% -by2, ~bs?) and rules

[31 :32] == b32 33 f [:]2 :33] == blz J[ f [33 ::]1] = -b22 32 ' (361)

8) The infinite family of isotopes s6%2.1) ~ s0%2.1) for
T = diag. (-b;2 by? -bs?) and rules

123 = 52205, D00 = 0,23, D3i0] = —5,23p; (3562

The reader can readily verify the above indicated local isomorphisms via the
redefinition of the basis

j'l [b3 13[, 3'2 = b[—l b3-l:}2, 3’3 = bl_l b2_133, (363)

in which case the b—terms in the r.h.s. of the commutation rules disappear and one
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recovers conventional structure constants of so(3) and sof2.1) under isotopies (see
Ch. 11-6 for details).

It is instructive for the interested reader to verify with the above examples
various other notions introduced in this section, such as the isocartan’s tensor, the
isokilling form, etc.

The classical realization of the Lie—Santilli isoalgebra is that via vector
isofields Xj on the isocotangent bundie {Sect. 2.8), while the operator realization is
that of Sect. 2.6.

It is significant to recall that Santilli presented his isotopies of Lie’s Theorem
as particular cases of the brooder genotopic formulation of the same theorems
with a Lie—admissible structure, which are omitted here for brevity. We merely
limit ourselves to indicate that the isotopic product is lifted into the genotopic
product ‘

(A,B)=A<B =B>A = AxRXB - Bx8xA4A, (3.64)

which verify the axioms for the third definition of Lie~admissibility of Sect. 1.3.

In an informal seminar at the Infernational Congress of Mathematicians,
held in Zurich, Switzerland, on August 1994, Santilli pointed out that the product
(A, B) is Lie~admissible if computed in conventional spaces over conventional
fields, while the same product verifies the Lie axioms when each term of the
product is computed in its appropriate genospaces and genofields.

[n fact, the genoproduct exhibits in a natural way the ordering to the left
and that to the right with consequential origin from the corresponding
genoenvelopes (Sect. .3.2), and can be written (see next section for details)

(A,B)=<E[A<B—B>A|?. (3.65)

[n this case the product (A, B) verifies the Lie rather than the Lie-admissible
axioms because the genoenvelope <t and related genoproduct A<B, when referred
to its own genounits <1 is isomorphic to the conventional envelope § with product
AxB and unit I, and the same happens for the conjugate genoenvelope .

Equivalently, we can say that the genotopy AXB — A<B = AXR*B is an
isomorphism when AxB is referred to the unit [ and A<B is referred to the unit <1 =
R™), and the same happed for the conjugate genotopy AXB — A>B = AxSxB.

The Lie-Santilli hyperalgebras can be defined via the hyperproduct

{ABY={A) <}{B} - {B{>}{A) (3.66}
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where we have used the symbols of Sect. 2.2.

It is intriguing to note that, when each ordered multivalued product is
referred to its appropriate hyperenvelope and related hyperfield, the above
hyperproduct too satisfies the Lie axioms, thus permitting a further structural
broadening of the Lie-Santilli iso- and geno-theories.

I1.3.4 Lie-Santilli isogroups and their isoduals

The isotopies of a topological groups are still lacking at this writing. Only the
isotopies of Lie’s transformation groups are available and they can formulated via
the following

Definition 3.5 [52], [115]: A ‘right Lie-Santilli (fransformation) isogroup” &, or
“isogroup” for short, on an isospace S(x,F) over an isofield F(a,+%) (of isoreal
numbers R or isocomplex numbers C or isoquaternions Q) is a group which
maps each element X € S(xF) into a new element X’ € 83X F) via the
isotransformations

X = 0%x=0 xT"xx, T fixed, (3.67)

such that:

1) The map (0, %) — 0 %% of GX8(x,F) onto S&x,F) is differentiable;

2 1%0=0%1=0,v0eGand

3 O %(0,%%)=(0,%0,) %% VieSxMand 0y, G ek

A “left Lie-Santilli (transformation) isogroup” is defined accordingly .

Right or left isogroups are characterized by the following isogroup laws
first introduced in ref. [52]

0 =1, OW%0W) =0wW)%0w)=0w+w), O0WX0-w=1, weF,
(3.68)
A significant function of the isogroups is that of identifying the group
structure of the classical and operator time evolution of isotopic thecries,
according to the isotransforms

X =0 %%, 0 = (¥ gy = (H¥DX) & (3.69)

where we have used the isoexponentiation (3.10). which do indeed constitute Lie-
Santilli isogroups as per Definition 3.5.
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Note the insufficiency of the conventional Lie groups x’ = ety for the
characterization of structures (3.69) on numerous independent grounds, such as: Lie
(transformation} groups have a linear, local and canonical structure while
structures (3.69) are nonlinear, nonlocal and noncanonical; Lie groups are dependent
on the form [ = diag. (1, I, .., 1) of the basic unit, while structures (3.69) have
arbitrary integro—differential quantities 1 for basic unit; etc.

Most of the studies conducted on isotopies until now have been focused on
the achievement of a formulation of functional analysis, gecmetries and mechanics
compatible with the isotopic structure of groups (3.69).

The notions of connected or simply connected transformation groups (see,
e.g., ref.s [15)], [126]) carry over to the Lie-isotopic groups in their entirety. We
consider hereon the connected isotransformation groups {see Sect. 3.8 for the
discrete part).

An important property permitting the isocomposition of Lie—isotopic groups
is given by the following

Theorem 3.7 (Baker-Campbell-Hausdorff-Santilli Theorem [52], [110]): The
conventional group composition laws admit a consistent isotopic lifting, resulting
in the following “isotopic composition law”

2o % %
g 1¥ley p

Rg = {3+ % +[X 78172+ HR =KX 7K1/ 12+ . (3.70}

01*U2={e }=03=C

By following Kadeisvili [25], we now study the connection between Lie-
Santilli isogroups and isoalgechbras. Let L be a (finite-dimensional) Lie-isotopic
algebra with (ordered) basis Xy, k = 1, 2, .., N. For a sufficiently small neighborhood
N of the isoorigin of L, a generic element of G can be written

N 5 if W
0 = nXk:l’Z""NeE] KW (371)
which characterizes some open neighborhood M of the isounit 1 of G.
The map :
&g (09 = 0, X0p% 0,7, (3.72)

for a fixed U € G, characterizes an inner isoautomorphism of G onto itself. The
corresponding isoautomorphism of the algebra [ can be readily computed by
considering expression (4.5.7) in the neighborhood of the isounit 1, in which case we

have
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07 = 0p X0, %0, = 0, +WiW M %y % 1+ 02, (3.73)

By recalling the differentiability property of G, we also have the following
isotopy of the conventional expression in one dimension

d d
(/i) —U ={1/f) —e

gw W0 gy T w0

iwX ~ iwX
5t><eE |w=0 = X, (374

Thus,
to every inner isoautomorphism of G there corresponds an inner isoautomorphism
of L. which can be expressed in the form [25]

(L)IJ = Ckij Wk . (375)

The Lie—isotopic group Ga of all inner isoautomorphism of G is called the
isoadjoint group. It is possible to prove that the Lie-isotopic algebra of G, is the
isoadjoint algebra L of L.

We mentioned before that the direct sum of Lie-isotopic algebras is the
conventional operation because the addition is not lifted in our studies. The
corresponding operation for groups is the semidirect product which, as such,
demands care in its formulation.

Let G be a Lie-isotopic group and G, the group of all its inner
isoautomorphisms. Let G°, be a subgroup of Gy, and let A(@) be the image of g €
G under G°,. The semidirect isoproduct G % G%, of G and G°, is the Lie-isotopic
group of all ordered pairs (g, A) with group isomultiplication

(g K)%(g, A7) = (g%A(g),A%XK). (3.76)
with total isounit given by
Tot = (L13), (3.77)
and inverse
(g, A71=(A7%D, ah. (3.78)

The above notions play an important role in the isotopies of the inhomogeneous
space—time symmetries, such as Galilei’s and Poincaré’s symmetries (Sect. 3.9).
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Let &, and Gy be two Lie-isotopic groups with respective isounits 1) and 15 .
The direct isoproduct &G, of G| and G, is the Lie—isotopic group of all ordered
pairs g = (8}, 85}, 8, € G|, gy € Gy, with isomultiplication

gkg = (g.8)%(g,8%) = (g *g, ¥ gy), (3.79)

total isounit
Tiot = (1;.15), {3.80)

and inverse
gt = (g1 g, (381)

Definition 3.6 [62], [115]:: Let G be an N—dimensional isotransformation group
of Class I with infinitesimal generators Xk, k =1, 2, .. N. The “isodual image” od
of G is the N-dimensional isogroup with infinitesimal generators Xdk = Ry .
isodual isounit1% = -1 and isodual parameters W4 = —-W over the isodual isofield
£#9G9,+39) with “isodual isotransformation” in a suitable neighborhood of 1%

idgdxdyd iXTw, .
‘ W}%did=~[eE’ "1%8 (382
In particular, the above antiautomorphic conjugation can also be defined for

conventional Lie groups, yielding the “isodual Lie group” G3 which is defined over
the isodual field F9a8 +9) with generic “isodual transformations”

= = e XD

gd- = d (pdyxd 3d = {eEd

Iy = o XW)d (3.83)

In summary, an abstract Lie group admits the following four realizations
relevant for our analysis:

Lie groups G of conventional type;

Lie-Santilli isogroups G;

Isodual Lie groups 64, and

Isodual Lie-Santilli isogroups GS. (3.84)

Realization G (G%) is useful for the characterization of particles (antiparticles} in the
homogeneous and isotropic vacuum, while realization G (6% is useful for the
characterization of particles {antiparticles) within inhomogeneous and anisotropic
physical media.
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[t is hoped the reader can see from the above foundations that the entire
conventional Lie’s theory does indeed admit a consistent and nontrivial isotopic
covering.

A classical realization of the Lie-Santilli isogroups can be formulated on the
isotangent bundle T*E(r,5,R), 5 = T8, with local chart a = (¥, Ph=123456k%k
=1, 2, 3, and isounit

15 = diag. (0, T). (3.85)
The Hamilton—Santilli equations (2.53), i.e.,
oH
dat/at = = = @METHYV | (3.86)
oa¥

where wM% is the familiar canonical Lie tensor. Eq.s (2.58) can be isoexponentiated
‘and, after facterization of the isounit, can be written ‘

= n LGt 1% |23 a

alt) ={( 1*al0) =t
‘where we have ignored the factorization of the isounit in the isoexponent for
‘simplicity. The computation of the Lie-santilli isoalgebra is consequential and
_coincides at the abstract level with the conventional formulation in terms of vector
“fields.

An operator realization of the Lie-Santilli isogroups is given by isounitary
“transformations x’ = (Jxx on an isohilbert space JC [100] with

ool = of%g =1, (3.88)

with action on an observabie Q realization via an isohermitean operator H
according to Eq. (2.79) which can now be written in the full isotopic form thanks to
Theorem 3.1,

~ ~itxH

e P (e

Qv = (2 o D

) = gox (e UTH (380

The use of the bimodular isotransforms and the techniques
studied in this section, then characterize the corresponding Lie—Santilli isoalgebra
expressed via infinitesimal time evolution law (2.78), thus confirming the
interconnection and mutual compatibility between isoalgebras and isogroups in
exactly the same manner as that for the conventional theory.

The above classical and operator realizations are also interconnected in a



J. V. Kadeisvili -378- Santilli’s Isotopies

unique and unambiguous way by the isoquantization [100].

It is easy to see that isogroup (3.89) has a natural ordering to the right and
to the Jeft, thus requiring in a natural way two different isoenvelopes, one for the
action to the right and the other for the action to the left, interconnected with
Hermitean conjugation.

This is precisely the structure of the Lie-Santilli genogroups which can be

written

s HXL -itxH iHxBxt -itxRxH
& e )

Qlt) = { )>Q<(<e ) =( )xQo)x (e (3.89)
and which yields as infinitesimal form the Lie-admissible time evolution (2.84), with

product (3.3.65).
Finally, we can formulate the hypergroup according to the structure

~itHl (3.90)

) = (&) ) ) () (< (<)
where we have used the same notation as in preceding sections, which yields as

infinitesimal version the hyperproduct (3.66).
The latter properties are sufficient to indicate the possibility that the the
isotheory admits a step—by—step further generalization of genotopic and structural

type.

IL.3.5. Santilli’s fundamental theorem on isosymmetries.

One of the most important application of Lie’s theory is that for the construction of
the symmetries of linear, local-differential and canonical systems. Along the same
lines, one of the most important application of the Lie-Santilli isotheory is that for
the construction of symmetries, this time, of nonlinear, nonlocal and noncanonical
systems. The latter objective is embodied in the following important property
which we quote for brevity without proof:

Theorem 3.7 [62]. Let G be an N-dimensional Lie symmetry group of an mr—
dimensional metric or pseudo-metric space Stx,gF) over a field F

G: x=Alwl x, (x=y!tAlgA(xy)={x-yFgl{xy)

Alga =agal = g. (391)
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where t stands for transpose and 1 for Hermitean conjugation. Then the
infinitely possible isotopes G of G of Class 11l characterized by the same
generators and parameters of G and new isounits 1 (isotopic elements T),
automlatically leave invariant the iso-composition on the isospaces S(xgF), g = Tg,
T1=174

nnnnn

Gx=AWkx (x-yt*ATgA%(xy) =

A

= eyl ey), AlTgA = AgAl =181, (3.92)

The “direct universal” of the resulting isosymmetries for all infinitely
possible isotopies g = g = T(t, x, %, %, ...)g is then evident owing to the completely
unrestricted functional dependence of the isotopic element T. One should also note
the insufficiency of the so—called trivial isotopy

Xy, = Xy = XkT , (3.93)

for the achievement of the desired form-invariance. In fact, under the above
- mapping the isoexponentiation becomes

eEiX’k*wk - (e R TWiy e Wiy (394)

namely, we have the disappearance precisely of the isotopic element T in the
zexponent which provides the invariance of the isoseparation.

IL.3.6. Isotopies and isodualities of the rotational symmetry.

One of the most important results achieved by Santilli as 2 culmination of ail his
efforts [471-118] is a generalization of the current formulation of the space~time
symmetries of contemporary physics, the rotational O(3), Lorentz L{3.1) and
Poincare P(3.1) = L(3.1)xT(3.1) symmetries, with far reaching mathematical and
physical implications.

These generalized symmetries have been solely studied by Santilli up to this
writing. The isorotational symmetry was studied in papers [62], [63], the isolorentz
symmetry was studied in ref. [59] of 1983; their operator image in paper [60] of the
same year; a comprehensive classical study in memoir [67 a comprehensive
operator counterpart in memoir [72] of 1992 (with the first experimental verification
via the Bose-Einstein correlation); a comprehensive classical and operator study in
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paper [79] of 1993; specific studied on the spinorial case were conducted in paper
[95] with additional experimental verifications; a detailed classical treatment in
monograph [114] and the operator treatment in monograph [116].

In this section we shall study the isorotational symmetry, while the
remaining isosymmetries are studied in the subsequent two sections.

Consider the lifting of the perfect sphere in Euclidean space E(r,8%) with
local coordinates r = (x, v, z), and metric 8 = diag. (1, 1, I} over the reals ®,

r2=rlr = xx+yy+zz, (3.95)

into the most general possible ellipsoid of Class [11 on isospace EI!I(r84), 8 = Ts, T
= diag. (g1, 892, 233 ) 1= T

2 =81 = xgy+yemy+zessz,
of =8, gpp = gl 1 1, . # 0, (3.96)

The invariance of the original separation r2 is the conventional rotationa!
symmetry O3). The isotopic techniques permit the construction, in the needed
explicit and Tinite forg, of the isosymmetries O(3) of all infinitely possible
generalized invariants r“ via the following steps: (1) Identification of the basic
isotopic element T in the lifting 8 = & = T8 which, in this particular case, is given
by the new metric § itself, T =8, and identification of the fundamental unit of the
theory, T = T~L. (2) Consequential lifting of the basic field Rin,+x) = R/({H,+%); (3)
[dentification of the isospace in which the generalized metric 8 is defined, which is
given by the three-dimensional isoeuclidean spaces Blr3R), 8 =Ts,1 =T (4)
Construction of the O3} symmetry via the use of the original parameters of O(3)
(the Euler’s angles 6y, k = [, 2, 3), the original generators (the angular momentum
comnponents M = €yjj r' pj) in their fundamental (adjoint) representation, and the
new metric 8; and (5) Classification, interpretation and application of the results.

The explicit construction of O(3) is straightforward. According to the Lie-
Santilli theory, the connected component SO(3) of O(3) is given by [63]

S6(3): 1 = RE)%r, Ri6) =H§kzl,2,set Myby _

iMy. TO
= MTg=123¢ & Kix1, (3.97)
while the discrete component is given by the isoinversions [loc. cit] 1’ =+ = 1r
= — r, where T is the conventional inversion.
Under the assumed conditions on the isotopic element T, the convergence of
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isoexponentiations is ensured by the original convergence, thus permitting the
explicit construction of the isorotations, with example around the third axis [53]

xcos[63(g“g22)i’] + ygzz(g“322)_4"Sin[93(g“322)*].

-
|

"= -xg (g gp) Feinl0ggr gl + y coslogley gp)tl
z'=z. (398

(see [116] for general isorotations). One should note that the argument of the
trigonometric functions as derived via the above isoexponentiation coincides with
the isoangle of the isotrigonometry in E(r,8,R) (see paper [60]) thus confirming the
remarkable compatibility and interconnections of the various branches of the the
isotopic theory.

_ The computation of the isoalgebras 6(8) of O(3) is then straighforward. By
assuming the M’s to be in theor conventional regular representation, we have [63]

8@ [ M TMj1 = My x TxMj=MjxTxM; = Gii¥ %My, (3.99)

where Cijk = €jjk gkk'l 1. The above isoalgebra illustrates the explicit dependence
of: the structure functions. The proof of the isomorphism &(3) ~ o(3) was done [loc.
cit.] via a suitable reformulation of the basis under which the structure functions
recover the value & = €jjx 1 .The isocenter of sd(3) is characterized by the
isocasimir invariants

C(O) =1 , C(Z) = M2 = MM = Zk=l,2,3 ka T x Mk . (3100)

In hadronic mechanics [116] one of the possible realizations is the following.
The linear momentum operator has the isotopic form

&> = -9 13> = —iT ! vild>. (3.101)

where we have used the isodifferential calculus of Sect. 2.4. The fundamental
{socommutation rules are then given by

[elrpd = isty, (sl = Ipgpf = 0. (3.102)

Note that in their contravariant form the coordinates are given by ry = 8j r. In
this case the fundamental isocommutation rules are given by
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[ ri:Pj] = i81j =il Slj , | I‘irl'j] = [pifpj] =0, (3.103)
The operator isoalgebra 0(3) with generators My = €y; rl pj is then given by
A3 [MyTMy] = My x TxMj-MyxTxM = iR M, (104)

see [61] for details). The above results illustrates again the abstract identity of
quantum and hadronic mechanics.

Note the nonlinear-nonlocal-noncanonical character of isotransformations
(3.45) owing to the unrestricted functional dependence of the diagonal elements gyy.
Note also the extreme simplicity of the final results. In fact, the explicit symmetry
transformations of separation {3.43) are provided by just plotting the given gy
values into transformations (3.45) without any need of any additional computation.
Note finally that the above invariance includes as particular case the general
isosymmetry &(3) of {the space—component of) gravitation which, since it is locally
Euclidean, remains isomorphic to O(3).

As an example, the symmetry of the space-component of the Schwarzschild
line element is given by plotting the following values

gry= (1 - ML, ggg = 12, ga3 = résin?e, (3.105)

(see next section for the full (3+1}-dimensional case).

Despite this simplicity, the implications of the above results are nontrivial.
On physical grounds, the isounit 1 > 0 permits a direct representation of the
nonspherical shapes, as well as all their infinitely possible deformations. By
recalling that O(3) is a theory of rigid bodies, O(3) results to be a theory of
deformable bodies [63] with fundamentally novel physical applications in the
theory of elasticity, nuclear physics, particle physics, crystallography, and other
fields [115], [116]

On mathematical grounds, we have equally intriguing novel 1n31ghts To see
them, one must first understand the background isogeometry el 3R) which
unifies all possible conics in E(r,8,R} [115], as mentioned earlier. To be explicit in this
important point, the geometric differences between (oblate or prolate) ellipsoids and
{elliptic or hyperbolic) paraboloids have mathematical sense when projected in our
Euclidean space E(r,5,%). However all these surfaces are geometrically unified with
the perfect isosphere in E(r,3.R).

These geometric occurrences permits the unification of 0(3) and O(2.1), a
well as of all their infinitely possible isotopes, as reviewed in Sect.s 3.2 and 3.3.

Even greater differentiations between the Lie and Lie-Santilli theories occur
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in their representations when both considered in conventional spaces over
conventional fields (see Sect. 3.1) because of the change in the eigenvalue equations
due to the nonunitarity of the map indicated in Sect. 3.1, from the familiar form Hys
= E°, to the isotopic form Hxj = Exd = EJ, E° # E), thus implying generalized
weights, Cartan tensors and cther structures studied earlier.

The first differences emerge in the spectrum of eigenvalues of 6(2) and of2).
In fact, the ol2) algebra on a conventional Hilbert space solely admits the spectrum
M =0, |, 2, 3 (as a necessary condition of unitarity). For the covering &2) isoalgebra
on an isohilbert space with isotopic element T = Diag. (g] [, gao), the spectrum is
instead given by

M=g); 20072 M M = 0,1,2 .., g #0, (3.106)

and, as such, it can acquire continuous values in a way fully consistent with the
condition, this time, of isounitarity. For the general O(3) case see also the detailed
studied of ref.s [116].

[t should be noted that the isounit for the polar coordinate underlying
spectrum (3.106) is precisely the fact of M, 1g = g, 7/ 25557172, and this illustrates
the remark of Sect. 3.1 to the effect that the isorepresentations coincide with
conventional representation when referred to the proper isospace over the
appropriate isofield. In fact, the spectrum M = 0, [, 2, ... computed with respect to
the unit I and the isospectrum M =1gM computed with respect to the isounit Ty are
equivalent.

Despite the above mathematical equivalence, the physical implications
are far reaching because, as stressed in Sect. 3.1, the representation which has
physical meaning is that in our space, Eq. (3.106). This implies the possibility that
the eigenvalues of the angular momenturn which have been believed to admit only
discrete values M = 0, [, 2, .., can also admit continuous values M for particles in
interior conditions, e.g., a neutron inside a neutron star (see {[16] for all physical
aspects).

Similarly, the unitary irreducible representations of su(?) are characterize
the familiar eigenvalues

J3 =M, J2¢=J(J+l)d), M=J,J-1,.,-J, J=04%1L. . (3100

Three classes of irreducible isorepresentation of si(2} were identified in [76]
which, for the adjoint case, are given by the following generalizations of Pauli’s
matrices: (1) Regular isopauli matrices
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. 4 0 811 ). 0-ig
cl=a*( )02=A“3( ),

+tigo 0
N ~3 822 0
0’3=A 0 ,

— g1
T=diag.(g;;,292) A=detT =gj1gmn>0

[ai s 6'] ]E =j ZA% Eijl( a'k .
53%|b>=£4%[6> 62%|6>= 3al6>, (3.108)
(2) Irregular isopauli matrices

) 0 1 ) 0 -i |
a1 = =0, 02 = H 0 =02,

1 0

. g22 0
0'3' = (] 22 ) = AIIO'S,
~ Bl

[676y lp=2i0%3,

[69, 65 k=21A6], [63.6)"kk=2140y,

F3%|6>=xa]b>,

G2%|B>= Al A+2)|b>. (3.109)
(3) Standard isopauli matrices

) ( 0 x) ) ( O—il)
g = _ , O = _ y
2l 2 ix’l oo

0
i ( YL )
Oq = 1
3 0 -\

T = diag. (A, A1), A%0,  A=detT = |,

[ 6"1 , 6'"] ]E =i eijk a"k,
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53%|b>= %[>, &|b>=3]|6>. (3.110)

The primary differences in the above isorepresentations are the following.
For the case of the regular isorepresentations, the isotopic contributions can be
factorized with respect to the conventional Lie spectrum. For the irregular case this
is no longer possible. Finally, for the standard case we have conventional spectra of
eigenvalues under a generalized structure of the matrix representations, as
indicated by the appearance of a completely unrestricted, integro—differential
function A.

The regular and irregular representations of o(3) and si(2) are applied to the
angular momentum and spin of particles under extreme physical conditions, such
as an electron in the core of a collapsing star. The standard isorepresentations are
applied to conventional particles evidently because of the preservation of
conventional quantum numbers [116]. The appearance of the isotopic degrees of
freedom then permit novel physical applications, that is, applications beyond the
capacity of Lie’s theory even for the simpler case of preservation of conventional
spectra (see Section 3.G).

A spectrum—preserving map from the conventional representations Jg of a
Lie—algebra L with metric tensor g to the covering isorepresentations Jg of the Lie—
Santilli algebra . with isometric § = Tg and isounit T = T7! is important for
physical application. It is called the Klimyk rulel27]and it given by

~

Jg = Jg %P, =k1, keF, (3.111)
under which Lie algebras are turned into Lie-Santilli iscalgebras
%] - JixJ =C:.K = (1. %Y - 1.%73k LT = K]
JixJdj = I =GN = (%Y - 3Rk T = G-k T, G112
that is,
ji 3\‘3] - j] l*ji = Cijk :]1( , (3.113)

thus showing the preservation of the original structure constants.

However, by no means, the Klimyk rule can produce all Lie-Santilli
isoalgebras, because the latter are generally characterized by nonunitary
transforms of conventional algebras, with a general variation of the structure
constants.

Nevertheless, the Klimyk rule is sufficient for a number of physical
applications where the preservation of conventional quantum numbers is
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important, because it permits the identification of one specific and explicit form of
standard isorepresentations with “hidden” degrees of freedom represented by the
isotopic element T available for specific uses.

For instance, the standard isopauli matrices permit the reconstruction of the
exact isospin symmetry in nuclear physics under electromagnetic and weak
interactions [76], or the construction of the isoquark theory [99] with all
conventional quantum numbers, yet with an exact confinement (i.c., possessing an
identically null probability of tunnel effects for free isoquarks because of the
incoherence between the interior and exterior Hilbert spaces), and other novel
applications.

I1.3.7. Lorentz-Santilli isosymmetry and its isodual

We now study the isotopies [(3.1) of the Lorentz symmetry L(3.1), introduced by
Santilli in paper [59], then studied in detail in monograph [114] at the classical level,
in monograph [116] at the operator level, and today called Lorentz-Santilli
isosymmetry.

Constder the line element in Mmkowsk: space x2 =t nwx LY =123 4
with local coordinates x = { xI, x?, x5, x# ), x4 = cot and metric m = diag. (1 1, 1, —1).
Its simple invariance group, the six—dimensional Lorentz group L(3.1), is
characterized by the (ordered sets of} parameters given by the Euler’s angles and
speed parameter, w={wy }={8,v}, k = 1,2, ..., 6, and generators X ={ Xy )} = {
M,y ), in their known fundamental representation (see, e.g., 131], [32)).

Suppose now that the Minkowskian line element is lifted into the most
general possible nonlinear—integral form verifying the conditions of Class IiI

ok ),  detgzo,  g=gl, (114
Ly

which represent: all modifications of the Minkowski metric as encountered, eg., in
particle physics; conventional exterior gravitational line elements with g = g{x), such
as the full Schwarzschild line element; all its possible generalizations for the
interior problem; etc.

The explicit form of the simple, six-dimensional invariance of generalized
line element x“ was first constructed by Santilli [59] by following the space-time
version of Steps 1 to 5 of the preceding section. Step 1 is the identification of the
fundamental isotopic element T via the factorization of the Minkowski metric, g=
T which, under the assumed conditions, can always be-diagonalized into the form
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T = diag.(g)1.892.833.844)% T =TT, det T # 0. (3.119)

The fundamental isounit of the theory is then given by 1 = 71

Step 2 is the lifting of the conventional numbers into the isonumbers via the
isofields f(h,+*), i = n 1 (which are different than those of O(3) because of the
different dimension of the isounit).

Step 3 is the construction of the isospaces in which the isometric g is
properly defined, which are given by the isominkowski spaces M(x,g®). The reader
should keep in mind that, when g is a conventional Riemannian metric, isospaces
Mix,g ) are not the Riemannian spaces R(x,g,R) because the basic units of the two
spaces are different.

Step 4 is also straightforward. The Lorentz-Santilli isosymmetry L(3.1) is
characterized by the isotransformations

0(3.1) : x' = AMW&x = Kwx, (3.116) |
verifying the basic properties
ATgR = AgAl =18% or AtgK = Kgir = g,

__ DétA = [Det(ATH = 1. (3.117)
It is easy to see that [(3.1) preserves the original connectivity properties of L(3.1)
(see [61] for a detailed study). The connected component SO(3.1) of L(3.1) is
characterized by Dét A = +1 and has the structure floc. cit.)

iXk*Wk iXkTWk},I

(3.118)

Aw) = TTk=12..6 & = { Tlk=12..6¢€

where the parameters are the conventional ones, the generators Xy are also the
conventional opes in their fundamental representation and the isotopic element T is
given by Equations (3.23). The discrete part of (3.1} is characterized by Dét A = -1,
and it is given by the space—time isoinversions [loc. cit.]

fxx =mx =-r.x4)., F%x=7Tx=(r,-x%). (3119

Again, under the assumed conditions for T, the convergence of infinite series
(3.58) is ensured by the original convergence, thus permitting the explicit calculation
of the symmetry transformations in the needed explicit, finite form. Their space
components have been given in the preceding Section 3.E. The additional Lorentz—
Santilli isoboosts were explicitly computed for the first time in [59], yielding the
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expression for all possible isometrics g
clayl x2o2
x'3= xScosh[v(gaggey)?t] - x% g4a{gag 844 ) ~F sinh [v (g33 8440 ¥ 1=
- ?(XS _ g33—l/2g441/2ax4)‘
-4

= —x3g33(g33g44)_*sinh[v(g33g44)'l’] + x4cosh[v(gazaaq)?)

-~

1

F(x4 - gg3!/2 04471208, (3.120)
where

x4 = oty B=v/cy B= vkgkkvk/c0g44co,

cosh[v(gsggug)?l = 9 =(1 - B2, sinhlv(gazgy)?] = BY. (120

Again, one should note: (A) the unrestricted character of the functional
dependence of the isometric g; (B) the remarkable simplicity of the final results
whereby the explicit symmetry transformations are merely given by plotting the
values gy, in Equations {3.120)% and (C) the generally nonlinear-nonlocal-
noncanonical character of the isosymmetry.

The isocommutation rules when the generators My, are in their regular
representation can also be readily computed and are given by [loc. cit.]

88.0): [Myy, T Mgg ] = Epa Mgy — 10 Mpy ~ 8 M + Bup May -~ 3122)
with isocasimirs
=1, A =y My, T _ MXM - NN,
¥ = 4 VPO My, X Tx Myg = ~MXN,
M = {Mjp, Mgz M3y }, N = (Mg, My2, Mp3} (3.123)

The classification of all possible isotopes SO(3.1) was also done in the original
construction [59] via the realizations of the isotopic element
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T = diag. (£ b2 £ by? 2 bg?, 2b4%), by >0, (3.124)

where the b’s are the characteristic functions of the interior medium, resulting in:

(1) The conventional orthogonal symmetry SO(4) for T = diag. (I, L, 1, -1}

(9) The conventional Lorentz symmetry SO{3.1) for T = diag. (1, 1, I, 1);

(3) The conventional de Sitter symmetry SO{2.2) for T = diag. (1, 1, -1, 1}

(4) The isoduat S0%4) for T = diag. -1, -1, =1, 1);

) The isodual 043.1) for T = - diag. (1, 1, 1, 1}

} The isodual SO%2.2) for T = diag. (-1, -1, 1, ~1}

) The infinite family of isotopes SO{4) ~ SO(4) for T =
diag. (b;2, by2, bs?, ~by2 )

{8) The infinite family of isotopes SO(3.1) ~ 8O(3.1} for T =

diag. { b2, b2, g2 b2 )

(8} The infinite family of isotopes S0(2,2) = S0(2.2) for T =

diag. (-b;2, by?, bg? b2 );

(10)The infinite family of isoduals SO%4) ~ 50%4) for T =

diag. (-b2, -by? , ~bg?, by? )

(11) The infinite family of isoduats SO%3.1) ~ SO(3.1) for T

~ diag. ( b12 ) b22 , b32 ) b42 )

(12) The infinite family of isoduals S0%2.2) ~ 50%2.2) for T

diag. ( b12 . —b22, 'b32, —b42 )

:On the basis of the above results, Santilli submitted the conjecture that alf
simple:Lie algebra of the same dimension over a field of characteristic zero in
Cartan.:classification can be unified into one single abstract isotopic algebra of the
same dimension.

The above conjecture was proved by Santilli for the cases n = 3 and 6. A
theorem unifying all possible fields into the isoreals was proved by Kadeisvili et al
[26] in the expectation of such general unification. The conjecture has been recently
studied by Tsagas [124] for the non—exceptional case.

In the above presentation we have shown that the lifting of the Lorentz
symmetry can be naturally formulated for Class III. Nevertheless, whenever dealing
with physical applications, the isofopic element is restricted to have the positive— or
negative-definite structure T = *diag. (bj2, by b, by), thus restricting the
isotopies to SO(3.1) =~ SO(3.1) and s0%3.1) ~ so%a.1).

The operator realization of the Lorentz—Santilli isoalgebra is the following.
~ The linear four-momentum admits the isotopic realization [116]

IO

7

PG> = -1 fé> = -iT eyl d>. (3.125)

Also, for x, = Thvxl" (where 7 is the conventional Minkowski metric). one can show
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that 8;x,, = %y, The fundamental relativistic isocommutation rules are then given
bylloc. cit.]

by pyd = ify. Box) = Ipy el = 0, (3.126)
The isocomnmutation rules are then given by

6(3.1): [Muv:hdasl = i(fh;aMﬁu-maMBv_ ﬁl)B Mau"'ﬁlBMap) ' (3.[27)

thus confirming the isomorphism SO(3.1) ~ SO(3.1) for all positive—definite T.

Again, from the analysis of this section one can conclude that the isotopic
and conventional transforms and representations are equivalent when each one is
formulated in its own space over its own field. However, the physical space time
remains that of the conventional Minkowski space, and the isominkowskian
representation has thercfore a purely mathematical significance.

The implications of the Lorentz-Santilli isosymmetry then emerge in their
full light, because it implies a step-by—step isotopic lifting of the special relativity,
called Santilli’s isospecial refativity, outlined in the next section.

I1.3.8. Poincare’— Santilli isosymmetry and its isodual.

We now study the most important topic of this paper, the isotopies P(3.1) =
L(3.1%T{3.1) of the Poincaré symmetry P(3.1) = L(3.1)xT{3.1), where T{(3.1) represents
translations in space-time, which were first introduced by Santilli in memoir [67] of
1988, then worked out in details in papers [79], [95], presented classically in
monograph [114], quantum mechanically in monograph [[16], and today called the
Poincaré-Santilli isosymmetry.The isospinorial form #(3.1) = SL2.8)xT(3.1) was
worked out in paper [95] (see also monograph [116]). For brevity, we here limit
ourselves to a brief outline of the nonspinorial case.

A generic element of P(3.1} can be written A = (4, 3), A € 0(3.1), 2 € T(3.1)
with isoccomposition

)

%R = (£,3)%(Ka) = {(A%XK,3+ K%ka), (3.128)

The realization important for physical applications is that via conventional
generators in their adjoint representation for a system of n particles of non—null
mass Mgy
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X = {Xk} = { Ea(Xaupav_Xavpau]l
P={P, }=(25p} k=12.I0 (8.129)

and conventional parameters w = {wy) = {v, 6, al, where v represents the Lorentz
parameters, 0 represents the Euler’s angles, and a characterizes conventional space-
time translations.

The connected component of the isopoincare group is given by

pE: x = Axx, A= rﬁkeg’xk Wk = (T e KT )x1, (3130

where the isotopic element T and the Lorentz generators M, have the same
realization as for 0(3.1). The primary different with isosymmetries O{(3.1) is the
appearance of the isotranslations
iPna iPga |
£

The application of the isotheory of Sect.s 3.2, 3.3 and 3.4 then permits the
proof of the following:

Ixx = ¢ %x=x +3a, M8N%p =0 (3131

TE.D%x = {eE

Theorem 3.8 (General Poincare’-Santilli isogroup [95]): The “general
Poincaré-Santilli isogroup” of Class III as characterized by the isotheory is given
by the twentytwo—dimensional isotransforms

x’ = Axx Lorentz—-Santilli isotransf. , {3.132a)
X' =X + ayBs X %% ..}, isotransl., (3.132b)
x' = fikx = (-r,x*), space isoinv., (3.132¢)
x'=fiykx = (r,~x*),  time isoinv., (1.132d)
T -1 =021, | » = /1% isoselfdilation, (3.132¢)
1 =19 =-1 - ¥=-n, isoduality {

L>8=-%, w-w=-w 3.132f)
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where the B—functions are given by the expansions

Bll = bll

Isotransforms (3.132a)-3.132d) are a direct consequence of the preceding
analysis. The last two isotransforms (3.132¢) and (3.132f) originate from the
isoscalar character of the line element, that is, its structure (x - y}¥ =
numberxisounit € R{f,+X}. In fact, the same isotransforms cannot be defined for the
conventional line element (x — y¥ = number € R(n,+X).

To understand th dimensionality, we note that the Poincare-Santilli
isosymmetry of Class !1I is given by the iseselfdual direct product P(3.1)%09(3.1). By
recalling that isotopic and isodual structures are independent {because defined on
independent spaces over independent fields), this yields double the conventional
dimensionaly, that is, twenty-dimensions. One additional dimensionality has been
discovered by Santilli [101] via his isoscalar transforms (3.132e) which, when
combined with the independent isotopic image via isodualities (1.32f), yields
twentyy—-two dimensions.

Note that the isoduality and isodilation of the unit do not exist for the
conventional transform, and this explains the reason of the transition from a ten—
to an eleven—dimensional structure in each isospaces and its isodual.

The classical [114] and operator [116] realizations of the isopoincare theory
are similar, For brevity we review here the latter which is characterized by the
isocommutation rules

+ %[y, TP 1/ 11+ a®aPllby [Pg 1Pl 2+ ... (3.133)

(M "Mag ] = 1 (fpa May = Tlua May = g Mogs *+ g Mav )
[Myy Pq] = t{fug Py = fya P,
[P, 7Py] = 0, by aB=1234 (3.134)
with isocenter is characterized by the isocasimirs
c® -1, Vo p2opxtxp=-p g,
&= W2 = W VW, Wy = uapp IR PP (3.135)

The restricted isotransformations occur when the isotopic element T is constant.
An important application of the isotransiation is the characterization of the

so—called isoplane-waves on M{x,nH)
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ﬂx)=eElpA=,IelplA=¢IellJ’uE' r\V =,Iellpkuk AK p4u4 A4I.

{3.136)
which are solutions of the isotopic field equations, represents electromagnetic
waves propagating within inhomogeneous and anisotropic media such as out
atmosphere and offer quite intriguing predictions for experimentally verifiable
<novel> effects, that is, effects beyond the predictive or descriptive capacities of
the Poincaré symmetry.

As one can see, the verification of total conservation laws (for a system
assumed as isolated from the rest of the universe), is intrinsic in the very structure
of the isosymmetry. In fact, the generators are the conventional ones and, since
they are invariant under the action of the group they generate, they characterize
conventional total conservation laws. The simplicity of reading off the total
conservation laws from the generators of the isosymmetry should be compared
with the rather complex proof in conventional gravitational theories.

The isodual Poincaré-Santilli isosymmetry pYs.1) is characterized by the
isodual generators Xkd = -~ Xk, the isodual parameters wkd =— W , and the isodual
isotopic element md = ~T, resulting in the change of sign of isotransforms. This
implies a novel faw of universal invariant under isoduality which essentially state
that any system which is invariant under a given symmetry is automatically
invariant under its isodual. In turn, this law apparently permits novei advances in
the study of antiparticles [116].

The significance of the Lie-Santilli isotheory for gravitation is iliustrated by
the following important property of the isosymmetry P(3.1) which evidently follows
from of Theorem 3.5:

Theorem 3.9 (Universal Poincare’— Santilli Isosymmetry) [95]: The general
Poincaré-Santilli isotransforms of Theorem 3.6 with Class Il isounits 1(x, x, %, ..) =
T ! leave invariant all infinitely possible (3+1)-dimensional intervals with
isometrics (X, %, %, ..} = T{x, %, %, ...n, where n is the Minkowski metric,

(x-yP =[(x- y M il %, %, . Slx-yVI, (3.137)

It should be noted that we have restricted the formulation of the above
theorem to Class [II on precautionary grounds pending topological studies on
broader classes. In fact, a physically more significant formulation of Santilli's
isopoincaré symmetry is that of Class IV which include Class III plus the zero of
the isounits which represent gravitational singularities [116]. A yet broader
definition would be that of Class ¥ with unrestricted, thus, discontinuous isounits.

It is an instructive exercise for the interested reader to verify that the
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isodistance (3.75) is indeed left invariant by all isotransforms (3.70).

As it is well known, each invariance of a space-time separation has
profound physical implications. In fact, Theorem 3.7 essentially characterizes an
isoselfdual covering of the special relativity for interior conditions worked out by
Santilli at the classical [114] and operator [116] level, and known as Santillis
isospecial relativity.

The latter is a covering of the conventional relativity because: 1) it applies
for much broader systems (nonlocal-integral and variationally nonseifadjoint
systems); 2) it is constructed via structurally more general methods (the isotopic
ones), and 3) it contains the conventional relativity as a particular case for1 = L

Yet, the two relativities coincide at the abstract level by conception and
construction for Class I isotopies [114], [116]. This ultimate identity of the special
and isospecial relativities assures the axiomatic consistency of the new relativity
because criticisms on the latter ultimately result to be criticisms on Einstein’s
theories.

To outline some of the main result and implications of the isospecial
relativity, the Lorentz—Santilli isosymmetry has numerous applications for interior
conditions, such as [116]: direct representation of locally varying speeds of light

c=co 8442 = o/ n, (3.138)

where n is the ordinary index of refraction; exact—numerical representation of the
difference in cosmological redshift between quasars and their associated galaxies,
which is reduced to the decrease of the speed of light within the quasar’s huge
chromospheres; and other predictions in various fields.

The isoinversions permit the regaining of exact discrete symmetries when
conventionally broken, such as the regaining of the exact space-parity under weak
interactions by embedding the symmetry breaking terms in the isounit.

The invariance under isoduality (isoselfduality) assures the consistency of
the isodual representation of antimatter, evidently because the same invariant holds
identically Tor both matter and antimatter.

Moreover, the invariance under isotopic dilation (isoselfdilation) confirms
the direct representation of the locally varying character of the speed of light. For
instance, light propagating within homogeneous and isotropic water is represented
by the isotopic element T with elements Bup = n. The isoinvariant then reduces
identically to the conventional invariant

x-yP = [(x—y)“(rhu/nz)(x—yy]x(nzl) =

= (x-yPny, (x-y#x1 (3.139)
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This permits the resclution of the problematic aspects of the special relativity in
water, such as the apparent violation of the principle of causality, or the violation
of the relativistic sum of speeds (because the sum of two light speeds in water does
not yield the speed of light in water for the conventional Lorentz symmetry, but
the sum is correct for the Lorentz-Santilli isotransforms).

Rather intriguingly, the quantity n in isoinvariance (3.139%) is non-nuil but
otherwise arbitrary. Santilli’s isospecial relativity therefore predicts in a natural
way that the speed of light is a Jocal quantity which arbitrarily smaller or bigger
than the speed of light in vacuum. In fact, ¢ = coln is smaller than ¢, in ordinary
media such as water, but it is predicted to be bigger than ¢, in other conditions,
such as in the hyperdense media inside hadrons or inside stars. For all these aspects
and related references, see [116].

The implications of Theorem 3.9 for gravitation alone are far reaching, and
we can only indicate them here without treatment. To begin, the theorem includes
as particular cases the conventional Riemannian metric fix, %, %, ..) = g(x),. The
Poincaré-Santilli isosymmetry therefore provides the universal invariance of all
infinitely possible exterior gravitation in vacuum. More generally, Theorem 3.9
includes all infinitely possible signature—preserving modifications of the Minkowski
and Riemannian metrics for inferior problems.

The simplicity of this universal invariance should also be kept in mind and
compared with the known complexity of other approaches to nonlinear
symmet;igs. In fact, one merely plots the gy, elements in isotransforms (3.98),
(3.120) and+(3.132) without any need to compute anything, because the invariance of
gencral separation (3.75} is ensured by the theorem. For numerous examples, see 95},
(116l

Moreover, Theorem 3.9 implies the unification of the special and general
relativities. [116). After all, the unification is a necessary prerequisite for the very
achievement of the universal symmetry of gravitation. Santilli achieves the
unification by factorizing the Minkowski metric in any given exterior Riemannian
metric g(x),

g = Tydx) 7, (3.140)

and then by embedding the gravitational isotopic element Tgr(x) in the
gravitational isounit

Tgplx) = [Tl 7" (3.141)

The Poincaré-santilli isosymmetry with the above isounit then evidently unifies the
general and special relativity.
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Note the necessity of the representation of gravitation in the
isominkowskian space M(x,0,R), filx) = TgrlxIn, Tgy = [Tgr(x)}'l. for the achievement
of such a unification. In fact, no isosymmetry can be formulated in Riemannian
spaces, as clear from the review of this section. This implies the formulation of
gravity in an fsoflat space. In fact, the space M(xTR), being an isotopy of the
Minkowski space, preserves the geometric properties of the latter, including
flatness, yet possesses the same metric as the Riemannian space, thus permitting a
novel characterization of gravity.

Another implication of Theorem 3.9 is a novel quantization of gravity [116]
which is based on the embedding of gravitation in the unit of relativistic quantum
mechanics without any need of a Hamiltonian In fact, the quantization is achieved
via the lifting of the four—dimensional Minkowskian unit [ = diag. (1, 1, 1, 1) of
relativistic quantumn mechanics into Tgr(x). As the reader can verify, the operator
treatment of the Poincaré-santilli isosymmetry reviewed above is a quantum
version of gravity for 1(x, %, %, ..} = Tgr{x). The commutativity of the lincar
momentum, Eq.s (3.134b) confirms the novel achievement of a flat representation
of gravity in terms of the Riemannian metric which emerges as the structure
functions g(x) = §y of Eq.s (3.134).

The isotopic quantization gravity, called by Santilli quantum-iso—gravity,
has itself rather deep implications. Recall that quantum gravity is afflicted by
serious problems of consistency, such as the lack of invariance of the unit with
consequential inapplicability to actual measures, the general lack of preservation of
Hermiticity in time with consequential lack of observables, etc. [116]. Quantum-
iso-gravity avoids all these problems ab initio. In fact, the isotopies assure that
quantum-—iso—gravity is as axiomatically consistent as relativistic quantum
mechanics. After all, the two theories coincide at the abstract level because, from
the local Minkowskian character of gravity, Tg(x) is necessarily positive—definite.

Also, Theorem 8.9 predicts antigravity for elementary antiparticles in the
field of matter [86), [116]. [n essence, calculations show that the gravitationai force
for antimatter-antimatter systems in vacuum characterized by PY(3.1) is
attractive in the same way as for matter—matter systems in vacuuin
characterized by P(3.1). However, antimatter-matter systems in vacuum experience
a gravitational repulsion, because they are characterized by the projection of
P9(3.1) in the space of P{3.1} (see [116] for details. Note that these results are derived
by the simplest possible case of Theorem 3.7, that in vacuum for1=1and 1% =-L

Theorem 3.9 has even greater implications in cosmology, because it implies a
new conception of the universe called Santilli’s isocosmology [116), which is based
on the universal isosymmetry U = P(3.1xp44{3.1) and implies that, at the limit of
equa! amounts of matter and antimatter, all total characteristics of the universe are
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identically null, including null total energy, null total mass, null total time, etc.

This renders the act of creation of the universe more mathematically
treatable then the “big bang” and other models, because the total characteristics
remain null before and after the creation in Santilli's isocosmology, while for the
“big bang” and other models we have the creating of the immensity of the universe
literally from “nothing” with evident large discontinuity at creation.

Recall that the Poincaré symmetry provides the invariance only of
relativistic classical and quantum systems. The significance of the Poincaré-Santilli
isosymmetry is then illustrated by the fact that it provides the invariance of all
{well behaved) infinitely possible, linear or nonlinear, local or nonlocal, Hamiltonian
or nonhamiltonian, relativistic or gravitational, exterior or interior, classical or
operator, and local or cosmological systems.

11.3.9. Mathematical and physical applications.

Lie’s theory is known to be at the foundation of virtually all branches of
mathematics. The existence of intriguing and novel applications in mathematics
originating from the Lie-Santilli theory is then beyond scientific doubts.

With the understanding that mathematical studies are at their first infancy,
the isotopies have already identified new branches of mathematics besides
isoalgebras, isogroups and isorepresentations. We here mention: the new branch of
number theory dealing with isonumbers; the new branch of functional iscanalysis
dealing with isospecial isofunctions, isotransforms and isodistribution; the new
branch of topology dealing with the integro—differential topology; the new branch
of the theory of manifold dealing with isomanifolds and their intriguing properties;
and so on. It is hoped that interested mathematicians will contributed to these
novel mathematical advances which have been identified and developed until now
mainly by physicists, except a few exceptions.

Lie's theory in its traditional linear-local-canonical formulation is also
known to be at the foundation of all branches of contemporary physics. Profound
physical implications due to the covering, nonlinear—nonlocal-noncanonical Lie—
Santilli theory cannot therefore be dismissed in a credible way.

With the understanding that these latter applications too are at the beginning
and so much remains to be done, we have recalled after Theorem 3.7 some of the
implications of the isotheory. We refer the interested reader to monographs [118],
{118] for several additional applications and experimental verifications in nuclear
physics, particle physics, astrophysics, cosmology, superconductivity, theoretical
biology and other fields.
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PART III:

SANTILLI’S ISO-GRAND-UNIFICATION
AND ISO-COSMOLOGY

1997
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HL1, INTRODUCTION

While this second edition was about to be released for print in early 1997, Santilli
achieved in Ref.s [1,2,3] of Part [II the apparently first, axiomatically consistent
inclusion of gravitation in unified gauge theories, resulting in a novel Iso-Grand—
Unification.

This result is important for this volume because it constitute the climax of
the entire chain of studies of the preceding Parts I and II which can therefore be
justified only at the level of grand unification. The new Iso-Grand-Unification has
therefore implications for all the studies considered in this volume, all the way to a
deeper understanding of the isoselfdual cosmology of Ref. [116] of Part II.

In particular, the new grand unification provide the uitimate confirmation
for the need of the main lines of studies considered in the preceding parts, such as:
the isominkowskian representation of gravity without curvature; the isodual
representation of antimatter; the Lie-Santilli isotheory in general, and the Poincarée-
Santilli isosymmetry in particular; the synthesis of current relativities into one
single unified formulation; the isospecial relativity (Ref. [1] of Part I and [1i6] of
Part 11); and other advances. ®

In this Part I1T we shall outline these advances by following verbatim Ref.
[3] for the grand unification and Ref. [116] of Part 11, plus the updates of Ref.s I, 2]
of Part LI for cosmological profiles. An advanced knowledge on isotopies is needed
for a technical understanding of this Part IiL.

In essence, Santilli studies in Ref. [3] the structurat incompatibilities for an
axiomatically consistent inclusion of gravitation in the unified gauge theories of
electroweak interactions due to (for brevity, see [loc. cit.] for all historical
referencesk

1) Curvature. Electroweak theories are essentially structured on
Minkowskian axioms, while gravitational theories are currently formulated via
Riemannian axioms, a disparity which is magnified at the operator level because of
known technical difficulties of quantum gravity, e.g., to provide a PCT theorem
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comparable to that of electroweak interactions.

2) Antimatter. Electroweak theories are bona fide relativistic theories, thus
characterizing antimatter via negative-energy solutions, while gravitation
characterizes antimatter via positive-definite energy-momentum tensors.

3) Fundamental space-time symmetries. Electroweak interactions are
based on the axioms of the special relativity, thus verifying the fundamental
Poincaré symmetry, while such a basic symmetry is absent in contemporary
gravitation.

Without any clairmn of being unique, Ref. [3] presents, apparently for the first
time, a conceivable resolution of the above structural incompatibilities via the use
of the following new methods:

A) Isotopies. A baffling aspect in the inclusion of gravity in unified gauge
theories is their apparent geometric incompatibility despite their individual beauty
and experimental verifications.

The view here considered is that the above structural incompatibility is not
necessarily due to insufficiencies in Einstein’s field equations, but rather to
insufficiencies in their mathematical treatment.

Stated in plain language, Santilli claims that the achievement of axiomatic
compatibility between gravitation and electroweak interactions requires a basically
new mathematics, that is, basically new numbers, new spaces, new geometries, etc.

The mathematics used for the rescolution of the incompatibility due to
curvature is the isomathematics studied in the preceding Part [ at the elementary
level and Part II at a more advanced level. The main idea is that presented by
Santilli at VII Marcel Grossmann Meeting on General Relativity (see Ref. [105] of
Part I1), and consisting in:

I) the factorization of any given Riemannian metric g = g(x) into the the
Minkowski metric 1 = diag. (1, [, 1, 1) :

glx) = TxIxn, (1.1}

where T(x) is a 4%4 matrix which is positive—definite (from the locally Minkowskian
character of Riemann);
I1) the reconstruction of the Riemannian geometry with respect to the

isounit
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0 = [T, (1.2)

IT1) the lifting of all associative products among generic quantities A, B (ie.,
numbers, vector fields, operators, etc.) into the familiar isoassociative form

A%XB = AxTxB, (1.3)

under which 1 = 77! is the correct left and right new unit.

This yields Santilli’s isominkowskian gravity, namely, gravitation
represented with the isominkowskian geometry (see Ref.s [1,2] of Part III) which
admits all possible Riemannian metric and conventional field equations, but refers
them to the generalized unit T(x).

Note that curvature is contained in the isotopic term Tx), because 1 is flat.
Therefore, the reformulation of Riemannian metrics glx) = Tx)xn with respect to
the isounit 1 = T\, eliminates curvature in isospace, thus rendering gravitation
geometrically compatible fo the electroweak interactions.

Ref. {3] also points out that the [so-Grand-Unification can be derived from
the isoselfscatlar invariance studied in Sect. [1.3.8

I -» n2x[ =1, 1 = 7o =n?2xn=1, (1.4)

under which we have the novel invariance of the conventional Minkowskian line
element

TR = (o xx ) d m [ x (2, )% Ix (a2 1) =
= (o x @y, xxV)x1, (1.5}
with related invariance of the conventional Hilbert preduct
<o|*|p>x1 = <o|x(n2)x|g>x(nx1) = <d|xTx|y>x1 (16)

The isominkowskian formulation of gravity then follows when the parameter n is
enlarged to be function of the coordinates, as it occurs in the transition from
Abelian to non—Abelian gauge theories.

In short, the classical and operator isominkowskian representation of gravity
is rooted in novel, fundamental symmetries of the Minkowski and Hilbert spaces,
respectively.

The reader should be aware that the proposed resolution of incompatibility
1) works best where it is needed most, at the operator level. In fact, the operator
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formulation of the isominkowskian representation of gravity the that of Sect.
[1.2.13 when the isounit acquires the gravitational vaiue (1.2). As such, it verifies all
abstract axioms and physical laws of conventional relativistic quantum mechanics
(see Ref. [105), Part I1). The emerging new theory, called operator isogravity, merely
consists in embedding gravity in the unit of relativistic quantum mechanics.

The reader should be aware that the above results imply the abandonment
of curvature for the characterization of gravitation in favor of broader notions.

Rather than being surprising or a peculiarity of grand unifications, the need
to abandon curvature for isoflat treatments is dictated by a number of conceptual,
theoretical and experimental evidence.

On conceptual grounds, the assumption in the celebrated “bending of light”
that light follows the curved geodesic of the local gravitational field is in
contradiction with the experimental evidence that gravitation attracts all forms of
energy, as it is the case for a mass in free vertical fall. In fact, light does carry
energy, thus resulting in the prediction of bending within a gravitational field
which is double the experimental value, one due to the curvature and the other
due to ordinary gravitational attraction.

This leaves no other scientific alternative than that of either assuming an
actual curvature of space-time without gravitational attraction, or assuming
gravitational attraction without curvature of space-time. Santilli elected the
second alternative because the former is disproved by masses in free fall.

On theoretical grounds, the following fundamental theorem was proved by
Santilli in memoir (101] of Part II:

Theorem 3.1: The basic units of space and time are not invariant for all possible
geometries with non—null curvature.

Proof. Recall from Sect. 11.3.8 that the line element of the isominkowski
space is “directly universal”, that is, including as particular cases in the fixed
coordinates of the observer the metrics of all possible curved geometries, thus
including Riemannian geometry. Recall also from Sect. [1.3.8 that the universal
symmetry of said line element, the Poincaré-Santilli isosymmetry, is noncanonical
at the classical level and nonunitary at the operator level. Theorem 3.1 then
follows because noncanonical and nonunitary transforms are well known not to
preserve the basic units of space and time by their very definition. q.e.d.

The above theorem confirms the need for the isominkowskian
representation of gravitation without conventional curvature in a way completely
independent from the requirements of a grand unification. In fact, rules (L.1-1.3)
permit the formulation of gravity under the uncompromisable condition of
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possessing invariant units of space and time, although of generalized-character, as it
is the case for the special relativity. Note that this is the very fundamental element

of the covering isospecial relativity [11
On experimental grounds, the need to abandon curvature for the

characterization of gravity following the above advances is beyond scientific
doubts. Recall that the isopoincaré symmetry is the time evolution of geometries
with arbitrary curvature. It then follows that geometries with conventional non-
null curvatures cannot be applied to real measurements in a scientifically
consistent way, because one of the fundamental conditions for measurements is
precisely the invariance of the basic units.

As an example, it is not possible to conduct the measurement, say, of a
length with a stationary meter changing in time. The attempt at preserving old
knowledge via the assumption that the entire system changes in time is flawed, e.g.,
for measurements of length related to far away objects which, as such, are outside
the influence of the local gravitational field.

In summary, to our best knowledge, no other known theory can resolve the
incompatibility between electroweak interactions and gravitation due to curvature
as well as the shortcomings of Theorem 3.1, thus confirming the need for Santilli's
" isominkowskian representation of gravity without curvature.

B) Isodualities. Structural incompatibility 2} is only the symptom of deeper
problems in the contemporary treatment of antimatter outlined in the introduction
of Sect. I1.2.

The view submitted in Ref. [3] of Part III is that, as it is the case for
curvature, the resolution of the above general shortcomings requires another,

basically novel mathematics.
That proposed by Santilli is the isodual isomathematics of Part 11 based on

the isodual map of the isominkowskian representation of gravity

1>0 - 19 =-1-=-1<o0, (1.72)
gl = Txn = gl = Mxdnd = - glx, (1.70)
A%B= AxTxB — AX¥B = AxTxB = -A%B. '(1.7c)

The latter approach implies Santifli’s isodual isominkowskian representation
of gravity for antimatter (Ref.s [1,2] of Part [i[) which is based on a negative—
definite energy- momentum tensor, thus characterizing antiparticles with
negative—energy as it is the case for electroweak interactions.

The electroweak interactions themselves are also re-interpreted via the
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isodual theory in the following way. The conventional retarded solutions are solely
used for the representation of particles, while the advanced solution are solely
used for the representation of antiparticles. Since advanced solution are usually
discarded nowadays, the above isodual reformulation of electroweak interactions
recovers all conventional nurnerical results.

In conclusion, in Santilli's [so—Grand-Unification, antiparticles are treated in
both gravitation and electroweak interactions via the isodual theory, thus resolving
incompatibility 2).

The latter theory is also based on new symmetries, the isodual symmetry

[ - -n2xi=1, n - w=n2xn=1, (1.8)

under which we have the additional novel invariance of the conventional
Minkowskian line element

x2 = (xxm, xx)x[ = [x“X(—n"QXmV)Xx"IX(—nQXI) =
= (xhxifly, x ¥ ) x19, (19
with corresponding novel symmetry of the conventional Hilbert product
<o|x|e>x1 = <o|x(-n2)x|y>x{-n?x1)} =
= <|xPdx|g>x1d, (L.10}

This establishes the isodual theory of antimatter on solid foundations at
both classical and operator levels (see Part [i for details on isodual theories).

To our best knowledge, no other approach can resolve the incompatibility
due to antimatter between electroweak and gravitational interactions, thus
confirming Santilli’s isodual representation of antimatter.

C) Isotopies of the Poincare’ symmetry and their isoduals. The most
severe problems of compatibility between gravitation and electroweak interactions
for both matter and antimatter exist precisely were expected, in the fundamental
space-time symmetries, because of the disparity indicated earlier caused by the
validity of the Poincaré symmetry for electroweak interactions and its absence for
gravitation.

The latter problem is resoived by the Poincaré-Santilli isosymmetry P(3.1)
of Sect. I1.3.8 constructed for the gravitational isounit 1(x) = nxg~!, and its isodual
pd(3.1) for the isodual gravitational isounit 1969). In fact, the electroweak
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interactions of the Iso—Grand-Unification for matter are formulated on an
isominkowski space M(%7,R) with gravitational unit 1(x), thus requiring the
transition from the Poincaré to the Poincare-Santilli isosymmetry which then
becomes “universal”, that is, applicable to both. A similar structure emerges for

antimatter under isodualities.
In conclusion, to our best knowledge, Santilli’s isotopies and isodualities of

the Poincaré symmetry are the only known approach capable of resolving the
structural incompatibility between gravitation and electroweak interactions due to

the fundamental space-time symmetries.
When adding the isodual isopoincaré symmetry for antimatter, the total

space-time isosymmetry of the Iso-Grand-Unification is given by the isoselfdual
product :

Spor 505l = 2(3.1) x #93.1) =
= [stl2 & x N30 1x[spd2, cBH I TH3. ] = 8§, [s0sel, (L1D)

where #(3.1) characterizes the unified theory for matter and #%3.1) that for

antimatter. Everything follows in a unique and unambiguous way.
To understand the implications of this Part I11, the reader should know that

Santilli discovered the above universal isosymmetry in the study of the symmetry
of the conventional Dirac equation

('y“xpu+i><m)><|\l!>=0. (1.12a)
0 I 0

' =( %k ) oyl = ix( s ) (1.12b)
-0y 0 0 -l

\¥ > = Column (| >,]dy>1}. (1.120)

In essence, Santilli noted that the negative unit is present in the very
structure of Dirac’s gamma matrices. Dirac was forced to invent the “hole theory”
because negative-energy solution referred to positive units behave in an
unphysical way. Santilli argued that negative-energy solutions when referred to
negative units behave in a fully physical way. He therefore constructed his isodual

mathematics precisely around Dirac’s negative unit -5 = i 5
This permitted the following isodual reformulatlon of the conventional

equation (see ref.s 3] of Pat III and [106] of Part II)

(yrxp, +ixm)x|g>=0, (1.13a)
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0 o I[. O
,Yk = ( k ) . ry4 = 1x( S )' (l.le)
0% 0 o 1

S
| w>=Columnn {|&>,]d>%], (1.13c)

which is fully symmetric for particle and antiparticles and, does not require second
quantization for antiparticles, an occurrence which is expected for a theory of
antiparticles which begins at the classical Newtonian level (sce Part I0.

The following additional property discovered by Santilli lloc. cit.] has
fundamental relevance all the way to cosmology:

Lemma 1.1: The conventional Dirac gamma matrices are isoselfdual, ie.,
invariant under isoduality,

P 7'u=_yTu-.—,-,u_ (1.14)

The above property established that the belief held throughout this century
that the Poincaré symmetry Is the global symmetry of Dirac’s equation is
inconsistent. In fact, the Poincaré symmetry is not isoselfdual, P(3.1) # PH3.1). As
such, it cannot possibly be the symmetry of isoselfdual laws such as Eq.s {1.2) or
(1.13).

In this way Santilli constructed the following true isoselfdual symmetry of
the conventional Dirac equations,

S8 = #(3.1)x #93.1) = 59, Dirac, (1.15)

which is twenty-dimensional because isodual spaces and parameters are
independent from conventional; structures.

In particular, Santilli’s studies disprove the additional belief held
throughout this century that the spin in Diracs equation is characterized by a 4x4-
dimensional representation. In fact, the correct spin symmetry of Dirac’xs
equation is SU(*SUY(2). As a result, the spin for particles does indeed remain
characterized by the two—dimensional Pauli's matrices oy and that of antiparticles
by their isodual Pauli matrices odk = —0y.

Next, Santilli discovered in memoir [101] of Part II the additional
isoselfscalar invariance of Dirac’s equation, i.e., its invariance under transforms
"(1.4)-(1.6) which, when combined with their isoduals (1.8}-(1.10}, brings the total
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dimensionality of the symmetry of Dirac’s equation to twenty—two independent
parameters. ’

The final step was the lifting of symmetry (.15} to isounits with nontrivial
functional dependence which lead the fundamentat isoselfdual isosymmetry (1.11).

The reader is suggested to meditate a moment on the implications of the
above discoveries. First, they imply that contemporary mathematics as currently
formulated is not applicable to antimatter.

Second, the above results establish that the conception throughout this
century of gravitation as being represented by curvatures is fundamentally flawed
and should be replaced with broader notions.

Third, the same results establish that the classical and quantum physics of
this century has been constructed with incomplete space-time symmetries,
evidently hecause they are not isoselfdual.

Finally, the reader should not be surprised that the new invariances (1.4-(1.6)
and (1.8)<(1.10) have remained undetected throughout this century. In fact, their
identification required the prior discovery of new numbers, first the isonumbers
with arbitrary positive units for invariances (1.4)-(1.6), and then the additionally
new isodual isonumbers with arbitrary negative units for invariances (1.8)~{1.10).

1112, ISO-GRAND-UNIFICATION
In a communication to the VIII Marcel Grossmann meeting on General Relativity
scheduled*to be held in Jerusalem next June, 1997, Santilli (Ref. [3] of Part IIE)
presented a basically novel [so—Grand—Unification with the axiomaticaily consistent
inclusion of gravity.

in particular, Ref. [3k presents the formal derivation of the new unification;
provides very simple means for its explicit construction for each given
gravitational metric; proves the invariance of the theory under nonunitary
transforms; identifies the new grand unification as a realization of the theory of
“hidden variables”; and indicates that it is along the historical teaching by Einstein,
Podolsky and Rosen on the lack of completion of quantum mechanics.

The isotopies of gauge theories were first studied in the 1980's by Gasperini
(4a] followed by Nishioka [4b], Karajannis and Jannussis {4c| and others, and ignored
thereafter. These studies were defined on conventional spaces over conventional
fields and via the conventional differential calculus. As such, they resulted not to
be invariant following the recent studies of memoirs [100,101] of Part I1.

In Ref. [3] Santilli introduced, apparently for the first time, the isotopies of
gauge theories, or isogauge theories for short, formulated in an invariant way,
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that is, on isospaces over isofields and characterized by the isodifferential calculus
(see Sect. 11.2.7). The isodual isogauge theories were apparently introduced in Ref.
(3] for the first time.

The essential mathernatical methods needed for an axiornatically consistent
and invariant formulation of the isogauge theories for matter are the following
ones, heron assumed as known from Part I1, all having the same basic isounit 1(x, ..

1) Isofields of isoreal numbers R({,+%) or isocomplex numbers C(¢,+%) and
related novel isonumber theory.

2) Isominkowski spaces M(xc,7,R) equipped with Kadeisvili isocontinuity
and Tsagas—Sourlas isotopology of Sect. 11.2.5 (see also the recent studies by
Aslander and Keles, Ref. [5al of Part 11I). A more technical formulation of the
isogauge theory can be done via the isobundle formalism on isogeometries recently
reached by Vacaru (Ref. [5b} of Part I1]) which is under study at this writing.

3) Isodifferential calculus of Sect. [1.2.7
4) Isofunctional isoanalysis of Sect. [[.2.6

5) Isominkowskian geometry which is a symbiotic unification of the
Minkowskian and Riemannian geometries available in ifs latest formulation in Ref.
(2] of Part III.

6) Hadronic mechanics outlined in Sect. [1.2.13 (see memoir [101] of Part 11
for its latest presentation).

7) The Lie-Santilli isotheory studied in details in Part 1.

Once the reader has acquires a technical knowledge of the above methods,
the formulation of the isogauge theories is trivial, and merely consists in putting a
“hat” on all symbols and all operation of conventional theories.

The isogauge theory for matter is characterized by a non—-Abelian isogauge
symmetry G which is the isotopic image of the conventional symmetry G, i.e., the
symmetry G reconstructed for general isounits 1(x, ...). Since the latter are positive-
definite, G =~ G by conception and construction.

The isosymmetry G is characterized by: universal enveloping isoassociative
algebras &(g) where the preservation of the symbol g of conventional algebras
indicates the preservation of the original generators and only their rewriting in
isospace over isofields; Lie-Santilli algebra §; and the Lie-Santilli isogroup G
realized in terms of isounitary operators on a isohilbert space 3¢ over the isofield &
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the isorepresentation theory, etc., all possessing the same isounit 1(x, ...).
The isostates then transform according to the isounitary law

- x Xy X000 L . oon —ixXy xTx6(x .
¥R = 0xg = (8 Mg - (T 40 @)
where & is the isoexponentiation and X is in the isominkowski space. The
nontriviality of the isotheory is then shown in this first step by the appearance of a
nonlinear operator T in the exponent of the isogroup structure.

The isocovariant isoderivative is then defined by

B, d = (g, -1xgx Au %) %% ) % §(x), (2.2)

where one should recall thati = iX], § = gX1, g is the usual electroweak structure
constant. “1><§9<Ru xRy = 1><g><A'l xX ¥l and the A’s are the potentials. It is easy to see
that the above isoderivatives verify the Lie—Santilli axioms in isospace.

It is then easy to prove the isocovariance law

(B §) =0%D, &. (2.3)
under the usual iedef inition, although in isotopic form
L &y = -glx(p,0)x07! (2.4)
K 2 ! :

The Yang=Milis—Santilli isofields are then defined by
Py = 1%EX10, 70, 1), ©25)

where [ A, Bl = AXB — BXA = AxTxB ~ BxTxA is the Lie-Santilli isoproduct, and they
verify properties identical to the conventional ones, only written in isospace.

Finally, we mention that the isogauge theory is derivable from the isoaction
in isospace

A= [ax(-Fy, %BW), (26)

and then the use of the Lagrange-Santilli isoequations (Sect. 11.2.10).

Santilli [loc. cit.] insists that the above isogauge theory is not a new theory
but only a new realization of the abstract axioms of the conventional non—-Abelian
gauge theories. In fact, the isogauge theory coincides at the abstract level with the
conventional theory to such an extent that they can be presented with the same
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conventional symbols, those without “hats”, and then subject them to different
realizations, the conventional realization for the conventicnal theory and the
isotopic realization for the covering theory.

The isodual isogauge theories for antimatter are the anti-isomorphic
images of the preceding theories under the isoduality of the totality of the
preceding quantities and of their operation.

The total gauge symmetry is therefore ¢ %G9 and it is isoselfdual.

Santilli Iso-Grand-Unification is given by the preceding isogauge theory
and its isodual in which the isounit acquires the gravitational value (1.2). The total
isosymmetry is therefore the isoselfdual structure

SOV = ($BI%G) % (#Yansdgd) = 80, GV, (@7)

It is evident that the above theory resclves the axiomatic incompatibilities between
electroweak and gravitational interactions identified in Sect. IIL.1.

Santilli then provided in Ref. [3] a very simple method for the explicit
construction of the Iso-Grand—Unification for any given gravitational theory. It is
given by the selection of a transformation U which is nonunitary on conventional
Hilbert spaces, uxuT = {, which is assumed to characterize the isounit according to
the rules

1=uxul = T = nx(g T, (2.8)
vielding specific models, such as that for the Schwarzschild metric
1 = UxU' = Diag. {{ 1 - 2M/r), (1 - 2M/1), (1 - 2xM/r), (1 - 2xM/r) L) . (29)

The entire isogauge theory then results from the systematic application of
the above nonunitary transform, to the totality of quantities and operations of the
conventional unified theories.

This yields: the isounit I = [’ = U><I><UJr = U><UT =T; the isonumbers n =+ n ‘=
UxnxUT = nd = #; the correct isoproduct with the correct Hermiticity and value of
the isotopic element, AXB — Ux(AXBIXUT = AxTxB = A%B, T = (Uxul L = 171 = Ty =
yxaxyl B = U"B"UT; the Lie-Santilli isoalgebras and isogroups; the Yang-Mills-
Santilli isofields; and all other aspects of the isogauge theory, now in a specific
realization.

Note that the lack of implementation of the above nonunitary lifting to only
one of the conventional; profiles, e.g., numbers or differential calculus, implies
numerous inconsistencies.

Santilli then showed how the resulting Iso—Grand-Unification is indeed
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invariant. [n fact, any additional nonunitary transform wxwl=1#1, can always be
factorized into the form W = WxT1/2 under which it becomes an isounitary
transform, WxW = Wxwl = WiW =1 yielding the invariance of the Iso-Grand-
Unification: T =T = WAXWT =1, A%8 —~ OX(ARRWT = A%8; etc.

Note that the invariance implies, not only the preservation of the isotopic
structure, but actually the preservation of the numerical value of the isounit and
isotopic element. Note also that the selection of a nonunitary transform wxwl =1
=T implies the selection of a different gravitational theory.

The above Iso—Grand-Unification results to be a concrete and specific
realization of the theory of “hidden variables” (see, e.g., Ref. [6al of Part III). In fact,
gravitation is "hidden” in the conventional theory, not only because the
conventional and isotopic unified theories coincide at the abstract level, but also
because the gravitational isounit preserves all axiomatic properties of the
conventional unit

m=1%1%...%1 =1, (2.10a)
T=1, 1/1=1,etc. (2.10b)
di/dt =1%RH - A%1 = A-A = 7, (2.10c)

while the isoeigenvalues and isoexpectation values of the isounit recover the
conventional unit,
l-:-E\

1%|§> = TI1xTx|§> = 1x|FL>, (2.11a)
<l> = <F|xTxIxTx|F>/<P|xTx|F> = 1. (2.11b)

It then follows that the proposed IGU constitutes an explicit and concrete
realization of the theory of “hidden variables” » = T{x, ... ),

AX|§> = AxAx . Jx[d> = B X|§x = By x|§>, (2.12)

when the theory is correctly reconstructed with respect to the new unit 1 = X for
axiomatic consistency. In particular, von Neumanns Theorem [6b] and Bell's
inequalities [6¢] do not apply to the above isotopic realization of “hidden variables”,
evidently because of the nonunitary character of the theory (see Ref. [116] of Part
111} for details).

Most intriguingly, Santilli [loc. cit.] shows that his [so-Grand—Unification is a
realization of the teaching by Einstein, Podolsky and Rosen on the “lack of
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completion” of quantum mechanics, only applied to the isotopic completion of
gauge theories.

We should indicate that the above iso—Grand-Unification is far from having
sole mathematical meaning because, in addition to the first, axiomatically
consistent inclusion of gravitation in unified gauge theories of electroweak
interactions, the isotheory has numerous applications and experimental
verifications on existing data and predicts fundamental, basically novel events.

First, the Iso—Grand-Unification is the culmination of all studies by Santilli.
As such, all existing applications and experimental verifications in particle physics,
nuclear physics, astrophysics and other theories are applications and verifications
of the Iso-Grand-Unification (for their outline see memoir [101] of Part [I).

moreover, the [so-Grand-Unification has the following novel predictions:

1) Prediction that antimatter emits a new photon, called isodual photfon
(see Ref. [106] of Part II), which coincides with conventional photon for all
interactions except gravitation and which, if confirmed, may allow one day to
ascertain whether far away galaxies and quasars are made up of matter or of
antimatter.

2} Prediction that all stable isodual particles, that is, the iscdual photon, the
isodual electron (positron) and the isoduai proton (antiproton), experience
antigravity in the field of matter (defined as the reversal of the sign of the
curvature tensor (see also Ref. [106] of Part [I). As indicated in Sect. I1.2.1, this
prediction avoids the usual arguments against antigravity because, e.g., bound states
of stable particles and their antiparticles such as the positronium, are predicted to
experience attraction in both fields of matter and antimatter, and for other reasons.

3) Prediction that part of the cosmological redshift is of isotopic type, that is,
due to the decrease of the speed of electromagnetic waves within astrophysical
chromospheres {see Ref. [116] of Part II). In particular, Santilli's isominkowskian
geometry explains the visible different in the tendency toward the red visible by
the naked eve at sunset and sunrise.

4) Prediction that the neutron can be stimulated to decay via subnuclear
mechanisms {see Ref. [101], of Part I1), with vast implications in nuclear and other
technologies;

5) Prediction of a new, clean, subnuclear energy called “hadronic energy”
based on stimulated beta decays [loc. cit.} and other predictions.

Note that the isotopies leave unrestricted the functional dependence of the
isounit 1{x, .. ), provided that it is positive-definite. Ref. [3] uses only the x—
dependence to represent exterior gravitational problems in vacuum. The isogauge
theory also admits an arbitrary nonlinearity in the velocities and other variables
which can be used for the study of interior gravitational problems. Also, the
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isogauge theory naturally admits a dependence of the isounit on the
wavefunctions and their derivatives while preserving isolinearity in isospace, as
studied in Sect. 11.2.13 (thus preserving the superposition principle, as needed for a
consistent representation of composite systems). Moreover, the isotheory is a
particular case of the broader geno- and hyper-theories (see the concluding
comments). Thus, the Iso-Grand-Unification was presented in Ref. [3] as a
particular case of yet broader formulations.

A scientific appraisal of the new [so-Grand-Unification requires the
knowledge that the isotopies not only preserve the original axioms, but also the
original numerical values (see Ref. [116] of Part II). As a result, the Iso-Grand-
Unification outlined above, not only is impeccable on axiomatic grounds, but also is
unguestionable on experimental grounds hecause it reproduces in isospace all
experimental results of both electroweak and gravitational interactions.

In closing, the most significant possibility suggested by Santilli [3] is that
gravitation may have always been present in unified gauge theories. It did creep in
un-noticed because embedded where nobody looked for, in the unit of gauge
theories.

IIL3. ISOCOSMOLOGY

Santillis isocosnf}:ology is the new cosmology characterized by the total symmetry
(see ref. [116], Sect. 9.6 of Part IT and the updates in Refs. [1,2,3] of Part I11)

SporUiverse = (M3 %G )x[P43.)%d 6¢) = gdp Universe  (3))

where #(3.1} and #%B3.1) are the space-time symmetries for matter and antimatter,
respectively, while G and 69 characterize direct products of internal symmetries
and their isoduals, including gauge, unitary and other symmetries.

It is evident that the above cosmology is based on the use of the
isominkowskian (and not the isoriemannian) geometry [2] and the applicable
physical laws are those of the isospecial {and not isogeneral) relativity. In this way,
Santilli's isopoincare symmetry, isominkowskian geometry and isospecial relativity
become “universal”, that is, applicable everywhere throughout the universe.

It should be indicated from the cutset that Santillis cosmology is the first
and only one characterized by a symmetry. This is evidently due to the fact that
gravitation does not possess a symmetry in other treatments, thus preventing the
study of a cosmology based on a universal symmetry.

The assumption of basic symmetry (3.1) characterizes the new cosmology
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uniquely and unambiguously. Some of the basic properties of the new cosmology
are the following:

1) Lack of curvature, as a necessary condition to define a total symmetry
for the universe. In fact, the admission of curvature prohibits even the
formulation of a symmetry for gravitation, as studied in details in Part [I. The
universe is predicted to be everywhere isoflat. This resolves old controversies, such
as the prediction of double bending of light, one for curvature and one for
attraction discussed in Sect. 1.1,

2) Isoselfduality, ie., invariance under the map of all quantities and their
operations into their anti-Hermitean images. This is mathematically a fundamental
property of Santilli's new cosmology with far reaching implications, some of which
are indicated below.,

3) Equal amounts of matter and antimatter in the universe, evidently as
a consequence of the isoselfduality. Needless to say, this is a limit conditions which
does not preclude other possibilities, such as total amount of antimatter being
smaller than that of matter, in which case however isoselfduality must be broken.

4) Null total characteristic of the universe, i.c., null total energy, null total
linear and angular momenta, nuil total time, Etc.. This is a consequence of
characteristics 1) and 2), under the assumption that total quantities are referred to
one single observer wether made up of matter or of antimatter.

5) Local notions of time and space. The local character of time is a
consequence of the basic units of isosymmetry (3.1} for which the flow of time
depends on the value of the fourth component ;4. The latter depends on the local
gravitational field as in Eq. (2.9), thus resulting in the indicated local time. Note that
questions such as “the age of the universe” have no meaning for Santilli’s
isocosmology because the answer would be “the age of the universe is identically
null”. Alternative questions such as “the age of the matter component of the
universe” also have no meaning because of the Jocal character of time. A question
which may have meaning for the isocosmology is “the average age of the matter
component of the universe”. However, the latter question too is soon voided by
broader versions of the new cosmology, such as the multivalued hypercosmology
indicated below. The local character of time evidently implies a corresponding local
notion of space. In turn, these imply the mathematical prediction of a new form
of locomotion called “isolocomotion” (see’ Ref. [115] of Part 1) in which motion
occurs without any application of a Newtonian force, and via the alteration instead
of the local units by means of sufficiently large local energies.

6) Arbitrary local maximal speeds (for matter and of their isoduals for
antimatter). In isominkowskian space the maximal causal speed remains that of
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light in vacuum ¢, [Ref.s{115,116] of Part Il and Ref.s [1,2] of Part [11). However, the
projection of the above speed in our space-time yields the local value ¢ = cy/ny
where ny is unrestricted (except for being positive-definite) and can therefore be
smaller, equal or bigger than 1. This fundamental prediction is amply confirmed by
the fact that, on real scientific grounds, the speed of light in vacuum is no longer a
barrier. In fact, photons traveling within certain guides at speeds bigger than ¢,
have been measured and then independently confirmed; large masses have been
measured to be expelled during astrophysical explosions at speed bigger than ¢, and
confirmed by additional measurements; according to all phenomenological and
experimental data available, the speed of photons inside hadrons, nuclei and stars is
bigger than ¢, (see Ref. [101] of Part II for details and references); etc..

7) Average speed of light in the universe bigger than that in vacuum (in
the matter component and of the isodual light in the antimatter component). We
are here referring to the average value of the speed of light throughout the
universe, thus including the value in vacuum c,, plus the value ¢ = ¢,/ny within
physical media of low density {(such as atmospheres and chromospheres in which ¢
< co) or of high density (such as the media inside hadrons, stars and quasars for
.which ¢ > c,). Calculations have indicated that the latter dominate over the former
_resulting in an average speed ¢” = Aver(c) > c,.

8) Lack of the missing mass. The universe has been conjectured to have a
"missing mass” based on the assumption that the speed of light has everywhere the
value ¢, in vacuum, resulting in the energy equivalence E = mcoz. The assumption
. of an average value of the speed of light ¢® > ¢, evidently implies a revision of the
above belief. In_fact, the new total energy of the matter component of the universe
is given by

Eot"™" = Mot X €2 = Mgy X o2 / Aver (ng) > Ergy = Mgy X ¢’ 3.2)

The above occurrence not only eliminates the need of the missing mass, but
actually permits a first estimate of the average speed of light in the universe
precisely from the value of the missing mass, according to the expression (eq. (9.6.6),
p. 462, Ref. [116] of Part II),

n°y = Aver.ng =[ (mpg / {mipg + Mg ) 12 < 1, (3.3)

for which ¢ = ¢4/n°4 > ¢, as predicted by Santilli.

9) Lack of discontinuity at creation. According to current theories, such as
the "big bang”, the creation of the universe is based on a large discontinuity, the
creation of an immense amount of energy from nothing. [n Santilli's isocosmology
such a discontinuity is eliminated, because the total characteristics of the universe
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were identically null prior to creation and remain identically null after creation.
They have been merely separated into equal and opposite values at Creation. This
view permits, apparently for the first time, quantitative mathematical-geometrical
studies of the Creation thanks precisely to the lack of its discontinuity..

For other characteristics of the novel isocosmology, we refer the interested
reader to Ref. [116] of Part II and Ref.s [1,2,3) of Part III.

As final comments, recall that the isomathematics is a particular case of the
broader genomathematics (see memoir [100] of Part II) which occurs for non-
Hermitean generalized units and is used for an axiomatization of irreversibility. In
turn, the genomathematics is a particular case of the hypermathematics [loc. cit.]
which occurs when the generalized units are given by ordered sets of non—
Hermitean quantities and is used for the representation of multivalued complex
systems (e.g..biological) in irreversible conditions. Evidently both the
genomathematics and hypermathematics admit anti-isomorphic images under
isoduality.

To understand the dimension of the scientific construction studied in this
volume, as well as the amount of novel research it is generating on aspects yet to
be investigated, one must therefore keep in mind that the [so-Grand-Unification
and Isocosmology were submitted as particular cases in the following chain of
lifting of contemporary models:

1) Isodualities of conventional gauge theories and cosmelogies for the
treatment of antimatter without gravitation in vacuum. '

2, 3) Isogauge theories, Isocosmology and their isoduals, for the inclusion
of gravity for matter and antimatter in reversible and closed-isolated conditions in
vacuum.

4, 5) Genogauge theories, genocosmology and their isoduals, for matter
and antimatter, respectively, in irreversible and open interior conditions.

6, 7) Hypergauge theories, hypercosmelogy and their isoduals, for
multivalued, irreversible and open generalizations, e.g., the study of cosmologies
inclusive of biological structures.
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