


HADRONIC JOURNAL 1, 223-423 (1978) ‘ -223~

On a possible Lie-admissible covering of the Galilei relativity in Newtonian Mechanics
for nonconservative and Galilei form-noninvariant systems

Ruggero Maria Santilli*
Lyman Laboratory of Physics
Harvard University
Cambridge, Massachusetts 02138

Received January 16', 1978
Revised version received April 3, 1978
Final version received April 27, 1978

Abstract

In order to study the problem of the relativity laws of nonconservative and Galilei form-noninva-
riant systems, two complementary methodological frameworks are presented. The first belongsto
the so-called Inverse Problem of Classical Mechanics and consists of the conventional analytic,
algebraic and geometrical formulations which underlie the integrability conditions for the exist-
ence of a Lagrangian or, independently, of a Hamiltonian. These methods emerge as possessing
considerable effectiveness in the identification of the mechanism of Galilei relativity breaking
in Newtonian Mechanics by forces not derivable from a potential. Nevertheless, they do not exhi-
bit a clear constructive capability for a possible covering relativity. For this reason, the second
methodological framework is presented. It belongs to the so-called Lie-Admissible Problem in
Classical Mechanics and consists of the covering analytic, algebraic and geometrical formula-
tions which are needed for the equations originally conceived by Lagrange and Hamilton, those
with external terms. These formulations are characterized by the Lie-admissible algebras which
are known to be genuine algebraic covering of Lie algebras, and which in this paper are identified
as possessing (a) a direct applicability in Newtonian Mechanics for the case of forces not deriva-
ble from a potential, (b) an analytic origin fully parallel to that of Lie algebras, i.e., via the brackets
of the time evolution law, (c) a covering of the conventional canonical formulations as classical
realizations, (d) an implementation at a number of levels of Lie's theory, including a fundamental
realization as enveloping nonassociative algebras, (e} a generalization of symplectic and contact
geometry as geometrical backing and (f) the capability of recovering conventional formulations
identically at the limit of null external forces, here interpreted as relativity breaking forces. A co-
vering of the Galilei relativity, called Galilei-admissible relativity, is then conjectured for indepen-
dent scrutiny by interested researchers. A number of potential implications, particularly for hadron
physics, are then briefly considered for future detailed treatment.
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1: STATEMENT OF THE PROBLEM

‘The objective of this paper is to attempt the construction of & covering of the Galilei relativity

which is applicable to nonconservative and Galilei form -noninvariant systems and which is capable

of recovering the Galilei relativity identically at the limit of null relativity breaking forces. The paper

then presents 2 few conjectural arguments for the possible relevance of such covering relativity
beyond the framework of Newtonian Mechanics, for subsequent more detailed treatment.

Clearly, such a task is of rather delicate nature, In particular, it implies the study of a
possib. le generalization of Galilei's relativity {deas which, within a Newtonian context, have
remained unchanged for centuries.

Almost needless to say, a problem of this nature goes beyond my capabilities as an isolated
researcher, As a result, the analysis of this paper must be considered as conjectural, tentative
and yet inconclusive on both mathematical and physical grounds,

In essence, I will have achieved my objective if I succeed in stimulating the awareness of our

community of basic studies on the need to reexamine the problem of the relativity laws of Newtonian

Mechanics. Equivalently, this paper is an expression of my personal belief that Theoretical Physics

is a Science which will never admit terminal disciplines. To state it explicitly, 1 do not believe
that the Galilei relativity is the terminal relativity of Newtonian mechanics, particularly for the
case of the systems of our everyday experience, that Is, genuinely nonconservative.

Permit me to begin with the following introductory remarks.

(1} The need of a generalization of the Galilei relativity, Predictably, this need is not immune

to controversial aspects. Pending the identification of more technical tools, the argument can be
summarized as follows. An "arena of unequivocal applicability” of the Galilei relativity in
Newtonlan Mechanics is that of the systems whose forces are not only conservative, but

also form invariant under the Galilei transformations, and I shall write

i ()
)MKJZKB-_- ’?ka(-EJ = D) £Km: :%VZT‘:& ’ Esl2 e Ny aXy,2, CL[)

where the £'s are the Caztesian coordinates of the Euclidean space of the experimental detection
of the system, costomarily assumed to be representative of an inertial frame of reference,

My problem consists in attempting the identification of a covering relativity for local, class C
Newtonian systems whose forces are generally not derivable from a potential {(nonconserva-

tive) as well as generally form-noninvariant under the Galilei transformations, and I shall write
s~ Seatw - Ralhz, 80
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where the r's represent, again, the system of Cartesian coordinates of the experimental
detection of the system considered.

When confrontng a system of type (1. 2) the customary attitude is that of transforming it into
an equivalent system innew coordinates, say x:'ka which 1s consistent with the Galilei relativity,
This demands the transformation of system (I, 2) into an equivalent system of the type

B, 8 (w)=e, £ 22V (n3)
(2 g ka
where the forces E'ka are now derivable from a potential and Galilei form-invariant, or inte

equivalent system of free particles in the r’-space,
ol B L&
A [\ ‘z ke ™ o. C )

As we shall see during the course of our analysis, a transformation of this type is indeed
generally possible, Neverthless, this relativity approach to systems of type (L 2) will be left
to the interested reader for @ number of reasons.

First of all, the conclusion that system (I, 2) is consistent with the Galilei relativity (as
currently known),because there exists an equivalent system in new coordinates which is consistent
with such 1'(-:1at-ivityJ is equivalent to the following opposite conclusion. Consider a Newtonian
system in the representation space of the experimental verification which is strictly consistent
with the Galilei relativity. By using the inverse transition from Egs. (1.3) to an
equivalent form (L. 2), such system can be transformed into an equivalent system in new
coordinates which is incompatible with the Galilei relativity, The formal equivalence of the
direct argument indicated above with its inverse would then imply that the original system is
inconsistent with the Galilel relativityf contrary to the experimentzl evidence,

Secondly, the transition from system (L 2} to the equivalent form (1. 3) has a number of
physical implications which will be indicated during the course of the analysis. At this polnt
it is sufficient to indicate that the transition considered implies a profound modification of the
structure of the acting forces, that is, from a genuinely nonconservative a Galilei form-pon-
invariant form, as experimentally detected, to "new forces in a new space which are derivable
from a potential and are form-invariant under the Galilei transformations. Clearly, care must
be exercised before extracting physical conclusions within such an equivalent mathematical
approach. In the final analysis, the dominant physical character of the original system {s that
of being nonconservative and any physically effective relativity characterization must represent
this physical profile in its entirety.

Thirdly, the transition from system (L 2) to an equivalent form of type (1 3) or (L 4) is
rather complex in practical realization, In paxticular, as we shall see better later on, it often
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demands, as a necessary condition, that the new variables r'k"i depend on the old variables r
as well a5 their derivatives in a generally nonlinear way. This implies that, if the original
system of coordinates is inextial, the new system is generally non-inertial, as well as generally
non-reglizable in an experimental set up,

1 hope that these introductory remarks indicate the need of confronting the problem of the
applicable relativity laws to system (L. 2) in the system of coordinates of its experimental
detection, Once this problem has been resolved, then the study of the relativity aspect within
the context of mathematical spaces of new coordinates can acquire its proper methodological
role,

(2) The covering nature of the intended generalization, As is well known, new insights in

Theoretical Physics never “destroy” previous accomplishments of proved physical relevance,
They only implement them in a broader conceptual, physical and methedological context, The
problem of the intended generalization of the Galilei relativity would be inconsistent in its very
formulation unless such generalization is a covering (e, g., in the sense of ref, 1) of the conven-
tional Galilei relativity. In particular, the generalized and conventional relativities must be
compatible in the sense, e, g, , that there must exist clear limiting procedures of clear
physical meaning which reduce the new relativity to the old and viceversa. Also, the new
relativity must constitute a nontrivial generalization of the old for a nontrivially different
physical coatext.

As we all know, the Galilei relativity has already been subjected to a number of coverings.
The fundamental ones are those offered by Finstein special relativity and quantum reckanics.
In the former case we have 2 classical covering of the Galilel relativity for speed of the order
of that of light. In the latter case we have a covering of quantum mechanical nature for values
of the action of the oxder of magnitude of the Planck constant, while the speed remains much
smaller than the speed of light. These two coverings of the Galilei relfativity can then be consi-
dered at the basis of two corresponding series of coverings. The methodological contexr of the
former s that of classical field vrheory or the general theory of gravitation, while that of
the second series is ielativistic quantum nechanics, or quantum field theory.

The covering of the Galilei relativity which is attempted in this paper is according to none
of these lines, The intended covering is purely classical in nature and, thus, quantum mechanical
considerations are excluded at this time, Also, the intended covering is purely nonrelativistic

- and, thus, relativistic generalizations are excluded too,at this time. As a matter of fact the
possible novelty of my efforts relies precisely in the intent of identifying
a covering of the Galilel relativity which is independent from all existing coverings,

-229 -

This objective appears to be rendered identifyiable, pending independent verifications, by

the central topic of the study, the nonconservative nature of the acting forces, rather than

the value of the speed or of the action . It is hoped that the following diagram is of some assistance

in the identification of the objective of the study and its relaticnship with other relativity profiles,

Galilei Relativity
Action: >> B
Speed; << C
Forces:conservative
and Galilei form-inv,

Classical Relativistic
Covering

Action: > 3
Speed: "> C
Forces: relativistic
extensionsg of Galilel
relativity forces,

Quantum Mechanical Non-
relativistic Covering
Action; 22 §

Speed: <o C

Forces: quantum mech,
extensions of Gallei
relativity forces.

Classical Nonrelativistic
Covering

Action: >V t"

Speed: <L C

Forces: not derivable from

a potential and Galilei

forme-noninvariant,

The reader should be aware that the above characterization is mainly qualitative pending the

identification of methodological tools, to be outlined later on, which are capable of providing

a technical characterization of the nature of the acting forces in the transition from one

relativity to the other,

To summarize, the covering Galilei relativity which is attempted in this paper is purely

classical and nonrelativistic and it is centered on the transition from conservative to norconserva-

tive systems. This is intended to provide the nontrivially different physical context indicated

earlier. Also, the fundamental reguirement of compatibility of the classical relativistic and

quantum mechanical nonrelatdvistic coverings is provided by  the clear limiting procedures

of clear physical meaning: v/c =0 (or Inonii-Wigner contraction) and (r)/action) -» 0 {or the

Correspondence Principle), respectively, The corresponding, but different, limit for the

classical nonrelativistic covering is: (Galilei relativity breaking forces)—s»0,

(3) The methodological tools of the intended generalization. Although not on a full time basis

owing to my involvement in other research topics, I have been interested in the preblem of the

applicable relativity laws to nonconservative Newtonian systems since the time of my graduate

studies in theoretical physics (at the University of Turin, Italy, from 1963 to 1966). However,

it was not without surprise that an initial library search (conducted in 1963-1964) revealed that

the methodalogy for the treatment of forces not derivable from a potential had remained

virtually fgnored in the physical and mathematical lteratures,to the best of my knowledge,
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This accounts for the rather considerable period of ime which has passed {rom the identification
of the problem to this tentative presentation. Aad indeed, in order to be able to even partially
confront the problem, I had f{irst to identify the rudiments of the methodology for the treatment
of these forces.

As we all know, the virtual totality of the methodological context of Analytic Mechanics
enters, either in a direct way or in a subtle indirect way, into the chavacterization of the

Galilei relativity. Iam here referring to the conventional analytic formulations {e.g., Lagrange's

and Hamilton's equations, canorical transformation theory, etc}, algebraic formulations (e, g. ,
Lie algebras, wmiversal enveloping associative algebras, Lie groups, etc.) and geometrical
formulations (e. g. , symplectic geometry, Lie derivatives, etc.). The problem of the construction
of 2 possible covering of the Galilei -relativity for nonconservative forces cannot be
studied without the prior identification of at least the rudiments of the methodology which is
applicable to ther forces censidered,

The primary objectl ve of this paper is to outling my efforts in this respect and then to indicate
a possible covering relativity which can be conjectured on the basis of the emerging methodology.

In essence, Newtonian systems with forces derivable from a potential can be fully and
consistently treated with the indicated analytic, algebraic and geometrical formulations, The
situation for systems with forces not derivable from a potential appears to be different. And
indeed, at least in principle, these systems can be studied within the context of the following
dual methodological profile,

() Formulations based on__ L.agrange's and Hamiltou‘s equations without external terms .

Within the context of conventional treatments of Analytic Mechanics, the Lagrangian and
Hamiltonian are often assumed as possessing the conventionzl trivial structure L = T-V and

H =T+ V, respectively, However, within the context of the broader discipline known as the
Calculus of Variations, these functions can have an arbitrary functional structure (provided
that certain continuity and regularity conditions are satisfied), The transitior from the
conventional to an arbitrary structure of 2 Lagrangian or a Hamiltonian essentizlly implies,
at the Newtonian level,the transition from systems with forces derivable from 2 potential

to systems with arhl trary Newtonian forces, The net effect is that the conventional Lagrange's
and Hamilton's equations can indeed effectively represent nonconservative Newtonian systems.
The knowledge of these functions ther immediately implies the applicability of all the
established analytic, algebraic and geometrical formulations to the systems considered,
Explicitly stated, the knowledge of ajmiltonian for a system of type (L 2) implles the appli-
cability, say, of the canonical transformation theory, Noether’s theorem, Lie's theory,
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symplectic geometry, ete,, by therefore brin ging nonconservative systems up to the methodological
context of systems with forces derivable from & potential,

However, in order for such an approach to have any practical effectiveness, the fundamental
problem consists of the integrability conditions for the existence of a Lagrangian or a Hamiltonian
for systems (L. 2), that is, the necessary and sufficient conditions for systems with forces not
derivable from a potential to admit an analytic representation in texrms of the conventional
Lagrange’s and Hamilton's equations (without external terms).

I have been involved in the study of this problem, although also not on a full time basis, from
1973 until recently. My efforts for the Newtonian profile of the problem are presented in the

b
261)2 and their extension to classical field theories are presented

forthcoming monographs of refs,
i refs.e’ Understandably, no relativity aspect is treated in these preliminary studies, apart from
few incidental remarks.

This first methodological profile for the treatment of Newtoniar systems with forces not
derivable from a potential can be identified as belonging to the so-called Inverse P roblem of
Classical Mechanics , where these terms can be referred not only to the integrability conditions
for the existence of a Lagrangian or a Hamiltontan, but also to the methods for their construction
as well as the consequential enclosure of all the available analytic, algebraic and geometrical
technigues.

(i) Formulations based on Lagrange's and Hamilton's equations with external terms. The

most natural way of representing Newtonian forces not derxivable from a potential
is that originally conceived by Lagrange and Hamilton , that is, with externsl terms, in essence,
Laprange and Hamilton appeared to be fully aware that the Newtonian forces are generally non -
derivable from a potential, The presence of external terms in thefr equations was thus essential
to avoid an excessive approximation of physical reality, Oddly, it has been only since the
beginning of this century that Lagrange's and Hamilton's equations have been "truncated" with
the removal of the external texms by zcquiring the form which is almost umiversally used in
current physical literature.

"This is mot an occurrence of marginal relevance. Instead, it could indicate that the virtual
totality of our current theoretical knowledge based on analytic techniques at all presently known
levels, such as classical, quantum mechanical and quantum field theoretical,can be considered
as solidly established,provided that the underlying systems possess forces derivable from a
potential, that is, structures of thetype L=T -V = Lfree+ Lint’ andH=T+V= Hf:ree+ Hint'
represent the systems in their entirety (I shall elaborate this aspect both in this paper as well

as in subsequent papers more specifically devoted to this issue ).
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My first research interest has been devoted to the study of these equal:ions*:' The initial
library search conducted in 1963-15964 also revealed a rather sizable methodological gap existing
between the analytic equations without and with external terms which, to the best of my knowledge,
still persists as of today. In essence, while the study of analytic equations without external texrms
has developed into the beautiful and articulated body of interrel ated methodological tools, known
as analytic, algebraic and geometrical tools (to ignore other profiles), no comparable development
has occurred, to the beét of my kmowledge, for the case of analytic equations with external terms,

For instance, questions for me of {fundamental relevance, such as the algebraic structure
which underlies these latter equations, ox their transformation theory, resulted to be untreated
in the available literature despite my laborious search.

The study of the methodology related to Lagrange's and Hamilton's equations with external
terms was clearly mandatory for my objective to attempt the construction of a covering of the
Galilei relativity. On analytic grounds these equations can be interpreted as constituting a
covering of the conventional equations in the sense of being directly applicable to broader systems
(that is, applicable without changes of the local variables) while capable of recovering the conven-
tlonal equations identically at the limit of null forces not de rivable from a potential, Also, and
most importantly, within these broader equations the Lagrangian and the Hamiltonian can repre-
sent not only the free motion, but also all Galilei form -invariant forces derivable from a
potential, i.e.,Eqgs., (1.1), while the external terms can represent precisely the Galilei breaking
forces, i.e. the F-forces of Egs, (L 2).

It was however easy to €&  that the presence of external forces is, by far, nontrivial on
methodological groumds. It is sufficient,in this respect,to indicate the nonapplicability of the
conventional canonical transformation theory; the fact that the brackets of the emerging gene-
ralized time evolution lew violate the Lie algebra identities;and the inevitable, consequential
nonapplicability of the symplectic geometry.

Rather than considering these occurrences as drawbacks, I interpreted them as promising
on methodological grounds, In essence, the fact that the brackets of the time evolution laws
violate the ;.Ae algebra laws, by no means, implies that these brackets are unable to characte-
rize p well defined (nonassociative) algebra. And jndeed, as we shall see later on, when properly
written, these brackets characterize a (nonassociative) algebra called Lie-admissible aigebra
which results to be an algebraic covering of the Lie algebras, that is, (a) directly applicable
to a broader physical context, (b} admitting a consistent analytic origin fully parallel to that of

the Lie algebras, and, last but not least, (c) admitting a realization of the product which
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recovers the conventional Poisson brackets identically at the limit of nul external forces.
These features essentially indicate that the Lie algebrasare not "lost” in the broader

Lie-admissible algebras. Instead, they are fully present, although in an embedded form,
The identification of this algebraic character of Hamilton's equations with external terms

was my first step, as embrionically presented in ::'efs.4 2 "4(.: This step was clearly crucial
for any subsequent study, And indeed, the existence of a consistent algebraic covering of the
Lie algebras gave hope for the existence of covering. analytic, algebraic and geometrical formu-
lations which (1} are applicable to the broader class of systems with forces not derivable from
a potential via analytic equations with external texms, (2) possess the same interrelations and
analytic origin of the conventional formulations, and (3) are capable of recovering the conventional
formulations identically at the limit of null external forces.

Most of my subsequent efforts have been devoted to the study of the possible existence of
these covering formulati ons. These efforts are presented in the forthcoming monographs of

sakt, . They can be identified as belonging to what [ have tentatively called the Lie-admissible

Problem of Classical Mechanics, where these terms can be referred to the analytic, algebraic

and geometrical formulations based on analytic equations with external terms.

As we shall see, my conjectural arguments related to the possible existence of 2 covering
of the Galilei relativity are based on these broader formulations, To be explicit on this crucial
point, I do mot believe that a genuinely new covering of the Galilef relativity along lines diffexent
than those of the existing coverings can be effectively attempted without first identifying at least
the rudiments of the coverings of the central methodological tools of current relativity ideas:
the analytic, algebraic and geometTical tools.

(1) Joint use of Legrange's and Hamilton's equations without and with external terms for the

representation of the same nonconservative systems. As we shall see, one of the most insidious

aspects of the problem of the relativity laws for nonconservative systems is of conceptual, rather
than technical nature, This is due to the fact that, owing to extended use, the primary contempo-
rary emphasis is in the study of "symmetries and conservation laws", The proper study of
nonconservative systems appears to demand a profound coneeptual departure from this context,
On symmetry grounds, the emphasis is shifted to that of broken symmetries. These are familiar
terms in contemporary theoretical physics, but there is a central difference between their con-
ventional meaning in current literature and thelr meaning in this paper, which is advisable to
identify already at this introductory stage.

In essence, the terms "broken symmetries' are customarily referred to broken internal

symmetries (e, g., the SU(3) breaking due to strong interactions) or to broken discrete symmetries
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{e.g., the paxity viclation in wesk interactions). The terms "broken symmetries” in this pa-

per are specifically referred to broken continuous, connected',space-ﬂme symmetries ,
of course, at the Newtonian level.

An example is here crucial to understand the meaning of these terms, as well as the nature
of the breaking of the Galilei relativity provided by systems of type (1.2). Consider the spinning
top undex gravity, The conventional treatment of this system is often xestricted to its conservative
abstraction with consequential dominant role of the exact symmetry undex the group of rotations,
S0(3). However, if this exact symmetry were actually realized in our environment, it would
literally imply the existence of the pexrpetual motion, trivially, from the conserved nature of
the apgular momentum, The physical xeality appears to be different. Experimental evidence
indicates that the angular momentum of the spinning top is not conserved. In turn, this implies
that the symmetry under rotation is broken for the system considexed, as we shall identify later,
on  more technical grounds, This inevitably implies the loss of the group of rotation as a
methodological tool of any effectiveness. As a matter of fact, in order to properly represent
the system considered as it occurs in the physical reality, all my efforts will be centered in
producing the highest possible breaking of the symmetry under rotations. And indeed, this
implies the existence of drag torques which are responsible for the decaying in time of the
anguler momentum,

In conclusion, in the study of Newtonian systems with forces not derivable from a potential
and Galilei form-noninvariant the conceptual attitude is shifted from that of the conventional
“exact space-time sg;rmmetries" to that of "broken space-time symmetries”, with particular
emphasis on the fundamental part of these symmetries, the group of rotations 50(3) and related
1ie algebra SO(3).

This conceptual profile becomes even more insidious when passing to the complementary
part of the physical conservation laws . And indeed, to comply with the expeximental evidence

that the physical quantities of the systems considered are nonconsexved, the emphasis is now

shifted to the physical non conservation laws ., The following remark may be of assistance in

i.dentifying the insidious nature of this profile. As we shall see, the use of the techniques of the
Trverse Problem sometimes yields a Hamiltonian for the representation of nonconservative
systems which does not depend explicitly on time. This is the case, for instance, for the damped
oscillator. The use of the techniques of symmetries and conservation laws trivially yields that
such a Hamiltonian is indeed conserved. The issue which is however relevant is the physical
meaning of the mathematical occurrence fI = { when the represented system is nonconservative
by assumption, that i3, when the experimental evidence indicates that the physical energy of

the aystem decays in time, zs trivial for the damped oscillator,
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We reach in this way a crucial aspect of the problem of the relativity laws for nonconserva-
tive Newtonian systems: the applicable methodology must be capable of characterizing broken
space-time symmetries and physical nonconservation laws, This is exactly the cpposite in
conceptual attitude of the corresponding setting for Newtonian systems which obey the Galilei
relativity,

As we shall see, the Lie-admissible formulations appear to satisfy this crucial requirement.,
And indeed, they break the space-time symmetries to the peint of rendering all Lie algebras
inapplicable "ab initio”, whenever the external terms are nonnull. The intriguing aspect is
that the broken symmetries do not remain algebraically undefined, as in conventional {classical)
treatment, Instead, they acquire a broader algebraic structure which appears to be parallel
in physical effectiveness to that of the Lie treatement of exact symmetries, zlthough the conceptual
and methodological centext is now profoundly altered. For, instance, with reference to the case
of the spinning top under gravity, the Lie algebra of the group of rotation has the precise physical
meaning of representing conserved quantities via its generators, the angular momentum components.
In the transition to the case of the nonconservative spinning top represented with Lie-admissible
formulations, this Lie algebra 50(3) becames undefinable in 2 consistent way because the basic
analytic equations are non-Lie in algebraic character. However, the 50 (3} Lie algebra results
to be replaced by an 8((3) Lie-admissible algebra which is not only fully defined on algebraic grounds,
but also such to directly express the nonconservation of the angular momentum components.

As we shall indicate in details, this 50{3)-admissible algebra results to be an algebraic covering
of the conventional 50(3) algebra in the sense of (a) possessing an analytic origin fully parallel
to that of the laster, (b) being differentas algebraic structure , thatis, being a non-Lie algebra,
and (c} capable of Tecovering the latter identically at the limit of null nonconservative forces.
Most importantly, while the equations are form-noninvariant under the conventional rotations by
central requirement,the Lie-admissible context appears to produce generalized transformations
which  leave form-invariant the nenconservative (nonlinear) equations of motion,

In conclesion, the covering of the Galilel relativity which will be conjectured in this paper
is based on the attempt of embedding the Galilei algebra into a covering Galilei-admissible
structure, The embedding will be technically realized via the embedding of the universal enve-
loping associative algebra into a nonassociative but Lie-admissible covering which preserves
the base manifold, the parameters and the generators of the original structure, In turn, this
Lie-admissible envelopewill open the possibility of having, on one side,a Lie-admissible behaviour
in the neighborhoodof the identity while, on the other side, producing generalized, connected
transformations under suitable integrability conditions, In turn, these latter transformations

will open the possibility of leaving form-invariant the nonlineax, nonconservative systems,
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Predictably, in a program of this nature, the technical difficulties which I shall identify
{witheut any ¢laim of solving any of them) are expected to be conspicuous, It is in this respect
where the dual methodological approach to the same systems acquires its full light, I am here
referring to the joint use of the analytic equations without and with external terms for the repre-
sentation of the same system, and of the related methodologies (the InverseProbiem and the
Lie-admissible [roblem, respectively),

1t is relevant here to indicate that my initial efforts at the construction of, for instance,

a covering of the canonical transformation theory for Hamilton's equations with external terms
have encountered such severe consistency problems,to force me into the labarious study of the
Inverse Problem. And indeed, since the anelytic equations without and with external terms
represent the same system by assumption, the knowledge of 2 Hamiltonian for the former via
the Tnverse Froblem finally aliowed me to construct the transformation theory of the latter

as an “image" of the conventional canonical transformaticn theory. The consistency of the
approach was now guaranteed, But then for the approach to be of any practical usefulness, the
Imowledge of a2 Ramiltonian for nonconservative systems (1. 2) was mandatory. This is, in
essence the spirit of the methodology of the Inverse Problem,

In conclusion, conservative systems can be effectively treated with only the conventional
analytic equations (i.e., thosewithout external terms). When nonlinear, nonconservative systems
are considered,the situation is different, In this case, owing to the complexity of the problems
to be confroated aad, in due time, solved, the most recommendable attitude is that of using the
totality of the available techniques, whenever possible, These techniques can be classified into
two groups, here called those of the Inverse Problem (for analytic equations without external
terms) and of the Lie-admigsible Problem {(for analytic equatons with external terms), It is
hoped that a judicious interplay of these two complementary methodological profiles wili result
to be of assistnce in the study of the problems to be confronted. Fox instance, ¢ach insight
reached within the context of one approach can be subject to consistency verification within the
context of the other, Similarly, aspects which are of difficult treatement within the confext of
ong approach may result to be more treatable within the cor text of the other,

My use of this dual methodological profile will be the following. That of the Lie-admissible
Problem will be used as the fundamental constrietive tool of the intended covering relativity, while
that of the Inverse Problem will be used as 2 methodological backing caly. The use of the same
methodologies but with different roles, however, is notexcluded, but actually encouraged.

The organization of this paper is the following. In Section 2,1 shall present -
2a, A
the rudiments of the methodology of the Inverse Problem as a review of refs, while,

in Section 3,1 shell presents the rudiments of the methodology of the Lie-admissikle problem
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as a review of refs.‘:i ! 5 . The reader should be alterted that, to reduce this paper to

2 minimal length, the proof of all the theorems presented in these two parts is either left to
the interésted reader or to the inspection of the detailed presentation of the quoted references.
In Section 4, I shall then present the conjecture of the Lie-admissible covering of the G alilei

/
relativity, called Galilei-admissible relativity,and work out few simple examples, Finally, in

Section 5,1 shall present few highly conjectural remarks related to the possible physical relevance
of the analysis for non-Newtonian frameworks. [ am here referring to possible classical
relativistic and quantum mechanical extensions.

It is rather tempting in this latter respect to recall the fact that, irrespective of whether
actually constructed or only identified as plausible, any new relativity idea has always proved to
have a deep impact in our representation of physical reality, Most notably, this was the case
of the physical xole of the Einstein special relativity for our representation of the electromagnetic
interactions in general, and of the atomic stzucture in particular, The intended Lie-zdmissible
covering of the Galilei relativity will be presented for its arena of clear poten tial significance,
the Newtonian systems of our everyday experience, However, let me confess that the intended
arena of applicability, upon a number of technical implementations, i3 that of the old idea that
strong interactions in general, and the strong hadronic forces in particular, are not dexivable
from a potential, that is, they are precisely of type (L 2) at the primitive Newtonian level,

In essence, the moment I was taught the profound physical differences which exist between the
electromagnetic and the strong interactions, I had difficulties in accepting for the latter interac-
tions basic concepts, laws and principles which are essentially the same as those of the former
interactions, The reason was due to the fagcinating physical effectiveness of established disciplines
for the electromagmetic interactions versus the lack of any comparable physical effectiveness of
the same tools, when applied to the strong interactions. If the stroag interactions are assumed gs
analytically equivalent to the electromagnetic interactions (i.e., both derivable from a potential),
[ saw no way of escaping from the inflexible laws of established disciplines. The representation
of the strong intexactions (and the strong hadronic forees in particular) as still local, but analytically
nonequivaient to the electromagnetic interactions (i. e,, nonderivable from a potential), appeared
to me as sufficiently interesting to deserve a study prior to the confrontation of more complex
models, e.g., in terms of nenlecal forces not derivable from a potential, A part from 2 rew me-
thodological hozizon which appears to be stimulated by this line of study,a most intriguing aspect
is that the approach appears to produce a profound differentiation of the electromagnetic and the
strong interactions in the physical space of their experimental verification (Fuclidean or Minkowski).

In conclusion, the hope which stimulated this work is that of being able to Study, in due time,

a possibie differentiation of the atomic and the hadronic structure via the relativity laws.
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2, RUDIMENTS OF THE METHODOLOGY OF THE INVERSE PROBLEM

The Direct Problem of Newtonian Mechanics is the conventional approach according to which

one assigmna Lagrangian L{t,q,4) and ther computesthe equations of motion with Lagrange’s equa-

tions

2 . 2 - 2
L (a doL L DL N g.)'_f@_f'_ _CD.._’—_K:O} (2.0
== Tk kT tkagt by H >
Kk ) gﬂ‘@ﬁk @?k (()7 24" Q?%i]‘ Q?k@b (D?
K=1,2,0ee , M
{throughout this section we shall use for conciseness the terms "Lagrange's equations” to derote
those without external terms and the presentation will mainly deal with generalized coordinates).

The Inverse Problem of Newtonlan Mechanics can be empirically defined as consisting of the

inverse approach according to which an arbitrary {quasilinear) system of second-order ordinary

differential equations is assigned

F(3) = A, 5a,d) 9 + Belhe,d)=0o, (2-2)

and the knowledge of a Lagrangian for the representation of these equations with Eqs. (2.]) is
requested,
At a closer Inspection the problem essentially consists of the following aspects:
{a} the necessary and sufficient conditions {integrability corditions) for the existence of
a Lagrangian {or, independently, of 2 Hamiltonian) for the analytic representation of

generally nonconservative Newtonian systems {i. €., second-order oxdinary differential

equations which are linear in the second order derivative q k, but generally nonlinear
in the first-order derivatives (-lk and in the generzlized coordinates qk as well as
generally depending explicitly on time) ;

(b} the methods for the computation of a Lagrangian (or, independently, of a Hamiltonian}
from the given equations of motion when their existence is ensured by the integrability
conditions; and

(c} the significance of the underlying methodology {inclusive of the established analytic, algew
braic and geometrical formulations) for the study of nonconservative systems, e.g.,
transformation theory, symmetries and first integrals, etc, .

On rigorous texrms, the problem is known under the name of Inverse Problem of the Caleulus

of Variations in which grounds it can be technically identified. However, we zre not interested
in this paper in the extremal aspect of the problem and, as such, this latter profile will be
ignored. The reader, however, should keep in mind that, even tough such extremal aspect

can be effectively Ignored in the study of problems (&), (b) and {c}, the underlying techniques
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I shall use were conceived within the context of the Caleulus of Variations and remain strietly
variational in natare, I shall make a genuite effort. in being as simple as possible, Neverthless,
nowadays, the Inverse Problem can be studied with modern, effective and rigorous mathematical
tools such as within the context of

(1) Differential Geometry. In essence, the conditions for a vector field on a (Hausdorff,

second countable, s -differentiable, 2n-dimentional symplectic or (2n#l)-dimensional contact)
manifold to be globally Hamiltoniaué can be reformulated to provide the integrability conditlons
for the existence of a Hamiltonian. A corresponding approach holds for the Lagrangian case,

(2) Functional Analysls, In this case the computation of the Gateau differential of Egs. (1. %
relnterpreted as nonlinear operators ard the condition of potentlality yield the integrability
conditions for the existence of & I.agrang“lan;7

{3) Cohomalogy Theory. In this case differential operators are used to construct cochain
complexes on star-shaped seisof field functions. The use of concomitants then yields the inte—
grability conditions for the existence of a Lagrangian,a

in this section I shall cutline an approach based on what appears to be a simple but mast

effective tool, known under the name of variational approach to selfadjointness , with an economical

use of its prerequisites , e. g., the existence theory of ordinary differential equations and the
Caleutus of Vaziations, anrd its complementary aspects, e.g., the calculus of differential forms
in general and the Convexse of the Poincaré Lemma in particular,

As g Tesult, the differential, functional and cohomology approack will be largely ignored.

In any case, a study of the issue has indicated that the vltimate explicit form of the integrability
conditiens for the existence of a Lagrangian or, independently, of a Hamiltonian constructed with
mathematically different approaches either coincide or are trivially equivalent?.i‘t ts this property
which allows the restriction of the treatment to only the variational approach to selfadjointness.
(which appears te be preferable for explicit computations, e, g., the explicit construction of a
Lagrangian). In any case, the reader with a serious interest in the relatvity problem of noncon-
servative Newtontan systems is urged to study also the geometrical, functicnal and cokomology
treatment  with an understanding that the rudimentary review of the variationai approach to
selfadjointness outlined in this section is largely insufficient.

For conciseness, the main arguments will be presented in sequential tables, The detailed
proof of all statements and theorems is presented in refs? 3 . The assumptions which will be
tacitly used troughout this section are that (1) all differential equations are local (ronlocal forces -
are excluded), (2) all equations of motion (and, thus, including the acting forces) are of clags C had
in their region of definition, and (3) the functional matrices of all equations of motion (Hessian
matrices for all Lagrangians) are regular {for forces without acceleration couplings this

essentially means the regularity of the mass tensor). All systems axe finite-dimensional.
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TABLE 2.1: THE CO NTROVERSY ON THE REPRESENTATION OF NONCONSERVATIVE
NEWTONIAN SYSTEMS WITH THE CONVENTIONAL HAMILTON'S FRINCIFLE. A problem

which has been ceatroversial for over one century in the physical literature is whether nonconser-

vative N%wtonmn systems can be represented with the conventional Hamilton's principle
jjell-l.(tq,q) fdb L 0;)5? Sg (t)so,8=12, (24.4)

To the best of my knowledge, this controversy, somewhat inherited from contrasting statements
dating back from the past century, reached a climactic stage in the early 30's as a result of the
following corollary of a theorem by P, S. BAUER (193])

"The equations of motion of a dissipative linear dynamical system with

coastant coefficlents are not given by a2 variational principle”

This statement prompted the publication of a disproof by H. BATEMANSb(BAUER's paper was
submitted as a Harvard note on March 21, 1931 and BATEMAN's rebuff was submitted as a CALTEC
note on june 17, 1931). Neverthless, BATEMAN's paper was based ona the use of a method, today's
known as BATEMAN's prolengation theoxy, which implies the doubling of the number of equations
(which is cutside the context of the Inverse Preblem as commonly understood). As a result,
the controversy did not ended, but was taken up again by a number of authors, such as L.J.
SINGE c(lEiA'I'li‘Ex.Iz\.l\T had properly published his paper in The Physical Review).
In the fina) stage, this controversy resulted in negative positions in more recent textbooks

on mechanics, For instance, C, LANCZOS, in his textbook on variational principlesa&'states
on p. xxi (1949 edition and subsequent Eeprints)

“"Forces of frictional nature, which have no work fucction, are outside the

realm of variational principles. "
Similarly, on p. 19-7 of Vol. [ of the FEYNMAN Lectures {(R.P, FEYNMAN , R.B. LEIGHTON and
M. S. SANDS E; 1966 edition and subsequent reprints) one can read

"The principle of least action only works for conservative systems-where

all forces can be gotten from a potential function.

As we shall outline in the following tables, the Inverse Problem allows the resolution of
this controvers y? The net result will be that the arera of representational capabilities of the
conventional Hamiiton's principle in Newtonian Mechanics is rather vast indeed. Of course,
this will crucially depend on the notion of "aznalytic representation” which, perhaps, was at
the basis of the controversy.

In any case, it was uafortunate that none of the authors qucted in this table was aware of
the fact that,by the late 20'5}315 methodology of the Inverse Problem was sufficiently well
established in the specialized literature of the Calculus of Variation, as outlined in the next
table.
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TABLE 2.2: THE TENTATIVE GENEALOGICAL TREE OF THE INVERSE PROBLEM.

One of the most time consuming aspects of the rasearch project presented in this paper
has been the identification of the prior state of the art on the Inverse Problem. An inftial library
search conducted in 1973 soon revealed that problems (a), {b} and (c) (of the introduction of this
section) were not identified, let alone treated, in all textbooks in Newtonian Mechanics, Galculus
of Variations and other disciplines I was able to inspect. However, these problems are at the
very heart of Lagrange's and Hamilton's equaticns and, as such, they “had" to be treated in the
existing literature, It was not after a leborious search which I conducted in the libraries of the
Boston area by moving backward in time, that my determination was fizally rewarded. And indeed
I finally succeeded in identifying 2 number of contributicns which established, tc the best of my
knowledge, the foundations of the methodology of the Inverse Problem, the first and perhaps

dating back from the last part of the past century, !

most important contributions
The results of my search are presented below with a strict imderstanding that they should

not be interpreted as historical notes. They are simply the results of my personel findings and,

as such, at a more detailed scrutiny, they may result to be grossly deficient. Notice thatl quote

below only the maost relevant contributions (see ref, 2 for a more complete list).

N -DIMENSIONAL CASE 10 ONEB-DIMENSIONAL CASE

[D.R, Davis
1928 K. Bochem

\ 1900
G.Hamel %
1903

H. Hirsh )
1898 | G. Darboux
1891

-
L. Konisberger,
1901

A, Mayer n
1896

H. Helmholtz|
1887

pnyZs
C. G.Jacobi
1837 /}

77
10
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The one-dimensional case was treated in details and solved, apparently for the first time,
by G, DARBOUX in 1891 by using conventional techniques (for that time) of partial differential
equations. Subsequently, the problem was extended to the case of higher order derivatives by
a number of authors (we are kere solely interested to the second-order case), This problem
is trivial by today's standard because it implies the solution of one partial differential equation
in one unlmown, the Lagrangian L, i.e.,

dRL. 2k = A(t9,9)5 +B(L9,). (2.2.1)
db29 @9
As such, a solution is guaranteed i:y the existence theorems for partial
differential equations under certaln technical conditions (Table 2. 8

The n-dimensional case, on the contrary, is nontzivial because it consists of n partial

differential equations in only one unknown, again the Lagrangian, i.e. J

%’%L:}_-}" —((%;,‘C = 9&:' Ct)?;sf)"?-b_f_ B,\»UI‘,?{«?’)' (2.-?,.2)

The system is now overdetermined and a solution does not necessarily exists (in the form
presented above, pending the generalizations cutlined in the subsequent tables),

The integrability conditions for Egs. (2.2,2) were apparently identified for the first time by
H.HELMHOLTZ { 1887)011 beauriful intuitional grounds. In essence, HELM HOLTZ's starting point
was the property that Lagrange's equations are always selfadjoiny (Table 2,5}, a property which
goes back to a contribution by C. G.JACOBI of 1837 . He then argued that the conditions of
{variational) selfadjointness were hoth necessary and sufficient for the existence of L, This
approach was reinspected by a number of authors, most netably in my opinion, A, MAYER
in a first contribution of 1896. The most comprehensive treatement of which I am aware on
the study of the joint necessity and sufficiency of the conditions of selfadjointness is the thesis
byD. R, DAVIS at the Depaxtment of Mathematics of the University of Chicago under the super-
vision of G.A.BLISS, subsequently expanded and published in three articies of 1928, 192% and
1931. Perhaps, equally netable is the study by L. KOMISBERGER of 1901 {oddly there is no direct
quotation In DAVIS's papersof HELMOLTZ 's and KOMISBERGER 's contributions),

In conclusion, it appears that by the late 20's the problem of the integrability conditions for
the existence of 2 Lagrangian was well established, Most importantly, the studies were extended
to the inclusion of integrating factors (whick are ignored in the initfal formulation (2. 2.2), As we
shall outline in Table 2.9, a proper use of these techniques allow the disproof of Bauer's statement
(Table 2. 1) without an increase of the number of equations, For & specific study of the case of

linear equations with constant coefficients see reference
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However, the techniques used in the joint proof of the necessity and sufficiency of the
conditions of selfadjointness were those available at that time. At a closer inspection, a number
of aspects xemained still open. I confronted the problem along the same conceptual lines, that is,
the variational approach to selfadjointness, but I used what is nowdays considered a more effective
tool for the study of the integrability conditions ; the calculus of differertial forms in
general and the converse of the Poincare lemma in particular. My proof of the joint necessity
and sufficiency was first published in IEf.3 for the field theoretical case. Ref. contains the
reduetion of the proof to the Newtonian case, The problem along different methodelogical lines
had already been solved by M, M, VAINBERG in 1964 by using the functional approach

to nonlineer operators for the case of first-order Lagrangians, that is} Lagrangians L{t, q,c';).

The case of the representation of the same systems with second-order Lagrangians L{t,q,3,'d)
had also been solved by G. W, HORNDESKIBin 1974 within the context of the cohomalogy theory

and cochain complexes, but this approach implies the use of third order analytic equations which
are mcommon in Newtonian Mechanics. As R.W.ATHERTON and G.M. HOMSY c put it,
VAINBERG ‘s approach was so abstract to remain "inaccessible to many applied mathematicians
and engineers”. It is here tempting to say that a similar comment perhaps applies also to
HORNDESKY's approach. My efforts were therefore motivated by the intent of achieving a proof
which was accessible to the physics and engineering community at laxge.

Notice that the genealogical reference tree for the n-dimensional case has been uncated.
This is due to the fact that the Inverse Problem remained izrgely ignored after the early 30's ’
to the best of my knowledge and with very few exceptions known to me, For a complete Iist of

a
all relevant contributions on the Inverse Problem of which i am aware see :l‘t.’.f.2

TABLE 2,3: THE CONCEPT OF ANALYTIC REPRESENTATION

The most direct way to define an analytic representation is that of imposing that the totality
of solutionsof the equations of motion coincides with that of Lagrange's equations. Our systems,
however, are generally nonlinear and such an approach is in practice faced with severe difficul-
ties, There exists a number of ways to evercome thesedifficulties. The assumed continuity and
regularity conditions ensure the applicability of the theorem on implicit functions to Eqs, (2, 2 )
and, most importantly, the uniqueness of the system of implicit functions, As a result, a first
definition of analytic representation can be introduced by requiring that the systems of implicit
functions of the equations of metion and of Lagrange's equations coincide, In the following we

shall gay that a ‘(local, class C'ﬁnd regular) Newtonian system admits an ordered indirect



- 244 -

apalytic representation in terms of Lagrange's equations (without external texms and in first-order

Lagrangians) when there exists aclass C ® and regular matrix of factor functions such that
2a,%&
the following identifications !

dqué‘m) qL(rcm) Zn U’ 9,4 LR e, c})c) —rB (E—%‘})] (2.3.1)
4b 29" "
K:‘L,Q-, 0’1,

hold in a given ordering of the index k=1,2,3,...,n. The regularity of the matrix of factor

*s

functions is intended to yield the identity of the systems of implicit fimetions of the equations

of motion (as originally given) and of Lagrange's equations, i.e., the uniqueness of the system
. ot 2.3.2
5% _ £ adq)ze, (£)= - (A)7(8), (&2-2)

for both members of identifications (2, 3.4 ). This, in turn, implies the identity of the totality
of solutions. When representation (2, 3.4) gxl_gis with (hkl) = (5 kl) we shall say that we
3

have an ordered direct analytic representation. IJ’Ls we shall seejthe notion of ordering plays

a crucial role, particularly for the necessity of the conditions of selfadjointness. Notice that
the maximal admissible finctional dependence of the integrating factors is h.k1 = hkl(t, q, 9.

TABLE 2, 4: VARIATIONAL APPROACH TO SELFADJOINTNESS. The finite part of the firse-

order variation of the equations of motion is called the system of variatiopal forms J) can

- a3 2.4
__% (2:4-1)

be written S
F( <
M) = 1) = (Dq'
Sq mw , wa o,

and can be computed along any admissible variation , that is, along any function‘)l(t) possessing

the same continuity properties of the solutions. The adjoint system of variational forms can

) 155 0 B5) G (15p) €

be written

‘04

and (under the zssumed coudmons) is uniquely defined by the so-called Lagrange identity

4’]/ M, W’) % M (2 ) @(”L,%) (2-t.3a)
g)(."l/%’) t “’LJ %;P\’L -.—;-.flf/ + (% /D" )
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~
where ¥ and %, are generally different admissible variations. A system of second-order
ordinary differential equations is called (variationally) selfadjoint when its variational forms

coincide with the adjoint systems for all admissible variations, i.e.,

M m) = M (m) k=b2-, m,

3,34

(2-4-4)

4
Simple calculations then yield the following
THEOREM 2.4.1: A necessary and sufficient condition for 3. Newtonian system In the

form (here referred to as the kinematical form) e 2
;q' _ ¢ (.b,");ﬁj =0, k:!,ﬁ,.-.,m)f e C (_R), (2'4"5)

to be seMfadjoint in a region R of points (¢, q,q) is that the acting forces are Huear in

the vel wities, i.e.,the system is of the form

- Preltia)§ v - G ka)=0, (2.6. 6)
and all the following conditions of selfadjointness
J) +()J‘£ =0 (2-4.705)
(—D—C—*— (D‘D“‘ VP = o, (2.6.75)
D49 %Qq qquq o | @-4‘7&)

Pt T D9 Dg¢
are identically verified in the subregion R'¢R of polnts (¢, ).

The notion of region used hereon is that of an open and connected set. In practice, it can he
restricted to a (regular) point of the variables and its neighborhcod. In conclusion, the physically
relevant aspect of the above theorem is that in order for Newtonian systems as originating from

Newton's second law, e, g, Jfor the unconstrained case

Ju.g;t:m.— *(512‘4,?:,):0, kshe, .. 0 asxy,z, "'\Lj’:g)
to be variationally selfadjoint, the acting forces must be utmost Hnear in the velecities and
then satisfy the conditions of seHadjointness. Predictably, all forces derivable from a potential
and, most notably, the Lorentz force, satisfy Theorem 2.4,1. As a matter of fact, after trivial
implementation to the Minkeski space (see in this respect ref.sa ) the relativistic generalization
of Newtonian forces derivable from a potential and, again most importantly, the Lorentz force,
satisfy a “formally equivalent” theorem, that is,the conditions of variational selfzdjolntmess.

We shall therefore say that the acting Newtonian

forces are self-adjoint when they satisfy Theorem 2,4.1. Similarly, we shall say that the
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Newtonian forces are nonselfadjoint when either nonlinear in the velocities or viokate some
of conditions (2.4, 7 ).

Clearly, the condition of Hnearity in the velocitles is highly restrictive for the cbjectives
of this paper. This restriction can be lifted by passing from the kinematical form (2.4.5 ) to
an equivalent geperal form induced by a class Cﬂ;nd regular matrix of factor functions. And
indeed, a simple reformulation of the procedure to derive Theorem 2. 4,1 yields the followingio

THEOREM 2.4.2: A necessaxry and sufficient condition for a Newtoniau system in the

form {here referred to as the peneral form in configuration space)

g en . 2
ﬂki(b,q,s)) 9 +B th9,9)=0, k=1,2-,m , ﬁm‘,B 6 C(R) (24.3)

to be selfadjoint in & region R of peints {t,q, ) is that all the following conditions

f.. =4, oLrP _Qﬁﬂ‘ (Rbpa)
Ly T ; T = )

(DB o O A- { b)

B 98 D . K } 2.4k.l0
244 MY T 2857+ 9 Qgrf

QB Wi _ 12 1482 (3 ) (2.410¢)

oqs | g 2 {’Df 0‘?“}

are identically verified in R,

Conditions of selfadjointness (2. 4.10) now clearly admit a nonlinear dependence in the
velocities (as well as the cooxdinates). Notice that the regularity condition on the equations
of motion imples that the functional determinant is nonnuil in R (except a finite numbex of
isolated zeros), l.e., [Akil[g) 4:!}.

In conclusion, the variational approach to selfadjointness results in a set of conditions
on the Ak[ and Bk terms of the equations motion which must be Identically verified along any
admissible path (i.e., trajectory in q-space which possesses the same continuity properties
of the solution) cr, moxe empirica]ly,as functions. The important point is that the [dentification
whether 3 system is selfadjoint or not does not demand the knowledge of a solution, This is
crucial for our program, And indeed, If the methods for, say, the computaticn of 2 Lagranglan
demand the prior lmowledge of a solutior, they would be of little practical significance,

$imple examples of selfadjoint systems are given by

.o (2.&.la
M + K2 zZoO, )
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Mar ot ?b:;/n =9, (24028)

. - ve ” . ar - - 2
U"—"'Q?l) Ge t 2(‘11“'7&)9.@,"" 9.9 “?172."7,72""31 9.=9 (Z.A.ilc)
205+ 92) G+ (§,%24)8,# 091~ %9 1992 2 77

Equally simple examples of nonselfadjoint systems axe given by
= Q‘M);:“ -+ K) =, T #F 9,
L 4 v m, Aty F Y Em O
Lo * T axrs (rlo Swmn. }, 273 (M“‘“Dat’w“
20,4900 §, + (40729,)F 2+ 9% %~ ?a?ﬂ“iﬁzu 9, @_ )
(4,+242) §, + 24+ 92) T2 +%%2- %% 9% tx %

CZ{-. {3a)

The reader is here urged to verify that the mere division of Eqs, (2. 4,19 by the mass is
sufficient to break the seladjointness. As we shall see, this means that a Lagrangian for

the ordered direct representation of the system exist in 1ts"natural"form (2.4.12b} as derived
from Newton's second law, and not in the equivalent form (2, 4.13b). Equally intriguing is the
fact that the simple permutation of the oxdering in the transition from Egs. (2.4.12¢) to their
equivalent form (2, 4,{3C) is sufficient to break the selfadjointness of the system. This is

the reason, as we shall see better later on, for the necessity of the use of the concept of ordering
in the notion of amalytic representation, The [nterested reader is here urged to work out

cther cases, Notice that Theorem 2. 4,] triviglly extends to the equations of motion In the
"patural form" (2. 4. 8), i e., the multiplication of the acceleration by the mass terms

leaves the conditions of selfadjointness unaffected, This is the reason why we have used
Theorem 2, 4,1 for the definition of the notion of selfadjointness (or nonselfadjoinmess) for
Newtonian forces (rather than systems). Equivalently, the reader can reach the same results

by using the context of Theorem 2, 4,2 with the A-terms substituted with the mass tensor,
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TABLE 2. 5: THE FUNDAMENTAL ANALYTIC THEOREMS OF THE INVERSE PROBLEM

The significance of the variational approach to selfadjointmess for our program is expressed

by the following property which will have a significant impact at virtually all levels of our analysis.

THEOREM 2.35.}: Lagrange's equations in class C4 and regpular Lagrangians

are vaTiationally selfedjoint,

The proof of the property can be conducted in a number of ways. First}one can compute the

variational forms of Lagrange's equations

—_ a d D3I —"D“I A’ - u/uxo,@.ﬁ!&)
"SK(”L):%(S Lel) < ;—{—faq;b“ (’c)fig-z’ =1

RN RIS TR N R ST M-S 251k
3= l(’bﬁ}“?‘?i%%] +2’0§'~’075’}L% +®9£O?j4z, '?LJ)’ (‘ )

and then see that they coincide with their adjoint system computed via Eqs. (2. 4,2 ). Equiva-
lently, one can see that Eqs. (2. 4 ) satisty all the conditions of Theorem 2.4.2, The conditions
that the Lagrangians be (at Ieast) of class C‘ ig introduced to ensure the continuity of the
fourth-order derivatives appearing in the adjoint system and it is a customary condition of the
Calculus of Variations, The case when a Lagrangian satisfies weaker continuity conditions will be
ignored because inessential for the objective of this paper. Theorem 2, 5,1 extends to Lagrangians
which are degenerate (2lso sometimes called nonstandard or singular), that is, when the Hessian
deb L_______“sz—- . ) =0 (2-5.2)
> ‘% PN ? )
is identically null as a function,afthough the methodological context is now considerably more
involved because it demands the reformulation of the variational approach to selfadjointness on
the hypersurface of the subsidiary constraints which are implicit in the degeneracy propezty.
This aspect too is inessential for our objettives and it will be ignored.
The reader should keep in mind that the property expressed by Theozem 2, 5.1 goes back
to C.G. ;ACOBIiO,aas indicated in Table 2.2. And indeed, the equations of variation of
Lagrange's equations, ]'k(ﬂ}_)= 0,(zather than the variational forms IK (m)) are customarily called
Jacobi's equations in the literature of the Calculus of Variations, Notice that while the former
equations are generally nonlinear in qk and &k, the associatedJacobi's equations are always
linear in 4‘Lk and /}Lk (both equations are always lingar in the second-order derivatives ).
As a Tesult, while the former equations are generally of quite difficult sclution (as typical of
nonlinear equations), the latter can always be solved with coaventional techniques. Conceivably,

the joint use of Lagrange’s equations and their associated Jacobl's equations could be useful for
the study of nonlinear systems, although I am not aware of studies along this Hne.
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The first important consequence of the seladjointness property of Lagrange’s equations
for "ali" Lagrangians (of the considered class) is expressed by the following theorem which
a

has been called in ref. the Fundamental Analytic Theorem for configuration space formulations.

THEOREM 2, 5. 2: A necessary and sufficient condition for a quasilinear system of

second-order ordinary differential equations which is well-defined, of {at least) class

C2 and zegular in a star-shaped region R* of its variables to admit an ordered direct

analytic representation in terms of Lagrange's equations (without external terms} in

first-order Lagrangians, is that the system is selfadjoint in R*.
+

The content of this theorem was, in the final analysis, HELMHOLTZ s Intuition. The
conditions of selfadjointmess of the equations of motior result to be not only necessary, from

the selfadjointness of Lagrange's equations, but also sufficient. Under the conditions of the

theorem, we shall therefore write C.z @
- e R el ] ! Reaul. (_.2_5.3)
}_z_kcq)] = [HK‘.C} +Bl | Relkegulor,
S
Sa
g:l,zz..¢,4'\’

where SA stands for selfadjointness here interpreted as a property of the left-hand-side and
as a condition for the right-hand-side.

Theorem 2.5.2 is presented in the Newtonian limit of the field theoretical proof I worked
out in ref.3 . It contains a number of restricticis which are customarily ignored in previous
treatments. Ag such, they deserve a brief comment. The minimal continuity conditions (the
system is of at Ieast ¢lass Cz) corresponds to the continuity property L& C4. It can be reduced
by using canonical formulations, but in any case it is inessental for this paper (for relativity
considerationsall systems will be assumed to be of ¢class C * in ordex to be able to incorporate
geometrical methods), The condition of regularity is nontrivial, And indeed, the extension
of Theorem 2. 5.2 to degenerate systems is expected to exist , but lts explicit proof is
expected to be considerably more involved, as typical of all systems with (generally nonintegrable)
siubsidiary constraints. In any case the condition of regularity is introduced on precautiopal grounds,
in the sense that the removal of the condition of regularity should be performed after an explicit
proof has appeared in the literature. The condition of ordering has a more subtle meaning. If

it is not introduced in the notion of analytic Tepresentation, one would arrive at the

conclusion that , say, the nonselfadjoint system (2. 4,13 ) admits a2 dizect analytic representation
(that is, the two members of Egs. (2.5.3 ) would be identified as systems, rather than equation
per equation}. The most important restriction which I have introduced in Theorem 2.5.2 is that
the systems are well behaved in a star-shaped (rather than an ordinary) region R*. This means

that they must be well behaved for all values t'=t, q'= T q andg'= ‘tc'i,with 0T %1,
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and for (t,q,d) €R. This restriction is typical of the central methedological tool used in the
proof, the converse of the Poincare lemma,as formulated within the context of the celculus of
differential form (see, for instance, ref. 4 a) The practical meaning of this condition wilt be
commented below in this table, Its removal is a rather delicate problem which is left to the
interested re searcher,

A first significance of the use of the converse of the Poincare’!emma in the proof of
Theorem 2.5.2 is that it actually ailows the computation of a solution, that is a Lagrangian,
under the given integrability conditions, We reach in this way the third fundamental analytic

theorem of the Inverse Problem, which can be formulated as follows.

7
22
THEOQOREM 2.5.3: A Lagrangian for the ordered direct analytic representation of
Newtonian systems f{

[ P E9,4)9 Ce Bt q,q)_[ (2.5. 4]

which are well-defined, of (at least) class Cz, regular and selfadjoint in a star-shaped

region of the points (t,q,q) is given by

L(ta,q)= KEq,§)+ D ha)g + C(hq), E-55)

whexe the (-2) functions K, Dk and C are a solution of the quasilinear, overdetermined

-/
system of partial differential equations

>k _ H ) {2.5.6a)
oo, 1 * )
2 = ) = (D i ——H) t cgr .—Q'EC)?!

2. (hg), (256
QC /D.E!:,. -8B, __(Di 7

Qi DL g

R R R L L)l Wiy,
+Q,?.@t Q9iogt 2(@¢" of 56c)
g:.venby "

K=4g Jd'c [ elzﬁ;}.[_bﬂ,té)\]éj(&,qﬂﬁ)} (2.5.7a)
D, = Lgae{’t'z: Zgj.(bqu)]sﬁ (2.5.75)
%:thi'& \)V(, (b,z9) . (2.5.7¢)

- 251 -

The practi cal meaning of the restriction to a star-shaped reglon can now be
identified. In essence, it ensures the existence of the integrats (2.5.7), and, thus, a l...agrangian.
Notice that there is no need to verify the consistency of the overdetermined system (2., 5, G}
under the conditions of selfadjointness in R*, As a matter of fact‘:’the necessit y and sufficiency
of the conditions of selfadjointness d¥eprecisely centered on the proof that such a system is
congistent. In turn, this illustrates the nontriviality of the proof of Theorem 2. 5. 2. Notce
that Egs. (2,5, 7 ) must be compnted in sequential order, Notice also that the method of Theorem
2,5.3 appears to be computerizable, This method was introduced in :r:e:f.ab for the field theore-
tical case and then its Newtonian reduction was presented in ref.

As an example, the reader is urged to verify that the method of Theorem 2, 5.3 applies for

system (2.4,12¢), yielding as a Lagrangian . - R
(924 92)+ 9 6.+ 6,9+ £ (929 79792)  (25.9)
-5 (97 9) 992 ~ £ {979 +9,%).

TABLE 2, 6: 'THE INDIRECT LAGRANGIAN REPRESENTATIONS

The furdamental analytic theorems of the Inverse Problem have little pratical significance

in the given form, particularly for the objective of this paper, because the Newtonian systems

with forces not derivable from a potential are always nonselfadjoint as derived from Newton's

second law {that is, ma - ¥ = 0), As a result, 2 Lagrangian for their analytic representation
according to Theorems 2.5.2 and 2, 5.3 does not exist . More generally, the nonselfadjointmess
of a quasilinear system of ordinary differentizl equations is the rule and its selfadjointness is

the exception, Perhaps, this is a reason why active studies on the Inverse Problem were virtually
abandoned since the early 30°s, as indicated in Table 2. 2,

Clearly, to reach a  methodology of practical usefulness for the problem of the relativity
laws of Newtonian systems with forces not deriveble from a potential, I had to confront this 2¢,3 o
issue, The results of my studies were first presented for the field theoretical profile in ref,
and then the Newtonian reduction was worked out in Ief.2 . Here is a summary.

Theorems 2.5.2 and 2, 5.3 are formulated for "direct” aralytic representations. Clearly,

a first broadening of the representational capability of these theoremscan be achieved by

removing this restriction and considering instead the broader case of “indirect” representations.




- 252 -

2b 2b
This immediately yields the following !

THEOREM 2. 6.1: A necessary and sufficient condition for Newtonian systems
z
o - < 1l ﬁ -
\_Hm (k,9,4)9 + B (bg,4) ] HCQ—O ks 12,00, m,(26.1)

vhich are of at least class 02 , regular and nonselfadjoint in a region R of the

variables, to admit the ordered indirect apalytic representation
T B ) %R
(L @1 2 [he (B 87+ ')c' 1.7, (ze?)
k sp LK oy ‘srwsa Jsp !
ig that all the following conditions of selfadjeintness in the equivalent system

A%, = A% }(Dﬂ*;f :Qﬂnﬂc )(B"‘): (W(8) . (2-6.34)

2§
PLIAND 3 p* g* b)(B),
(bc}i r;)? '?'{fbt-*?q.c} Y, { ) ()(_2535)
VBT B 152 ,gk2 (’DB* 8%
qiJ —Qqc _-Z{QE ?QQ} r fo')’ (2-6.3c)

are verified and such system is well behaved Ia 2 star-shaped extension R* of R,

In this case a Lagrangian s given by

L*(ka,9) = K¥(h4,5) + chr,q)?"‘,i Cth9),
o (};LM %U?" A% (t,2]]4 { (g,75), G- 4)
D,&K ) U:f*'ﬁ ZZ?;(VE?)]‘?J'; (2.6.4¢)
¥z qf L:_e(T W* (b, 29y

% 4 [RBY  0BY Pl _gek*_(z.s.lfe)
YE 2 \agl Q?") 0giogl 9giogl)

Cﬂ- :QD#} _ B,,t —-(Dkx {BEIQ*
TR T YT

’DZK“‘ ,{_(@B’? DB Y]k

(2-6-4a)

(2-6-4°)

(26.4%)
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The above theorem clarly produces a nontrivial broadening of the arena of applicability
of the Inverse Problem with the inclusion of genuine nonconservative systems. For instance,

the use of Theorem 2. 6.1 for the damped oscﬂlator yields the indirect analytic representation

BRI QL‘] Le (q + § g +ws QJHSQJC:’-Q,@.L.EA}

Lavg | 29
i, . 2.6.55)
L=e 3_—(7 - wkq) ¢

and for the nonlinear, nonconservative system oo
aw 3_ - . - % 2 C}@
9.*——‘?;‘?:*3?23192 _—?’ﬁz =0, C—Z.é.S)
92 +-—‘iz‘?g_+‘§»‘} 7:‘??, ~—~7ch M50

we have
Lc?: T+ 92.

L = ez fzie;', +9&) (2.6.7)

However, Theorem 2. 6.1 is still restxictive in the sense that it applies only when a solution
of Y.he coaditions of selfadjointmess (2.6, 3 } in the unknown factor functions hki (with fixed
Akl and Bk terms) exists. Clearly, such a system is generally overdetermined and, as such L
a solution does not necessarily exist .,

We reach in this way 2 point which will apparently be crucial for relativity considerations.
Theorem 2. 6.1 essentially characterizes a class of nonconservative systems (to be better
identified later on in Table 2.9 ) which admits an anmalytic representation within the coordinate

system of its experimental detection, And indeed, any further extension of the representational

capability of the Inverse Problem demands the use of coordinate transformations. In turn, this
necessarily demands the abandonement of the (inertial) system of the experimental set up and
the construction of a new system of coordinates.

At this point a second crucial aspect emerges, Suppose that the forces not derivable from
a potential are such to render inconsistent the integrability conditions for the existence ofa
Lagrangian in the Cartesian coordinates of its experimental verification, here assumed as
caraterizing an inertial system. Can (class Cz, invertible} transformations t—»t'and qkw—3> q‘k
be identified in such a way that (I) a Lagrangian exists in such new coordinate system, (II) this
new system of coordinate is equally realizable with experimental sebups and (I0) it is inertial.
As we shall see, the asnwer to problem (I) is afferrmative, but that toproblems (II) and (HI) is

generally negative,
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These problems can be more effectively treated within the context of caronical formulations
and, as such, we shall consider them in more details later on, At this point it is sufficient to
rote that an ordinary (generally nonlinear) point transformation t—»t' =t and q —bq'k q'k(q)
is insufficient to produce a Lagrangian under the assumed condition (inconsistency of system
(2.6.3 } for given A and B terms, i, e., for given implicit functions). And indeed, the existence
of a Lagrangian in such new system imples the existence of also alagrangian in the old system
via an inverse transform, a part the multiplication of the {regulat) Jacobian matrix, But then
this matrix would represent the matrix of the salution of system (2, 6.3 }, contrary to assumption,
In conclusion, the transformations capable of inducing a Lagrangian when the conditions of
preduce a change in the structure of the system such
{2. 6.3 ). As we shall

Theorem 2, 6.1 are violated must
that its Image in the original variables leads to an inconsistent system
see these transformations exists and are of the type

E—E(t9,9) (2.6.8]

9= ¢'5(ta,§)  £=re—m,
as familiar in the Calculus of variations {see, for instance, ref. l”:b), although rarely used in
Analytic Mechanics.In particular,a generally nonlinear dependence in the velocities will Tesult to
be essential to produce the desired result, In turn, this implies, in general, the practical
impossibility of realizing the new systemwof coordinates with an experimental set up and, most
importantly, they are generally nonjnextial.

The net result is that the class of systems whose relativity laws we are interested in is such
that they admit a Lagrangian representation in a new coordinate system which is generally
noninertial and nonrealizable in experiments, This is the reason why, as Indicated in Section I,
we are primarily interested in the study of the relativity laws of the systemsconsidered in the
representation space of their experimental veriﬁcaﬁon/and we shall leave the study of the same
relativity profile in equivalent systems to the interested researcher,

The significance of the Inverse Problem as a methodological backing, however pexsists,
as will be more transparent when considering the complementary Lie-admissible Problem of
Section 3. We shall therefore continue to outline the former methodology.

TABLE 2.7: THE INDEPENDENT INVERSE PROBLEM FOR HAMILTONIAN FORMULATIONS.

One of the int riguing aspects of the Inverse Problem is that it can be equivalently formulated
for Hamiltonian formulations without any prior knowledge of a Lagrangian, That is, given a

Newtonian system, one can construct an equivalent system of first-order differential equations
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and identify within this context the integrability cenditions for the existence of a Hamiltonian,
The procedure can be summarized as follows. Consider a Newtonian system in the general form

(2.6.1 ) and introduce arbitrary prescriptions for the characterization of new {independent)
variables, say, ¥y 1o the form

z.7.1
G Ur‘i‘i 3) “k-.if"‘?,‘j)q + ﬁ!c(t-'qf“)-' (_ )

which are such to admit a unique system of (single-valued) implcit functions in the velocities,
IS
§ hay). (2-7.2)

The subsitution of this latter system in Eqs. (2.4.9 ) then yields the equivalent first-order

system R

o o xi L6, 5) 4 P tha0) \F s ,,(,,-l-(.‘;;")#g(é’ 7.24)
0) U’") Tl G+ e (B99) l

o ! Sal
= e i ,Ph—ﬂsf%g‘+ﬁg;%+st¢t,q,3). (@7 ka)

2
The variational approach to selfadjointness then yields the following

THEOREM 2. 7.1: A necessary and sufficient condition for the system of 2n fixst

order ordinary differential equations

v (E,a) a:" -+ D/A LE, A) :f,j/ }L:‘.Z, ...’:a_mj@,?_ Sa)
U') @) o h) () ;‘5 i
) (Gtr l‘m ‘0 {f{)) ( (Uvj“ (_lrm P]?\Q’) f @.?.5 )

whick is of {at Ieast) class C!1 and regular in a region R of the variables (t,a)
to be selfadjoint in R, is that all the following conditions

C/lAV+CV/A :-'9/
(Dc,uv Q 9 _‘:DJ

(_2_ 7. 6a)

D2 (2.7.6b)

Da? + DgM QQ"
Vp _DOp D¢
Qt 2ga”  ‘or

%,V:[,Z,---,lﬂ"

(2.7.6<)

are identically satisfied in R,
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Notice that the .identification of the conditions of selfadjointness is quite simple in the
space of the d-variables (via a simple application of the approach of Table 2,4.). However, the
formulation of the same conditions in the space of the qk, and Ve variables is considerably more

involved, The reader should also be aware that the y-variables are not necessarily canonical, i.e.,

of the type ¥y = 2 L/ ? ék, trivially, because a Lagrangian for the representation of the original
system (2.6, 4. ) is unknown,

COROLLARY 2. 7.1, A: When System (2.7.5a) i 5 of the form

Wy & --'1/“(.‘::“’):0) @-7-75\}

o — L ax
MEn M M)’ Cz-?- 75}

L _
CIE
{mrfn O'Hx'n
the conditions of selfadjointness reduce to
(D_-'-Z"_ _9Zv =0, jyelyees, 2. 218/
DAY Ot !

And indeed, matrix (2. 7. 7b) is a trivial solution with constant coefficient of Eqgs. (2. 7. &0.)
and (2.7.6b). This is the first contact with the symplectic geometry, And indeed, structure
(2. 7. 7b) is the familiar fundamental symplectlc form, For more comments in this respect
see Table 2, 8,

The canonical equivalent of the selfadjointness property of Lagrange's equations, Theorem

2,5,1, can now be formulated as follows.za

THEOREM 2. 7.2: Hamilton's equations {without external terms)

Wy d,"~g_:: =0, (&'} = iq p} b2 een,m, (27.9)

in Hamiltonians of at least class C are always variationally selfadjoint,

Again, the proof of this fimdamental property by using the conventional way of writing Hamilton's

equations

fa H ‘o DR

=@ - = =0 2.7. 1o
k’k + ;9 P ' € )
is rather involved, Foxr the form of the unified notation (2. 7.9 ) the proof of the same property
is trivial. And indeed, by using Corollary 2, 7.1 A, the conditions of selfadjointness reduce
to the commutativity of the second order derivatives in the a~-variables which is implicit in the

assumed continuity conditions.
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For geometrical reasons we call equations of type (2. 7.74.) covariant normal form of

Newton's equations. It can be quite simply constructed as follows. Comsider the origiral system

in the {unique) kinematical form (2.4. 5 ) and introduce the prescriptions (2.7, 2. }. Then

© = AN AL
(QJ"‘) = jk , L_:,,JA) = :L ’ ” =_2L‘%"; [.f (&a, 4) - ]
(2.7. ")

the notation

yields a covariant normal form, (2- 7.7a)
The integrability conditions for the existence of a Hamiltenian are then easily identified.

THEOREM 2. 7. 3: A necessaxy and sufficient condition for a Newtonjan system

in the covariant normal form (2. 7.7 &) which is of at Ieast class Cl and well-defined

in a star-shaped region R* of its variables ro admit the ordered direct analytic

representation in terms of Hamilton's equations (2.7, 9 ), i.e.,

sV = ""_(DH 12 .. g, (2.712)
Wy &= T = 0 d” = 55 8 '

ig that each and all the following conditions of selfadjointness

D = (2.7-13)

— =0

Q 0."' oM
are identically verified in R*, in which case a Hamiltonian is given by
I TP z
Hika) = a 5 de T (b, 2a), (2.7.1%)
o M

The proof is trivial. Conditions (2.7.13) are necessary and sufficient for the one -form
~ = lnd
£, = 2,da tobeexact, i.e
— 4 -— t A |

o aahed T odi =2 dan (2.7.15)

— T = —o o

2a
The simplicity of the praof of the Theorem 2.7.3 (called in ref, the Fundamental Analytic

Theorem for canonical formulations) should be compared with the rather involved nature of the

proof for the configuration space case, 1.e., Theorem 2.5.2 (refs.sb J.

In practice, the gk fuctions of presciptions {2, 7, Z ) can be interpreted as the unknowns,
and the conditions of selfadjointness (2. 7. 8 ) can be used to #tempt & solution in these
functions, If a solution exists, the Yy variables are cancnical {i.e., the a-variahles span

a phase space). As a simple example, the particle with damping force
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o, (z.z.ré)

SR

(q—r&qj HSa:

is characterized by a nonselfadjoint ore-dimensional, second-order equation, As such,
Theorem 2.5.2 does not apply, Instead of using Theorem 2, 6,1, cne can use the independent
approach to the computation of a Hamiltonian indicated in this section, Eqs, (2.7, 8 Yin

the unkmown function g(t, q,y) yield, as a solution, the form

E ~ _ =P =Camoi, CQ«—{-”}
=z e ;9= 6’ 4 lﬁ
A Hamiltonian, via Eq. (2.7.]4 ) is then given by

H (,b,a):&ife’l@ z,(z2) *‘IEL’M () = & —:-(}/3 -4 (27 (2)

A Lagrangian, if needed, can then be computed via an {inverse) Legendre transform

by reaching the expression

L= dbug - {9

The aspect which is relevant for relativity considerations is that the system of partial

(< 7.19)

differential equations {2. 7. 8) in the uaknown fimections gk of prescriptions (2. 7. 2) is generalty
overdetermined and, as such, a solution does not necessarily exists. This was, after all
expected from the content of Table 2, 6. And indeed, this'property is the canenical counterpart
of the "lack of universality"” of Theorem 2. 64 on indirect Lagrangian representations. The
emphasis is however different. The “lack of universality" of Theorem 2,7, 3 for Newtonian
systems with forces not derivable from a potential implies the inability, for the systems consi-
dered, of introducing 2 central methodological tool of the Galllei relativity, the canonical
formalism, in the inertial system of Cartesiam coordinates of the experimental verification

and their cancnically conjugate momenta,

TABLE 2, 8: ANALYTIC, ALGEBRAIC AND GEOMETRICAL SIGNIFICANCE OF THE CONDITIONS

OF VARIATIONAL SELFADJOINTNESS . To make further progress, we must reinspect the

conditions of selfadjointmess for general covariant forms, Eqs. (2.7.6 ) and identify their

methodological significance, It is advisable to consider first autonomous systems, that is,
systems without an explicit dependence on time, and inspect conditions (2.7, 7 ) within the

context of the following three methodological aspects.
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1. Analytic significance of the conditions of variational selfadjointness. For the case of auto-

nomoeus systems the equations at hand are given hy
= .81
[pa)= Dot povian, 58

and their conditions of selfadjointness reduce to

JZ v '—52‘/ =9, (2-%-2a)
Q. (DJZM (DJ?::? ~o, (2.6.2b)
(00 OF qfx Da¥ (2.8.2¢)

= Q.
‘D a~ Datr
It is easy to see that 2 solution of Fqs. (2.8,24) and (2. 8.2b) can always be written

_ PRy DRy 2.8-2
JZ},W - ’—D—f" T et ¢ )

As a result, the conditions of variational selfadjointness are the integrability conditions for

the existence of an ordered direct analytic Tepresentation in terms of Birkhoff's equations

I ] (z §.be)
(a( f (Z‘U (28&—5)
Only as & particular case under the hmit

ﬁ (a) __> /M/Av (2.8-5)

the conditicns of selfad]ommess ensure the existence of an analytic representation in terms

(rather than Hamilton's equatlons), i.e ,

(2R 200 )5 > ZJQ -

QoY @a’“ d\P JSR

of Hamilton's equations.

Regrettably, Birkhoff's equations have remained largely ignored in the literature of
Analytic Mecharics since thelr identification in ref.lsa', with only few exceptions known to me
such as refs.‘Sb ) lf':f‘ One reason might be due to the fact that they are actually inessential
in the sense that, by using geometrical arguments (see below in this table) they can always
be reduced to a Hamiltonian form. As a result, they do not play a fundamentzal role within
the context of the methedology of the Inverse Problem, However, the study of nonconservative
systems brings into focus a number of aspects which are ignorable for conservative systems.
In particular, Birkhoff's equations will emerge as possessing a precise methodological function
within the coatext of the Lie-Admissible Problem (see Table 3.4 ). As a msult, they emerge
as possessing a significant role for our relativity treatment of nonconservative systems.

The aspect which must be here stressed in that Birkhoff's equations axe essentially

equivalent, cn methodological grounds, te Hamilton's equations, even though there existya
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number of predicteble technical differences,
First of all Birkhoff's equations are derivable via transforms of second-order eguations
in full analogy with the derivation of Hamilton's equations via the Legendre transform, And
indeed, the general method of transforming second-order iato first-order systems outlined
in Table 2, 7 yields precisely Birkhoff's equations under the conditions of selfadjointness,
In particular, this generalized transform can be performed without any necessary knowledge
of a Lagrangian (if a Lagrangian is known, the same method can be appiied to Lagrange's
equations by turning them into Birkhoff's equations), The main difference between Hamilton's
and Birkhoff's equations is due to the fact that the variables of the former span a phase space
while this is not necessarily the case for the variables of the latter, This is the same as saying
that the generalized transform of Table 2, 7 is generally noncanonical (although there exists
a class of Birkhoff's equations with R -quantities other than those of Eqs, (2. 8.5 } which
characterizesa sphace space, see ref.EIb ). This might be considered as a drawback by some.
My personal attitude is that Birkhoff's equations are potentizlly significant precisely because
they do not span a phase space (see the problem of computation of first integrals of Table 2,(2).
Secendly, Birkhoff's equations possess a dyramical meaning fully paxallel to that of
Hamilton's equations. This can be seen as follows. Both equations can be writter in the

contravariant forms

cn et QB (i) = ()T, (2F6)

20
DaY
a’ - R PH (“) =0, () (J?_N) (2.8-6b)

and, thus, both equations yield a fully defined time evolution law, i.e,,
A SR g _RE a0 T
A= s = 5@ 50 = LR
AR QA D
= @qr b T Opn g™
e 228 4n _ @1 PRRL = [ K2 81
Cba (Da

The main difference is that the brackets of the time evolution law of Hamilton's equations

CZ K. 7a)

are the cenventicnal Poisson brackets , while those of Birkhoff's equations are the so-called

generalized Poisson brackets. The important point is that both brackets satisfy the Lie algebra

identities, l.e. ,Verify the laws
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AeB +Boh = O, (2..82)

-(ﬁoB)oC s (Boc)od +(CoR)oB =0 (2.9.8L)

- *
where ACB= EL,BI{. S LA,B} (“)(fcr details see below in this table). As a mager  of fact,

this property is so relevant that Birkhoff's equations can be interpreted as a Lie covering of

Hamilton's equations, that is, a generalization of the latter which preserves the underlying Lie

algebra structure via the brackets of the time evolution law. On similar grounds, the generalized

transform of second-order into selfadjoint first-order systems (Table 2. 7) can be interpreted as

a Lie covering of the Lependre transform, that is, a generalization of the latter which preserves

the underlying Lie algebra structure. To restate these {indings in the language of the Inverse
Froblem, Birkhoff's equations aze the most general form of selfadjoint, first-order,
regular,analytic equations, where the regularity property is expressed by the nondegeneracy
of the matrix (J-L}wr )

Thirdly, Birkhoff's equations are derivable from a variational prirciple in 2 way fully parallel
to that of Hamilton's equations, although, in a predictable generalized way. This is a typical
"casework" for the Inverse Problem. The sclution is straightforward and can be written

Qi DF ;M
Sa%= Jgs{[’ F(a, q) 9“’ (jib@pp @aﬂ) da (2.9.94)

ja&[(%v ?a{ii)g‘w s I‘Y“ -
Flﬁ»d):..qfiﬂdz'z A&vézmﬂéﬂﬁf? (2.8.95)

The Hamiltonian limit is significant because different tham the conventional Hamilton's principle

for phase space formaulations, i.e,,

S0 = 8 )" L™ ] - e {g BT L =
‘ (2.9.10)

24 2b,5a,5b
And indeed, wnder limit (2.8.% ) we have 4,25,

R /(t:;% Flaga) :[h;{i'[— Y

£
%: 2- {d"ar (DF (.(' _[ !_ v \/___'DH')S}-"
gﬂ (dl_iﬁ{fq)dﬁh (-DO\ ) ¢ &9{ GU “
2 , (2.8-11b)

V&“+H]’@éﬂk]
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Notice that variational principles (2. 8,10) and (2. 8.1k ) are equivalent because they vield the

same equations, Hamilton’s equations, cnly written in different notations.However, algorithms

(2.8.10) and (2. 8. |ib) are generally nonequivalent as variational problems, because the former
belongs to the class of variational problems with fixed erd points, while the latter is a (subcase)

of the so-called Problem of Bolza of the Caleulus of Variations ,.QThe point is that principle

(2. 8.1l b) appears to be preferable over principle (2. 8.10), particularly for xelativity considerations,
because it is directly expressed in terms of the fundamental symplectic structure, while this
structure is undefinable for principle (2. 8.40). In turn, this has a number of consequences
(e. g., for the transformation theory) of crucial relevance for relativity problems.

To summarize, the analytic significance of the conditions of variational selfadjointmess for

first-order sistemsis that of iden-tl'_f__y_i_ng z Lie algebra preserving covering of Hamilton's equa-

tions, As a particular case for the covariant normal forms (2, 7.7} they constitute the integra-

bility conditions for the existence of a Hamiltonian,

I, Algebraic significance of the conditions of variational selfadjointmess. For the brackets

% v, b
8,31 = 28 M) & (2.8.12)
w  Qa” /
the Lie algebra identities, Eqs. {2.8.& ), are equivalent to the conditions
(1.2.13a)

(Jz v J)/V/"‘ -

PR (j)jr’ QR &’ff(brp- ~ o, (28-135)
Dol @af Oa f
for all tensors J?, with a nontrivial dependence in the a-variables (i.e., other than constants).

It is a simple exercise to prove that Egs, (2.8.13) are equivalent to conditions of self-
adjointness (2. 8.2 &) and (2, 8.2'b), This property was apparently ldfnuﬁegl for the first time
(independently from the context of the Inverse Problem) by W.PAULL  .Of course, this equivalence
crucially depends on the regularity of the matrix («ﬂ. IRy } and, more specifically, on the

existence (and regularity) of the inverse matrix

(8*7) s 47¢ Ry = A Rer=87. (2.8

On equivalent grounds, this property can be seen as follows. It is known that the covariant

. characterizes the "inverse" of the conventional Poisson brackets,

_2b29" 08" 2

op 9B 7
RIS (2.8.15)

form (W) 1. v/ y= (v )_1

ie,

thie conventional ngrange brackets W
Ddh}'- 78] (B &4

{Q’ —B(A) 06 )“(-D“l?)
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which satisfy the identities

ﬂgg+ (8,0} =
{B (_}{ + &g hedd - {ﬂ By=2.

On similar grounds, Birkhoff's tensor J%m(, interpreted as the covariant form of a general

v
Lie-tensor R}A , L.e., according to Bq. {2.8,6b), characterizes the "inverse" of the generalized

{2.8.16a)

(2.8.165)

brackets,i.e., the generalized Lagrange brackets

«  Dal Da”
{8y =22 L@ SE

Poisson

(2-e.41)

The point is that these generslized brackets pre serve identities (2. 8. }6 ). The analogy is then

completed by the properties

ff‘;‘ L¢:, é?“]{ée}c;&zl 5"’
;:6‘1‘ Lf4,‘£] {fh,qeq_l ');

which are identically verified by the conventicnal and the generalized brackets.

In conclusion, the algebraic significance of the conditions of varintional selfadjointness for
first-order systems is that their subset {2.8.24) and (2. 8.2b) is equivalent to the Lie algebra
identities (under the tacit regularity condition). In particular, they recover the conventional
Poisson brackets for the particular case LEMV, = v This confirms the Lie covering

(2-8-1%a)

(2-8- 1)

character of Birkhoff's equations over Hamilten's eguations.

111, Geometrical significance of the conditions of variational selfadjointness . Eqs, (2.8, 4 )

can be interpreted as characterizing a vector field on a {Hausdorff, second countable, % -diffe-

rentiable, 2n-dimensional) Manifold M(a,JEZ) with local coordinates a/ and structure
v
R, = R (darda (2-2-19)
A v

Under the conditiory. of regularity, it is easy to see that the conditions of selfadjointness
{2.8.2Q) at}a—d (2. 8.2b) guarantee that this two-form is closed and, thus, M(a,J?Q) is a symplectic

manifold. And indeed, the closure conditions can be written v
' 5 )

i Va3 J‘S)‘r #3 |/
" =, 2(?2(9)
Mo py Jvf_ (S/M 5’“3 C

!

Yy T
‘S}*r O/f; Sf“s

- L%
A f)ufz\’,ﬂfz.

Of‘u“‘)“ (‘Dd\"fv 4
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and coincide with Eqs. (2.8.2 b ) under antisymmetry properties (2. 8.2&.). This result was,
after all, expected from the Lie character of the contravariant version J?f‘vcf JL}L v

course, this geometrical meaning is strictly in local coordinates and, as such, does not realize
the coprdinatefree treatment of symplectic manifolds. Neverthless, the potential sigrificance
for relativity considerations persists.

We can now also say that Bizkhoff's equations consitute a symplectic covering of Hamilten's

equations as the geometrical counterpart of the algebraic property of Birkhoff's equations
of being a Lie covering of Hamilton's equations. This aspect will play a crucial role for Lie-
admissible formulations. Thus, it deserve few comments.

First of all, our unified notation ia*‘}-.: iqk, p k} (which, as indicated earlier, is crucial for
the speedy identification of the conditions of selfadjointness)is net custemarily used in the
available literature of symplectic geornetry§ It is, therefore, of some usefulness to indicate
its equivalence with the conventional notation for phase space variables, Secondly, itis of
some significance, for later needs, to reformulate the conditions for a vector field to be either
globally or locally Hamiltonian within the context of such notation. Finally, the reformulation
of the Lie derivative within such notational setting will also be useful. The reader should again
be aware that we are primarily interested in these notions expressed in local coordinates,

For the rigorous coordinate-free treatment we therefore refer the interested reader to the
existing literature.6

The fundamental symplectic form is customarily writter as the (exterior) two-form

dt)kl\ B(qk =~9{‘}KAB{FP=)' (_2572‘1.)

It is trivially nowhere degenerate and closed. Thus, it is symplectic. In addition, it is exact

because derivable via the (exterior) derivative of a one-form, the canonical form
K 2.8.22
Poelg (2.8.22)
In our notation we shall write for the canonical form

w, =&, a(d\ .._a,"w da’ (2.9.23)
* = pedgt- g

o pr.
The fundamental symplectic form then becomes

oty A n Ao 2(pnta), G529

(the relationship between the forms Uy and t92' or L, and 91_ will be investigated later
ok in Table 2,13).
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The reason for our selection of these forms is that they allow the easy identification of the
parallelism with a general symplectic form
It v , Egs, (2.8.3 ). And indeed, by generalizing Eq. (2. 8,23) into the form

characterized by Birkhoff's tensor

,Io\
= o # 2.8.25)
Rg-2R (o) da” (
we have
s ddl, =ma 98 d rd o’ = _Q&’;)daﬁz\dav
: waY CD‘*" Dat (2.8.26)
(A) da Ada .

Thus, the symplectic form (2. 8./9 ) is exact.
Let Z’u (#) be a (contravariant) vector field in a symplectic manifold M(a,wz). The

fnner product of e with & 2 will be written

- "V, PP w =V d oM
_‘_.wz, LT jw v 8 e @y o, 2 da’ s Buv (2.8»27)
—x Ty = A _?, P _ '_-—/_&eea)‘

We shall say that the vector field zf’ is globally Hamiltonian {or Hamiltonian for short)

when the one-form = is exact, that is, ata point m ¢ M(a,wz) there exists a neighborhood

4
N{m) and a function H(a), the Hamiltonian, on N(m} such that

- W) —'Neta.k = _':H}-g d‘d\"us dHS(D——{-J- Ja\y

— = M oo 0 (2.8.28)
The notation has therefore the following advantages for our program. First of all it clearly
indicates that when the vector field ZF is Hamiltonian, the tensor wﬁ‘, acquires the geome-
trical meaning of lovering the contravariant index M An equivalent meaning then holds
for the tensor 0 2 \'.: but, this time, for raising covariant indeces, Secondly, the notation
aliows a geometrical formulation of what we have called the Fundamental Analytic Theorem of the
Inverse Problem for canonical formulations, Theorem 2. 7. 3.
And indeed, the integrability conditions for the one-form -~ L & to be exact are precisely
the conditions of selfadjointness {2.7.1%), Thus, the Inverse Problem for Hamiltonlan formulations
is, in essence, a formulation in local variahles of the geometrical notion of a vector field of
bejng (globally) Hamiltonian.

However, as is well known, 2 vector field : . is not necessarily (globally) Hamiltonian,
We thefefore - consider the inner product A

—

=% 17, R, T A @r-2)

4
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e

If the one-form = 4

nian, according to the conventional terminology, and Birkhoffian ir our terminology. The aspect

-

is exact, we shall say that the vector field : - is locally Hamilto-

which is relevant for subsequert steps of our analysis is the geometrical analogy between
Hamiltonian and Birkhoffian vector fields, And indeed, in both cases the crucial geometrical
role of lowering the indeces is played by the fundamental tensor of the analytic equations,
the tensor %, v for the forner case and the temsor Jl}ﬂ, for the latter case. The point is that
both tensoxicharacterize a symplectic form. In conclusion, if a vector field islnot Hamilronian
it can be Birkhoffian, in which case the tensor (9}“, {and not w prev ) is the proper tensor for
lowering the indeces,

The next step is the transition from Birkhoffian forms (or vector felds) to a Hamiltonian
form. This is provided by Darboux’s Theorem here presented in the versicn known as the

Darboux-Weinstein Theorem Ge

THEOREM 2.8.1: I___@__E_Ml be a submanifold of a manifold M and let JZZ and LR')g_
be two nowhere degenerate, closed two-forms on M such that :52,_]1\41.1 ﬂ’z |M1
Then there exists a neighborhood N(Ml) and a diffeomorphism f:N(Ml) ~% M such that
(A fm)=mforallm & Ml_g_ng
m R, = Ry

The transformations of this theorem , within the context of our analysis, essentiaily
guarantee that Birkhoff's equations can always be reduced to Hamiltos 's form,
It is in this sense that a Birkhoffian field is locally Hamiltonian. For a reformulation of this
geometrical treatment in local coordinates see the paper by W.SARLET and F. CANTRIJN 43k
in this issue.

b
The reformulation of the Lie derivative 6

. G.lo - 1.8.30
LE L B8l TGO xF O
k=>o v

in our notation is then trivial, Suppose that the vector field ‘-:ﬂ is Hamiltonian, Then the

realization of the generator X of the one-parameter Lie group G (t:) is given by
N —_—n 0
R BRGNS L AP C R g - L(2-9-30)
X = wh’ - %
= — @cx Da (9\Va o

As a result, we can recover the time evolution law of Hamilton's equations via the Lie derivative,
ie., [ -
>_F = X_Es w2 TOF | F,HT, (2.2.32)
= z Qav Dah

by,. at the same time, reaching a geometrical interpretation of conservation laws via the Lie

derivative (when %-F:o).
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A point which will be important for our conjecturect Galilei-admissible covering of the Galilei
relativity is that realization (2. 8.3%2 ) is not unique within the con text of the symplectic geotmetry.
And indeed, as we shall see in more details later on (Table 3. G ), the vecter field T o

be Birkhoffian and still generate a one-paramster group of translations in time. This yields

the "symplectic :overmg " of realization (2 8.%2 ) JZ v ® H , (?_J". 33&)
X* = C(A) —V‘Da“ = Dav Q)cu«
&K F o x{F= A HIF _TF WP (2.2.235)
X¥ Toav oo ’ !

that is, the geometrical interpretation of the time evolution law of Birkhoff's eguations, now
expressed in terms of the generalized Poisson brackets, This concludes our rudimentary remarks

for the autoromous case.

To summarizge, the geometrical significance of the conditions of variational selfadjointmess

of general first-order covariant systems (2. 8.1 ) is that they guarantee that the underlying

geometry is the symplectic geometry for locally Hamiltonian (Birkhoffian in our terminology)

vector fields As a particular case when «= Wy v, the vector fieldsare Hamiltonian,
e e Yoy

The extension of the above findings to the case of nonautonomous systems, that is, systems

with an explicit dependence on time

f= lQ
T ;v ! < 2.8.34
[ I ) a” ~ Lt |7 50, G )
will be esssentially left to the interested reader. Let us only indicate that {a) Birkhoff's equations

%R
LL (DQ\;) » fDH +@E¢ C’:OI (2-#.35)
®ar ok o Db g

which we shall call SARLET -CANTRIJN form and which constitl:ltes the most general first-order

are now extended to the form

form of selfadjoint systems of ordinary differential equationsd, {b) the inderlying algebra is
still a Lie algebra, and (c) the applicable geometry is now that of contact manifolds (rather than
symplectic manifolds). The analytic, algebraic and geomeirical meanings of the conditions of
selfadjointness, now given by the full system (2,7. & ), alsc admit an extenstor to this breader
system, To see it, let us only indicate that conditions (2. 7. & } can be written in the unified

; o -
no@ton o+l =0, (2.8.364)

k)

B CDJ ke _
31' N uai =2 (@-8-2¢¢)
ar
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J& — sz—';.uv )Jl/ua: .»LDJD)_K: [;L/dle;of

-1 M
@ i = EL tla' .i
Q= 0,02, 0., 2m /[Lo:f:, ar=at B (2836}
Under these conditions we can introduce a (2ntl)-dimensional manifold M(é,%) with local
coordinates 3 - equipped with the two form
— ~ _ = . (- &.37
R, =T, (a)daiadd’. J
2 (]
This form is of maximal rank (i, ., its restriction to M(a,JZz) is nowhere degenerate) and it

is closed. Thus, the full set of conditions of 5e1facljoi.nmebss are recessary and sufficient for

the two form JLZ to be a contact form { or structure}. It is an fnstructive exercise for the

interested reader to woxk out the generalization of Bqs. {2.8.28) and (2. 8,29) and see
that the wnderlying analytic equations are indeed of the form (2,8.35 ). A generalization of
Darboux’s theorem for contact manifolds exists 6 and it is applicable for the reduction of
Eqs {2.8.35) to the Hamiltonian form (2.7.]2 ). The Hamiltonian, however, now acquires
an explicit dependence on time, For the same reduction expressed in terms of the transformation
theory, see W, SARLET and F. CANTRIJN. i5b

In conclusion, the conditions of variational selfadjointness provide a symbiotic characte-
rization of certain elementsl aspects of Analytic Mechanics, Lie Algehras and Differential
Geometry. As such, they constitute a vaJuahle arena for the study, in general, of the deep
interrelations among these disciplines and for the study, in particular, of relativity aspects.

TABLE 2,9; THE THEOREM OF INDIRECT UNIVERSALITY OF THE INVERSE PROBLEM ,

We are now sufficiently equipped to outline the following crucial property identified by the
methedology of the Inverse P::ol::lem.2

o
THEOREM 2.9.1: Local, class C  and regular Newtonian systems always admit

an indirect analytic representation in the neighborhood of 2 regular point of

their tocal variables.

‘The proof of this theorem can be outlired according to the following steps.
Step I: It consists of the reduction of Newton's equations as derived from the second law, L e.,

- . - . R
L‘wk’r’l(a - "‘KA('bfﬁr?u)] =& ,rzl',E',.._’N) asxy, =
(2.9.1)

into an equivalent, general covariant first- ordex}form

C., a)e” D Lk, a 2. 2m, M= 3N,
L + )] O, p=lt 4.2)
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via the use of the method of Section 2. 7. This implies, in particular, that the emerging variables
&ak}= %ka’kc& are mot, in general, canonically conj gate and that system (2.9, 2 ) is not,
in general, selfadjoint,

Step 2; Comstruction of 2n equivalent, general, first-order, covariant and selfadjoint fomm.,
This consu'uction can be done as follows, The "degrees of freedom" at hand are constatuted by
the functions g (t q, y) of prescriptions (2. 7. 2) and an additional set of 4n2 functions h (!: a}
whick are of class C and whose matrix (h") is regular in the neighborhood of the cons1dered
(regural)pomt (t,2) and we write 7R

Cbﬁ)LC e af + D, 6 | [JZ*F&P— fr],;ﬂ‘;@-‘?»?’)

where now SA stands for a condition on the a.m.lcnovnxgk and h;'

that, in the neighborhood of a regular point, it is consistent, namely, it always admit a solution
ok I 17
in g~ and h}‘v‘ . See In this respect W, SARLET and F, ANTRIJN Bband, also, P, HAVAS

As g result, Newtonian systems (2,9, 4 ) always admit (in the neighborhood of a Tegular point)

. A study of this system indicates

an indirect analytic representation in texrms of Birkhoff's equations, i.e.

- c%e ey TR
LE,E yato o] [QE& qﬁ_‘_’) AL ’D_Si] L @94
i /U'ISG_ ’Da" Qd\ %}‘ QDE Sh

Step 3: Reduction of the Bn:khoft‘xan representatlon to a Hamiltonian form, i.e.,

L G A S B 1S S PN S BTN

(2.8.54)
- c"tQ
[ 2, a‘i"-%——”)‘ - (D—J*_(gt t( o —= (2-?.55)
o
s [, bV QR TR, HE) = Hoady + 2 @ 0, 61).
LY J

The existence of this reduction is gua.ra_nteed by the generalization of Darboux's Theorem to

contact manifolds (the so-called contact charts). For the use of the transformation theory

y]
proof of thhe theorem, For details, see ref,

i
to prove the reduction, see ref, This concludeg the outline of the three major steps for the
2

Theorem 2.9.1, in essence, expresses a known result, the property that a vector field,
under the indicated consitions, can always be transformed to an equivalent form which is
Hamiltonian, Equivalently, the theorem expresses the property that Lie's theory is always
applicable, up to invertible changes of the (local) coordinates, to an(even)mmensmnal system
of first-order oxdimary differential equations, as implicit in the Lie-Koening theoremf d" gse a
result, Theorem 2,9,1 and the outlined three steps of its proof are essentially intended to provide

a working grounds for the explicit construction of an indirect analytic representation of




- 270 -

Newtonian systems (2. 9.4 ) with forces not derivable from a potential in terms of the conventional

Hemilton's equations, A Lagrangian, if needed, can then be computed via the Legendre transform.

A number of remarks are here in order, Theorem 2, 9.1 allows the following classification

of Newtonian systems which will result to be crucial for our relativity considerations.

5
CLASS 1 : ESSENTIALLY SELFADJOINT NEWTONIAN SYSTEMS. These ate (local, class c.aa’

regular, unconstrained) Newtonian systems in the (inertial) reference frame of their expe-

rimental detection which are selfadjoint 25 derived from Newton's second law, and we

shall write ~ ] C“j, e
[y s = .’Ek,\tb,ﬁ,a)}gﬂo, (2.9.4)

wheze ESA stands for essential selfadjointness in the above sense, It is hoped that the terms
"essentially selfadjoint™ here referred to a variational property of systemyof ordinary
differential equations does not create confusion with the corresponding terms used in the
theory of linear operators on vector spaces, In actiality, these texms have been selected
because of a close parallelism between the variational appreach to selfadjoinmess and
the corresponding approach within the context of the Functional Analysis-?. For details,
see ref,
In relations to the proof of Theorem 2.9.1, step 3 is redundant in the sense that the vector fields
are (globally) Hamiltonian,  In essence, systems (2, 9.6 ) ¢an be reduced to the normai
form (2.7.7&) and the conditions of selfadjointness (2.7. 8 ) , interpreted as : quations on the
unknowa prescriptions gk, are always consistent. This yields a representation of the system
in terms of Hamilton's equations In the variables Sq."}: {’z-‘f?kz}which now span a phase space,
Notice tha lack of use of a lagrangian representation in this approach, as typical of the
indepeadent formulation of the Inverse Froblem for canonical formulations,
The use of the Lagrangian representation yields the same result, For system (2.9.6) to
be esseptially selfadjoint, all the acting forces must be derivable from a2 potential, i.e., must
satisfy the conditions of Theorem 2.4.4 . As a result, the computation of a Lagrangian L
is in this case trivial. The use of the prescriptions pk:@ L/ ] J'zka.-;nd of the Legendre
transform then yields a Hamiltonian representation. This {s equivalent to the approach
indicated above in the sense that the conditions of selfadjointness (2, 7. 8 ) essengially yield
a solution in the function gk which characterize the implicit form (2,7.2 ) of the preseriptions
pk=rD L/l'() ’ik,ﬂ'by therefore yielding the same Hamiltonian (up to 211 admissible equivalence

transformations, such as those characterizable by the “"Newtonian gauge”

Lz g)— L'tg 2)-L01 %) r £60,3),
Gec (297}

- 270 -

Y=Y
CLASS II : NONESSENTIALLY } NONSELFADJOINT NEWTONIAN SYSTEMS. These are

({local, class a® » regular, unconstrained) Newtonian systems in the reference
frame of their experimental detection which, as derived from Newton's second law, are
nonselfadjoint but such to satisty Theorem 2.6.4. . This essentially means that

there exist a class Cgaand regular matrix of integrating factors capabie of preducing an

equivalent selfadjoint form without changing the focal variables, and we shall write

[ e Ko = F (6,2 ,;)IC'@ co . (2.9.8)

Bx e
NE NS

With respect to the steps of the proof of Theorem 2, ¢, L, step3 is still absent. However,
step? now acquires an essential role in the sense that, in addition to the freedom in

the gk functions, the multiplicative fimctions h Y must be used to induce a Hamlltoman
form, with the h‘“ clearly playing the canomcal role of the h}\ functions of Egs. (2.6.2 ).
Again, no Lagrangian representation is used in this approach, Its use would yield the same
result. The computation of a La,grangan L* via Theorem 2. G . '.L the use of the
prescriptions p ~Q L‘fa ¥ “%ind the Legendre transform, do indeed give riseto a
Hamiltonian representatmn without necessarily going through the intermediate Birkhoffian

representation, Notice that, unkike Case I, the canonical momentum p*k is now generalized
in the sense that it cannot represent the physical linear momentum (seg gelow for comments),

CLASSIII : ESSENTIALLY NONSELFADJOINT NEWTOMAN SYSTEMS . These are (local,

-] . . R N .
class C*, regular, uncorstrained) Newtonian systems in the (inertial) reference system of

their experimental detection which, as derived from MNewton's second law’ are nonselfadjoint
and such to violate the conditions of Theorem 2.5.4 . This essemtially means that the

systems do not admit an equivalent selfadjoint form within the same coordinate system,

and we shall write ° Q
Em'ﬁ- ;nga\ “-Fﬁa('b’ﬁlc )] =0, Cec}'q)

EMN¢<qa

In this case all three steps of the proof are used to construct a Hamiltonian representation.

In particular, the intermediate Birkhoffian representation plays a crucial role to identify

a symplectic (for autonomous systems) or conkact {for norautonomous systems) characteri-

zation of the systems. The symplectic (gr contacg charts, respectively, then ensure the

reduction to a2 Hamiltonian form,

The reader can now see the reason for our efforts in rendering a Lagrangian representation

inessential, And indeed, since Theorem 2.6.1 is violated by assumption, the use of the

transformation theory is necessary te induce an equivalent selfadjoint form. But
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point transformations J:ka—av :l:'ka(r) are insufficient in this case, This necessarily implies
the use of more general transformations of type (2.6. & ). The proof of the existence of a La-
grangian within such a setting appears to be more involved that that of a Hamiltonian,
Notice that transformations (2, 6. &} are the configuration space image of the most general
transformations in a contact manifold, i.e., . _ﬁ {/t’fﬁ,) 1;* (_ﬁ,)]}
&'y (ben) — (1) (e POLE '

- if (£, 2.9),2' (5 %.9), ol (6%, »)}
the poiat is that a dependence of the new coordinates ¥' in both the old coordinates 2.9, |o)
and the"ruomenw' fkgt,r , T} is now necessary to achieve the reduction, The configuration

space image is then of type (2.6- 8 ).

We are now in a position to identify the class of Newtenian systems in which we are interested
for relativity consideration. It is that of essentially nonselfadjoint systems, And indeed, this
class is such to possess truly nontrivial forces not derivable from a potential and, as such, it is
the class that will predictably produce the highest possible breaking of the Galilei relativity
(Table 2.}4). From now on, unless explicitly stated, nonselfadjointness stands for essential
nonselfadjointness, Notice that, on formal grounds, the class of essentially nonselfadjoint systems

can be considered as inclusive of that of nonessentially nonselfadjoint and of selfadjoint systems,

The reader should be aware that the Hamiltonian representations of essentially nonselfadjoint
systems and, more properly, thelr Lagrangian image constructed via a Legendre transform )
according to the remarks of Table 2. & , occurs within a system of coordinates r'ka which
is generally noninertial and nonrealizable in experiments,

The reader should also recall, from Section 2, that all considered systems are tacitly

assumed to be finite-dimensional,

TABLE 2,10: THE STRUCTURE OF A LAGRANGIAN OR A HAMILTONIAN AND THEIR
DEGREES OF FREEDOM, After having outlined the existence theorems for analytic representa-

tions, it is of some significance to indicate the structure of the emexging Lagrangians and
Hamiltonians. This is one of the topics of the theory of nonconservative systems which demands
a departure from the costumary conceptual attitude of conservative mechanics. In @ssence,

as a result of extended use, "the" lagrangian or “the" Hamiltonian in Analytic Mechanics are
often associated with the structures L=T-V and H=T «++ V. The Inverse Problem, however,
egsentially brings Analytic Mechanics up to the level of the Calculus of Variations as far the

structure of these funciions is concerned, that is, they can exhibit an arbitrary structure, provided
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that the assumed continuity and regularity conditions are satisfied. As 2 result, in the study
of the problem considered it s recommendable to use the conceptual context of the Caleulus of
Variations, rather than that of Analytic Mechanics for conservative systems,

It is advisable to identify the structure of "a" Lagrangian or "a* Hamiltonian for each of
the three classes of Newtonian systems introduced in the preceding table,

1. Case of essentially selfadjoint systems. In this case the structure of the diract Lagrangian

repreqentation reads

EXS %—J "'[4&« fh} ® o

dF D5 e

the forces I, are seladjoint (I. e., verify Theorem 2,4 .1) and, thus, derivable from a potential
‘ﬁhk 2 ? £l

and the emerging Lagrangian has the conventional structure

(DM 94 (DU (_?.l'tv, ZAJ
‘f'ﬁu = (D,zbh. qu N7 ke |
/—- = | U = “2":’“‘"1::?—;:"‘: L{(f,“, e 62,19.25)

An intriguing aspect, however, is that such conventional structure does not exhaust the possibilities
which are rendered identifyable by the Inverse Problem. And indeed, Theorem 2. 6.1 on indirect
representations, even though presented for nonselfadjoint systems, is equally applcable to

the essentially selfadjoint systems. Under the assumption that the conditions of the theorem are

satisfied, these systemns therefore admit the indirect Lagrangian representatmn %

o OL* (D_Et €% L M L )
LH— dzFn Qe[ T L\’“ '“"')( b b J
62,10.3)

The net effect is that the conventional structure (2,10.2b) is generally lost already at the level
of essentially selfadjoint systems, e.g., conservative systems. And indeed, the integrating
factors hkl now enter into the structure of an admissible Lagrangian viz Egs. (2.6. 4 ) /

yielding a generalized structure which can be written in any of the following equivalent forms'z’%

e, 2) = K (b2, %)+ Defhz) 2% Cibx)

AT T (Ka) (K“ *ka [IQEVR
T L-L‘M‘:‘;ICé,:C“/ f -z ) L*“kfﬂ-( Iﬂ"b)
p— i. -JA 'J‘b 'I‘O\ |g J’b
= z Gl:o.ib Z -+ v FE L'L + T Elm}b ]'

(2-10.4)
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These generalized Lagrangians are fully acceptable on analytic grounds because the system of
the implicit functions of Lagrange's equations in these functions and that of the equations of
motion coincide, As a result, they provide an anaIytic representation in the sense of Table 2.3 .

But system (2. 6.3 ) on the integrating factors hk is a system of partial differential equations,

that is, a type of system which, when consistent, admits solution with a functional degree of freedom.

This implies that there may exist & family of equivalent Lagrangians within the same system of
Cartesian coordinates, with a corresponding famility of equivalent Hamiltonians.

For instance, all the following functions

4imk —9 g y Cost {2.10.5a)

L‘f‘i: -«760:{'4-'“‘] ?

f-*z: lie&zcb%ﬂ— e“(‘} “'7
q % t
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2
.d'

) et
u cosk, P
H‘i - c?(tml;) Sed;/(e?c,,fg_—i l,—) -&(e_ oyt h , (2.19.5€)

9+0, (2.10.5b)

(2.19.5¢)

U

i

represent the same system, the one-dimensional harmonic oscillator with equation
-2
8+ 9= =k=1, L= (9= 9%) 2.19.6)
§+9=0, ms=kst, Lo 9 ~-9%). (-

We are here clearly facing a degree of freedom of the Lagrangian structure which is
not dexivable with conventional means, e, g., the "Newtonian gauges™ 2.9. 7 ). And indeed, it
is a new degree of freedom directly produced by the integrability conditions forx the existence
of a Lagrangian representation. In essence, these integrability corditions yield the representation
not only of one selfadjoint form of the equations of metion, but more properly of all the equivalent

selfadjoint forms. For this reason we shall use the texm "a" Lagrangian, rather than "the”

Lsgrangian,
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The degrees of freedom we are here referring to were apparently identified for the first
time by using conventional techniques by D. G, CURRIE and E, G, SALE'I'AN[ ?(')r the case of
one dimensional systems and called “"fouling transformations”. T he Inverse Problem essentially
produce the necessary and sufficient conditions for their existence (Theorem 2.6.1). We shall

2
call these transformation isotopic from the meaning b.3e,32

L}

I u oo -
" L6y " " oiros ' = \:,'Lese_'tve, Gomae-&u’h‘-w '

a
here interpreted as class C , invertible, selfadjointness preserving transformation. Two

2} and L*(t £) will be said to be isotopically related when they satisfy

150k a1k

e
ther'fled G L Ic’.‘e [ on/d oL QLR TR
b Qi (il Sﬂ: ke L db@Q@uib Q%"™/sa £a !

. (2.10.7)
where, as by now familiar, the repetion of the symbol C and ® , stands for the condition that

Lagrangxans L(t
c

the matrix (h} is of class C * and regular,

The reasm for the selection of the terms “isotopic™ will be indicated in Table 2,|3 . The reader
should be aware that this concept of isotopy will play a erucial role for our conjecture of a
Galilei -admissible covering relativity in the sense that it constitutefa first step toward a more
general concept (that of genotopy) which will be actually used in the construction of our
conjectured relativity. Even then, the notion of isotopy will persist in an associated form.

Notice that structure (2.10,4 ) is the Newtonian limit of structures which are called
chiral Lagrangians in field r.heoryis 4

a Lagrangian structure is nonessentially chiral when there exist an equivalent conventional

. For uig in subsequent papers we shall say that
4

structure within the same system of variables, i.e., when theze exists a Lagranglan L=T-V
related to the generalized Lagrangian via rule (2,10, 7 ). Thus, nonessentially chiral Lagrangians
can represent conservative systems, despite their generalized struchire.

I, Case of nonessentially nonselfadjoint systems. This the class of systems for which

the indirect Lagrangian representations according to Theorem 2, 6.1

cTR

rd QL. b R T p .. = ,czras)
dt e o™ S@EU‘M e ’stnm

exist. In this case the structure of a Lagrangian is, of course, generalized, i.e. of type
(2,.10. &4 ). However, this generalized structure is now necessary to represent the system,
And indeed, if there exists a Lagrangian L = T « V within the same coordinates for the

representation of the systems considered, this implies that all acting forces are derivable
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from ¢ potential, contrary to a central property of the systems considered, We shall then say
that the Lagrangians for representations (2.10. 8 ) are essentially chi:ral.iac
The Isotoplc dxgrees of freedem, however, persist . And indeed, system (2.0, 8 ) may
admit a family of functionally different solutlons, For Instance, the damped harmonic oscillator
admit the foHowing isotopicelly mapped Lagrangians
(‘1 wa",l ) s LY 29 +i9 bﬁ‘i('z‘} 'f'é"?)_ f b (q +h? H-da 4 )

29w 29w
(z.m.q@) Vo w2, (2..10. 9

In essence with the terms nonessentlally and essentially chiral Lagranglans we Intend to

express the fact that (both at & Newtonian and a field theoretical level) g generalized structure

of a Lagrangian does not necessarily guarantee the existence of a generalized system, It is hoped

that examples (2.10, 5 ) can be of assistance in this respect. The attitude which 1s recommended
in rejation to this lssue is as naive as possible. When a generalized Lagrangian structure is
studied, the best way to ascertain that the system is actually generalized is to compute the
equations of motion and, in paxticular, the impllcit functions of the system, This is the mest
direct and unequivocal way to reach conclusions of physical nature from the mathematical
algorithm represented by 2 Lagranglan,

The extension of these remarks to Hamiltonian structures is trivial, by reaching structures
of the type

W (bxp)= T2 804 Dt b * aa-, %)
= .% %’_"Hf ') “AI?)H ;ﬂm) (_PF,J + H ‘AE ]r k% ﬁ)

K& oAz
~ ik = b e ik
L) e A ¢ tj
L Uahc} 2 B)b, wa b T thE) e 2 )2,
z (2.10.10)

which, again, can be either essentially or nonessentially generalized. Notice that these

structures are not treateble with Rlemannian manifolds ( as currently known} even at the limit

of null forces derivable from a potential (but non nuil forces not derivable from a potential).

This property will be significant for relativistic generalizations to be considered In subsequent
papers {see Section 5 for introductory comments),

IH, Case of essentlally nonselfadjoint systems, In this case the use of the transformation

theory is essential. Thus, the admissible Lagrangian and Hamiltonian structures are defined
in g new system of variables, It is easy to see that this structure can be either of the

conventional type (2.10.2 B ) or of the generalized type (2. 10. 4 ), but now in a new system of
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variables. Most intriguingly, the use of symplectic {or contact) charts may lead to strajght
trajectories. In this case the Lagrangian and Hamiltonian structures are not only conventional,
but actually those fox a frze particle, i.e.,

) A o r v b oo
L C’f,’):_"i}“h?.,k M.h) H(i)zﬁkt" F é

e

This is, in essence, our argument (indicated in Section 1) according to which systems which
break the Galilei relativity in the reference frame of their experimental detection can be trans-
formed Into an equivalent system in new variables which is fully compatible with the Galilel
relativity. This is the lire of study of the relativity problem of Newtonian Mechanies which we

shall leave to the iaterested reader for the reasons indicated earlier,

TABLE 2,1: THE REPRESENTATIONAL CAPABILITIES OF VARIATIONAL PRINCIPLES.

Theoxem 2.9 .1 essennally Indicates that varlational pnnciples can represent "all"” Newtonlan
systems of class c” , regular, unconstrained and local. It is of some significance for our problem
to point out the mechanics of the "representation” and the nature of the “variational principles".
Again, the reader is here discouraged to use the mental attitude of Analytic Mechanics for
conservative systems and use instead that of the Calculus of Variations. More specifically,
the terms "variational principleb"should be referred to the algorithmsof the established
"variational problems" in which the estremal part is ignored, It is again useful to outline the
arguments for the three separate classes of Newtonlan systems of Table 2,3

I. Case of essentially selfadjoint systems. This is the typical variational setting of

conservative mechanlcs and we shall write Es cr R
(SS::U.’L = g Al (j‘ " KA)(S"CKR g{l‘('u‘(: g, ) JeF= 0
N F4 koY sa by ESA (2.11.1)

24
We shall then say that the conventional Hamilton's principle is a selfadjoint variational principle

because it induces selfadjoint analytic equations,
The existence of the isotopic degrees of freedom of a Lagrangian for the systems considered

provides a first departure from conventional patterns. And indeed, for these Lagrangians we

now have t?. oo Cm’f?
b WA ALY S F—-l b <

SS:“'L :"f \,U/(D Sy Fe ke Pk """)Sﬂ (A
! e G 58 (21.2)

Predictably, these variational algorithms may be discarted by some reader becruse unconventional,
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The point which we would Iike to bring to the reader’s attention is that the variations used in

principle (2,11, 1) are the simplest possible variations of the Calcutus of Variations, i.e., of

the type S5 L ) w | wao, (2-1.2)

called weak variztions, In actuality, variations can have considerably more involved structures
In principle any implicit or explicit functional dependence of the variations in the independent
variable, time in our case, which satisfies the desired continuity properties is acceptable,

and we shall arite S’le:' (S Jz,k)oft,},*é:. And indeed, since the fir st order variation of the

action must be computed along the actual path to yield identity {2.1i, | ), this has the effect

of reducing the functional dependence of the variations to only that of time, i. e., (J ,830&’ Z,z:)‘ o
&= ( S ’ck)cft), where }f is the a ctual path (that is, the path which renders null variation (2.11. D). =

As a result of this cceurrence we can assume the following form of the variations

I L S S L Uy T O G

under which principle (2. 11.%) hec:ar::les t’t.
grorfderr < S are .0-5)
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Equivalently, we can write

b
SO arLY =

]

E2
5*[95“ L (2-11-¢6)
by

2b. 3"
We shall call principle (2,11 5 ) an isotopically mapped variational principle . Its net

effect is that of producing the equations of motion in the “natural form™ as derived from
Newton's second law. In conclusion, if structure (2. 1. 2 ) of the variational algorithm is
undesired because unconventional, the isotopic degrees of freedom of a La grangian can be
eliminated by the corresponding (in verse) degrees of freedom of the variational algorithm,

I, Case of n« ntially nonselfadjoint systems. In this case the use of

Lagrange’s equations and & i"agr&a.l:lg'.'uall produced by Theorem 2. 6,1 yield the indirect analytic

representation of nonconservative systems >

['.'1. o fe

be TR Cift T e
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The principle, however, is still selfadjoint, contrary to the nonselfadjoint nature of the
equations of motion in their "natural form™.

This discrepancy can be removed with the use of variations of type (2,15 4 ) which now ~p
¢y

yield the pnnc:ple b = o ae oL ro
dor ot j&"«_z_je”mz FL)dtse,
§ S sH- L = —g L-?“' [%m (el?(b?.‘b D )SG e \ (K ka (‘:)H?E;‘IS&

Here an cccurrence of particular releegance for our analysis emerges. Principle (2.11. &) is

a nonselfadjoint variational principle because it induces analytic equations of nonselfadjoint type,
3a,5b ,‘—LC-
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By construction, this is a trivial equivalence transformation of Lagrange's equations induced
by the muliiplication of a class Cﬂand regular matrix of factor fiimctions. However, it will
have nontrivial implications for the Lie-admissible formulations because these formulations
are  nonselfadjoint by central requirement. As a result, the amalytic equations in the non -
selfadjoint form (2. 1.9 ) rather than the conventicnal selfadjoint form (2. :L) will be useful
for the direct transition from the analytic equations of the Inverse Problem to those of the
Lie-admissible problem (see Table 3.4 ).

At this point let us content ourselves with the remark that nonselfadjoint variational
principles allows the direct analytic representations of nonconservative (nonessentiall y nonself-
adjoint) Newtonian systems in their "patural form™, This possibility is, in essence, implicit
in the same definition of "analytic representation”. And indeed, identities (2.3 .4 ) are trivially

equivalent to their nonselfadjoint version (2. e )
(4 Jl,)) U" ) (2.U. 10}
@ .

What is again important on representational grounds is that, irrespective of the form of the
variational principle (selected on grounds of personal preferem ce) the system of implicit fnctions
of the (selfadjoint or nonselfadjoint) analytic equations and those of the equations of motion
coincide.

1. Case of essentially nonselfadjoint systems. In this case the conventional structure of

the principles and the conventional structure of the integrands are fully admissible, although
now acting in a new system of local coordinrates. The drawback is that such a system is
generally noninertial and generally nonrealizable with experimental set ups.

In this Tespect the use of Birkhoff's equations might play a significant role, Let us recall

trom the proof of Theorem 2.9 that in the construction of the analytic representation in terms
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Birkhoff’s equation (step 2 of the proof), the space components of the variables are those of
the experimental set up by construction, although the 2% components are generally noncanonical.

The net effect is that the representation of essentially nonse].fadjoim: systems with principle

2.8.9 ), L.e., E
K ] i 2 .y (DH )4_0 (2.”. “.)
(ot Fad) = - otk (JZ}W 2L Ja

Y=L a8l

might play a significant rcle for relativity considerations. This aspect will be left to the
interested reader, Notice, however, that principle (2,H.U ) is selfadjoint and
admits nonselfadjoin t generalizatios of type (2. 11, 8 ). Notice also that the integrand of
this principle is totally degenerate, in the sense that not ‘only the Hessian determinant is
{dentically null, but actually each element of the Hessian matrix is identically null, trivially,
because the F-function is linear in the first-order derivatives,

It is of some significance also to indicate that the methodology of the Inverse Problem allows
the identification of a series of generalizations of Hamilton's principle, e.g., to include the
integrability conditions for the existence of a Lagrangian directly in the variational algerithm

§a = - Kt;(l- g QL _(9_.‘:_)5'2*‘&:0’ U‘..u.l%)

‘ J}@e“ T

= L(S (§n) -6 (591 £ x4 S,{ L kfz““ ]’k‘(&c) Bt Im(‘jt) =0,
ey §»8 (2. !zb)

or to include Lagrange's equations and their associated facobi's equations, or te include
the additional presence of end points contributions {in addition to the symplectic genexalization
(2.£. [| ) and the nonselfadjoint generalization (2.J1. B ) indicated here), For these gereralizations
we refer the reader to refs.za' z.b

As a final remark, our interest in variaticnal principles for nenconservative systems is not

that of constituting an alternative to the analytic equations, Instead,it is mainly of methodological
nature, with particular reference to the problem of quantization of nenconservative forces {to be
considered in & subsequent paper) via the Hamilton-Jacobi equations derived, as customary

from variaticnal principles with end points contributions,

TABLE 2.12: THE NOTIONS OF SYMMETRIES AND FIRST INTEGRALS FOR NONCONSERVATIVE

SYSTEMS. One of our central objectives is that of identifying the mechanism of Galilei symmetry
breaking produced by nonconservative forces, It is therefore recommendable to first identify
the notion of exact symmetry for a nonconservative system. In Table 2.10 we irdicated the
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potentizlly misleading nature of the conventional attitude of censervative mechanics in the
study of the Lagrangian structure for nonconservative systems. The remark was repeated in
relation to the variational approach of Tahle 2.11. There is no doubt that the potentially mis-
leading nature of the conventional attitude of conservative mechanics reaches its climax in
relation to the problem of symmetries and first integrals of nonconservative systems. Let me
indicate from the outset that the potential difficulties are solely conceptual in nature, becausge
the available techniques for the study of symmetries and first integral are fully established
on unequivocal technical grounds,

The first area of potential misrepresentation is constituted by the used terminology. And
indeed, the use of the conventional terms "conservation laws" is clearly misleading because,
as a selfevident condition, nonconservative systems violate the conservation laws {e.g., 2
necessary condition for a system to be nonconservative is that its total physical energy is nen
conserved),

In the folowing we shall use the following terminology. With the term symmetry (or exact
symmetry) we refer to the xather universally accepted definition, that is a(class C“’, invertible}
trangformation of the independent and dependent variables under which a Lagrangian presexves

its fimctional structure up to terms with null Lagrange's derivatives
1
uy o i e ,-,QE— Pt j‘t'l)._ ol ot
LUy, §) = Levhed)2E LNz £)e L, 2 2y
! \
+dGlas) .
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This is equivalent to the definition that the transformations leave form-invariant the underlying
equations of motlon, The terms manifest symmetries will be referred to symmetzies of a
Lagrangian or of the equations of motion which are identifyable with simple means, often a

visual inspection {e.g., the symmetry of conservative systetns under translations in time}.

The terms nonmanifest symmetries will be referred to symmetries which are of complex

identification, usually, via indirect techniques. Discrete symmetries {i. e., symmetries under

space-time inversions) will be ignored for simplicity and we shall restrict the outline to the

case of comnected Lie symmetries in the conventional sense, These symmatries will be classified

into: (s} contemporaneous, when they occur at a fixed value of time (e. g, rotations), (b) noncon -
temporaneous, when they include time transformations, (¢} first-order, when they are infini-
tesimal of the first-order, (d) order p, when they are infinitesimal of order p, and (e} finite,
when they are characterized by finite, connected, Lie trarsformations.

A set of functions Is(t, q,c';_), r=1,2,...,m, are called first integrals when they are censerved

along the actual path, i.e.,
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where the £'s are the implicit fimetions of the system. The functions IS will be said to represent

physical conservad on laws if and only if they Tepresent physical quantities as commorly understood,

i.e., the physical total erergy, linear momentum ard angular momentun. The distintion between
conservation laws and first integrals is truly crucial for the study of the problem of the xelativity
laws of Newtonian Mechanics, In essence, there is a hasic distinction between a mathematical
and a physical content, On mathematical grounds the cccurrence that a quantity is conserved

along the actual path is basically insensitive as to whether the represented system is conservative
or mot. On physical grounds the situation is different. And indeed, a quantity which is conserved

is not necessarily representative of a physical "law”, An example is here useful to illustrate

this crucial distinction. For the case of the one-dimensional conservative harmonic oscillator

the quantity p _t/ -2 2
Y g (e L )= Bap=o, L=i(a gt), ER-3)
E = 7 @ /2
dF 9
represents not only a first integral but also a conservation law because the mathematical

algorithel'H" represents a physical quantity. In the transition to the noncomservative damped

2ce
oscillator the situation is different, And indeed, this system admits the quantityi

)= bug- Geos (wpa) - ¢2h,  (Z124)

which is conserved along the actual path. As such, it does constitute a first integral, but

not & conservation law, And indeed, the assumption that the mathematical algorith "H” in this case
also represents a physical quantity would be in contradiction with the experimental evidence that
the physical energy decays in time. In conclusion, the attitude which is recommended for non-
conservative systems is that their "comserved quantities” are, in general, only first integrals

and they are not representative of physical conservation laws.

A second possible area of misconceptions is related to the methodology which associates
symmetries to first integrals. As is weell Imov\;é, this topic, within the context of consexvative
mechanics, is dominated by Noether's theorem . & few remarks are here in oxder. The first
is that this theorem essentially guarantees that, whenever a Lagrangian possesses a symmetry
under an n-parameter connected Lie group, there exist n first integrals. The point is that, by
no means, this theorem ensures that the fixst integrals are representative of physical conservation
laws, nar I am aware of any intent by Emmy NOETHER to this effect, Arother polnt which is
not often emphasized in the existing literature (see, however, ref.ﬂa' ) is that Npether's

theorem does mot guarantee that the n firse integrals generated by an n-dimensional connected
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Lie symmetry are actually independent, For instance, the 10 conserved guantities generated
by the Galilei symmaztry of the Lagrangian for the free motion, L = -QI—’ m i 2 ; atre (necessarily)
nonindependent amon g themselves,

But 2 mare controversial issue may be that related to the effectiveness of Noether's approach
forsymmetries and first integrals. It is known that for the consexvative two-body problem the
{dentification of all manifest symmatries {the Galilei group) leads, via Noether's theorem, to
the identification of all first integrals needed for the sclution of the system by quadrature. However,
in the transition to the three-body problemthe use of this appreach does not produce the identification
of all needed (18) first integrals, Clearly, if additional (independent) fixst integrals exist , they
are associated to nonmanifest symmetries, in which case Noether's approach, as conventionaily
known, is ineffective.

In the transition to nonconservative systems these occurrences acquire a more definite
light. And indeed, nonconservative systems are such that they seldom admit manifest symmetries.
This brings into focus in a natural way the problem of the methedology for the identification of
first integrals.

In this respect the following possibilities are conceivable, First of gll, ore might attempt
to complement Noether's approach with additional insights. For instance, the use of
isotopically mapped Lagrangians may be of assistance in this respect, because they may turn
nenmanjfest s%németries of the original Lagrangian into manifest symmetries of the new

<

Lagrangian. As a simple example, consider the particle with drag force

9 t¥i=-°.
Two independent first integrals are needed for its solution by quadrature. A first Lagrangian
- - 2.6
= 949 -&9 (2-12-¢)
exhibits the manifest symmetry under translations in time yielding the first integral

T 4+ 49, (2 12.7)

—~— &

(2.12. 5)

But, if one insists in considering only Lagrangian (2.11. &), the identification of the second

first integral becomes rather involved. The use of the isotopically mapped Lagrangian

ey -2
L 2.12.9)
L e 79, (:
instead, produces a trivial solution, And indeed, this equivalent Lagrangian now exhibit a

manifest symmetry under translations in space, by therefore yielding the second {(independent)

first integral - TEh « 72.12.9)
l,= € 7 . L
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The reader should he aware that first integrals are consexved in virtue of the equations of
motion (or Lagrange’s equations). Thus, both quantities (2,12, 7 ) and (2.12. 9 ) are conserved
for Lagrange's equations in each Lagrangian (2.12,8) or (2.12. & ). This implies that, say,
Lagrangian (2.12. b ) possesses a nopmanifest symmetry which leads to quantity (2.12. 9 )
and a similar situation occurs for L agrangian (2.12. % ) and quantity (2,12, 7). For ean explicit
calculation see ref .2 Tt is in this sense that the mechanism of isotopical mapping of a Lagrangian
can tura a nonmanifest symmetry of the original Lagrangian (i.e., a symmetry of difficult
identification as such) inte a manifest symmetry of the isotopic image.

Similarly, the representation of the same system with both, Hamilton's and
Birkhoff's equations can be of agsistance. And indeed, the manifest symmetries of the Hamiltonian
are not expected to be generally preserved by the “Birkhoffian". The potential xelevance of
the latter equations relies precisely in this general loss of the original symmetries, And indeed,
this may imply that the “Birkhoffian" has new manifest symmetries which, as such, can be
useful for the identification of first integ-rals?

Notice that, even when the original manifest symmetries are preserved in the transition
from the original Hamiltonian to either am isotopic image or to a "Birkhoffian”, this generally
implies the identification of different first inkegrals {trivially, from the nontrivially different
functional differences of these fimctions).

Despite these auxiliary implementations of Noether's approach, the need of a more effective
methodological approach persists. This problem can be classified into the following two aspects,

A. Kentificati on of the first integrals associatedto the manifest symmetries of the equations

of motion (rather than a Lagrangian), The insufficiency of Noether's approach, as currently
known, for the resolution of this problem can be indicated by the property that the class of
manifest symmetries of the equations of motion is generally larger than that of each individual

FLYEYS
Lagrangian for its analytic representation, ' For instance, Egq. (2.12.5 ) possesses two

manifest symmetries, translations in space and in time, while each individual Lagrangian
(2.12.6 ) or (2.12. €) possesses only one symmetry (I have been unable to identify one
Lagzangian for the system considered via the techniques of the Inverse Problem which exhibits
two manifest symmetries). In conclusion, it appeats that for an effective solution of the problem
consideredr&le methods should be independent from Lagrangian representations. The most
remarkable approach along these lines of which I am aware is the geometrical treatement
by 5. STERNBERG  which the interested reader is here urged to inspect.

B. Identification of the first integrals associated to the nonmanifest symmetries of the

equations of motion . This problem goes at the very foundation of the problem of the relativity

laws of nonconservative Newtonian systems. And indeed, one of the central aspects of this
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problem is the identification of tramsformations which leave form-invariant nonconservative,
(generally nonlinear and explicitly time dependent) equations of motion., Clearly these symmetries
are expected to be of highly nonmanifest nature,

The study of these nonmanifest symmetries is one of the central objectives of the Lie-admissi-
ble formulations and, as such, it will be trated in Sectlons 3 and 4.

I cannot close this section without touching on another area of potential misrepresentations.

[ am here referring to the fact sometimes explicitly stated or implied by available treatments
according to which conventional symmetries (e, g., translaticns in time, translations in spzce,
rotations, ete. Mead to conventional physical conservation laws (total physical energy, linmr
momentum, aogular momsantum, respectively). Equivalently, I am here referring to an often
implied unique association of the physical conservation laws and the symmetries for their
derivation, The techniques of the Inverse Problem allow a disprof of these beliefs in the sense
that, when a conventional physical conservation law occurs, a Lagrangian for its analytic represen-
tatlon deos not necessary exhibits the conventicnal symmetry, Viceversa, when a Lagrangian
exhibits one of the indicated conventional symmetries, the induced first integral is not necessarily
the conventionally associated quantity,

It is best to illustrate this point with the following cccurrences.

OCCURRENCE 1: When the total physical energy of 2 system is conserved, a Lagrangian for

its analytic representation is mot necessarily invariant under translations in time . This occurrence

is Hiustrated by Lagrang-ian (2.10,54) which is  explicitly dependent in time, neverthless, the
repregented system is conservative (the one-dimensibnal harmornic oscillator).

OCCURRE NCE 2: When the total physical energy of a system is nonconserved, a lagrangian

for its analytc representation can be invariant under translations in time, This occuxrence is

iltustrated by Lagrangian (2.10,9 b) which is manifestly invariant under translations in time,
nevexthless the system is nonconservative { darnped haxmonic oscillator).

OCCURRENCE 3: When the total physical linear momentum of a system is conserved, a

Lagrangian for its analytic representation can viplate the symmetry under trznslations in space.

This oceurrence is illustrated by the system

G2.12.10a)

(2.12.108)

’Lx“f')?’ﬁ:af (m:'./L)

‘:C.,; h ;t:"il + '2'IZ)< =9,

whose first equation expresses the conservation of the total linear momentum, Neverthless,

the following Lagrangian for its analytic representation
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{2.12.11

_.%'2 . - 1
L—ztx-{—?x"cbﬁ-lj x ,

ig mot fnvariant imder transtations in space.
OCCURRENCE 4: When the total physical linear momentum of a system is nonconserved, a

Lagrangian for its analytic representation can be invariant under translations in space. This

osccurrence is illustrated by Eq, {2.12, £ ) for which the linear momentum decays (exponentially)
in time, Neverthless, Lagrangian (2.12. 8 ) for the representation of the system is manifestly
imvariant wnder translations in space.

CGCCURRENCE 5: When the total physical angular momentum of a system is conserved, a

Lagrangian for its analytic representation can violate the symmetry under rotation, This

oceurrence has been studied by G, MARMO and E.J. SALETAN ‘ab

Consider the three-dimen-

sional harmonic oscillator
;i,"’ + Jr =0 :'Fﬁ’!—/f.__:(’txf"‘b,)tz.)r
A

- g (2.12.12)

with trivial conservation laws of the angular momentum. A fully admissible Lagrangian for
this system is given by

' ( ft ¢ 2.12.13
Cla "‘t '1')2,2")__2’ szwtb-f-‘zz ',-(4" )
and, sas such, it vwlates the symmetries under rotations (see also Table 2.13).
QCCURRENCE 6: When the totael physical an gular momentum of a systém is nonconserved, a

Lagrangian for its representation can be iavariant under rotations. This sccurrence is ilustra-

ted by Lagrangian (2, 6.7 ) which is manifestly invariant under rotations. Meverthiess, the
represented system is highly nonconservative (and nonlinear in the velocity terms).

These occurrences inevitably lead to the following aspect of particular significance for
relativity considerations.

OCCURRENCE 7: The symmetry of a Lapgrangian under the Galilel group dees aot necessarily

imply the validity of the physical Galilei conservation laws (¥btal physical energy, linear momentum,

and angular momentum and uniform motion of the center of mass).

A few comments are here in order, Notice the emphasis on the word "physical” when used
in the context of the conservation laws, This is suggested by a possible trap of nonconservative
systems(generally absent for congervative settings) according to which, say, the mathematical
algorithm represented by the canonical momentum "P" or the canonical angular momentum I"

are mathematical quantities of the type

K T T SR
prvy

(2121 )

I I )
v
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To be explicit, in conservative mecharics the symbol "p" generally represents a physical
quantity, the linear momentum m i ., As such the use of the term "physical” when refezzing
to "p" is inessen tial. In the transition to nencenservative systems the sitvaticon is different.
Here the Lagrangians must possess a generalized structure, In turn, this means that the
algorith £ =D L/ D ,}:, has, in gemeral, no direct physical significance. The term "physical”
is then used for the intend of differentiating between the canonical quantity P and the physical
quantity mj\." . Similarly, the "physical an gular momentum" of system (2. 6.G ) is the
conventional quantity M = Ix }E‘_ =rxm ‘7;: , Occurrence 6 refers to the nonconservation
of this quantity. If canonical quantities aze considered, the situation is different, And indeed,
the manifest symmetry of Lagrangian (2.6 .7 ) under rotations certainly Ieads to a conserved
quantity {the canonical angular momentum), The point is that this quantity does not coincide
with the physical angylar momentum.

For a detailed discussion of the occurzences indicated above, as well as for alternative
examples, see refe.” ! 2d, Jac
[Note added in preof: in relation to the physical implications in the selection of the phase space
variables the reader should also consult A. P, BALACHANDRAN, T,R.,GOVINDARAJAN and
B. VIJAYALAKSHMI, Syracuse University preprint SU-4211-110, Jamuary 1978},

TABLE 2,13: THE NOTIONS OF ALGEBRAIC, GEOMETRIC AND ANALYTIC ISOTOPY.

Let U be an (associative or nonassociative) algebra with elements a,b,c,... overa

field F with elements , \6 , K ,-+. equipped with the (abstract} product ab satisfying given
laws (associativity, commutativity, Lie, etc.). An isctopic mapping U —= U* of Uis

the mapping from U to an algebra U* which coincides with U as vector space (that is, the elements

of U and U* coincides) and which is equipped with a new product a*b such to preserve the
algebraic laws of U (that is, if ab is assoctative or Lie, a*b is equally asscciative or Lie,

respectively). The aigebra U* is then called an isotope of U,

An isotopic mapping of the product ab can be realized in 2 variety of ways,

Suppose that ab is asscciative, Then the mapping C:Z iz l)
ab —» axb solab , el
is isctopic because trivially preserves the associativity laws. However, isotopic mappings

can be realized also in terms of elements of U. Let ¢ pe an invertible element of U,



- 288 -

If mapping of the types

2.13.2
ab-> 6*b = (@c)b ¢ )

on , a¥b=lac)b + (= @-9)b,
C= fixed, ab eU,
preserve the algebraic laws of U}they are isotopic.

In essence, the notion of algebraic isotopy is intended to express the 'degrees of freedom "
of the product to satisfy given algebraic laws without changing the algebra as vector space.
This notion is rather old, and actually dates back to the early stages of set tl:eoryzz. And
indeed, the notion was apparently identified for the first time within the context of the Latin
squares. Two latin squares were called isotopically related if they could be made to coincide
by using permutations. But Latin squares can be interpreted as the multiplication table of
quasigroups, The extension te quasigroups, groups and, then, algebras, is then direct. 222
As R, H, BRUCK put itJ the concept of algebraic isotopy is "so natural to creap in unnoticed”,

And indeed, this notion has received rather little attention in recent times, to the best of
my knowledge,

During the course of our analysis we shall attempt the identification of the possible
existence of the notion of isotopy at several levels of study, e.g., Lie algebra, symplectic
geometry, Lie's transformation thecry, The reason for our interest is that this notion appears
to be relevant for the study of Lie-admissible algebras,

In this table we shall cutline the rudiments of the algebraic, geometrical and analytic realiza-
tions of the notion of isotopy which are relevant in Newtonian Mechanics.

Consideithetagrangians . % | EE ¢1 21+1;1B

i) hemg et et e [ G-t B

(2-13.3)

which we have called isotopically related (Table 2.10). They represent the same system, a paxt
the trivial multiplication by (-1) of the second equation. The angular momentum is conserved
for both Lagrangians, The symmetry of L which leads to this conservation law is the group
of rotations S0(3) . It is possible to prove that the symmetry of L* which leads to the same
conservation law is the Lorentw group S0 (2. 1), What we would like to indicate is that
the Lie algebras SO(3) and SO(2.1) are isotopically related,

Here a departure from conventional classical realizations of Lie algebras is esseatial,
Typically, the algebras S0(3) and 50(2.1) are realized in terms of different generators because
ponisomorphic. This conventional realization would now be inconsistent. The mathematical and
physical meaning of this $0(2.1) symmetry is that of leading to the conservation law of the
angular momentum, that is, to the generators of 30{3). Thus, to be consistent with mapping
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(2.13.% ),

generators, To reach with these generators an algebra which is nonisomorphie to 30(3), there

80(2.1) must be realized in terms of the angular momentwn components as

is then only one possibility Ieft: perform an invertible Lie algebra preserving mapping of the
c
product, that is, an isotopic mapping . And indeed, simple calculations yields the solution

é_{.)@‘l)-'LMx‘,M;‘l;Mz_l [M\;.,M?,]i; ’]\Tx / [MP_, Mxl-’; MU i ('z'la‘l”.)
S0(3) : M M1 =M, TMy, Pl = M, TM=, M3, 2 5.62)

I
[9131=(%ﬁ- w)“%_B' ’ ) Oaoncan (};?) ( ;w) Drernans i';mw\
s ' (AZ},\\J _ w = .
- /
o ok RA Vo8 1. 4 0
U}'E’] :fg_f:”&' (‘D_;f" (;:—4.) El SYTIPT il /CZ'B""C)

In conclusion, the algebras SO(3) and 80(2.1) in the above realizations are isotopically related
(that is, ‘one is the isotope of the other), because (a) they coincide as vector spaces {that is,
they are reslized in terms of the same generators), (b) they preserve the barameters{but not
necessarily their range, one algebra being of compact and the other of noncompact type), and
base manifold (thatis, they are both defined in terms of the same phase space coordinates)
and .(c) they axe defired in terms of different Lie products,

Notice that the transition from the conventional Poisscn brackets [ﬂ,B j of 801 (3) to
the generalized hrackets {&,SR* is defined in terms of elements of the field, This is clearly
a particular case, the most general case being that defined in terms of elements of the base
manifold. We reach in this way the conclusion that the transition from the conventionsl to the

generalized Poisson brackets without changing the base manifold
* rB] —> [ 3] B ] *
(781, —> [@BI%

is g Newtonian realization of the notion of iie¢ algebra isotopy, Intriguingly, the roots of this

(2,13_5)

netion rest on the property that the symmetry of 2 Newtonian system capabie of characterizi’ni_
first integrals {or conservation laws} is not necessarily uniqgue (Table 2. 12).

For a detailed treztement of this notion, see refs?kI '5. Here let us only recall that the Lie iso-
topies do  not necessarily preserve the compact or noncompact, semisimple or nonsemisiple
and Abelian or nonAbelian character of the original algebra. For instance, another isotope
of $0(3) can be, at least in principle, an Abelian three-dimensional algebra, Of course, the
notion here considered necessarily preserves the dimensionality of the original algebra, This
implies in particular that the isotopically mapped product must be such to vield a closed algebra
with the generators of the original algebra.

As we shall see in Section 3, the notion of Lie algebra isotopy admits a consistent group
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image. Here Iet us indicate that the algebraic isotopy (2,13, 4 ) admits a direct geometrical

counterpaxt, the symplectic isotopy (for autonomous cases)

i » \'i
W, = wﬁwdm)ﬂhdo\v — c)Zl:cJ)-P(‘atk ade,

!
LQ.[S_é)

oT the corresponding contact isotopies for the nonautonomous case, Andindeed, the realizations
of SO(3} and SO(2.1) indicate earlier are such that the covariant versions v arxl LD« e
of the respective Lie tensors wh ! and &.)h’ characterize symplectic structures,But
the mapping oceurs within the same base manifold, Thus, it is a case of symplectic isetopy
in our terminology,

Another example is provided by the transitior from the conventional canonical form 2.8 .2)

_a/kg(“f": flﬁae{‘f . g"e{/o{c.(z- 13.7)

to our realization (2.€ .2 }, i.e.,
— S
8= Px 6{9 7

Again, the base manifold is not changed.everthless, both forms !ead&zia exterior derivaﬁ.or})
to 2 symplectic stxucture, Thus, mapping (2.13.7 } is an example of symplectic isctopy.

In general we can say that a Lie algebra isotope always admit 2 corresponding symplectic
image via the covariant version of the Lie tensors.

‘To conclude, let us briefly indicate the analytic origin of these algebraic and geometric
isotopies. Consider the following equivalence transformation of Hymilton's equations within

the same base manifold o Cg,rﬂﬁ
v [w af C)H(ck)jf"ﬁ2 o Ce.lz_?)
{‘4/“ (a) L¥ve Qor sk Jgn

Under the assumption that, for a given Hamiltonian, the equivalent system is selfadjoint,

we reach Birkhoff's equations, i.e.,
LR C’l-\,.—(b—.__—-HB =0 e v = Ll vw\’ :(D"@ _@_ﬁ\: /
mV Gar PR I e Q' Qat(2.13.9)

Quf o v@W
Ser . Qav
Thus, the analytic origin of the notions here considered is that of a selfadjointness preserving
equivalence transformation of the analytic equations within the same system of variables,
This illustrates the reason for calling Lagrangians (2.13.3 ) isctopically related.
1t is an instructive exercise for the interested reader to work out the SO{2.1) invariant repre-

sentation of the harmonic oscillator in terms of Birkhoff's(rather than Hamilton's) equations.
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TABLE 2.14: CLASSIFICATION OF THE BREAKINGS OF THE GALILEl SYMMETRY IN
NEWTONIAN MECHANICS, We are now sufficiently equipped to study the mechanism of

Galilei symmetry breaking due to nonconsexvative forces. This problem is studied in details
in ref.sa. In essence, the use of the Inverse Problem allows the identification of the following
five classes of Galilei symmetry breakings in Newtonian Mechanics.

ISOTOPIC BREAKING. This is a selfadjoinmess preserving Gililei symmetry breaking

- . - . .
induced by the multipilcation of a ¢class € and regular matrix of factor terms to a conservative

and Galilei form-invariant system, and I shall write _
) - GFI YGFNT
J . . - -0
w‘h (t,’;,ﬁ)Lmim,-l,— ffL(,ﬁ)] sa}sq PN ORI

where SA stands for selfadjointness and GFI (GFNI) stands for Galilei form-invariance
(Galilei form-noninvariance). At the Lagrangian level the breaking is characterized by

an isotopic mapping of the type (Table 2,10) _ ~ FNE
rg LY LETGRNT [1ogh g_f_(f)i:.b fb_*':_z@r «
Y TP — cj - !
bR ORF g T | ke bV e s | sa
- (2142}

where now the isotopically mapped Lagrangian is Galilei noninvariant owing to the integrating
factors hkizt’ 5,;:;) which enter inte its strucrire via Bas, (2.6 .4 ).

On relativity grounds this breaking is the "weakest possible” to the point of being purely
formal, This is due to the property recalled earliex in Table 2,12, accord ing to which
conserved quantities are conserved in virtue of the equations of motion. This property is
left unaffected by equivalence transformations of type (2.14.2 ) (e.g. , in the conservation
law, according to Eq. (2,12.2 ), only the{mique)system of implicit functions enters). The net
effect is that the physical consexvation laws of the original system {total physical energy,
linear momentum, etc,) persist. for the isotopically mapped Lagrangian. This implies the
existence of nonmanifest’ﬁrsb-orderf noncontempuraneous ’symmctries of L*  which lead to

the conserved quantities of L. We thus have a case of isotopically mapped Galilei algebra,’i'qc'

that is, the generators, base manifold and parameters are unchanged, but the Lie brackets
are now generalized. This isctope G*(3.1) of the Galilei a gebra G(3.1} canbe practically
computed by using the techniques of the known inverse Noether approach (the conserved
quantities and related Ié,ggrf_a;—lgl.afn are kmown and the symmetry leading to such conserved
quantities is computed). Under the assumption that the approach extends to higher orders

and that the integrability conditions for the exponential mapping are verified, we have

the isotopically mapped Galilei group G*3.1) (see Table 3.7 for more details). The interested
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reader is here urged to work out the case, say, for the free paxticle,
In conclusion, the isotcpic breakings of the Galilei symmetry are purely formal on relativity
grounds because the original system verifies the Galilei relativity and this physical cccurzence
is not altered by equivalence transformations of type (2. 14, 4. ). Neverthless, this class of
breakings is methodologically significant because it indicates the possibility of characterizing
the conventionzl physical conservation laws of the Galilei relativity via a symmetry algebra
G*(3.1) which is generally nonisomorphic to the Galilel algebra, as typical of all isotopic mappings.
As we shall see in Section 4, the conjectured covering of the Galilei relativity for nonconserva~
tive systems is based on a generalization of the above notion of isotopy of the relati vity algebra,
SELFARJOINT BREAKINGS This is a selfadjointmess preserving Galilei symmetry breaking

induced by the addition of Galilei form-noninvariant forces toa conservative and Galilei form-

invariant system, and 1 shall write

A e )L.'.v.c\ - K‘Kk(t‘)]
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This is, in esgence, the reformulation in the language of the Invexse Problem of the conventional
Lagrangian approach to the (¢clagsical) breaking of any symmetry, i.e.,
G s LD

a [

LCrI' [_.GHE — L - Cz-“}-- 4~)

And indeed, the condition of preservation of the selfadjoin tness of the equations of
motion by the additive force f ke I8 rendered equivalent to the addition of the term L(iﬁrat
the Lagrangian level by the existence theorems of the Inverse Problem.

This class of breakings is not trivial on relativity grounds because it implies the general
loss of the physical conservation laws (e, g., one can add a time dependent applied force
derivable from a potential which induces the nonconservation of the physical energy) as well

as the general loss of the form-invariance of the equations of motion, i e.,

GTF¥ ee C"FHE
3.4) : Mg 7T “ - T }
G j\.f- L S tu C»)jegcrﬁ; L8 (tf*“f»—) ESF} cz.w.s)
— l.) ‘F
—_— {LMF"C‘“\ flta ):(55(.} - £\!r:.k(. Ir ’}‘_,)c" Q:lra.

Neverthless, this class of breakings is rare in the physical reality because the Newtonian

forces are generally nonderivable from a potential.
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SEMICANOMNICAL BREAKING, This is a nonessentially nonseHadjoint breaking induced

by the addition of Galilei form-invariant forces not derivable from a potential to a conservative

and Galilei form-invaxiant system, and L shall write
-~ GELC

- . A FL ~

T n. £ 05.)—] _F ( w =o. (2-14.4)
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In essence, the additive forces Fka are such to {(a) to be genuinely nonconservative (nonseldadjoint
or, also equivalently, rot derivable from a potential}, (b) be capable of admitting an indirect
representation without changing the coordinates :c'ka according to Theorem 2. 6.1 {nonessentially

nonselfadjoint systems) and () be Galilei form-invariant. The Lagrangian represeéntations
are then of the type

é ()L QL. 7 Ll l’T/ __ f GFI’ ]GFI' ,

-elk 2™ Coz _j JL e | 5L 75 5 Ynewsa Yso

(2. 1h.T)
with an essentially chiral Lagrangian structure (Table 2,10},

This class of breaking is also a rare occurrence in the Newtonian systems of our everyday
experience and it is here quoted mainly for completeness. In essence, the aspect which is
relevant in this class of breakingsis that the physical consexrvation laws of the Galilei relativity
can be lost dite to forces which are Galilei form-invariant, but not derivable from a potential.

The breakings are called “semicanenica]l” because {under the assumption that the integrating
factors of Eqs, (2,14.7 ) are Galilei form-invariant), the canonical formalism of the Galilei
relativity is fully definable, neverthless, it does not lead to the conventional physical conservation
laws (for instance, the algorithm "P" =9 l_/’a risa mathematical quantity which dees not
directly represent the physical linear momentum, etc. ),

As a result, this class of breakings has its own methodological fimction, In pardeular, it
focuses the attention on a dichotomy of canonical generators of physical transformations
versus physical quantities ’which j% absent in the conventional conservative mechanics,

Permit me to elaborate on this point by reviewing first the conventional conservative
and Galilei form-invariant case. Here the physical quantities (total physical energy, Hlinear
momentum, etc.) coincide with the canonical generators of the corresponding physical

transformations (translations in time, translations i space, etc,), This symbiotic

meaning of the generators of the Galilei algebra is lost when nonconservative forces ave included,
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An example is here useful to illustrate this occurrence. Consider the bxeaking of the symmetry
mder translations in fime produced by the addition of a linear velocity dependent drag fome

to, say, the barmonic oscillator , i.e., the conventional damped oscillator

. ¢  oFE -1FE — 5 (2.1%.8
T} %v[)?‘ t @ sta T a,)(' NENSR )

The breaking is semicancnical in our terminology because the force not derivable from a
potential is fully invariant under transiations in time, Neverthless, the conservation law of
the physical energy is lost. And indeed, experimental evidence indicates that the energy

is dissipated and the motion tends to rest in a finite period of time. These ccecurrences are
well known (see, for instance, ref.23 ). We are here interested in the mechanism. of this
breaking, First of all, a Hamiltonian for the representation of system (2.14.2 } without an
explicit time dependence exists and it is given by E‘] . (_2- i2. I\") Y i.e ’

oz Ong - Bucs (opa)-Lipa, (k)
b k:UU‘;b‘?’) , wlzud - (1/['_)0.

This confirms the semicanonical nature of the brealing: the Hamiltonian is invariant undexr
translations in time (physical transformation ), neverthless the epergy is not conserved
{physical nonconservation law}. But the canonical realization of the iranslations in time is
fully defined and its generator is given by Hamiltonian (2,14, 9 ). This, then illustrates
the dichotomy indicated earlier; in nonconservative mechanics the generators of physical
transformations do not coincide with physical quantities,

Two additional comments are here in order, The reader might be surprised at the terms
"physical transformations” which are definitively abseat in conservative mechanics, The intent
of these texms is the following, Within the context of the canonical formalism  any class c*®
function of the phage space variables induces perfectly acceptable transformations. Thus,
rather thar using Hemiltonian (2. 14. § ) one can use the physical energy

.2
E = ét‘i T ‘*’5 C!?')/

reexpressed in the (q,p) variables as a generator of a transformaticn of system (2. 14, ).

(204 10)

The aspect in which we are concerned is the physical meaniag of such a transformation.
It is easy to see that it is not a translation in time, The interested reader is here urged to
work out the details to see that the transformation induced by quantity (2, 14.10 } is a highly
involved transformation which carries no resemblance or connection with physically

relevant transformations,

- 205 -

As a result, for noncenservative (nonessentially nonselfadjoint) systems, the generators
of "physical transformations"( that isftranslations in time, translations in space, etc.)do
not coincide with"physical quantities" ( the total physical energy, linear momentum, etc.).V’iceversa N
the use of these total physical quantil:i\es as generators does not lead to physical transfozrmations
as commonly understood.

Finally, we remain with the question “what is a physical quantity for a nonconservative
system?” This concept is trivial for censervative machanics, but the extension of the same
notion to nonconservative systems does not appear to be trivial . Qddly, it is not immune
of controversy and, thus, of personal viewpoints. The answer we shall use in the following is
as naive as possible (acr:uallgfrom undergraduate textbooks?sbecause, at a graduate tevel, forces
nonderivable from a potential have remained largely ignored in recent times). The energy
of system (2, 14,6 ) will be assumed to be given by the sum of the kinetic energy and the
potential energy of all forces derivable from a potential, The linear momenturs is the conventional
quantityg = mi:. and the angulzy momentum is also the familiar formﬁl\ii =z xﬂ =rx m}‘l .

In the Ianguage of the inverse problem we can see that the physical quantities of nonselfadjoint

system (2,14, 8 ) are given by the canonical quantity of the maximal associated selfadjoint

system , that Is, the selfsdjoint subsystem within the inner brackets of Eqs. {2.14.8).
And indeed, since all F-forces are nonconservative by assumption, what we refer to as the
"total physical energy” is the Hamiltonian (or energy integral) of the maximal associated
selfadjoint systern. A similar situation occurs for the other quantities.

The study of cther viewpoints on the notion of physical quantities for nonconservative
systemsjand their bearing on the problem of the applicable relativity Jaws will be left to the

interested reader,

54
CANOMICAL BREAKING . This is a nonessentially aonselfadjoint breaking of the Galilei

symmetry induced by the addition of Galilei form -noninvariant forces not derivable from a ’

potential to a conservative and Caiilei form-invariant system, and shall write

- . . ) GENE
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in this case the symmetry breaking forces Fka are such to (a) be noncongervative,

(b) be capable of inducing a nonessentially nonselfadjoint  system and (c) be form-noninvariant

under the Galilei transformations, The underlying Lagrangian representations are of the type
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The breaking is called canonical because, even though the canonical formalism is fully
definable via 2 Legendre transform, the breaking occurs at the level of the canonical formalism
of the Galilei relativity, as necessary from the lack of invariance of the Hamiltonian,

This is 2 type of breaking which is more realized in the physical reality than the preceding
breakings. Lt constitutes -& class of particular methodological significance, To state it
explicitly, these breakings should not be interpred as occurrences of marginal relevance,
Instead, they should be interpred at the utmost of their conceptual, technical and physical
implications. The best way to emphasize this profile is by focusing the attention on the
breaking of a central methodological tool: the group of rotations (sesthe remarks related
to the nonconservabive spinning top of Section 1). The issue which is then raised is whether
this broken context should remain as currently is, methodologically undefined, or broader
methods capable of characterizing this broken S0(3) symmetry should be attempt ed. This
iz an objective of Sections 3 and 4,

The reader should be aware that, despite the Galilei form-noninvariance of the F-forces,
the canonjical breakinglare still restrictive because they assume the validity of
Theorem 2, 6.1. We reach in this we the last class of Galilei symmetry breakings characterizable
by the Inverse Problem, 5

ESSENTIALLY NONSELFADJOINT BREAKINGS. This is a breaking induced by the addition
of Galilei form-noninvariant forces not derivable from a potential to a conservative and

Galilel form-invariant system in such a way to violate the integrability conditions for the
existence of an indirect Lagrangian representation within the reference frame of

the experimental detection, and we shall write

f GFT s GYHE

- e -0t x =D,

[MK )c'ko\ - katw):(ggﬂ_ ke r“‘f‘“‘) ENSA )
(21413

‘This is the most general class of (Galilel symmetry hreaking(yia local forces)which s
rendered identifyable by the methodology of the Invexrse Froblem and, as such, it canbe

considered as inclusive of weaker forms of breakings.
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The mathedological implications of these breakings are  rather deep. On a comparative
basis between the canonical and the essentially nonselfadjoint breakings, in the former the
canonical formalism is fully definable and the breaking occurs only at the level of the forma-
lism of the Galilei relativity, while in the Iatter the entire canonical formalism is not definable
under the condition that the space component of the underlying manifold is constituted by the
Cartesian coordinates of the systems of the experimental verification, With the texms
“canonical formalisin™ we here refer to that based on Hamilton's equations, In particular, this

imgplies the inability of introducing all Lie algebras via the com ventional Paisson brackets
2o VT Db DbR D2

under the indicated restriction on the physical meaning of the rm1 vatiables.

This is the class of breakings in which we are primarily interested from here on. As an
incidenta] note, the reader should be aware that these breakings canrot occur for one-dimen-
sional systems because these systems can ut most be nonessentially nonselfadjeint, Explicitly,
it is possible to prove that all cne-~dimensgional { class C‘g ; J:egular)and nonselfadjeint systems
satisfy Theorem 2, 6,1 for an indirect analytic representation, As a result, the
conditions of this theorem can be broken only for a sufficiently high dimensionality,

By looking in retrospective, it has been for me rewarding to see that the methodology
of the Inverse Problem has indeed fulfilled all my expectations, particularly on relativity grounds,
And indeed, it provides a valuable method for the characterization of the acting forces in the
transition from one relativity to ancther (in the sense of Section 5), for the identification of the
mechanics of the Galilei symmetry breakings in Newtonian Mechanics, for the study of formulations
of Lie-admissible type (see Section 3), etc. . Itriguingly, the methodology is of some significance
alse for nonrelativity related problems, such as,nonlinear nenconservative plasma equations,
electric circuits inclusive of internsl losses, trajectory problems in atmosphere, etc, The
reader interested in an outline of these possibilities, may consuls refs.za'z.'b

As not wunusuzl for theoretical formulations, the methodology of the Inverse Problem also
exhibits rather precise limitations, particularly from a relativity profile, And indeed, despite
my best efforts, I have been unable to confront the problem of the relativity laws of nonconservative
mechanics within the context of only this methodological framework, To be more specific in this
xather crucial peint, besides effective possibilities for studying the Galilei relativity breakings,
the methodology exhibit no constructive capacity for a generalized relativity, to the best of
my understanding at this moment,
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3: RUDIMENTS OF THE METHODOLOGY OF THE LIE-ADMISSIBLE PROBLEM,

The Inverse Problem of Newtonian Mechanics outlined in Section 2 coald also be catled the
Lie Problemin the sense that the efforts are devoted to the representation of nonconservative
systems in terms of a methodology whose underlying algebraic structure is a Lie algebra,

The Lie-admissible Problem of Newtonian Mechanics can be conceived as a body of metho-

dological tools for the study of nonconservative systems whose underlying algebraic structure
is not, this time,a Lie algebra by central requirement, but it is instead a Lie~admissible
algebra(in the sense of Tahle 3.3}.

It should be ind{ eated that the terms "Lie-admissible problem' are here tentatively
introduced mainly for referénce to the coatent of this séction and that & number of other terms
could equivalently refer to the same topic, Notice that the only terms known in mathematical
literature are “Lie-admissible algebras" ,

As by now familiar, the Inverse Problem or, more appropriately in this context, the
Lie problem does admit a sclution for the considered class of neaconservative systems, However,
it appears that clear limijtations of physical effectiveness emerge ., I am here referring to
the Jack of constructive role of the methods for a generalized relativity, the Tess of direct
physical significance of the algorithms at head (P, H, r x P, etc.}, the inability to produce
Hamiltonian characterizations in & base manifold whose space coordinates are those of the

reference frame of the experimental detection of the system considered, the gererally
nonfnertial nature of the coordinate systems of the indirect Lagrangian representations and
thelr general nonrealizability with experimental set ups, etc.

The hope of the Lie-admissible Problem is that of identifying methods which avoid these
difficulties. The fundamental starting point is the representation of essentially nonselfadjoint
systems (2.14, {3} in the

reference frame of their experimental identification. This is

clearly crucial for relativity considerations. Since the conventional Lagrange's equations are
unable to satisfy this requirement, they will be modified in a suitable form capable of producing
the desired "direct universality”, that is, applicability to all systems {(2.14.13) as given,

On equivalent grounds, Hamilton's equations will be modified into a form capable of representing
the equations of motion considered such that: (A) all algorithms at hand have a direct physical
slgnificance, that is, the symbo; "rka” has the indicated inertial meaning, the symbol "pka"
represents the physical linear momeatum (mkika), the symbol  "H" represents the physical
energy (sum of the kinetic energy and potential energy of all forces derivable from a potential

or, more specifically, the Hamiltonian of the maximal selfadjoint associated system), the
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symbol "M“ represents the physical angular momentum {E x m_i; }, etc., where the term "physical™
(while obviously inessential in conservative mechanies) is here imreduced to stress the difference
with canonical quantities of type (2.12.]5) . In conclusion, the generalization of Hamilten's
equations I shall be looking for is based on the preservation of all the algorithms of the Galilei
form-invariant subsystem of Eqs, (2.14.13). The Galilei breaking forces will then be represented
with a modification of the structure of the conventional Hamilton's equations. As we shall see in
Section 4, this appears to be at the very foundaticn of the possibility of identifying & group of
nonmatifest symmetries for the form-invariance of the Galilei-breaking system (2.14.13),
provided that the brackets of the generalized time evoludon law characterize a Lie-admissible
algebra,

‘The reader should also keep in mind, from the content of Table 2,14, that the objective of
this paper is the study of broken Lie, space-r:ime’ symmetries, As a result, the fundamental
constructive problem is that of attempting the identification of algebraic-group theoretic methods
for the treatment of broken symmetries which are ful!fparallel, although generalized, to the
established methods for the treatment of exact symmetries,

To restate this situation in different terms, the mere identification of the breakings of the
Galilej relativity in Newtonian Mechanics is, "per sé", sterile, To achieve a physically productive
context, the central problem is that of the identification of effective methods for the treatment
of such broken context. It is precisely in this respet that Lie-admissible algebras appear to be
particularly intriguing, And indeed, on one side they guarantee the breaking of the Lie symmetry
algebra while, on the other side, constitute a covering algebraic framework for the treatment
of the broken Lie symmetry,

Fox conl:iseness; I shall again present the essential aspects of the analysis in sequential
tables, To aveid a prohibitive length of the manuscript, the preofs of all theorems and major
steps will be emitted. This section, however, is a summary of Volume II of ref. ® In this
reference, therefore, the interested reader can inspect all proofs of the theorems of this
section, The assumptions which are tacitly implemented are the same as those of Section 2,

As a personal note, permit me to indicate that, without any doubt, the study of Lie-admissible
algehras along the three profiles outlined in this section (analytic, algebraic and geometrical
profiles) has been the most interesting, stimulating and rewarding research topic of my
academic life. T hope that this paper will suceed in communicating seme of my enthusiasm to
receptive readers because this line of study is at the very beginning and so much remains to
be done, 1 would like also to take this opportunity to express my appreciation to G, N, KTORIDES
for calling in his papersglﬁ Santilli algebras the Lie-admissible algebras,




- 300 -

TABLF 3.1: THE NON-LIE ALGEBRA CHARACTER OF HAMILTON'S EBQUATIONS
WITH BEXTERNAL TERMS, The customary form of Hamilton's equations with external

terms ;E'“‘ Z(?H!i.— FK,,_ SR Ka. ft,x, t‘) el -, T (z.1.1)

O Pra Qe i3y = '
implies' the following generalization of the time evolutlon law (2. B.7a) )
: Of Ak AR W B _ A (3.12
R(}-,B) (btm.@t;it /DFKL’D'LKA @FKL Ke — H -

Assume that, for fixed values of the external forces, this broader law characterizes generalized

brackets here denoted with the symbol AxB . A simple inspection soon reveals that these

(3.1.3a)

brackets violate the Lie algebra identities, i.e.,

AxB -Bxf& F72, _
(ﬁ'xB)xC. + (BxC)xQ —f—CCxﬁ) xB #o . (3.1 35)

Thus, Hamilton's equations with external terms are non-Lie in algebraic character,

As indicated in Section 1, this occurrence is not negative "per sé". As a matter of fact, it
can be considered methodologically intriguing because of the possible existence of a broader
algebra underlying Eqs. (3.1.1).

However, for consistency, the brackets AxB rmust satisfy certain propexties to characterize
an algebra as commonly understood. In particular, the brackets must satisfy the right and left
distributive laws and the scalar lawv::-.2 A simple inspection also reveals that the brackets AxB
satisfy the left distributive law, but viclate the right version of the same law, 1. e,

(p+B)xC = Ax< 4+ B xC
Ax (Brc) # AxB + AxC,

LB.!.I;.G\)
(3.1.4b)

Also, brackets AxB satlsfy a right version of the scalar law but violate the left version of

.5a
Lx (AxB) = fx{dx B)= («x0)xB, o{:CoMCS?'v-l )

(fx B)x<F Ax(Bxx) & (Ant)xB. (3.1.55)

As a result, the brackets AxB of the time evolution law of Hamilton's equations with external

the same, l.e.,

terms do not characterize an algebra , that is, Eqs. (3.1 1) are not only non- Lie but actually

non-~algebraic in nature, This situation indicates that, despite their preservation for over one
century, Hamilton's equations with additive external terms must be modified to yield an acceptable
algebraic structure.
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TABLE 3,2: THE TENTATIVE GENEALOGICAL TREE OF THE LIE-ADMISSIBLE PROBLEM

By inspecting the cccurrence of Table 3.1, one can see that the violation of the right distri-
butive and scalar rules by the brackebs AxB of Iaw (3. L. 2) is due to the additlve nature of the
external forces, This indicates that, if the forces not derivable from a potential are represented
with multiplicative( rather than addiri\re) terms to the derivativesof the Hamiltonian
with respect to the local variables, the brackets of the emerging time evolution law are expected
to characterize a fully acceptable {nonassociative) algehra.

For simplicity, fet me consider the case of ona space dimension, The medification of Eqs.

4q,4c, 46l
(3.1, 1) in which I have been initially interested can be written
. COH : P (32‘]0.)
T = D P J P -~ z ’ ) :5

s =4 ¢ F/(fah’/az) )”%gg to.  (3.2.18)

Where the last condition is assumed to be always satisfied for the argument of this table, If it
is not, one can add and substract ficticious forces derivable from a potential,

Eas. {3.2.1) characterize the following generalized time evolution law

& I

Alpy <R 8 s eh o (B0). 6.2
e QDn P “ob

It is easy to see that the transition from Eqs. (3,11} to their equivalent form (3, 2, 1) permits the
characterization of a fully acceptable algebraie structure. And indeed, ata fixed value of the
s-term, law (3,2.%2 ) can be interpreted as characterizing generalized brackets here denoted

with the symbol (A,B). Agaim, these brackets are non-Lie, i.¢., they are such that for all

nonnull values of the external forces (and, thus, for all values s + ~1) the brackets (A,B)

violate the Lie algebra identities

(A,B) - (B.A)FO, (3.2.3)
(10,8),¢) + (®0,0) + (h),B)#e . C-29

However, this time they do characterize a (nonassocoative) algebra because they satisfy the

1eft and rightdistributive laws s 2.5a)
(f+B, ) = ((‘),C)-}»(B,C), e *
(6, B+c) = (HB) ¥ (R,¢), (3.2.58)

the scalar rile
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_ k. (3.2.6)
(R ,4) = (4,R)=0 = @h

as well as the left and right differential rules

L&Bv ¢} = (ﬂrc’)g + H-(BI(‘)" (_'3.2.7&)
LQ- , Be) = (_9}3) ¢ +B Cﬁ, C), (3. 2.75)

This was the status of my first understanding of noncannnical equatinrns, After having
ensured the existence of an acceptable algebraic structure, my next problem was the identification
of the type of algebra characterized by brackets (A, B), On grounds similar to those of Table 2.2,
the identification of the prior state of the art in the algebra characterized by brackets (A,B)
turned out to be another very time consuming paxt of the project of this paper.

An imitial search{at the libravies of the University of Torino, Italy, in. 1965} revealed that
the algebra of brackets (A,B) was simply not treated in available treateses in Abstract Algebra
(i tis still the case as of today, to the best of my knowledge, as the interested reader is encouraged
to verify), I therefore initiated a second search in the specialized mathematical and physical
literatures, This search turned out to be fruitless because the brackets (A, B) essentially violate
most of the identities of the algebraic structures of general interest ameng mathe maticians,

For instance, the brackets are neither symmetric nor antisymmetric (for an arbitrary F-force)
(a,B) + * (8,8), (3.2.8)

and, thus, this excludes both, the Lie algebras and the commutative Jordan algebras, Next,

the brackets viclate the alternative laws

((h,3),8) + (@ (7B)), (B, 6,)# (3., &), (329

and, thus, alternative algebras are excluded. Next, they violate the flexibility and the Jordan

laws, @Q ;B), H) —-r.l’ (ﬂ‘ J(B rﬁ))/ 63_2_194)
((('G’ &),B),&) % ((ﬂ’ﬁ); (-Blﬁ)), (}.2. [O.Io)

and thus, noncommutative Jordan algebras are excluded. Next, they generally violate the

power associative law
((h&), 8)+ (4,08, ) (ﬁﬂ,ﬁ),(ﬁ,&))*f- ((0,@,0),8),

and, thus, power assoclative algebras are excluded too. And so on.

(3.2.1)
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However, it is well known that the types of algebras identified by mathematicians are quite
numerous indeed. I therefore decided to enter into a detailed library search (which I conducted
at the University of Torino and at the International Centre for Theoretical Physics of Trieste,
Italy, in 1966-1967). My determination to pay tribute to previous contributions was finally
rewarded. And indeed, ! finally identified a paper by A. A, ALBERT of 194826&1n which he
introduced the definition of a Lie-admissible algebra, although without any detailed treatement,
The brackets (A,B) are indeed Lie-admissible because the algebra characterized by the
attached brackets| A, B|* = (A,B) - (B,A) is Lie (see next table for more details}. The only
additional papers specifically devoted to the study of Lie-admissible algebras which I succeeded
in identi fying were a paper by L. M. WEINER of 19572 and a paper by P, ], LAUFER and M. L.,
TOMBER. of 1962 . My rudimentary first papers on this subject A dﬁ;ere primarily devoted
to the understanding thar Hamilton's equations with external terms, when properly written,
are Lie-admissible in algebraic character,

Since that time a number of contzibutions have appeared in both the mathematical and physical
26el-8
algebras {of flexible type, see Table 3.3) by H. E{:%AYUNG conducted fro?rf‘ E'Il until recently, .
See also the contributions by A.A.S AGLE (I971) , D.R.SCRIBNER {1971) ang Hi STRADE (1972},
Within the latter context, most notable is a paper by C, N. KTORIDES of 1975 in which the

literature, Within the former context, most notable is a series of studies on Lie-admissible

generalization of the Poincare-Birkhoff-Witt Theorem to Lie-admissible algebra is apparently
studied for the first time. See also the studies by M, Kél‘v‘ and J. L(‘)’HMUS (1972) on the covering
nature of Lie-admissibility over the deformation thecry and that by P, P, SRIVASTAVA (1976)26‘-
which is sufficient to indicate the covering nature of Lie-admissible algebras over that of graded
(supersymmetric) algebras.

These studies were sufficient to establish the following properties.

(A} The Lie-admissible algebras have a direct physical significance for systems with
forces not derivable from a potential, where the term "direct" is here refersed to the
property of being applicable in the space of the coordinates of the reference
frame of the experimental detection of the system and the physical momentum (the reader
shouid keep in mind from Section 2 that this direct applicability is precluded to Lie algebras).

(8} The Lie-admissible algebras constitute an algebraic coveriag of the Lie algebras in a
sense to be outlined in this section, which, in particular, has an amalytic origin (the
time evolution law) fully parallel to that of Lie algebras, although of generalized nature.

(C) The Lie-admissible algebras constitute an algebraic covering also of other astzuctures

of current interest in theoretical physics, such as the deformation theory and the
graded algebras of supersymmetric models,
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BoB = oft 5}“’(1%5)?,.3_ } (2.3.1)
25" b
where the 5 /h ~ tensor satisfies the following continuity and regularity conditions
S e cIR) ekt (32V)) #o, B-3-12)

which will be tacitly assumed throughout this sectlon. The space 0(,{, equipped with product
(3.3.1] ) is an algebra because Eqs. (3.3.1) and (3,3, Z ) are satisfied, Product (3.3, §| )
also verify the differentizl rules {3.7. 7 ).

The tensor 5~ v is, in general’neither totally symmetric nor totally antisymmetric in the s N4
indices. When exhibiting an explicit dependence in the b-variables, the tensor 5 " and related
brackets (3. 3, Il } will be called nontrivial,

The first central step of our program is turning the algebraic laws of Lie-admissibility
into a system of quasilinear partial differential equations. The analytic brackets of the

Lie-admissible formulations can then be characterized hy the solutions of such a system,

sb
This objective is realized by the following

THEOREM 3.3.1: A necessary and sufficient condition for nontrivial brackets
(3.3.11 ) to satisfy the general Lie-admissibility condition (3. 3. 8) is that

all the following partial differential equations in the s/ v tensoxr

(ert-oer) 2 (577~ 57 ")

v (870 - 50v) 25, (5 - ")

2 2y 2 (s*rV_ s} -0
'?(6 ()—SF (ab(: ) !

are identically verified in the considered region of the local variables.

(3.3.13)

The existence of a nontrivial physical relevance of Lie-admissible algebras in Newtonian
Mechanics is constituted by the fact that system (3. 3.13) is consistent, that is, it admits
solutions {other than constants) with a nontrivial degree of functional arbitraryness, as we shall
see in the next Table.

Theorem 3, 3.1 relates to general Lie-admissible algebras. For the second layer of flexible

Lie-admissible algebra we have the following sk
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THEOREM 3. 3. 2: A necessary and sufficient condition for nontrivial brackets

{3.3.11) to satisfy the flexible Lie-admissibility conditions (3.3, 3 } is that

all the following partial differential equations in the sM "tensor

ape 0ST  oTPOSTH _ TOSMY ce ’”Q_Efvg\"’f*, (33.14a)

Y =

26 T T b T dbe b6

(_c).u{:_ qu) &) 6“1'+ (6.,‘?_56‘,),.%?;/“_’_ (51{9’5(37_- /Dé’: =0,

ok
(3.2.145)

are identically verified in the considered region of the local variables.

Dpf

It is an instructive exercise for the interested reader to prove that all solutions s Vof Eqgs.
(3.3.14) are also solutions of Eqgs. (3.3. 13). This is the equivalent notion in texrms of partial
differential equations of the algebraic notion that all flexible Lie-admissible algebras are general
Lie-admissible algebras,

The third and last layer of Lie-admissibility recovexs the conventional Lie properties and

4
is expressible with the

THE OREM 3.3.3: A necesgsary and sufficient condition for nontrivial brackets

(3.3.1]) to satisfy the Lie algebra identities (3. 3,10} is that all the following

corditions on the S)"V tensor
5"’” -+ 5\))“ = O,
are S8, gve S 5= IS, (33.50)
bl Dbl Db

are identically verified in the considered region of the local variables,

(3.3.1€a}

As is well known, Eqs, (3.3.15) ensure that brackets (3. 3.1l ) are the generalized Poisson
brackets (2.8 .11) and, thus, they are Lie. The conventional Poisson brackets
are then recovered as a particular case, 25””1514:

‘Physicists interested in commutative Jordan algebras might be intrigued to know that, at
the abstract level, Lie-admissible algebras ave often jointly Jordan-admissible, that fs, they

peasess a well defined content of both Lie and commutative Jordan algebras (this is the case
e, g. ,of kheLie-admissible algebras constructed via the fundamental representations of SU(n)).

However, , no classical realization of Lie-admissible algebras we shall be involved with ig

also Jordan-admissible. This opensintriguing perspectives(on commutative Jordan algebras) for

quantization via Lie-admissible techniques whose classical limit is of the so-called bonded type.
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A classical {quantum mecharical study of this issue is conducted in ref, sb (ref. S ).
Before entering into the presentation of the application of Lie-admisaible algebras in Newtonian
Mechanics, it might be of some interest to indicate the current states of the abstract study of these
structures,

6a-26)
assop conducted by mathema-

The first point of some relevance is that the studies of ref,2
ticians have been {properly so) devoted to the first fundamental step, the flexible Lie-admissible
algebras, This is not a deficiency, but simply an indication of the novelty of these studies. In
particular, Iam aware of no study conducted by mathematicians on what I have called the general
Lie-admissible algebra (this term or, equivalently, any other term differentiating algebras
{3.3. 3 ) from algebras (3.3.9 ), does not appear to exist in mathematical literaturesto the best
of my knowledge).

Ag we shall see, the flexible Lie-admissible algebras do have a physical significance , such

as for the construction of the Gell-Manr-Okub¢ mass formula4d’ 24a

, for a Lie-admissible -
quantization of forces not derivable from a potential Se or of couplings not derivable from a
potentia124b_ Thus’ st:ur.lieszﬁél -26p have a direct .physical significance,

Neverthless, the algebras which appear to have the major physical role are the general, rather
than the flexible, Lie-admissible algebras, As we shall see, this is the case for possible covering re-
lativities. The net effect is that while the study of flexible Lie-admissible algebras should be
continued, studies on general Lie-admissible algebra are urged.

The study of general Lie-admissible algebras of ref, sb is essentially based by the use of as
many methodological tools offered by the theory of Abstract Algebras as possible, such as the use
of the zssociative multiplicative algebra, the Lie multiplicative algebra, the Pierce decomposition,
the Cartan decomposition for Lie algebras, Jordan algebras and nenassociative algebras in general,
the (solvable, nilpotent, associator nilpotent, f-soivable, f-nilpotent, Jacobson, Levitzki, McCoy,
Brown, Amitsur, Nagata, . etc, ) radical approach, etc, But this is only a truly zudimentary
first step and the number of open aspects is too Iarge to suggest an cutline. Besides, this algebraic
approach will not be cutlined in this paper to avoid an excessive length.

For the reader interested in these algebraic aspects I suggest, as a first reading,

25a-25f 25g-25v

textbooks , as second reading, monographs and, as third reading, research

monographszsz-zs'g. Papers?'8 appeatT to be particularly valuable for Lie-admissible algebras.
The reader, however, should be aware that all reference525 and 28 are devoted to the study of
algebras other than Lie algebras and that none of them treats or even defines a Lie-admissible
algebra. Neverthless, as indicated earlier, they provide metheds which, under a number of
technical implementations, are often applicable to the Lie-admissible algebras.

In conclusion, we can state that there exists a hierarchy of three classes of Lie-admissible

algebras satisfying the following enclosure properties (and which can be interpreted as a corresponding
hieraxchy of Newtonian forces according to the analysis of Table 3. 4):

- 3il -
Lie T Flexible Lie-admissible c General Lie-admissiblela 63_3_; 6)
algebras _( C algebras algebras j .

Within such a context, the Lie algebras emerge as being the simplect possible Li¢-admissible
algebras. In the transition to the two subsequent layers of generalization, the Lie-admissible
character persists.[Neverthless, the totally entisymmetric nature of the product is lost, In
such a transition, however, the Lie algebras are not "lost", Instead, they are preserved ina
deubled embedded form: {a) the attached form U_.':',L and (b} the limiting form  {undex anticommu-
tativity of the Lie-admissible product) Ulim’\":‘ L', where, in general, L # L

As we shall see later on, these features are such to offer some genuine hope of constructing

a Lle-admissible covering of Lie's theory,

TABLE 3. 4: HAMILTON-ADMISSIBLE COVERING OF HAMILTON'S EQUATIONS AS THE
ANALYTIC ORIGIN OF THE LIE-ADMISSIBLE ALGEBRAS.

Clearly, generalization (3.2.1) of Hamilton's equations was purely indicative. The proper
generalization within the context of the Lie-admissible formulations must be constructed according
to Theorem 3.3.1 A study of this problem (which is reported in details in ref, 5b) Jeads to

the following property which we shall refer to as the Theorem of Direct Universality of the

Lie-admissible Formulations .

THEOREM 3, 4,1: Local, class C‘,nregﬂlar, nonconservative, {essentially nonself-
CTR ezt,2,uea,N (o)

- .. R .
J T =
iLMKzK““ E‘“(‘t):&gﬂ - F;“(t:, “:E)fzwo) asry, e
H (3.1}
can always be directly represented in the (neighborhood of a regular point of the)

variables ILij= S.rka, pka} { where rka represents the Cartesian coordinates of

adjoint} Newtonian systems (2.14.13}, i. e.,

the reference frame of the experimental detection of the system and Prg represents

in terms of the contravatiant equations, here called

the linear momenta mkrka}

Hamilton-admissible equations, /')b)-k (DH
TR omvip g RH@®_ [P T8 IR o ez 6,
b — 6 (b;b)(va = LD fbqub‘, //) C3-4'.2‘*)

clek (5*‘“’): )6"") = P%’gv EXa (3-4.25)
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or in terms of the eguivalent covariant forms

TV DHCk) _ DRy LV _OH o,
Spotb b~ rgg»f’ S0 T

= DRy

are the solution of the system

(/*" = fbby

where the functions R

DR D) TP (b - FELELY = £.00),

{608 - i‘b}:w z“& {Fet=te Rt A rbbé.zhw)
(4, H),

The brackets of the time evolution law
then characterize a general Lie-admissible algebra, i.e., viclate the Lie

B vl

HOD)‘QQ,F S (3.4.5)

algebra identities but satisfy the covering law of Lie-admissibility
((8.2),0) + ((3,9,8) + ((¢,n),B) + (¢, (8,m) + (B, (A, )+ (8,(¢,8)
= (8,8,0) +(8,(0) +(c,(0.8) +(c8),fr) +{Bis), )+ (&, CJ,B) )
B

A few comments are here in order, The "universality” of the approach originates from the fact
that Egs. (3.4.4) constitute a system of 6N linear, inhomogeneous, first-order, partial differential
equations in 6N unknowns, the functions R " (t,b). A solution, under the assumed conditions, is
then ensured by the existence theory of partial differential equations,

The crucial propexty of Lie-admissibility of brackets (3.4.5 ) can be proved in a number
of ways.

(A) Direct proof of Lie»admissibility The brackets
v DB, R BB, 8 (3.4.7)
(A.,B) = rb b,\ S T ab” PRy O TR, DbV

general iie-admissible algebra because the attached brackets

o p_OA RB . 2B QA 2
(_Q,B) —'(Buﬂ')— L("HB:I —(-Drevgbv "BQ Qb.;! C?’“l" )

satisfy the Lie algebra identities, while the origiral brackets (3. 4. 7) are {nonassociative and)ntm- Lie.

characterize a

(B) Algebraic preof of he-admissihihty The tepsar MY <9 bf‘/’DR./ can be always
written in the form $FV = cor™ QO p7 /D i , where the functions T®" are uniquely characterized

(2, 4.3a)
) (5/’“‘“)’1_— (_D_b_}‘.);i 63.4-31’)

Gk ba)
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by the functions R
the tensor w”“ahy@ T“ satisfy Theorem 3. 3.1, as the reader can verify by inspection,

. Brackets (3.4.5) characterize a general Lie-admissible algebra because

(C) Geometrical proof of Lie-admissibility. The tensor § nv is nondegenerate, from
condition (3. 4.2 b), bat it is not totally antisymmetric, As such, it does not, strictly speaking,
characterize a symplectic geometry, Neverthless, the attached tensor

Spv - Gy = 2R 2
sz - - v ..—_A -
bad I SN S YV

is precisely the nondegenerate, antisyrnrnetric/ Birkhoff's tensor (2. 8.3) which, as such, characteri-

(3.4.9)

zes a symplectic form (2. 8,26). This is sufficient te ensure the Lie-admissibility of brackets
(3.4. 5 ) because it ensures that the attached tensor JZ” =g Yo S‘))A ts Lie.

Notice that in conventicnal notatmns Bgs. (3.4. 5 ) can be written

Ue/*} = { R-,“_(trm, ) "Z.“} (3.6-.10a)
DR £k Q@—m T, b _%—lir: =0, (3.4. 10b)
b ; o Fe
qf’t (Dlw(x‘_b‘> (3. 4. 10C)
pka 20 = o
(b Ft’a

Thus, th&@mcia] regularity condition (3. 4.2b) can be equivalently written
| (D Eﬁ-‘a Q
deb(5) - [ fﬂﬂ) /?w £o.
ib
iBNxBH Os1t3 (3.4.1)

Notice that this propexty can be satisfied even when all forces derivable from a potential are null,

\)} _ "b(’»m)

The analytic counterpaxt of the concept of Lie-admissibility of Table 3.3 is also two-fold.
First)the "analytic content” of Eqs, (3.4.2 ) is expressed by Birkhoff's (rather than Hamilron's)
equations in the sense of the attached form (3. 4. 9 ). Secondly, Hamilton's equations are

recovered identically at the limit of nuil forces not derivable from a poteatial according to

. v

b (5. b i Drma ( (DH)

F)‘—>o( g m’”) ® “”“’f"‘b 2 b7 Y G
= Wy LY _ b’* .

This also illustrates the reason for the selected terms "Hamilton-admissible equations”,

In the following we give few indicative examples of representation of nonselfadjoint

Newtonian systems in terms of our Hamilton-admissible equations.



L(Z sa+zf :[Hm ’ =t (g‘lr_g&)
ip\y—kzi(-_};-&l)!’b} y ?./ I"-"i;
L+ 620 + 8 pge , ™ot , (3611
R 4= LCbde2) = (e ), b

(3.4.13¢)

[ (2= “’l)m”'&é*£(bﬂwfﬁéo”

(@} = (b)) o= LR Rt L b

(rm S — ct-’g-’i - ) =o, H:l-'-m_(glaro(’ta)z

moy 4o Msa P mi
¢ - (3.1..134)
%,EF§:{L_ k”" - It}a)l (F— ‘P?J) )L’zx)f@‘;ﬁ/
1 2
M\;Z,‘x-f-ﬂztxjt.xz’ij -0 Hmt
o2,

ve . 2 . .
.nsz\J 4 b t (’axﬁzb—r’z 2x) /NS

Ryt _ e ____..othb) (2)625)3
51}‘3 %(F:L 353)( (34.13¢)

The use of Eqs. (3. 4.3) is here tacitly assumed. The reformulation of the above representations
in texrms of the equivalent form (3,4, 2) is left to the interested reader. Notice how the Hamiltonian
is representative of the kinetic energy as well as of all the forces derivable from a potential,

The reader should be aware that the forms (3.4, 2) and (3. 4, 3) of writing our Hamilton-admissible
equations are mt unique and several additional alternatives can be formulated. These additional
forms are significant on methodological grounds, depending on the aspect under consideration,

We therefore give below some of the most representative contravariant and covariant ways of

writing the Harilton-admissible equations,
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l'D}" N Py (I‘: B)KDHU))

N4 U
RNV S IR R Ly
SR T uwr PP (34
S e LI KoL
B S Z b %
ARV AL ﬁd:%%« <

i
g
B
5

Y Y A Y-y (3.4.14b)
_ VZe b CZb—-H)
T ok o %’“
DT Bt w /5"{ AL
= St T T Mo v

where the functionsZ s T and UM are {uniquely) characterized by the functions R i of Eqgs. (3. 4.4).
For instance, by using the contravariant form in the'Z2 o functions, one can easily identify

the generalization of the conventional Lagrange's equations which is induced by the Lie-admissible
L %) =TCE)-NVE), B 6d8)
E - 5FQL _, =EC3,E),

fa,ikn.—
ZKA -‘.‘ZKQCFJ -ufm)

which we shall call Lagrange-admissible equations because theyrecover the conventional Lagrange's

formulations. It is given by the equations
o AL 0B _,
db DEE qz

J

equations identically at the limit 2K% 5 -2 , L.e,
o J L RE . d L _RL (5wi)
Z“}: zk(‘?{F@t Tz )T dE Qpke Qe
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as it can be seen by writing the equations in the equivalent form
d oL ¥t 2oL _(On’b’— )z‘”’:a, 3. &.17)
e Y L T CEaCE Ly

Viceversa, starting from Eqs. (3.4.17), the conveational Legendre transform induces the

Hamilton-admissible equations in the contravariant form in the Z=functions, from which the other

equivalent forms can be constructed. Thus, the Lagrange-admissible equations  constitute the

generalization of Lagrange's equations (with and withcut external terms) which is consistent with

the Lie-admissible formulations.

A fundamental property of both the Lagrange-admissible and the Hamilton-admissible equations

is that they are, in general, essentially nonselfadjoint, and we shall write o=
. 20 . - S
[ S by 2L T R TR _RE To, Bas)
# Db fvsa db DEFY Dz ANsa

As a matter of fact, this is precisely the reason why these equations are capable of producing
a direct analytic representation of essentially nonselfadjoint systems which is prohibited for the
conventional Lagrange's and H amilton's equations.

Eqs. (3.4.14) will also be called canonical-admissible equations because they offer a genuine

kope of constructing, in due time, a covering of the conventional canonical theory. In particular,

(a) the canonical-admissible equations are directly applicable to a broader physical context, that is,
applicable without reformulations of the variables;

(b) they are non-trivially different than Hamilton's eguations in the sense that they are non-Lie
in algebraic character;

{c) bhey embed the forces not derivable from a potential {Galilei relativity breaking forces) into
the Lie-admissible tensor S,ULV {rather than into the Hamiltonian);

(d} they recover Hamiiton's equations identically at the limit of null forces net derivable from

a potential; and, last but not least,

(e) their departure from Hamilton's equations is a measure of the latter forees, l.e.,
¥ v el :2[
Cat wrv) 2B R Lr 1-40,FR.3-
D bV

Eqgs. (3. 4.14) are at the foundationsof the Lie-admissible formulations. All my efforts (reported

(3.4.19)

in vef. 5) are essentialty devoted to attempt an initial understanding of the relativity and quantum
mechanical implications of the direct applicability to physical systems of generat Lie -admissible
algebras, as established by Theorem 3.4.1. 1t should be stressed in this respect that the emerging
Lie-admissible algebras are of general, rather than flexible type. For a study of the (xather

restrictive) conditions under which the flexible Lie-admissible algebras occur, see ref. Sh.
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The reader should be aware that the variables J:s‘a and Pla of figs. (3.4.])4) do not span
& phase space as comumonly inderstood, Notice that this is the case even though Pra =9 L/‘_z) ka
The point is that the functions L and H represent orly partially the system within the context
of the formulations undex consideration. The space of the b-variables of Eqgs, (3.4./4) has
been called dynamical space in ref.sx> . It will be geometrically identified in Taple 3.8

The transition from the analytic equations of the Inverse Problem to those of the Lie-admissible
Problem will play a crucial function for the subsequent steps of this paper., We here restrict
ourselves for brevity only to the case of nonessentially nonselfadjoint systems, Then, the

use of Egs. (Z.11. § ) allows the direct identides

Dan( d ALt gLt IR ]
Lo (S5 55 ~ 5o m:NfH . (3410
PN

O

E-Li ¢ _f_-'b-t"j”DL" o @L )-,s
dt QZre T STk 4ib T \ D7D sb NEMSA

= T <R
- LC’“‘V— ’C‘Fu“ -f“«)rzsa "FF&XNEHSH
This indicates the reason for our insistence in the generalized form (2,11 .9 ) of Lagrange's

equations rather than the conventional form (2.'1) - -And indeed, it is the nonselfadjeint
nature of these equations which allows a direct link between Lagrange's and Lagrange-admissible
equations, Notice that in the former the forces not derivable from a potential are represented
with the generalized structure LE of the admissible Lagrangians (essentially chiral Lagrangians),
while in the latter the forees not derivable from a potential are represented with the Z]f;imcdons
by allowing in this way the Lagrangians L of rule (3. 4.20) to have the conventional structure
=T -V,

The transition from Hamilton's to Hamilton-admissible equations (again for nonessentially
nonselfadjoint systems) is, in essence, a particular type of mapping under which the Hamiltonian

does not transform as a scalar, We can write in this case

farl= (2" R} 5 [Llo’“} - (L)CM },ku ) (_3.@.21:)
PK.\ -‘)L%/'rD SR —_— FFA '”(DLQ/"D 'to\ Cg_l,_ﬂi )
H ¢ -~  He H %{b,bcb,eu):@ GE. (3.5.219)

For the transition of the equations in ¥ 2 we trivially have(hy construction)
sre Y pHC (3. 22)

(D Pﬂo, D qu

Fer the transition of the equations in Ppa notice that
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o <L o 2 (pre)=Tatba ) o e
ka. = o - Ko
Qb [ = - la’L‘iﬁ*J) FF»-(I:"‘“J—W) (_3_1,..2.31:)

]91‘:& = QtFo- - (D.b.

Then, under the assumed coaditions, there always exists a2 {class C a.ncE regular) matrix

(hkn )5u::hthat (DH%' 3[9 . KB Hc (3.4—.2-#)
= Ifl F‘ - b
FKu t Qe Ee bz

We can thus write in unified notation

<
Y : . ZRe
o — wrY Y* = {/\)Av (\D - sﬁV/DH—H ) (34252

DY
oav
A i o guv- 26 (5. 4.255)
L ") = (o (hy j7 (DZF 12,0 b, 2" ¢,

Finally, let us recall that the Li¢ tensor w!7of the conventional Poisson brackets has

a rather special physical significance, it represents the fundamental Poisson brackets

of the Inverse Problem in the unified notation

G_‘_’c"‘"’, t“’]) ([’z.c‘, jh])

(['ﬂ" 2 "Y) U.?-

For Lie-admissible formulations these brackets are lost., We have instead the expressions

(e, ’tib)) L@‘“‘, Piv)) Oap x 31 /i.‘SHxQN

e A - | | /
(=) (Cpee, =) (b, b)) @z_%) Vi

O A
AM 3y ELEX Iy

i

m
(w ?;;,—_() -1 anaan Osrywrny

Dz YA
3.4.27)
which represent the fimdamental dynamical brackets of the Lie-admissible Problem.

A comparative analysis of this dual methodological context for the representation of the
same (nonessentially nonselfadjoint) system |s instructive, In essence, within the context of
the Inverse Problem all conventional formelations (e.g., Hamilton's equations, Lie algebras,
ate. } are preserved, but the mathematical algorithms at hand (the symbols "P", Hg, etc, )
lose their direct physical significance. Within the context of the Lie-admissible problem
exactly the opposite situation occurs in the sense that, by construction, all algerithms of the
approeach (e, g., the symbols "p" "Hc", ete.) have a direct physical significance, but the
conventional formulations axe lost. It is hoped that a judicious intexplay between these two
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complementary formulations, rather than the individual use of any of them, can be effective

for the study of nonconservakive mechanics, with particular reference to 2 most insidious aspect,
the physical meaning of the mathematical algorithms at hand, For a study on the implications
for, say, the physical electric current and conductivity tensor of a nonlinear, nonconservative

plasma see ref. 49

. Notice again the insistence on the term "physical" which is customarily
absent incurwent literature. The reason is that the quantities which are computed in conventiona}
studies  are the “canonical” electric current and conductivity tensor, Our contention is that,
under the assumption of nonconservative forces (a not so rare occurrence in
in plasma physics), the canonical quantities do not represent physical quantities. These
occurrences can be best expressed by using the dynamical space of physical variables x:k":l and
Pra (rather than the phase space of mathematical quantities); by caxefully formulating physical
quantities in such a space; by representing the nenconservative forces with our cano n1ca15b
admissible equations and consequential generalization of ,5ay, the Liouville's equations; and finally
by comparing the physical predictions of such Lie-admissible approach with the canonical
predictionsof the conventional phase space approach,

Regrettably, we are forced to ignore a number of aspects for conciseness. For instance,
the conventional Legendre transform, as indicated earlier, does not induce canonical quantities
in the transition from Eqs, (3.4.45) to (3.4.14). The net effect is that the Legendre transform,
while crucial for the Iaverse Problem, is inessential for the Lie-admissible problem, In re.f.sb

I present a simple Lie-admissible covering of the Legendre transform, that is, 2 noncanonical

generalization of this transform of the type [ }
) (34.28
- K« Ka — S,
Hebus™r b G0 p) - L, Bem gan
which, when applied to Eqs. (3.4.15), yields & generalized version of Eqs. (3.4.14) of the type
_f.) 6;*~/(DH‘ 5»\9“ “Q.E ‘-DH w}‘,;bl-f/ + F (2.4.29)
T D, or KA.
{_R V} {SK&/ "K\) F }:{F ! F“}r

which, however, is Lie-admissible in algebraic character. In essence, this is the Lie-admissible

covering of the Lie covering of the Legendre transform, that is, the noncanenical generalization
of the transform of Table 2,7 which induces Birkhoff's equaticns,

It is here appropriate to recall that one of the central hopes of this analysis is to be able
to study, in due time, strong intéractions as not derivable from a potential. The reader is then
encouraged to consider transform (3,4.28), say, within the context of the problem of a possible

Lie-admissible covering of the canonical perturbation theory, The gquantities Gm’ can also be, as
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a patticular case, constants and infinitesimal, by therefore offering new possibilities of
expansions which are nonexistenl in conventional canonical perturbation theery. In turn, this
is another indication of the conceptual departure from conventional conservative settings which is
needed to study forces not derivable from a potential: the generalized transform (3.4.28) is
petentially significant precisely because noncanonical.

On algebraic grounds, transform (3. 4.28) essentially provides the analytic origin of the
isotopic degrees of freedom of the, this time, Lie-admissible brackets, i.e., the class C,°°
invertible transformations of the Lie-admissible brackets within the same b-variables

KoY 6*’”’(;)& (3 k.30a)

which preserve the Lie-admissibility law, and we shall write
;M((D B
- —_— \4
= > CH ) U:l) ) b}‘ g b

(&, a)m _-w iy

*’Da )
o) - (B re¥re) (ol ) . (95* (3-#.308)
(57 = (rﬁ_ﬁ) , ) ef) (\ @T* G%Jf_)

This yields the notion of Lie-admissible isotopy as an algebraic covering of that of Lie isotopy,

that is,the transition from the conventional to the generalized Poisson brackets

_ FOBR Q4 PrevoB /3434
LG,B]( (}a—a—ﬂw»‘* .__._v—bf_fq Bj() =y th, Sav C J

In other words, Eqs. (3.4.29) are a Lie-admissible covering of Eqgs. (3.4./4) in a way similar

to that according to which Birkhoff’s equations are a Lie covering of Hamilton’s equations.
Finally, it might be of some gignificance to indicate that the Lie-admissible brackets of this

table are not Jordan-admissible, thatis, the attached brackets A« B = (A,B) + (B, A) violate

the Jordan law (3, 2, 10b) and, thus,no “Jordan content" occurs(at the given classical leve15h’ Sc) .

TABLE 3.5: CANONICAL-ADMISSIBLE COVERING OF GANONICAL FORMULATIONS

One of the fundamental properties of Galilei's transformations is that they constitute
canonical transformations, that is, transformations which preserve the time evolution of the
systems considered. Clearly, in order to attempt the construction of a Lie-admissible covering
of the Galilei relativity one of the necessary prexequisites s the identification of the rudiments
of the expected covering of the transformation theory characterizable by our Hamilton-admissible
equations. The objective of this table is bo outline  my studies on this problem for the finite
and infinitesimal case, as a preliminaTy step for the reinspection of the problem as a generalization
of Lie's theory {see Tables 3.6 and 3,7 ). The reader should be aware that the study of the
transformation theory within the broader Lie-admissihle context brings inte focus a number of
aspects of the conventional canonical fransformation theory which are nonessentizl for its custo-

mary presentation. It ts therefore advisable to reinspect the known transformation theory first,
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and then enter inte the problem of its Lie-admissible geperalization, Again, I am here
interested in nonconservative systems. This means that the conventional canonical transforma-
tion theory 1 shail review below is referred specifically to these systems, In the final analysis
this is one of the methodological insights whick is rendered applicable to nonconservative systems
by the Inverse Problem.

Permit me to begin with a redefinition of the conventional canronical transformations which
appears useful for their generalization for Hamilton-admissible equations. Under an arbitrary
(but of class G * and invertible) transformations a/M Yl a'M{a) the conventional

Poisson brackets are transformed into new brackets

I B R P om
LQ 1 e’] ) r(-?)ip wh ay (Da’l’ Qd‘u

(Da‘“@B 0 TPY QB‘_
A T Qat “od

\ {3.5.1)
= <ﬂl' 6 >(al)

which are generally non-Lie, that is, violate laws (3. 3./0). The first subset of the transformations
considered which is relevant fox the canonical transformation theory is that of the Lig isotopic
transformations, that is, the transformations which preserve the Lie algebra identities, L. e.,
perform the transition from the conventional Poisson brackets in the a-variables to the generalized

Poisson brackets in the a’-variables

[GIBZ(J\, ?

ra, 8] Z.) G2

This means that the analytic equations of the former are Haminton's equations, while those of
the latter are Birkhoff's equations,

Of course, the ILie isotopic transformations are not , in general, canonical transformations,
e, g., because they do not necessarily preserve the value of the fundamental Poisson brackets

(3.4.24) . However, we can define the conventional canonical transformations as the Lie ideatity

isotopic transformations of the fundamental tensor w*’ s "~ that ig, the transformations which

not only preserve the Lie algebra, but actually preserve the value of the brackets,

RV s PP Da Fe‘(-c)a"' Ry~ (2.5.3)
(Dckf Qe

This, however, is only a first layer of the transformation theory, i.e., that for Hamilton's
equations. The existence of a Lie covering of Hamilton's equations, Birkhoff's equations, suggests
the existence of a Lie covering of the canonical transformation theory. Such covering is known

in the existing literature (see, for instance, a:ef.iG) under the name of generalized canonjcal

transformations, although they are rarely interpreted in the way essential for this paper, that is )
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as the transformation theory of Birkhoff's equati ons. In & way fully equivalent to Egs, (3.5.3),

we can define the generalized canonical transformations as the Lie identity isotoc transformations

of the generalized ténsor Prand , i.e., the transformations which not only preserve the Lie

. Do’ (Qj* ),
"l —n R = % B2 (aten) 22 &
& (e (Da® (3‘5.1_,-)

algebra, but also are such that

Clearly, the generalized canonical transformations centain the conventional canonical
transformations as a particular case. We can therefore focus our primary attention in the
former, The following property proved by W.SAREET and ¥, CANTRIIN I5bis relevant for
our analysis. w

LEMMA 3.5.1: A necessary and sufficient condition for a class G, invertible

transformation a —» a'{a) to be a Lie identity isotopic transformation of Bixkhoff's

oo
tensor is that there exist a class ¢ function G« 3, called the generator of

the i:ransfo::mation, Rsuch \:hm:]3 VG Can) (3- 5.5)
Rf}_,\(-a)'— )_‘_CQ" +@a)).. ’

But, under the necessary conditions, Birkhoff's equations are reducible to Hamilton's equations.

b
This implies the following diagram 15

B Lie identity isotopic v By
gL, M) — U ey,
! {generalized canorical transformations)
T
Lie Lie
isotopic isotopic

ot ity isotopi 7 L.
UJP;N Hia) Lie identity isotopic 1 wH , H e

{conventional canonical transformations)

which is closed and invertible, This confirms the methodological equivalence of the transformation

theory of Birkhoff's and Familton's equations, The following property is well known.

LEMMA 3.5.2: The set of 21l possible _generalized canonical traanorrpationﬁ

forms a group, called generalized canonical group,

Notice that transformations a —-a'(2) which are canonical, are so with respect to all

Hamiltonians{of the admitted class) and, thus, all systems. This is ro longer the case for the
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generalized canonical transformations in the sense that if a transformation a—-a'(a} is of

this type for one tensor LRPV("-), the same transformation is not necessarily a generalized
canonical for another tensor 42 a') | But Birkhoff's tensor has a dynamical role in the

sense that it is represeatative of the acting forces jointly with the Birkhoffian, We therafore
reach the coenclusion that in the transition from the transformation theory of Hamilton's equations
to that of Birkhoff's equations the methodology apply to all tensors tjz}wof the admitted class,
but the theory “per s€" becomes dependeni on the tensor J?/Pvconsidered.

We are now equipped to consider the case of the transformation theory of our Hamilton-
admissible ¢quations. At this point & rather profound coneeptual and methodological departure
from the conventional theory is needed to avoid inconsistendes of both physical and mathematical
nature. As recalled earlier in this table, the conventional transformation theory is centered on
the notion of presexvation of the value of the Lie brackets. In the transition to Lie-admissible
formulations one would then predictably atterapt the construction of the transformation theor y
based on the preservation of the value of the Lie-admissible brackets, i.e., a transformation

theory of the type

,/uvoo.) (DID)“ Ser@g(.!,')) @fo 6}‘\/({9)

S (y) —s D
YA (2.5.0)

Unpredictably, transformations of this type are inconsistent on both physical and mathematical
grounds. It is appropriate here to indicate that my early attempts at the construction of a
transformation theory for Lie-admissible equations were based precisely on this approach.
However, the inconsistencies I encountered in practical applications (e. g, the physical (non-
conservative) spinning top under pravity) have been so severe to force me in 1973 into the
laborious study of the Inverse Problem, as indicated in Section L

Predictably, the physical origin of the inconsistency rests on the physical nature of the

systems considered. Consider a conservative system with conservation laws

[Xa, H:((b): o (2.5.7)

In order for any transformaticn theory to be physically consistent, it must be able to preserve
the conserved nature of the X i quantitities. This is the idea which is inbended to express with
the notion of "Lie identity isotopic transformation”. Specifically, of utmest physical significanceis

that the value zero of brackets (3.5. 7 } is preserved, i.e,,

: b xcbiH(SJ =0 .
X by =[x ch] o — Xi¥)=[ IR e ®)
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In the transition to nonconsérvative systems the physical profile is profoundly altered. And
indeed, if nonconservative forces are added to the system with properties (3. 5.7, the net

effect is now turning them into nonconservation laws

>v<b.(b) = (%, H)iji o, (3.5.9

where, as typical of our Hamilton-admissible equations, the Hamiltonian, the base manifold
and the physical quantities are unchanged by construction in such a transition, and the forces
not derivable from a potential are embedded into the structure of the dynamical brackets.
The net effect is that the presexvation of the value of brackets (3,5,3 ) by the transformation
theory would be, in general, physically inconsistent. The reason is that laws (3.5.9 ) now
express the rate of variation of a physical quantity in time and such rate is not necessarily
constant under the transformation theory. A typical case is that of the nonconservation law
of the energy, that is,the necessary condition to ensure the existence of & nonconservative
system, In this case, particularly when applied ferced are included, the energy
can arbitrarity vary in time. Thus, its rate of variation at one value of time is generally
different than the corresponding rate at another value of time,

Omn mathematical grounds the canonical and canonical admissible equations can represent
the same system, although in different coordinates. This means that there exists a transforma-

tion a-—b{a} mapping the former equations into the latter, i. e, (Table 3.4)

4

o av ou’ € (s 556‘ K ) Hio st s,
pv Qak (ot"

In turnm, this means that it is possible to construct the transformation thecry of the canonical-

b
admissible equations as an "image" of that of the canonical equationsl',; ie,

B LA rm,? (5} e (DHl )m HiF.
” QDo “obt (3.5}

The mathematical inconsisteacy we are here referring to is constituted by the fact that if

w

in the transitior from Eqs. (3, 5. /o) to their transformed form (3. 5. {1) {where we have ignored
the Jacobiar of the transformation) cne imposes property {3.5.6& } for the b —> b'(b) case,
the corresponding transformations a —>a'(a) aregenerally noncancnicel, Viceversa, if the
transformation a2 a'(a) is canonical, the image b —> b'(b) constructed with the above rule
dees preserve the form of the canonical-admissible equations and, most importantly, its
i.ie-admissible character, but rule (3.5.(& )} is generally violated.

We shall therefore define the canonical-admissible transformations as the Lie-admissible
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isotopic transformations of the tensor sAY 20 p¥ / 2Ry The preservation of

{’5.5.!0)

the algebraie character of the canonical -admissible equations is in this way ensured, but not

that of the value of the Lie-admissible brackets.

NEFINITION 3, 5, 1: A class C'il:"o and invertible

transformation b-» b'(b) is 2 canonical-admissible transformation when all

the following equations
) 3.5.12)
SJ}LV:z@é’E\_QHC - (,())“V/DH ..,_FﬂCb) ('
DRy L @ b SLP}.} S_D hﬁaca‘)-ﬁ

are identically satisfied.

Notice that in Bgs, {3.5.12) the forces not derivable from a potential preserve their
functional form and are simply computed in the new system of coordinates. In different terms,
conditions {3.5. {2 ) ensure that the transformed canonical-admissible equations coircide
with the transformed equations of motion up to the Jacobian of the transformation, For explicit
examples see ref, ®

In conclusion, the transformation theory of the canonical-admissible equations appgard
to be considerably broader thar that of the canonical equations. In particular, it is not an
identity isotopic theory, as it caa nmow be seen from the inhomogeneous nature of system
(3.5.12 ) (compared to the homogeneous nature of the corresponding systems fer cancnical
equations)., As a result, a canonical-admissible transformation is not, in general, either
canonical or generalized canonical and viceversa,

The covering nature of the canonical-admissible over the conventional canenical
transformation is then indicated by the fact that, at the limit of null forces not derivable
frem a potential the Lie-admissible tensor § ¥ reduced to the canonical tensor o’ ,V
conditions (3., 5. 12) reduce to a form equivalent to (3.5. 3 ) and the conventional transforma-

tion theory is recovered identically. This covering notion s further elaborated by the following
b
property 5

LEMMA 3.35.4; The set of all canonical -admissible transformations forms a group.

The practical construction of the canonical-admissible transformations can be conducted
by using that of the canonical transformations and then constructing their image of Lie-admissible
type via equations of type (3.5.]10) and {3.5.11 ). See ref. ?or details and examples. In the
final analysis, this is an illustration of the complementary nature of the I%;erse Problem
and of the Eie-admissible problem, Similarly, we refer the rezder to ref, for the study of
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the integrability conditions for the existence of a new Hamiltonian as well as for other topics
{e.g., the cenonical-admissible covering of the so-called canonical inversion formulae,
conjugate quantities, variational principles and Hamilton-Jacobi theory),

For completeness, permit me here to outline a step crucial for the subsequent analysis
of this paper, the Lie-admissible covering of the infinitesimal canonical transformations,

Recall that an infinitesimal transformation
ar —= &M = 8 -—9—&9 M),

v
is canonical, that is, identity isotopic with respect to wh , when the following conditions

&7 L DG opv = o (3.5.14%)
w G opV =
e Dal (a8 f

are verified, The study of this system within the context of the converse of the Poincaré Lemma

Gh= wrv & , Sat = Se [a” G]JB.G-J’;)
DaY

as well as the integrability conditions which can be written C )
T — I = - 3.5.16
[A’“' E_oﬁ"; G—}] " Lav” LC‘", a}j} + LG‘ /Ld\)"“) QVJI = O,

This indicates the deep link of infinitesimal canonical transformations and Lie algebras in the

i

then yields a solution

sense that the algebraic laws enter into the integrability conditions for the transformations.
In the trangition to generalized canonical transformations the situatlon is methodologically
equivalent in the sense that transformations (3. 5.13) are generalized canonical if they
are identity isotopic with respect to t)?,}* ¥ . Instead of Egs. (3.5.[%) this yields
v ¥
» v - .
RPE QG REE eV L Ged _ o, (3517
with a solution
T #* - R
G'M:: CJE)N(?—G g&}«:;\g La?, GII (5 /
Qo
and the integrability conditions

[év“, Ta, aT1¥] "o [a [ C,‘-]#c?"ff_ [ G, L4, a‘jk]:o, (3.5:19)

of course now expressed In terms of the brackets of Birkhoff's equations. In this way we continue
to illustrate the equivalence of Birkhoff's and Hamilton's equations up to the point that conventionat

transformations, such as translations in time, translations in space, rotations, ete,, can be
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fully defined within the context of Birkhoff's equations at both the finite and infinitesimal Ievels,
In particular, the “Birkhoffian HB is indeed, the generator of transiations in time, L. e.,

oA = ot LA, R°1Y (3.5.20)

but now referred to the generalized Poisson brackets. Similarly, the y, component of the

variables of Birkhoff's equations is the generator of translations in the r~ direction, i.e,,

SR = 52 [8,9. ] (s, {023 (250,
(3.5-21)

and the Birkhoffian “angular momentum™ along am axis of unit vector n, MB- n={rXy)-n,
i LTS M g A

-

is the component of rotations around I, i.e.
™ k3
S = §4 1A, Mu]] (3.5.22)

This illustrates again the remarks of Section 2 (particularly Table 2.14) to the effect that
within the context of the Lie treatment of Newtonian systems, “physical transformations”, that is,
transformations of divect physical significance (translaticns in time, translations in space,
rotations, etc.} cm be characterized by "nonphysical quantities” as generators, that is’ quantities
without .the conveational dizect physical significance (energy, linear momentum, angular
momentum, etc,). This situation does not occurs within the context of conventional treatments
of trivial (conservative) systems, but it does occur within the context of unconventional
treagfents (e, g., Birkhoffian) of conservative systems or conventional treatments (that is,
Hamiltonian) of nonconservative systems.,

Fquivalently, the Lie approach to the transformation theory of nonconservative systems
implies the loss of the conventional aspects of the generators of conservative mechanics: to induce
a physical transformation and to directly represent a physical quantity, This has a number of
quite delicate implications at e classical as well as guantum mechanical level.5 <

One of the central objectives of the lie-admissible formulations is that of restoring this

symblotic meaning of the generators for nonconservative mechanics too, that is, the generators

of physical transformations (translations in time, translations in space, rotations, etc.) are
physical quantities (the physical energy, linear momentum, angular momentum, etc.
respectively), It appears that this is an essential prerequisite to extract physical informations
in a form as direct as possible at both the classical and the quantum mechanical level.

In partcular, the above objective implies that the covering relativity which will be conjectured
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in the next section is based on the preservation of the generators of the conventional Galilei
{symmetry) Lie algebra of conservative systems. The action of the noncons ervative forces
is represented by the transition from Lie to Lie-admissible algebras.

By keeping in mind these objectives, we shall say that the transformations
} ) M g ’
s M= B QC?F)‘UO),

are Infinjitesimal canonical-admissible transformations when they are Lie-admissible isotopic,

(3.5.23)

that is, the fundamental - dynamical brackets (3.4.25) are transformed into the new form

(b, b’v)cb) = D), (3.5.24)
which is still Lie-admissible, i.e.,
(sre. ) 2 (S (3.5.25)

e B D 51},\/ Sw/k)__a
N stf_ S‘Cu)f;%,’—r le*r/«” Srj‘*c)_,_ (5"(’4 s L)’}SEF( - T

It is possible to show that a solution is of the type

GF = DY W O - Sg(b"ja)ml@.s.ze)

DbY
CGDP‘) bV)/G)r ((\b", &), !_9"‘) N ((6-, bh),bv) 4 (G, (LV} b}‘)) |
L5, (8,60 + (B (@) = (v (5,6) + (¥ (G14) (3579
o (6, 0m0) + (G )6+ (0 w),6) + (499, 6).

In this way, the Lie-admissibility condition again eénterdinto the construction of the infinitesimal
transformations. This was, after all, expected, from the covering nature of the approach, And
indeed, integrability conditions (3.5.[6) or (3.5,/9) are Lie-admissible, but only
expressed in the case of an anticommutative algebra (Table 3. 3).

The first major new occurrence of this bropder approach is the lack of uniqueness of the
Lie¢-admissible tensor § é: v for all possible generaters, contrary to the uniqueness of the

wH v tensor for all generators of canonical transformations. Rather than being a drawback,

this appears to be a necessary condition for cnnsistency, as well as an illustration of the
capahilities of the approach,

A simple physical argument can be presented as follows, Nonconservative forces guarantee

the nonconservation of the energy, but not necessarily that of other physical quantities, e. g.,
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the angular momentum . This implies that the Galilei symmetry can only be partially broken
by nonconservative systems, The net result is that a full embedding of the Galilei algebra
into a covering Gelilei-admissible algebra (see Tables 3, 6 and 3. 7) would in this case be
physically inconsistent because it automatically implies the nonconservation of all physical
quantities, contrary to assumption,

An intri guing aspect of the theory of Lie-admissible algebras is that these algebras
can be Lie as a particular case (see Theorems 4 and 7 of ref. ). At the ievel of classical
realizations (in the sense of Table 3, 3) this implies that the Lie-admissible tensox § é"‘" can
be the Lie tensor W} v for particular generators, Therefore, when a physical generator
(say, the angular momentul} is conserved, it is expected that Eqs. (3.5.26) and (3.5.27)
coincide with Eqs. (3.5.|8) and (3.5.19 ), respectively.

To restate this situation in different terms, in order for any possible covering of the
Galilei relativity to be physically consistent in nonconservative mechanics it must alsc be

able to characterize a partial breaking of the Galilei refativity.

TABLE 3.6: LIE-ADMISSIBLE COVERING OF LiE'S$ THEORY,

Table 3.5 essentally indicates that the transformation theory of our canonical-
admissible equations is such to presérve a group structure for the case of finite transformations,
while exhibiting a Lie-admissible algebraic character for the case of infinitesimal transformations.
‘Without any doubt, this has been for me one of th= most intriguing features of the Lie~admissible
formulations, because they clearly give hopes for the existence of a consistent Lie-admissible
generalization of Lie's theory. In tuxn, this problem results to be the true firsttechnical problem
for the construction of a possible covering of the Galilei (and Einstei.nSb )} relativity.

My efforts in the identification and study of this problem are summarized below, with the
understanding that they are rudimentary as well as in need of inspection and implementation by
independent researchers, The reader should be awaxe that the terms "Lie's theory"” nowadays
refer fo a rather vast, articulated and sophysticated body of methodological tools encompassing
a number of diversified disciplines. I will have achieved my objective in its entirety if
I succeed in only indicating the existence of realistic hopes in achieving, ia due time, a Lie-
admissible covering of Lie's theory.

Let mz:-:qbegin with the problem of a Lie-admissible covering of Lie's first, second and third

theorem;;,as an abstract version of the canonical-admissible theory of the preceding Table,
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For the sake of notetional convenience, let me recall that an n-parameter connected Lie

transformation
. 3.6.1
0k (o) = EX (e300 = BH(n) 0%.000") , s hi2sees, B, ey

can be written in the neighborhood of the identity

dat = WH (a) X (9)40,

Foay T 8T
uhc)-tqakjg:o,

[3.6.2a)

(2.6.25)

vielding Lie's first 1:heorem:‘2‘i 3

THEOREM 3.6, 1: If the transformations a,’r(&) = P {a; @) form an

n-dimensional connected Lie group, then
08 Uk (a) A5 (8 (3.62)
LY ) ’

where the functions L{’;: (o) are analytic.

Before entering into the problem of a Lie-admissible generalization of this theorem, it is
advisable to study its "Lie's covering" that is, the generalization related to the transformation
theory of Birkkoff's equations which, to the best of my knowledge, has not been studied in the
available Hterature, In turn, this is intimately linked to the problem of symmetries and first
integrals and, specifically, to the nommiqueness of a Lie symmetxy for the characterizaton
of the same first integral via Noether's theory (Table 2.|2). I am here referring to the notion
of Lie algebra isotopy, e.g., Egs. (2.13. &4 ). Clearly, for this notion to be fully realized,
it needs the corresponding notion of Lie group isotopy, An example is socn given by using the
methods of Table 3.5 for case (7,13, 4 ). In correspondence to the isotopically related Lie
algebras SO (3} and SO{2.1) for the characterization of the angular momentum conservation laws,
one can construct the canonical and generalized canonica] infinitesimal rransformations,

respectively, and, after integration to a finite series, reach the structures

so3): o = eac]lo{‘@-': w"({}%r_’%/a ‘}a’h (3.6 4a)

So@2.). a¥ - exh {a"JZ m”ﬁ%,,}&” (3.6.45)

where JZ, is the generalized Lie tensor (2,13, 4.¢). We shall say that the realization of the
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50(2, 1) group so constructed is an isotope of SO(3). Notice the central feature of the notion
of isatopy: it realizes z group in texms of the base manifold, generators and parameters of a

generally nonisomorphic group,

DEFINITION 3.6.1: Consider an n-paremeter connected Lie group G of

transformations ' M = £F{a;9). A Lie isotopic image (or simply a Lie

isotope) of G is a connected, n-parameter Lie group G* of transformations

Q¥ = gF e, 8) £V (a )= £ (a50),(3.6.5)

characterized by 36N factor functions g/, (a; 8}, called isotopic functions,

whick is such to to admit a Lie algebra structure in the neighborhood of the

identity when expressed in terms of the base manifold (the a-variables),

generators ( say, the quantities Xi) and the parameters { £" ) of the original

Lie group_G._

This immediately yields the following Lie covering of Lie's first theorem.

THEOREM 3.6.2: If the transformations a*}" = f* H(a; &) = gl"\((a; 8){‘)(a;z9)

characterize an isotope G* of a connected n-dimensional Lie group G with
transformations a'}"= tM(a; &), then there exist isotopic functions %"K vl

such that
» . -
PL = @.f ‘tay W (a) A (o) (3.6.¢)
pek J !

where the functions {{ };CM and %1 "a) ave analytic.

In essence, in this case we have instead of Eqs. (3.6.2b)
¥ )* 3.6.7)
o N
&) = 0 ox ¥y £ I O=0 * ¢
The functions 3

of Egqs. (3.6.6).
Now, the origmal |g,IouP G can be subjected to the familiar  realization in the neighborhood

I therefoz:ef are (uniquely) chamcten zed by the factorization into

of the ongm ‘3’ /
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K
u"’ _@__ uﬂ. _u"" N H)" - Cf:) L{ l< (3.6.8)

No N ’@a

© ot o fONY s 3.5)
CL')' --/b 1 }AJ ————-@BS @8
T k
LXL’/XJT X X >< X = C[‘)' XK) CB.é.?c)
D
)< .= bU", (&) (5:\—}4 ) (3.£.84)

which we shall refer to in this paper as the standard realization .
For the isotope G* we have a dual possibility. First, since G* is a connected Lie group,
it can be subjected to the standard realization and we write
K
~ NI 3 ®
u*.:‘;)_u Fo_ouFEY Zou {;::C[J-U
L Qav J > Qe
# K
PN E @Asj
!

* * N
- VLSRR * x__C?'{’k »#
LX*L;)X;?]G—XL*X;—X}-XL‘“ L','XK/

) {(3.€6.9¢)
* * o
X = W/ ey 5=,

(3.¢-94)
(3.6.9%)

(3.4.94)

However, in order to realize G* as an isotope of G, we must express it in terms of the
generators of G, This essentially implies a redefinition of the associative product X*iX*j

of Lie's fundamental rule (3. 6.4 ) according to

A - XEXT — A% s Xox X

In other words, to realize G* as an isotope of G, we must change the standard basis of G* into

L?,é.fo)

the standard basis of G and, jointly, modify the associative produet of rule (3, 6,4c) into a form
which, after exponentiation, yields a group isomorphic to G* and not to G. This is exactly the

occurreace of example (3, 6.4).
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We reach in this way & crucial point of our analysis. The notion of Lie group isotopy gees
at the very foundation of Lie's theory, the universal enveloping associative algebra induced by
product Xin of rule (3, 6.9¢) (see Table 3,7 ), A study of this problem indicates that the

notim  can be realized via an isotopy of such enveloping algebra, that is, an associativity

presexving mapping of the product Xixj of the type
r * S _ C_S 6. )
A%}« X, % X; = 9% Xe 4] Xﬁ, K,= 4 CM@

This enveloping aspect will be outlined in more details in Table 3.7 . At this point let us recall

for notational convenience Lie's second theorem _2‘1 %

0
THEOREM 3,6, 3:If X X UX)Q # are the generatorsof an n-dimensional

connected Lie group, r_hey satisfy the closure relations

- S
Lxl:ijjﬂ: X‘: ><J‘ —ijf = Cl‘}’ XF‘ !

(3.6.12)

where the quantities G};j are constants (Lie's structure constants}.

As indicated in TableZ,[3 , for the Lie algebra G * of G* to be an isotope of G, it must be

closed with the generators of G (and generahzed brackets). This implies that the necessary and
5k

¥, J

sufficient conditions for the functions . to be isotopic can be written

F v 7O L *E VD Ly

. W U A > Y

% F(ba\, %’J ) < @d" QLI. (‘3_6_!5)
Ty 45 3 2 w2

% ’as + C ¢y gz,

Eb

uader which the standard realization of G*, Egs. (3.6.9¢) is turned into the isotopic realization

o8 » v D ho= ko
uvlj Oa\‘/* UL ]- u J @ﬁe u,_ - C L‘j' l/{_, K/ Cg.‘!#-a\.)
E—: k C ¥ ?.
o ge L‘;.é.@b)

This yields the following Lie covering of Lie's second theorem, .5- b

@
THEOREM 3.6,4: If X %ﬂ Cﬂt)@ are the generators of an isotope G* of

an n-parameter con.nected Lie group G, they satisfy the closure relations

[X;,X)-]H*: Xt.a#)(). - X;'*Xf = 6‘:;(4) XKJG.é.IS)

o Ak
where the quantities C i (a) , here called Lie's structure functions, are

genezally dependent on the local coordinates of the base manifold of G,
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As is well know, the use of the Lie algebra laws in rule (3. 6.%¢) yields Lie's thizd theorem
THEOREM 3. 6.5: The structure constants ofthe standard realization of
an n-dimensional connected Lie group G satisfy the identities

.t o4 CJ.'L.‘ = O,

L)

K (3 Kk % 1<
Cii Cke +Cie Ck; +Cy;

(3.6./62)

C o5, (B.c.leb)
ky
One of the crucial requirements of the notion of Lie isotopy is that of preserving the Lie
algebra structure in the neighborhood of the identity. The use of Egs. (3.3 . D) for rule
(3. 6, I5) then yields the following Lie covering of Lie's third theorem, 5b

THEOREM 3. 6. 6: The structure functions of the isotoplc realization of

an n-dimensional connected Lie group satisfy the identities
> ~ o (3. 6. 17a)

C‘L] + c" I
(_a,-(a.!‘lb)

o~ 2 ~-z ~ K X
5 Cre +Ce C ke +Ceh Cey

o . _
* C"‘J » &I;t-!—c’fe/ Ck !ﬁ-«"-[ae».’ ’ 49*—?)‘

In essence, the consta.ncy of the quantities of Lie's fundamental rule appearsto be

ok

Hnked to the use of the standard realization, If an isctople rezlization is instead assumed,
these quantities can indeed acquire an explicit dependen ce on the base manifold, but in such
a way to preserve the Lie algebra laws. This is the meaning of Theorems 3. 6.4 and 3. 6. 6.

For completeness we must now touch on the question of exponentiation to a finite transformation.

For the case of the standard realization we have the familiar exponential law 49 %’
o X,
Y jA L o 3.6.1%
al = e a’ (2.6.19)

Cu:nder the assumption of all necessary convergence conditions},lt is an instructive exercise
for the interested reader o see that such exponential mapping carries over to the isctopic
realization yielding the isotopically mapped exponential law 5k

o 69[ 8% Xj g M (3.6.19)
/

here again written under the assumption of all necessary convergence conditions, as well as
that the functions 3‘{3 satisfy conditions (3. 6.[% ).
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A final essential aspect to be inspected for the study of the consistency of the notion of
Lie isotopy is that of the composition law, For the standard realization we have

XP Ko Xd' (3.6.20)
= « ' - e

t

2%y

where the new element is given by the Baker-Campbell -Hausdorff formuta

X + 4
= Kat X 2 [ X« XF]“ (3.¢.21)

L(_XA ) [ X, X’PYHZQ*‘“

For the isotope G* we have instead

* *®
x f’ X = x 7
< r % C3. 6.22)
e "™ e , X s ex X,
where the new element is now given by the isotopically mapped Baker-Campbell -Hausdorff

formula 5b

x * % I T
X?: Xyt X},‘-‘J Ty LX,(’ X/lj* (3.¢.23)
[ (% XF’)’ LKM,XP]ﬁ*]M( R

Finally, we must touch on the question of the realization of the skandard and isotopic canonical
realizatiens of Lie groups in Newbonian mechanics. As is well known, the realization of
the former is given by the transformation theory of Hamilton's equations (that is, canonical

transformations), according to

W Ca) oMY rD(_ch } (5.6.2¢a)
a.
X, ol —s  wrY (%_E)GE f?)_cu“ ; (3.6.245)

exph(0°K;)> &xp (orwh ’%c::; ’(Ja ), Gtk

QCr; wﬁvD@ (3.6 244)

LXL‘JXJH B LG G_]Cc\) @_0.7‘ avy

where the last identity must be intended up to neurral elements of the universal enveloping

associative algebra.
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It has been rewarding for me to see that the corresponding realization of the netion
of isotopically mapped Lie group is given by the transformation theory of Birkhoff®s equations

(that is, the generalized canonical transformations) according to

URK L g*fnk DAY a) Gt (3.6.25a}
¢ Dav |

LI Y v e

N S GRS

ex\v(ﬁfxxp) . ex[a (9"JZN(%G§/ %ﬂ)l {3.¢.25¢)

— g
[xe %], —> LG, GT = S50 5600
a* (Dcl %

with the same understanding for the last equation as that of BEas. (3. 6.2!,91).11: conclusion, the
property that Birkhoff's equations characterize a Lie algebra isotopy of Hamilton's equations
carries over to the notion of groups via the transformation theory. As we shall see, this is
a crucial intermediate step for our attempted covering relativity of Section 4,

We are now sufficiently equipped to outline the Lie-admissible covering of Lie's theorems,
I‘t is at this point where a generalization of the notion of isotopy is useful, particularly on intui-
tlonal grounds. By returning for a moment to the language of Abstract Algebras of Table 3,3,
let U be an algebra with elements z,b,c,..., and preduct ab over a field F, A genotopic mapping
of the product is any invertible mapping ab % 2 ob which violates the algebraic Iaws of ab5 b
(e.g, if ab is associative or Lie, a o b is nonassociative ox non-Lie, respeclively). The algebra
U which is the same vector space as U but equippgdbw ith the product aob and now satisfying
different algebraic laws is called a genotope of UJ, Thus, on a comparative ground, the algebraic
isotapy is based on the preservation of the laws of the original algebra, while the
algebratc genotopy is based on the violatior of these original algebraic laws.

We reach in this way 2 crucial notion for the attempted covering relativity of Section 4. And
indeed, cur conjectured Galilei-admissible relativity is a genotope of the Galilei relativity, Itis
therefore of some relevance to identify the various stages of realization of the notion of genotopy
for nonconservative mechanies.

First of all, the notion of genctopy, still ab an abstract algebraic level, can be interpred as
a mapping which (a) preserves the original algebra U as vector space, {b} changes the preduct

in an invertible form, but in such a way to {c} induce a desired algebraic structure, according to

3c.6b - 337 -

the meaning !

- I L]
W ME VYA "ty 0T o5 v \Dmaolﬂ«ce. Camg;%qkmtl'om R

We shall therefore use the notion of algebraic genotapy as an invertible algebra inducing mapping.
Of course, the mapping in which we ave interested most is that inducing a Lie -admissible algebra
at a classical level, We reach in this way our first step, the realization in Newtonian

Mechanics of the Lie-admissible genctopic mapping of the Poisson brackets, that is, the mapping

of the Poisson brackets which violates the Lie algebra laws by assumption, but it is such to
induce a Lie-admissible algebra, This mapping can be realized in terms of functions
(_Djii on the base manifold and, from realization (3, 4, 2-) of the canonical-admissible equations,
"cah be written sk
o1 228 w8 (8.8), - Zp ST,
' j(.b) I i {b) QV

Thus, the mapping from the Poisson to our dymanical brackets is an example of Lie-admissible

(3.6.26)

genotopy. This is clearly a natural extension of the notien of Lie isotopy as the mapping from
the conventional to the generalized Poisson brackets.

The second step is that of identifying the analytic origin of this Newtonian notion of Lie-
admissible genotopy. It is clearly given by the transition from Hamilton's to our Hamilten-admissi-
ble equaticns. In tum, this provides a first algebraic characterization of nonconsexvation faws
for systems with forces not derivable from a potential &%

the Lie-admissible genotopic mapping of conservation laws
, =X = R X ( X H )
x L LXt i H] ( fr) ) L (b}

where the forces responsible for the nonconservations are embedded into the Lie-admigsible

(3.¢.21)

product.

The mechanics of this mapping should be kept in mind, The starting ground is that of a
conservative system in the physical variables S_b'“-ﬁ = {rka,pkas (in the sense of Theorem 3.4.1)
with Hamiltonian H° representing the physical energy, aad the quantities Xi representing
physical conservation laws. This setting in then implemented with forces not dezivable from a
potential. This does not affect the definition of physical quantities or, if you prefer, theix
explicit functional form in the space of the b-variahles, but only their character which now
is of nonconserved nature. This results in nonconsexrvation Iaws, Our central objective is
to achieve an algebraic characterization of these nonconservation laws (a) without changing

the space of the physical variables b/ and (b) without changing the explicit  functional
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dependence of the physical quantities in the b-variables, Such an objective camot be
realized within the context of Lie algebras and their isotopies, The netion of Lte-admissible
genotopy (3. 6.27),instead, does satisfy these requirements by emerging at the same time
rather natural,

In coneclusion, the centent of Tables 3.3 and 3.4 can be reinterpreted by saying that, first,
the Lie-admissible aigebras emerge as a genotope of the Lie algebra (algebraic profile); secondly,
the Hamilton-admissible equations can be interpreted also as .a genotope of Hamilton's equati ons
(analytic profile)and; thirdly, nonconservation laws can be equally interpred as a genotope of
the corresponding conservation laws at the limit of null nenconsexrvative forces {dynamical
profile),

In order to achieve the rudiments of a notion of genotopic mappings in Newtonian Mechanics
which is sufficiently diversified to allow the conjecture of a covering relativity, several additional
aspects must be investigated. In this section we are interested to see whether the notion of
isotopy of Lie's transformation theory indicated by Theorems 3. 6.2, 3. 6.4 and 3. 6. 6 admits
a consistent generalization of genctopic nature, Of course, this implies, in particular, the study
of the notion in the neighborhood of the identity (infinitesimal genotapy) as well as for finite
transformations (finite genotopy). Predictably, these two aspects tura out to be deeply interrelated.
As we shall outline later on, the hepe is then that of achieving ar algebraic-group theoretic

characterization of broken symmetries,
5b
DEFINITION 3, 6. 2; Consider an n - parameter connected Lie group G of

transformations b'F=1/(b;@). A Lie-admissihle genotopic image (or simply

~
a genotope) of G is an n-parameter, connected Lie group G of transformations
75

b f:.%@(bgﬂ?“(b;e)c £ Fbsoy, (3.6.28)

characterized by 361\3'2 factor functions %}_’:’ (b; ), called genotopic functions,

which is such to admit a Lie-admissible algebrs in the neighborhood of the

origin when expressed in terms of the base manifold (the b-variables), the

generators ( X1 ) and the paxameters ( 9':) of the original Lie group G.

On more explicit terms, the objective of the above definition is to attempt the characteriza-

tion of transformations (3. 6.28) which are such that (in canonical generators G, rather than
stendard abstract generators X ) (—3 é 19)

bjug_\.-_, 'b +9 (b G‘)
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where now, by central condition, the product (BM,G&) is non-Lie , although Lie-admissible,
This remark is sufficient te indicate that the theory we are looking for is based on a2 rather
profound departure from Lie's theory., The hopes for the existence of such generalized context
is provided by the infinitesimal canonical-admissible transformations of Table 3, 5 which are
precisely of type (3.6.249).

The following property is useful to identify the nature of the transition from a Lie group

I
G to its isotope G* and to its genotopee.gob' e ’Sb

LEMMA 3, 6.1: Under the agsumption that an n-parameter connected Lie group

P
G admits an isotope G* and a genotope G , the groups G, G* and 8 are generally

nonisomorphiec amoung themselves, In particular, both the isotopic and the

g enotopic mappings do not, in general, preserve the compact of noncempact,

Abelian or non-Abelian and semisimple or nonsemisimple character of the

original group.

For instance, a three-dimensional, connected, Abelian Lie group can ge a genotope o£ 5'9(.5);
the group of rotations. MNotice that each Lie group can admit, at least In principle, a family
of isotopes and genotopes.

A
The genotope G is a Lie group by assumption, Thus, it can be subjected to the standard
)
SR | B e)] (36309
A k - (D £z0

(3.6 .30b)

realization and we shall write
A AM 3\1{ 5’{@;
da = L) A )
A A
) M Ay A A K
uw—uj ut'e ut = A
A~
D N

vy - 2 Ly
{@/\Z % }
Hes - Doer
o~ A
X

)

(g. é -301:,)

w. "

[c_
f}
iy KR R & G e

X> Rt
ry
X) .

A
-

[x
13

Qur preblem is now that of turning this realization which is strictly Lie in algebraic character

into a new realization in terms of the generators Xi which s, instead, of Lie-admissible nature,
A study of this problem indicates the need in this case of performing a genotopic mapping

of the universal enveloping associative algebra
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[(x)« X.oX;, (3.6.31)

fx):

that is a mapping which, enlike that of Egs. (3.6. ]0) now is such to violate the associativity
of the product, although such to preserve the Lie-admissibility. This aspect will be considered
in more details in Table 3, 7. At this peint we are interested in the generalization of the Lie
isotopy coasidered in the first part of this table,

Introduce the following realization of the ﬁ f: functions
z
[AE0)+ ph@TU, 8
subject to the subsxchary conditions

S
LE w2 (RS uh) ¢ P "‘z%v(”(i ) 5.0
\'4
”(2 Mﬁ@bv({s u}‘\) (b ; u?- f_aEr (O(S* “};)‘—‘0

which elimmates the free funct.ons in (3. 6.32). Then rule (3. 6.30b)becomes

(<2, ’*) Bo Y o (B WA
F u?, QLV(“WMB

(3.6:34)

(3.6.32)

u 2 Qlov
Lo{ u” 5 bv(af u’
= C L!J- Lo(; 'f-FFS) % /‘;

This yields the product o 2 v B 2 }4 0
X oX-—oKt“mLV(* us ’ab») F 'Volo"(P 2%2631‘)

which, as desired, is nonassociative and Lie-admissible. Rule (3. 6. ?;Oo!,) can now be written 5%

LXWX__IDL-—X x X X *:—) ijtg_é.%a)
Cx 3 _ [0( cb) -;-ﬂh,»_(b)]; 63.6.3%)

and represents, to the best oflnaly k:nowledge r_he broadest possible generalization of the
fundamental Lie's rule (3. 6.8 ) capable of still characterizing a Lie algebra(in the sense that
if rule (3, 6,34 ) is realized with any algebra other than a Lie-admissible algebra, the Lie
coatent of the theory is lost),

To restate these findings in different terms, we can say that the notion of Lie-a dmissibility

is at the very foundation of Lie's theory, only expressed in its simplest possible form, the

asscclative algebra A with Lie content A, A central technical aspect of this study thus consists
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in attempting a gereralization of this rule via the use of nonassociative but Lie-admissible algebras,
If such gereralization exists, it is expected to yield the desired dual profile, a Lie-admissible
behaviour in the neighborhood of the identity while preserving the global structure of connected
finite transformations.

The Lie-admissible covering of Lie's first theorem is now trivial and can be formulated

as follows.g b

THEOREM 3.6. 7: f the transformations

B G (bre) £ (ks 0) = £7 (ko)

(3.6.37)

A
characterize a L ie-admissible genotopic image G of an n-dimensional connected

(_‘3.6.?’8’0\)

Lie group G of transformations b' = 14 (b; 8), then
L% () + pE(T U (k)
}-\ 2 v B ‘7(5_
o(? szab‘,((g’ U PLM‘E(D(OV(J

S M
D M LYy O LU =
—'1?() u'z_f;)b"(l%“ub)-l{b-)uz@b"( v J)
where the functions o(?‘l-,f,b), {bt(b) and U«’; {b) are analytic,

Ui) (3.6.230)

The integrability conditions en the functions G( and f} / to be "genotopic functions”
can be written

v oo v v QP
0~./ W, —-——~—-{9,va do() H'?, ALY JIM ObY (34.39)

A v i< ALk 3 35 2%, s I
4 {%1 M’L(EDEZ CXC,' _CKLo(J'fF;Fj)CzJ '
A

where the C's arg the structure constants of the original group G and the £ %15 are the structure
Fal

constants of the isotope G¥of G as oxiginating from rule (3. 6.36 ). Notice that the genotope

A A

G and the isotope G ¥ are not, in general, isomorphic. This indicates that the analysis

for 6 can be carried out by constdering the product Xi° Xj alone, rather than the Lie product

[X.,X.]. By Wl‘ltlng
kA v D - s u/-")

ea rE
X-oX s (Fuk % %,.H(o/uu%g,gu.o)

(.5 gt X)X =2 UK OX,

we then reach the foIlowmg Lie-admissible covering of Lie's second theorem
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le (b _9__ Fa
THEOREM 3. 6. 8: The generators Xi —_;_Hé —)Qy‘ of @ genotope G of a Lie
Lie gronp G satisfy the relations

X;DX}‘ = U(f)-(b,X) ><I< '

k
where the quantities Uij (b, X} (here called Lie-admissible structure quantities)
are generally dependent on the base manifold as well as the generators of the

origiral group,

(3.¢.41)

L
The covering nature of the approach can be indicated with the following 5

COROLLARY 3.6.8,A: The Lie-admissihle structure quantities satisfy the

U, .(b x) D{ﬁ (b,X) ) " by, (3642

A
where the C _;are the Lie structure functions of the isotope G*

COROLLARY 3. 6. 8., B: Under the limit
) ; y
D/ - (S 0 p ;T O

the Lie-admissible nonassociative product X oX becomes associative in

(3.¢.4:3)

which case the genrotopic mapping G —% G is the identity,

_COROLLARY 3, 6 8. C: Under the Iimit .
R hi o () ¢ (3.6.4b)
c' J P £y

the Lie-admissible product X oX becaomes Lie's product, in which case
the structere functions Uk

reduce to the structure constants of the original
group in standard reahzatmn.

By using the general Lie-admissibility eonditions (3.3. 8), wa finally reach the following
Lie-admissible covering of Lie's third theorem .

THEOREM 3, 6.9: The structure quantities of a genotope Ei\
Satisfy the properties

of a Lie group G

E s - - 343 -
< u}l.)(u'ke, uek) ( ',rﬁ u@;)(“ﬁf’“fﬁ)
S E
FlUg - U)W -UR)  (Beas)
TruZ_ux I 2
L )X LW u) x0T,
- = .
+ (U ’é;' - U ), X)‘]u =B
Again, the following properties indicate the covering nature of the approach,

CGROLLARY 3.6.9. : Under limit (3, 6.43) the Lie-admissible identities

(3.6.45) recover the Lie identities (3.6, | & ) identically, Under limit (3. 6.44)
identities (3.6.4 5) become twice the Lie identities (3. 6./4) .

The exponential mapping can also be reached (under all the Necessary convergence

conditions) and we shall write it in the form

’\\O}A i f_"(.:i(b) .;.Pi(b)] X.;.UD) b},\ (3.6-4-6)
= e !

5b 3 ;
here called genotopically mapped exponential law, where the functions o{ [ and r5 M
satisfy subsidiary conditions (3. 6.386) as well as the integrability conditions (3.6.3 %),
The composition law of the genotope can then be written
e -~
X E ) o'
o P
= <

X = b [2rplx (3-447)

‘where

R R e X
S X, X, e L TXe X T e
X d— o l Z ’ [” H,
!— —
+ - (Xt xﬁ)/ LXx'X{%lﬂx]H* 7
4s, again, the isctopmallg mapped Baker, Camphell-Hausdorff formula (3. 6.23 ).5
As a reintexpretaticn of Definition 3, 6, 2, we now introduce the following 5k

(3.6 4:¢)

A
DEFINITION 3. 6.3: A Lie-admissible group of transformations is the set & of
n-parameter connected transfermations

L’f‘ _ %)“Y(b;g) f‘,(f:»;t?)r

(3.¢.19)

acting In the base manifold. of a generally nonisomorphic group G in the same
paramsters wkich possesses:
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(a) 2 Lie-admissible algebra in the neighborkood of the identity when

realized in terms of the generators of G, according to rule (3,6,29);

(b} a genotopically mapped exponemtial law according to rule (3. 6. 44 ); and

(c) an isotopically mapped compasition law according to rule (3,6.49).

In essence, the above definition is meant to attempt the identification of a group theoretic
image of the algebraic notion of Lie-admissibility, A Lie-admissible group 6 is Lie by
assumption and it is simpiy realized in au"unconventionalnway \Ieverthless, such realization
is such to render the group G Lie-admissible in a double meaning. F:rst G admits a nenisomorphic
Lie group G * via the isotopy rule {3.6,26 ). Secondly, thehe»admlss;bte group G is capable
of recovering the Lie group G identically under limit (3. 6.4.3 ) . These features axe clearly
promising for the problem of & covering of the Galilei relativity .

By looking in retrospective the reader can now see the methodelogical function of the
the notion of Lie isotopy whose analytic origins lies withon the context of Birkhoff's equations
And indeed, starting from a Lie algebra G with generators X the Lie content C‘ of the
Lie-admissible generalization G is zsomorpmc to G* and not to G This point will be
somewhat refined in the next table,

It is easy to see that the theory of the canonical-admissible transformations provides a
c¢lassical realization of the Lie-admissible covering of Lie's theory indicated in this table.

¢ (X(:} Ef")l LB.G.S.:».)

-3
And jndeed, we can write ~ "
A .
b b esiXob® —— bxb T8

v DG, 2.6 .508)
2 +P?lu;‘“‘ — = M S {
MY QG‘L /a (3.6.505)

L°Z'Z+{” 1“2(550» > <)oy ‘DJ::
: ; ] v v G‘ _g—
exp{ot(4f+p) %} — e“H& S0 %bv %}j
X oX; > (Xe,%;).

This confirms the existence of a realization of Lie-admissible character in the neighborhood

Sod)
(3.6.5‘oe)

of the identity, while presexving a global Lie structure of finite-comnected transformations,

Vad
but of Lie-admissible type. In particular, the limit which reduces the Lie-admissible group G
to G is given by the null value of the external forces
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L2 as .{3/2"_“ = wHr (3.6.51)

Fko_—; o K

The exponentiat law (3. 6.504) can be recovered via the generalization of
conventional procedures, For instance, by writing Eqs. (3.5. 25) in the form
"~ ~
: M N 2 ¥
287 (WM 6T
PICD (b)
and by pexforming a Lle-admissible isotopic transformation we can write the expressions

RV (3.6.53)
28"~ (v, ')Cb)’

which can be interpreted as a system of differential equations in the unknown functions b s

(3.6-52)

subject to the initial conditions b 03) ) b . A formal power series solution can then
be written ,
A M (R
19)*: b}*,,_ .‘Zv_(!oﬂlG-;)—;—g__(?r—-((loﬁ ) G—)rﬂ-"
4! 2 (3.6.54)

yielding the exponential law of type (3.6, 5od).

Almost needless to say, the known possibility of lack of verﬂicat:lonzq of the integrability
conditions for the existence of a Lie group can have a corresponding occurrence at the Lie-
admissible level. The study of this aspect is left to the interested reader,

A rather peculiar property of thE Lie-admissible groups is that, once Interpreted as
topological transformation groups, their action on the group manifold is non-geodeszc I.n other
words, the Lie-admissible extension (3, 6.50d) of Lie's exponential law (3. 6.24c) (when it
existsj is generally nongeodesic in character., Rather than considering this occurrence as a
drawback, I consider it most attractive, particularly on relativity grounds, It is known that
the action of the Galilei group in its topological manifold is geodesic. The covering relativity
T am interested in,is specifically intended to be nongeodesic in character, This attitude is
motivated by the need that, as indicated in Section 1, any covering relativity, to be
effective for nonconservative systems, must represent such nonconservative character in its
entirety, The indicated departure from conventional geodesic characterization is intended
precisely as one way of characterizing nonconservative systems, And indeed, such systems
are basically nongeodesic in nature, in the sense, for irstance, that their trajectories in the
carrier space is never of geodesic nature even when all forces derivable from a potential

are null,
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A few simple examples are here in order. Rgs. (3.6, 4~ ) provide an example of
5Q(2.1) as  an isotope of SO(3) in canonical realization (3.6.25 C ). For another example in
abtract formalism, consider the group of dilations in one dimension} Dq),

£‘(’<}9) = e‘9>< . (3.6.557

The standard generator is

o

with exponentiall law

> P &
Ox 5% ® / D 2, 0 )Z 3.6.57)
t ep VXK = x .
e L iy ax ) + 2! X o * i =1 C
The composition] law is trivizl and reads
+ ‘. s 1} (3.4.58)
5”:0 91/ X”,g(x, 9’)=E(k,9+a).(

An isotope D*{(l) of D(l) is given byg'o
é . 55).»_
x*¥_ X = %(x g)f(x 3)/___€C>< e) (3.
1 — Px N e (?) . 5-?{9)
1 = L-Ox !

and it is induced by the isotopic function x. To see it, the computation of law (3. 6. 19) yields

ST [ 2 () 5 (A D

(3.¢.40)

x

= ’ {9 2 e ——
["‘L-f- x o~ O x 7 O

"0:(>( =

The composition law now reads « (g ¢ 61&)
¥ £ (o) = £7 (o) s
—T— b
s * W = -8 _ _,wu___) L (3.6.6]b)
= ___4___. A —{(&+8') %
A~ O'x* 1 -0 7

Thus , we have 2 case of analytic isomorphy of the composition law, the case being of
trivial one-dimensionality {to have genuine nontsomorphisms G % G* more than one dimension
is needed),

Fora  Lie-admissible g'roup/consider the canonical realization of S0(2)

j:'zx&u‘th}’z; (3.¢.624)
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3 037
Lo

© ¢ ﬁ: (3.6.62b)
J

UL (1) -

b
= &
L,
explicitly given hy

f/)?';x\ )‘:"\!
o, = ;+“—l -
Ny | \’Z‘ﬁj 1%y, 3]

Fava
(3.6.6 )

- 9
o [T,77) 22 (!;K%ﬂ,ﬂ
| I=,7],11

R Cos® — Ty HuE }I
B SO + 2y 038

[Px) [ Pxy & [LbxTT) O
W"ﬂ)” \"1) 'L'-(zh,,:rl)u-'
{QXCOS& 'ﬁbb Sta &

\d;),(g.'u & + ny tos & / .

Suppose that, as a result of nonconservative forces, the algebraic tensor of the representation

>\('&)/ilma

is mapped into the Lie-admissible form

§)Av: Ceoxa M"‘)#’/*(H .
1 ~ pCE, L, (3.6.84)

This is, essentially am ° algebraic representative of the nonconservation of J. The canonical-
’ ——— -

admissible exponential law (3. 6,50¢ ) now yields the Lie-admissible covering group °
(»%,() ) (Qx)+ & ((tx,:r))+ _a;,z (((z,,j),j) s
8o Tl T U=, 1) 2 U2, 0), D)
%y cos(Mbe) ~ 2, Sik (xce)a)) (2.6.65a)
(fe—x Sim {Mwe) + Ty cos (N(Y6)

e\ (rx (U’w)\ ot ((p- 3. ), .,

O-Zxa_

{

\.,._/
-+

i

£, (Pe,T)) "2y 10,3) )
P Cos (}A(% o) ~ &sj sia ((r)e)
. }> Sia (}”‘&')9) + &)“) bj()*(é'jg)/

Lo <3 () = Sol2). (3.6.65¢)
A

P o

(3.6.651)
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which is a Lfe-admissible group in our terminology because constructed with the base manifold,
generator and parameter of -another Lie group. Also é}) {2} is capable of recovering SO(2)
identically at the conservative limit  », M —» A .

As another example of Lie-admissible groups,consider first the conventional canonical

realization of the one-dimensional group of translations in time, say, for the harmonic

pev, 6M)=(}), Gow)

osciftator £ 4+ 1 = O §m=ka1)
W= L (b e)

R Y- S

T,LU_): b = o Db QL™ JD /

(».zf w) oy (Tew) B2 [[12,RH3 \ ..
v TR R ek i) 2! \pab, HLS
Q@sf + })St‘“t
-*—"LS:M\‘ +t)c-95{“

The addition of a constant force (for simplicity)} to the equations of motion, T + r+F= G,

(3.¢. 6¢¢)

[

can be represented with the canonical-admissible equations in terms of the same Hamiltonian H

v o A _ il 6.6
6};:(So ;5__('i+1::)/ (}é ?)

and the Lig-admissible tensoV

sh
- . - A
yielding the Lie-admissible covering group Tl(t) of the Lie group T,(0

A2 z ol (1) SAGAND,
T~ | = = = }
k’ 1 (k’rh') 2. \(L%"HJIH)

L l)
; E MV{bHE)_.m '

(3.6-68)

» e

T\ = (2+F) Swb g plost

(3.6.65)

(3.6 66b)
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TABLE 3,7: THE NOTION OF LIE-ADMISSIBLE ALGEBRA AS ENVELOPING
NONASSOCIATIVE ALGEBRA.

Table 3, 6 essentially indicates the quite pecutiar situation of Lie-admissible formulations
according to which a Lie algebra structure in the neighborhood of the identity is lost by central
requirement , but a Lie group structure persists! This situation clearly demands a more detailed
inspection to see whether it is actually consistent,

We reach in this way the part of this analysis which I consider the true, ultimate characteriza-
tion of the notion of Lie-admissibility, that via the enveloping algebra of a Lie algebra,

Pexmit be to recall that the notien of univexrsal enveloping associative algebra A(G) of a Lie al-
gebrz Gis truly crucial in Lie's theory on beth physical and mathematical grounds, Ttis
equally exucial for relativity considerations, For instance, if G is the Galilei Lie algebra,
the computation of quantities, such as, the square of the angular momentum, necessarily
demands the use of A{G) (trivially, because the square of all quantities are identically null
within the context of a Lie algebra, the product being anticommutative). On the contrary, at the
level of A(G) such quantities are fully definable because its product is associative, Similarly,
if G is the SU (3) Lie algebra, the computation of the Gell-Mann-Okubo mass formula is often done

with the use of the enveloping algebra A(G). It is therefore tempting to state that, without
the universal enveloping algebras, Lie's theory would have little, if any, physical relevance,
This aspect does not appear to be sufficiently emphasized in some of the existing physical literature,

On mathematical grounds, the algebras A{G) are equally crucial, First of all they permit the
construction of the exponential mapping, trivially, because from the second term on all elements

(3.7.4)

of the expansion
» © X

PR
= X GEX Tt e
e = dbx o+ ey
are oulside of the Lie algebra G and only definable in A(G , Alsc} the algebras A(G) play a fundamental
role for the construction of the representation theory of G, and so on. For a rigerous account
on this profile (which is also often neglected in physical literature) see N, JACOBSON

Let me therefore state in simplistic terms that the universal enveloping associative algebras

of Lie algebras are the true representative of the dual algebraic -group theorgtic aspects of Lie's

theory. And indeed, first of all they contain Lie algebras via the isomorphism[A(G)]“:\‘; G
and, besides, are constructed with the basis of G, Secondly, they express Lie groups via expansion
(3.7. 1 ). The net effect is that the algebras A(G) play a crucial methedological function for the

characterization of the Gralilel (as well as Einstein special) relativity,
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The intended ¢overing of the Galilei relativity of Section 4 now begins to take shape:
it is conceived as a Lie-admissible covering of the universal enveloping asscciative algebra
of the Galilei aigebra. It is such ar approach which allows  the compli ance with numerous
requirements. For instance, itensures the capability of recovering the conventional Galilei re-
lativity identically at the limit of nuil relativity breaking forces, It ensures the representation
of the nonconservative character of the systems via the Lie-admissible behaviouk in the
neighborhood of the identity,e. g., according to rule (3.6,%04). It allows the study of the preserva-
tion of 2 group for the xeplacement of the Galilei group as the invariance group of nonlinear,
essentially nonselfadjoint, and explicitly time dependent equations of motion, etc.

Let me begin by recalling, for notational advantages, the notion of universal enveloping

associative algebra,

e
DEFINITION 3, 7,1:  The universal enveloping associative algebra of alie algebra o

is the set(ﬁ , T ), where 'H, is an assoctative algebra and ¥ a homomor-
phism of G into the attached algebra 7ot c){' satisfying the following property.
If 2 is another associative algebra and T ’a homomexrphism of G into nR’,—there
suchthat T=TF ;

¢xists a uniqgue homomoxphism ¥ of S into

i.e., the following diagram is commutative,
- - h—- - 7~
L‘R] 5 Lﬁ/] (3.7.2)
F"\ G /V =)

[
posi B dimensional).
(it should be here recalled that all algebras-and fields-have characteristic zero and G i.:ﬂm
In essence, the definition stresses the uniqueness of the wniversal enveloping associative
algebra of a Lie algebra, up to lecal isomoxrphisms,
The construction of ﬁ iz usually conducted by first identifying the most general

associative tensor algebra which can be copstructed with G as vector space, i.e. s 19a&
- s 3. . 3 a
[ = F & Q ® _G_" ® & @ ; (3.7 )
C o 3.7.3b)

GG : X ®Xy L hahzem

where the product (&) is associative, the basis of Gis ordered, iLe., { Xi li €I= ordered set}),
and the right hand side of Eqs. {3.7.3b) is the product of GC@G
Let @_ be the ideal of °‘f generated by the elements
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[Xex;] - (@x; - X;@x;) (3.7.4)

where [Xé ) X ]’J is the product in G,
The universal enveloping associative algebra (E (@) of G is then given by {or can be

20e
(3.7.5)

equivalently defined by) the quotient algebra
& (C") = / @ :

The basis of ©{ ix given by the so-called standard monomials

M = Xp® X, ® - @ X,

m

(3.7 é)

. y .. . <0
4"1_& L‘?_ .i‘ = Lo .

A number of technical steps then yield & fundamental theorem of enveloping algebras, the
Poincare’-Birkhoff-Wirt Theorem , which can be formulated as follows.'zqe‘

THEOREM 3. 7. 1: The cosets of 1 and the standard monomials form z basis
of the universal enveloping associative algebra R (G) of 2 Lie algebra G

This algebra J’E {G), being of tensorial type, is not used in practical applicaticns (parti-
cularly in physics), where the ordinary asscciative al gebra A(S) with pioduct Xin is used
instead, NeVerthless, it is possible to prove that there exists a (tinear) mapping € of (Q {G) into
A{G) such that @Q =0, and £ cosets of ] and standard monomials of«R(G&-a 5_1 and
elements of A(G)},The nec effect is that a basis of A(G) Is provided by

A% XX X Xe X e (3.7.7)
4 ¢, 2 4 L 4 tn Y, ]

while an arbitrary element of A(G) can be written as a linear combination of

K g, K :
Xf’l’ Xf:a - o Xb- ku"z,-*- tﬂ“, (3.7-8)

My zo,4e, ...,
It is precisely this structure which readersLie's theory useful for practical calculations (at both ,
classical and quanturm mechanical leve].s).And indeed, A(G) not only characterizes the hasis
Xi, but alse the Casimir invariants and, more generally, any desired (associative) power of Xi‘
Also, any representation of A(G) yields a representation of G via Lie's Tule (3.6,8¢). Thus,

a number of thecrems on the representation theory of Lie algebras (e.g., the existence of

faithful representations, Ado's theorem, etc.) demands their treatement at the level of A(GY .
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Finally, the associative nature of A(G) allows the existence of both linear as well as nonlinear
representations,

Before passing to the lie-admissible generalization of these ideas, it is recommendabie to
cutling first the intermediate step of Lie isotopy. Specifically, if generalized exponential mappings
of type (3. 6.25¢) exist with a Lie behaviour in the neighborhood of the origin, this can only be

accounted for, to the best of my keowledge, via an isotope of A(G).
5b
DEFINITION 3. 7.2: The isotopically mapped universal enveloping asscciative algebra

. *
of & Lie algebra G is the set [ , = ) R¥, 4 .7 1where
- (cﬁ‘ T ) is the universa) enveloping associative algebra according to Definition 3. 7.1;

-4 is an isotopic mapping of G, oy G=G%

- lR is an associative algebra generally noniscmorphic to J% ; and
r =
- T is a homomprphism of G * iato [-Q‘l .

4}
satisfying the following properties, If IR ig still another associative algebra

and T ! a homomorphism of g* inta .I‘_-,'R#“J—-l , there exists a unique homomoxrphism

* ¥} EE o
K* of 19; into J‘L 5 'Cvﬂ: 6 T.and a unigue isctopy of LA into (& ,
e (R# , such that the following diagram is commutative.

[A*] ———— [a¥]"
B ’j L\ /,u o (3.7.9)

__.-.—

[R]° ¥ o [RTT

The practical realization of this notion is a5 follows, It is ¢ssentially induced by an

isotopic mapping of the ten sorial product @ , i.e,, an invertible, associativity p:Zserving mapping
H: X.®@ X, —> oA X w X
under which we have the isotcpically mapped (assomatwe)tensomal algebra Z *5 b

oérw

Fecocxaca@---- . (3.7-1)
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o
The isotopically mapped ideal 62_,'* of |/ is then generated by elements of the type (the
product in G* is now denoted with [X X ]”')

Then, the isotopically mapped universal enveloping associative algebra is given by (or,
equivalently, can be defined by) sb

ﬁ*(G) — Dﬁﬂ*/(\{% _ (3.7.

*
The generic elements of 1 are now reducible to (linear) combinations of the isotopically mapped
standard monomials

MES L X R X e X (3704
" aﬂié*zi"'“*m-

A study of the problem reyeals that khe other pertinent aspects of the conventional case extends

to the isotopically mapped case, We reach in this way the following Lie covering of the Polncare -
Birkhoff -Witt Theorem .

THEQREM 3. 7. 2; The cosets of 1 and the standard isotopically mapped menomials

form a basis of the isotopically mapped universal enveloping associative algebra

ﬁ%@') of a Lie algebra G.

The nontriviality of this theorem is represented by the fact that, starting from the isotopy
(3.7.4.0), we reach an envelop whose Lie content [LR*(_G—):( is not, in general, 1somorphic
to G, even though the algebra S‘LO—’H has been constructed in terms of the basis of G, i.e,

g* = [R™ (DI % ¢ ~ 18], (3719

Again, the basis can be written

1, X XA”*XL'Z, )( X xX. . (3778

A L 4
and the general elements are of the type
k, kz km,, (
- 017
><, % X % oo ¥ >\f ko fayen Em 3.7.17)
L, 2 A/
ze,1, 2,.._)

3
where now powers are in LR . The reduction to 2 nontensorial form is inessential for

Theorem 3. 7.2 because a case of associative isatopy is preci s<ly the mapping R (GY = A(G)

which is needed for practical applications . In order words, in the product isotopy
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one can already incorporate the provision for the product actually used in practical calculations,
Notlce that the isotope A*(G) of A{G) is not unique, in the sense that there can exist

a family of norisomorphic isotopes A*(G), A'*(G), A"*(G), ....all realized in terms of the

basis of G, but via different mappings (3. 7.1}, which are such that the attached algebras
[A“(g)}-, {A"‘(g_})]_, EA“*(Q)]-, ..., are maisomorphic among themselves, This is not in
contradiction with the uniqueness of the associative envelope (up to isomorphisms) because, say,
for the case of A*(@) we can construct its Lie content G* in the standard form with corresponding

conventional envelop A(G*), and, thus.

G¥2[qlel a TaCenl # ¢. (».7.18)

We are neequipped to introduced the intended notion of Lie-admissibility (see ref?bfor details).

DEFINITION 3,7, 3: A Lie-admissible genotopically mapped universal enveloping

associative algebra of a Lie algebra G is the set A
SR, 2RS4, e, T Y where
- (rPC , ‘€ ) is the universal enveloping associative algebra of Definition 3. 7. 1,
- (R,, T ), LH*, A, "E* ] is the isotopically mapped assoclative algebra
according to Definition 3.7.2,
- is a Lie-admissible algebra,
- ‘3 is & homomorphism of g* into a“,—
n t’g is an isomorphism of E(H.{I‘-into au'—- ’
gich limt the following property holds If 'J/L is another Lie-admissible algebra
and '17 & homomorphism of G‘ into L°?,L ] , there exists 2 homomorphism h‘

of W into % , the following diagram is commutative,
[ S W
e o/ o
AN A (3.7.19

N

1- R
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The idea which is attempted with the above definition is that the envelop of 2 Lie algebra

is nmot yrique in the sense that algebras characterized by different laws can characterize the
same Lie algebra, provided that they are Lie-admissible. pApng indeed, the classification of
the different classes of Lie-admissible algebras of Table 3. 3 allows the following possibilities.
m A is an associative algebra. In this case diagram (3. 7. 19 ) recovers (3.7. 9 )
identically.
2) W is a Eie algebra. Then diegram (3.7.19 ) reduces to (3.7. 2 } in the sense that
no nonassociative envelop is characterized by an anticommutative algebra,
3) 4 is 2 flexible Lic-admissible algebra, e.g, , the mutation al gebras (3.3.5 ). This
vields a first possibility of cestructing a genuine nonassociative envelep.
{4) db{, is a general Lie-admissible algebra, This is clearly a second possibility for
a nontriviallnonassociau‘ve envelope .
In conclusion, there are three classes of Lie-admissibie algebras which are significant
for the envelopgof a Lie algebra: the associative, the flexible Lie~admissible and the general
Lie-admissible, In principle the same Lie algebra G can be homemoxrphic to the attached algebra
of one algebra per each of these three classes and it is in this sense that the envelop of a Lie
algebra is tere intended to be nonunique. Of course, if one im poses that the envelop be rssociative,
that the uniquess of Definition 3. 7.1 is recovered.But the enveloped{ , in general, is not "unlversal".
The first studies on the construction of a nonassociative, but flexible and Lie-admissible
enveiopfof a Lie algebras have been conducted by C. N, KTORIDES,{’I:O the best of my knowledge,
In the following we shall closely follow the analysis by this author with only the necessary
implementation iato the case of the general Lie-admissible glgebra, as requested by the fact that
these algebras actually emerge in Newtonian Mechanics (Table 3, 4).
The first step in the construction of a genctope of H is given by the Lie-admissible

genotopic mapping of the tensorial algebra (:3 7 J
. ) Ay
ﬂ; XL®XJ“——> OLL»XJOX”

where Xio Xj can now be interpreted, say, as in Eqs. (3.6,%5). This yields the Lie-admissible

genotope of the associative tensorial algebra
2
T cF@EOFGO ..

(3.7.21)
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under the broviso that now the symbol & represents the enclosure of all possible different

associations, e.g., *.7.22
X;@on’(ks{(xf"xi)"x“) X[o(x)-o)(p)?], ( )

as reguested by the nonzssociative nature of the product.

For the ideal notice that cne can select the isotope in such a way that

[X: X5)qm X0 X5 -XjoXo = XX, - XX = [ X, Xilgn -
~ * (2.7.23)
Thus’the genotope @ of the idea] 02’ coincideswith the isctope G?. , i.e., it is generated hy
elements of the type

[X':.' XJ—_(* - (XL*X}‘ '-X)'ffx(‘)_ (_%721f)

The Lie-admissible genotepic mapping of a universal enveloping associative algebra can then

(3.7.29)

be written or{or, equivalently, be defined by)

et
A
DM/ CG-_ ) = Dﬁ/ / @ »
The Lie algebra content of u is then given by

N = G¥ % G.

#*
The study of the basis of OL’L turn out to be more involved than that of (ﬁ because

(3. 7.26)

of the nonassociative nature of the product. Neverthless one can define the standard genotopically

mapped monomials  as the union of all independent standard monomials in D? with different

asgociarions, i.e.,

A 727
M > - X{@ X"'z.@”‘ QXL',M ; (_37 )
™ .{:é ,{2 éo.‘ —élfm .

It is easy to seg that this set is not necessarily 2 basis for OM_, because an arbitrary monomial
now cannot be necessarily reduced to #n F-linear combination of monomials (3.7.27 . The

study of this problem indicates the emergence in this reduction of the standard isotopically mapped
menomials, Thus, a basis of % is expected to be constituted by both,genotopically and isotopically
mapped moromials, After all, this feature is not surprising, And indeed, the need of the
isotopically mapped monomials can be seen already from the composition law of Lie-admissible

groups, Eqs. (3.6.47) and (3.6.4%). Inturn, this is crucial for artempting the construction
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of a nonuniversal, generally nonassociative covering of the associative envelope ,Q(g) of G,

Upon 2 number of technical steps, we have the following Lie-admissible covering of

contribution by C. N. KTCRIDES,
143,5b

the Poinca;recBirkhoff-Witt theorem , which, owing to the

we shall call the Poincard-BirkhoFf-Witt-Ktorides theorem .

THEOREM 3. 7. 3: The cosets of 1 and the union of the F*-licearly independeat

standard genotopically mapped and standard isotopically mapped monomials form

a basis of a Lie-admissible nonassociative genotope AL of a miversal enveloping

agsociative algebra J% of a Lie algebra G.

The terms F*-linearly independent” are referred to the fact that combinations of the basis
of .G generally occurs within % with functions of the base manifolds as coefficients, For
details, see ref.5 The above theorem is in essence a simple generalization to general Lie-
admissible algebras of Theorem 2.1 by C. N, KTORIDES on flexible Lie-admissible algehms.'z 4d
The interested reader is here urged to inspect the example by this Jatter author with A()\,ﬂ)
matation algebras and their application to the construetion of the Gell-Mann-Okubo mass formuta
(see in this respect also Tahle 3.9).

Theorem 3, 7. 3 essentially identifies the basis as being of the type

(L, pXe, EXeeXs, 8X Xy

PXL@X;GXK/) & XL.*X}*XF}.._

(3.7.29)

where the coefficients o< : (s h’ s +.. are, in general} functions of the variables of the
base manifold (the b/ variables of Tables 3.4, 3.5 and 3. 6), The actual construction of the
basis demands the explicit foxm of the Lie-admissible product which, as by now familiar,
may vary from generator to generator, Neverthless, structure (3.7.2 &) is sufficient
for the objectives of this paper. The studies of the general methods for the construction of the
basis of u is here left to the interested reader,

One of the most intriguing properties of the Lie-admissible algebras % is that their
only admissible representations are’in generaljnoniinear J ‘2‘4 2 owing to the ncnassociative
nature of the product. As a result, recent studies on nonlinear representations of Lie's groups
might be significant, upon due technical implementations, for the study of the representation
of Lie-admissible algebras and groups. On physical grounds this is perhaps one of the potentially
most significant possibilities for a differentiation between the electromagnetic and the strong

interactions, as we shall indicate in a subsequent paper,
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An example may be here useful to illustrate the ebjectives of the analysis of this table,
Consider a conservative New tonian system in a 2-dimensional Euclidean space possessing  the
exact symmetzry under the group of rotations SG(2) with canonical realization (3, 6, 62). The Lie
aigebra 50(2) is in this case one-dimensional with generator J, The basis of the universal enveloping

associative algebra R( 50(2))is now given, from Eq, (3.7.7 ), by

I@Isms';(
go: 4T  T®3I, T@I®I ...

3.7.21)

’
Toex J’b —2 Pz
Let us recall that it is the existence of this basis which allows the exporentiation of the Lie algebra

!

50(2) into the Lie group (3. 6, 63).

Suppose now that this S0(2) symmetry is broken by nonconservative forces {and thus, J is non-
conserved). Suppose also that the broken S0(2) context admits a Lie-admissible characterization
in terms of the tensor (3. 6.64) with corresponding Lie-admissible group (3. 6.65). Qur problem
is that of identifying the algebraic enveloptwhich necessarily underlays the transition from the
Lie-admissible algebra in J and the Lie-admissible group §0(2), i.e., Egs. (3.6.65),under the
assumption of the preservation of the generator, param@ter and base manifold of 50(2), The reader
should be aware that this last assumption is simply uncompromisable for the objecrive of this
paper, because its relaxation would render virtually impossible the attempt of identifying a generali-
of the Galilei group capable of recovering this lattex group identically at the limit of null  symme-
try breaking forces. The only possibility of achieving the objective considered under the assumption
considered known to me is by performing the Lie-admissible genotopic mapping of the basis (3. 7.29)

-~ Tl = Nomacr. £3.7.30)
50 T Tl ... L.
drel i ' J i Jo 7/ J e i 4 3-‘7’-?"faﬁutjlax’

where now the produer o is nonassaciative by central requirement, but Lie-admissible, i.e., it
constitutes the ahstract characterization of the Lie-admissibie product in expansion (3. 6. 65).
In turn, this necessarily implies, for the proper treatement, the stuciy of the isotopically
mapped basis Ix T = Astoe. 7 (2.7.34)
so¥%: 4,7, Ja#3, Ty Twl, -, i= 2,<f=?..‘25}>,<,
be:;:se the Lie algebra content of u(@(Z)) does not coincide with §0(2). Instead, it coincides
with the Isotope §0%*(2)induced by J, but now in terms of the generalized Poisson brackets with
Lie tensor J),‘"': S}‘v- Sﬁ" attached to the tensor (3, 6, 64), This is equivalent to assume (3, 7. 23).
In conclusion, the indicaled Lie-admissible approach necessarily implies three layers, {A) The
conventional Lie approach which (according to our uncompromisable condition) is identically reco-
vered at the limit of nonconservative forces, (B) The covering Lie-adimissible approach of this
section, And (C) the intermediate Lie covering of the conventional approach induced by the
algebraic 1sotopy. The emerging notion of Lie-admissible envelope is then nonintrinsic by
construction, although studies of & possible intrinsic approach (i, e, , that without the notion of

genotopic mapping) ave strongly encouraged,
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TABLE 3.8: SYMPLECTIC-ADMISSIBLE COVERING OF THE SYMPLECTIC GEQMETRY .

Without doubt, the symplectic geometry is one of the most fascinating, mature and
rigorous disciplines for the reduction of physical laws to primitive geometrical notions, It
was, therefore, for me reason of considerable surprise the identification of a number of
difficulties in the classical and quantum mechanical use of the symplectic geometry for the
study of noncongervative systems, The doubt that this was only the result of my largely
Lasufficient knowledge of differential geometry persisted for a considerable period of time
(by delaying the presentation of my efforts) and stili persists as of roday. Neverthless, since
I have been unable to resolve this doubt and, as a matter of fact, the difficulties indicated
have increased in time, I think that an unpedagogical report of my studies of this profile
might be of seme value for the receptive and open minded expert in differential geometry,
in the hope that they can be subjected to a scrutiny, assessement and technical finalizatior .

The difficulties which i bave encountered n the use of the symplectic geometry for the
study of essentizlly nonselfadjoint systems can be reduced to the following three aspects.

{A) Difficufties for relativity considerations. Apparently, one of the cemral probiems

for the relativity which is applicable to the systems considered is the tdentiflcarion of a non-
manifest, connected, Lie symmetry for the form-invariance of the eguations of motiun/cnpable
of satisfying our, by now famiEiarJ uncompremisable requirement, that is, the capability of
recovering the Galilei group identically at the limit of null relativity breaking forces. By re-
calling that the equations considered are nonconservative, nonlinear and explicitly dependent

on time, this is not an easy task. Despite my best efforts, I have been unable to even partially
caonfront this problem by using the symplectic geometry for a number of reasons I, shall cutline
below. The use instead, of the covering geometry which appears to be suggested by this line

of study, here tentatively called symplectic-admissible geometry, seems to offer

some genuine hope of attacking the probiem and eventually solving it, as T shall indicate in
details tn Section 4. It should be stressed that the solution, to have any pragmatic value for
physicists, must be able to produce rules for the explicit construction of the desived nonmani-
fest symmetry for given forces not derivable from a potential. It should aise be stressed that
by no means I intend to deny the possible existence of a geometrically equivalent solution
within the context of the symplectic geometry. However, to have any pragmatic vaiue for
physical applications, that solution must hold for the coordinate systems actually used in
experiments which, as we shall see in a moment, appears to be the source of the difficulties,

{B) Difficulties of quantum: mechanical nature. As is known, the problem of quantization of

forces not derivable from a potential is unsolved as of today, irrespective of whether
I3

conventional or geometrical methods are used. My difficulties in attempting the quantization
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of nonconservative systems as globally Hamiltonian vector fields are not of formal mathematical
treatment, but instead of consistency on physical grounds as far the physical interpretation
of the algorithms at hand are concerned. For instance, the customary interpretation of the
expectation values of the operator "p" inder the indicated characterization (canonical mementum
for a nonconservative system in globally Hamiltonian form) as those of the physical linear
momentum have met with virtually unsurmeontablie inconsistency problems. This aspect will
be treated in a subsequent paper. Again, it should be stressed that, by no means, T here
exclude a "symplectic quantization”, because the problem, as indicated earlier, is mainly
of physical, rather than mathematical nature.

(C) Difficulties of algebraic origin. These difficulties are independent of the preceding

ones (at least at a first inspection) and more closely related to the content of the preceding
parisof this paper. In few nontechnical terms, the symplectic geometry is known to be fully
compatible with the Lie algebras, to the point of achieving a symbiotic geometrical-algebraic
duality, In the transition to the covering Lie-admissible algebras 1 have encountered severe
preblems of geometrical consistency if I insisted in the preservatien of the symplectic geometry
as currently known. The reason is essentially due to the nature of the Lie-admissible product
which is neither symmetric nor antisymmetric and the inability of the symplectic geometry of
producing a technical characterization of the symmetric part. Perhaps greater probiems of
geometrical consistency I have found in the attempt of using the Riemannian geometry as
currently known, this time, because of the essential antisymmetric part of the Lie-admissible
product. As a matter of fact, these difficulties have been so great sc force me into my
rudimentary attempts at constructing a covering geometry. Bur, again, it should be stressed
that perhaps these difficulties are due to my insufficlent knowledge of these established
geometries, rather than the geometries themselves.

With an open mind on these issues, permit me to summarize my argument. For all
necessary details the Interested reader is suggested to consult ref.Sb

First, to avoid misrepresentations of the speculative spirit of this table, T would like
to stress the conceptual, physical and geometrical consistency of the symplectic
geometry for conservative svystems. In my unpedagogical terms, conservative systems can
be trivially represented with Hamilton's equations in the variables r 2 and pka where T 0
represents the Ceartesian coordinates actually used in the experimentzl set up and Pra T&”
presents the physical Hnear momentum, that is, mk;ka' This txivially provides a symplectic

characterization of the systems{as recailed in Table 2.8) in the assumed coordina~-

tes. This restrictive character of the local coordinates is then enrirely removed by the proper,

geometrical, coordinate-free treatment. The emerging context is not only mathematically
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and physically consistent, but constitutes one of the most effective ways of characterizing the
Galilei relativity in its own arena of "uneguivocal applicability”, as we shall indicate in Sec.4.
According to our findings, the reason for this consistency apparently relies on the fact that

the family of all admissible local coordinates admits the coordinates rka and Py of direct

physical significance. For practical computations of physical significance, however, care must

be used at both the classical and quantum mechanical levels in relation to these degrees of
freedom of the local coordinates to aveid inconsistency. For instance, new admissible space
coordinates r'ka(rrp), even though mathematically consistent, can be poninertial and non-~
realizable in actual experiments {(because of the nonlinear dependence on the p's). Similarly,
new admissible corjugate momenta p'ka may produce substantizl consistency problems on
physical grounds.

It this in this latter respect that the reader is urged to work out specific examples, For

(3.2.1)

instance, the conventional harmonic oscillator
-a C 2
Lm'z,+k't) =0, Mm=4 K=t
r 2
Y
can be lifted to T'*M (rather than to T*M with local coordinates ¥ and p = mr) as a global

(3 .3.20\)

Hamiltonian vector field in the Hamiltonian (see Section 2, 40)
of - TH(e)zo, p=4,2 {akte (e 0],
1 g
, He2 G [zsee S ap]

This is, geometrically, a fully admissible characterization of the harmonic ascillator. However,

w2 $.26
Tl o2

the reader is urged to quantize system (3.8.2b) and "touch with hand"} 0 10 say, the consistency
problems of such a guantum mechanical system with respect to the established quantum
mechanical oscillator. According to our findings, to be indicated in details in a subsequent
paper, the reason of the difficulties Hes on the crucial property that the algorithm “p* ”

for system (3.8.2h ) by no means represents the physical linear momentum. However, for
conservative system this is not a deficiency of the symplectic geometry’because the representa-
tion of oscillator (3.8.1) as o globally Hamiltenian vector field in the variables r and p = mT

is fully admissible. The quantization in this system of coordinates of direct physical meaning
is then mathematically and physically consistent.

In the transizion to nonconservative systems the situation appears to be fundamentally
diffevent. First of all the reader should be awarc that the Inverse Problem provides a distinetion
of monconservative systems versus their primitive asscciation with nonautonomous systems in
the sense that Hamiltonianswithour an explicit dependence on time can be representative of

genuine nonconservative systems (to stress the point, we shall use below only this type of



- 3062 -
Hamiltonians),Secondly, one of the reasons which suggested my laborious involvement with
the Inverse Problem was to provide a proof understandable by a broader segment of our

community that nonconservative systems are indeed treatable with the symplectic  geometry .

This is, in essence, the spirit of the Theorem of Indirect Universality of the Inverse Problem
(Section 2, 9 ). However, the methodology of the Inverse Problem also provides a specific
basis for the study of possible physical limitations of such geometrical setting. And indeed,

it emerges that a necessary condition for the characterization of nonconservarive {nonessentially

or essentially nonselfadjoint) Newtonian systems as globally Hamiltonian vector fields is that

the family of all admissible local coordinates does not admit the coordinates rk and Pk _mkrka

of direct physical significance,

Again, the resder is here urged to work out explicit examples and "touch with hand" the
underlying difficulties of physical consistency. There is no need of working out complicated

systems. instead, the simplest possible nonconservative extension of the harmonic oscillator

(3.8.1), the damped oscillator C 3)
3.8.
[ (% + ’z) il I Neam O

is fully sufficient for the purpose. The methods of the Inverse Problem yield

the autonomous solution

L‘: ,Qitté"tb 1.(.2%'!'&'?) &(/tf_%,w}_gf.g}) (3@4‘._)
which, in turn, provide the symplectic characterization of the damped oscillator as the
globally Hamiltonian vector field DL

0 — EN 1 1_ -

&Me Ty =0, 4v }5{11(’2“1 P , /(331
Y / t
Ma) = wry OHL et b [eos (e )] g fl o)

This geometrical characterization of system (3.8, 3 } is, of course, fully consistent on

(3.&’.5}\)

mathematical grounds. However, the reader is urged ro work out, for instance, the quantization
of vector field (3.8. 5 ) and compare the results with those of the quantization of vector field
(3.8.2 ), He will then discover a number of prablems of  :onsistencies of physical nature, such
as the computation and meaning of the expectation values of the quantum mechanical
algorithrn "p’ ", the inability to recover the conventional quantum mechanical ascillator
at the fimit (’-—? 0, ete. In full analogy with the case of the harmonic oscillator, the diffi-
culties appear to be linked to the fact that the (classical} symhol "p" ", by no means, is
direcily representative of a physical quantity. But, unlike the conservative case, a giobally

Hamiltonian characterization of the linearly damped oscillator in the variables r and p = mT

does not exists, as it can be proved via the methods of the Inverse Problem. This is, in
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essence, the difference between the conservative and nonconservative systems referred earlier.

\yf'hen [ became aware of this point I then entered into the study of Birkhoff's equations.
In essence, the sbove restriction occurs only for globally Hamiltonian vector field characteriza-
tlon of nonconservative systems. If locally Hamiltonian vector fieldsare instead admitted, the
local variables can indeed coincide with what [ refer to as the variables rka and Pra of direct
physical significance (as it is possible to prove by using theorems of symplectic geometry),
However, the pragmatic need of physicists is to compute time evolution laws, etc.Birkhoif's
equations then emerged as potentially crucial, because capable of preserving the methodologicat
significance of Hamilton's equations in full, while lifting the indicated restriction on the local
variables, and white providing a genuine characterization of locally Hamiltonian vector fields
(Section 2.8). However, my initial enthusiasm and hopes of preserving the symplectic geometry
for nonconservative systems soon met with severe technical difficulties. The representation of

the damped oscillator (3.8.3 ) via Birkkoff's equations (2.8.4 } demands the solution of the

equations = ofp  ORv el _ -~ _79 H® (2.8. 6a)
‘JZ DO mov m;,u)'" TOTRT DA
(3.8.6b)

‘(lb}n«} - 5_’?,"5}) t):f‘l’h'z, =% )(/m_-:-(_)'

Unfortunutely, these equations, even though consistent (as guaranteed by the existence theorems),
admit solutions of quite difficult computation in a closed form {admitting that such a form exists).
In conclusion, the explicit computation of locally Hamiltonian characterization of nenconservative
systems turned out to be extremely difﬁcult’ even for one-dimenstonal systems such as (3.8, 3 ).
The reader is urged to verify that these difficulties are magnified when considering the
class of nonconservative systems of true interest for this paper, that of essentiaily nonselfadjoint
systems in arbitrary (finite) dimensions, under the for us uncompromisable condition that any
admissible geometrical treatment allows the use of the variables rkaand Pra identified earlier.
Owing to these difficultics, we put the Lie-admissible formulations at work. The first
objective, that of achieving a simple, divect, and immediate analytic Tepresentation of the

(3.€.7)

vector fields for the damped oscillator

(Z7) = ((fpon), Pofine

without vedefinition of the variables, is trivially made possible by our Hamilton-admissibte

equations for which

6}”2&, =) = (2 bﬂ) (

(FZT)LZ)/ {Rﬁ}r {GF 'ﬂ"‘-); Z}

L’%.S’-ga)

(3.8.25)
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A A ~y-+\/ P A D s :CD__H;
(6,*\,"?): (%%?;): £ o\ \’) (ﬁ)(}r.g.k‘:))

in which, according to the fundamental equations (3.4.4), the contraction of the tensor
Ly

with corresponding covariant form

SN with the monconservative vector field = - produces the covariant conservative form = al
As by now familiar, equations (3.8. 8 ) and (3.8, ﬂ ) imply the abandonment of Lie
algebras as the underlying algebraic structure in favor of the Lie-admissible algebra. This
creates the problem of serching for the possible existence of a2 covering of the symplectic
geometry specifically conceived for Lie-admissible algebras, that is, for nonconservative
systems. 1 report below the central aspects of my rudimentary studies in this truly intriguing
problem with an understanding they they are the efforts by a physicist with a grossly insufficient
knowledge of differentizl geometry. and, thus, they are in need of a severe inspection by
experts. Permit me to also indicate that I perform this disclosure simply because forced into
it: to the best of my understanding it is extremely difficult, if not impossible, to arrive at a
first solution of the relativity laws of nonconservative systems by using the conventional
symplectic {or Riemannian } geometry. Since I have been unable to identify any treatment of
the geometry which is applicable to the Lie-admissible algebra, I have been simply forced
into a study which, on strict grounds, is a jeb for pure mathematicians. 1 therefore hope
that the receptive and understanding reader takes into consideration the main ideas, rather

than technical details of pure mathematical nature which do not effect the study of Section 4.

A tentative statement of the problem can therefore be formulated as follows: it consists

of the identification of a geometry which is capable of characterizing the Lie-admissible algebras
and the Hamilton-admissible equations in exactly the same way as symplectic geometry characte-
rizes Lie algebras and Hamilton's equations, In particular, as it will be selfevident in Section

4, a geometrical interpretation of Egs. (3.8.9) appg{s to be crucial for relativity considerations,
One of the basic difficulties in the problem under consicleration rests with one of the basic

methodological tools of symplectic geometry, the caleulus of exterior forms. It appears to be
simply incompatible with Lie-admissitle formulations on a2 number of counts, First of all, the
caleulus considered is based on the antisymmetry property dbfa ap” = an’ A dp® which,

while crucial for Lie algebras (owmg to the antisymmetric nature of their produclj, is inconsistent
with Lie-admissible algebrasQ)ecause their product is neither totally symmetric not totally
antlsymmetdc) » In turn, this has e number of technical difficulties, But perbaps the most

direct way to indicate the incompatibility of the calculus considered with Lie-admissible formulations
is by noting that the computation of an exterior two-form with the Lie-admissible tensor § »

- 365-

produces the attached Lie tensor c?‘w :2—,1{5}*; 5 \?.) because of the antisymmetric

nature of the exterior product, i.e. v
v Jdb"a o b .8 10)
g .5 dbia d b = ,(ﬁu_évﬁdb P . (‘3 1
2~ »Y 1
The net effect is that the calculus considered is capable of characterizing, viz ap exterior two-
form,only the antisymmstyic part of the L4e-admissible tensor 5‘u¢ . This implies the loss of
the Lie-admissible formulations and their reduction to the Lie conteént only.
It therefore appears that an implementation of the calceulus of exterior forms

is needed for the proper characterization of Lie-admissible formulations, b

The calculus in which I have conducted my rudimentary studies is based on the product
oi.l:a'“o ‘a{b\)_—:;, B{E}‘X dlo‘/ + a(b’hfxaf[g‘,r Cg.z./!.-f.m)
dbfxdb’ = dbY xelt? | db adb’ = -dbVad LS, (3.8 Ua]

which I have called exterior-admissible product in the sense that its attached (that is, anti~

symmetric) part is exterior. Next,Ihave considered the exterior-admissible p-forms sb
A
A, = pb) (>-8-122)
(3.8 120)

A, = Audb v Vb’ el
A = o dbY =) op)d b b (A, Ry )dbadb, b
A, = H)w,d{{g"‘ db _z(ﬁfa"'l‘] ﬂ)d +z(l‘ o) (g.g_gzc)

(i.e., the product o can also be interpreted as the ordinary tensor preduct).
These forms are exterior-admissible in a double meaning fully parallel to that of Lie-admissible
algebras. First of all they admit the conventional exterier forms at the limit when the A-
tensors become totally antisymmetric  in their indeces, and, secondly, they admit the

conventional exterior forms in the attached form, i.e,,
~ -~
T _ T v
Ha"lqa :A?_—Q}NQ&L Aﬂ{lb,

The exterior-admigsible sum of forms (3. 8,412} is the conventional sum, while the exterior-admissible

(3-¢. [3)

product of forms (3, 8.12 ) is done via rules of type (3. 8. {/ ). Next, I introduce the (left) exterior
5k

admissible derivative
38, -0f s, (5.8 144
A A, - drodb” (3.8 1eb)
A Db’ o)
A A, - QA JF,db%db (.2

. Db*
£ lc.

with an understanding that, in a way fully parallel to the corresponding accurrence for the
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for the conventional exterior derivative, we have

v
4 IR R L L P R Vale
DA b = 0 ¢ AL
d'ﬂi_-, .._Q.VQ“:) od _—’\‘: CIH,L /—D—ﬁ" (_g-é? )
?
The reader should be aware that the operation 3 " is not a derivative as commenly understood

because, in genera]
d Ay 8 # R By +AlBp). (3819
But then, this is precisely the reason for its possible relevance for a direct geometrical
characterization of nonconservation laws (or nongeodesic trajectories)in a way admitting
the conventional geometrical chazacterization of conservation laws as the limit for nuil values
of nonconservative forces. And indeed, as we shall see below, at this limit the tensors
characterizing the differential structure become totally antisymmetric, their experior-admissible
forms become ordinary exterior forms and, thus, the “derivative"” 3 becomes the erdinary
derivative of exterior forms,

The significance of the exterjor-admissible derivative is that it allows the formulation of

5
the notion of the (left} exact exterior-admissible forms, i e.,

A = Jén ﬂ ‘_q_e"
1 D]

(3-8.174)

ﬁ - ;{\ﬁ AP (3.2.174)

¢ /” 2154

In turn, this will be crucial for the covering of the notion of globally Hamiltonian vector field.

We call exterior-admissible calculus that of forms (3. 8. 12) with the outlined operations,

One of its centrai features is the lack of the concept of c!r}sure This can be seen from the fact

that, since d is ot an ordinary (exterior) derivative, d ( d A ) + 0. Thus, the calculus

considered is such that it does not admit a direct, consistent generalization of both the Poincare”

Lemma {of the calculus of exterior forms) and its converse. The reader should be aware at this

point that the notion of closure is at the basis of the symplectic geometry, as recalled in Table 2,8,
Our next step is the representation of essentially nonselfadjoint Newtonian systems as

vector fields on manifolds, The idea (see ref.s for details} is to use the noncanonical method

of Tahle 2,7 for the construction of an equivalent system of 6N first-order ordinary differential

3.2.18
Ug)fmm (o

equations im the covariant general form
— -V
(S, (b -

here assumed to be of autenomous type.
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We then characterize the exterior-admissible two-form
4 2.9
%1 s . edblodb (3.2.19)
i > v L _ M v
1 Sy rSup) A ReABTT 3 (5,005, el b ol b

via the covariant tensor S, of Eqgs. (3.8.15). This yvields a (Hausdorff, secend countable,

"

t

A2 -differentiable, b - dlmensmnal) manifold M(b, 52) im lacal ¢nordinate b/* equipped

with the differentiable structure 52 » Where "differentiability " can be interpreted in both,
ordinary meaning for manifolds and exterior-admissible meaning, The reader should be aware
that this implies a number of consequenees, such as the crucial property that the tensor S)“

is the tensor for the lowering of the indeces in M(b, 32), or for the mapping from TM to T*M,

ete. In generzl, all notions of the theoxry of manifolds which kold for arbitrary (that is,

generally nonsymplectic) structures extend to manifolds whose structure is of exterior-admissible
type. Notice that, as by now familiar, the symbol " R_ "in Eqgs. {3.8.]% ) stands to represent

the nondegeneracy of the matrix (S}J ). In turn, this can be technicall},srnjigmplemented into to
nondegeneracy of the exterior-admissible two-form (3. 8.14) ( see ref.” for details), This

implies the cliaracterization of the (unigue) contravariant tensor § »V L SPYy=(8 )H )

and of the co-exterior-admissible two-form (3 2. 20)
%2 . SaY "b.@_'—b"‘ [=] ”_1?_':" ~ Vi
2 x 2 LS E ) " faLv

LS”"-—{—_S")‘\)’;)L'," /Db"' oo
To summarize, our starting point is the most general possible form of a class C, regular,
unconstrained Newtonian system, the essentizlly nonselfadjoint form. The lifting to T*M is
done under the condition that the variables be the coordinates of the frame used for
the detection of the system and the physical {rather than cancnical) linear momentum, Thus,

out starting point is not only local, but actually unique as far the coordinates are concerned.

This attitude is motivated by relativity consideratione to be indicated in Section 4 {as well as
quantum mechanical consideration to be treated in a subsequent paper), Of course, the uniqueness
of the coordinate system will be removed, but after the geometry for the characterization of the
assumed systems in the assumed coordinates has been identified.

These two contral features (essential nonselfadjointness of Newton's equations and physical
nature of the b» variables) implies that the covariant general forms of the systems are
nonselfadjoint . In turn, this implies that the tensor SP‘"’ of forms (3. 8. | ¢} is neither totally
symmetric not totally antisymmetric in its indeces, In turn, this implies the insufficiency

of the conventional calculus of exterior forms to characterize such tensor in its entirety.




- 368 -

These occurrences lead in a rather natural way to what we have called the calculus of
exterior-admissible forms. in which a number of notions of conventional cancnical formulations
can be formulated, although in a generalized form (e, g., the notion of exactness) but, most
importantly, the notion of closure is not definable.

The geometrical problem under consideration can now be be better identified if one realizes
that the indicated representation of vector fields on manifolds is the most direct possible
representation of nonconservative systems and that, from Universality Theorem 3. 4.1, systems
(3.8.18 ) coincide with our canonical-admissible equations, Thus, the tensor §MYcharacterizes
a Lie-admissible algebra, The problem then consists in the identification of the geometry capable
of characterizing such framework. This geometry is expected to be a covering of the symplectic
geometry because, by construction, the exterior-admissible form (3. 8.19) recovers a symplectic
form identically at the limit of null forces not derivable from = potential, while the crucial notion
of closure is not even definable at the full Lie-admissible level,

T have tentatively called this covering geometry the symplectic-admissible geometry hecause

as by now also familiar, the term “admissible" stands to indicate that the conventional symplectic
geometry can be recovered from its symplectic-admissible covering in a dual way (typical of
all Lie-admissible formulations): via a Hmit of precise physical meaning (null forces not derivable

from a potential} v
2 e 2 =zw,_=-w,4b 4 W, (3.2.21)

2 2

an. >0
and via the attached rule N

&, - 572 St (B DR G
2 2 272 Loby e+
which emerges in this way as the geometrical counterpart of the algebraic rule of Lie-admissibility,
Eq. (3. 34) This yields a rather crucial result for our analysis, namely, that the notion of
Lie-admissibility admits consistent realizations at all the three levels which are essential
for relativity considerations, the analytic, algebraic and geometrical levels.

The identification of a symplectic-admissible manifold can be done in several ways. Here ,
et me indicate two approaches, the first which Is more algebraic in inspiration, and the second
which is more geometrical in contemporary standards. h

Approach 1. By generalizing the treatement of symplectic manifelds by R, JOST, we see

that the co-exterier-admissible two-form induces a bilinear composition law in a way quite

® oI
??6%*}1@%‘”

symilar to the conventicnal case

2@ (J‘F,daa): (3.£.23)
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The manifeld M(b, S 2) in the local coordinates bf’,)a =1,2,....,6N, equipped with the

nowhere degenerate two-form (3. 8,20) is called a co-symplectic-admissible marifold when

brackets (3.8. 2 % ) satisfy the conditions of Lie-admissibility, i e. P
J(¢.9) = L&.g1,-L3. €17
SGReab) = L8970 Wl + [ T80, {Tu 114 810, 31577

(3.8.2%5)
LE.ely = °3-9°%

(3-8-24¢)
or, equivalently, when the attached brackets

% P0G

‘]:-T’lmé"_.(u Qb}“ Q[p‘/

are (nondegenerate) generalized Poisson brackets,

(3.8 .2%a)

(3.8.25)

A
The nowhere degeneracy of § 2 allows the construction of a (unique) form 32, Eq. (3.8.11)

fug,,@ &.26)

which, inturn, can characterize the brackets
3 (dfedy) 2B S Q it
L Jg/ Vahd
again, In full similarity with the symplectic treatment by R. JOST. The manifold M(b, Sz)

in the loel coordinates b’ and now equipped with the nowhere degenerate two-form (3. 8. (4
is called a symplectic-admissible manifold when the brackets attached to (3. 8.2 6)

o Q\; JZ Wb (3.8.17)
e L Y

are (nondegenerate) generalized Lagrange brackets.

This approach is clearly algebraic in inspiration because it makes drect use of the
conditions of Lie-admissibility for the characterization of the (co) symplectic-admissible
manifolds,

Approach I, Let M(b,gz) be a (Hausdorff, second countzble, 52 - differentiable, 6N-dimen-
sional) manifold in the local coordinates b/ equipped with a nowhere degenerate eiterior—

admisgible two-form (3. 8.19 ). M{b,gz) is called a symplectic-admissible manifold when

the attached two-form
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R,- 8,- 5, (3.8.4)

-~ A D
is symplectic (that is, nowhere depenerate and closed), The form S2 (S ") will then be called

symplectic-admissible form {co-symplectic-admissible form), Its central properties can be
A A 1 a
A3,40, (3.€.19 a)
A A
d (3, - &7 ) =o. (3.9.19 b)

Clearly, any symplectic manifold is simplectic-admissible, This is the geometrical characte-

written

rization of the property that any Lie algebra s Lie-admissible, On similar grounds, we can

say that any closed symplectic-admissible form is symplectic, This is the geometrical characteri-

zation of the property that any anticommutative lde-admissible product is Lie. However, a
symplectic-admissible manifold is not necessarily symplectic. In essence, when the tensor § M
is totally antisymmetric, the symmetric paxt of the structure (3, 8,19 ) is automatically eliminated
and one recovers the conventional symplectic setting.. But, when the tensor S‘w is neither
totally antisymmetric not totally symmetric the full exterior-admissible structure applies,
and a nontrivial generalization of the symplectic geometry emerges,
Next, by using the classification of Lie-admissible algebras (rta*f.‘i o ) we can classify the

symplectic-admissible manifolds as follows.

- GENERAL SYMPLECTIC-ADMISSIBLE MANIFOLDS, They occur when the tensor S‘"vsatisﬁes

the conditions of Theorem 3.3, 1,

- FLEXIBLE SYMPLECTIC-ADMISSIBLE MANIFOLDS . They occur when the tensor S/"‘f satisfies
Theorem 3. 3, 2,

- SYMPLECTIC- MANIFOLDS , They occurs when the tengor S/N satisfies Theorem 3. 3, 3.

A nontrivial symplectic-admissible manifold is a symplectic-admissible manifold of either
general or of flexible type,

The reader should be again rem-nded that the symplectic-admissible manifolds have been here
Identified not enly in local coordinates, but actually in terms of a unique system of coordinates,
This means that the tensor SMY has the specific structure of Egs. (3.4.2 ). This is contrary
to the conventional coordinate-free treatement of geometry. The point is that the geometrical,
coordinate-free treatement of relativity problems appears to be physically consistent provided
that the the family of all admissible local coordinates admit; the coordinatesactually used in
experiments..,

Now that the notion of symplectic~admissible manifold has been identified within the coordinate
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system of our primary interest We can pass to the study of the coordinate-free generalization.
The point is that in this way we are sure that the family of admissible coerdinates does indeed
contain that of direct physical significance, by restoring in this way a rather subtle property
of the conventional symplectic geometry for the characterization of conservative systems.

The coordinate -fxee formulation of the symplectic-admissible manifolds can be studied
in sequential steps and with different approaches (for details see ref, }. The idea is that
of generalizing the existing theorems of symplectic geometry, that is Pauli's theoremé {where
the emphasis is more in the transformation theory) and Darboux's theorem 64 (where the
emphasis is more on the geometrical treatemsnt) to the symplectic~admissible context.
The conceptual attitude in the use of these generalization is however the opposite of the conventional
one. Typically in symplectic geometry one starts from an arbitrary symplectic form and then
uses these theorems for its reduction to the fundamental symplectic form (2. 8.2 &), In our
case the situation is the opposite, Our uncompromisable point has been the identification of

(3.£.304)

the form (3. 8. {] ) which is related 10 actual experiments, i.e,,

3,29, dblodl,

W1 RS, e () - (), 50 3

oY
(3.8.30 b)

which we shall call fundamental symplectic -admissible form in the physical coordinates b,

Then we use form (3. 8. 30 ) as a “germ” to construct the family of all admissible ¢coordinates
and then, as a ultimate geometrical treatement, its coordinate free formulation, 5L

The first step is provided by the following symplectic-admissible covering of Pauli's thecrem

THEOREM 3,8.1: Given a fundamental symplectic-admissible form gz on a manifold

m,é\z) with local coordinates b/* , M =1,2,...,6N, then there exist an infinite
number of diffeomorphisms € :M(b,§2) —> M(h',g'z} realizable through class Co,’
everywhere invertible transformations b — b'(b) under which the fundamental

[a) ~
form 52 transforms into an arbitrary symplectic-admissible form 5'2. Viceversa,

given an arbitrary symplectic-admissible form g'z in the Jocal coordinates b', there

3
always existia (class C | everywhere invertible} transformation b' —» b{b‘) which

A <
reduces 5'2 to the fundamental symplectic-admissible form S2 in b,

The reader should be aware that, since a symplectic manifold is symplectic-admissible,

the transformations of the above theorem imply , as a particular case, the mapping of a
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symplectic—admissible form inte a conventional symplectic form, Thus, on analytic grounds,
the theorem is inclusive of the direct representation of nonconservative vector fields via our canos
nical-admissible equations and their indirect repfesentation via the conventional canomical
equations,

Interpret now 2 cenventicnal symplectic form le as the symplectic content of a
symplectic-admissible form 3 2 according to rule (3 8.28 ) Then the proof of
Theorem 2. 8,1 applies to the form 52 = S S and it)"su.fflcaent to imply for 52 the following

symplectic-admissible covering of Darhoux-Wemstem theorem (see, again, ref > for details).

THEOREM 3.8.2:Let M, be a submanifold of a manifold M and let §, and §! be

two-symplectic-admissible forms such that 32 ]M = gz' IMI ._Then there exists
a neighborhood N(Ml)iM1 and a diffeomorphism f:N(MI) —2 M such that

{2) f(m}=m forallm ¢ M1 and

® 16, =3

We finally remain with a problem which, as we shall see in Section 4, appears to be crucial
for the construction of a group of transformations leaving form -invariant nonconservative,
nor-linear systems. We are here referring to the generalization of the notien of globally
Hamiltonian vector field (Table 2, 8) which is needed in the symplectic-admissible geometry.

We here define the (left) innex -~admissible product of a contravariant vector field

Ap ; X i 5P

with a symplectic-admissible structure the quantity
AN A A LoV oM M
_‘"52:—5@ 6‘2_ :6\/—: d“):. /‘An"b
4 a (3.9.31)

Again, the above product is inner-admissible in a dual sense, First, the ordinary inner product

-~ | w Y2 (3.8.32)
2 - f

is recovered identically at the limit A
A
fumn T .5,
rF ..“a (=4
and, secondly, we can recover it in the attached form JZ

— JZ. — AT — J {)?, 2

?' ( @ 5 5?/ = A .
ch (3.82.%3)

,_"_,A Hamiltonian-admissible when the one-form

A yector field on M(b, Sz) is called
A -

LY is exact, i.e.,at a point m € M{b, §2) there exists a neighborhood N(m) and a

function H{b), the Harniltcnian on N{m)} such that /D l + }_‘
_’.ng_ = V——_—-vd‘o)'\ —_ a{]of\ fjH‘ db.

L= P (Db’“ (2 .8.3¢)
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This is the desired geometricel characterization of Egs. (3.8.9) which, as we shall
see in Section 4, appearsto be crucial for relativity considerations. The reader should be
aware that we are essentially referring to the fundamental equations {3.4.4) of the Lie-admissi-
ble foxrmulations.

We cannot close this table without few highly conjectural considerations related to
the geometrical characterization of nonconservation laws. This inevitably brings into focus
the problem of the possible existence of a covering of the notion of Lie derivative for Lie-admis~
sible formulations. Let us recall that {Section 2.8) two layers of characterization of the
Lie derivative can be identified within the context of the symplectic geometry, i.e.,

oz’ F. f:; ?.@b(e);F. Gylo) = (w »v DN Vfah"‘) = [F, 01 £35)

af—-l’F e B2 G4 - PGl CJZ’“'/‘)H ?—)F: [F 1P Ga3m

ko - 2 b 4"
where Gb(t) is a one-parameter connected Lie group and G*h(t) one of its isotopes (Table 3.7).
Eq. (3.835~) is the conventional form and Hq. (3.8.356 ) is the generalization we have
attempted for Birkhoff's equations.

Sb

The third layer of the notior considered is here called Lie-admissible derivativeand it is

glven by A -
F oGyt -FeG (o) ] G
olaF = b : - (6‘* fa?fab’*)
(3.8.36)

s
where now G b(t) is a genotope of Gb(t), i. e., & one-dimensional, connected, Lie-admissible

t=>o b

group according to Definition 3, 7,3, Again, the above operation is not 2 “derivative” in the

conventional semse, But this is precisely its advantage because if applied to the generators X of a

(I..le or) Lie-admissible algebra, yields the following s _y_mplecnc-adml.smble characterization

of nonconservation laws

a X._(arH 2 Ny . _ 3.£.37)
La Xe=(B0V 85 o )Xo = (e, W0,

Notice that in the transition from faws(3. 8,35) to their covering (3, 8.3 &) we have not

changed, by centrat requirement, the base manifold, the Hamiltontan and

the parameter of the time evolution group. The action of the nonconservative forces is then
represented by the departure of the generalized formulations from the conventional ones, which
is at the basis of the Lie-admissible formulations, Notice that these nonconservative fox:ces
are present at several levels, such as the structure of the genotopically mapped Lie group G (t)

the symplectic-admissible structure 52’ the Lie-admissible derivative, etc., Notice also
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that the notion of Lie-admissible derivative is ensured by the property that a Lie-admissible
group is a Lie group, only written in an unconventicnal form. And indeed, Iimit (3.8, 3%)
can be first established in terms of the standaxd realization of eb(t). This yields the conventional
Lie derivative (3. 8.354), but now expressed in terms of ancther generator. Form (3.8.36)
is then established by reformulating the realization of the group ab(t) in terms of the generator
of Gh(t).

For completeness let me indicate that the analysis antlined ontil now for Qutonomots
systems and symplectic-admissible geometry appears to carry over to the nonautonomous

5
systems, yielding what we have called in ref, contact-admissible mapifolds, that is,
~

6N+ dimensional manifolds M(-]-J, §2 } in the local coordinates B » 1=20,1,2,... ,6N equipped

(3.8.3¢)

with an exterior-admissibie two-form of maximal rank
2 — Iy 3 o
= 5 LI o d l’J l') = b
S,= B, db ,
which is such that its attached form

— 2 2 o Cdl (3-839
5L, = D, - 62:&5),&]9/\% ¢ )

is a contact form, For brevity, we here refer the interested reader to ref, for more details,
This concludes cur review of methodological tools which will be used in Section 4 to attempt
the construction of a covering of the Galilei relativity for nonconservative systems.
By looking in retrospective , it is rather tempting to conclude that

(A) The conventional canonical, Lie and symplectic formulations appear to admit consistent

covering formulations of canonical-admissible, Lie-admissible and symplectic-admissible

type, respectively.

(B) The deep interrelation, complementary and compatibility of the analytic, algebraic and

geometrical aspects of the conventional formulations appear to carxy over to their

coveringsin their entirety, and

(C) The covering formulations are conceptually, technically and methodologically different

that the conventional formulations. Neverthless, they are capable of recovering the

latter in their entirety at the limit of null nonconservative forces as well as via the

attached rule of Lie-admissibility,

It is again appropriate hexre to stress that what we have attempted in this section is the indication
of the existence of the indicated covering with preperties (A), (B) and (C). Their actual construction
in all the necessary technical details will predictably demand the contributions from a significant

number of independent researchers,
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TABLE 3.9: SOME POSSIBLE APPLICATIONS OF LIE-ADMISSIBLE FORMULATIONS IN PHYSICS .

The possible application for which the Lie-admissible formulations have been conceived
is the study of the breaking of the fundamental space-time symmetries in Newtonian mechanics
and the hope that theixr non-Newtonian (relativistic and quantum mechanical) extensions can,
in due time, be identified and result to be physically significant for the problem of the hadronic
structure under the assumption that the strong hadrenic forces are structurally more general
than the atomic and the nuclear forces (essentially nonselfadjoint strong hadronic forces).

As by now familiar, this paper is solely deveted to the relativity aspect of Newtonian
Mechanics, Neverthless, it appears advisable te owtline the intended use of Lie-admissible
formulations for the study of broken Lie symmetries in general, as well as for other aspects
of current relevance in theoretical physics,

In essence, the Lie-admissible formulations appear to provide an algebraic-group thecreric
characterization of broken symmetries and noncenservation laws as a covering of exact Lie
symmetries and consérvation Iaws, In the following we would like to outline the mechanics of
the use of these broader fermulations as well as their deal nature of ensuring, on one side,
that the conventional Lie context is indeed brooken and of providing, on the other side, methods
for the treatement of the broken context. 1t appears that there is the need of both these profiles,

Fox example, consider the familiar case of the Gell-Mann-Okubo mass formula and the 5U(3)
symimetry, In order to aveid equal mass multiplets, the SU(3) symmetry must be broken, On
the other side, as stressed in Table 3, 7, the Gell-Mann-Ckube mass formela is undefinable
within the context of a Lie algebra and necessarily demands the use of an enveleping algebra
to properly characterize powers of SU(3) generators. The conventional derivation of the formula
is conducted, as well known, within the context of the universal enveloping associative algebra
of 50(3) , the algebra A(SU3)). But then a possible fundamental inconsistency arises, As alse
stressed in Table 3.7, the algebra A(SU(3)) is the true representative of the exact SU(3) symmetry,
both algebraically and group theoretically., The net effect is that, even though the SU(3) symmetry
can be semiempirically broken at the level of semiphenomenclogical medels, it is still exact
at the algebraic level. In other words, the use of the algebra A(SU(3)) by no means guarantees
that the SU(3) symmetry is brokena, Instead, it constiture the most rigorous way to rechnically
characterize the exact SU(3) symmetry,

These remarks are here introduced to illustrate the first aspect of broken symmetries
which is relevant for my objective. When studying any broken symmetry, the first problem
is to ascertain that the used toolsdo indeed, algebraically characterize a broken Lie symmetry.
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I this crucial requirement is not ensured,. there is the possibility of working with incompatible
twls (e.g., a semiphenonenological Lagrangian breaking of SU(3) and an exact associative
envelope A(SU(3)) of SU(3)). The depth of the physical insight of the approach is then in question,

The use of the Lie-admissible formulations for the characterization of broken symmetries
clearly removes any shadow of doubt in respect to this issue: not only the original Lie symmetry
algebra is broken, but actually it is wndefinable jointly with the related universal associative
algebra because, e, g., the analytic equations are non-Lie in algebraic chazacter,

But, to ensure that a Lie symmetry is indeed bruken’is "per sé” puxely formal, particularly
on physical grounds. This naturally brings into focus the second aspect of the issue, the need
of methods for the treatement of the broken context, I am here of course referring to the
identification of methods capable of producing specific physical predictionsvia a mathematical
process, It is in this second respect that my hopes for the Lie-admissible formulations rest,
because they constitute a covering of the |, te formulations. This means that the broken context
is not left algebraically and group theoretically undefined, Instead it is treated with methods
fully equivalent, although generalized, than those of the exact symmetry.

This is not the place to recall the physical relevance of the Gell-Mann-Okubo formuia, The
above remarks were, therefore, solely devoted to the derivation of this formula as currently
conducted.  If the broken SU(3) symmetry is truly realized on algebraic grounds this means
the nenapplicability of the envelop A(SU(3)). But then the questi on which immediately arises
is: how we construct the Gell-Mann-Okubo mass formula if the associative envelop cannot be
used? It is at this point that the potential physical relevance of Lie-admissible algebras as
universal enveloping nenasseciative algebra of a Lie algebra emerges in full , And indeed, if
A{SU(3)) is replaced by the genotope U(SU(3)) (Theorem 3. 7. 3) the following picture emerges.
First of all, the generators, the parameters and the base manifolds are preserved according
to the construction of U(SU(3)). Secondly, the Lie algebra SU(3) emerges as broken because
the algebra acting fn the neighborhoof of the identity is non-Lie, although Lie-admissible, T hirdly
the breaking of SU(3} is truly ensured by the fact that the attached algebra [U(SU(S)]_ is non-
isomorphic to SU(3). Fourthly, The SU(3) algebra is recoverable in full at the limit when
the nonassociative envelop recovers the conventionzl associative envelep, Fifthly, the approach
enjoys an analytic and geometrical backing by therefore removing any inconsistency between
different methodclogical approaches to the same broken context, Sixtly, The covering envelop
U(5U(3)) is fully capable of producing the Gell-Mann-Okubo mass formula identically, that is, 5
currently known, under a suitable selection of U,  And last, but not least, the departure of
the Lie-admissible over the Lie formulations is representative of the symmetry breaking forces

by therefore cpening the possibility of obtaining some informations on the dynamical origin of the
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parameters of the Gell-Mann-Okubo mass formula, that is, their link to the symmetry breaking
forces (these parameters are null for exact symmetzy), In turn, this last aspect appears to have
soms quite intriguing possibilities for a truly central problem in hadren physics: the nature of
the strong hadronic forces,

1 worked out the rudiments of this Lie-admissible approach for the construction of the Gell-
Mann-Okubo mass formula during my stay at the University of Miami in Coral Gables, Fla, in Ad
1967-1968 and then presented the approach at the Indiana Conference oleféB (see the proceedings ).
Subsequently, the approach was reinspected by G. N KTORIDES in 1975  in great details, Meore
recently, the approach can benefit of various progresses in Lie-admissible formulations. For
an cutline of the current status of the art on this issue see ref.

After these introductory remarks, let me outline the mechanics of the intended use of
the Lie admissible formulations for the case of broken space-time symmetries (the extension to
non-space-time symmetries being trivial). Other possibilities will be indicated at the end of the table,

(I) EXACT LIE SYMMETRIES AND CONSERVATION LAWS, The starting ground is, of course,

the established ground. Consider a conservative (essentially selfadjoint) Newtonian system

represented with 2 Hamiltonian H and suppose that the system exhibits an exact, manifest,

n-dimensional, connected, space-time Lie symmetry G, We then write in canonical fermulations

the exact sm_metrx (ES) as follows e

L\;r _ w)“’i%—%{b) =0, (3.9.1)

5A

with underlying conservation laws

X ()= 2% wor 2 T fi] 0, (00

T S “obY
This i3 the well kmown reduct ion of physical laws to primitive Lie aotions, It is however
appropriate to stress that the direct physical effectiveness of the Lie formulations for the characte-
rization of physical laws is crucially dependent on the fact that the mathematical algorithms
“r", "p" and "H" of Egs, {34.[ ) and (3.9.2 ) are not abstruse quantities such as Eqs. . j0.5&)
or (2.1 . {44 ). Instead, they represent the Cartesian coordinates of the experimental detection
of the system, the physical linear momentum (which in this case coincide with the canonical
momentum) and the physical Hamiltorian (which in this case coincide with the canonical
Hamiltonian).
(I1y BROKEN SYMMETRIES AND NONCONSERVATION LAWS , Suppese now that, according to

experimental evidenrce, the G symmetry of the system is in actuality proken as a result of

additive forces. This is the case of the systems of our everydays life, For instance, the
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following case
¢ . e (3a.3)
T, (6) ; @*’f«) +bi)= o,
H! it
represents an example of the breaking of the exact symmetry of a free particle under translations

in time due to drag forces produced by the medium in which the motion occurs, The other case
i .. yE3 135
o2 T & _ 5 :[ = 2.9, 4
souf  [(x5) -Twe]™: (..4)

provides an example of the breaking of the exact symmetry under rotation of the conservative
abstraction of the spinning top under gravity (here assumed for simplicity with only one degree
of rotational freedom). Perhaps more significative on methodological grounds is the case of
charged particles under nonconservative forces also produced by the medium in which the

motion occurs

GGy ([ et - £ ] F ez, £) 20, G99

which constitutes an example of the breaking of the full Galilei sym netry,

Customarily, symmetries are broken in classical mechanics by additing a symmetry breaking
term to the Lagrangian or Hamiltonian, This breaking, which we have called selfadjoint breaking
{Table 2,14),is highly insufficient for our cbjectives, We therefore assume that the forces
responsible for the G-symmetry breaking are the most general, Iocal, class Cc,o regular,

Newtonian forces, i.e., we assume an essentiafly nonselfadjoint breaking of the G-symmetry

which is inclusive of the subclasses of canonical breaking and semicanonical breaking.

This broader broken symmetry (BS) context will be written

{ [EM _ w}w(aj«{__(b)lﬁs _ }4(& b)} 63."]-5)

DB S HS(-}

with consequential nonconservation laws
M 7
= T X, Hl+@f“F 0. (3.9.7)

A point of crucial physical and methodological significance is that in the transition from

the exact symmetxry (3. 9./ ) to the broker symmetry (3.9. & ) the physical quantities remain
unaffected. Typically, when one adds a demping velocity dependent term to the harmonic

oscillator equatior, this leaves the expression of the energy unchanged, The problem is then simply
shifted to the computation of the vaziation of this energy in tire, L. e., nonconservation law

(3.9.7 ). Similarly, the physical angular momentum of a system is ﬂ = rkx B - rkx mrk

This gquantity holds irrespective of whether there are forces not derivable from a potential or

- 379 -

not, e.g., for the noncenservative Coulomb system (3,9, 5 )

This physical property is at the very foundations of the Lie-admissible formalations, And
indeed, all efforts are focused in preserving the algorithms "r", "p"and "H" of direct physical
significance an d changing instead the formulations for their treatement.

(I} CANONICAL-ADMISSIBLE CHARACTERIZATION OF BROKEN SYMMETRIES AND
NONCONSERVATION LAWS . Hamilton's equations with external terms, Eqs, (3.9. & )’do

not appeat to be promising(on grounds of my current mathematical knowledge) for the objective
at hand because they de not characterize an algebra via the brackets of the time evolution law

(Table 3.1). Jeintly, formulations which are Lie in algebraic character are strictly excluded

from cux approach to ensure the maximal possible breaking of the Lie symmetries according

to the remarks at the beginning of this table. This leads to the cancnical-admissible characteri-

zation of broken symmetries

. Bs
[ b ST )QBJMO’

and the canonical-admissible characterization of the nonconservation laws

X (5) (DX 6*”(1&5)(‘)24 (X H)#o@‘”)

(3.9.8)

in which the departure of the analytic equations from the conventional Hamiltonian form is a

representative of the symmetry breaking forces, e. g., (’3 g [0)
/U\‘/ }.\‘r) Qﬁ. — e o
<6 ~ W) S F

At the risk of being pedantic, the difference of this approach with current trends in classical

symmetry breaking must be reemphasized. The virtual totality of established physical models

are based on the conventional stxucture of a Hamiltonian, H__=H +H,_ . A symmetry of
tot free  int

this Hamiltondan is customarily broken by adding 2 further term wI:liCh this time is responsible

BS _ BS
ot (H free T Hmt) + H . A part from the

of the symmetry breaking # and one writes H
fact that this brezking is highly restrictive and precludes several add1t10na1 classes of more
physically significant breakings (Table 2. 14), there is one aspect which, unless properly treated,
can lead to inconsistencies. The virtual totality of established physical models sees its mnalytic

origin on what we have called in Section 1 the “truncated" Hamilton's equations or Lagrange's
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equations, that is, those without external terms, In the transition to the case of broken symmstry
the Hamiltonian is modified, but the analytic equatl ons are left inchanged, This implies that in

the conventional classical treatement of broken Lie symmetries the Hamiltonian breaks the

symmetry while the underlying analytic equations remain stricty  Lie in algebraic character,

The net effect is the situation recalled earlier in this table according to which the analytic
level is representative of SU(3} breaking, but the exact A(SU{3)) algebra is used for calculations.
The attitude im plemented in the Lie-admissible formulations is exactly the opposite of the above.

In the Lie-admissible treatement of broken Lie symmetries the Hamiltonian remains fully

invariant, while the wnderlying analytic equations are strictly non-Lie in algebrezic character,

It is this point which ensures the nonappHeability of Lie algebras "ab initio” as a methodological
tool for the broken context.

Once the broken symmetry equations are represented with the canonical-admissible equations ¥
the remaining tools of the analytic covering are applicable, if needed. I am here referring to the
canonical-admissible transformations (Table 43, 4) or to other teols (such as variational
principles , Hemilton-Jacobi theory, canonical-admissible perturbation theory, etc.) which
we have not indicated in this paper for brevity, but which appear to exist,

In conclusion, there is hope that the canonical-admissible equations charactexizing the broken
symmetry context can indeed be equipped, in due time, with a covering of the conventional
canonical formulations of canonical-admissible type, This is crucial for the objective of providing
the broken context with as many as possible methodological tools (for the study of any specific topic
of interestup to a possible future point of full methodologncal equival ence with the case of the
exact syminetry.

{IV) LIE-ADMISSIBLE CHARACTERIZATION OF BROKEN SYMMETRIES AND NONCONSERV A~
TION LAWS . The non-Lie algebra character of the analytic equations, has a number of rather

deep methodological implications, It essentially implies that the universal enveloping associative
algebra of the original exact symmetry algebra G, that is, A(Q) is replaced by the Lie-admissible
envelop of the broken Lie algebra G | i.e., (Table 3.7) A

N(E) — ucg):"?“/é . (590

In turn, this implies a Lie-admissible "algebra in the neighhorhood of the identity, i.e.
" M ; )
L™ = LM ot (E}A, Ge), (5.9-1

as well as a Lie-admissible group of finite connected transformations, i.e.,
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(3.9.13)

. ‘{(} (\G 2
pv &, Y Tl T
A Y GaP odt | a
\) - = .

For the sake of clarity, permjt me to stress that it is not the original algebra G which is
embedded into U(G), but insted A(G). In other words, the Lie-admissible profile brings into
full focus the elemental nature of the enveloping algebras for the Lie characterization of
exact symmetry. This elemental nature simply persists in the Lie-admissible covering. Thus,
the algebra was infinite-dimensional to begin with already at the level of the exact symmetry
and remaijns infinite-dimensional at the covering level. Of course we are here referring to the
infinite number of elements (3.7. 7 ) for the Lie case, and (3.7.28) for the Lig-admissible
covering, all induced by the same basis, the generators XI of G.

Of course in this paper we bave focused cur attention on only the central aspects
3.9.11 ), (3.9, [2 )and (3.9.1% ), It is hoped, however, that the “Lie-admissible theory”
can be, in due tim 2, brought up to the level of the "Lie's theory™ at least in sufficiently effective
way, When this is accomplished, then the algebraic-group thearetic tools for the characterd -
zation of broken Lie symmetries would be equivalent to those for the exact Lie symmetry as
currently established. This is what we referred to as the methodological characterization of broken
symmetry. Notice that, if this program is truly realized in due time, each aspect of the
exact symmetry is replaced by 2 covering aspect, For instance,the” broken symmetry Lie algebra”
is not left as an algebraically undefined entity. Instead, it is replaced by a breader, but
fully defined Lie-admissible algebra, Most intriguing (particularly for relativity considerations,
see next section) is the fact that “the broken symmetry Lie group™ is not left also unrdefined, but
instead it is replaced by a broader group structure which we have calied Lie-admissible group,
‘The pofnt is that, again the broken and as such, upusable associative eavelop A(G) is replaced
by an acting, and thus usable, Lie-admissible covering U(Q), and similazly, the broken and thus
unusable group G is replaced by an acting Lie-admissible covering 6

(V) SYMPLECTIC-ADMISSIBLE CHARACTERIZATION OF BROKEN SYMMETRIES AND
NONCONSERVATION LAWS.

The methodological characterization of broken symmetries would be highly deficient, particu-
larly for relativity considerations, without the inclusion of geometrical methods. The caronical -
admissible and Lie-admissible formulatio ns, however, are incompatible with the symplectic
or contact geometry. This necessarily demands the identification of a covering geometry which

T have tentatively called symplectic-admissible or contact-admissible. One of the primary functions
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of this broader approach (according to the best of my knowledge at this time) is to reconstruct

the covariant vector field of the exact symmetry case via the inner-admissible product with

A
the two-form S, , i.e., the Hamiltonian-admissible characterization of broken symmetries

2’
e A Y LA A )
T = 52:6#*’?@“" ﬁ?#ab_aiﬁ, (3.9.14)
BS Es Es

with symplectic-admissible characterization of the nonconservation laws
of .._.’.:., >< » _# O A
[ i
—

The reasen for the interest in structure (3.9. 14 ) is that it gives hopes for the identification

(3.9.15)

of a nonmanifest symmetry group which leaves form-invariant the broken symmetry equations,
And indeed, the Hamiltonian of the approach is fully invariant under the original symmetry, while
generators, base manifold and parameters of the original symmetry are left unchanged in the
construction of the Lie-admissible group (3.9. 13 } by construction. Contraction (3.9. [}

then indicatesa possible form-invariance of the equations of motion under the covering group
(3.9. 13 ).

Again, it is hoped that, in due time, t_his"unconventionalugeomet:ical approach (based
on a calculus which does not admit conventional nutions’such as deri vative and closure) may
be sufficiently developed to the poirt of being effective for practical problems, i this  will be
the case, then the geometrical methods for the treatement of broken symmetries would be
equivalent to the methods currently available fozr exact Lie symmetries.

This concludes our review of the intended use of Lie-admissible formulations, Netice that
this use, again, is primarily intended for the breaking of space-time symmetries,Naverthless

their applicability to other symmetry breakings shouvld not be overlocked. As a matter of
fact, the method appears to be applicable also to the current approach to symmetry breaking,

that 1, Es BS ES B3 (3.9. [6)
Moo= H = B+ oy
via the reinterpretation ps

~ EP pml g
}LE)“MV%? - Pl P aw
3¢ ‘o (%.9.17)

In other words, the symmetry breaking forces FM  used in steps (II) threugh (V) are, by no

means restricted to be nonderivable from a potential and the methods are fully applicable even
{4
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when they are indeed derivable from a potential, Our emphasis on forces not derivable from

a potential is inspired by relativity arguments and it is also intended to express the fact that

the methods at hand do indeed apply for arbitrary (but local and of class C%° )} Newtonian forces,
This latter aspect is important because it indicates that Lie-admissible formulations can be

applied to the breaking of internal symmetries without affecting the physical framework

of the conventional space-time symmetries, To be speciﬁc/ symmetry breaking (3.9.17)

may be referred to only an internal symmetry group G, while the full Hamilconian Hfft

may remain invariznt, say, under the Poincaré group, In this case approach (3.9. |7 ) yields
the breaking of only the internal symmetry G because the Pnincare’symmetry is recoverable
in full via the conventional Hamiltonian formulations in H;‘ji , Other aspects of this intriguing
situation will be considered in 2 subsequent paper.

In conclusion, the Lig-admissible formulations appsar to be promising for the characteriza-
zion of broken symmetries, The characterizaticn is of dual nature in the sense that itis a

- LIE-ADMISSIBELE BREAKING OF LIE SYMMETRIES, because, for instance, the attached

(3-9.18)

algebra of U(G) is not isomorphic to G, i.e.,
LU(e)] % &,
aswellasa

- LIE-ADMESSIBLE COVERING OF LIE SYMMETRIES, in the sense that the formulations

are nontrivially different, but capable of recovering the conventional exact symmetry context

identically at the limit of null symmetry breaking forces, e.g.,

=V wMY

i) AG)
~ g\ﬂﬂéfg —= 0 G (3.9.19)
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We shall therefore refer td the formulations considered as the Lie-admissible covering-breaking

of Lie symmetries,

The queston which we would like to touch in closing this section is whether Lie-admissible

formaulations may be significant beyond the case of broken Lie symmetries. b
Tt
rf'] Presentation of my current knowledge on this aspect is provided in ref.s . I-[erter

let me recall three aspects as poten tially promising.
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(A} Lie-admissible covering of the deformation theory . As is well known, the deformation

theory is based on a modification of the product of the type

[ Xl:,X ,’j(:&—) = [Xf: xi—-(@"h e, %)+ E&FZ(X‘} Xf)’“'” 6-2.10)

which, however, remains strictly Lie in algebraic chaxacter. This theory can be subjected

to the Lie-admissible covering, that is,an expansion of the type (3. 9. 2.0) which now satisfies
the Lie-admissibility laws, rather than the Lie laws. This approach has been proposed by

N. K61V and J, L('Z)\I-IMUS2 who have also worked out the Lie-admissible deformation theory
of the spin 1/2 Pauli algebra. Their results are essentially equivalent to the embedding

of the spin VZ Pauli algebra into the A(), J4 ) mutation algebxa proposed by R, M, SANTILLE s
as it is shown inref” Neverthless, they are significant to indicate that deformation-type
methodsﬂzre consistent, as well as particularly useful for Lie-admissible fermulations,

In my opinion, this line of study deserves a close scrutiny by independent researchers
because it touches on a number of fundamental physical problems which will be presented i a
proper light in subsequent papers.

To have an indication, consider the case of a first-order Lie-admissible deformation of the

spin 1/2 case, This literally means that the spin SU(2) Lie symmetry is broken, although in this

case in an infinitesimal way, This has bound to have statistical implications (Lie-admissible
algebras, being neither totally symmetric not totally antisymmetric are  incampatible
with Bose-Einstein auzcl Fermi-Dirac statistics), Ir turn, this has direct bearing with

3

S¢
Pauli exclusion principle. In essence, upon & number of technical  steps (see ref: 3_3 3 )

a first order Lie-admissible deformation of the SUX(2)-sp in algebra implies the nonapplicabitity
of Pauli® s principle, although in an infinitesimal measure depending on the structure of the
selected deformation,

The aspact which is physically relevant is whether such nonapplicability of Pauli principle
has any ground of plausibility.

Clearly, at the atomic level such inapplicability of Pawli principle is conceptually and
physically inconsistent, The validity of Pauli principle in an exact form is here established bya
rather large amount of incontrovertible experimental evidence (Pauli principle is crucial fox
the interpretation of several central features of the Mendéleyev table, such as the existence of
the long periods containing the iren, platinum and palladium groups, and even those of the 14
rare earths).

In the transition to the nuclear level considerable scientific caution must be exercised to

avoid prejudices, What we can safely state is that the use of Pauli principle in nuclear physics
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produces an excellent agreement with the experimental data, Neverthless, on grounds of our
current experimental and theoretical knowledge we cannot state that Paull principle is exactly
valid in nuclear physics ox that it is valid in the same measure as that of atomic physics,
And indeed, the question which was submitted by R. M. SANTILLL ? ,y is whether our current

krowledge on the validity of Pauli exclusion principie for the nuclear structure is Guantitatively

comparable to the current knowledge of the PCT symmetry in particle physics or it is ata stage

prior to the discovery of parity violation,

In the same pape:c?'3 é the experimental resolution of the issue was then advocated, At the
theoretical level it appears to be rather difficult to g beyond the level of personal viewpoints S
or opiniom'or conjectures which, inany case, remain far from a scientific truth. As a matter of
faCIEr we here have a situation in which opposite viewpointicould be¢ equally plausible because of
different reasons. The argument in favor of an exact validity of Pauli principle in nuclear physics
in known. See, for instance, J:e:f.3 2‘ An opposite viewpoint, in which, of course, an inflnitesimal
deviation is advocated,is presented in ref. albrffe epistemological argument is quite simple. The
atomic structure exhibits dimensions which are substantialty greater than the charge diameter
of the constituenrs., Within such a setting, it is fully plausible on conceptual grounds that the
constituents preserve the value of their spin (and thus, their statistical character, and thus,
the applicability of Pauli principle) during the life of the system. In the transition to the nuclear
structure the situation is different, Here, according to experimental evidence, the charge
volume of the nucleus is (approximately) proportional to the number of nucleons, This means
that, at a primitive view,"nucleons are very close to each other” . But then the idea that a
nucleon preserves exactly unchanged its spin ( and s Fatistical characterland verification of
Pauli principle ) during the entire life of the system becemes rather unappealing on conceptual
grounds, And indeed mutual interferences originated by the extremely close distances might
well render ( at some deeper future treatment) unrealizable such “perennian value of the spin™,
The plausibility of an infinjtesimal deviation then creeps in in a rather natural way.

In the transition to the hadronic level the situation is drastically different and, in this case,

extreme scientific caution must be exercised in the traditional spirit of unsolved physical problems.

This problem is the subject of study of refss: The epistemological argwment is, again, quite
simple, Consider a massive, charged and spiping particle under electromagnet ic interactions
moving in vacuem. The conventional quantization o the spin, the preservation of its value
during the life of the particle and the complyance with Pauli principle sre again uneguivocal for
much of the same reasonsas applying for the atomic structure. Suppose now that this particle

penetrates a hadronic structure and, by doing so,  preserves its identity for a sufficiently long
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peried of time {at the hadronic time scale}. In this case, quite candidly, it is for me extremely
difficult to accept the idea that the paxticle preservesthe value of its spin urchanged during
its life within the hadronic strocture. It would be the same as asking that an electron produced
in the core of, say, a nevtranstay undergoing phase transition to the hadronic constituents has
exactly the same value of the spin (and thus obeys exactly the samz laws)hf the  same particle
but belenging to the atomic structure} despite the extreme demsity of the hadronic madium,

The net effect is that now an infinitesimal departure from ®auli principle hecomes unplausible,
but in favor of a full finite deparmres.a?n different terms, an infinitesimal, first-order, Lie-admissi-
bledeformation of the spin ]/2 SU(2) Lie algebra could be relevant for the nuclear structure,
but in the transition to the hadronic structure a full Lie-admissible embedding of A(SU(2))~spin
into U(SU(2)) might be conceivable.

Again, we are facing a case in which opposite viewpointscould be equally plausible for different
reasons. The argument in favor of the validity of Pauli exclusion principle withir the hadronic
structure is well known and treated within the context of the recent color unitary models of
hadrenic structure. Ar opposite argument is presented in ref, 3 . Clearly, the issue demands
an experimental resolution, as proposed by R. M. SANTILLI SC.J%B:"

In conclusion, Lie-admissible algebras applied to one of the central methodological tools
of contemporary theoretical physics, the SU(2) -spin group, in eithexr a first-order deformation
form or for a full brea}dng}might he of some relevance for the study of the validity or
invalidity of Pauli principle uader strong interactions.

(B} Lie-admissible covering of supersymmstries, As stressed in this section, the

Lie -admissible algebras admit products which are neither totally symmetric nor totally anti-

symmetric, As a result, these productean be resolved into a mixture of commutaror and awti-

commuAtors, £, g, . vy 0(‘1.1__ _ J.f,( o \
s " 39.2
X o X; = oy DX Xs) 4 B % K, gt oo B0

Cf el 2, eee, M
It is then trivial to see that the Lie admisvsibie algebras admit as a particular case the graded

Lie algebra of supersymmstric models
l!._>< Ly X )j = C ¢
TX: X:1= D¢ (22—,
L XL . 5( 7 D Ly x k .

v - es
T =l M aee, B

- k
{X‘-‘[ Xié : E‘I X[Q/ Erf‘,ft:‘u&il/lm‘?/‘“/M'

{3.9.22¢)

. . Jial
x’c ) A‘J'l}’-‘:}"?'.,_,-mj ‘_’5-&?. (XN

(%.9.22b)
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This is tantamount to saying that the Lie-admissible algebra are a covering not only of Lie-
algebras and their deformation theory, but alse of the graded Lie algebra?b

Talspoint is not of margiral significance, particularly on methodological grounds, And indeed
as u resuit of recent studies on supersymmerriF mndels/sevcral quite valuable mathodelngical
insights have b%%n gained for graded algebras, As it was the case for the studies on nonlinear
representations indicated in Table 3.7, these insights appear to be pavticularly valuable for
Lie-admissible formulations because conceivably extenduble to the broader context considered,
And indeed, the graded structures (3.9.12. ) are clearly representative of an intermediate
layer between the strictly Lie structure and the Lie-admissible structure.

Equally intriguing, Lie-admissible fOt'mEl;ll;ltinﬂs appear ro provide 2 covering-breaking
characterization of supersymmatries, In other words, [ am here referring to the
property that Lie-admissible formulations can apparently characterize not only hroken Lie sym-
metries  as indicated earlier in this table, but also their sypersymmetric extensions, according
to precisely the same lines {I})-(V) given above,

One aspect, however, deserves particular care. We here reach the essence of this table.
The brezking of Lie symmetries produced by Lie-admissible algebras is so effective,
that may inevitably imply the brezking of space-time symmetries, unless adequately treated.

In relation to supersymmetries it is here appropriate to recall that the conventional statistical
{or parastatistical) character is preserved by graded algebras (3.9.22. ), basically in view of the
"decoupled” nature of the  gypersymmerric sroduct. In the transition to a Lie-admissible
characterization of their hreaking’ a number of technicat aspect should be considered if one
intends to preserve the indicated sbatistical character ( notice that these precautions are mostly
abstent in the convenrional Lie case aving to the lack of presence of the symmetric part of

the product). Restated in different termas, the graded Lie aigebras are more genuinely Lie-admis-
‘sible than the Lie algebras, to the point that the explicit form of their product assumes different
structures for different generators, as typical of the Lic-admissible aigebras ( Tables 3.4 and
3.7). The natural embedding-breaking of these algebras into Lie-admissible structure is that

of Egs. (3.9.21 ). But then the indicated sfaristical character is generally lost, unless the
proklem is adequately treated,

{Cy Lie-admissibie approach to the hadronic structure, This is, again, the line of study

of ref, 5 . Permit m2 here to outline the cpistemological argument.
One of the most intriguing experimental data on hadrons is that, unlike the crrresponding
case of nuciei’ their charge radius does not sensibly increasc  with the mass and it is of

the same order of magnitude of any other experimentally known massive, charged particle (V1F ).
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If the hadronic constituents are assumed to be physical (that is, non-point-like),massive,
charged}particles, then a picture of the hadronic structure which is substantially different
than the atomic and the nuclear structure emerges. Each constutuent is bounded to move

within the charge radius of the other. In other words, sterting from the very large distances

> \i 202

{as compared to the charge radius of the constituents) of the atomic structure, and passing

through the intermediate auclear structure of extremely small distances between the charge

v\‘ Y
/ \\
N

valumes of the constituents, we reach a hadronic state of penetration of the charge volume

of -each constituent with that of the others. We do not know at this time whether such a

AN
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picture is plausible, Bat if it is, it will irevitably demand profound methodological departures

{({

from available techniques for its proper treatement. I particular, the acting forces are
likely to be nonlocal. Neverthless, it is known that lacal forces not derivable from a potential >/\

constitute a rather good approximation of nonlocal forces. This yields the idea of strong

hadronic couplings as not devivable from a potential, that is, 2  class of models which, at “}?&
%
the primitive Newtonian level, is exactly given by models (3. 9. 6). The potential significance 0?\% N
)

of the Lie-admissible formulations is then self-evident,

In my opinion, however, none of these applications will reach a physical depth of any

sigmificance unless the problem of the applicable relativity for forces not derivable from a
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potential is first solved. =] g &
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SECTION 4; THE CONJECTURE OF A LIE-ADMISSIBLE COVERING OF THE GALILEI
RELATIVITY IN NEWTONIAN MECHANICS,

Ag a result of the laborious journey outlined in Sections 2 and 3, I have finally beea in 2

position to confront the problem of

the relativity laws of Newtonian Mechanics,

My efforts can be summarized as follows.

ot
CONJECTURE 4.1: Consider a local, class C , regular, unconstrained, conservative

(selfadjoint- SA), Newtonian system o N particles in the physical space
Ll — = |p2| =k & HI I
(Y= RS, ettt @)
a. ®, 9,2,
of the Cartesian coordinates of the reference frame of its experimental detection

and linear momenta  with equations of motion in the {unigue) contravariant normal

e = Sy (h-24)

o () Fer B o0
Ko

and physical, conserved quantities

H—T+\/ = Xy (4_30\)

;-.5_ Pe = ﬂ-'a- A E:k :{XZJXLX,‘_}, (4-34)

) { X5, %, %X,3, (4.3

Bt =
Moy = = 6% Le
- i‘f}&{‘: {Xf;x‘?, Xf_:] 1 (42t

Z}

Ml
;E
™4

Cr -

IV o k=1

Then the applicable relativity, the GALILEI RELATIVITY, is characterizable in

terms of the following formulatjons.

(A) ANALYTIC FORMULATIONS, essentially consisting of the representation of

the equations of motion with the conventional Hamilton's equations
b¥. THy= b7 - w/“”DI-Hoe(b) {fe k)
Db
4 Ela ¥ ( 4 L 5 )

INxIN Ogﬁgg,ﬁ !/

OZHxZH
) I
(™) - .
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the canonical characterization of the physical consexvation laws
% . T X oot DX 5 es)
L ot - .1" v
C-(B,.‘. io, otk b YA /Df:

and related canomcal formulations {canonical transformations, etc, ).

(B) ALGEBRAIC FORMULATIONS, essentially conssting of the universal enveloping
associative algebra JUG(3. 1)) of the Lie algebra G(3.1) of the Galilei group G(3. 1}

(5%(@(3_0) - 5’7:/ 'j?, ) (4.6=)

? FRGOGRE® -, (= fAssoc, (& 65)

/ T
\/2 . }_X;,Xj-j(_ (Xf@X).b)(}.@x{), (4.6¢)
the Galilei Lie algebra G(3.1) in the neighborhood of the identity transformations
[ - K
g@i) = LU%(_QU‘-UJ] : [X ¢, X}:( =C ey Xk / C“}"' 7)

theLie group of connected, finite, canonical realization of the Galilet transformations
» wPoX, D
—
G(31) b’ = Q DLk Db b’“’ (4. 8a)

{0 :{ bojge s 4f b .y, 6 gt)

ard the use of the Lie's theory (representation theory, ete,),

(C) GEOMETRICAL FORMULATIONS, essentially consisting of the characterization

of r_he he equations of mot.u:n asa globally Hamiltonian vector field (for astonemous cases)

T 1w, = w, T e LT L)
ST

with respect to the fundamental symplectic structuze
e P /
wzzw/uve{b/\a(b/ {&.10)

for the autonomous case (\y’ith a contact extension for the nenautonomous case), the
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characterization of the physical conserva tion laws in terms of the Lie dexivative

(for autonomous generators)
- [ !

and the use of the symplectic {or contact) geometey.

Consider now a nonconservative (nonselfadjoint-NSA) extension of the system due to

ax
local, class C , Tepular, additive, Newtoalan forces not derivable from z potential

with equatmns of motion . 3. - ™ " R
el T i T ! b}:o
s f‘uh)] {Lb S O} P A G o
where F ° (412}
29 (=)0 (% J (s
( ) ( ) ‘GF* Fl.ia(-t' b) {:F(hﬁ\,i)l
4 - i?i L)
ka = = ‘Dt"" . Fk Kat;co. C{E 'D,z‘h:._'

in which the original system (4. 24) is the maximal associated selfadjoint system,

Then the relativity which is conjectured as applicable in the physical space of the

Cartesian coordinates rka of the experimental verification of the system and the linear

momenta P, = mkxka’ here called GALILEI-ADMISSIBELE RELATIVITY, is characte-

rizable in terms of the following covering formulations.

(A" COVERING ANALYTIC FORMULATIONS, essentially consisting of the zepresenta-

tion of the equations of motion with the Hamilton-admissible eguations

T SRk SHee) (k)
D bY

[N A (A I
6),\\/ (DHbal' = w/‘“’qﬁ + .F:)A, ﬂ(e-{: (SPV)'#D'

XY 5 ) (4 148)
9 (DBJUI AN xBey B ow BN
(6P >:: = D4 a ,DFt:o. H (@-/#C}
DT et (S5

the cancnical-admissible characterization of the physical nonconservation laws
: b ) 2~ D o b | O
X, =(Xe hu)t 585 552 55 "ar

(& l;)

and the canonical-admissibie formulations (canonical -admissible transformation

theory, etc.}.
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(8" COVERING ALGEBRAIC FORMULATIONS, essentially consisting of the general ,

Lie-admissible genotopic mapping of the universal enveloping asscciative algebras

of the Galilel Lie algebras induced by the noncenservative forces

QU(&(31) = %’\’/@ , (&-16a)

~

{ = F@Q(—BC_?@;_;@..,/ Q:Namﬂsfoc.l

(]\) . EX{, X}_JJ{,*“ /LXL-oX}- -XJ-OXL) /

the Lie admissible genotope of the Galilei Lie algebra in the neighborheod of the
identit

ety Qx i sty

G (3.4 (xt,x) P op (447)

- I, !L—HOX

(k-l6h)

(4. 16<)

with attached isotope
K o DX
= (g’: G.n XL ; X {r v

G (3 ! Lﬂ ):( l_ ] DM ' fs)

v ~H *®

the Lie-admissible covering group of the canonical realization of the Galilei group

A A o ﬁ (DXL
Cr (3.4) ¢ laa'-*: = 5 (i) G-b)’bbfz‘@b& ,D/-« 64-/?11.)
{8 = b, =, ,,],@,M}f (4.196)

with attached isotope

l-. {()
p ea? 02 (t-bJ laf’@!’r’( fo# (4.20)

G¥(3.0 2 G (3.1) ¥ G(%,r),

and the Lie-admissible formulations (representation theory, ete.).

GX¥3an:
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(C"y COVERING GEOMETRICAL FORMULATIONS, essentially consisting of the

characterization of the nonconservative vector fields as globally Hamiltonian-admissi-

ble
~ A A (;)H M
N M M B{H !'abﬂ[o
= R I SANSRERE - §
%5, = S SV

with respect to the general, fundamental, symplectic-admissible structure for the

autonemous case (or contact-admissible structure for the nonautonomous case)
” M v
- L b x b
S, = 5 (GrerSy)dx (£.22)
M Vv
+.;_—(_6v'“svr/u)db AQ{L 7

the characterization of the physical nonconse rvation laws via the Lie-admissible

derivative (for autonomous generators)
A 4.23)
of X #Zo ¢
- by f

and the use of the symplectic-admissible {or coatact-admissible) geometyy.

A few comments are here in order. Let me recall that one of the first meanings of the terms
“relativity” is that of refexring te a form-invariant description of physical reality, And indeed,
one of the crucial properties of the Galilei relativity within its"arena of unequivocal apj:u!icatbi!.il:},rll

is that of the fo rm-invariance of the equations of motion under the Galilei trausfnrmations,
G): ,_AMK 2, - E L’f;)] o — Lﬂllﬂ - £ K& )] 0. (4* 24)

As by now familiar, this property of the Galilei relativity fails to apply for the considered

clags of broader systems which now are form-noninvariant under the Galilei transformations
e
- ., X
G0 o S m“ﬂwa{pt f@ﬂ] Fatﬂ«ﬁ
sa

(4.25)"
This is, ir essence, one of the arguments for the need of reinspecting the problem of the

relativity laws in Newtonian Mechanics,
Neverthless, the need of a form-invariant description of physical reality persists for

any possible relativity. But the symplectic-admissible contration of the contravariant noncon=

- 395 -

servative vector field yields the covariant conservative form of the original system, Eq,

(4.24). This suggests the following

SUBCONJECTURE 4. 1. A: The Galilei~admissible txransformations (4.19) leave

form-invariant noncongervative, nonlinear, explicitly time deperdent equations

of motion
R e
G (i £ 0] . 2 QA T
Msa
{&.2¢)

It is here essential to assess the plausibility of this subconjecture with explicit examples.
In turn, these examples will be useful for the subseguent considerations of this section,
In order not to obfuscate the primitive concepts with urnecessarily complex algorithms,

I shaill consider some of the simplest possible examples.

Consider the case of the free, one dimensional motion (in vacuum). Its contravariant normal

form (4. 2 } is given by

ib*‘) (Z/“): ()Ii)_ i =0 m=t. ( &.27)

The canonical formulations of the group of translations in time, the Tl(t) subgroup of group

2
Vet b fen]e B e p]ee
1 ’ P
= pv Lo Thte ES T Mo

yielding the canonical version of the translations in time

R RN (4-49=)
T8 {F, =p, (4. 296)

where now r and p are (costant) initial values, The derivative with respect to (the new)

(4. & ), explicitly reads

i :Z_f_/,j (4+.22)

time to then establishes the form-invariance of Eqs. (4.27 ) under transformations {4.2%

because, trivially in this case,
- i
(2 =p=p (.30)
Leo =o.
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We now hreak the TI(t) symmetry of Eqs. (4.27) via the motion in a physical medium which
results in dissipative forces and no force derivable from a potential(under the assumption that
Eqs. (4.2 ) are the maximal associated selfadjoint subsystem of the more general nonconservative
system), This latrer point is mainly due to the advantage of avoiding the redefinition of the
Hamiltonian and can be easily dispesed of.

A significant point is the nature of the breaking of the Ti(t) symmetry. As indicated in
Table 2,14, the essentially nonselfadjoint breaking is in this case unrealizable owing to the
insufficlent dimensiorality. We then remain with the canonical and semicanonical breakings.

We clearly select the canonical breaking because it implies an explicit dependence of the dissipative

force in ime, The selected nonselfadjoint extension of Eqs, (4.2 7) reads
. A N — i , P LS ~ % - lo =
)= (270000 (3] (2)- (o) (g
(4.3

Now we put the Lie-admissible formulations at work. First, we must construct a  representa-

with a manifest breaking of the Galilei subsymmetry under translations in time,

tion of Eqs. (4.3]) in terms of the Hamilten-admissible equations via Theorem 3.4,1, This

is easily accomplished by solving Eqa. (3.4. 4 ). The desired representation ean be written
) 2

DIl =0 4RI = i(—%—ﬂt},z} , H= L b (4329)
DbY Pl |

32b

2R -yb -t (&
(5.) = (55 )- :
a QW 41 o

Although not essentlal, it is instructive to verify that the inner-admissible product (4.2 1)

does indeed repreduce the covariant form of the original conservative system, And Indeed,

,__’\_’v —&kuf P _ e ’Z-':?__['*_p)_
(er =)= (o L)l ) Y

This gives hope of identifying covering transformaticns via a Lie-admissible embedding of

we simply have in this case

the G alilei transformation (the Hamiltonian H of Eqs. (4,32 ) remains fully invariant under

Galilei trarsformations).
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it is here simple to see whether this is indeed the case, The Galilei-admissible covering

of transformations (4.29 ), from Eqs. (4.9 ), are given by

f)’i = 4 Eo_ @,HJ + ﬁ_oz_ ((e,g)lﬁ)+,,q , {(4.380a)
P 1! 2!2

= t'n S
LP b +? (P H) + %((F,H),H)ﬂ” , (4.34b)

where now, of course, the expansion is in terms of the Lie-admissible product
DA oavDB T VB TDADB (0A98 /1, a5
B) ~ 28 grvidB IR B JHWB | dB LD (435)

(Qi ) it DY e PP Ee zf "DF(DP

Simple calculations then yield the finite, conrected, one-parameter transformations

%\ FJ / -—é’tto

A =2 - 1< -4 (4-3¢a)
fiu'_) . . Xt 8 )/

b= pe-bibs, (4-3¢b)

which constitute an example of a Lie-admissible group (Definition 3.6 . 3) because they are

constructed in texms of the same base manifold (b}*), the same generator (H) and the same
parameter (to) of the Galilei subgroup ’Tl(l:).
By performing the derivative with respect to time in exactly the same way as per Egs. (4,20),
we have _ }i' Fko A
= pPe =Py
—&‘ b to -
£ =-Ytpe = -FtE . (4-375)

A
Thus, the Galilei-admissible covering T 1(1) of the Galilei group of translations in time Tl(t)

(4‘-— 37a)

o N2y

leaves form-invariant the explicitly time-dependent equations of motion (4, 3/ ).

The comectivity of transformations (4,36 ) is selfevident, We then remain with the un-
compromisable consistency requirement that the covering transformations (4,34 ) must
recover the Galilei transformations (4. Z(j ) identically at the limit of nill symmetry breaking

forces. This is easily established by the property
A ;oA
B T =2rtobl =T, (F) { 4.39)
[ S A ’
o b= P
As a result, the Galilei-admissible transformations (4.3 ) do constitute a consistent

covering of the Galilel transformations (4.2 9 ) for the form-invariance of the system considered,
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Hgs, (4.34) also provide a canonical breaking of the symmetry under the Galilei boosts.
It is therefore instructive to study this case too. First, to avoid possible misrepresentations y we
must reinspect the case of the exact symmetry, that is, Eqs. (4.27). This is symply done
by computing Eqs. (4. 8 ) for the generator G = r «tp {m=1)
- L.
2= 2+ B [2,G]4 f_ [T2, 63, Gler 1 (g 29)
! !
- L -
bl s b e B Tp,Gle Bt Ty 6] Glre
2! 2! !
yielding the one-parameter growp of Galilei boosts
' = E =V,
G 2 TR e (k)
A J/:, = }; — F a
The derivative in time {r now varies) yields
. —
sz’ ’z—%’o:lf’“Po"IDl (4. 41)
- ) — - —
pr= P =2y

by therefore establishing the form-invariance of Egs, (4.2 7 ) under the group Gl(v).

1]

In the transition to the nonconsexvative extension (4. 34 ) this symmetry is manifestly broken.

We therefore again put the Lie-admissible formulations at work. An additional technical

point however must now be taken into account. It is constitutedhb by the fact that the Lie-admissi-

ble tensor § é‘)\) generally varies with the generators. Since the generator is now {r-tp),a new
Lie-admissible tensor must be computed . With an wnderstanding that the techniques for this

computation are highly rudimentaxry at this point, a solution is given by ._ T ta”
- a

E
e [ 2F) «= [podt poe, G

(G') - (3 I} ’ ch)

z
— l,) . 9}!5 ; ?f—';a

)2’:)5""&9.:0? =P - O?SF/ R (4. 42¢)
¢

= Pot 1 h G )2G), (4t2s)
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This example is indicative because it presents a transcendental function, from Eqs, (4. 42z},
in the transformation law. This indicates that tke Galilei-admissible transformations can be
rather involved even for simple systems. This was, after all, expected, because it is a fezture
common to all nonmarifest symmetries, while the covering Galitei transformations
which are needed for the form-invariance of the systems considered must be nonmanifest
by central requirement,

Eqgs. (4.31) also provide a semicanonical breaking of the group of transiations in space,

The equations of motien are form-invaziant under these transformations, but this symmetry,
by no means, is in this case representative of the conservation of the Iinsar momentum, The
study of this case is left to the interested reader., We hope to treat in a separate study the
case of the Lie-admissible covering of the group of rotations.

For subsequent needs, the reader should keep in mind that all our efforts have been centered
in attempting the constructior of covering trensformations, that is, transformaticns which
apply to a broader physical context (form-invariance of nonconservative systems) while are
capable of recovering the conventional Galilel transformations Identically at the limit of
nolt Galilei relativity breaking forces (this is the aspect which we have referred to in Section
3 as our uncompromisable condition of compatibility). Thus, the Galilei relativity is mor
"destroyed” but simply embedded in a broader context. As a matter of fact, the Galilei-admissible
relativity, as presented in Conjecture 4.1, cannnt even be constructed without the use of
the conventional Galilei relativity as a foundation,

Despite this compatibility of the Galilei relativity with its cenjectured Lie-admissible
covering, the latter refativity appears to produce a rather profound conceptual departure
from the former relativity, as we indicate below,

As is well known, one of the conceptual foundations of the Galilei {as well as Einstein)

relativity is the lack of existence of a previledged frame of reference. But this relativity
refers to the motion of particles in vacuum with action-at-a -distance forces derivable from
a potential. The physical context we are here considering is profoundly different than that,
In particular, one of the conceptual foundations of the theory of nonconsexvative systems is
the existence of a medium which is responsible for the energy dissipation, Thus, inthe transj -

tion from the Galilei relativity to the conjectured Galilei -admissible covering, the conceptual

profile is shifted from motion-in-vacuum with action-at-a-distance forces to motion-in-a-

physical medium with action-at-z-distance and contact forces.

Cur problem is to see whether the lack of existence of a privil edged frame can be preserved

within such a2 broader setting. It is at this point where the joint study of the Newtonian framework
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under consideration and its possible relativistic extension is effective because difficulties of the
former can be magnified in such a relativistic transition. The results of my efforts in this

fssue can be presented with the following

SUBCONJECTURE 4. 1. B: The Galilei-admissible relativity characterizes one class of refe-

rence frames, those at rest with respect to the medium in which the motion oCours,

as priviledged with respect to any other frame,

Consider the motion of a particle in a medium, say, our earthly atmosphere, The "npatural”
reference frame which is customarily vsed in practical measurements is that which is at rest
with respect to the medium. The term “priviledged” in Subconjecture 4.1, B is intended to express
the fact that (2) the eguations of motion are not form-invariant under ordinary Galilei transforma-
tions to other admissible frames, (b) the frames induced by Galilei-admissible transformations
are not expected to be practically realizable with experimental set ups (see below), and, thus,
{c) the reference framesat rest with respect to the medium possesses a unique character for direct
experimental measurements,

Admittedly, the indicated conjecture appears not entirely justified av a Newtonian level, owing
to extended practice of yse of velocity transformations. It is therefore of some possible

significance to indicate the corresponding occurrence at a field theoretical level, The field

equations are now of the type (for the second-order case)

{Uﬂ + m?)eH ~ FA(e, DYyox’) ] I"(x“’ @, D }”m
o, pp = Oy B3 (4td)

and are subjected to the following jnterpretation: (I) Eqs. (4.43) are assumed as constituting an
approximation of the motion of a particle (the field ¢ ) within a hadrenic medium (a hadron
OF a neutron star); (II) the variables x4 of Egs. (4.43) are the ceordinates of a Minkowski frame
whose space components are at rest with the hadronijc medium, and (III) strong interactions are givenly
couplings derivable as well as not derivable from a Lagrangian density, the latter being
representative of the the motion of a finite, nnnu!ljcharge volume within the medium considered
(see also the remarks at the end of Table 3,9). These aspects are discussed in details in ref, 33c_
At this point I would like simply to indicate that, on grounds of my current knowledge, Iam
tmable to compute Egs. (4,4%) in any other frame related to x by the conventional
Poincareé transformations x' = =A x+a, because the field ‘-C does not Qxecessa:iljatransform
covariantly under the Poincare group, as indicated in xef, wlth a linearization process.
A s we shall see in more details in ref.’ 33c , the m jor technical difficulties appear to be related
to the Lorentz boosts which are precisely the relativistic extensions of theGalilean velocity

transformations,
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Another crucial aspect of the problem of the relativity laws of nonconservative mechanics is
that related to inertial characterizations. The Galilei relativity, within its own arena of applicability,
does indeed provide an inertial characterization of physical reality in the sense that it is
applicable to the r eference frame used in experiments and conventionally assumed as inertial, while all
other frames Induced by the family of Calilei transformarions preserve such inertial character,
As a matter of fact, the lack of existence of a privii edged reference frame is a consequence of
these properties and of the form-invariance of the equations of motion,

In the transition to nonconservative systems the situation appears to be considerably different.
First of all, the medium ir which the motion occurs Is not, in general, in inertial conditions. This
is typically the case for the earthly atmosphere {or a hadronic medium), Also, the transformed
reference frame under the broader relativity group which leaves form -invariant the nonconsexrvative
equations of motion is expected to be generally noninertial irrespective of whether the original
frame was inertial or not. This is due, for instance, to the functional dependmce of the variables
b’“ in Eqs. (4.[4) on the old variables B’l: the generally nonlinear nature of the representations of
the nonassociative envelope ‘u((j(& 1)); the generally nongeodesic character of the motion, etc,

This situation (which appeaxs to be, again, better focused when studying motion of hadrenic
constituents under the assumption that they are physical particles-that is, non-point-likeg' B3¢ )
suggests the following

SUBCONJECTURE 4.1.C; The Galilei-admissible relativity provides a generally noninertial

characterization of nonconservative and Galilei form non-invariant systems.

Here the term "noninertial” is referted to the character of both, the original and the transformed
systems under the Galilej-admissible transformations.

In essence, the inertial frames of the Galilei {and Einstein) relativity aze a conceptual abstraction
because no experiment in an inertial frame has been actually conrducted £o date and it will not be
conducted unti] a sophisticated interplanetary (or interstellar) technology is available. Thus, by
locking ir retrospective, my efforts were aimed at the construction of g possible relativity which
is noninertial by central conception and, thus,usable in actual Earthly experiments, while admitting
the conventional inertial formulati on at the limit of nufl dissipative medium,

Almost needless to say, the number of problems I am here leaving open is too large to suggest
an outline, In any case, they will not escape to the attentif reader. Some of the open problems deserve
a special mention,

(A) Scalar extensions, Undoutedly, a more rigorous treatment of any applicable relativity for
nonconservative systems will mecessarily demand the use of the scalar extension of the Galilei grpup.

(B) Integrability conditions . The conditions under which exponentizls (4.19) exist demand a specific
study.
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(C) Desired “relativity. There exists an epistemological aspect  which also deserves attention.
Owing to the unexplored and unresolved rature of the topic, different researchéxs may have basically
different objectives which, in turn, could imply hasically different meanings of the word "relativity”,
Some researcher may demand so stringent conditions that no "relativity” is admitted for nonconserva-
tive systems. Other may demand so few conditions that the emerging “relativity"” has no physical effe-
ctiveness comparable to that of the Galilei relativity, Yet ather researchers may reject zny final ’
future "relativity” because excessively different than that characterized by decades of familiar use,
the conventional “Galilei relativity", This is not a2 mere question of semantic, Instead, it is additional
indication of the fact that the problem of the relativity laws of Newtonizn mechanics is still unresolved
as of today. The problem of the identification of the applicable relativity for physical systems more
general than the corservative and Galilei form-invariant ones, however, persists. The mental attitude
which is recommended is that, in any case, the researcher should expect a prodound departure from
conventional relativity ideas because of the profeund physical departure from consexrvative settings
represented by nonconservative mechanics. The epistemological attitude which is suggested to avoid an
unecessary controversy is the identification of the used term "relativity™ in a way as precise as
possible, The technical attitude which is advocated is te put primary emphasis on the methedo]ogical
tools for the study of forces (or currents) not derivable from a potential. The emerging relativity is
then conceivably sequential,

Within the context of this paper the term “relativity" is referred to a "form-invariant, neninertial
characterization of local, class Cw, regular, unconstrained Newtonian systems with arbitrary forces
via a Lie-admissible covering of the Galilei relativity, within the reference framesat rest with respect
to the medium in which the motion occurs," This is equivalent to saying the the term “relativity" of
this section is defined by Conjecture 4.1 aad its subconjectures,

In closing, permit me to emphasize the use of the terms CONJECTURE and SUBCONJECTURES in

the presentation of my relativity effores, With this, Iintend to stress the fact that the verification

of the validity, invalidity or need of implementations of my studies is entirely left to interested ’

independent researchers,

Let me also indicate that, when the relativity which is applicable to systems (4.12) is finally

identified (irrespective of whether it will be of Lie-admissible type or not), by no means should

this broader relativity be considered as the “"terminal relativity” of Newtonian Mechanies, For

instance, my studies exclude the case of nonloeal forces (even though these forces possess some
degree of implementation in Lie-admissible formulations via solution of the crucial Equaticns(3, 4. 4)
of integrodifferential natuzre), This is a first illustration of my belief indicated in Section I according

to which Theoretical Physics will never admit terminal disciplines.
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5: CONCLUDING REMARKS ON THE CURRENT STATUS OF RELATIVITY IDEAS,

it might be of some significance to biefly touch on the potential implications in nonr-Newtonian
frameworks of possible relativity imple mentations at the Newtonian level. This problem is
opened by the truly elemental nature of Newtonian Mechanics far theoretical physics,

Let me first indicate ore "arena of unequivocel validity" of the Galilel relativity, the
Finstein special relativity and the general theory of gravitation andthen pass to the speculative part
of the issue,

The validity of the Galilei relativity (as currently known) for the motion in vacuum of pazticles
under forces dexivable from a potential and form-invariant under the Galilei transformations is
simply wnequivoeal, Thus, the Galilei relativity, within such an arena, can indeed be qualified
as constituting a scientific truth.

Neverthless the limitations of the Galilei relativity for other arenas of physical systéms was
known since the earlier stages of the electromagnetic theory. These limitaricns motivated the
conception of a covering relativity for the electromagnetic interactions. The validity of the
Einstein speciat relativity for the relativistic motion of charged particles in vacuum under ut
most electromagnetic interactions is also unequivocal. Thus, the Einstein relativity too, within
its own arena, can be qualified as constituting a scientific truth,

In turn, the special theory of relativity was known to possess limitations at the very time
of its inception. These limitations motivated the conception of a still broader relativity fox
the inclusion of the gravitational phenomenology. The validity of the Einstein general theory
of relativity for the exterior problem appears to be also established on rather solid experimental
grounds. Thus, the relativity indicated,in its own arena can also be qualified as constituting a
scientific fruth.

Intriguingly, the indicated three arenas of applicability of the respective chain of coverings
appear to admit a unified charzcterizati on within the context of the Inverse Problem in Euclidean
space, Minkonski space and Riemannian space, respectively. In essence, all admitted models
are derivable from a variational principle in the respective carrier space. This implies that
the models are variationally selfadjoint. A closer inspection then indicates that the admitted
forces are variationally selfadjoint. This is typical the case of the electromagnetic force in
Newtonian mechanics, special and general theory of relativity,

Pending independent verification by interested researchers, in the diagram below I attempt
the characterization of one arenz of unequivocal applicability of the relativities considered
via the variational selfadjointness of the admitted forces in the undexlying carrier space.

The diagram is intended as a complement of the diagram of Section 1.
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Galilei relativil

Forces: 5A

Einstein special theory of relativity Einstein theory of gravitati on for the exterior problem

Forces:5A Forces:SA

But this implies that all admitted forces have the primitive Newtonian form
£ _2u dreld (5.1)
= V& dE Oz
It is known that these forces, by no means, exhaust the forces of physical reality. This creates
the problem of the applicable relativities for broader, or better, the broadest concefvable forces.
Before presenting few conjectural remarks in this respect, let me recall that theoretical
physics is a science with an a bsolute standard of velue: the physical reality. Until theoretical ideas
have been experimentally proved in unequivocal terms ,they constitute cenjectures, not
scientific truths, This is net intended to diminish the value of conjectures for the nowadays
established scientific process (presentation of ideas, critical irspections by independent
fesearchers, and experimental verification). Neverthless, too often In the history of physics
the behaviour of originators of new insights has been genuinely scientific because critical of
experimentally unverified knowledge, while the behaviour of their followers has been strictly
antiscientific because inspired by an unlimited belief of untimited applications, This is not the
place to recall the historical inapplicability of previously established kmowledge for the problem

of the atomic structure or the more recent, but equally historical, discovery of parity violation,

With an open mind on these issues and with a firm belief of the limitaticns of our knowledge

as compared to the complexities of the physical universe, let me pass to the speculative comments.
The centrzl objective of this paper was to indicate that the problem of the relativity laws

5q

of the nenrelativistic maotion of particles is still oper as of today on theoreti cal grounds™.*This

is so irrespective of my personal, conjectural efforts. Notice that the experimental aspect has
been excluded in the above statement because established by centuries of knowledge on Newtonian
forces.

In the transition to the case of the relativistic motion, the situatior becomes considerably
more nebulous, delicate and Insidious. The unequivocal validity of the Einstein special relativity
for the motion of hadrons under electromagnetic interactions is, by no means, evidence of the
validity of the same relativity for the hadronic constituents, It is true that the virtual totality

of our theoretical knowledge of hadron physics is based on the Einstein special relativity. But this’

besides indicating undeniable plausibility and scientific values, strictly speaking ,

does not constitute evidence of the validity of the special theory of relativity for the
hadronic structure, Agein, Einstein® special relativity can be claimed as constituting a scientific
truth within a hadron onty when experimentally proved in unequivocal terms. Lacking this
verification, the relativi;icl::nsidered in the arena considered is only a conjecture,

In the recent paper , R.M.SANTILLI has proposed the experimental verification of
the validity or invalidity of Einstein' special relativity for the hadrenic constituents, The episte-
mological argument is essentially the following, If the strong hadronic forces are anzlytically
equivalent to the electromagnetic forces, that is, derivable from a potential (in the sense, e.g.,
of refs.3 4 }, then Einstein's relativity is'expected” to apply. However, if the strong hadronic
forces are structurally nonequivalent to the electramagnetic forces, that is, not derivable
from a petential {in the sense of Ief:os. 3}, then Einstein' special relativity is “expected” to be
invalid, It should be stressed that the term "expected” has exactly the same implications in both
occurrences, Inthe former the relativity could, in the final analysis, be viclated for reasons
unrelated to the structure of the acting forces and unknown at this time, In the latter the relativity
could, instead, apply irrespective of the nature of the acting forces The net effect is that the
issue considered does not appear to be resolvable at the theoretical Ievel only. Intriguingly,
the problem of the relativity laws for the hadronic constituents appears to be linked to that of
the nature of the strong hadronic forces.g ’ 33b

As an incidental remark, forces not derivable from a potential can be extended to a2 relativistic
context in more than one way. This opens two possibilities of studies which are opposite in
conceptual attitude: the compatibility and the incompatibility of Einstein' special relativity for forces
not derivable from a potential, Clearly, both possibilities must be studied and subjected to a
compartative confrontation with physical Teality. As it was the case for the Galilei relativity, the
studies of a poessible eompatibility of the relativity considered for the forces consi-
dered will be left to the interested researchers, In the forthcoming paper‘5 CI present few
conjectural arguments related to the opposite line of studies. In any case, the truly fundamental
aspect appears to be of Newtonian, rather than relativistic nature, And indeed, if a covering of
the Galilei relativity will result to be needed at the Newtonian level, this will conceivably imply
a subsequent, necessary modification of Einsteln special relativity (e. g. , the reader is urged to
verify that Einstein' special relativity is incompatible with a possible Galilel -admissible rela-
tivity because the first of strict Lie algebraic character while the second of striet non-Lie alge-
braic character).

In cenclusion, what we can state at this moment on grounds of necessary scientific caution

is that the problem of the relativity laws of the hadronic constituents is open on both theoretical
54

For a more detailed study of this occurrence (as well as of the
33c

and experimental grounds,

spirit of an open, scientifically productive debate for which it is intended) see also ref,
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The last issue, the problem of the Einstein general theory of relativity for the interior
problem, is evea more delicate and more likely subjectable to opposite personal viewpaints.
On experimental grounds one could attempt a semplistic resolution of the issue by saying
that all available experimental verifications of the general theory of relativity are for the
exterior problem because no clear experimental test exists for, say, the interior of a star,
The net effect is that the validity of the theory for the exterior problem, by no means, should
be considered as evidence of the validity of the corresponding theory for the interior problem,

Here a subtle but potentially significant parallelism with the hadronic case occurs. By

ignoring gravitational considerations, the validity of the special theory of relativity for the "exterior

hehaviourof hadrons under (ut most) electromagnetic interactions is established on solid experimen-

tal grounds, while the validity of the same relativity for the “interior problem" of the hadrons,

that is, the structure problem, is not established and, as a matter of fact, questionahle, With

the inclusion of gravitational cansiderations the situation becomes considerably more involved on
technical grounds, but conceptually equivalent. The geodesic behaviour of test particles in the
Riemannian characterization of the exterior problem of, say, a start, appears to be established

on solid grounds, In the transition to the interior problem the situation is different and opposite
attitudes can ke, again, implemented. The first attitude is that of attempting the compatibility

of Einstein' relativity ideas for the intexior problem with possible generalized forces which are
conceivable for the hadronic structure, This lire of study is, of course,valuable and recommendable,
An opposite line of study is instead attempted in refs.5 . In essence, the forces not derivable from
a potential, upon implementation into a gravitational context, do not appear to be necessarily
compatible with Einstein' general theory for the interior problem(only)on numerous technical

and conceptual grounds, such as, the emerging equations of motion for the interior problem

are nonderivable from a variational principle by central assumption, there is the lack of
curvature as geodesic deviation, thexe is the lack of conservation laws, etc. To account for

the availat e experimental evidence, the gravitational model which is attempted is that based

on Einstein's equations for the exterior problem, hut interpreted as subsidiary constraints to

a more general, nongeodesic, non-Riemannian model for the intexior problem.

In conclusion, what we can state at this moment on grounds, again, of scientific caution,

is that the Interior problem of the theory of gravitation is open on both theoretical and experimental

Emmds.s 4

My personal belief is that the problem of the structure of the hadrons is of a complexity

beyond our most vivid imagination, the latter being that materializable in terms of our knowledge
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on the relatively simpler atomic and nuclear structures. In turn, the interior preblem of
the theory of gravitation is of relatively much greater complexity because clearly inclusive
of the problem of the hadronic structure with additional gravitational considerations. Once
mass terms in gravitarional equations are recognized as technical expedients tn nvercome
our ignorance on the structure problem, the complexity of the interior problem appears in
the proper light. En the language of ref.sit is the problem of the “origin" of the gravitational
field,
Therefore, our current knowledge on the relativity laws of the physical upiverse, rather
than having reached a terminal stage, appears to be potentially open to new, intriguing horizons,
In closing, let me stress that this is only my personal viewpoint and, as such, it should in

no way be related to the current viewpoint of the physics community as a whole. Also, permit

me to stress the spirit with which this viewpoint is presented, It is essentially based on the hope

of stimulating a scientifically productive debate in the traditional spirit of unsolved physical
problems. For instance, the hope of the forthcoming paperasc is that of stimulating the
awareness of the physics community on the need of confronting the problem of the relativity laws

of the hadronic constituents, which is nowadays virtually ignored in available literatures, to the
best of my knowledge, Hopefully, this awareness, will stimulate a possible future resolution.

For instance( and this is the essence of my speculative remarks) it is conceivable that a simple
reinspection of avajlable experimental data could establish the validity of Einstein special relativity
within a hadron in the needed incontrovertible form. The point is that (and this i the. spirit of my
personal efforts) this job must be explicitly done because the respect for Einstein special

relativity which is so rooted in all of us is not sufficient alone (that is, without explicit, direct

and incontrovertible experimental evidence) to render the relativity considered in the arera consi-

deted a scientific truth, The aspect which is uncompromisable is the "incontrovertible' nature

of the preoof prior to claiming a final resclution of the issue, After all, irrespective of my personal

efforts on the nature of the strong hadronic forces, massive cbjects are basjcally an aggregate of

hadrons. But then one could expect a violation of the special relativity within a hadron {or within the

core of, say, a neutron star) in favor of a more general possible relativity inclusive of gravitation.
Almost needless to say, in the traditional spirit of scientifically productive debates, the

presentation of different, complementary or opposite viewpoints is not only recommended, but

actually encouraged,
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Addendum to: _ _
On a possible Lie-admissible covering of the Galilei relativity in Newtonian
Mechanics for nonconservative and Galilei form-noninvariant systems

Ruggero Maria Santilli*
Harvard University
Science Center
Cambridge, Massachusetts 02138
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Abstract

In this note | first present a needed clarification on the realization of Lie-admissible algebras for non-
conservative Newtonian systems considered in a recent paper. The following aspects are then treated.
(A) | introduce a new realization which is directly applicable to all nonconservative systems of the admitted
class (local, class C* and regular)via the solution of simple algebraic systems. (B)! indicate that such a
realization yields compatible generalized formulations of Hamilton-admissible, Lie-admissible and
symplectic-admissible type. (C) | show in details that such a realization is applicable to the construc-
tion of the Lie~-admissible generalization of the Galilei relativity | proposed for nonconservative systems,
and | work out a number of examples. (D) | then prove that, for the subclass of autonomous systems,
the time-component of the proposed generalized relativity is indeed universal, that is, it provides the
form-invariant description of all systems considered, while being able to recover the conventional time-
component of the Galilei relativity at the limit of the nuil value of the Galilei symmetry-breaking forces. And,
finally, (E) | prove that the dual Lie-admissible algebraic and sympilectic-admissible geometrical character
of the proposed generalized relativity is independent from the selected system of local coordinates, by
therefore confirming the hope for a coordinate free-globalization of the symplectic-admissibie geometry
and relativity. This last objective is achieved by first recalling the property at the basis of the globalization
of the symplectic geometry, namely, that symplectic forms preserve their symplectic character under
arbitrary (class C= and regular) transformations of the local coordinates. It is then proved that this pro-
perty extends to the symplectic-admissible formsin its entirety, and admits a joint Lie-admissible algebraic
image under a suitable restriction of the forms admitted. A number of open mathematical and physical
problems are also identified.
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Ruggeroc Maria Santilli

ON A POSSIBLE LIE-ADMISSIBLE COVERING OF THE GALILEI RELATIVITY

IN NEWTONIAN MECHANICS FOR NONCONSERVATIVE AND GALILEI FORM=NON-

INVARIANT SYSTEMS

Hadronic Journal 1, 223-423 (1978)

1
In the recent paper I have attempted the construction of a

conceivable generalization of the Galilei relativity for noncon-
servative and Galilei form—noninvariant Newtonian systems. The class

3

of systems considered is given by all local , class C hat ¢ regular ,

Newtonian systems in a three-dimensional Euclidean space with
local coordinates rka, k=1,2,...,n, a = x»,v,%. These systems are
generally nonconservative, nonlinear (in the coordinates as well as
the velocities) and explieitly dependent on time. In the contrava-

. . X 4
riant vector field form}they can be written

l':vﬂ — i#(be):OJ/A:J,ZI..-}G’h} (1)

)-(2)  (37)-

2

m
S0 —~ MN3A
FRNE RN CES

—m\_ [wE
—_— )Z: E‘SH ;

represents all forces which are form-invariant under the

(1b)

D O
- }4%—“-5 ’ }4+ F’M/ (Fﬁ)‘ s r(ic)

A

—_—

SA
where f
Ada

conventional Galilei transformations and verify the inteqrability
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conditions for the existence of a potential (variationally self-
NSA
adjoint forces); Ei

represents all forces which break the Galilei
symmetry as well as, in general, the integrability conditions for
the existence of a potential (variationally nonselfadjoint £orces):
and the p's are the physical linear momenta (m i ).

By ;ecalling that a central objective of any relativity is to
provide a form-invariant description of nature, a primary objective
of pagerl was to attempt the construction of a l0-parameter group
of transformations 2(3.1) which leaves form-invariant systems (la)

G (eb) —= (E,B) (2a)

by

B A 22 . s

L TR oo > 4B LT b)zo @)
e b d L

while being jointly capable of recovering the conventicnal Galilei
group G{3.1) at the limit of null symmetry breaking forces
A
Y Cr C3-i) = G’Cg.i).

NSA
F —=o

(3)

The transformations verifying these requirements were called

1
in paper Galilei-admissible transformations, in the sense that

they admit the Galilei transformations under limit (3)}. The group
3(3.1) was called a "covering of the Galilei group” not in a topologi-
cal sense, but rather in the physical sense of providing the form-
invariance for a broader class of physical systems, while being able
to recover the latter group under limit (3)}. The relativity characte-

1

A
rized by G{3.1}, called Galilei-admissible relativity , was then

interpreted as a covering of the conventional Galilei relativity.
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The reader should recall that the systems considered, being
generally nonconservative, nonlinear and explicitly time dependent,
do not exibit, in general, manifest symmetries at all. Therefore, cases

such as the simple identification of the manifest Galilel symmetry

for the Kepler system in vacuum, do not generally occur within the frame-

work considered. Instead, the symmetries providing form-inva-
riance (2} are, in general, highly nonmanifest, that is, of rather
invelved functional dependence and, as such, of nontrivial identifi-
cation.

This primary characteristic of nonconservative Newtonian systems
created a dual methodological problem. First, there was the need of
identifying metheds for the explicit construction of nonmanifest
symmetries of the equations of motion and, second, these methods
must be such to identify that particular l0-parameter symmetry which
verifies the crucial limit (3}. The verification of this limit was
clearly essential to achieve the intended notion of covering of the
Galilei relativity,‘including the compatibility of the generalized
with the conventiocnal relativity.

After the study of a number of conceivable alternatives, the
methods selected in paperl to achieve properties (2) and (3) were

those of the so-called Lie-admissible approach tc nonconservative

systems, and consisted of three major, interrelated aspects: (A} an
analytic, (B} an algebraic and (C) a geometrical aspect. These metho-
dological profiles were implemented via the solution of the so-called

fundamental system of the Lie-admissible formulations. It consists of

the construction of a covariant tensor s}Lv such that
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Lt (S.)#0, ()

S = ==,

that is, such that its contraction with the nonconservative contra-

variant vector field _~ produces the conservative covariant vector

field _;_}K without the Galilel symmetry-breaking forces, under the
following properties.

{A) Generalized analytic profile. The nonconservative eguations

of motion are correctly represented by the following (cova-

riant and contravariant) generalization of Hamilton's equations

Y - (52)
S b e B - P S5

HoTip)eviz), 1722 (87)-(5.), (¥

which are called Hamilton-admissible equations because capable

of recovering, by construction, the conventicnal Hamilton's

equations at the limit of null ENSA - forces P
v R YN Y
L éom (SW k5 K w, b Y ) ()
ghsh, % NSG ‘obsa
* \?dH
Ly !O/ _ 6 CoH \ (/L)/h (é@

( V
rH_> o c)‘o

Ul_r)v/

O —

(0) = TR
)< (L o)
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(8) Generalized algebraic profile. The generalized brackets of and, second, via the limit brackets

the time evolution law characterized by Egs. {(5)

Lim (n,H} = [A,zﬂ - (41)
H(b) _ oA l:) (()I.) 6}4\! ()H (ﬂ H) () ENSE\_)()
D5 (—D b’u L = CONVENTIONAL POISSON BRACKETS

constitute a (regular) realization in Newtonian Mechanics

of the (non-associative, non-Lie) Lie-admissible algebras

i.e., they verify the general Lie-admissible law

Thus, Lie algebras constitute a particular case of the
algebras characterized by law (8), that is, Lie algebras

are Lie-admissible (but the converse is not necessarily true).

((ﬁ : B)lc) + ((B,C),ﬂ)-f' (CC;Q) rB)"" (C, (Blﬁ)).f- (BI (ﬁlc))_,. (ﬂ, (C,B» (5)) (C} Generalized gecmetrical profile. The (neither antisymmetric

nor syrmetric} covariant tensor S}*V characterizes the
= (ﬂ,(s,c)) +(B,(CA)H(c, (3,8)+ (@,g)}a) (2,8, +(0),B),

symplectic-admissible forms (or structures)5
S, = S,,db'® db (12)
/L( /W-Sv )z“ot\‘eﬁ“:+—-(6 +5, )g(g‘* ALY

or, equivalently {Theorem 3.3.1 of raf.l), the contravariant
tensor S}&v of Bg. (7) satisfies the system of partial

differential equations
(o1 f_ 5t 3 (8- &)
L (&P- o) 2 (87~ 9
+ (677- 5?'&) ’0 (5/‘*" SM) =0,

The Lle-a§m1551ble algebras constitute a nontrivial generali-

(}?) i.e., it is such that the attached tensor
& = J
MY S/‘W MY

verifies the necessary and sufficient conditicons

(19

_ _ Jo D - O (Ia)
zation of the conventional Lie algebras, as costumarily /A\) + V?M - 7
used in conservative mechanics. In particular, they are (ﬁ\ :l PR :2‘ Z‘
Cotpy | QIEVT | dOCTM =0 (J4b)
"Lie-admissible" in a dual meaning, that is, they admit - + = 'E:" - w 7
v b RN “ob

the Lie brackets first wvia the attached brackets

for the (nondegenerate) exterioE’two—form

(a,8) - (H€,A} = [aH]* = (4_0) JZ.Z = JZ/‘«\) e:{})'MA db‘) Ci‘;)

= GENERALIZED POISSON BRACKETS
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to be symplectic (i.e., closed). More generally, it is

expected that the applicable geometry is the so-called

1
symplectic-admissible geometxy, i.e,, the geometry of the

(nondegenerate) symplectic-admissible structures (12) on a

(Hausdorff, second-countable, &0 -differentiable, 6n-dimen-
sional) manifold. In analogy with Lie-admissible algebras, this
geometry is "symplectic-admissibkle"” in a dual meaning, that
is, it admits the symplectic geometry first in the sense that
the attached exterior form
S TN =
am S =, =
o .S dbr@db’
2 7 MY 4

is an arbitrary symplectic form and, second, in the sense

ARBITRARY SYMPLECTIC FORM 6)

4o Peelb
Szj évﬂd &elb,

that the limit exterior form
M v

L]
f -0 = FUNDAMENTAL SYMPLECTIC FCORM

L.JAM

(17

is the fundamental symplectic form, with a selfevident

correspondence with the algebraic counterparts (10) and (11).

The generalized formulations (a), (B) and (C) were interpreted

in paperl as coverings of the conventional analytic, Lie and symplectic

formulations, in the sense that

{a) they apply for the direct treatment of a broader physical
context (nonconservative mechanics) without redefinition of

the local variables rka

and pk {which would be necessary
a
if a Hamiltonian description of the same nonconconservative

. . . 1
systems is desired via the use of the Inverse Problem );
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(b} the generalized formulations recover the conventional formu-
lations identically under a limit of c¢lear physical meaning,
the nuill value of the forces nonderivakle from a potential,

{6},

{c) the generalized analytic, algebraic and geometrical formulations

Egs. {11} and (17}; and
are interrelated and compatible in the same measure as that of

the conventional analytic, Lie and symplectic formulations.

I+ should be here also recalled that the latter aspect is essentially
due to the property that the Lie-admissible algebras originate via the
brackets of the time evolution law of the generalized analytic equations,
and are characterized by a contravariant (regular) tensor S)LQ whose
covariant form S)Lv is symplectic-admissible, and viceversa. Thus,

a crucial condition for this compatibility is the joint Lie-admissible

algebraic/symplectic-admissible geometrical characterbvia the rule

NI -1
(sMY) (S puny )77

By here restricting the analysis to only autonomous systems

{nonconservative systems without an explicit dependence on time) and to
AA

only the time-component G( t )& G(3.1), the Lie-admissible formulations

{a), (B) and (C) outlined above allowed the construction in paperl of

the following Galilei-admissible covering of the cancnical realization

PRSPl ICE
O LPOb

of the Galilei group of translations in time

T ¥ 2

G(t). e DeP G e (19) -

LIE TENSOR LIE-ADMISSIBLE TENSOR

obtained via the sole replacement of the Lie (or cosymplectic) tensor

P 4
with the Lie-admissible (or cosymplectic-admissible) tensor S

without changing the Hamiltonian, the parameter £ and the base manifold
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(€) admitting different (generally nonisomorphic) groups in the

i - i b, . - I
with local coordinates standard realization under the limit 8§ —= .

AA . 1 :
G{ t erged form th nalysis of e as bein . R
The structure G{ ) emerg ® anaty paper g In particular, all these features of the Lie-admissible groups

i Li . First of all, from P . : :
a rather peculiar type of connected Lie groups irst ot a were conceived for the specific objective to verify our fundamental
inui it th tivit ropert, . . .
the assumed continuity cond:l,t:l.ons, & conneciivity property }imit (3). The hope for the joint achievement of the form-invariance
L.:,Ma [0/4 = h /'-‘l (19a)
E'—DO (2) was .supported by the crucial property of Egs. (4) according to

Il;)‘* - e {E 6(:( (&H /a } l:)/"‘\ C/q b) which the tensor Sy is constructed in such a way to eliminate
- XP (DBP/DL: the forces which break the original symmetry G( ’é ), while the Hamilto-

and the composition law . f . A .
3 nian H is invariant under G{ t } and remains s¢o when used as a generator

A
a3 (2)=3(t+t) | qub)e G LE), (o) et
A number of examples were worked ocut in paper:L as well as in the

A A .
ily infer that G( £ )} is a connected Lie group. 7 . , .
we easily 1 ( ) g P subsequent i:aper . In these cases the Lie-admissible formulations did

AA
However, such group G{ t ) is non-Lie in the neighborhood of the

perform the desired function, that is, the pragmatic identifications of

identity because, by construction o . st
identity At ! means for the explicit construction of nonmanifest symmetries verifying

A t_ga({sq H /D l)/"‘: 19}4 2 (L H) C‘?J) properties (2) and (3). However, the problem whether these Lie-admissi-
\'.7 = Z F’(DL T * g d ’ ble methods are "universal", that is, capable of producing a covering
(b H) — NON-LIE, LIE-ADMISSIBLE PRODUCT form-invariant description for all Newtonian systems of the class con-
Also, e( ’é Y is constructed in terxms of the generator H, the parameter sidered, was left open. Numerous other technical problems were also
’1} and the base manifold M(b) of a different Lie group, the limit group left open, and the analysis was presented in the intended spirit: a
Gt % ). owing to these rather péculiar features, the structures of mainly conjectural first SteP-B'g
the type E( £ ) were called in paper’ Lie-admissible groups in the In this note I shall
sense of - Present a needed clarification on the realization of Lie-admissi-
{a) being ord,inary Lie groups, although realized by means of the ble algebras in Newtonian Mechaniecs.This will be done by inspecting the
generators, parameters and base manifold of . different realization of paperl and by presenting an alternative; regular, reali-
(generally nonisomorphic) Lie groups {(without prohibiting the zation. As an incidential remark, a realization of Lie-admissible
existence of the custeomary, standard realization}; algebras via singular brackets will be also prz=_-sento5:tfi.:|'0
(b) admitting a non-Lie, but Lie-admissible algebra in the neigh- - Indicate that, for the case of autonomous systems, the Galilei-
borhood of the identity; and, most importantly for limit (3), admissible transformations /GE( £ } are indeed universal, that is, they

provide the form-invariance for all the systems of the class considered
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while they satisfy limit (3). A aumber of examples will be also worked
out,

-~ Qutline the reasons for my hope for a possible, future, coordi=-

nate free—globalization of the symplectic-admissible gecmetry. For this

objective T shall first recall the known property at the basis of the
globalization of the symplectic geometry, that is, symplectic forms

(15) preserve their symplectic character under arbitrary (but of class
COo and regular) transformations of the local coordinates.Then, I shall
- indicate that this property extends to the symplectic-admissible forms
{12} in its entirety. The problem of the possible globalization of the

Galilei-admissible relativity will be then briefly considered.

The formulations of paperl were based on the realization of

system (4) via partial differential equations of the type
D bY

N

in the 3n unknown functions R

e

— T =, JCE@@/@;’)#Q (22a)

[LR (z, by, ==Y,

{the last 3n functions of the set

{ )& are assumed to coincide with the Cartesian coordinates rka to

(22 b)

preserve the direct physical significance of the momenta Pra in EBEgs.

(5)}). This vields a realization of the tensor S/LA\’ R
5 ~

“~_M4“w
which is indeed symplectic-admissible because the attached tensor

(23

o kY
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‘fb sz (;24_)

) bf*

/7) E;M
Db’

S~ B, = L,

mV v

verifies the antisymmetry and closure conditions (14), by therefore
characterizing a symplectic form {(15}. As a result, realization (22}

of our fundamental equations (4) does verify our geometric reguirements
in their entirety.

Howewver, the associated algebraic profile needs a clarification.

The contravariant form of tensor

H(p) =

\ d

(23) is given by

(R(@)
/LA

(25)

and characterize the brackets

(q QB
B -
(ﬁ) >(b,R) )E}A/ 0 R J

A= AR,
15 :Tlg CL,FA)/

(2¢)

which are formally Lie-admissible in the sense that the attached

(TDFi 0E5 O)E;/D(q (—
- 7)
(P"B)(b,re) (B’ﬂ)(bﬁ) [’—) (lail) KN’MD& (DLHQQ

have the structure of the Poisson brackets when realized in the (double
dimensional) space of the variables {b,R}.

The point which needs clarification is that brackets (26) are not
Lie-admissible when reduced to the sole dependence on the b-variables.

This is due to the fact that, when the attached brackets are written

in such a form



na Nk P8 2B R dd nop o
(R'B)(b)ﬂ (B,G)(b) /—)_E‘"DR Db H‘@Q % f( )

H= r(b)

they do not verify the Jacobi law

(RoB)ac + (BoC)od +(CoR)oB £ 0 QF)

B=B(b)

¢.8.,

because of the lack of commutativity of the second-order derivatives

in the b- and R—quantitiesll

A0 [eral ?L_”Dzﬂ
OEOR, f’DU"QB"QR RQH‘

O
QLK)
(30)

m;f

el

R,

as the reader can verify with a simple but tedious inspecticn.

In this note I shall however indicate that, when Lie-admissibility

in the sole b-variables is desired, it can be consistently formulated.

The net effect is that this situation, rather than being here considered
as a drawback, creates instead the rather intriguing problem of the
"degrees of freedom"of the Lie-admissible formulations in general and
of the Galilei-admissible relativitylin particularj that is, the study
of the family of solutions (st'V> of Bgs. (4) as well as of their
algebraic and geometrical character.

For this purpose, I shall call the brackets (A,H}) cf the genera-
lized time evolution law (7)

. iz R
- formally Lie-admissible, when they are Lie-admissible in the

formal 12-dimensional space of the variables {b,R), as presented
in paperl, and

-~ gtrictly Lie-admissible, when they are Lie-admissible in the
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dynamical space of the b-variables, as I originally introduced

13
them in my earlier studies on Lie-admissibility .

In this note I would like to indicate that the reformulation of
the content of paperl in terms of the notion of strict Lie-admissibi-
lity is indeed possible. It is advantageous to consider separately the
most relevant profiles under consideration.

1. ANALYTIC PROFILE, Permit me to recall the algebraic motivation

for my efforts in relation to the construction of a generalization of

the "natural equations" for nonconservative systems, Hamilton's equations

COH_
(1) ijqu
OH

Fka- = -of t

(:) Q:ka.

It is given by the fact that the induced time evolutien law

étﬁ-\, A Ok 0(‘] QH (Dﬂ _f F) M (32)

with external terms

* Ka
A —_—

(31::.)
f=4,2,...,m
q=%,4 ,2./

(31b)

Kea. J

- e—

3 Db, DRV R, "

even though capable of providing a consistent characterization of the
dynamics, does not characterize a consistent algebra, as commonly
understood, because the brackets A# H violate the right distributive
and scalar laws (see ref.l, Sec. 3.1 for details).

It should be stressed that nonconservative systems can be and have
been studied without the backing of an algebraic structure for the
characterization of the complete systems {i.e., inclusive of the non-

conservative forces and not only restricted to its conservative part).
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However, it should be equally stressed that the lack of such an
algebraic backing constitutes a rather significance methodelogical
drawback at numerous levels of study. The reader may appreciate the
point by attempting the study of physical issues such as, the Galilei
relativity, the gauge symmetries, the notion of spin, etc., without
the use of any algebra at all, whether Lie or not.

¥n conciusion, Hamilton's eguations with external terms, even
though analytically consistent, exibit a major methodeological deficiency
on a comparative basis with the same equations without external terms,
the lack of a consistent algebraic structure.

The simplest way known to me for removing this deficiency and
transforming Egs. (31) into an algebraically consistent form, ig given

by the following generalized equations
» Ka PR 5
) Pm

}’SKQ:——QH _ “oH

Ka e V]
th‘\ y QPJ"C

where the s-matrix is a solution of the system {for given conservative

Hamiltonians H and nonconservative forces F = FNSA)

‘ NSA
Ebk . /;Z_Et_ - T: & = fgr
ayec iy ?i
I

C35 a)

5-(5)=oT, (33b)

ko Gw
and where the symmetric condition on the s-matrix is imposed for
later needs.

Indeed, Egs. {33} now induce the time evolution law

écs,,tf:)
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VA OH DA R @4 = (A,
e Ka L“J°
S qﬁu QP Q™ QP Pre (35)

S =D
do verify the right and left distributive

whose brackets (A,H)
and scalar laws (in the space of the independent (E,E)—variables).

As a result, Egs. {33) do characterize a consistent algebra for the
treatment of (complete) nonconservative systems(i.e., inclusive of the
nonconservative forces). Also, Egs. {33) trivially recover the conven-

tional Hamilton's equations (without external terms) at the limit of

null external forces

S H s ka _D H
QLKA ’?l__ z ’
\’b F%f&
Qn

-D FKA
° ;'Dl%
-5 - -
ch)C«/le [’3,(“__ (Y n ke

In conclusion, Egs. {33) are Hamilton-admissible eguations in the

L i (3¢)

Nsa
F' o
dxn

FK“ e D?,'“

sense of paperl, that is, they
- represent nonconservative systems;
- characterize a consistent algebra via the brackets of the
time evolution law; and
- recover the conventional Hamilton's equations at the limit of

null value of the nonconservative forces14

2. ALGEBRAIC PROFPILE. It is easy to see that the brackets (A,H)

of the generalized time evolution law (35) are strictly Lie-admissible
13

{as those of refs, ). Owing to the symmetric character of the s-matrix,

the attached brackets



(A, %) - (,8)= 2 [A,H]
p [0 8 O
= Qak.\@#kk (Dhc&(bzka

(37)

LIE

are Lie in the 6n-~dimensional space of the independent variables
(5,9) {(in particular, they are simply twice the conventional Foisson
i~
brackets). As a conseguence, Hamilton-admissible equations (33) arxe
strictly Lie-admissible in algebraic character.
This algebraic property can also be seen by noting

that the brackets (A,H) verify the general Lie-admissible law (8) or,

equivalently, by writing Egs. (33) in the unified tensorial notation

EJ)A _ gzsﬁ*V OH _ o (38a)

| o bY ’
W) [ ey _ [ ° 1 H=T()-V(%),
) £) 7 § ) (-i &) ) (28h)

V. : ;
and by noting that the tensor s"¥is a solution of gsystem (9) in the
strict sense (i.e., in the space of the b-variables only, rather than
in the space of the (b,R)-variables).

Most intriguingly, Hamilton-admissible equations (33) and their

strict Lie-admissibie character are directly universal for nonconservati—

ve Newtonian systems, in the sense that they apply to all nonconsexvati~

ve systems (1) without redefinition of the Cartesian ccordinates rka

used in the experimental verification and the physical linear momenta
Pra © ™ Tka °
Equally significant is the fact that such universality originates

from the consistency of system (34) which is of algebraic, rather than
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of partial differential nature. In particular, under the assumed regu-
larity properties, ) H/"/D pj # 0 for 21l 3 = 1,2,...,n and ¢=x,¥Y.,2
c

and the following trivial, diagonal solutions

/L ]
(S:V): _j_ '_50 L (=) Fre { Sab (o sur)

ajb” y
ot G

is always possible and consistent with the desired strict Lie-admissibility.

As a result, our Hamilton-admissible equations are not only directly

universal for nonconservative mechanics, but their construction is

truly easy for arbitrary nonconservative forces FNSA(t,E,g).

Permit me to confess that this type of direct universality of the
Lie-admissible algebras in nonconservative mechanics is beyond the most
optimistic expectation of paperl. This point can be appreciated by noting

that the formal Lie-admissible algebras of paperl

are also

directly universal, but via the solution of system (22) of partial

differential equations. Such a system is consistent under the assumed

continuity and reqularity properties and, therefore, the existence of

formal Lie-admissible brackets is guaranteed by the existence theorems

of partial differential equations. Neverthless, the practical computation

cf a solution R}L becomes nontrivial for functionally involved forces

FNSA, assuming that such a solution can be practically reduced to a closed

form. The complexity of these computations for nontrivial forces FNSA

for the case of formal Lie~admissibility should be then compared with the

triviality of solution (39) in the same forces FNSA& for the case of

strict Lie—admissibility. v
The algebraically inclined reader might be interested to know that,

as it is the case for brackets (26}, the strict Lie—admissible brackets
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(35) also wiolate the flexibility law, the power-asscciativity law

and the Jordan-admissible law.

3.GEOMETRICAL PROFILE. It is also easy to see that our Hamilton—

admissible equations {33} are symplectic-admissible in geometrical

character. Indeed, the covariant version of the Lie-admissible tensor

-1
_ (57
( gao/u-v) 4 o
(c“:"’)::a}'b = ‘(l; ‘g;b E‘a/ally@oégA

is not symplectic, owing to the"symplectic-geometry-breaking™ terms

(39)
5,

(¢0)

~ s, (which are also the "Lie-algebra-breaking" terms). Neverthless,

form (40) is indeed symplectic-admissible because the attached form
v M v
Spy — Do = 59“@{5’“@45 - Gy, b ® odb
: K
=zwvdfo",\ab"=—4dhm/\dfc“ (41)

is symplectic (a multiple of the fundamental symplectic form}.

The covering character of the generalized formulations under consi-
deration with respect to the conventional analytic-Tie-symplectic formu-
lations is selfevident. In particular, the covering of the Lie-admissi-
ble algebras/symplectic-admissible geometry over the conventional Lie
algebras/symplectic geometry is three-fold, in the sense that the latter
formulations can be recovered from the former

(T} according to the attached rules of Lie-admissibility, Eq. (10},

and symplectic-admissibility, Eq. (16}:
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{II) as a particular case of the generalized formulations, because
Lie algebras are Lie-admissible and symplectic forms are
symplectic—admissible; and, perhaps more significantly £from
a physical profile,

(III) at the limit of null nonconservative (and Galilei symmetry-

breaking) forces

HAMILTON-~-ADMISSIBLE HAMILTON'S

EQUATIONS EQUATIONS

Lim LIE-ADMISSIBLE r—— LIE C“‘Z)
ALGEBRAS ALGEBRAS

NSA

Py 0

e SYMPLECTIC-ADMISSIBLE SYMPLECTIC
GECMETRY GEOMETRY

The interrelation and compatibility of the three generalized

approaches is also selfevident. The Lie admissible algebras verify
1,7
the"uncompromisable dynamical origin" of papers

via the brackets of the time evolution law of the analytic eguations,

. ¥ .
and they are characterized by a tensor SOF whose covariant form

) = (s,»*Y -1, is symplectic-admissible, and

Lso)»w) ! (So P-./
viceversa.
Finally, the formulations considered are strictly Lie-admissible,

as desired.

4. RELATIVITY PROFILE. In order to see that these formulations

are indeed applicable to the construction of the Galilei-admissible

relativity, we need only to verify the following

PROPQSITION 1: Form (40), here called fundamental symplectic-—

admissible form, provides an algebraic solution to system (4).

, that is, they originate
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PROOF .
D — S5 - 1 @T) are considered as a class and, thus, inclusive as a particular case
( 50) ( — = 4 o (‘_(_D_H'_ + Fﬁm) of forces derivable from a potential (but Galilei form-noninvariant).
The objective is here to illustrate how the strictly Lie-admissible -
T_—NSR (4_3) formulations considered in this note produce the desired nonmanifest
( z symmetries of systems {44} as a covering of Galilel's translations in .
= = Z) time.

(D H‘ ) (DH) Although not essential, it is instructive to first identify the

> P P

-(So)bP)

original manifest symmetry of the conservative subsystem. For the case

Q.E.D considered it is given by the canonical realization of G('t A )

This produces the desired effect, but now in a styictly Lie- G(_TZ) . ( EJ}.\) = Ox }:‘5 E w F'DH } (

admissible sense and via the solution of an algebraic system. I am here QbPOL

referring to the mechanism of elimination of the Galilei symmetry- 2! 2+ .t_’ [’Z, f‘ﬂ + ﬁ,' -‘[t’ H]'H]f - T+ [5 ID
breaking forces FVSPA yia the contraction of the symplefj:ic—-admissible - \of = !) + ilé - H] zéz - 4 H = P
tensor SO}AV with the nonconservative vector field :._—.\) . '—fj L ! * ET[ /9’ ] j"-
A few examples are here in order. First, let me ignore the presence H - :2’-. 2) m = 4 P ;D = t-,
of conservative and Galilei form-invariant foreces because inessetial
for our analysis.hlso, T consider for simplicity the case of only with trivial form-invariance
one space-dimension. Thus, the sul_)system verifying the Galilei relativity 9{ > ) J iﬁ)
is the trivial system of one free particle in one dimension. Then I ;t_/é_‘ = TJ Z 9( ~ = D (4'é)
implement this system with nonconservative forces which do not depend t
explicitly on time (autonomous systems). The subclass of system (1) I The point I would like to bring to the reader's attention is that,
am considering is therefore of the type unlike the conventional form
A
- N - b~ L= £rconst C+7) .
V)= (27)- ()~ (roree):
the canonical group of translations in time varies with the Hamiltonian.
(fm,__,_ /j_) ’ (44) Thus, different conservative and Galilel form-invariant forces fsA (# 0)-

1 imply different explicit forms of the canonical group G '1; }. Also,

where the reader will recall from paper™ that nonselfadjoint forces
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these explicit forms are sometimes of rather involved practical compu-

tation (depending on the explicit form of fSA) already at the level

of the conventional Galilei relativity for conservative mechanics. It

is of course expected that a similar situation occurs for the explicit

A
computation of the covering transformations G('Q ) which now vary, not

only with fSA, but also with FNSA. However, for the class of examples

considered below, £5® ig always null, the original symmetry (45)

. AA . s MEA
remains unchanged, and G{ t ) varies only with F .

now familiar rules, the Galilei-admissible covering
FNSA

By using

~ A
G( £ } of the group (45) is constructed, for each given . via

Eﬁ) ex};{k a()jﬁ(b@hj(bﬁ)

the expansions

G(’E):

A Az
z\ [z~ (e,u)+f?_((-e,ﬂ),ﬁ)+--- (48)

P f’ + ZET (P,H)-r zif_ ((,_—,}H)/H)-,«--._

i/ ::';é‘ }3 2/’ om ;:'i , f3 = ?;

where the brackets (A,H) are st;ictly Lie-admissible and given

explicitly by

(9 y DR QK (DR OH oA s H
) Ot’?P (DF(D’L /D]s @/o
-5 fb/fa/; F

EXAMPLE 1: Particle with constant external force.

"'_ﬁ"""“'/u - P , F= comst. 650)

— - F

The Lie-~admissible Eensor in this case is given by

(M)
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(51)

2"

o
4 £ )
F:

Expansion {48) then vields the desired explicit form of the Galilei-

(&)

admissible translations in time for the particle with a constant force

A

%:’Z¢2}:+:2L£‘2F, (52a)

sl A
]9:]9—#[“}:/
which do produce the desired form—-invariance (2), i.e.,
A ~
}3 + k F- - }3 )
P
4P - F
A-_ s
ol L

as a covering of the conventional Galilei transformations, limit (3).,

(525)

(53)

i.e.,
Az

\ _ " ! A N -
L )Z—’E-r&I)—r;q:éF t—tftk
A

. ] -

i}

A ]

Foe L=t

The last property to verify is that transformations (52} , in realiza-
tion (4 E)/ form a Lie-admissible group. The connectivity property,
Eg. (19), is trivially verified. The composition law, Eg. (20}, is

also trivially verified,

a “ A~ Az A, ~ N 1
%:—’2-!—2)’}; +EI£:2F:. (’Z—f-f:}:-rél—-& F)-f-}; G)-p-EF)—,r--Z

A PR NA A, _ a4y
Z ot U:-rbDP-*i‘(fHﬁ)QF) /g:;):* bF = F-{MU’Z:{E)F/

and, thus, transformations (52) form a connected Lie group. However,

1

the group is realized in terms of the generator H, the parameter ? and
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the base manifold M{(b) of a different group, the limit group {4.5)/

while it is of non-Lie, but Lie-admissible character in the neighborhood

of the identity, Egq. (21). Thus, structure (52) characterizes a Lie-
admissible group and this concludes the example.

EXAMPLE 2: Particle with a linear, velocity-dependent drag force

"::/*) _ —':’F (56)

The ({strictly) Lie-admissible tensor is in this case

v o
S5~ 4 (37)

yvielding the Galilei-admissible transilations in time for the particle
15

with a linear, velocity-dependent drag force

A YRy (592

/

’F: bo-TE (584

/

These transformations constitute a nommanifest symmetry of the eguations

of motion as a covering of the conventional Galilei symmetry for the

free case, in the sense that they are of nontrivial structure and

(Fhus) identification (see the next example for a better appreciation of

this point}; they verify the reguirement of form-invariance (ZU
N o S
= e = / (E;?‘l)
P «EF
ol - A (596)
S5 oThe = TP
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jointly with the verification of the limit (3).

row (e gh(eO) (R bp)
oo J, - Fe—“ﬂ’l‘ ?) /3

The verification of the property that transformations {58) in

1y

realization (4®) form a(connected) Lie-admissible group is left to
the interested reader.

EXAMPLE 3: Particle with quadratic (nonlinear) velocity-dependent

drag force

=) i (¢1)

= QT F>2
The Lie-admissible tensor is now given by

A4

(éfw) - O _/0-*/3 (62)

-1

yielding, via expansion (4u8) , the Galilei-admissible translations

in time for the particle with quadratic drag force

Bonaktn(tertp, (632

b p
i-:—ﬂ”b\}.‘) ’

which is a highly nonmanifest symmetry of the eguations of motion

1

i

(635)

jointly with being a covering of Galilei's transformations (L5).

Indeed, form-invariance (2) is now verified according to
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(/63441)

a_
&>

S
- .
’i+ﬁ‘@/’
_ P fe
- - -TP (64b)
(te TER)”
The verification of limit (3) as well as of the property for transforma-

tions (63)

the interested reader.

IVl
N

=
c;?

.
o3

to characterize a ILie-admissible group, is here left to

The above examples illustrate the following aspect.

A PRIMARY FUNCTION OF THE GALILET-ADMISSIBLE RELATIVITY IS3

To identify, among all reference frames admissible wvia

arbitrary (but of class C°° and regular) transformations,

those which leave form-invariant each given nonconservative

system (that is, each given nonconservative and Galilei-

form-noninvariant force), in such a way to verify law (3).

Equivalently, the above examples illustrate the covering form~invariant
description of physical systems provided by the Galilei-admissible

relativity for nonconservative mechanics,

Blthough not essential for the content of this note, the reader
should keep in mind the departures implied by such covering
deseription over the conventional
form-invariant description of conservative systems, as emphasized in
papersl'7
non-symplectic and nonconservative character of the Galilei-admissible
relativity. Apparently, these features of the relativity under study
have a precise function, upon quantization, for the characterization of

the interactions of extended, charged and massive particles at mutual

. I am here referring to the non-Lie, non-geodesic, non-inertial,
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distances equal or smaller than their charge diameter with conseguential
forces more general than £5® (nonselfadjoint); for the
study of strong nonselfadjoint interactions, in which case £5a represents

the electromagnetic interactions and FHSA

represents the strongjfor the
identification of the dynamical effects of these short range, broader
forces, such as the breaking of the 5U(2)-spin symmetry foxr the motion
of a charged, extended particle within dense hadronic matter (e.g., the
core of a neutron stax); the experimental resolution of the presence

or absence of predicted small deviations from Pauli's Exclusion Principle

in nuclear physics7; etc.

5. UNIVERSALITY PROFILE. The problem under consideration is whether

the Galilei-admissible transformations G ('@ } are "universal", that is,
capable of producing the indicated covering form-invariance description
for all nonconservative systems considered (local, class c® and
reqular}.

N

r ~tran—

From Egs. (&8)

sformations is trivial because

o % ke (2™ H)+ _b_.. (2™ H)H)+

we see that the universality of the

]

[P,

oLt

(((t"“ W) R), )
A ke
= P £ (Pon)r 5 £ @b‘"H) e
(65)
and this property holds for all Hamiltonians of the class admitted,

+ V(E), as well as, of course, for all FNSA—forces.

that is, H = T(p)
- A~
The universality of the p -transformations is not trivial, because

it implies the identities
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(P, ) + £ (e, 1)H) e b (ho ), W)

A A P 66
Ny« F2 2 8 “

dhu _

———
”~

k

H

where, as the reader should keep in mind, the product {(A,H) is non-Lie.
A formal solution of the problem considered is the following. The
issue can be essentially reduced to the problem whether the transforms
s ;1:_}‘ ~
of the functions - ’A(b) are the functions - ( b) of the

Fa)
transformed variables b , i.e.,

Eﬁ 2’-’-}/« :::——/4\ IL\IH\ —A:J*)‘ * (479_)
< 0 (b)= = (e bl=— (_19)/

i 1 o Pl 2

atﬂ): € = € ’ Qb(g’qu- (575)

It is possible to prove that this is always the case (for class
s

C:QO functicns <M in the neighborhood of a regular point b),

because property (é?dL) holds for connected Lie groups, while the
Galilei-admissible group 8‘( @ } is indeed a group of this type, despite
its "unconventional" realization (é'7i>> . This concludes our argument
for the "universality" of the component E‘(% } of the Galilei-admissible
relativity.

Tt is understood that the explicit computation of the transforma-
tions G’( @A) may be rather involved in practice. Also, these transfor-
mation may not exist in a closed form. But this is already the case
for the conventional canonical treatment of the Galilei relativity in

costumary conservative mechanics. In any case, permit me to confess that
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this universality is also beyond my most optimistic cvpectation at
the time of paperl.

The extension of the analysis to the case of nonavtonomous nonconser- -
vative systems is expected to require the transition from the symplectic-

1
admissible to the contact-admissible forms Presumably, this should .

produce a form—invariance also for the case of an explicit dependence
on time.

Considerably more complex remains the problem of the explicit
construction of the remaining nine comporents of the Galilei-admissible
transformations (Lie-admissible covering of rotations, translations in
épace and Galilei boosts), and of the expected scalar extension. As
stressed in paperl, the study of this problem demands the prior knowledge
of sufficiently well established Lie-admissible formulations, with
particular reference te (i) the transformation theory of the Hamilton-
admissible aquations,l6 {ii) the structure and representation theory

of Lie-admissible algebras,l7 and (iii)} the symplectic-admissible

geometxy.lg

. 1 : s
6. UNIQUENESS PROFILE. As stressed in paper , the Lie-admissible

formulations are not intended nor expected to be the only formulations
which are applicable for the treatment of nonconservative systems%gAs
a matter of fact, one of the primary functions of the Inverse Problen120
is that of indicating that, under certain technical conditions, all
local, class c® ang regular nonconservative systems can be treated
via conventional Lie formulations (Hamilton's equations, Lie algebras
and symplectic -or-contact geometry for autonomous-or-nonautonomous ’
systems)

This is essentially realized via}first,the representation of

systems (1) in terms of the SARLET-CANTRIJN extension of BIRKHOFF's
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equations in the original {E,g) = (b) variables
2R, R \dl ol R TEE
<,—#____i db” ol 2%,
kY DB/ dE

9
oy ok dg, ()

and then their reduction to a conventional Hamiltonian form, but in

new coordinates,

TR
LY DY c,
[« &0 mpr )0 Y

Sa
via Pauli-Darboux transformations.

As a result, our Galilei-admissible relativity is expected to have
anfhnage”within the context of the conventional Lie formulations, and
studies to this effect are solicited.

& few comments are however in order.

Recall that mechanism (é?)
Thus, nonmanifest symmetries of nonconservative systems can indeed be
constructed by using standard Lie technigques.However, the construction
of the Galilei-admissible relativity demands the joint fulfillment of
the crucial limit (3). It is in this dual respect (nonmanifest form—
invariance and covering character over the Galilei symmetry) that T have
encountered considerable difficulties with the use of Lie techniques,
as indicated in paperl {end of Sec. 2), while the identification and
use of the Lie-admissible technigues resulted more promising for a first
study of the problem. The use of algebras other than Lie-admissible
algebras had to be excluded owing to the loss, in this case, of a number
of crucial methodological aspects {e.g., the enveloping nonassociative
algebra) which play a subtle, but c¢rucial role in achieving the desired

form invariance of nature in a closed form. The use of formulations

of form-invariance is Lie in character.
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without a consistent algebraic structure (see the remarks in this respect
in the Section 1 for the Analytic Profile) had to be excluded
for a first study of the problem, howing to the difficulties of the
methods,in this case}to achieve a covering of each aspect of the Galilei
relativity (group, algebra and enveloping algebra). The net effect is
that the Lie-admissible formulations emerged as possessing a rather
unigue capability for a first construction of the Galilei-admissible
relativity. After all, they have been conceived to verify limit (3}

by construction,

Another aspect which deserves some attention, particularly from a
physical profile, is that the use of formulations other than those of
Lie-admissible type generally demand the abandonment of the direct
physical significance of the algorithms at hand. I am here referringg to
the fact that, when Hamilton-admissible equations (33} are used,

{a} the E'S are the coordinates of the experimental verification

of the systems (which is always noninertial for the available
technology) ;

(b} the B:s are the physical linear momenta m'é H

(e) H is the total mechanical energy (which is not conserved);

(d) §.='£ X R-is the physical angular momentum (also nonconserved}) ;

etc.

Tn the transition to the use of Lie techniques for the treatment
of nonconservative systems,these features are generally lost. First of
all, in the transition from Hamilton—admissible to Sarlet-Catrijn egua-
tions (€8) the function HPF loses its direct physical meaning as the
energy (and a similar situation occurs for all other generators of
physically relevant transformations ), even though the variables
can be (ﬁ,g) as for Egs. {33). In the further reduction of Egs. (6%)

to the Hamiltonian form (69%) ,there is a further loss of the direct
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physical significance of the algorithms at hand because the local representation via Egs. £8) , and then an additional system of
coordinates b'}* reached via a Pauli-Darboux transformation, besides nonlinear partial differential equations to reach a Hamiltonian. Some

being generally noninertial, are generally nonrealizable with experiments times, even for the case of simple nonconservative forces and low dimen—

(owing to a generally nonlinear dependence on the physical coordinates sionality, these systems are so complex to discourage the most devoted

and velocities). Lie scolar (assuming that their solution exists in the needed closed form).

In conclusion, when the condition of direct physical significance
In closing this uniqueness profile, permit me to indicate that,
of all the algorithms at hand (coordinates, generators of physically
even within the context of Lie-admissible formulations, the explicit
relevant transformations, etc.) is imposed, the Lie-admissible formu-
form of the analytic equations, the tensor S/’V , etc. is not unigue.
. lations again emerge as being rather unique . The reader will recall
7 A few comments on the possible relationship between the strictly and
from ref. +the numerous and delicate physical problems which are created
' formally Lie-admissible formulations of regular type (i.e., realized
by the guantum mechanical treatment of nohconservative forces without
via nondegenerate symplectic-admissible forms with nondegenerate attached
a direct physical significance of the algorithms at hand (e.g., the
sy ) symplectic forms) will be given at the end of this note.Here I would
risk of comparing the expectation values of the operators &i’l //Db,
ﬁ like to point out the existence in nonconservative Newtonian mechanics
— A4 ; «.. with experimental data on energy, linear momentum,....
4 M of degenerate, strictly Lie-admissible formulations.
when these operators do not represent the energy, the linear momentum,

Suppose that a nonconservative system (1) is assigned in the
..., a3 a necessary condition for the existence of a Schrodinger-
| {b} = (r,p) coordinates and performs the class C @0 ;, regular tran-
type representation). -
sformatiocns
But perhaps, the most significant argumeat in favor of the study

of Lie—admissible formulations and of their preference over Lie formu- 'Z E k TV (= (
b "“""> Z’ = )Zh Fk‘a WII: -— ...k(bl -IM’ )' 70)
ArS Al g B

lations for the treatment of nonconservative systems is as pragmatic

as conceivable possible. As indicated earlier, when a nonconservative
. The problem under consideration is that of constructing a representation

system {1) is assigned, the construction of their Hamilton-admissible

] ) of the system considered in the new coordinates (r,w), Hamiltonian

representation is trivial, and done via the solution of the algebraic e

. B = A{t,r,w) = B(r,p(t,r,w)) and generalized equations
system (34) .If one intends to study the same system via Lie technigues - R e
the situwation is profoundly different. In this case, even though the (—)Z 4a 'q la )lb /D H + B re L{‘D H
‘b p)

existence of a conventional Hamiltonian representation is guaranteed { fbé) (D W)'_b g /7_9
(undex the assumed continuity and regularity conditions) one must solve TV - rb /D H D @ p

ta L, — .
first a system of linear partial differential equaticns to reach a t 4 fat,‘j, + -Cq)b 9 W ’

/b
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under the conditions that the brackets of the time evolution law

A= (A )
prib el 0f g AN

- (D [N /Da;b /sza )b(b uf}b (72)
+ 2 C, ’lb(g_&q_ Qﬂ CoL Q—JI.
v e T

are strictly Lie-admissible but singular.
A solution of this latter problem is given by the following

generalized equations {where upper har denotes computation in the

(E,ﬂ)—variables)

(730\)

W, H
fa S - e X B -——' , 673_19)
~ )

which T here call a singular, strictly Lie-admissible generalization of

Hamilton's equations. The singular character of these egquations is

selfevident because the matrix of their characteristic tensor

o (5% fm)
e b (5*/“"): Aet WQW =
QFL‘C (a?kc C74)

is singular,

The strictly lLie-admissible character can be proved in the following
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way. The generalized brackets are now given by
A = (f-? H)C,t w)
_:_KDG Wp QH A @“W»‘L Low, Ol n
D2t D pra Dy W D Pre DB D Wy

The Tie character of the attached brackets can then be seen by per—

(75)

forming an inverse transform to the original variables, i.e.,

_Qﬁ @M:KDW,@
(?D F%Vc (:)éikr

/ab’ ( )(Db) @b

DATOH _
(S_Fé?a y (67:(.3,.‘5{) , A Q_
T = (ER), M=t

namely, the attached brackets coincide with the conventional Poisson

Q0
_ A QH
fbt‘“@}ok

h

brackets {(for the case of Egs. (33) the attached brackets-via the sanme
2

ruleeare twice the conventional Poisson brackets). This illustrates the

nonuniqueness of the generalization of Hamilton's equations of Lie-

admissible algebraic character.

As a simple example, the nonconservative system

/mé’+fpg»gz:c (77)



- 1316 -

{73} via the values

W = 5<’f3 [l .

can be represented with Egs.

! 2
H—-‘W /

, X )=

(72)
I’D =m 2

Almest needless to say, the regular Hamilton-admissible equations
(33) are preferable over the singular form {73) for numerous reasons,
such as the fact that these latter equations Jose a consistent
geometrical backing. Also, the construction of an analytic representa-
tion of systems (1) via singular egquations (73) is nontrivial,

Finally, these singular Lie-admissible eguations

do not appear to be relevant for the construction of the Galilei-
admissible relativity for regular nonconservative Newtonian systems,
are useful to illustrate

Neverthless, singular eguations (73)

the variety of realizations of Yie-admissible algebras which are possible

in Newtonian Mechanics.

7. GLOBALIZATYION PROFILE. Permit me to recall, in the rudimentary

language of local coordinates, the fundamental property of symplectic
forms, say, in the representation (15), which is at the basis of the
coordinate free-globalization of the symplectic gecmetry. It can be
MY remains symplectic

24

under arbitrary (but of class ¢® and regular) transformations. Expli-

expressed by saying that a symplectic tensor

citly, given a tensor )nf which verifies the nondegeneracy condition

and the closure properties (14}, all possible transformed tensors

B 5 b S, > R, /Dfi R, (ot P;V (79)
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verify the same nondegeneracy and closure properties., Indeed, the

/AV

transformation b -» b', while the closure properties in b’
)

_Dbf DY - p ($0a)
i (Ppe “’\fjfabw— 3

po (00 DA
(D!D\"t /Dbuu /Dbiv'

TP bLOLT bf”bl, oy _.ELP/D_E\
(Dl;t Q)LU”DbH/ th(fa (Dy *habiv (DUTCDBUM
bl Ap” @19-( QA(’QB gé, /D}:P/Dbf’bg"' %
O bR 287 RNTaLr 2L b a4 o

O (Fob)

7

}
nondegeneracy of CIZJ*V is ensured by that of and of the

}
pv T

CON,

Lo

|1

are ensured by Egs. (14).
# .. ” .
Along similar lines one can prove the algebraic image of this
'
property, namely, that if the tensor oﬂL}J is {(nondegenerate and)

Lie, that is, it verifies the properties

JZ,&Y_?L &v/u — D

AZ/AP/DLQ CQV(’/DJZ‘/‘ SRR
bl b Dhe

(&/a)

o, G?/b)
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then,all possible transformed tensors
YV
M ! Jz;“" CQ/“
B bPts) ;007 =40 =

b7 OF (b(b))/ay (82)

D bf Db°

are also (nondegenerate and) Lie, i.e.,

P =0
A

DT, IR e IR
o o D )

The interrelation between the geometrical and the algebraic

(&’3&,)

profile is then established by the fact that, under the familiar rules
-— ) v -1
BY IR P 52 ) )= (R) (%)
}A\’ - i /u v

the symplectic properties Pib) are equivalent to the Lie properties
(1)

arbitrary (class c®

, and viceversa, and this equivalence is preserved by

, regular) transformations. In turn, the pre-
servation of this dual symplectic/Lie character is at the basis of the
globalization of the symplectic geometry.

The remarks I intended for this note is that the above properties
extend to symplectic-admissible/Lie-admissible formulations. As a
matter of fact, the extension is such to apparently indicate the
existence of a covering geometry.

The property under consideration can be expressed in terms of

the following lemma, where we deal with the more conventional geo-
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metrical notion of differentiable structure on manifeld.

LEMMA 1: A (nondegenerate) symplectic-admissible structure

in a (Hausdorff, second countable, Q-

8y = (8 uw {b})

differentiable, én-dimensional} manifold M with local

coordinates b = (E'P) preserves its (nondegenerate)

symplectic-admissible character under arbitrary {class c®™

invertible) transformations b ~3 h' = b'(b).

PROQF. Let S}&V be symplectic—admissible, that is, such that

the attached structure § . S = (Q}n; is symplectic. Then,

all possible transformed structures

b M BB,

o o) 2kl g
b

(854)

(b(b))qb,v, (859

v MV R (’@"

are always symplectic-admissible under the transformations admitted,

because the attached structures

) fE; »1}4
S, -5

( ] o VX

_ 260 Db P

= Apr TPy A

are the transformed symplectic structures which, as such,

b (86)

—

h

@b/‘

are symplectic.

The preservation of the nondegenerate character of the structure %}Ag
and of the attached symplectic structure /4\) is selfevident and

this completes the proof. Q.E.D.
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The covering character of the property of Lemma 1 over the
corresponding property of symplectic structures is selfevident. It
was this property which suggested my conjecture in paperl, Sec. 3.8,

of a symplectic-admissible gecmetry, despite the inapplicability of

numerous methodological tools of the symplectic geometry, such as,

the calculus of exterior forms, the notion of closure, the Poincaré

lemma and its converse, the Lie algebras, etc.For more details see ref.
To study the algebraic counterpart of Lemma 1 we now define as

special symplectic-admissible structures, the (nondegenerate) symplectic-—

admissible structures Sz(b) whose contravarian- form Sz(b) chara-
cterizes a Lie-admissible algebra in the strict sense, The proof of

the following property is then trivial

LEMMA 2. The preservation of the special symplectic-admissible

character of a structure @Shv) under coordinates transformations

{of the admitted class) is eguivalent to the preservation of

the strict Lie-admissible character of the asscciated

contravariant form (S f* v ) = (8 vy )'1, and viceversa.
rd

We shall then symbolically say that the following diagram is
6

closed and invertible

special symplectig- special symplectic-

admigsible (S AV ) 2 (Si),(v) admissible
-1
8 py) = (8PY) be—sb (8'uw) = ('Y )‘1(37)

strictly Lie-
admissible

strictly Lie-

MY)e———>(s/"V) admissibie

We are now equipped to reinspect cur Galilei-admissible relativity
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from a new profile. The following remarkable property holds as a

consequence of those of Lemmas 1 and 2.

LEMMA 3. The special symplectic-admissible character of the

Galilei-admissible relativity with respect to the solution

"% - . (R ol SL-}-SA
(go};v)—‘: 4 o , (6")m;f_-> ( / Akuggg) b

of the fundamental equations
(oY ~ _— M
o = - dbﬂ:_:_. o b :de
AV M

—
(2= (g pme) () (§

and the strict Lie-admissible character of the associated

1]

(89)
,H=T(R)+Y(E)

contravariant form

©r)- (255"

are independent from the selected local coordinates.

Permit me to confess that this property too is beyond my most

R . 1 .
optimistic hope at the time of paper . Clearly, this property offers

realistic possibilities of reaching a globalization of the Galilei-admissi-

ble relativity as a covering of the conventional globalization of the

27,28
Galilei relativity. ’
* * *

I cannot close this note without a few remarks on the degrees
of freedom of the Lie-admissible formulations and an outline of the

theorems of Section 3.8 of paperl on the symplectic-admissible geometry.
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The symplectic limit of our crucial equatioas (4) yields the

familiar Hamiltonian case

— — ‘__") }4__-_.“ )A::dH Ci")
s, s owd L= et db'= ", db (

which, within a fixed system of equations of motion, Hamiltoaian H
and local coordinates b, admits a unique solution, the fundamental
symplecticf form &J.

The corresponding situation for the symplectic-admissible geometry

is fundamentally different. In this case Egs. {4) admit a family of

different solutions S)Av within a fixed system of eguations of motion,

for a fixed Hamiltonian and within a fixed system of local variables,

Indeed, a first class of different, but equivalent solutions is
provided.via the algebraic system (43), and consists of the class
of symmetric solutions of Egs. (34) (with s, either diagonal or not).
A second class of solutiorns is provided by the system (22} of partial
differential equations, with related functional degrees of freedom
in the R)¢ functions. The existence of additional classes of
solutions is then conceivable.

All these different sympleetic—admissible tensors S}*y produce
the same equations of motion in the same Hamiltonian H and within the
same coordinate systems, when used for our Hamilton-admissible equations
{33}. As such, they constitute a truly intriguing degree of freedom
of the Lie-admissible formulations which does not appear to have a
direct counterpart for the Lie formulatieons.

These degrees of freedom are a particular form of

1

geometric isotopy as presented in paper~ and, of course, realized for
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the case of symplectic—admissible isotopy.

1
As for the case of the symplectic isctopy {(ref. , page 290),

a first, rudimentary characterization of the symplectic-admissible

isotopy within a fixed system of local coordinates is prowided
by any invertible application

S ) —> D, (b) (2)

which preserves the symplectic-admissible character of the forms.

The preservation of the regularity of $,,as well as of the attached

5
P
52}*9 is understood.

There exist a number of ways to refine this idea up to a mathemati~
I mention, in particular, the

cally rigorcus formulation approach

to geometric isotopy by A. Banyaga which has been recently brought
to my attention. These refinements were noit considered in paperl angd
will not be considered at this time,

The problem of the possible existence of a conceivable extension
of Darboux Theorem to the symplectic-admissible geometry was inve-—

1

stigated in paper~ via the joint use of the notion of coordinate

transformations (diffeomorphisms) and isotopic applications.

Permit me first to recall, in the rudimentary language of
local coordinates, that Darboux Theorem}in essense, ensures the existence
0of a ccordinate transformation under which two arbitrarily given
symplectic forms can be interpreted as one the transformed of the
other. If one of the two forms is the fundamental symplectic form,
Darboux Thecorem ensures that

an arblitrary symplectic structure LﬂZPN(b )} can always be reduced

to the fundamental symplectic structure, and we shall symbolically write
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DARBOUX THEOREM FOR THE SYMPLECTIC GEOMETRY mation and an isotopic application under which two arbitrarily given

symplectic-admissible forms can be transformed one into the other.

Equivalently, an arbitrary symplectic-admissible form can always

Arbitrary . . fundamental
symplectic | Diffeomorphism symplectic ﬁ?ﬁ) be reduced to the fundamental symplectic-admissible form via a
form = form

coordinate transformation and an isotopic application. The proposal

of paperl can be therefore schematically written
For a rigorous geometrical treatment, see the recent analysis by

2
V. Guillemin and 5. Sternberg . EXTENSTON OF DARBOUX THEO

In the transition to the symplectic-admissible geometry, Darboux TQ THE SYMPLECTIC-ADMISSIBLE GEOMETRY
" Theorem does not apply as commonly understood, that is, via the sole

use of coordinate transfoxmations (diffeomorphisms). This can be easily Arbitrary diffeomorphism_Y fundamental (qea
symplectic- plus symplectic-

seen by decomposing a symplectic-~admissible structure into a symplectic admissible isotopy admissible
form form

and a symmetric part

A
6 — -+ 6 94) 0f course, this was intended as noting but an initial study of
—_— \) (W
/ﬁ“/ /Lk the problem with a trivial solution for the definition of isotopy given

above. The intriguing geometrical problem which is opened by such

Then the symmetric part prohibits, in general, the existence of a a proposal is the identification of that notion of isotopy under which
coordinate transformation under which two arbitrarily given symplectic- reduction (‘15) is mathematically nontrivial,
admissible structures can be considered as one the transformed of the This problem will not be considered at this time.
other. In conclusion, an arbitrary symplectic-admissible structure An equally intriguing mathematical problem, but this time within
cannot, in general, be reduced to the fundamental structure, say, the context of the theory of abstract algebras, is opened by the content
form @kc)) , via the sole use of coordinate transformations. of this note and, in the final analysis, results to be deeply related
However, such a reduction is always possible for the attached to the isotopic degrees of freedom. I am here referxing to the fact
symplectic part. The remaining component which cannot be reduced in this that the family of equivalent symplectic-admissible solutiens S)*V
way can be seen as belonging to the class of symplectic-admissible of our fundamental eguations (4} do not exibit the same algebraic
isotopy. This is, in essence’the extension of Darboux Theorem to the character, in the sense that their contravariant forms Sf“} , when
symplectic-admissible geometry proposed in Section 3.8 of paperl. It realized in the same coordinates b/*, do not verify the same laws.

can be stated by saying that there always exists a coordinate transfor-
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This is, in essence, the notion expressed by the strictly Lie-admissi-
ble algebras, the formal Lie-admissible algebras &nd, possibly, even
additional algebras characterized by the contravariant form of the
regular solutions of Egs. (4).
The algebraic problem under consideration can then be formulated

as consisting of the identification of which of the following two

possibilities is correct.

ALTERNATIVE I: All the (nonassociative) algebras characterized

~ .
by the contravariant tensors S M associated to the symplectic-

-1
admissble structures S}A\; via the rule (S}"V Y o= (S ),\v }

belong to the same fundamental class of Lie-admissible algebras

and are a manifestation of the degrees of freedom of these algebras

with particular reference to the mechanism of grading, the notion

31

of isotopy and the deformation theory.

ALTERNATIVE ¥I: The symplectic-admissible structures S}A\) charac-

terize nonequivalent algebras via the contravariant forms

(S}‘\) ) = {s » )"l, in the sense that there exist no means

32

of reducing all of them to a unique fundamental class.

The study of this problem is here also left to the interested
reader and we content ourself with the direct universality of the Lie-
admissible algebras for nonconservative mechanics as pointed out
earlier. Neverthless, the solution of the problem here identified
is clearly essential for the final identification of the algebraic
structure of the symplectic-admissible geometry.

In conclusion, the study of the e¢lassical treatment of local
. of their relativity

nonconservative forces and the problem

apparently identifies a number of new, intriguing, open, mathematical

problems,ranging from the notion of symplectic-admissible isotopy
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to the actual construction of the symplectic-admissible geometry: from

the definition of the radical of the general Lie-admissible algebras

to the identification of their classification and representation theory;
from the construction of nonassociative envelopping algebras to the

study of Lie group with lLie-admissible algebras in the neighborhood of

the identity; etc. A corresponding number of additional, equally intriguing

and open mathematical problems is identified by the study of the guantum

mechanical treatment of nonselfadjoint forces. All these open problems
are essentially created by the present lack of sufficient study of the
Lie~admissible algebras in bothfmathematical and physical literatures.

It is appropriate here to recall that, when the Lie algebras made
their first appearance in physies, their structure, classification and
representation theory had been well developed by mathematicians. In turn,
this mathematical study proved to be crucial for a number of physical
issues, ranging from cristallography to nuclear physics. On a camparative
basis, the Lie-admissible algebras emerge in rather unfavorable grounds.
Indeed, now that these generalizations of Lie algebras
are making their appearance in physics, their theory has been little
developed by mathematicians, on a comparative basis with the corresponding
situation for Lie algebras. In turn, this situation might have an adverse
effect on the branches of physics, engineering and applied mathematics
dealing with the arena of direct universality of Lie-admissible algebras:
forces nonderivable from a potential or, equivalently, systems of diffe-
rential equations which are not derivable froma (conventional) variational
principle.

In conclusion, a primary hope of this note is that of stimulating

studies on Lie-admissible algebras.
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R.M.SANTILLI, Hadronic J. 1, 223 (1978).

With the term "local" we intend to restrict the admitted
motions to those represented via systems of ordinary differential
equations, and exclude those represented via systems of integro-

differential equations.

. With the term "regular" we here refer to the condition that the

functional determinant of the Newtonian system of second-order
differential equations is non-null as a function of the local variables.
This allows the construction of an eguivalent system of first-order
differential eguations, i.e., the form of Newtonian systems used

in ref.1 as well as in this note.

For simplicity we shall tacitly assume the same conventions and

1

notations of paper™, including the convention on the sum of repeated

indeces.

We shall tacitly assume that the symplectic-admissible formsverify
a double nondegeneracy condition, that of the tensor S)A»? as well
as of the attached antisymmetric tansoI'J%PV. Notice that the former

does not necessarily imply the latter, and viceversa.

It should be here indicated that, in general, if a form (S/“'V)
verifies Egs, (9), i.e., it is Lie-admissible, its inverse (éf‘¢>
does not necessarily verify the condition for symplectic-admissibility,

: . ]
and viceversa. This statement, however, excludesthe degrees of freEdom”

of Lie-admissible algebras, such as those induced by grading, isotopy

deformation, etc. As a matter of fact, one of the intriguing problems



10.
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pointed out at the end of this note is precisely that whether all

forms (g}*")

can be reduced to a Lie-admissible form via the degrees of freedom

characterized by the symplectic-admissible geometry

indicated.
R.M.SANTILLI, Hadronic J. L, 574 {1978).

Regrettably, the presentation of the Lie-admissible formulations of
paper1 contains a number of imperfections, some of which have been
reported in the ERRATA-CORRIGE, Hadronic J. 1, 902 (1978}. The reader
interested in a more technical as well as more detailed presentation

of the Lie-~admissible formulations is urged to consult ref.?

R.M.SANTILLI, Lie-admissible approach to the hadronic structure, Vol.

II, Hadronic Press, Nonantum, Ma (in press for 1979 distribution).

The simplest and most intriguing origin of the non-associative, non-
Lie, but Lie-admissible algebras in Newtonian Mechanics of which I am
aware lies within the context of the Poisson brackets. Indeed, the

brackets

Qf (V8
2YAaPY N

A.B =

are nonassocialive and non-Lie. Neverthless, they are Lie-admissible

because the attached brackets
“OADB B DA
-8 B0 = [8]= Srop Touop,

are Lie (the conventional Poisson brackets). As a result,
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we have the following property.

LEMMA: The conventional Poisson brackets are the attached

brackets of a general (i.e., nonassociative, non-Lie and

non—flexiblel) Lie-admissible algebra .

Equivalently, we can say that the general Lie-admissible algebras

are at the foundations of the very structure of the conventional

Poisson brackets. This property can be better appreciated (and

understood, as far as its implications are concerned) by passing to
the corresponding guantum mechanical context. Here the product

is, of course, Lie and it is still constructed via the rule of
Lie-admissibility, as it must be the case for all Lie algebrasl,7.
However, such a guantum mechanical Lie product is now constructed

via the associative Lie-admissible product (of operators in a

Hilbert space}, i.e.,

AB -BA

[H,E{(@H

In different words, in the costumary gquantization process of forces

derivable from a potential

- L .
LazB],— = [AB],,,

we do preserve the Lie algebra, as well known. However, and this
point does not appear to be sufficiently identified
in the available mathematical and physical literature, in the

transition from the classical to the guantum mechanical realizations,
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we have a profound change in the methods for the construction of a

Lie algebra , in the sense that

- CLASSTCAL REALIZATIONS OF LIE ALGEBRAS are realized via nonasso-

ciative Lie-admissible algebras

aAB - B+A = LIE, A-B = NONASSOCIATIVE LIE-ADMISSIBLE;

- QUANTUM MECHANICAL REALIZATIONS OF LIE ALGEBRAS are realized via

associative Lie-admissible algebras

AB - BA = LIE, AB = ASSOCIATIVE LIE-ADMISSIBLE.

I claim that this situation has a number of intriguing consequences
(yhich have not been yet investigated, to my knowledge) already at
the level of the theory of Lie algebras. This is due to the fact
that the vast majority of mathematical studies of Lie algebras

have been done in the costumary abstract treatment, in which case

the above differentiation is lost. Also, any Lie algebra can be
constructed via the rule of associative Lie-admissibility (Poincaré-
Birkhoff-Witt Theorem), and this property might be the reason for

the lack of emphasis on the Newtonian structure of the Lie algebra
product.

The implications of the property identified in this footnote can be
indicated as follows. The algebraic structure which is at the basis
of numerous crucial aspects (construction of polinomials in the
basis, such as, the square of the angular momentumjthe representation
theory; the transition from a Lie algebra to the corresponding Lie

group; etc.) is the enveloping algebra of a Lie algebra, rather than

the Lie algebra itself. Certain technical reasons' then suggest
that the product of such envelop is that of the Lie-admissible rule.

Thus, the product of the enveloping algebras used in guantum mechanics
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is associative Lie—-admissible (the conventional product of operators).
The corresponding situation for the classical realizations of the

Lie algebras is altered by the property identified in this footnote.
Indeed, the product of the "nratural" enveloping algebra of the
Poisson brackets realizations of Lie algebra is expected to be
nonassociative ILie-admissible. This recovers in a natural way the

primary idea of presentation of Lie-admissible algebras of paperl,

that of enveloping associative and nonassociative algebras of Lie

algebras.

The indicated nonassociative Lie-admissible origin of the Poisson
brackets open up a number of intriguing and apparently new problems,
the most intriguing of which is the actual construction of the
conventional canonical realization of the Galilei group via a
nonassociative Lie~admissible envelop. This would then unify

the algebraic structure at the basis of both,the Galilei relativity
and its Galilei-admissible covering, in the sense that both relati-
vities would result to be different realizations of the same
nonassociative enveloping algebras. The relevance for such a possible
unified view for classical formulations is selfevident.

It is here appropriate to point out that the indicated nonassociative
Lie-admissible origin of the Poisscon brackets appears to have
implications of particular relevance also for the quantum mechanical
profile. In essence, it provides a possible framework for the
technical study of the Lie-admissible generalization of Heisenberg's

equaticns proposed in ref.7

A 1
A= () = - (ARH - Hsa)
R#2S
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as well as for the rather unpredictable property that these
equations too admit an algebra presexrving classical limit (ref.T,
page 747, in analogy with the corresponding Lie case.In essence,
according to this view, the conventional classical and quantum
mechanical treatments of Lie algebras for the case of forces derivable
from a potential appear as a particular case of a more general
classical and guantum mechanical context for the case of forces non-
derivable from a potential! in which the dominant role is played by
nonassociative Lie-admissibility; and, most impor tantly, such role
is preserved at both the classical and guantum mechanical level,
according to the schematic view below.

Time evolution law
under arbitrary local forces

EL]
G

quantiz.

Representation in texms of the abstract
nonassociative Lie-admissible product

Classical and guantum mechanical
realizations

@8 (AL H) gy

Cl. limit

Particular Lie case for forces gua tiz.

derivable from a potential

[A'H]cm

11, Of course, the partial derivatives in the b~and R variables commute

12,

in a number of particular cases, such as, for brackets in um—dimension/

for a linear dependence of the R's in the b's, etc. In these cases

brackets (26) are Lie-admissible in the b-variables too.

A comparative analysis of brackets (27) with Poisson brackets is

here instructive. In essence, the brackets
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SAVE

——

A OR,

QA E

AR - 5 B

, (0,822

exibit a number of similarities as well as differences. The former
are nonassociative Lie-admissible, as pointed out in footnote 0

the latter have a formally similar structure. Also, for the attached

_ppTeB B A
fB-BR =~,ep. SR,

A B B Of
(’Q!B) ’(B)ﬂ) ’Q‘—L?A()Qﬂ ) b)‘*@@

brackets

we have that the former are Lie, and the latter have a similar

structure. Finally, in relation to the variables of the brackets,

we have that (‘)L— .
Fo. ’:0\ Cb’)}"‘/j‘}ﬂ)/

= nga
[Q/b\ Ta/u Cb)/

namely, the canonical momenta are related to the coordinates via
the familiar canmical prescriptiams, while the R-variables are

related to the b-~variables via the solutions of Egs. (22).
However, there exist crucial differences between the brackets consi-
dered. The relationship between the p's and the r's is not integrable
to a form independent o.f the velocities. As a result, the p- and r-
variables are independent, as well known. For the case of the (b,R)
variables the situation is different. The imposition of the dynamigal

cndi Hons (22} to bradkets (A,H) implies a dependence be tween the R

, While
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and the b-variables. In turn, this has the following consequence.
For the case of the Poisson brackets, the guantities A,B,... have

a unique functional dependence in the (r,p)-variables. When the
same functiorns A,R;... are reformulated in terms of the (b,R) -
variables, Such uniqueness is lost, in the sense that each quantity
A,B,... can be written in a variety of ways as a function of (b,R).
Again, this is due to the fact that, out of the 12n variables
(b,R), only 6n are actually independent. However, if the lack of

uniqueness of the fuanctional dependence of the elements of the

algebra is permitted, brackets (26) are bona fide Lie~admissible

brackets, in the sense that the attached brackets are Lie for each

selected functional dependence.

In conclusion, the terms "formally Lie-admissible brackets” can be
interpreted in more than one way. First of all, one can interFret
these brackets without the dynamical conditioms {22), in which

case they are strictly Lie-admissible because the b and R variables
are independent (the formal aspect is then referred to the lack of
dynamics). Alternatively, one can represent brackets (26} in the
"hypersurface"” of the (b,R}-variables under dynamical conditions
(22) and accept the lack ofzgﬁgggional dependence of the elements
(in which case the formal character is referred to the lack of
algebraic characterization in the dynamical space of the b-variables

only). All this»ggﬁlﬁﬁg absence of the degrees of freedom of

Lie-admissible algebras (grading, isotopy, deformation, etc.)
13. R.M.SANTILLI, Meccanica 1, 3 (1968).

14. The Lagrangian image of Egs. (33) is also of some significance.

15.

16.
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. - —=Pje
admitted ,(_;)-?’.cno 7:“ J
for all j§=1,2,...,n and all alil a=x,y,2, the configuration

By recalling that, for the class of forces £5B

space image of the Hamilton-admissible equations (33), as induced

by a conventional Legendre transform, can be written

d AL L L FETR
Lor Qg T i =9
Nsa

The ahove equations are Lagrange-~admissible equations in the sense

of paperl. It is understoed that, for more general functional
dependences of the Hamiltenian, the above equations assume a more

general form.

This example has been already considered in paperl, Ssec. 4, but
with an explicit time dependence. We have recalled it here to stress
the fact that transformations (58) apply, strictly speaking, for the
autonomous case. The extension of the mcdel to an explicit time-

dependnece demands the use of the broader contact-admissible geometry,

It is an instructive exercise for the interested reader to verify

that none of the Galilei-admissible transformations (54), (58) and

{63) preserve the structure of the Lie-admissible tensor, that is,

1

they belong to the class of non-identity isotopiec transformations
1A v

Ry s Sy b SR ) 0k L S ()

' > Lt > bT 0

However, they are canonical-admissible transfermations in the

sense that they admit the conventional canconical transformations

NSA

at the limit of null F forces, i.e.,
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f:foﬁ

—_ 0
And indeed, the Gali lei transformations are canonical transforma-~

(%)

tions (identity isoctopic transformations og the Lie tensor,

in the language of paperl). Egs. (*) and (**) can alsoc be considered

as the defining conditions for a cancnical-admissible transformation,

For recent studies by a mathematician on Lie-admissible algebras

see H.C.MYUNG, Hadroniec J. 1, 16% (1978), and 1, 1021 (1978).

Besides the rudimentary treatment of paperl and of this note, this
geometrical profile does not appear to have been investigated by
mathematicians, to my best knowledge.lt is heped that experts of
differential geometry will consider the problem because it appears
to be relevant (if not crucial) for a fundamental open problem of

theoretical physics, namely whether

- the strong interacticns are indeed as currently represented,
i.e., analytically eguivalent to the electromagnetic interactions
(local and variationally selfadjoint) by therefore obeing the
same relativity and quantum mechanical laws of these latter

interactions; or

- the strong interactions are analytically noneguivalent to the
electromagnetic interactions {local and variationally nonself-
adjeint as an approximation of nonlocal nonderivable from a
potential), in which case the problem cof the applicable relativity
and guantum mechanical laws is open on both theoretical and

experimental grounds7-

in turn, the resclution of this issue is clearly crucial for the

19.

20.

21.

22.

23.
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problem of the structure of the strongly interacting particles.

Nonconservative systems can be treated with a variety of formula-

we here mention

tions. With reference to the analytic equations/

the following possibilities (without any claim of completeness).

{A) Conventional,regular,Hamilton's equations without subsidiarxy

constraints (Inverse Proble 2O);
(B) Regular Hamilton-admissible equations (Lie-admissible Problem3 )

(¢} Singular Hamilton-admissible eguations (i.e., equations with
singular Lie—admissible brackets};

(D) Singular Hamilton's eguations (i.e., conventional equations
but with Dirac-type Lie brackets):;

(E} Conventional Hamilton's equations with external terms (i.e.,

those without an algebraic structurg).

R.M.SANTILLI, Foundations of Theoretical Mechanics, I and II ,

Springer~Vergal, Heidelberg, W. Germany (in press for 1978 and 1979

distribution).
W.SARLET and F. CANTRIJN, Hadronic J. 1, 10d (1978).
See ref.l, page 327.

Notice that the attached brackets are regular. This illustrates

the possible occurrence for Lie—admissible formulaticns

det{s) = o, det(s - 8%) # 0

as well as the reascn for the assumption of double regularity of

5
footnote .
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Of course, this is a typical property for the geometrical treatment
in closed form. See in this respect S. STERNBERG, Lectures in

.Differential Geometry, Prentice Hall, Englewood Cliff, N.J. {1964} .

For recent treatments of the property in local coordinates see

ref.?l, ag well as J. KOBUSSEN, Hadronic J. 1, 966 (1978).

For a detailed study of this equivalence, see ref.2%, sections

I-2.7 and I-2.9.

Tt should be indicated at this point that, in general, the attached

structure (Jz}p¢ } of the Sympkectlc—admlsSLble forms (S/Ag )

-l

L
do not coincide with the inverse { JZf‘ of the Lie structure

attached to the Lie—admissible form (§ M }, i.e., the following

diagram attached to {(87) is open to the right

special symplectic— attached_
admissible C v )—> (52-)“,) = (S}.u ‘SY)A) symplectic

(S,)= ()" Q Ruy# O
’ 6»/) - C{ﬁfﬁ*") @/‘“’ "f) itl;:ached

J.M.SOURIAU, Structure des Systémes Dynamiques, Herman, Paris (1970) .

strictly Lie—
admissible

V. GUILLEMIN and S. STERNBERG, Geometric Adymptotic, fqmer. Math. Soc.

Providence, R.I. (1977}.

A. BANYAGA, Comment. Math. Helvetici 33, 174 (1978).

Permit me to recall the theorems of paperl to this effect, owing
to a subseguent errata-corrige of rather crucial importance.

. 1
In essence, I presented two theorems in Section 3.8 of paper

on the extension of Darboux theorem to symplectic-admissible geometry,
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one in iocal and one in c<losed form, The presentation of a detailed

treatment was deferred to re£.¥ .

THEQREM 3.8.1: Given the fundamental symplectic-admissible

form 5, on a manifold M(b,S4)_with local coordinates b/,

»r=1,2,...,6n, there exist an infinite number of diffeo-

morphisms ¢ : M(b,S,) —3 M(b',8'5) realizable through
2 2

class ¢, everywhere invertible transformations

b —» b'(b) under which the fundamental form 82 transforms

into an arbitrary symplectic-admissible form 8*5. Viceversa,

given an arbitrary symplectic-admissible form Sé in the

local coordinates b', there always exists a (class c® B

everyvwhere invertible) transformation b' —& b{b') which

reduces 5', to the fundamental symplectic-admissible form

5, in b up to leocal isctopy.

The first part of the above theorem, the direct transition

Sy —F S'zris intended to express the content of Lemma 1 of this

note. The inverse transition between

two given forms §'y —>

is made possible by the joint use of transformations and isotopieﬁ,

as elaborate in the text of this note.
We have recalled this theorem because, regrettably, the last words
"up to local isotopy" were not printed in the original version of
paperl (April issue of the Hadronic J., 1978), although they were
communicated in the immediatel§ subseguent issue of the Journal
(June 1%78), in the ERRATA-CORRIGE of page 902. Ax elaborated in
this note, the inverse statement without isotopy is impessible.
The closed versicn of this theorem was 5 simple extension of the
the presentation by V.Guillemin and S.Sternberg {Ref£?8, page 109)

of the Darboux-Weinstein thecorem and reads as follows,
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32.
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THEQREM 3.8.2. Let Mj be a submanifold of a manifold M and

let 5, and S'5 be two symplectic-admissible forms such that
2 2

S, Ml= S.lel - Then there exists a neighborhood N(M;) and

of My and a diffeomorphism f: N(M)) — M such that, up

to isotopy,

{a) f(m) = m for allm & M, and

{b) f*52 = 5'2.
For the sake of clarity, it should be stressed that the above

extensions of Darboux Thecrem are mathematically trivial

because based on a notion of isotopy not sufficiently
restrictive. Neverthless, they were sufficient for the physical

objectives of paperl

. As indicated in the text, the problem of the
proof of the above theorems undexr a more restrictive notion of

isotopy is left to the interested readers.

In essence, we would like here to point out the possibility that
the formal and strict Lie-admissible brackets are algebraically
equivalent, because the latter can be transformed into the formex,
say, via a grading mechanism (i.e., a Lie-admissible generalization

of the Lie mechanism of constructing supersymmetric algebras).

We here essentially would like to point out the possibility that
the formal and strict Lie-admissible brackets are algebraically

inequivalent when treated in the same local variables.
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