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Abstract

In order to study the problem of the relativity laws of nonconservative and Galilei form-noninva-
riant systems, two complementary methodological frameworks are presented. The first belongs to
the so-called Inverse Problem of Classical Mechanics and consists of the conventional analytic,
algebraic and geometrical formulations which underlie the integrability conditions for the exist-
ence of a Lagrangian or, independently, of a Hamiltonian. These methods emerge as possessing
considerable effectiveness in the identification of the mechanism of Galilei relativity breaking
in Newtonian Mechanics by forces not derivable from a potential. Nevertheless, they do not exhi-
bit a clear constructive capability for a possible covering relativity. For this reason, the second
methodological framework is presented. It belongs to the so-called Lie-Admissible Problem in
Classical Mechanics and consists of the covering analytic, algebraic and geometrical formula-
tions which are needed for the equations originally conceived by Lagrange and Hamilton, those
with external terms. These foriulations are characterized by the Lie-admissible algebras which
are known to be genuine algebraic covering of Lie algebras, and which in this paper are identified
as possessing (a) a direct applicability in Newtonian Mechanics for the case of forces not deriva-
ble from a potential, (b) an analytic origin fully parallel to that of Lie algebras, i.e., via the brackets
of the time evolution law, (c) a covering of the conventional canonical formulations as classical
realizations, (d) an implementation at a number of levels of Lie’s theory, including a fundamental
realization as enveloping nonassociative algebras, (e) a generalization of symplectic and contact
geometry as geometrical backing and (f) the capability of recovering conventional formulations
identically at the limit of null external forces, here interpreted as relativity breaking forces. A co-
vering of the Galilei relativity, called Galilei-admissible relativity, is then conjectured for indepen-
dent scrutiny by interested researchers. A number of potential implications, particularly for hadron
physics, are then briefly considered for future detailed treatment.
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1: STATEMENT OF THE PROBL EM where the r's represent, again, the system of Cartesian coordinates of the experimental

The objective of this paper is to attempt the construction of a covering of the Galilei relativity detection of the system considered.

which is applicable to nonconservative and Galilei form-noninvariant systems and which is capable When confronting a system of type (1. 2) the customary attitude is that of transforming it into

. . : ka .. . . : : . -
of recovering the Galilei relativity identically at the limit of null relativity breaking forces. The paper an equivalent system jnnew coordinates, say r"  which is consistent with the Galilei relativity.

This demands the transformation of system (l.2) into an equivalent system of the type

)
£ - oV &) (.3)
/ Kao ~ Q" ko’
Clearly, such a task is of rather delicate nature. In particular, it implies the study of a 4
where the forces f'ka are now derivable from a potential and Galilei form-invariant, or .into

then presents a few conjectural arguments for the possible relevance of such covering relativity

beyond the framework of Newtonian Mechanics, for subsequent more detailed treatment, A < J‘zj ) :m - f )K« (/’?_ ! ) -0
P

possib. le generalization of Galilei's relativity ideas which, within a Newtonian context, have

remained unchanged for centuries equivalent system of free particles in the r'-space.

Almost needless to say, a problem of this nature goes beyond my capabilities as an isolated o \ ).Z. )fc - o (/ - 1/-)
< 'S .

researcher. As a result, the analysis of this paper must be considered as conjectural, tentative

and yet inconclusive on both mathematical and physical grounds. As we shall see during the course of our analysis, a transformation of this type is indeed

In essence, 1 will have achieved my objective if I succeed in stimulating the awareness of our generally possible. Neverthless, this relativity approach to systems of type (1. 2) will be left

community of basic studies on the need to reexamine the problem of the relativity laws of Newtonian to the interested reader for a number of reasons.

Mechanics. Equivalently, this paper is an expression of my personal belief that Theoretical Physics First of all, the conclusion that system (1. 2) is consistent with the Galilei relativity (as

is a Science which will never admit terminal disciplines. To state it explicitly, I do not believe currently known),because there exists an equivalent system in new coordinates which is consistent

that the Galilei relativity is the terminal relativity of Newtonian mechanics, particularly for the with such relativity, is equivalent to the following opposite conclusion. Consider a Newtonian

case of the systems of our everyday experience, ‘that is, genuinely nonconservative system in the representation space of the experimental verification which is strictly consistent
) ) .

Permit me to begin with the following introductory remarks. with the Galilei relativity. By using the inverse transition from Eqs. (L.3) to an

(1) The need of a generalization of the Galilei relativity. Predictably, this need is not immune equivalent form (1.2), such system can be transformed into an equivalent system in new

to controversial aspects. Pending the identification of more technical tools, the argument can be coordinates which is incompatible with the Galilei relativity. The formal equivalence of the

summarized as follows. An "arena of unequivocal applicability” of the Galilei relativity in direct argument indicated above with its inverse would then imply that the original system is

Newtonian Mechanics is that of the systems whose forces are not only conservative, but inconsistent with the Galilei relativity, contrary to the experimental evidence.

also form invariant under the Galilei transformations, and T shall write Secondly, the transition from system (l.2) to the equivalent form (1. 3) has a number of
.o - ) \/ (%)
;o Fp— S0, £ ooV

C 1.1 ) physical implications which will be indicated during the course of the analysis. At this point
Ko D 'ZM‘ 2

Ez1,2,.80 N}- S :x,j/z/
it is sufficient to indicate that the transition considered implies a profound modification of the

where the r's are the Cartesian coordinates of the Euclidean space of the experimental detection structure of the acting forces, that is, from a genuinely nonconservative a Galilei form-non-

of the system, customarily assumed to be representative of an inertial frame of reference. invariant form, as experimentally detected, to "new forces in a new space which are derivable

My problem consists in attempting the identification of a covering relativity for local, class C @, from a potential and are form-invariant under the Galilei transformations. Clearly, care must

Newtonian systems whose forces are generally not derivable from a potential (nonconserva- be exercised before extracting physical conclusions within such an equivalent mathematical

tive) as well as generally form -noninvariant under the Galilei transformations, and T shall write approach. In the final analysis, the dominant physical character of the original system is that

M‘K"Z.kﬂ~ Skkcl}.) - Fko\(t-/:z-/-?;):‘) /
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of being nonconservative,and any physically effective relativity characterization must represent

<4 L2 ) this physical profile in its entirety.

Thirdly, the transition from system (1. 2) to an equivalent form of type (1. 3) or (1.4) is

rather complex in practical realization. In particular, as we shall see better later on, it often
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demands, as a necessary condition, that the new variables r’ka depend on the old variables 2
as well as their derivatives in a generally nonlinear way. This implies that, if the original
system of coordinates is inertial, the new system is generally non-inertial, as well as generally
non-realizable in an experimental set up.

I hope that these introductory remarks indicate the need of confronting the problem of the
applicable relativity laws to system (1. 2) in the system of coordinates of its experimental
detection, Once this problem has been resolved, then the study of the relativity aspect within
the context of mathematical spaces of new coordinates can acquire its proper methodological
role,

(2) The covering nature of the intended generalization. As is well known, new insights in

Theoretical Physics never "destroy" previous accomplishments of proved physical relevance,
They only implement them in a broader conceptual, physical and methodological context. The
problem of the intended generalization of the Galilei relativity would be inconsistent in its very
formulation unless such generalization is a covering (e.g., in the sense of ref, 1) of the conven-
tional Galilei relativity, In particular, the generalized and conventional relativities must be
compatible in the sense, e,g., that there must exist clear limiting procedures of clear
physical meaning which reduce the new relativlt}f to the old and viceversa. Also, the new
relativity must constitute a nontrivial generalization of the old for a nontrivially different
physical context,

As we all know, the Galilei relativity has already been subjected to a number of coverings.
The fundamental ones are those offered by Einstein special relativity and quantum mechanics.
In the former case we have a classical covering of the Galilei relativity for speed of the order
of that of light. In the latter case we have a covering of quantum mechanical nature for values
of the action of the order of magnitude of the Planck constant, while the speed remains much
smaller than the speed of light. These two coverings of the Galilei relativity can then be consi-
dered at the basis of two corresponding series of coverings. The methodological context of the
former is that of classical field theory or the general theory of gravitation, while that of
the second series is relativistic quantum nechanics, or quantum field theory.

The covering of the Galilei relativity which is attempted in this paper is according to none
of these lines. The intended covering is purely classical in nature and, thus, quantum mechanical
considerations are excluded at this time. Also, the intended covering is purely nonrelativistic

and, thus, relativistic generalizations are excluded too,at this time. As a matter of fact the
possible novelty of my efforts reljes precisely in the intent of identifying

a covering of the Galilei relativity which is independent from all existing coverings.
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This objective appears to be rendered identifviable, pending independent verifications, by
the central topic of the study, the nonconservative nature of the acting forces, rather than
the value of the speed or of the action . It is hoped that the following diagram is of some assistance

in the identification of the objective of the study and its relationship with other relativity profiles.

Galilei Relativity
Action: >> 1y
Speed: << C
Forces:conservative
and Galilei form-inv,

v

Quantum Mechanical Non- Classical Nonrelativistic

Classical Relativistic

Covering _relativistic Covering Covering
Action: 5> ki Action: &= b : Action: > h
Speed: ~ C Speed: << C Speed: << C

Forces: not derivable from
a potential and Galilei
form-noninvariant,

Forces: relativistic
extensions of Galilei
relativity forces,

Forces: quantum mech.
extensions of Galilei
relativity forces.

The reader should be aware that the above characterization is mainly qualitative‘ pending the
identification of methodological tools, to be outlined later on, which are capable of providing
a technical characterization of the nature of the acting forces in the transition from one
relativity to the other,

To summarize, the covering Galilei relativity which is attempted in this paper is purely
classical and nonrelativistic and it is centered on the transition from conservative to nonconserva-
tive systems. This is intended to provide the nontrivially different physical context indicated
earlier. Also, the fundamental requirement of compatibility of the classical relativistic and
quantum mechanical nonrelativistic coverings is provided by the clear limiting procedures
of clear physical meaning: v/c =»0 (or Inonii-Wigner contraction) and (t/action) -» 0 (or the
Correspondence Principle), respectively, The corresponding, but different,limit for the
classical nonrelativistic covering is: (Galilei relativity breaking forces)-» 0.

(3) The methodological tools of the intended generalization. Although not on a full time basis

owing to my involvement in other research topics, I have been interested in the problem of the
applicable relativity laws to nonconservative Newtonian systems since the time of my graduate
studies in theoretical physics (at the University of Turin, Italy, from 1963 to 1966). However,
it was not without surprise that an initial library search (conducted in 1963-1964) revealed that
the methodology for the treatment of forces not derivable from a potential had remained

virtually ignored in the physical and mathematical literatures,to the best of my knowledge.
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This accounts for the rather considerable period of time which has passed from the identification
of the problem to this tentative presentation. And indeed, in order to be able to even partially
confront the problem, I had first to identify the rudiments of the methodology for the treatment
of these forces.

As we all know, the virtual totality of the methodological context of Analytic Mechanics
enters, either in a direct way or in a subtle indirect way, into the characterization of the

Galilei relativity. I am here referring to the conventional analytic formulations (e.g., Lagrange's

and Hamilton's equations, canonical transformation theory, etc) , algebraic formulations (e. g. ,

Lie algebras, universal enveloping associative algebras, Lie groups, etc.) and geometrical
formulations (e. g. , symplectic geometry, Lie derivatives, etc.). The problem of the construction
of a possible covering of the Galilei relativity for nonconservative forces cannot be
studied without the prior identification of at least the rudiments of the methodology which is
applicable to the: forces considered.
The primary objectl ve of this paper is to outline my efforts in this respect and then to indicate
a possible covering relativity which can be conjectured on the basis of the emerging methodology.
In essence, Newtonian systems with forces derivable from a potential can be fully and
consistently treated with the indicated analytic, algebraic and geometrical formulations. The
situation for systems with forces not derivable from a potential appears to be different, And
indeed, at least in principle, these systems can be studied within the context of the following
dual methodological profile.

(I) Formulations based on L.ag‘range's and [-jamilton's equations without external terms .

Within the context of conventional treatments of Analytic Mechanics, the Lagrangian and
Hamiltonian are often assumed as possessing the conventional trivial structure L = T-V and

H =T +V, respectively. However, within the context of the broader discipline known as the
Calculus of Variations, these functions can have an arbitrary functional structure (provided
that certain continuity and regularity conditions are satisfied). The transition from the
conventional to an arbitrary structure of a lagrangian or a Hamiltonian essentially implies,
at the Newtonian level)the transition from systems with forces derivable from a potential

to systems with arbl trary Newtonian forces. The net effect is that the conventional Lagrange's
and Hamilton's equations can indeed effectively represent nonconservative Newtonian systems.
The knowledge of these functions then immediately implies the applicability of all the
established analytic, algebraic and geometrical formulations to the systems considered.
Explicitly stated, the knowledge of a Fymiltonian for a system of type (1. 2) implies the appli-

cability, say, of the canonical transformation theory, Noether's theorem, Lie's theory,
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symplectic geometry, etc., by therefore brin ging nonconservative systems up to the methodological
context of systems with forces derivable from a potential.

However, in order for such an approach to have any practical effectiveness, the fundamental
problem consists of the integrability conditions for the existence of a Lagrangian or a Hamiltonian
for systems (1. 2), that is, the necessary and sufficient conditions for systems with forces not
derivable from a potential to admit an analytic representation in terms of the conventional
Lagrange's and Hamilton's equations (without external terms).

I have been involved in the study of this problem, although also not on a full time basis, from
1973 until recently. My efforts for the Newtonian profile of the problem are presented in the
forthcoming monographs of refs.za/eband their extension to classical field theories are presented
in refs.3 Understandably, no relativity aspect is treated in these preliminary studies, apart from
few incidental remarks.

This first methodological profile for the treatment of Newtonian systems with forces not

derivable from a potential can be identified as belonging to the so-called InverseP roblem of

Classical Mechanics, where these terms can be referred not only to the integrability conditions
for the existence of a Lagrangian or a Hamiltonian, but also to the methods for their construction
as well as the consequential enclosure of all the available analytic, algebraic and geometrical
techniques,

() Formulations based on Lagrange's and Hamilton's equations with external terms. The

most natural way of representing Newtonian forces not derivable from a potential
is that originally conceived by Lagrange and Hamilton , that is, with external terms.In essence,
Lagrange and Hamilton appeared to be fully aware that the Newtonian forces are generally non -
derivable from a potential. The presence of external terms in their equations was thus essential
to avoid an excessive approximation of physical reality. Oddly, it has been only since the
beginning of this century that Lagrange's and Hamilton's equations have been "truncated" with
the removal of the external terms by acquiring the form which is almost universally used in
current physical literature.

This is not an occurrence of marginal relevance. Instead, it could indicate that the virtual
totality of our current theoretical knowledge based on analytic techniques at all presently known
levels, such as classical, quantum mechanical and quantum field theoretical,can be considered
as solidly established,provided that the underlying systems possess forces derivable from a

potential, that is, structures of the type L=T -V = Lf +L ,andH=T+V=H ee+ H

ree int fre int’
represent the systems in their entirety (I shall elaborate this aspect both in this paper as well

as in subsequent papers more specifically devoted to this issue).
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My first research interest has been devoted to the study of these equationsﬂ- The initial
library search conducted in 1963-1964 also revealed a rather sizable methodological gap existing
between the analytic equations without and with external terms which, to the best of my knowledge,
still persists as of today. In essence, while the study of analytic equations without external terms
has developed into the beautiful and articulated body of interrel ated methodological tools, known
as analytic, algebraic and geometrical tools (to ignore other profiles), no comparable development
has occurred, to the best of my knowledge, for the case of analytic equations with external terms.

For instance, questions for me of fundamental relevance, such as the algebraic structure
which underlies these latter equations, or their transformation theory, resulted to be untreated
in the available literature despite my laborious search,

The study of the methodology related to Lagrange's and Hamilton's equations with external
terms was clearly mandatory for my objective to attempt the construction of a covering of the
Galilei relativity., On analytic grounds these equations can be interpreted as constituting a
covering of the conventional equations in the sense of being directly applicable to broader systems
(that is, applicable without changes of the local variables) while capable of recovering the conven-
tional equations identically at the limit of null forces not de rivable from a potential. Also, and
most importantly, within these broader equations the Lagrangian and the Hamiltonian can repre-
sent not only the free motion, but also all Galilel form -invariant forces derivable from a
potential, i.e., Egs., (1.1), while the external terms can represent precisely the Galilei breaking
forces, i. e., the F-forces of Egs. (L.2).

It was however easy to s€é  that the presence of external forces is, by far, nontrivial on
methodological grounds. It is sufficient,in this respect,to indicate the nonapplicability of the
conventional canonical transformation theory; the fact that the brackets of the emerging gene-
ralized time evolution law violate the Lie algebra identities; and the inevitable , consequential,
nonapplicability of the symplectic geometry.

Rather than considering these occurrences as drawbacks, I interpreted them as promising
on methodological grounds. In essence, the fact that the brackets of the time evolution laws
violate the Lie algebra laws, by no means, implies that these brackets are unable to characte-
rize a well defined (nonassociative) algebra. And indeed, as we shall see later on, when properly

written, these brackets characterize a (nonassociative) algebra called Lie-admissible algebra

which results to be an algebraic covering of the Lie algebras, that is, (a) directly applicable
to a broader physical context, (b) admitting a consistent analytic origin fully parallel to that of

the Lie algebras, and, last but not least, (c) admitting a realization of the product which
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recovers the conventional Poisson brackets identically at the limit of null external forces.
These features essentially indicate that the Lie algebrasare not "lost" in the broader
Lie-admissible algebras. Instead, they are fully present, although in an embedded form.,
The identification of this algebraic character of Hamilton's equations with external terms

a
was my first step, as embrionically presented in refs,” '

’ c This step was clearly crucial
for any subsequent study. And indeed, the existence of a consistent algebralc covering of the
Lie algebras gave hope for the existence of covering analytic, algebraic and geometrical formu-
lations which (1) are applicable to the broader class of systems with forces not derivable from
a potential via analytic equations with external terms, (2) possess the same interrelations and
analytic origin of the conventional formulations, and (3) are capable of recovering the conventional
formulations identically at the limit of null external forces.

Most of my subsequent efforts have been devoted to the study of the possible existence of
these covering formulati ons. These efforts are presented in the forthcoming monographs of
refs, 5a e, . They can be identified as belonging to what I have tentatively called the Lie-admissible

Problem of Classical Mechanics, where these terms can be referred to the analytic, algebraic

and geometrical formulations based on analytic equations with external terms.

As we shall see, my conjectural arguments related to the possible existence of a covering
of the Galilei relativity are based on these broader formulations. To be explicit on this crucial
point, I do not believe that a genuinely new covering of the Galilei relativity along lines different
than those of the existing coverings can be effectively attempted without first identifying at least
the rudiments of the coverings of the central methodological tools of current relativity ideas:
the analytic, algebraic and geometrical tools.

(IIT) Joint use of Lagrange's and Hamilton's equations without and with external terms for the

representation of the same nonconservative systems. As we shall see, one of the most insidious

aspects of the problem of the relativity laws for nonconservative systems is of conceptual, rather
than technical nature. This is due to the fact that, owing to extended use, the primary contempo-
rary emphasis is in the study of "symmetries and conservation laws". The proper study of
nonconservative systems appears to demand a profound conceptual departure from this context.
On symmetry grounds, the emphasis is shifted to that of broken symmetries. These are familiar
terms in contemporary theoretical physics, but there is a central difference between their con-
ventional meaning in current literature and their meaning in this paper, which is advisable to
identify already at this introductory stage.

In essence, the terms "broken symmetries' are customarily referred to bhroken intermal

symmetries (e, g., the SU(3) breaki ng due to strong interactions) or to broken discrete symmetries
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(e. g., the parity violation in weak interactions). The terms "broken symmetries" in this pa-

per are specifically referred to broken continuous, connected space-time symmetries '

of course, at the Newtonian level.

An example is here crucial to understand the meaning of these terms, as well as the nature
of the breaking of the Galilei relativity provided by systems of type (1.2). Consider the spinning
top under gravity. The conventional treatment of this system is often restricted to its conservative
abstraction with consequential dominant role of the exact symmetry under the group of rotations,
SO(3). However, if this exact symmetry were actually realized in our environment, it would
literally imply the existence of the perpetual motion, trivially, from the conserved nature of
the angular momentum. The physical reality appears to be different. Experimental evidence
indicates that the angular momentum of the spinning top is not conserved. In turn, this implies
that the symmetry under rotation is broken for the system considered, as we shall identify later,
on  more technical giounds. This inevitably implies the loss of the group of rotation as a
methodological tool of any effectiveness. As a matter of fact, in order to properly represent
the system considered as it occurs in the physical reality, all my efforts will be centered in
producing the highest possible breaking of the symmetry under rotations. And indeed, this
implies the existence of drag torques which are responsible for the decaying in time of the
angular momentum.

In conclusion, in the study of Newtonian systems with forces not derivable from a potential
and Galilei form-noninvariant the conceptual attitude is shifted from that of the conventional
"exact space-time symmetries" to that of "broken space-time symmetries", with particular
emphasis on the fundamental part of these symmetries, the group of rotations 80(3) and related
Lie algebra §9(3).

This conceptual profile becomes even more insidious when passing to the complementary

part of the physical conservation laws . And indeed, to comply with the experimental evidence

that the physical quantities of the systems considered are nonconserved, the emphasis is now

shifted to the physical non conservation laws . The following remark may be of assistance in

i.dentifying the insidious nature of this profile. As we shall see, the use of the techniques of the
InverseProblem sometimes yields a Hamiltonian for the representation of nonconservative
systems which does not depend explicitly on time. This is the case, for instance, for the damped
oscillator. The use of the techniques of symmetries and conservation laws trivially yields that
such a Hamiltonian is indeed conserved. The issue which is however relevant is the physical
meaning of the mathematical occurrence I:I = 0 when the represented system is nonconservative
by assumption, that i3, when the experimental evidence indicates that the physical energy of

the system decays in time, as trivial for the damped oscillator,
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We reach in this way a crucial aspect of the problem of the relativity laws for nonconserva-
tive Newtonian systems: the applicable methodology must be capable of characterizing broken
space-time symmetries and physical nonconservation laws. This is exactly the opposite in
conceptual attitude of the corresponding setting for Newtonian systems which obey the Galilei
relativity,

As we shall see, the Lie-admissible formulations appear to satisfy this crucial requirement.
And indeed, they break the space-time symmetries to the point of rendering all Lie algebras
inapplicable "ab initio", whenever the external terms are nonnull. The intriguing aspect is
that the broken symmetries do not remain algebraically undefined, as in conventional (classical)
treatment.  Instead, they acquire a broader algebraic structure which appears to be parallel
in physical effectiveness to that of the Lie treatement of exact symmetries, although the conceptual
and methodological context is now profoundly altered. For, instance, with reference to the case
of the spinning top under gravity, the Lie algebra of the group of rotation has the precise physical
meaning of representing conserved quantities via its generators, the angular momentum components.
In the transition to the case of the nonconservative spinning top represented with Lie-admissible
formulations, this Lie algebra S0(3) becames undefinable in a consistent way because the basic
analytic equations are non-Lie in algebraic character. However, the SO (3) Lie algebra results
to be replaced by an SA3) Lie-admissible algebra which is not only fully defined on algebraic grounds,
but also such to directly express the nonconservation of the angular momentum components.

As we shall indicate in details, this SQ(3)-admissible algebra results to be an algebraic covering
of the conventional S0 (3) algebra in the sense of (a) possessing an analytic origin fully parallel
to that of the latter, (b) being differentas algebraic structure , that is, being a non-Lie algebra,
and (c) capable of recovering the latter identically at the limit of null nonconservative forces.
Most importantly, while the equations are form-noninvariant under the conventional rotations by
central requirement,the Lie-admissible context appears to produce generalized transformations
which leave form-invariant the nonconservative (nonlinear) .equations of motion,

In conclusion, the covering of the Galilei relativity which will be conjectured in this paper
is based on the attempt of embedding the Galilei algebra into a covering Galilei-admissible
structure. The embedding will be technically realized via the embedding of the universal enve-
loping associative algebra into a nonassociative but Lie-admissible covering which preserves
the base manifold, the parameters and the generators of the original structure. In turn, this
Lie-admissible envelopewill open the possibility of having, on one sideja Lie-admissible behaviour
in the neighborhood.of the identity while, on the other side, producing generalized, connected
transformations under suitable integrability conditions. In turn, these latter transformations

will open the possibility of leaving form-invariant the nonlinear, nonconservative systems.
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Predictably, in a program of this nature, the technical difficulties which I shall identify
(without any claim of solving any of them) are expected to be conspicuous. It is in this respect
where the dual methodological approach to the same systems acquires its full light, I am here
referring to the joint use of the analytic equations without and with external terms for the repre-
sentation of the same system, and of the related methodologies  (the InverseP roblem and the
Lie-admissible froblem, respectively).

It is relevant here to indicate that my initial efforts at the construction of, for instance,

a covering of the canonical transformation theory for Hamilton's equations with external terms
have encountered such severe consistency problems, to force me into the labarious study of the
Inverse Problem. And indeed, since the analytic equations without and with external terms
represent the same system by assumption, the knowledge of a Hamiltonian for the former via
the Inverse Problem finally allowed me to construct the transformation theory of the latter

as an "image" of the conventional canonical transformation theory. The consistency of the
approach was now guaranteed. But then for the approach to be of any practical usefulness, the
knowledge of a Ramiltonian for nonconservative systems (1, 2) was mandatory. This is, in
essence the spirit of the methodology of the Inverse Problem,

In conclusion, conservative systems can be effectively treated with only the conventional
analytic equations (i. e. , thosewithout external terms). When nonlinear’nonconservative systems
are considered/the situation is different, In this case, owing to the complexity of the problems
to be confronted and, in due time, solved, the most recommendable attitude is that of using the
totality of the available techniques, whenever possible. These techniques can be classified into
two groups, here called those of the Inverse Problem (for analytic equations without external
terms) and of the Lie-admissible Problem (for analytic equations with external terms), It is
hoped that a judicious interplay of these two complementary methodological profiles will result
to be of assistance in the study of the problems to be confronted. For instance, each insight
reached within the context of one approach can be subject to consistency verification within the
context of the other. Similarly, aspects which are of difficult treatement within the context of
one approach may result to be more treatable within the con text of the other.

My use of this dual methodological profile will be the following. That of the Lie-admissible
Problem will be used as the fundamental constructive tool of the intended covering relativity, while
that of the Inverse Problem will be used as a methodological backing only. The use of the same
methodologies but with different roles, however, is notexcluded, but actually encouraged.

The organization of this paper is the following. In Section 2,1 shall present
the rudiments of the methodology of the Inverse Problem as a review of refs, ' while,

in Section 3,1 shall presents the rudiments of the Tethodology of the Lie-admissible problem
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as a review of refs.4 ! 5 . The reader should be alterted that, to reduce this paper to

a minimal length, the proof of all the theorems presented in these two parts is either left to
the interested reader or to the inspection of the detailed presentation of the quoted references.
In Section 4 I shall then present the conjecture of the Lie-admissible covering of the G alilei

relativity, called Galilei-admissible relativity,and work out few simple examples. Finally, in

Section 5,1 shall present few highly conjectural remarks related to the possible physical relevance
of the analysis for non-Newtonian frameworks. I am here referring to possible classical
relativistic and quantum mechanical extensions.

It is rather tempting in this latter respect to recall the fact that, irrespective of whether
actually constructed or only identified as plausible, any new relativity idea has always proved to
have a deep impact in our representation of physical reality. Most notably, this was the case
of the physical role of the Einstein special relativity for our representation of the electromagnetic
interactions in general, and of the atomic structure in particular. The intended Lie-admissible
covering of the Galilei relativity will be presented for its arena of clear poten tial significance,
the Newtonian systems of our everyday experience. However, let me confess that the intended
arena of applicability, upon a number of technical implementations, is that of the old idea that
strong interactions in general, and the strong hadronic forces in particular, are not derivable
from a potential, that is, they are precisely of type (l. 2) at the primitive Newtonian level,

In essence, the moment I was taught the profound physical differences which exist between the
electromagnetic and the strong interactions, I had difficulties in accepting for the latter interac-
tions basic concepts, laws and principles which are essentially the same as those of the former
interactions. The reason was due to the fascinating physical effectiveness of established disciplines
for the electromagnetic interactions versus the lack of any comparable physical effectiveness of
the same tools, when applied to the strong interactions. If the strong interactions are assumed as
analytically equivalent to the electromagnetic interactions (i.e., both derivable from a potential),
I saw no way of escaping from the inflexible laws of established disciplines. The representation
of the strong interactions (and the strong hadronic forces in particular) as still local, but analytically
nonequivalent to the electromagnetic interactions (i. e. , nonderivable from a potential), appeared
to me as sufficiently interesting to deserve a study prior to the confrontation of more complex
models, e, g., in terms of nonlocal forces not derivable from a potential. A part from a new me-
thodological horizon which appears to be stimulated by this line of study,a most intriguing aspect
is that the approach appears to produce a profound differentiation of the electromagnetic and the
strong interactions in the physical space of their experimental verification (Euclidean or Minkowski).

In conclusion, the hope which stimulated this work is that of being able to Study, in due time,

a possible differentiation of the atomic and the hadrenic structure via the relativity laws.
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2. RUDIMENTS OF THE ME'THODOLOGY OF THE INVERSE PROBLEM

The Direct Problem of Newtonian Mechanics is the conventional approach according to which

one assignga Lagrangian L(t,q,q) and then computes the equations of motion with Lagrange's equa-

tions
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(throughout this section we shall use for conciseness the terms "Lagrange's equations" to denote

those without external terms and the presentation will mainly deal with generalized coordinates).

The Inverse Problem of Newtonian Mechanics can be empirically defined as consisting of the

inverse approach according to which an arbitrary (quasilinear) system of second-order ordinary

differential equations is assigned

FK(C’) = HK v (t;ql?.) ;700 -+ BK (E‘)q/ '?’):Dr (2.2)

and the knowledge of a lLagrangian for the representation of these equations with Eqs. (2.1) is
requested.
At a closer inspection the problem essentlz;lly consists of the following aspects:
(a) the necessary and sufficient conditions (integrability conditions) for the existence of
a Lagrangian (or, independently, of a Hamiltonian) for the analytic representation of

generally nonconservative Newtonian systems (i. e., second-order ordinary differential

equations which are linear in the second order derivative q k, but generally nonlinear
in the first-order derivatives r:}k and in the generalized coordinates qk as well as
generally depending explicitly on time) 3

(b) the methods for the compumtion of a Lagrangian (or, independently, of a Hamiltonian)
from the given equations of motion when their existence is ensured by the integrability
conditions; and

(c) the significance of the underlying methodology (inclusive of the established analytic, alge-
braic and geometrical formulations) for the study of nonconservative systems, e.g.,
transformation theory, symmetries and first integrals, etc. .

On rigorous terms, the problem is known under the name of Inverse Problem of the Calculus

of Variations in which grounds it can be technically identified. However, we are not interested
in this paper in the extremal aspect of the problem and, as such, this latter profile will be
ignored, The reader, however, should keep in mind that, even tough such extremal aspect

can be effectively ignored in the study of problems (a), (b) and (c), the underlying techniques
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I shall use were conceived within the context of the Calculus of Variations and remain strictly
variational in nature, I shall make a genuirle effort. in being as simple as possible, Neverthless,
nowadays, the Inverse Problem can be studied with modern, effective and rigorous mathematical
tools such as within the context of

(1) Differential Geometry . In essence, the conditions for a vector field on a (Hausdorff,

second countable, co-differentiable, 2n-dimentional symplectic,or (2ntl)-dimensional contact)
manifold to be globally Hamiltonian~ can be reformulated to provide the integrability conditions
for the existence of a Hamiltonian. A corresponding approach holds for the Lagrangian case.

(2) Functional Analysis . In this case the computation of the Gateau differential of Eqs. (1.9
reinterpreted as nonlinear operators and the condition of potentiality yield the integrability
conditions for the existence of a Lagrangian;7

3) Cohomology Theory. In this case differential operators are used to construct cochain
complexes on star-shaped setsof field functions. T he use of concomitants then yields the inte—
grability conditions for the existence of a Lagrangian,

In this section I shall outline an approach based on what appears to be a simple but most

effective tool, known under the name of variational approach to selfadjointness, with an economical

use of its prerequisites , e. g., the existence theory of ordinary differential equations and the
Calculus of Variations, and its complementary aspects, e. g., the calculus of differential forms
in general and the Converse of the Poincare Lemma in particular,

As a result, the differential, functional and cohomology approach will be largely ignored.
In any case, a study of the issue has indicated that the ultimate explicit form of the integrability
conditions for the existence of a Lagrangian or, independently, of a Hamiltonian constructed with
mathematically different approaches either coincide or are trivially equivalent?‘lat is this property
which allows the restriction of the treatment to only the variational approach to selfadjointness.
(which appears to be preferable for explicit computations, e. g., the explicit construction of a
Lagrangian). In any case, the reader with a serious interest in the relativity problem of noncon-
servative Newtonian systems is urged to study also the geometrical, functional and cohomology
treatment  with an understanding that the rudimentary review of the variational approach to
selfadjointness outlined in this section is largely insufficient.

For conciseness, the main arguments will be presented in sequential tables. The detailed

2
proof of all statements and theorems is presented in refs. '

. The assumptions which will be
tacitly used troughout this section are that (1) all differential equations are local (nonlocal forces
are excluded), (2) all equations of motion (and, thus, including the acting forces) are of class C ®
in their region of definition, and (3) the functional matrices of all equations of motion (Hessian
matrices for all Lagrangians) are regular (for forces without acceleration couplings this

essentially means the regularity of the mass tensor) . All systems are finite-dimensional.
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TABLE 2,1: THE CO NTROVERSY ON THE REPRESENTATION OF NONCONSERVATIVE
NEWTONIAN SYSTEMS WITH THE CONVENTIONAL HAMILTON'S PRINCIPLE. A problem

which has been controversial for over one century in the physical literature is whether nonconser-

vative Netwtonian systems can be represented with the conventional Hamilton's principle
2z t K K
. - = 2.1,
Jf:t'l_(t.q,q)s- Lg{k’ LKC‘))S7 =o Ss} (t):0,5=1,2, R-1.1)
) )

To the best of my knowledge, this controversy, somewhat inherited from contrasting statements

dating back from the past century, reached a climactic stage in the early 30's as a result of the
9a

following corollary of a theorem by P.S.BAUER (1931)

"The equations of motion of a dissipative linear dynamical system with

constant coefficients are not given by a variational principle.’

This statement prompted the publication of a disproof by H. BATEMAN%(BAUER'S paper was
submitted as a Harvard note on March 21, 1931 and BATEMAN's rebuff was submitted as a CALTEC
note on June 17, 1931). Neverthless, BATEMAN's paper was based on the use of a method, today's
known as BATEMAN's prolongation theory, which implies the doubling of the number of equations
(which is outside the context of the Inverse Problem as commonly understood). As a result,
the controversy did not ended, but was taken up again by a number of authors, such as L. J.
SINGE C(BATEMAN had properly published his paper in The Physical Review).

In the final stage, this controversy resulted in negative positions in more recent textbooks
on mechanics, For instance, C. LANCZOS, in his textbook on variational principlessd‘states
on p. xxi (194Y edition and subsequent reprints)

"Forces of frictional nature, which have no work function, are outside the

realm of variational principles, "

Similarly, on p. 19-7 of Vol. II of the FEYNMAN Lectures (R.P. FEYNMAN , R,B, LEIGHTON and

e
M. S. SANDS ~ , 1966 edition and subsequent reprints) one can read

"The principle of least action only works for conservative systems-where

all forces can be gotten from a potential function, "

As we shall outline in the following tables, the Inverse Problem allows the resolution of
this controversy? The net result will be that the arena of representational capabilities of the
conventional Hamilton's principle in Newtonian Mechanics is rather vast indeed. Of course,
this will crucially depend on the notion of "analytic representation" whigh, perhaps, was at
the basis of the controversy. ‘

In any case, it was unfortunate that none of the authors quoted in this table was aware of
the fact that by the late 20'5, the methodology of the Inverse Problem was sufficiently well
established in the specialized literature of the Calculus of Variation, as outlined in the next

table,

/,// C.lgé ;acobi ; /,
; / 77 7 / / f?/\ 4
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TABLE 2,2: THE TENTATIVE GENEALOGICAL TREE OF THE INVERSE PROBLEM,

One of the most time consuming aspects of the research project presented in this paper
has been the identification of the prior state of the art on the Inverse Problem, An initial library
search conducted in 1973 soon revealed that problems (a), (b) and (c) (of the introduction of this
section) were not identified, let alone treated, in all textbooks in Newtonian Mechanics, Calculus
of Variations and other disciplines I was able to inspect. However, these problems are at the
very heart of Lagrange's and Hamilton's equations and, as such, they "had" to be treated in the
existing literature, It was not after a laborious search which I conducted in the libraries of the
Boston area by moving backward in time, that my determination was finally rewarded. And indeed
I finally succeeded in identifying a number of contributions which established, to the best of my

knowledge, the foundations of the methodology of the Inverse Problem, the first and perhaps 4

)
most important contributions

dating back from the last part of the past century.,
The results of my search are presented below with a strict understanding that they should

not be interpreted as historical notes. They are simply the results of my personal findings and,

as such, at a more detailed scrutiny, they may result to be grossly deficient. Notice thatI quote

below only the most relevant contributions (see ref. for a more complete list).

N -DIMENSIONAL CASEILO ONE-DIMENSIONAL CASE

L. Kdnisberger| |D.R. Davis
1901 1928 K, Bonem|
1900
G.Hamel
1903
Aiggzyer ;L-- [ H.Hirsh ‘
1898 G. Darboux
1891

H. Helmholtz
1887

2

/////

77/“"7/ // 7/]/7
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The one-dimensional case was treated in details and solved, apparently for the first time,
by G.DARBOUX in 1891 by using conventional techniques (for that time) of partial differential
equations. Subsequently, the problem was extended to the case of higher order derivatives by
a number of authors (we are here solely interested to the second-order case). This problem
is trivial by today's standard because it implies the solution of one partial differential equation
in one unknown, the Lagrangian L, i.e.,

4L 2= = A(t9,9)9 +BCk95). (2:2.2)

4t 09 @9
As such, a solution is guaranteed by the existence theorems for partial
differential equations under certain technical conditions (Table 2, 6).

The n-dimensional case, on the contrary, is nontrivial because it consists of n partial

differential equations in only one unknown, again the Lagrangian, i.e. )

DL Sy .

%/%L:)—K —"D—‘fz = QK,.(b/‘ﬁ/?)‘? + Bku"/%?). (2.2.2)

The system is now overdetermined and a solution does not necessarily exists (in the form
presented above, pending the generalizations outlined in the subsequent tables).

The integrability conditions for Eqs. (2.2.2) were apparently identified for the first time by
H,HELMHOLTZ ( 1887)011 beautiful intuitional grounds. 1n essence, HELMHOLTZ s starting point
was the property that Lagrange's equations are always selfadjoint (Table 2,5), a property which
goes back to a contribution by C. G.JACOBI of 1837 . He then argued that the conditions of
(variational) selfadjointness were both necessary and sufficient for the existence of L. This
approach was reinspected by a number of authors, most notably in my opinion, A, MAYER
in a first contribution of 1896. The most comprehensive treatement of which I am aware on
the study of the joint necessity and sufficiency of the conditions of selfadjointness is the thesis
byD. R.DAVIS at the Department of Mathematics of tbe University of Chicago under the super-
vision of G, A.BLISS, subsequently expanded and published in three articles of 1928, 1929 and
1931. Perhaps, equally notable is the study by L. KONISBERGER of 1901 (oddly there is no direct
quotation in DAVIS's papessof HELMOLTZ's and KONISBERGER 's contributions).

1n conclusion, it appears that by the late 20's the problem of the integrability conditions for
the existence of a Lagrangian was well established. Most importantly, the studies were extended
to the inclusion of integrating factors (which are ignored in the initial formulation (2. 2.,2), As we
shall outline in Table 2.9, a proper use of these techniques allow the disproof of Bauer's statement
(Table 2, 1) without an increase of the number of equations. For a specific study of the case of

linear equations with constant coefficients see reference
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However, the techniques used in the joint proof of the necessity and sufficiency of the
conditions of selfadjointness were those available at that time, At a closer inspection, a number
of aspects remained still open.I confronted the problem along the same conceptual lines, that is‘
the variational approach to selfadjointness, but I used what is nowdays considered a more effective
tool for the study of the integrability conditions ’ the calculus of differential forms in
general and the converse of the Poincar€’lemma in particular, My proof of the joint necessity
and sufficiency was first published in :r:ef.3 for the field theoretical case. Ref. contains the
reduction of the proof to the Newtonian case. The problem along different methodological lines
had already been solved by M. M. VAINBERG—,?n 1964 by using the functional approach

to nonlinear operators for the case of first-order Lagrangians that is, Lagrangians L(t,q,q).

The casge of the representation of the same systems with second-order Lagrangians L(t,q, (':1,':])

had also been solved by G, W, HORNDESKI in 1974 within the context of the cohomalogy theory

and cochain complexes, but this approach implies the use of third order analytic equations which
are uncommon in Newtonian Mechanics. As R. W, ATHERTON and G. M. HOMSY put it,
VAINBERG's approach was so abstract to remain "inaccessible to many applied mathematicians
and engineers", It is here tempting to say that asimilar comment perhaps applies also to
HORNDESKY’s approaeh, My efforts were therefore motivated by the intent of achieving a proof
which was accessible to the physics and engineering community at large.

Notice that the genealogical reference tree for the n-dimensional case has been truncated.
This is due to the fact that the Inverse Problem remained largely ignored after the early 30's ,
to the best of my knowledge and with very few exceptions known to me. For a complete li.st of

all relevant contributions on the Inverse Problem of which I am aware see ref,

TABLE 2.3: THE CONCEPT OF ANALYTIC REPRESENTATION

The most direct way to define an analytic representation is that of imposing that the totality
of solutiomsof the equations of motion coincides with that of Lagrange's equations. Our systems,
however, are generally nonlinear and such an approach is in practice faced with severe difficul-
ties. There exists a number of ways to overcome thesedifficulties. The assumed continuity and
regularity conditions ensure the applicability of the theorem on implicit functions to Egs. (2. 2)
and, most importantly, the uniqueness of the system of implicit functions. As a result, a fixst
definition of analytic representation can be introduced by requiring that the systems of implicit
functions of the equations of motion and of Lagrange's equations coincide. In the following we

shall gay thata "(local, class Ccaond regular) Newtonian system admits an ordered indirect



- 244 -

analytic representation in terms of Lagrange's equations (without external terms and in first-order

o
Lagrangians) when there exists aclass C and regular matrix of factor functions such that

3a
the following identifications’ >’

DL(a,8) 2Lled) - ) ooy 3 2.3.4
d q/ L 59,9 L] U ' 6,4) ﬂi,‘(b'q'ﬁ)c? + B, t9,9) , € )
T T
k=1,2,.., m,
hold in a given ordering of the index k=1,2,3,...,n. The regularity of the matrix of factor
functions is intended to yield the identity of the systems of implicit functions of the equations

of motion (as originally given) and of Lagrange's equations, i.e., the uniqueness of the system
(£)= - (8 (B), (t:2:2)

for both members of identifications (2. 3. 4 ). This, in turn, lmplles the identity of the totality

g5 - £ ad)=

of solutions. When representation (2. 3.4) gxlssis with (h ) = ((S 1) we shall say that we
C]

t
have an ordered direct analytic representation. As we shall see the notion of ordering plays

a crucial role, particularly for the necessity of the conditions of selfadjointness. Notice that

the maximal admissible functional dependence of the integrating factors is hkl = hkl(t, q,9).

TABLE 2.4: VARIATIONAL APPROACH TO SELFADJOINTNESS. The finite part of the first-

order variation of the equations of motion is called the system of variational forms Y can

be written
M (IVL /L SF(Q _—% 4/‘1/{ QF,; ;,?'/ , (2,[,..’)
ogq* (D
5‘1 nw , wao,

and can be computed along any admissible variation , that is, along any function 1L(t) possessing

the same continuity properties of the solutions. The adjoint system of variational forms can

bewritten > %
b‘DF d (5 F Y, d® (mR Y (2.4.2)
M) 1 5o -5t 5;;1> S g%

and (under the assumed conditions) is uniquely defined by the so-called Lagrange identity

%CMCW)’T’%;(@) G, (ees
Q(”L%) ’VL/DF ’11/ q/l/ _f~% d<% D--')”Zf (2.4_'35)
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~
where ’V[ and 7, are generally different admissible variations. A system of second-order
ordinary differential equations is called (variationally) selfadjoint when its variational forms

coincide with the adjoint systems for all admissible variations, i.e.,

M (’Vl/) M (’l/b) -I,7-,---/m.

‘5&

(2-4-4)

23
Simple calculations then yield the following

THEOREM 2.4.1: A necessary and sufficient condition for 3. Newtonian system in the

form (here referred to as the kinematical form)

2,]' _f Lb,q,ej) =0, k=1,2,.-.,m [P c_‘(a), (R.%.,5)

to be selfadjoint in a region R of points (t,q, g) is that the acting forces are linear in

the vel ccities, i. e.,the system is of the form

"(ak((tIQ)S;J— G'k(b,e)):o, Q-4«.6)

and all the following conditions of selfadjointness

"+€.;E:O’ L2-4.74)

Y

COP; _f@ﬂ‘n +©Pk»‘ = o, (2.4.78)
9" Dq¢ 9 q

Opi; LY’ Qe (2-¢-7¢)

>t - 9 g !
are identically verified in the subregion R'€R of polnts (t, g).

The notion of regionused hereon is that of an open and connected set. In practice, it can be
restricted to a (regular) point of the variables and its neighborhood. In conclusion, the physically
relevant aspect of the above theorem is that in order for Newtonian systems as originating from
Newton's second law, e.g. ,for the unconstrained case

M ;(:Ka - F( U: fi,:‘:,J:O, ksl2,... N a=Xy,2, M(‘g%:g)
to be variationally selfadjoint, the acting forces must be utmost linear in the velocities and
then satisfy the conditions of selfadjointness. Predictably, all forces derivable from a potential
and, most notably, the Lorentz force, satisfy Theorem 2.4.1. As a matter of fact, after trivial
implementation to the Minkoski space. (see in this respect ref.sa ) the relativistic generalization
of Newtonian forces derivable from a potential and, again most importantly, the Lorentz force,
satisfy a "formally equivalent' theorem, that is,the conditions of variational selfadjointness.

We shall therefore say that the acting Newtonian

forces are self-adjoint when they satisfy Theorem 2. 4.1. Similarly, we shall say that the
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Newtonian forces are nonselfadjoint when either nonlinear in the velocities or violate some
of conditions (2.4.7).
Clearly, the condition of linearity in the velocities is highly restrictive for the objectives
of this paper. This restriction can be lifted by passing from the kinematical form (2.4.5 ) to
an equivalent general form induced by a class C":md regular matrix of factor fuimctions. And £

indeed, a simple reformulation of the procedure to derive Theorem 2. 4.1 yields the following

THEOREM 2, 4.2: A necessary and sufficient condition for a Newtonian system in the

form (here referred to as the general form in configuration space)

ey eey . 2
Hkg(t'q/"")c) t Bk %9/9) =0, ksl2—m HK:, BeC (R)'(Z.ﬁ..‘?)

to be selfadjoint in a region R of points (t,q,q) is that all the following conditions
A.. = A.. /DH(,‘ ReLm (2.4.t100)
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are identically verified in R.

(2.4.10b)

Conditions of selfadjointness (2. 4.}0) now clearly admit a nonlinear dependence in the
velocities (-as well as the coordinates). Notice that the regularity condition on the equations
of motion implies that the f.unctional determinant is nonnull in R (except a finite number of
isolated zeros), i.e., lAkl‘(R) +0~

In conclusion, the variational approach to selfadjointness results in a set of conditions
on the Aki and Bk terms of the equations motion which must be identically verified along any
admissible path (i. e., trajectory in q-space which possesses the same continuity properties
of the solution) or, more empirically as functions. The important point is that the identification
whether a system is selfadjoint or not does not demand the knowledge of a solution. This is
crucial for our program. And indeed, if the methods for, say, the computation of a Lagrangian
demand the prior knowledge of a solution, they would be of little practical significance.

Simple examples of selfadjoint systems are given by

00 2.0 . lla
mwmx + K2 =0, G )
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Equally simple examples of nonselfadjoint systems are given by (.2 4. [3a)

A > — e 0
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The reader is here urged to verify that the mere division of Egs. (2.4. 11t by the mass is
sufficient to break the selfadjointness. As we shall see, this means that a Lagrangian for
the ordered direct representation of the system exist in its"naturalufm:m (2.4.12)b) as derived
from Newton's second law, and not in the equivalent form (2,4.43b). Equally intriguing is the
fact that the simple permutation of the ordering in the transition from Egs. (2.4.12¢) to their

equivalent form (2. 4.13¢) is sufficient to break the selfadjointness of the system. This is

the reason, as we shall see better later on, for the necessity of the use of the concept of ordering

in the notion of analytic representation. The interested reader is here urged to work out

other cases. Notice that Theorem 2.4.1 trivially extends to the equations of motion in the
“hatural form" (2. 4. 8), i.e., the multiplication of the acceleration by the mass terms

leaves the conditions of selfadjointness unaffected. This is the reason why we have used
Theorem 2. 4,1 for the definition of the notion of selfadjointness (or nonselfadjointness) for
Newtonian forces (rather than systems). Equivalently, the reader can reach the same results

by using the context of Theorem 2, 4. 2 with the A -terms substituted with the mass tensor.

/
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TABLE 2,5: THE FUNDAMENTAL ANALYTIC THEOREMS OF THE INVERSE PROBLEM

The significance of the variational approach to selfadjointness for our program is expressed

by the following property which will have a significant impact at virtually all levels of our analysis.

THEOREM 2.5.1: Lagrange's equations in class C4 and regular Lagrangians

are variationally selfadjoint,

The proof of the property can be conducted in a number of ways. First/one can compute the

variational forms of Lagrange's equations

_ w d 03 __‘/2..1_.
L\K(n)z £ 5" Ly (n) 3y o

DL L O i, K 2.5.1b,
3 /Dﬁ"’l)q I‘L% 'Lo?, 12/ -'-’D(it./‘)?)% I’LJ) (' )

and then see that they coincide with their adjoint system computed via Eqs. (2.4.2 ). Equiva-

59:%\‘//\/10,(_‘2';-'“’)

lently, one can see that Eqs. (2. 4. ) satisfy all the conditions of Theorem 2.4.2. The conditions
that the Lagrangians be (at least) of class C ‘is introduced to ensure the continuity of the
fourth-order derivatives appearing in the adjoint system and it is a customary condition of the
Calculus of Variations. The case when a Lagrangian satisfies weaker continuity conditions will be
ignored because inessential for the objective of this paper. Theorem 2. 5.1 extends to Lagrangians

which are degenerate (also sometimes called nonstandard or singular), that is, when the Hessian

det L/Dcp@?’) =0 (2.5.2)

is identically null as a function,although the methodological context is now considerably more
involved because it demands the reformulation of the variational approach to selfadjointness on
the hypersurface of the subsidiary constraints which are implicit in the degeneracy property.
This aspect too is inessential for our objectives and it will be ignored.

The reader should keep in mind that the property expressed by Theorem 2. 5.1 goes back
to C.G. JACOBIiO,aas indicated in Table 2.2, And indeed, the equations of variation of
Lagrange's equations, I k("l)= 0,(rather than the variational forn:_s5 ]k (™)) are customarily called
Jacobi's equations in the literature of the Calculus of Variations.Notice that while the former
equations are generally nonlinear in qk and c'lk, the associated Jacobi's equations are always
linear in '}Lk and ’}:L k (both equations are always linear in the second-order derivatives ).
As a result, while the former equations are generally of quite difficult solution (as typical of
nonlinear equations), the latter can always be solved with conventional techniques. Conceivably,
the joint use of Lagrange's equations and their associated Jacobi's equations could be useful for

the study of nonlinear systems, although I am not aware of studies along this line.
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The first important consequence of the selfadjointness property of Lagrange's equations
for "all" Lagrangians (of the considered class) is expressed by the following theorem which

has been called in ref,. the Fundamental Analytic Theorem for configuration space formulations.

THEOREM 2, 5. 2: A necessary and sufficient condition for a quasilinear system of

second-order ordinary differential equations which is well-defined, of (at least) class

2
C” and regular in a star-shaped region R* of its variables to admit an ordered direct

analytic representation in terms of Lagrange's equations (without external terms) in

first-order Lagrangians, is that the system is selfadjoint in R*,

The content of this theorem was, in the final analysis, HELMHOLTZ's intuition. The
conditions of selfadjointmess of the equations of motion result to be not only necessary, from
the selfadjointness of Lagrange's equations, but also sufficient. Under the conditions of the

theorem,we shall therefore wrxte 2
’ C ﬂ . c ! Q
[ £ a )] = [Aqd +B]
Sa@

= ll ) o IM ,
where SA stands for selfadjointness here interpreted as a property of the left-hand-side and

R Regutan ’(1.5.3)

as a condition for the right-hand-side.

Theorem 2. 5.2 is presented in the Newtonian limit of the field theoretical proof I worked
out in ref.3 . It contains a number of restrictims which are customarily ignored in previous
treatments. As such, they deserve a brief comment. The minimal continuity conditions (the
system is of at least class 02) corresponds to the continuity property L& C~. It can be reduced
by using canonical formulations, but in any case it is inessential for this paper (for relativity
considerationsall systems will be assumed to be of class C % in order to be able to incorporate
geometrical methods). The condition of regularity is nontrivial. And indeed, the extension
of Theorem 2.5.2 to degenerate systems is expected to exist , but its explicit proof is
expected to be considerably more involved, as typical of all systems with (generally nonintegrable)
subsidiary constraints, In any case the condition of regularity is introduced on precautional grou.nds,
in the sense that the removal of the condition of regularity should be performed after an explicit
Froof has appeared in the literature, The condition of ordering has a more subtle meaning. If
it is not introduced in the notion of analytic representation, one would arrive at the

conclusion that , say, the nonselfadjoint system (2.4.13c) admits a direct analytic representation

(that is, the two members of Eqs. (2.5.3 ) would be identified as systems, rather than equation
per equation), The most important restriction which I have introduced in Theorem 2. 5.2 is that
the systems are well behaved in a star-shaped (rather than an ordinary) region R*. This means

that they must be well behaved for all values t'=t, q'= T q andq'= ‘Célwith 0s T sl
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and for (t,q,q) €R. This restriction is typical of the central methodological tool used in the
proof, the converse of the Poincaré lemma,as formulated within the context of the calculus of
differential form (see, for instance, ref. 48.) The practical meaning of this condition will be
commented below in this table. Its removal is a rather delicate problem which is left to the
interested re searcher.

A first significance of the use of the converse of the Poincare/lemma in the proof of
Theorem 2.5. 2 is that it actually allows the computation of a solution, that is a Lagrangian,
under the given integrability conditions. We reach in this way the third fundamental analytic

theorem of the Inverse Problem, which can he formulated as follows.

22
THEOREM 2, 5.3: A Lagrangian for the ordered direct analytic representation of

Newtonian systems

[ A 69,49 +B (t‘i,ﬁ)] (2.5. 4)

which are well-defined, of (at least) class C , regular and selfadjoint in a star-shaped

region of the points (t,q,q) is given by

L (ta,§)= K(t,9,§)+ D ba)g + C(ha), (55)

where the (nt2) functions K, D, and C are a solution of the quasilinear overdetermined

k
system of partial differential equations

K - A-. (2.5.6a)
Cgiogl 2
b vy (25, 28 ) (T UK )
TR 709 2§RY’
, - ch (£,9), (2.5.6b)
?DZK L 2% :}I_’L?(f«)i&) q'“:\/vg”,‘f)/
Togar Lagiogt a(?qt of (2.5.62)

given by i

K= qur [ dZﬁ qu zs;)]q}(é,q‘z’c})’ (2.5.7a)
D; = Lgae(’tz Z,;)A(b/'zc))jéf-/ (2.5.78)
‘T'th*t NACEDP

(2.5.7¢c)
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The practical meaning of the restriction to a star-shaped region can now be
identified. In essence, it ensures the existence of the integrals (2.5.7), and, thus, a l‘..agrangian.
Notice that there is no need to verify the consistency of the overdetermined system (2., 5. 6)
under the conditions of selfadjointness in R*. As a matter of factlthe necessit y and sufficiency
of the conditions of selfadjointnessqdleprecisely centered on the proof that such a system is
consistent. In turn, this illustrates the nontriviality of the proof of Theorem 2.5.2. Notice
that Egs. (2.5. 7 ) must be computed in sequential order. Notice also that the method of Theorem
2.5.3 appears to be computerizable. This method was introduced in J:ef.a for the field theore-
tical case and then its Newtonian reduction was presented in ref. a .

As an example, the reader is urged to verify that the method of Theorem 2. 5.3 applies for

system (2.4.12¢), yielding as a Lagrangian

L(§2+92) + 4. gzt 6,9 + 1 (9.9, +9°9:)  (25.9)
'g(‘i,r‘h)tz,c;z -3 (9, 9, +7,722)_

TABLE 2, 6: THE INDIRECT LAGRANGIAN REPRESENTATIONS

The fundamental analytic theorems of the Inverse Problem have little pratical significance

in the given form, particularly for the objective of this paper, because the Newtonian systems

with forces not derivable from a potential are always nonselfadjoint as derived from Newton's

second law (that is, ma -~ F = 0). As a result, a Lagrangian for their analytic representation
according to Theorems 2.5.2 and 2.5.3 does not exist , More generally, the nonselfadjointness
of a quasilinear system of ordinary differential equations is the rule and its selfadjointness is

the exception. Perhaps, this is a reason why active studies on the Inverse Problem were virtually
abandoned since the early 30's, as indicated in Table 2.2,

Clearly, to reacha methodology of practical usefulness for the problem of the relativity
laws of Newtonian systems with forces not derivable from a potential, I bad to coufront this 2 3d
issue. The results of my studies were first presented for the field theoretical profile in ref.
and then the Newtonian reduction was worked out in ref.Zb. Here is a summary.

Theorems 2.5.2 and 2. 5.3 are formulated for "direct” analytic representations. Clearly,

a first broadening of the representational capability of these theoremscan be achieved by

removing this restriction and considering instead the broader case of "indirect" representations.



- 252 -
b 2b

This immediately yields the following  /

THEOREM 2, 6.1: A necessary and sufficient condition for Newtonian systems
Z
Y . R
Y_AKC (bl q/q) h? -+ B K (b;"i,‘i) ] NCQ:O J k= 1,2, "'IM‘<2'6")

which are of at least class 02 , regular and nonselfadjoint in a region R of the

variables, to admit the ordered indirect analytic representation 2
: 2 cS R
o R ’ 6 2)
L (q] [-L‘ ( “1-[3») ' ] (2.,
'_ ) fie 9 “Jwsa Jsa !
is that all the following conditions of selfadjointness in the equivalent system

A% =AY, (Dﬂ"‘u‘ _09 HUWEOIOY (2.6.34)

vy A D&
DY X 2 -KD 3 5 Y _ [ (B
.t‘+§9__—.2‘ + i ﬁL (B)-() )/
D Ci) (D? {Qt 7 Q "} L (52‘ 6'35)
o) p* DB% _ 1 ok O (’,)B f()B”g
4 sh B Coadt il —_— 2.6.
Gqr " Ber "2 ¢ R oy faqc>’ (2.6.2¢)

are verified and such system is well behaved in a star-shaped extension R* of R,

In this case a Lagrangian is given by

L*(ba,§) = K¥(hg,q) + Df tha)§ "+ Ct,q),
w ol Tty a% o °J (k9 2'4 @"'45)
K™=9 Jve{'t {Uaeu A b).(f,e,bc;):(c) g 9,%7'9), "
5 ' (2.64c
D [gib(t ZZysj U‘,’ea)]ﬁ’l

K 2

c¥_ ?‘I fte(i’ W’f (t_l/tEI) J

[}

(2-6-42)

]

(2-6-44)

* . oB% «DB*

oS g T“CI‘T Q‘i
C*. _Dh _pg* _Qk* | kX
‘ Ple Q)?'—‘ @? ls
k¥ Lf08Y k

a0 )7
L9709 2 04 K )? /\/ '

R* %k (2.5,49-)
(O? il ageay

(Z6.4%)
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The above theorem clarly produces a nontrivial broadening of the arena of applicability
of the Inverse Problem with the inclusion of genuine nonconservative systems. For instance,

the use of Theorem 2, 6, 1 for the damped oscillator yields the indirect analytic representation

R~ E
d oL _dL]= FE (e Lo L w?9)ST 2.4.50)
LT ‘3‘?]5;; Le (Ci rh+ 9)Nm—]se ’(
tE . 2.6.5b)
L=e 31-(?2~“’39); ¢
and for the nonlinear, nonconservative system coﬁ
P . PR « 2 c,
9.+-3‘—9,9.+3‘?z%9z -7 %%k 1o, (2cs)
ﬁz*—‘h‘?y_‘rﬁ‘)?/?z ~——?,_‘-], NSR

we have
L‘?: + ‘?z

L = e—l~ (e;,+9 ¢). (2.6.7)

However, Theorem 2, 6.1 is still restrictive in the sense that it applies only when a solution
of the conditions of selfadjointness (2.6, 3 ) in the unknown factor functions h (w:th fixed
Ak and Bk terms) exists. Clearly, such a system is generally overdetermmed and, as such
a solution does not necessarily exist..

We reach in this way a point which will apparently be crucial for relativity considerations.
Theorem 2. 6.1 essentially characterizes a class of nonconservative systems (to be better
identified later on in Table 2.9 ) which admits an analytic representation within the coordinate

system of its experimental detection. And indeed, any further extension of the representational

capability of the Inverse Problem demands the use of coordinate transformations. In turn, this
necessarily demands the abandonement of the (inertial) system of the experimental set up and
the construction of a new system of coordinates.

At this point a second crucial aspect emerges, Suppose that the forces not derivable from
a potential are such to render inconsistent the integrability conditions for the existence of a
Lagrangian in the Cartesian coordinates of its experimental verification, here assumed as
caraterizing an inertial system, Can (class 02, invertible) transformations t -2 t' and qk—-p q'k
be identified in such a way that (I) a Lagrangian exists in such new coordinate system, (II) this
new system of coordinate is equally realizable with experimental sethE and (IIl) it is inertial.
As we shall see, the asnwer to problem (I) is affermative, but that toproblems (II) and (Il) is

generally negative,
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These problems can be more effectively treated within the context of canonical formulations
and, as such, we shall consider them in more details later on, At this point it is sufficient to
note that an ordinary (generally nonlinear) point transformation t->t' = t and qk—>q'k= q'k(q)
is insufficient to produce a Lagrangian under the assumed condition (inconsistency of system
(2.6.3 ) for given A and B terms, i.e., for given implicit functions). And indeed, the existence
of a Lagrangian in such new system implies the existence of also alagrangian in the old system

via an inverse transform, a part the multiplication of the (regular) Jacobian matrix. But then

this matrix would represent the matrix of the solution of system (2. 6.3 ), contrary to assumption,

In conclusion, the transformations capable of inducing a Lagrangian when the conditions of
Theorem 2, 6.1 are violated must produce a change in the structure of the éystem such
that its image in the original variables leads to an inconsistent system

see these transformations exists and are of the type

t—-t'(t9,4) 9" — 7"‘(&/.&;/7‘) Bl - m, (2-6.8

as familiar in the Calculus of variations (see, for instance, ref. ‘%b), although rarely used in
Analytic Mechanics.In particular,a generally nonlinear dependence in the velocities will result to
be essential to produce the desired result, In tufn, this implies, in general, the practical
impossibility of realizing the new systemsof coordinates with an experimental set up and, most
importantly, they are generally noninertial,

The net result is that the class of systems whose relativity laws we are interested in is such
that they admit a Lagrangian representation in a new coordinate system which is generally
noninertial and nonrealizable in experiments. This is the reason why, as indicated in Section 1,
we are primarily interested in the study of the relativity laws of the systems considered in the
representation space of their experimental veriﬁcation/and we shall leave the study of the same
relativity profile in equivalent systems to the interested researcher.

The significance of the Inverse Problem as a methodological backing, however persists,
as will be more transparent when considering the complementary Lie-admissible Problem of

Section 3. We shall therefore continue to outline the former methodology,

TABLE 2, 7: THE INDEPENDENT INVERSE PROBLEM FOR HAMILTONIAN FORMULATIONS.

One of the int riguing aspects of the Inverse Problem is that it canbe equivalently formulated
for Hamiltonian formulations without any prior knowledge of a Lagrangian. That is, given a

Newtonian system, one can construct an equivalent system of first-order differential equations

(2.6.3), As we shall
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and identify within this context the integrability conditions for the existence of a Hamiltonian,
The procedure can be summarized as follows. Consider a Newtonian system in the general form
(2.6.4 ) and introduce arbitrary prescriptions for the characterization of new (independent)

2a
variables, say, Vies in the form 2 .7.1 )
Gy Crado) =clba )i’ + prBay)=o,

which are such to admit a unique system of (single-valued) implicit functions in the velocities,
k
35 Cta,g). (2.7.2)

The subsitution of this latter system in Egs. (2.4.9 ) then yields the equivalent first-order

system

) R
0 G o C9,) 7 P B9,0) |0 b 2 7.20)
o) W N\ T “(bq, ) 9e + for (EAy)

¢ .(D ~ \ D ]
s B 5&' ) Pr= H“i(%%fc 3’z+9"i52|,—- +Bilha,9). (G7-%a)

v
2a
The variational approach to selfadjointness then yields the following

THEOREM 2, 7.1: A necessary and sufficient condition for the system of 2n first

order ordinary differential equations

v (t,a) a’ + Dj" LE, a) =9, /‘“;,z,...,zm’@.?. 5a)
) () "(') o) ) (W) ;B A
) <|4" (hul m, ) (0 ) (Uo") U/m P}’\Q_/ gy (4-? 7- 5 )

whick is of (at least) class CI1 and regular in a region R of the variables (t,a)

to be selfadjoint in R, is that all the following conditions

Chpv + Coyp =9, (2.7. 6a)

@c!, Dz (D =0, (2.7.6b)

Daz QM Coa~
OCu _ 00 _2Dv (2.7.6<)
Y5 Qa”  oa’

[V { 2, vas N 'ZM
are identically satisfied in R. MV &
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Notice that the .identification of the conditions of selfadjointness is quite simple in the
space of the &-variables (via a simple application of the approach of Table 2. 4). However, the

formulation of the same conditions in the space of the qk, and Vi variables is considerably more

involved. The reader should also be aware that the y-variables are not necessarily canonical, i.e.,

of the type V= D L/ ? c';[k, trivially, because a Lagrangian for the representation of the original
system (2.6. 1 ) is unknown.

COROLLARY 2,7.1.A: When System (2. 7. 5a) is of the form

Y _ T t =
wpy &7 =2l ’““j © (2.7.74)
(3] - x i
(wpy) = e " ""), (2-7.7b)
i mxm OM XN
the conditions of selfadjointness reduce to
OTu 0% (1.5

- O \,=|lz,..=/2’ﬂ.
('D d\/ (b AR / /( f
And indeed, matrix (2.7. 7b) is a trivial solution with constant coefficient of Eqs. (2.7. 6a)
and (2. 7.6b). This is the first contact with the symplectic geometry. And indeed, structure
(2.7. 7b) is the familiar fundamental symplecic form. For more comments in this respect

see Table 2, 8.

The canonical equivalent of the selfadjointness property of Lagrange's equations, Theorem

2.5.1, can now be formulated as follows.

THEOREM 2. 7.2: Hamilton's equations (without external terms)
v (OH » - . 2.7.
Whv & T var o }:{Q,P} ;b o m, (27.9)

in Hamiltonians of at least class 02 are always variationally selfadjoint.

Again, the proof of this fundamental property by using the conventional way of writing Hamilton's

1 . 0l
Fk-’-(b‘ :OI 9'(—(5—[;"{201 C2.7‘ID)

equations

is rather involved. For the form of the unified notation (2. 7.9 ) the proof of the same property
is trivial. And indeed, by using Corollary 2.7.1. A, the conditions of selfadjointness reduce
to the commutativity of the second order derivatives in the a-variables which is implicit in the

assumed continuity conditions.
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For geometrical reasons we call equations of type (2. 7.7a.) covariant normal form of

Newton's equations. It can be quite simply constructed as follows, Consider the original system
in the (unique) kinematical form (2.4. 5 ) and introduce the prescriptions (2.7. 2. ). Then
the notation ( g \3

! ~ 14, .

n 9 . I Y é} 3@ _F v o

& ) = R = ‘d 3 b 3

( Y / %F 3" € ¢ 9, ‘3’ ‘? \2' /
@.7.1)

yields a covariant normal form. (2.7. 7a)

The integrability conditions for the existence of a Hamiltonian are then easily identified,

THEOREM 2. 7. 3: A necessary and sufficient condition for a Newtonian system

in the covariant normal form (2. 7.7e&) which is of at least class Cl and well-defined

in a star-shaped region R* of its variables to admit the ordered direct analytic

representation in terms of Hamilton's equations (2.7. 9 ), i.e.,

= v QH . 0.7.12
Wpv & = = = Guva T Qak 2 2 € /

=t

is that each and all the following conditions of selfadjointness

D P (2.1.13)
Qav Dar

are identically verified in R*, in which case a Hamiltonian is given by

H(ta) = "Seiﬂ : (b za), (2.7.1+)

=0,

The proof is trivial. Conditions (2.7.13) are necessary and sufficient for the one -form
G = E)A da!*to be exact, i.e.,

4
— — O g.n (2,715
- d"b\ —_ d s o~ dH w(b:);da % L )

.

— e

The simplicity of the proof of the Theorem 2,7.3 (called in ref, - the Fundamental Analztic

Theorem for canonical formulations) should be compared with the rather involved nature of the

groof for the configuration space case, i.e., Theorem 2.5, 2 (J:efs.?>b ) .

In practice, the gk fuctions of presciptions (2. 7. 2 ) can be interpreted as the unknowns,
and the conditions of selfadjointness (2.7. 8 ) can be used to #tempt a solution in these
functions. If a solution exists, the Yy variables are canonical (i.e., the a-variables span

a phase space). As a simple example, the particle with damping force
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(q —fd’ﬂ) NQ(J:O' C&Z./é)

is characterized by a nonselfadjoint one-dimensional, second-order equation. As such,
Theorem 2. 5,2 does not apply, Instead of using Theorem 2. 6.1, one can use the independent
approach to the computation of a Hamiltonian indicated in this section. Egs. (2.7.8 ) in

the unknown function g(t, q,y) yield, as a solution, theform
9 ~ = b = Camom Lz"/‘l-’}
9= e ;97 (\/ 4 (3
A Hamiltonian, via Eq. (2.7.|4 ) is then given by

A £ P
H (t,a)= ﬁijdhz ?‘4_(‘2&) t aaj:da _;L(’La) =e ¥ (sfq -+ (2—7« ‘8}

A Lagrangian, if needed, can then be computed via an (inverse) Legendre transform

by reaching the expression

L= dbq - (9

The aspect which is relevant for relativity considerations is that the system of partial

(27.19)

differential equations (2. 7. 8) in the unknown functions gk of prescriptions (2. 7. 2) is generally
overdetermined and, as such, a solution does not necessarily exists. This was, after all
expected from the content of Table 2. 6. And indeed, this property is the canonical counterpart
of the "lack of universality" of Theorem 2. 64 on indirect Lagrangian representations. The
emphasis is however different. The ‘'lack of universality" of Theorem 2. 7.3 for Newtonian
systems with forces not derivable from a potential implies the inability, for the systems consi-
dered, of introducing a central methodological tool of the Galilei relativity, the canonical
formalism, in the inertial system of Cartesian coordinates of the experimental verification

and their canonically conjugate momenta.

TABLE 2. 8: ANALYTIC, ALGEBRAIC AND GEOMETRICAL SIGNIFICANCE OF THE CONDITIONS

OF VARIATIONAL SELFADJOINTNESS . To make further progress, we must reinspect the

conditions of selfadjointness for general covariant forms, Egs. (2.7.6 ) and identify their
methodological significance. It is advisable to consider first autonomous systems, that is,
systems without an explicit dependence on time, and inspect conditions (2. 7. 7 ) within the

context of the following three methodological aspects.
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1. Analytic significance of the conditions of variational selfadjointness. For the case of auto-

nomous systems the equations at hand are given by‘e (
r . - < _ 2.8.1,
[ (a)d¥= T (a]J58) pentim, )
and their conditions of selfadjointness reduce to
JZ v t Jz\//o\ (2-8-2a)
QJZ)«V QR (DJZ‘Z)M =0, (2.8-2b)
Qat | Qar Dav
Qn T Ly (2.8.2¢)

= 0.

Co av T DQam
It is easy to see that a solution of Egs. (2.8.24.) and (2. 8.2b) can always be written

_ DR DRv 2.8-2
Rpy = Dav T ok (2¢-3)

As a result, the conditions of variational selfadjointness are the integrability conditions for

the existence of an ordered direct analytic representation in terms of Birkhoff's equations

Z‘Q f] (za’u)
fal L’ (zs«) (2.8-48)
@#(4) -—>i v aY (2.65)

the conditions of selfadjointness ensure the existence of an analytic representation in terms

(rather than Hamilton's equatlons), i.e. ,

(@_@_&% _”D(Qv)

7C f&
@o\”

Only as a particular case under the limit

of Hamilton's equations.

Regrettably, Birkhoff's equations have remained largely ignored in the literature of
Analytic Mechanics since their identification in ref.lsa, with only few exceptions known to me
such as refs.‘ b- I5€. One reason might be due to the fact that they are actually inessential
in the sense that, by using geometrical arguments (see below in this table) they can always
be reduced to a Hamiltonian form. As a result, they do not play a fundamental role within
the context of the methodology of the Inverse Problem. However, the study of nonconservative
systems brings into focus a number of aspects which are ignorable for conservative systems.
In particular, Birkhoff's equations will emerge as possessing a precise methodological function
within the context of the Lie-Admissible Problem (see Table 3.4 ). As a result, they emerge
as possessing a significant role for our relativity treatment of nonconservative systems.

The aspect which must be here stressed in that Birkhoff's equations axe essentially

to Hamilton's equations, even though there existya

equivalent, on methodological grounds’
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number of predictable technical differences.
First of all Birkhoff's equations are derivable via transforms of second-order equations
in full analogy with the derivation of Hamilton's equations via the Legendre transform. And
indeed, the general method of transforming second-order into first-order systems outlined
in Table 2, 7 yields precisely Birkhoff's equations under the conditions of selfadjointness.
. In particular, this generalized transform can be performed without any necessary knowledge
of a Lagrangian (if a Lagrangian is known, the same method can be applied to Lagrange's
equations by turning them into Birkhoff's equations). The main difference between Hamilton's
and Birkhoff's equations is due to the fact that the variables of the former span a phase space
while this is not necessarily the case for the variables of the latter. This is the same as saying
that the generalized transform of Table 2. 7 is generally noncanonical (although there exists
a class of Birkhoff's equations with R-quantmes other than those of Egs. (2.8.5 ) which
characterizesa sphace space, see ref.5 ). This might be considered as a dr@wback by some.
My personal attitude is that Birkhoff's equations are potentially significant precisely because
they do not span a phase space (see the problem of computation of first integrals of Table 2.12).
Secondly, Birkhoff's equations possess a dynamical meaning fully parallel to that of
Hamilton's equations. This can be seen as follows. Both equations can be written in the

contravariant forms

LS L PR O ) =(“’/N)-: (2.8-6a)

a
@aY 4
R o, () (B G

and, thus, both equations yield a fully defined time evolution law, i.e.,
) DA GH _ DA (G, o+
alz — & = 2L W . |

Ol QoM Qv
_A Q. QA ol

(Z.8.7a)

(Dq"/t)\a,; -_(D‘OK@?K /
Ala) 28 &7 - @0 JX)2R <[4 W7 2878
- DM Do

The main difference is that the brackets of the time evolution law of Hamilton's equations

are the conventional Poisson brackets, while those of Birkhoff's equations are the so-called

generalized Poisson brackets. The important point is that both brackets satisfy the Lie algebra

identities, i.e. lverify the laws
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AeB +BoA =0, (2.5.62)
(RoB)oC + (Boc)od +(CoR)oB =2, (2.9.85)

]
where ACB= E\,Bl ('31' LA,B] Ca)(for details see below in this table). As a matter of fact,
this property is so relevant that Birkhoff's equations can be interpreted as a Lie covering of
Hamilton's equations, that is, a generalization of the latter which preserves the underlying Lie
algebra structure via the brackets of the time evolution law. On simflar grounds, the generalized

transform of second-order into selfadjoint first-order systems (Table 2, 7) can be interpreted as_

a Lie covering of the Legendre transform, that is, a generalization of the latter which preserves

the underlying Lie algebra structure. To restate these findings in the language of the Inverse
Problem, Birkhoff's equations are the most general form of selfadjoint, first-order,
regular, analytic equations, where the regularity property is expressed by the nondegeneracy
of the matrix (R’“v )

Thirdly, Birkhoff's equations are derivable from a variational principle in a way fully parallel
to that of Hamilton's equations, although, in a predictable generalized way. This is a typical

"casework" for the Inverse Problem. The solution is straightforward and can be written

(gﬂ? JS et F(a, ‘\) e“’ (jl((?);‘ ;)D:,u) o (2.9.%\)
: 8
" 4+[(@% %gvp)dv,%zwso,

Fe.d) - - /“Ue(z'z R, Sz AT (2.8.98)

The Hamiltonian limit is significant because different thaw the conventional Hamilton's principle

for phase space formulal:ions,.i.e., ) W J‘ (D((. o,
SA < 8] dr[pd™ ] =S‘”{L‘7 “op! b [k"f@‘?]&?
' ' (2.9.10)

24,2b,54, 5b
And indeed, under limit (2, 8.% ) we have

j;lkt:ca,d){t?;&[—i&”
ﬂ*——(: (a o be) fd# ®l+)5

Dt D
o « (2.8-11B)

o aV4 H:(, < ZAD)
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Notice that variational principles (2. 8.410) and (2. 8.i/b ) are equivalent because they yield the

same equations, Hamilton's equations, only written in different notations.However, algorithms
(2.8.10) and (2. 8. llb) are generally nonequivalent as variational problems , because the former
belongs to the class of variational problems with fixed end points, while the latter is a (subcase)

of the so-called Problem of Bolza of the Calculus of Variations,. The point is that principle

(2.8.1b) appears to be preferable over principle (2. 8.40), particularly for relativity considerations,

because it is directly expressed in terms of the fundamental symplectic structure, while this
structure is undefinable for principle (2.8.40). In turn, this has a number of consequences
(e. g., for the transformation theory) of crucial relevance for relativity problems.

To summarize, the analytic significance of the conditions of variational selfadjointness for

first~order sistemsis that of identifying a Lie algebra preserving covering of Hamilton's equa-

tions, As a particular case for the covariant normal forms (2. 7.7% ) they constitute the integra-

bility conditions for the existence of a Hamiltonian,

II. Algebraic significance of the conditions of variational selfadjointness. For the brackets

(A3 ”D“ Zadd )(DA, / (2.9.12)

the Lie algebra identities, Eqs. (2.8.8 ), are e‘quivalent to the conditions
JU + N =0,
(Q)*(”DJ?,” DMEPILAS (Dcﬂz* &’”(’(DLQ = o, (2.€.135)

af
for ail tensors «Q w1th a nontrivial dependence in the a-variables (i. e., other than constants).

(2.9.13a)

It is a simple exercise to prove that Eqgs. (2.8.13) are equivalent to conditions of self-
adjointness (2. 8.2 &) and (2. 8.2b). This property was apparently iden;ff{i’id for the first time
(independently from the context of the Inverse Problem) by W.PAULI . Of course, this equivalence
crucially (lepends on the regularity of the matrix (ﬂ. nv ) and, more specifically, on the

existence (and regularity) of the inverse matrix

(™) 1Ly, = vy RS = 5;, (2.9.1)

On equivalent grounds, this property can be seen as follows. It is known that the covariant
-1
form (W ja v )= (WHY)
i thie conventional Lagrange brackets v
i.e. .
A By, - 0w, 00 op 1T Dok
! (a)

I 2 faeqa’
A pIC) ‘\oﬁfan (g

characterizes the "inverse' of the conventional Poisson brackets,
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which satisfy the identities

{ﬁ &'5 + {8, ﬁ} =0, (2.9.16a)
B¢(=o0O.
2 (Bcy 4 2 he Y+ ap LABITO ey
On similar grounds, Birkhoff's tensor J—Z/u,, interpreted as the covariant form of a general

v
Lie-tensor JZ’“ , i.e., according to Eq. (2.8.6b), characterizes the "inverse" of the generalized

Poisson brackets,i.e., the generalized Lagrange brackets

{A.8Y7, -(DQ Dy @5 ¢-£41)

The point is that these generalized brackets pre serve identities (2.8.)6 ). The analogy is then

‘:é" [f"/é)“]{gF)ﬁﬂl:S‘""
20 g 01, Y

M
which are identically verified by the conventional and the generalized brackets.

(2.8-1%8a)

(2.8 /&)

In conclusion, the algebraic significance of the conditions of variational selfadjointness for

first-order systems is that their subset (2.8.2) and (2. 8.2b) is equivalent to the Lie algebra

identities (under the tacit regularity condition). In particular, they recover the conventional
mv
Poisson brackets for the particular case JZz =w . This confirms the Lie covering

character of Birkhoff's equations over Hamilton's equations.

III. Geometrical significance of the conditions of variational selfadjointness . Eqs. (2. 8. 1)

can be interpreted as characterizing a vector field on a (Hausderff, second countable, @2 -diffe-

rentiable, 2n-dimensional) Manifold M(a,JZz) with local coordinates a/* and structure
v :
R, = R (a)danda (2-#-19)
2 IS4

Under the conditiony. of regularity, it is easy to see that the conditions of selfadjointness
(2.8.22) ;rid (2. 8.2b) guarantee that this two-form is closed and, thus, M(a,ﬂz) is a symplectic_

manifold. And indeed, the closure conditions can be written v
(S v, V/, )

(v "2.‘)3@52\/ v, Y1 V2 V3 » r3
! =0 = 2.8.20
MPpats v ) PP v, C )
P A ava Jes o Jﬂzém
5\/3 5\/3 «1
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and coincide with Egs. (2.8.2 b ) under antisymmetry properties (2. 8.2a.). This result was,
after all, expected from the Lie character of the contravariant version JZ_,)Nof JZ./N. of
course, this geometrical meaning is strictly in local coordinates and, as such, does not realize
the coordinatefree treatment of symplectic manifolds, Neverthless, the potential significance
for relativity considerations persists.

We can now also say that Birkhoff's equations consitute a symplectic covering of Hamilton's

equations as the geometrical counterpart of the algebraic property of Birkhoff's equations
of being a Lie covering of Hamilton's equations. This aspect will play a crucial role for Lie-
admissible formulations. Thus, it deserve few comments.

First of all, our unified notation ia" ] = iqk, pk} (which, as indicated earlier, is crucial for
the speedy identification of the conditions of selfadjointness)is not customarily used in the
available literature of symplectic geometry.6 It ié, therefore, of some usefulness to indicate
its equivalence with the conventional notation for phase space variables, Secondly, it is of
some significance, for later needs, to reformulate the conditions for a vector field to be either
globally or locally Hamiltonian within the context of such notation, Finally, tle reformulation
of the Lie derivative within such notational setting will also be useful. The reader should again
be aware that we are primarily interested in these notions expressed in local coordinates.

For the rigorous coordinate-free treatment we therefore refer the interested reader to the
existing lit:eratm:e.6

The fundamental symplectic form is customarily written as the (exterior) two-form
< i<
A~ dqS (- gl ). @520

1t is trivially nowhere degenerate and closed, Thus , it is symplectic. In addition, it is exact

because derivable via the (exterior) derivative of a one-form, the canonical form
K 2.8 -%2)
Peelq” -

In our notation we shall write for the canonical form

9(0\ e w, e (2.9.23)
= pedgt- T d by

Q(d,PkAdﬂk),Cz‘g'l")

w, =-&u

The fundamental symplectic form then becomes
v
M d o=
z—w,,dd Ada=
Wy m

(the relationship between the forms (W, and 92_ or UJL and l9,[_ will be investigated later
on in Table 2. 13).
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The reason for our selection of these forms is that they allow the easy identification of the
parallelism with a general symplectic form characterized by Birkhoff's tensor

J?,W/ , Egs. (2.8.3 ). And indeed, by generalizing Eq. (2.8.23) into the form

Rz-*R (o) 4 a* (2.8.25)

we have

R M M
cd Ry =2 RRn dalnda = Ry ")da Arda
Da¥ @a“ Do , (2.8.26)
M
= L}Z}Av(m)da I\dﬁ.
Thus, the symplectic form (2. 8.]9) is exact.
Let Z}‘ (~) be a (contravariant) vector field in a symplectic manifold M(a, wz). The

el

inner product of with @ 2 will be written

v P w =Vl M
PR L2 Wy, = e = Ty T .27
Ly =~ dw, =7 5/“/“’_ il ) _ » (2'8 )

= :_/L(da.

We shall say that the vector field '_-._/‘ is globally Hamiltonian (or Hamiltonian for short)

e
when the one-form = 4 is exact, that is, at a point m € M(a,u-l’z) there exists a neighborhood

N(m) and a function H(a), the Hamiltonian, on N(m) such that

.T_wz‘ w —zvda}«_z g{&)“‘_—dH (DH' oo A

—L = O - 0’ (7.9.28)

The notation has therefore the following advantages for our program. First of all it clearly
indicates that when the vector field zﬁ is Hamiltonian, the tensor u),n; acquires thégeome-
trical meaning of lovering the contravariant index IUL An equivalent meaning then holds

for the tensor U o , but, this time, for raising covariant indeces. Secondly, the notation

allows a geometrical formulation of what we have called the Fundamental Analytic Theorem of the
Inverse Problem for canonical formulations, ‘Theorem 2. 7;?:.‘)?‘

And indeed, the integrability conditions for the one-form = ,  to be exact are precisely

the conditions of selfadjointness (2.7.1%). Thus, the Inverse Problem for Hamiltonian formulations
is, in essence, a formulation in local variables of the geometrical notion of a vector field of

being (globally) Hamiltonian,

However, as is well known, a vector field ~ is not necessarily (globally) Hamiltonian,

We thefefore consider the inner product

— P
=8 7 s R, Tl Tpdel @0

T4
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=4
nian , according to the conventional terminology, and Birkhoffian in our terminology. The aspect

If the one-form is exact, we shall say that the vector field : # is locally Hamilto-
which is relevant for subsequent steps of our analysis is the geometrical analogy between
Hamiltonian and Birkhoffian vector fields. And indeed, in both cases the crucial geometrical
role of lowering the indeces is played by the fundamental tensor of the analytic equations,
the tensor &',,..V for the forner case and the tensor J).)‘v for the latter case, The point is that
both tensoxscharacterize a symplectic form. In conclusion, if a vector field islnot Hamiltonian
it can be Birkhoffian, in which case the tensor :.5?—"\, (and not w PV ) is the proper tensor for
lowering the indeces.

The next step is the transition from Birkhoffian forms (or vector fields) to aWamiltonian
form. This is provided by Darboux's Theorem here presented in the version known as the

Darboux-Weinstein Theorem &<

)
THEOREM 2. 8.1: Let M, be a submanifold of a manifold M and let &, and JL 2

be two nowhere degenerate, closed two-forms on M such that ¢SZL|MI = Jl'z |Ml'

Then there exists a neighborhood N(M ) and a diffeomorphism f:N(M,) => M such that
(@) f(m) =m for allm & Ml and
o) £+ R, = R,

The transformations of this theorem , within the context of our analysis, essentia lly
guarantee that Birkhoff's equations can always be reduced to Hamilton 's form
It is in this sense that a Birkhoffian field is locally Hamiltonian. For a reformulation of this
15

geometrical treatment in local coordinates see the paper by W, SARLET and F. CANTRIJN
in this issue,

The reformulation of the Lie derivative 2 0

of e FoG, b _ Fe Gulo) _ X F ( '?‘5)
F =t 2 - I}
X
t>o t

in our notation is then trivial. Suppose that the vector field ZF is Hamiltonian, Then the

realization of the generator X of the one-parameter Lie group Ga(t) is given by
° —p 0
WY T o wnvOH = =z }‘.__.M_(?.i?.?n)
X = AP Davoe: QK

As a result, we can recover the time evolution law of Hamilton's equations via the Lie derivative,
Le., WO T
O&d v o= x Fswht H — = LF"} Hj | (2‘332)
= z Oav “oaM
by, at the same time, reaching a geometrical interpretation of conservation laws via the Lie

derivative (when %on). :
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A point which will be important for our conjectured Galilei-admissible covering of the Galilei
relativity is that realization (2. 8.%42) is not unique within the con text of the symplectic geometry.
And indeed, as we shall see in more details later on (Table 3. G ), the vector field = can

be Birkhoffian and still generate a one-parameter group of translations in time, This yields

" . R A B
the symplectlc:overmg t})fvreahz_ajon (2/‘.)8.'5?. ) v OH Q_, ’ (2,&.33«)
X* = M) O = Pav OaM
o F o X*Fz QP or :[F)HBJ" (2.2.33)
x* “Oa¥ ‘Da !

that is, the geometrical interpretation of the time evolution law of Birkhoff's equations, now
expressed in terms of the generalized Poisson brackets, This concludes our rudimentary remarks
for the autonomous case.

To summarize, the geometrical significance of the conditions of variational selfadjointness

of general first-order covariant systems (2. 8.4 ) is that they guarantee that the underlying

geometry is the symplectic geometry for locally Hamiltonian (Birkhoffian in our terminology)

vector fields As a particular case when sz= Wy , the vector fieldsare Hamiltonian.

The extension of the above findings to the case of nonautonomous systems, that is, systems

with an explicit dependence on time

T - c® R .
[_ JZ)N ) a’ - E',,,Lb'“)l =0, (2.8.34)

will be esssentially left to the interested reader. Let us only indicate that (a) Birkhoff's equations
- G ce= R
LCDQQ QRv )s{f—QH +@Ez: Y (&-£.35)
@a¥ DaM (DO\)A ot Sa

which we shall call SARLET-CANTRIJN form and which consti-tutes the most general first-order

are now extended to the form

form of selfadjoint systems of ordinary differential equations? (b) the underlying algebra is

still a Lie algebra, and (c) the applicable geometry is now that of contact manifolds (rather than
symplectic manifolds). The analytic, algebraic and geometrical meanings of the conditions of
selfadjointness, now given by the full system (2.7. ¢ ), also admit an extension to this broader

system. To see it, let us only indicate that conditions (2. 7. 6 ) can be written in the unified

notation JZL‘,. +<sz; =0, (R.-8.36)
(D‘Q'i)' - Q‘@i" + (D_‘.j_z_m;
ar Qar oal

=0, (2,5’.756’9)
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- M v — (_)2 e r‘ N =9
{Qi:%t,&—i , Vr&/uv = nv ;‘D” ‘(D’o),x’“ /",C’h‘oo ’
L‘-:DI?,.-- Am /&'L :k ,“AM nggéc)
Under these condmons we can mtroduce a (2nt+l) -dimensional manifold M(z, .Q/) with local
coordinates a equ1pped with the two form
— e _ . - (2. $.37)
. = - (av)e(&/\ﬁ(a .
a - Ly
This form is of maximal rank (i.e., its restriction to M(a,.$22) is nowhere degenerate) and it
is closed. Thus, the full set of conditions of se]fadjoinmgss are recessary and sufficient for

the two form JL g tobe acontact form ( or structure). It is an instructive exercise for the

interested reader to work out the generalization of Egs. (2.8.28) and (2. 8,29) and see
that the underlying analytic equations are indeed of the form (2. 8,35 ). A generalization of
Darboux's theorem for contact manifolds exists 6 and it is applicable for the reduction of
Egs (2.8.35) to the Hamiltonian form (2.7./2 ). The Hamiltonian, however, now acquires
an explicit dependence on time. For the same reduction expressed in terms of the transformation
theory, see W. SARLET and F. CANTRIJN. s )

In conclusion, the conditions of variational selfadjointness provide a symbiotic characte-
rization of certain elemental aspects of Analytic,Z Mechanics, Lie Algehras and Differential
Geometry. As such, they constitute a valuable arena for the study, in general, of the deep

interrelations among these disciplines and for the study, in particular, of relativity aspects.

TABLE 2,9: THE THEOREM OF INDIRECT UNIVERSALITY OF THE INVERSE PROBLEM .

We are now sufficiently equipped to outline the following crucial property identified by the

methodology of the Inverse Problem.

®
THEOREM 2,9.1: Local, class C and regular Newtonian systems always admit

an indirect analytic representation in the neighborhood of a regular point of

their local variables.

The proof of this theorem can be outlined according to the following st eps.

Step 1: It consists of the reduction of Newton's equations as derived from the second law, i.e.,
T v ’
kamka - '—kA(—bl A«//L)—{ = /Kf—h?,.-.,f‘// asxy,z

(2.9-1)

into an equwalent general covariant first- order’ form

LC (t, 9-)& —r—D Le, 5‘-),, —Oﬂv,e..izm,w—y\"
2-9.2)
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via the use of the method of Section 2. 7. This implies, in particular, that the emerging variables
&a"}= i’l’k;‘i’kag are not, in general, canonically conj gate and that system (2.9. 2 ) is not,
in general, selfadjoint.

Step 2: Construction of an equivalent, general, first-order, covariant and selfadjoint fonn.
This construction can be done as follows. The "degrees of freedom" at hand are constituted by
the functions gk(t, q, y) of prescriptions (2, 7.2) and an additional set of 4n2 functions h):/( t,a)
which are of class C and whose matrix (h ") is regular in the neighborhood of the considered

al - I’/_ ]sn’ (2.9.3)

(regural)pomt (t,a) and we write

Ctﬂ)Lc enaf + D (bA)] [‘Q

where now SA stands for a condition on the unknowry g and h}, . A study of this system indicates

that, in the neighborh;md of a regular point, it is consistent, namely, it always admit a solution

. 15b 74
in gk and h/‘\} . See in this respect W. SARLET and F, Q NTRIJN 5 and, also, P. HAVASl .
As aresult, Newtonian systems (2.9.4 ) always admit (in the neighborhood of a regular point)

an indirect analytic representation in terms of Birkhoff's equations, i.e.,

a7 o, (2R T2 )2v M 28T T
(,&/“f’ [i/“]s“= (fba" Qo> “ Qo SACQ)

Step 3 : Reduction of the Birkhofflan ‘representation to a Hamiltonian form, i.e.,

AL b o B(&), [aths{tend, (Bl (T
H® @R, 7R @.4.5)

- o\/' I‘o .
Lebwa =55 - (Dt]s N N ‘2 P

~ Sevlse =
The existence of this reduction is guaranteed by the generalization of Darboux's Theorem to
contact manifolds (the so-called contact charts). For the use of the transformation theory
b

to prove the reduction 1, see ref, This concludeg the outline of the three major steps for the

> [wy,, bV Ol C”ﬂ o HE) =H (aca))+ @(a(b)).

proof of the theorem, For details, see ref.

Theorem 2.9.1, in essence, expresses a known result, the property that a vector field,
under the indicated consitions, can always be transformed to an equivalent form which is
Hamiltonian, Equivalently, the theorem expresses the property that Lie's theory is always
applicable, up to invertible changes of the (local) coordinates, to an(even)dxmensmnal systeg}
of first-order ordinary differential equations, as implicit in the Lie-Koening theorem. /| Asa
result, Theorem 2.9.1 and the outlined three steps of its proof are essentially intended to provide

a working grounds for the explicit construction of an indirect analytic representation of



- 270 -

Newtonian systems (2. 9.4 ) with forces not derivable from a potential in terms of the conventional

Hamilton's equations. A Lagrangian, if needed, can then be computed via the Legendre transform,

A number of remarks are here in order. Theorem 2. 9.1 allows the following classification

of Newtonian systems which will result to be crucial for our relativity considerations.

5 o0
CLASS 1: ESSENTIALLY SELFADJOINT NEWTONIAN SYSTEMS. These are (local, class C ,

regular, unconstrained) Newtonian systems in the (inertial) reference frame of their expe-

rimental detection which are selfadjoint as derived from Newton's second law, and we
20

- , 1R
[ % - fhct,e,x)]ES:ao, (2.9.¢)

shall write

where ESA stands for essential selfadjointness in the above sense, It is hoped that the terms
"essentially selfadjoint” here referred to a variational property of systemyof ordinary
differential equations does not create confusion with the corresponding terms used in the
theory of linear operators on vector spaces. In actuality, these terms have been selected
because of a close parallelism between the variational approach to selfadjointness and
the corresponding approach within the context of the Functional Analysis—’. For details,
see ref,
In relations to the proof of Theorem 2.9.1, s'ep 3 is redundant in the sense that the vector fields
are (globally) Hamiltonian,  In essence, systems (2.9.6 ) can be reduced to the normal
form (2.7.7 &) and the conditions of selfadjointness (2.7. 8 ), interpreted as :quations on the
unknown prescriptions gk, are always consistent, This yields a representation of the system
in terms of Hamilton's equations in the variables Sof' }: {?,K,%(Swhich now span a phase space.
Notice tha lack of use of a lagrangian representation in this approach, as typical of the
independent formulation of the Inverse Problem for canonical formulations.
The use of the Lagrangian representation yields the same result. For system (2.9.6 ) to
be essentially selfadjoint, all the acting forces must be derivable from a potential, i.e., must
satisfy the conditions of Theorem 2.4.4 . As a result, the computation of a Lagrangian L
is in this case trivial. The use of the prescriptions pk:{a L/ 9} '-Lk&and of the Legendre
transform then yields a Hamiltonian representation, This is equivalent to the approach
indicated above in the sense that the conditions of selfadjointness (2.7. 8 ) essentially yield
a solution in the function gk which characterize the implicit form (2.7.2 ) of the prescriptions
p= D le fik,a'by therefore yielding the same Hamiltonian (up to all admissible equivalence

transformations, such as those characterizable by the "Newtonian gauge"

Ll x2) - L'¢g %)=Ltz %)y %G“/',‘Jz
Gec . (2.9.7)
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54
CLASS II : NONESSENTIALLY NONSELFADJOINT NEWTONIAN SYSTEMS. These are

(local, class Cm, regular, unconstrained) Newtonian systems in the reference
frame of their experimental detection which, as derived from Newton's second law, are
nonselfadjoint but such to .satisfy Theorem 2.6.4 . This essentially means that

there exist a class Caoand regular matrix of integrating factors capable of producing an

equivalent selfadjoint form without changing the local variables, and we shall write

- . . IR
L’WK)LM*- F:ko\ Lh/lﬁq’i)lb&e’usa:o . (2"9'3)

With respect to the steps of the proof of Theorem 2.9.1, step 3 is still absent. However,
step2 now acquires an essential role in the sense that, in addition to the freedom in

H

k
the g~ functions, the multiplicative functions h /: must be used to induce a “‘amiltonian

form, with the h; clearly playing the canonical role of the hk1 functions of Eqs. (2.6.2 ).
Again, no Lagrangian representation is used in this approach. Its use would yield the same
result,- The computation of a Lagrangian L* via Theorem 2. G . 4 , the use of the
prescriptions p"‘k = L’/D 3 k“and the Legendre transform, do indeed give rise to a
Hamiltonian representation without necessarily going through the intermediate Birkhoffian

representation, Notice that, unlike Case I, the canonical momentum p*k is now generalized
in the sense that it cannot represent the physical linear momentum (seggelow for comments).

CLASS III : ESSENTIALLY NONSELFADJOINT NEWTONIAN SYSTEMS. These are (local,

[ . . . . .
class C ~, regular, unconstrained) Newtonian systems in the (inertial) reference system of

their experimental detection which, as derived from Newton's second lawl are nonselfadjoint
and such to violate the conditions of Theorem 2. (.41 . This essemtially means that the

systems do not admit an equivalent selfadjoint form within the same coordinate system,

R o @99
ENSA :

In this case all three steps of the proof are used to construct a Hamiltonian representation,

and we shall write

EM\‘ ;zoKo\ - —FFAU;' &, é _)]

In particular, the intermediate Birkhoffian representation plays a crucial role to identify

a symplectic (for autonomous systems) or conbact (for nonautonomous systems) characteri-
zation of the systems. The symplectic ((_)r contact) charts, respectively, then ensure the
reduction to a Hamiltonian form,

The reader can now see the reason for our efforts in rendering a Lagrangian representation
inessential, And indeed, since Theorem 2.6.1 is violated by assumption, the use of the

transformation theory is necessary to induce an equivalent selfadjoint form. But
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point transformations rka—> r’ka(r) are insufficient in this case, This necessarily implies

the use of more general transformations of type (2.6. & ). The proof of the existence of a La-

grangian within such a setting appears to be more involved that that of a Hamiltonian,

Notice that transformations (2. 6. &) are the configuration space image of the most general

transformations in a contact manifold, i.e., "

I B e R

S.t (_tl‘“'m) /“(b, Lol %) ‘a,(b"“" )‘\}]

the point is that a dependence of the new coordinates r" ka in both the old coordinates Q.9, ‘o)

and the’momenta " yka= f]ét,g,f is now necessary to achieve the reduction, The configuration

space image is then of type (2.6. 3 ).

We are now in a position to identify the class of Newtonian systems in which we are interested
for relativity consideration, It is that of essentially nonselfadjoint systems. And indeed, this
class is such to possess truly nontrivial forces not derivable from a potential and, as such, itis
the class that will predictably produce the highest possible breaking of the Galilei relativity
(Table 2.14). From now on, unless explicitly stated, nonselfadjointness stands for essential
nonselfadjointness. Notice that, on formal grounds, the class of essentially nonselfadjoint systems

can be considered as inclusive of that of nonessentially nonselfadjoint and of selfadjoint systems,

The reader should be aware that the Hamiltonian representations of essentially nonselfadjoint
systems and, more properly, their Lagrangian image constructed via a Legendre transform )
according to the remarks of Table 2.6 , occurs within a system of coordinates r'ka which
is generally noninertial and nonrealizable in experiments.

The reader should also recall, from Section 2, that all considered systems are tacitly

assumed to be finite-dimensional,

TABLE 2.10: THE STRUCTURE OF A LAGRANGIAN OR A HAMILTONIAN AND THEIR
DEGREES OF FREEDOM. After having outlined the existence theorems for analytic representa-

tions, it is of some significance to indicate the structure of the emerging Lagrangians and
Hamiltonians, This is one of the topics of the theory of nonconservative systems which demands
a departure from the costumary conceptual attitude of conservative mechanics. In @ssence,

as a result of extended use, "the” Lagrangian or "the" Hamiltonian in Analytic Mechanics are
often associated with the structures L= T-V and H=T + V., The Inverse Problem, however,
essentially brings Analytic Mechanics up to the level of the Calculus of Variations as far the

structure of these functions is concerned, that is, they can exhibit an arbitrary structure, provided
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that the assumed continuity and regularity conditions are satisfied. As a result, in the study
of the problem considered it is recommendable to use the conceptual context of the Calculus of
Variations, rather than that of Analytic Mechanics for conservative systems,

"y

It is advisable to identify the structure of "a" Lagrangian or Hamiltonian for each of
the three classes of Newtonian systems introduced in the preceding table,

1. Case of essentially selfadjoint systems. In this case the structure of the direct Lagrangian

representation reads

- C '
j(_ %L-K» %,;pu] = [ ’a‘K Ka — 'Fra } (-2 lo. l)

the forces ‘{' Kk are selfadjoint (i. e., verify Theorem 2.4 .1) and, thus, derivable from a potential,

and the emerging Lagrangian has the conventional structure
£ M. a_f_(b_ﬂ. ) (@-10.24)
Ka = QJZ K + dFQ’Z“h
L = T —uU =gheks

=

- U(t‘},’f:_ (2.10.2b)
An intrl‘guing aspect, however, is that such conventional structure does not exhaust the possibilities
which are rendered identifyable by the Inverse Problem.And indeed, Theorem 2. 6.1 on indirect
representations, even though presented for nonselfadjoint systems, is equally applicable to

the essentially selfadjoint systems. Under the assumption that the conditions of the theorem are

3¢ ,2b
satisfied, these systems therefore admit l:he indirect Lagrangian representatlon

- o
dAL* Lk 7R T b £
Nkn (ks = %F 58) \ M z'b’ b
dt 0z o Sa -
(z. /0 .3)
The net effect is that the conventional structure (2.10.2b) is generally lost already at the level
of essentially selfadjoint systems, e,g., conservative systems. And indeed, the integrating

factors hkl now enter into the structure of an admissible Lagrangian via Egs. (2.6. 4 ) ),

yielding a generalized structure which can be written in any of the following equivalent formsz’3

L*Cha %) = K (b2, %)+ Db )gh+ Cekx)

N_ xy2 (ka) .

= k« b‘: )‘Z“
B L)l ) 02 D)
L cob Y Ve . g sb
=5 Gcajbz + 2% F“).bz + T 2],

LZ- 10.4.)
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These generalized Lagrangians are fully acceptable on analytic grounds because the system of
the implicit functions of Lagrange's equations in these functions and that of the equations of
motion coincide. As a result, they provide an analytic representation in the sense of Table 2,3 ,

But system (2. 6.3 ) on the integrating factors hki is a system of partial differential equations,
that is, a type of system which, when consistent, admits solution with a functional degree of freedom.
This implies that there may exist a family of equivalent Lagrangians within the same system of
Cartesian coordinates, with a corresponding famility of equivalent Hamiltonians.

For instance, all the following functions

{2.49.54)

L¥ —c7Co;f‘+ ‘775”“&‘ 796054'

: 1_‘2.6\26633_ b (4% 9%)

ﬁc‘)’M |qsec b, bus Chvoll
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"

9+0, (2.10.5b)

(2.19.5¢)

i

) (2-1 5¢)

I S )
u

-~ T

represent the same system, the one-dimensional harmonic oscillator with equation
ve 2
= sk=t, L= 1(qd=62) 2.19.6)
§+9=0, mskst [ (9 9<). (;

We are here clearly facing a degree of freedom of the Lagrangian structure which is
not derivable with conventional means, e.g., the "Newtonian gauges" 2.9.7 ). And indeed, it
is a new degree of freedom directly produced by the integrability conditions for the existence
of a Lagrangian representation, In essence, these integrability conditions yield the representation
not only of one selfadjoint form of the equations of motion, but more properly of all the equivalent
selfadjoint forms. For this reason we shall use the term "a' Lagrangian, rather than "the"

Lagrangian,
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The degrees of freedom we are here referring to were apparently identified for the first
time by using conventional techniques by D.G. CURRIE and E.G. SALETANI ;;r the case of
one dimensional systems and called "fouling transformations”. T he Inverse Problem essentially
produce the necessary and sufficient conditions for their existence (Theorem 2, 6.1), We shall

call these transformation isotopic from the meanlngZI> /3¢,5a

' (erw" " Towos v _ " %mese'z,ve” "Q;Mg&u'n_ﬁwu“ ,
here interpreted as class C ® , invertible, selfadjointness preserving transformation. Two
Lagrang;ansaL(t,g,'_L_) and L*(t,*,z) will be said to be isotopically related when they satisfy
<y

hen.ﬂedq_,i oL IC’Q “A ib/d QL Db \TR R

| & ase o ko \db@g® " @eca d g !

(2.10.7)

where, as by now familiar, the repetion of the symbol C and R , stands for the condition that
the matrix (h) is of class Cc® and regular,

The reasa for the selection of the terms "isotopic" will be indicated in Table 2,{3 . The reader
should be aware that this concept of isotopy will play a crucial role for our conjecture of a
Galilei-admissible covering relativity in the sense that it constitute§a first step toward a more
general concept (that of genotopy) which will . . be actually used in the construction of our
conjectured relativity. Even then, the notion of isotopy will persist in an associated form,

Notice that structure (2.10.4 ) is the Newtonian limit of structures which are called

chiral Lagrangians in field theory'laa'

C
a Lagrangian structure is nonessentially chiral when there exist an equivalent conventional

. For use in subsequent papers we shall say that

structure within the same system of variables, i.e., when there exists a Lagrangian L = T-V
related to the generalized Lagrangian via rule (2.10. 7 ). Thus, nonessentially chiral Lagrangians
can represent conservative systems, despite their generalized structure.

I, Case of nonessentially nonselfadjoint systems. This the class of systems for which

the indirect Lagrangian representations according to Theorem 2, 6.1

_ - TR
4 QL QL ¢ ni ) )C I €2.10.8
db it o sa - <M Eh B NENSA )

exist, In this case the structure of a Lagrangian is, of course, generalized, i. e., of type
(2.10. & ). However, this generalized structure is now necessary to represent the system.,
And indeed, if there exists a Lagrangian L = T - V within the same coordinates for the

representation of the systems considered, this implies that all acting forces are derivable
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from a potential, contrary to a central property of the systems considered, We shall then say
that the Lagrangians for representations (2,10, B ) are essentially chiral.igc

The isotopic d-grees of freedem, howevcy, persist . And indeed, system (2.10. 8 ) may
admit a family of functionally different solutions. For instance, the damped harmonic oscillator

admit the following isotopically mapped Lagrangians

e (5] s L0 bt () e g i),

29w 29w 1o. 9b)
(2.1w, 4a)’ W wl- 8, @ -10-
In essence with the terms no ntially and tially chiral Lagrangians we intend to

express the fact that (both at a Newtonian and a field theoretical level) a generalized structure-

of a Lagrangian does not necessarily guarantee the existence of a generalized system. It is hoped

that examples (2.10. 5 ) can be of assistance in this respect, The attitude which is recommended
in relation to this issue is as naive as possible. When a generalized Lagrangian structure is
studied, the best way to ascertain that the system is actually generalized is to compute the
equations of motion and, in particular, the implicit functions of the system, This is the most
direct and unequivocal way to reach conclusions of physical nature from the mathematical
algorithm represented by a Lagrangian,

The extension of these remarks to Hamiltonian structures is triviial, by reaching structures
of the type - ke N .
(e x,B)= T(EE )+ D, bw) be. + € (bE)
™ x:‘n (ke) (ka) E
5= H VtrpH (pFA)TLH‘ME(,m, )

ko1 as ink, T :(P
Gtz b 2h TN thm)n 2 E, cwéj
- ):k’ /w,/,)‘f)-t"i- n 3b [Py C“HB /
(2.10.19)

which, again, can be either tially or no tially generalized, Notice that these

structures are not treateble with Riemannian manifolds ( as currently known) even at the limit

of null forces derivable from a potential (but non null forces not derivable from a potential).

This property will be significant for relativistic generalizations to be considered in subsequent
papers (see Section 5 for introductory comments).

III. Case of essentially nonselfadjoint systems, In this case the use of the transformation

theory is essential, Thus, the admissible Lagrangian and Hamiltonian structures are defined
in a new system of variables, It is easy to see that this structure can be either of the

conventional type (2.10.2b) or of the generalized type (2.10. 4 ), but now in a new system of
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variables. Most intriguingly, the use of symplectic (or contact) charts may lead to straight
trajectories, In this case the Lagrangian and Hamiltonian structures are not only conventional,
but actually those for a free particle, i.e.,

Z_ (’z)) /‘uk’z’ ),_.K/ H'(E):i—';"k t'g‘ ;;}& Q_lD.ll)

o

This is, in essence, our argument (indicated in Section 1) according to which systems which
break the Galilei relativity in the reference frame of their experimental detection can be trans-
formed into an equivalent system in new variables which is fully compatible with the Galilei
relativity, This is the line of study of the relativity problem of Newtonian Mechanics which we

shall leave to the interested reader for the reasons indicated earlier.

TABLE 2.11: THE REPRESENTATIONAL CAPABILITIES OF VARIATIONAL PRINCIPLES.

Theorem 2.9 .1 essentially indicates that variationa},principles can represent "all" Newtonian
systems of class Cm, regular, unconstrained and local, It is of some significance for our problem
to point out the mechanics of the "representation' and the nature of the "variational principles".
Again, the reader is here discouraged to use the mental attitude of Analytic Mechanics for
conservative systems and use instead that of the Calculus of Variations, More specifically,
the terms "variational principlej"should be referred to the algorithmsof the established
"variational problem:" in which the estremal part is ignored. It is again useful to outline the
arguments for the three separate classes of Newtonian systems of Table 2. 3 .,

1. Case of essentially selfadjoint szstems. This is the typical variational setting of

conservative mechanics and we shall write t C”;’(e

e - - [r(f22s )5*‘* b (e - ) Femie o
b

<Ko [IN
3 45 22 b ESA (2.01.1)

2a
We shall then say that the conventional Hamilton's principle is a selfadjoint variational principle

because it induces selfadjoint analytic equations,
The existence of the isotopic degrees of freedom of a Lagrangian for the systems considered

provides a first departure from conventional patterns And indeed, for these Lagrangians we

novtl:lhave be 4 QL* <DL* C e CS?@ a
a\\*L*:- db (7 —— (S h- 9“’ ka A 'L L'f ) fn'z o
o @i @k 50
[ by (¢4 t (,?-’“"Z)

Predictably, these variational algorithms may be discarted by some reader because unconventional.
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The point which we would like to bring to the reader's attention is that the variations used in

principle (2.11. 1) are the simplest possible variations of the Calculus of Variations, i.e., of

the type szk;\ _ %kaa_) v Waxo, (2.“.3)

called weak variations. In actuality, variations can have considerably more involved structures
In principle any implicit or explicit functional dependence of the variations in the independent
variable, time in our case, which satisfies the desired continuity properties is acceptable,

and we shall arite S’Lka; (S ﬁlﬁ‘?t,},é). And indeed, since the fir st order variation of the
action must be computed along the actual path to yield identity (2.11. { ), this has the effect

of reducing the functional dependence of the variations to only that of time, i.e., ((S 'éﬁ(t ’Z,'c_)\
=( (S ’L]S(t), where '?, is the a ctual path (that is, the path which renders null variation (2. 1L 1)).

As a result of this occurrence we can assume the following form of the variations

N -/ : . : i r ‘
A Y S L LM Uy IR G
under which principle (2. 11.2) becomes

¢
gafdene §f e (2.0-5)

L, . t,

Equivalently, we can write t
Y PL* S*J;(l_ L ‘ <‘.2-”' é)
g S d - E,
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2b, 3¢
We shall call principle (2.11. 5 ) an isotopically mapped variational principle.. Its net

effect is that of producing the equations of motion in the "natural form' as derived from
Newton's second law. In conclusion, if structure (2,11. 2 ) of the variational algorithm is
undesired because unconventional, the isotopic degrees of freedom of a Lagrangian can be
eliminated by the corresponding (in verse) degrees of freedom of the varia tional algorithm.

II. Case of nonessentially nonselfadjoint systems. In this case the use of

Lagrange's equations and & Lagrangian produced by Theorem 2. 6.1 yield the indirect analytic

representation of nonconservative systems t ’_ R

b AL\ ([ 5b) . e
5}4% :—g«\ (dQL o= 10 Lt hia (M«,"*c,-b—F ) I
£ £

Ke Ka
k2 G)'z o NENSA J ¢ o

' ' (2-117)
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The principle, however, is still selfadjoint, contrary to the nonselfadjoint nature of the
equations of motion in their "natural form",

This discrepancy can be removed with the use of variations of type (2.1 4 ) which now

R

yield the pnnc1ple b ,E C7, ! E&
dL (DL-) j‘j Ja”, e - e )02 2 0,

§ 5 atL =-§t.e“[%“ ( drgt @ na -, . Lz.u?”;)m

Here an occurrence of particular relgegance for our analysis emerges. Principle (2.1l. &) is

a nonselfadjoint variational principle because it induces analytic equations of nonselfadjoint type,

. 33.’bb,’><- - 5

. 7SR DETR
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By construction, this is a trivial equivalence transformation of Lagrange's equations induced
by the multiplication of a class Cﬂp and regular matrix of factor functions. However, it will
have nontrivial implications for the Lie-admissible formulations because these formulations
are nonselfadjoint by central requirement. As a result, the analytic equations in the non -
selfadjoint form (2. 11,9 ) rather than the conventional selfadjoint form (2.4)  will be useful
for the direct transition from the analytic equations of the Inverse Problem to those of the
Lie-admissible problem (see Table 3./ ).

At this point let us content ourselves with the remark that nonselfadjoint variational
principles allows the direct analytic representations of nonconservative (nonessentially nonself-
adjoint) Newtonian systems in their "natural form", This possibility is, in essence, implicit
in the same definition of "analytic representation”. And indeed, identities (2.2 .4 ) are trivially
equivalent to their nonselfadjoint version (2 & )

(Gea ’L) (h M\‘q) , (2-W.10)

What is again important on representational grounds is that, irrespective of the form of the
variational principle (selected on grounds of personal preferem ce) the system of implicit functions
of the (selfadjoint or nonselfadjoint) analytic equa;ions and those of the equations of motion
coincide,

III. Case of essentially nonselfadjoint systems. In this case the conventional structure of

the principles and the conventional structure of the integrands are fully admissible, although
now acting in a new system of local coordinates, The drawback is that such a system is
generally noninertial and generally nonrealizable with experimental set ups.

In this respect the use of Birkhoff's equations might play a significant role. Let us recall

from the proof of Theorem 2.3.4 that in the construction of the analytic representation in terms
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Birkhoff's equation (step 2 of the proof), the space components of the variables are those of
the experimental set up by construction, although the Vi components are generally noncanonical,

The net effect is that the representation of essentially nonse]fadjoint systems with principle

@2.8.9), ie, b 1. 1)
gy Fad) < [alb (R, &7 -2H° M—o G0
th ot Fa.a) Jb, ( yod O

{AM ‘lj = ‘{L = ) :d»"] ’
might play a significant role for relativity considerations. This aspect will be left to the
interested reader. Notice, however, that principle (2. 11. i1 ) is selfadjoint and
admits nonselfadjoin t generalizatios of type (2.11. 8 ). Notice also that the integrand of
this principle is totallz degenerate, in the sense that not -only the Hessian determinant is
identically null, but actually each element of the Hessian matrix is identically null, trivially,
because the F-function is linear in the first-order derivatives.

It is of some significance also to indicate that the methodology of the Inverse Problem allows
the identification of a series of generalizations of Hamilton's principle, e, g., to include the
integrability conditions for the existence of a Lagrangian directly in the variational algorithm

§a = _ f gt [ 4 QL. QL S’&l‘k:o (1."-'3‘\)
dr S T

(5(.69 (‘S‘;f " Se T (S JK*I J
J—’J 1‘ I QJSG‘”[, IC )-ee <C;|), p.b)

or to include Lagrange’s equations and their associated Jacobi's equations, or to include
the additional presence of end points contributions (in addition to the symplectic generalization
(2. 8. [{ ) and the nonselfadjoint generalization (2.J1. B ) indicated here). For these generalizations
we refer the reader to refstmiz.b

As a final remark, our interest in variational principles for nonconservative systems is not
that of constituting an alternative to the analytic equations. Instead‘ it is mainly of methodological
nature, with particular reference to the problem of quantization of nonconservative forces (to be
considered in a subsequent paper) via the Hamilton-Jjacobi equations derived, as customary

from variational principles with end points contributions,

TABLE 2.12: THE NOTIONS OF SYMMETRIES AND FIRST INTEGRALS FOR NONCONSERVATIVE

SYSTEMS. One of our central objectives is that of identifying the mechanism of Galilei symmetry
breaking produced by nonconservative forces. It is therefore recommendable to first identify

the notion of exact symmetry for a nonconservative system. In Table 2, 10 we indicated the
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potentially misleading nature of the conventional attitude of conservative mechanics in the
study of the Lagrangian structure for nonconservative systems, The remark was repeated in
relation to the variational approach of Table 2, 1l. There is no doubt that the potentially mis-
leading nature of the conventional attitude of conservative mechanics reaches its climax in
relation to the problem of symmetries and first integrals of nonconservative systems. Let me
indicate from the outset that the potential difficulties are solely conceptual in naturel because
the available techniques for the study of symmetries and first integral are fully established
on unequivocal technical grounds.

The first area of potential misrepresentation is constituted by the used terminology. And
indeed, the use of the conventional terms "conservation laws" is clearly misleading because,
as a selfevident condition, nonconservative systems violate the conservation laws (e.g., a
necessary condition for a system to be nonconservative is that its total physical energy is non
conserved).

In the following we shall use the following terminology. With the term symmetry (or exact
symmetry) we refer to the rather universally accepted definition, that is a (class C°°, invertible)
transformation of the independent and dependent variables under which a Lagrangian preserves

its functional structure up to terms with null Lagrange's derivatives
!
. ) ;’;)OL- Lyt ;,g)- b ot
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This is equivalent to the definition that the transformations leave form-invariant the underlying
equations of motion, The terms manifest symmetries will be referred to symmetries of a
Lagrangian or of the equations of motion which are identifyable with simple means, often a

visual inspection (e. g., the symmetry of conservative systems under translations in time).

The terms nonmanifest symmetries will be referred to symmetries which are of complex

identification, usually, via indirect techniques. Discrete symmetries (i.e., symmetries under
space-time inversions) will be ignored for simplicity and we shall restrict the outline to the

case of connected Lie symmetries in the conventional sense. These symmetries will be classified

into: (a) contemporaneous, when they occur at a fixed value of time (e. g., rotations), (b) noncon -
temporaneous, when they include time transformations, (c) first-order, when they are infini-
tesimal of the first-order, (d) order p ; When they are infinitesimal of order p, and (e) finite,
when they are characterized by finite, connected, Lie transformations.

A set of functions Is(t,q,é), r=1,2,...,m, are called first integrals when they are conserved

along the actual path, i.e.,
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where the f's are the implicit functions of the system, The functions IS will be said to represent

physical conservation lawsif and only if they represent physical quantities as commonly understood

i.e., the physical total energy, linear momentum and angular momentum. The distintion between
conservation Jaws and first integrals is truly crucial for the study of the problem of the relativity
laws of Newtonian Mechanics. In essence, there is a hasic distinction between a mathematical
and a physical content, On mathematical grounds the occurrence that a quantity is conserved

along the actual path is basically insensitive as to whether the represented system is conservative
or not, On physical grounds the situation is different. And indeed, a quantity which is conserved

is not necessarily representative of a physical "law". An example is here useful to illustrate

this crucial distinction. For the case of the one-dimensional conservative harmonic oscillator

the quaxztity DL ° /-2 2 3
— V- _ V= H-(, =0, L= (7 - , (_Z.IZ- )
E = eﬁ:(? @c)' ) q!)) / L2 7)

represents not only a first integral but also a conservation law- because the mathematical
algorithwi'H" represents a physical quantity . In the transition to the nonconservative damped

2¢c
oscillator the situation is different. And indeed, this system admits the quantity L

Hiop) = bug - beos(wpe) -1 7p, 120

which is conserved along the actual path. As such, it does constitute a first integral, but

not a conservation law. And indeed, the assumption that the mathematical algorith "H" in this case
also represents a physical quantity would be in contradiction with the experimental evidence that
the physical energy decays in time. In conclusion, the attitude which is recommended for non-
conservative systems is that their "conserved quantities' are, in general, only first integrals

and they are not representative of physical conservation laws.

A second possible area of misconceptions is related to the methodology which associates
symmetries to first integrals. As is weell known, this topic, within the context of conservative
mechanics, is dominated by Noether's theoremz.% few remarks are here in order. The first
is that this theorem essentially guarantees that, whenever a Lagrangian possesses a symmetry
under an n-parameter connected Lie group, there exist n first integrals. The point is that, by
no means, this theorem ensures that the first integrals are representative of physical conservation
laws, nar 1 am aware of any intent by Emmy NOETHER to this effect. Another point which is
not often emphasized in the existing literature (see, however, 1:ef.”‘1 ) is that Noether's

theorem does not guarantee that the n first integrals generated by an n-dimensional connected

tl
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Lie symmetry are actually independent. For instance, the 10 conserved quantities generated

are (necessarily)

2
by the Galilei symmetry of the Lagrangian for the free motion, L = i m j.: )

nonindependent amomg themselves,

But a more controversial issue may be that related to the effectiveness of Noether's approach
gorsymmetries and first integrals. It is known that for the conservative two-body problem the
{dentification of all manifest symmetries (the Galilei group) leads, via Noether's theorem, to
the identification of all first integrals needed for the solution of the system by quadrature. However,
in the transition to the three-body problem the use of this approach does not produce the identification
of all needed (18) first integrals. Clearly, if additional (independent) first integrals exist , they
are associated to nonmanifest symmetries, in which case Noether's approach, as conventionally
known, is ineffective.

In the transition to nonconservative systems these occurrences acquire a more definite
light. And indeed, nonconservative systems are such that they seldom admit manifest symmetries.
This brings into focus in a natural way the problem of the methodology for the identification of
first integrals,

In this respect the following possibilities are conceivable. First of all, one might attempt
to complement Noether's approach with additional insights. For instance, the use of
isotopically mapped Lagrangians may be of assistance in this respect, because they may turn
nonmanifest S%n\;metries of the original Lagrangian into manifest symmetries of the new

B¢
Lagrangian, As a simple example, consider the particle with drag force

9 +¥7=c°.
Two independent first integrals are needed for its solution by quadrature. A first Lagrangian
W e -
L= q%q -§q (2-12.¢)
exhibits the manifest symmetry under translations in time yielding the first integral

é‘ +d9. (2.12.1)

But, if one insists in considering only Lagrangian (2.11. &), the identification of the second

(2.12.5)

T, =

first integral becomes rather involved. The use of the isotopically mapped Lagrangian
-2
L= L 2.12.9)
e Lg2 €
instead, produces a trivial solution. And indeed, this equivalent Lagrangian now exhibit a
manifest symmetry under translations in space, by therefore yielding the second (independent)

eﬂ’ ‘f. (2-12.9)

first integral

1 = .



-284 -
The reader should be aware that first integrals are conserved in virtue of the equations of
motion (or Lagrange's equations). Thus, both quantities (2.12. 7 ) and (2.12, 9 ) are conserved
for Lagrange's equations in each Lagrangian (2.12,6) or (2.12. & ). This implies that, say,
Lagrangian (2,12, & ) possesses a nonmanifest symmetry which leads to quantity (2,12, 9)
and a similar situation occurs for L agrangian (2.12. € ) and quantity (2.12, 7). For ean explicit
calculation see ref .2 It is in this sense that the mechanism of isotopical mapping of a Lagrangian
can turn a nonmanifest symmetry of the original Lagrangian (i. e., a symmetry of difficult
identification as such) into a manifest symmetry of the isotopic image,

Similarly, the representation of the same system with both, Hamilton's and
Birkhoff's equations can be of assistance. And indeed, the manifest symmetries of the Hamiltonian
are not expected to be generally preserved by the "Birkhoffian". The potential relevance of
the latter equations relies precisely in this general loss of the original symmetries. And indeed,
this may imply that the "Birkhoffian" has new manifest symmetries which, as such, can be
useful for the identification of first integrals.ﬁ

Notice that, even when the original manifest symmetries are preserved in the transition
from the original Hamiltonian to either - an isotopic image or to a "Birkhoffian", this generally
implies the identification of different first integrals (trivially, from the nontrivially different
functional differences of these functions). 5
Despite these auxiliary implementations of Noether's approach, the need of a more effective
methodological approach persists. This problem can be classified into the following two aspects.

A, Identificati on of the first integrals associated to the manifest symmetries of the equations

of motion (rather than a Lagrangian). The insufficiency of Noether's approach, as currently
known, for the resolution of this problem can be indicated by the property that the class of

manifest symmetries of the equations of motion is generally larger than that of each individual

Lagrangian for its analytic representationz.b'afgr instance, Eq. (2.12.5 ) possesses two

manifest symmetries, translations in space and in time, while each individual Lagrangian
(2.12,6 ) or (2.12, &) possesses only one symmetry (I have been unable to identify one
Lagrangian for the system considered via the techniques of the Inverse Problem which exhibits
two manifest symmetries). In conclusion, it appears that for an effective solution of the problem
considered‘t.he methods should be independent from Lagrangian representations. The most
remarkable approach along these lines of which I am aware is the geometrical treatement

by S. STERNBERG  which the interested reader is here urged to inspect,

B. Identification of the first integrals associated to the nonmanifest symmetries of the

equations of motion . This problem goes at the very foundation of the problem of the relativity

laws of nonconservative Newtonian systems, And indeed, one of the central aspects of this
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problem is the identification of transformations which leave form-invariant nonconservative,
(generally nonlinear and explicitly time dependent) equations of motion. Clearly these symmetries
are expected to be of highly nonmanifest nature,

The study of these nonmanifest symmetries is one of the central objectives of the Lie-admissi-
ble formulations and, as such, it will be trated in Sections 3 and 4.

I cannot close this section without touching on another area of potential misrepresentations.
I am here referring to the fact sometimes explicitly stated or implied by available treat ments
according to which conventional symmetries (e. g., translations in time, translations in space,
rotations, etc, )lead to conventional physical conservation laws (total physical energy, linear
momentum, angular momentum, respectively). Equivalently, I am here referring to an often
implied unique association of the physical conservation laws and the symmetries for their
derivation. The techniques of the Inverse Problem allow a disprof of these beliefs in the sense
that, when a conventional physical conservation law occurs, a Lagrangian for its analytic represen-
tation deos not necessary exhibits the conventional symmetry. Viceversa, when a lagrangian
exhibits one of the indicated conventional symmetries, the induced first integral is not necessarily
the conventionally associated quantity.

It is best to illustrate this point with the following occurrences.

OCCURRENCE 1: When the total physical energy of a system is conserved, a Lagrangian for

its analytic representation is not necessarily invariant under translations in time . This occurrence

is illustrated by Lagrangian (2.10,5a) which is explicitly dependent in time, neverthless, the
represented system is conservative (the one-dimensional harmonic oscillator).

OCCURRE NCE 2: When .the total physical energy of a system is nonconserved, a Lagrangian

for its analytic representation can be invariant under translations in time. This occurrence is

illustrated by Lagrangian (2. 10.9b) which is manifestly invariant under translations in time,
neverthless the system is nonconservative ( damped harmonic oscillater),

OCCURRENCE 3: When the total physical linear momentum of a system is conserved, a

Lagrangian for its analytic representation can violate the symmetry under translations in space.

This occurrence is illustrated by the system

©2.12.100)

oyt Ly =0
X 4 / m=4, (212, )OL)

.e o4 —
= lty * 272y =0,
whose first equation expresses the conservation of the total linear momentum. Neverthless,

the following Lagrangian for its analytic representation
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(2.12.1)

_ 32 < - {2 2
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is not invariant under translations in space,

OCCURRENCE 4: When the total physical linear momentum of a system is nonconserved, a

Lagrangian for its analytic representation can be invariant under translations in space. This

occurrence is illustrated by Eq. (2.12. 5 ) for which the linear momentum decays (exponentially)
in time. Neverthless, Lagrangian (2.12, §) for the representation of the system is manifestly
invariant under translations in space.

OCCURRENCE 5: When the total physical angular momentum of a system is conserved, a

Lagrangian for its analytic representation can violate the symmetry under rotation. This

occurrence has been studied by G. MARMO and E.]. SALETAN ‘2%, Consider the three-dimen-

sional harmonic oscillator

w4+ =0 y /\M:F"L/ﬁ:@w"b/%.)/
A A

(2.12.12)

with trivial conservation laws of the angular momentum. A fully admissible Lagrangian for
this system is given by . | 2 2
. . ? v ? ’ 2
¥_ L (7 )_—-(fz 2 ) 2.12.13
l_ = 2 lz X /Z D + )Z 2. l X b + 2 / (— )
and, sas such, it violates the symmetries under rotations (see also Table 2. 13).

OCCURRENCE 6: When the total physical an gular momentum of a system is nonconserved, a

Lagrangian for its representation can be invariant under rotations. This occurrence is illustra-

ted by Lagrangian (2. 6.7 ) which is manifestly invariant under rotations. N everthless, the
represented system is highly nonconservative (and nonlinear in the velocity terms).

These occurrences inevitably lead to the following aspect of particular significance for
relativity considerations.

OCCURRENCE 7: The symmetry of a Lagrangian under the Galilei group does not necessarily

imply the validity of the physical Galilei conservation laws (tiotal physical energy, linear momentum,

and angular momentumn and uniform motion of the center of mass).

A few comments are here in order. Notice the emphasis on the word "physical” when used
in the context of the conservation laws. This is suggested by a possible trap of nonconservative
systems(generally absent for conservative settings) according to which, say, the mathematical
algorithm represented by the canonical momentum '_'P;” or the canonical angular momentum “TA"

are mathematical quantities of the type

_ Y emb!pit  tps cousty e
AA

£

M smb"('s:c:l(ﬁxd‘)' (21214 )

JAA oo
To be explicit, in conservative mechanics the symbol "p" generally represents a physical
quantity, the linear momentum m ‘5. . As such the use of the term "physical"” when referring
to "p" is inessew tial. In the transition to nonconservative systems the situation is different.
Here the Lagrangians must possess a generalized structure. In turn, this means that the
algorith‘g =0 L/’b i has, in general, no direct physical significance. The term "physical”
is then used for the intend of differentiating between the canonical quandty“l"_ and the physical
quantity mi." . Similarly, the "physical an gular momentum" of system (2.6.6 ) is the
conventional quantity M = Ix B» =rxm ‘é , Occurrence 6 refers to the nonconservation
of this quantity. If canonical quantities are considered, the situation is different. And indeed,
the manifest symmetry of Lagrangian (2.6 .7 ) under rotations certainly leads to a conserved
quantity (the canonical a ngular momentum), The point is that this quantity does not coincide
with the physical angular momentum,

For a detailed discussion of the occurrences indicated above, as well as for altermative
examples, see refs.zb 13k, 1ac
[Note added in proof : in relation to the physical implications in the selection of the phase space
variables the reader should also consuit A.P. BALACHANDRAN, T.R.,GOVINDARAJAN and

B. VIJAYALAKSHMI, Syracuse University preprint SU-4211-110, January 1978].

TABLE 2,13: THE NOTIONS OF ALGEBRAIC, GEOMETRIC AND ANALYTIC ISOTOPY.

Let U be an (associative or nonassociative) algebra with elements a,b,c,... over a
field F with elements « , (} , K ,++. equipped with the (abstract) product ab satisfying given
laws (2ssociativity, commutativity, Lie, etc.). An isotopic mapping U —=> U* of U is
the mapping from UJ to an algebra U* which coincides with U as vector space (that is, the elements
of U and U* coincides) and which is equipped with a new product a*b such to preserve the
algebraic laws of U (that is, if ab is associative or Lie, a*b is equally associative or Lie,

respectively). Tpe algebra U* is then called an isotope of U,

An isotopic mapping of the product ab can be realized in a variety of ways.

Suppose that ab is associative. Then the mapping C 2.3 I)
ab —» axb =olab , LeF, 2
is isotopic because trivially preserves the associativity laws. However, isotopic mappings

can be realized also in terms of elements of U. Let ¢ be an invertible element of U.
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If mapping of the types

abs a*b = @c)b, (2.13.2)

%, a¥hb=(c)b + ("*(4'('),)]9’
C= ﬁxcd, q,\) éu,
preserve the algebraic laws of U/they are isotopic.

In essence, the notion of algebraic isotopy is intended to express the "degrees of freedom "
of the product to satisfy given algebraic laws without changing the algebra as vector space.
This notion is rather old, and actually dates back to the early stages of set theoryzz. And
indeed, the notion was apparently identified for the first time within the context of the Latin
squares, Two latin squares were called isotopically related if they could be made to coincide
by using permutations. But Latin squares can be interpreted as the multiplication table of
quasigroups. The extension to quasigroups, groups and, then, algebras, is then direct. 222
As R.H.BRUCK put it; the concept of algebraic isotopy is "so natural to creap in unnoticed",

And indeed, this notion has received rather little attention in recent times, to the best of
my knowledge,

During the course of our analysis we shall attempt the identification of the possible
existence of the notion of isotopy at several levels of study, e.g., Lie algebra, symplectic
geometry, Lie's transformation thecry. The reason for our interest is that this notion appears
to be relevant for the study of Lie-admissible algebras.

In this table we shall outline the rudiments of the algebraic, geometrical and analytic realiza-
tions of the notion of isotopy which are relevant in Newtonian Mechanics.

Considez the Lagrangians % ) L2 ez 2 » 2 2 ﬁ

Lo Har aied))- v wag ot oL [0 B )- (2t e

(2.13.3)

which we have called isotopically related (Table 2.10). They represent the same system, a part
the trivial multiplication by (-1) of the second equation. The angular momentum is conserved

for both Lagrangians, The symmetry of L which leads to this conservation law is the group

of rotations SO(3) . It is possible to prove that the symmetry of L* which leads to the same
conservation law is the Lorentw group SO (2. 1), What we would like to indicate is that
the Lie algebras SO(3) and SO(2, 1) are isotopically related.

Here a departure from conventional classical realizations of Lie algebras is essential.
Typically, the algebras SO(3) and SO(2.1) are realized in terms of different generators because
nonisomorphic. This conventional realization would now be inconsistent, The mathematical and
physical meaning of this $0(2, 1) symmetry is that of leading to the conservation law of the

angular momentum, that is, to the generators of SO(3). Thus, to be consistent with mapping
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(2.13.% ), = SO(2.1) must be realized in texms of the angular momentum components as
generators. To veach with these generators an algebra which is nonisomorphic to SO(3), there
is then only one possibility left: perform an invertible Lie algebra preserving mapping of the

<
product, that is, an isotopic mapping . And indeed, simple calculations yields the solutionﬂ

é‘_)@“)"[m,,le];Mu [MB:MDT;*H" / [HZ-/ M,‘T‘: My ! (2.12.4)
$0(3) : MMy =My, [ My, M= M, TM2, M= Ms (2.13.4%)

2 [9) +! o D. ’)
00 wrveB 303 (—‘ ) 13t Loy 3,.,\
Lﬁlgl’ﬁ;w Q' ) ( uv B kD] 0+. (-w)‘"): ¥ ).
- P~ O -l 0 / o
L#® *:Z%%*JL (3%« ! <Jf¢) Cmar -43}4,‘3:4 filald /&"3"")

In conclusion, the algebras SO(3) and SO(2.1) in the above realizations are isotopically related
(that is, one is the isotope of the other), because (a) they coincide as vector spaces (that is,
they are realized ir terms of the same generators), (b) they preserve the parameters(but not
necessarily their range, one algebra being of compact and the other of noncompact type), and
base manifold (that is, they are both defined in terms of the same phase space coordinates)
and (c) they are defined in terms of different Lie products.

Notice that the transition from the conventional Poisson brackets [R,B J o S0(3) to
the generalized brackets [H‘,B]* is defined in terms of elements of the field. This is clearly
a particular case, the most general case being that defined in terms of elements of the base
manifold. We reach in this way the conclusion that the transition from the conventional to the

generalized Poisson brackets without changing the base manifold

T 7 K
EHIB](M > LH»B] (a) /

is a Newtonian realization of the notion of Lie algebra isotopy. Intriguingly, the roots of this

(2.13.5)

notion rest on the property that the symmetry of a Newtonian system capable of characterizi"n%
first integrals (or conservation laws) is not necessarily unique (Table 2. 12).

For a detailed treatement of this notion, see refs.%'s. Here let us only recall that the Lie iso-
topies do  not necessarily preserve the compact or noncompact, semisimple or nonsemisiple
and Abelian or nonAbelian character of the original algebra. For instance, another isotope
of SQ(3) can be, at least in principle, an Abelian three-dimensional algebra. Of course, the
notion here considered necessarily preserves the dimensionality of the original algebra. This
implies in particular that the isotopically mapped product must be such to yield a closed algebra
with the generators of the original algebra.

As we shall see in Section 3, the notion of Lie algebra isotopy admits a consistent group
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image. Here let us indicate that the algebraic isotopy (2.13.4 ) admits a direct geometrical
counterpart, the symplectic isotopy (for autonomous cases)

w, = WM,da”Ae{av —_— ()21: a?)wdm)*,\gl o\v’ (2.!3,6)

or the corresponding contact isotopies for the nonautonomous case. Andindeed, the realizations
of SO(3) and SO(2.1) indicate earler are such that the cevariant versions W v and Jz M
of the respective Lie tensors wh Y and &)A v characterize symplectic structures.But
the mapping occurs within the same base manifold. Thus, it is a case of symplectic isotopy
in our terminology.

Another example is provided by the transition from the conventional canonical form (2.& .2.)
M l_ gk /o (213,

&= de"?'c —> W 0%

to our realization (2.8 .2 ), i.e.,

Again, the base manifold is not changed.N everthless, both forms leadﬁlia exterior derivau‘org
to a symplectic structure, Thus, mapping (2.13.7 ) is an example of symplectic isotopy.

In general we can say that a Lie algebra isotope always admit a corresponding symplectic
image via the covariant version of the Lie tensors.

To conclude, let us briefly indicate the analytic origin of these algebraic and geometric
isotopies. Consider the following equivalence transformation of Hamilton's equations within

the same base manifold

> ) CTR
T o QH@ " O3
Lq/:’(a) |wvp al - Y &)E " }6:0. (2.13-3)

Dav

Under the assumption that, for a given Hamiltonian, the equivalent system is selfadjoint,

we reach Birkhoff's equations, i.e,,

v QHE _ (J? = vw
Loy i =D <0, Sy = byl

oMt gy YOl

_ oy ok
On DaM(2.13.9)
Ser P Dav
Thus, the analytic origin of the notions here considered is that of a selfadjointness preserving
equivalence transformation of the analytic equations within the same system of variables.
This illustrates the reason for calling Lagrangians (2.13.3 ) isotopically related.
It is an instructive exercise for the interested reader to work out the SQ(2.1) invariant repre-

sentation of the harmonic oscillator in terms of Birkhoff's(rather than Hamilton's) equations.
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TABLE 2. 14: CLASSIFICATION OF THE BREAKINGS OF THE GALILEI SYMMETRY IN
NEWTONIAN MECHANICS. We are now sufficiently equipped to study the mechanism of

Galilei symmetry breaking due to nonconservative forces. This problem is studied in details
in ref.sa. In essence, the use of the Inverse Problem allows the identification of the following
five classes of Galilei symmetry breakings in Newtonian Mechanics.

ISOTOPIC BREAKING . This is a selfadjointness preserving Gililei symmetry breaking

induced by the multiplication of a class C and regular matrix of factor terms to a conservative

and Galilei form-invariant system, and I shall write
" _ GFr )GFNE
J ¢ e e ] =0
Uxm (bn, ) [ b - £u0) SQ}SQ ;@)

where SA stands for selfadjointness and GFI (GFNI) stands for Galilei form-invariance

(Galilei form-noninvariance). At the Lagrangian level the breaking is characterized by

an isotopic mapping of the type (Table 2,10

E J Taf* _(ya,pl_—(_‘ﬁ 7GFN)$ Tosbd AL Dl ZGFI cFnE
TP TN sq” | F L K2 2t sa | sa

- (2 th-2)

where now the isotopically mapped Lagrangian is Galilei noninvariant owing to the integrating

factors hki;t, E,‘:z;-) which enter into its structure via Eqs. (2.6 .4 ).

On relativity grounds this breaking is the "weakest possible" to the point of being purely

formal. This is due to the property recalled earlier in Table 2. 12, accord ing to which

conserved quantities are conserved in virtue of the equations of motion. This property is

left unaffected by equivalence transformations of type (2.14.2 ) (e.g., in the conservation

law, according to Eq. (2.12.2 ), only the(unique)system of implicit functions enters). The net

effect is that the physical conservation laws of the original system (total physical energy,

linear momentum, etc.) persist. for the isotopically mapped Lagrangian. This implies the

existence of nonmanifestlfirst-order/ noncontemporaneous symmeiries of L*  which lead to

/
1
the conserved quantities of L. We thus have a case of isotopically mapped Galilei algebra, dc

that is, the generators, base manifold and parameters are unchanged, but the Lie brackets
are now generalized. This isotope  G*(3.1) of the Galilei al gebra G(3.1) can be practically
computed by using the techniques of the known inverse Noether approach (the conserved
quantities and related Lagr-aggl'%n are known and the symmetry leading to such conserved
quantities is computed). Under the assumption that the approach extends to higher orders

and that the integrability conditions for the exponential mapping are verified, we have

the isotopically mapped Galilei group G*(3.1) (see Table 3.7 for more details). The interested
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reader is here urged to work out the case, say, for the free particle.

In conclusion, the isotopic breakings of the Calilei symmetry are purely formal on relativity
grounds because the original system verifies the Galilei relativity and this physical occurrence
is not altered by equivalence transformations of type (2.14. 1 ). Neverthless, this class of
breakings is methodologically significant because it indicates the possibility of characterizing
the coﬁventional physical conservation laws of the Galilei relativity via a symmetry algebra
G*(3.1) which is generally nonisomorphic to the Galilei algebra, as typical of all isotopic mappings.

As we shall see in Section 4, the conjectured covering of the Galilei relativity for nonconserva-
tive systems is based on a generalization of the above notion of isotopy of the relativity algebra.

SELFADJOINT BREAKINGS This is a selfadjointness preserving Galilei symmetry breaking

induced by the addition of Galilei form-noninvariant forces to a conservative and Galilei form-

invariant system, and I shall write

GFNE
~ GF£ A .
MK;Z:’{CA - : l\(i) - g[(k (bl?«/ica) = 0. C?.}lf.g)
. ESH <@

This is, in essence, the reformulation in the language of the Inverse Problem of the conventional

Lagrangian approach to the (classical) breaking .of any symmetry, i.e.,

e eme LGl LGnE ()

And indeed, the condition of preservation of the selfadjoin tness of the equations of
motion by the additive force f ko 1s rendered equivalent to the addition of the term LG:‘rat
the Lagrangian level by the existence theorems of the Inverse Problem.

This class of breakings is not trivial on relativity grounds because it implies the general
loss of the physical conservation laws (e.g., one can add a time dependent applied force
derivable from a potential which induces the nonconservation of the physical energy) as well

as the general loss of the form-invariance of the equations of motion, i.e.,

o ) GFHE
GG { L e, - 5, (2 ~ €%
{ K x Ea e )lEgF;r AK ( I A%, )JES('} (2 145)
- .y \ icy CrFN
_— %{Lmk’tk« - :kq(fi‘)\gesg - Epc“( |/}£»')c’ ;]] E ’

Neverthless, this class of breakings jis rare in the physical reality because the Newtoman

forces are generally nonderivable from a potential.

_23-
5a ?

SEMICANONICAL BREAKING, This is a nonessentially nonselfadjoint breaking induced

by the addition of Galilei form-invariant forces not derivable from a potential to a conservative

and Galilei form-invariant system, and 1 shall write

GFL
Db - f TR, (x,4){=0. @h4
L K Ko ES?) Ka !
NeEMS@
In essence, the additive forces Fka are such to (a) to be genuinely nonconservative (nonseldadjoint
or, also equivalently, not derivable from a potential), (b) be capable of admitting an indirect
representation without changing the coordinates rka according to Theorem 2, 6.1 (nonessentially

nonselfadjoint systems) and (c) be Galilei form-invariant. The Lagrangian representations

are then of the type
—~ . . GFr GFI
’[ 4 oL ok 7 = L. ib (j‘*,‘g"bg _f BZ ,
| elh 28 Coz Js@ ko ’ a2 INENSA )R

(2. 1h.7)

This class of breaking is also a rare occurrence in the Newtonian systems of our everyday

with an essentially chiral Lagrangian structure (Table 2. |0).

experience and it is here quoted mainly for completeness. In essence, the aspect which is
relevant in this class of breakidngsis that the physical conservation laws of the Galilei relativity
can be lost due to forces which are Galilei form-invariant, but not derivable from a potential.

The breakings are called "semicanonical” because (under the assumption that the integrating
factors of Eqs. (2.14.7 ) are Galilei form-invariant), the canonical formalism of the Galilei
relativity is fully definable, neverthless, it does not lead to the conventional physical conservation
laws (for instance, the algorithm ".E" = L/O r is a mathematical quantity which does not
directly represent the physical linear momentum, etc. ).

As a result, this class of breakings has its own methodological function. In particular, it
focuses the attention on a dichotomy of _-canonical generators of physical transformations
versus physical quantities ,which is absent in the conventional conservative mechanics.

Permit me to elaborate on this point by reviewing first the conventional conservative
and Galilei form-invariant case, Here, the physical quantities (total physical energy, linear
momentum, etc.) coincide with the canonical generators of the corresponding physical
transformations (translations in time, translations in space, etc.). This symbiotic

meaning of the generators of the Galilei algebra is lost when nonconservative forces are included,
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An example is here useful to illustrate this occurrence. Consider the breaking of the symmetr
P g y y As a result, for nonconservative (nonessentially nonselfadjoint) systems, the generators

under translatd in time produced by the additi f a linear velocity dependent drag force . s o : . . . .
ansations In time pro Y a onota fnea ocity dependent drag fo of 'physical transformations (that is,translations in time, translations in space, etc.)do

to, say, the harmonic oscillator , i.e., the conventional damped oscillator i sl . . . . .
) 52y, ’ ’ P not coincide with physical quantities’ ( the total physical energy, linear momentum, etc.).Vlceversa /
.

.o FT . - _
T UT . ‘[ N 4w g’ Q] -+ a’ ’a r =0, (‘9’ ] l'f‘ ‘ 8) the use of these total physical quantities as generators does not lead to physical transformations
L ) 4 SA HENS A/

as commonly understood,

Finally, we remain with the question "what is a physical quantity for a nonconservative

The breaking is semicanonical in our terminology because the force not derivable from a system?” This, concept Is trivial for conservative mechanics, but the extension of the same

potential is fully invariant under translations in time. Neverthless, the conservation law of notion to nonconservative systems does not appear to be trivial . 0Oddly, it is not immune

the physical ene rgy is lost. And indeed, experimental evidence indicates that the energy of controversy and, thus, of personal viewpoints. The answer we shall use in the following is

is dissipated and the motion tends to rest in a finite period of time. These occurrences are . . 2
P p as naive as possible (actually,from undergraduate textbooks, because, at a graduate level, forces

well known (see, for instance, ref.”’ ). We are here interested in the mechanism of this . . . . . .
nonderivable from a potential have remained largely ignored in recent times). The energy

breaking, First of all, a Hamiltonian for the representation of system (2.14.8 ) without an of system (2.14.6 ) will be assumed to be given by the sum of the kinetic energy and the

licit time depend i dit is gi Bq. (2.12.%), 4. e
explicit time dependence exists and it is givenby -9 ( ) / ’ potential energy of all forces dezivable from a potential. The linear momentum is the conventional

H — em g’ - 8\,\ Cos (w Fq) - i— a/f"ﬂ I (Q‘ ’14--?) quandty3=mi and the angular momentum is also mefamiliarformul\*ll =I Xp =IX mé_ .
r - F U7; ], ‘7‘ ) w= u’o’L B (z/t,. SO, In the language of the inverse problem we can see that the physical quantities of nonselfadjoint
!

This confirms the semicanonical nature of the breaking: the Hamiltonian is invariant under

system (2.14. 8 ) are given by the canonical quantity of the maximal associated selfadjoint

system , that is, the selfsdjoint subsystem within the inner brackets of Eqs. (2.14.8).

translations in time (physical transformation neverthless the energy is not conserved .
(phy )s gy And indeed, since all F-forces are nonconservative by assumption, what we refer to as the

hysi ion law), i izati f i in ti i “ X "y . . X . X
(physical nonconservation law). But the canonical realization of the translations in time is total physical energy” is the Hamiltonian (or energy integral) of the maximal associated

fully defined and its generator is given by, Hamiltonian (2.14. 9 ). This, then illustrates selfadjoint system. A similar situation occurs for the other quantities.

the dichotomy indicated earlier: in nonconservative mechanics the generators of physical The study of other viewpoints on the notion of physical quantities for nonconservative

transformations do not coincide with physical quantities. systems,and their bearing on the problem of the applicable relativity laws,will be left to the

Two additional comments are here in order. The reader might be surprised at the terms .
interested reader,

"physical transformations” which are definitively absent in conservative mechanics. The intent 5Q

of these terms is the following. Within the context of the canonical formalism , any class C*° CANONICAL BREAKING. This is a nonessentially nonselfadjoint breaking of the . Galilei
function of the phase space variables induces perfectly acceptable transformations, Thus, symmetry induced by the addition of Galilei form-noninvariant forces not derivable from a
rather than using Hamiltonian (2. 14, § ) one can use the physical energy potential to a conservative and Galilei form-invariant system, and shall write

cz 2 (2 14 10) ~ GFNE
E = 2l5% wiaY), g GFr o )T Gten)
2\ ’ M Tga T &KQ,U*L'JEE - rko\ Lt’:c«;?») NENSA

reexpressed in the (q,p) variables as a generator of a transformation of system (2.14. @). SA

The aspect in which we are concerned is the physical meaning of such a transformation. . :
he asp v w phy g In this case the symmetry breaking forces Fka are such to (a) be nonconservative,

It is easy to see that it is not a translation in time. The interested reader is here ur to
y _— ged (b) be capable of inducing a nonessentially nonselfadjoint system and (c) be form-noninvariant

detai £ ion induced ity (2.14.10 ) i i
work out the details to see that the transformation induced by quantity (2.14.10 ) is a highly under the Galilei transformations. The underlying Lagrangian representations are of the type

involved transformation which carries no resemblance or connection with physically

relevant transformations.
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The breaking is called canonical because, even though the canonical formalism is fully
definable via a Legendre transform, the breaking occurs at the level of the canonical formalism
of the Galilei relativity, as necessary from the lack of invariance of the Hamiltonian,

This is a type of breaking which is more realized in the physical reality than the preceding
breakings. Lt constitutes -& class of particular methodological significance, To state it
explicitly, these breakings should not be interpred as occurrences of marginal relevance,
Instead, they should be interpred at the utmost of their conceptual, technical and physical
implications, The best way to emphasize this profile is by focusing the attention on the
breaking of a central methodological tool: the group of rotations (seethe remarks related
to the nonconservative spinning top of Section 1). The issue which is then raised is whether
this broken context should remain as currently is, methodologically undefined, or broader
methods capable of characterizing this broken SO(3) symmetry should be attempt ed, This
is an objective of Secticns 3 and 4.

The reader should be aware that, despite the Galilei form-noninvariance of the F -forces,
the canonical breakingsare still restrictive because they assume the validity of
Theorem 2. 6,1, We reach in this we the last class of Galilei symmetry breakings characterizable
by the Inverse Problem, 53

ESSENTIALLY NONSELFADJOINT BREAKINGS. This is a breaking induced by the addition

of Galilei form-noninvariant forces not derivable from a potential to a conservative and
Galilei form-invariant system in such a way to violate the integrability conditions for the
existence of an indirect Lagrangian representation within the reference frame of

the experimental detection, and we shall write

h R - GFE e GFN L

> c . ) _ be x = 0.
1&[/{4/\‘( )z’ko\ - lkkcw -B"S{x k‘\(/’w\&l»)
& ENSA
(2-14-12 )

This is the most general class of Galilei symmetry breaking(via local forces)which is

rendered identifyable by the methodology of the Inverse Problem and, as such, it canbe

considered as inclusive of weaker forms of breakings.
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The methodological implications of these breakings are .rather deep. On a comparative
basis between the canonical and the essentially nonselfadjoint breakings, in the former the
canonical formalism is fully definable and the breaking occurs only at the level of the forma-
lism of the Galilei relativity, while in the latter the entire canonical formalism is not definable
under the condition that the space component of the underlying manifold is constituted by the
Cartesian coordinates of the systems of the experimental verification, With the terms
“canonical formalism™ we here refer to that based on Hamilton's equations. In particular, this

implies the inability of introducing all Lie algebras via the com ventional Poisson brackets
14,87 QA OB DR TB DA TIB (2.4, 14)
! - Qll}k (DO\V -QZF“(D‘)@(; (DFFQ 2':‘- !

under the indicated restriction on the physical meaning of the 1:]«1l variables,

This is the class of breakings in which we are primarily interested from here on, As an
incidental note, the reader should be aware that these breakings cannot occur for one-dimen-
sional systems because these systems can ut most be nonessentially nonselfadjoint. Explicitly,
it is possible to prove that all one-dimensional( class C‘ , regular)and nonselfadjoint systems
satisfy Theorem 2, 6.1 for an indirect analytic representation, As a result, the
condit4ons of this theorem can be broken only for a sufficiently high dimensionality.

By looking in retrospective, it has been for me rewarding to see that the methodology
of the Inverse Problem has indeed fulfilled all my expectations, particularly on relativity grounds.
And indeed, it provides a valuable method for the characterization of the acting forces in the
transition from one relativity to another (in the sense of Section 5), for the identification of the
mechanics of the Galilei symmetry breakings in Newtonian Mechanics, for the study of formulations
of Lie-admissible type (see Section 3), etc., . Intriguingly, the methodology is of some significance
also for nonrelativity related problems, such as,nonlinear nonconservative plasma equations,
electric circuits inclusive of internal losses, trajectory problems in atmosphere, etc, The
reader interested in an outline of these possibilities, may consult refs.za ,2.,b

As not unusualfar theoretical formulations, the methodology of the Inverse Problem also
exhibits rather precise limitations, particularly from a relativity profile. And indeed, despite
my best efforts, I have been unable to confront the problem of the relativity laws of nonconservative
mechanics within the context of only this methodological framework. To be more specific in this
rather crucial point, besides effective possibilitjes for studying the Galilei relativity breakings,
the methodology exhibit no constructive capacity for a generalized relativity, to thebest of

my understanding at this moment,
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3: RUDIMENTS OF THE METHODOLOGY OF THE LIE-ADMISSIBLE PROBLEM.

The Inverse Problem of Newtonian Mechanics outlined in Section 2 could alsc be called the
Lie Problem in the sense that the efforts are devoted to the representation of nonconservative
systems in terms of a methodology whose underlying algebraic structure is a Lie algebra,

The Lie-admissible Problem of Newtonian Mechanics can be conceived as a body of metho-

dological tools for the study of nonconservative systems whose underlying algebraic structure
is not, this time,a Lie algebra by central requirement, but it is instead a Lie-admissible
algebra(in the sense of Table 33).

It should be indi cated that the terms "Lie-admissible problem' are here tentatively
iniroduced mainly for reference to the content of this section and that a number of other terms
could equivalently refer to the same topic. Notice that the only terms known in mathematical
literature are "Lie-admissible algebras" .

As by now familiar, the Inverse Problem or, more appropriately in this context, the
Lie problem does admit a solution for the considered class of nonconservative systems. However,
it appears that clear limitations of physical effectiveness emerge . I am here referring to
the lack of constructive role of the methods for a generalized relativity, the loss of direct
physical significance of the algorithms at hand (§, H, IxP, etc.), theinability to produce
Hamiltonian characterizations in a base manifold whose space coordinates are those of the

reference frame of the experimental detection of the system considered, the generally
noninertial nature of the coordinate systems of the indirect Lagrangian representations and
thelrgeneral nonrealizability with experimental set ups, etc.

The hope of the Lie-admissible Problem is that of identifying methods which avoid these

difficulties. The fundamental starting point is the representation of essentially nonselfadjoint

systems (2. 14.13) in the reference frame of their experimental identification. This is

clearly crucial for relativity considerations. Since the conventional Lagrange's equations are
unable to satisfy this requirement, they will be modified in a suitable form capable of producing
the desired "direct universality", that is, applicability to all systems (2.14.13) as given.

On equivalent grounds, Hamilton's equations will be modified into a form capable of representing
the equations of motion considered such that: (A) all algorithms at hand have a direct physical
significance, that is, the symbol ”rka“ has the indicated inertial meaning, the symbol "pka“
represents the physical linear momentum (mkfka), the symbol "H" represents the physical
energy (sum of the kinetic energy and potential energy of all forces derivable from a potential

or, more specifically, the Hamiltonian of the maximal selfadjoint associated system), the
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symbol “M" represents t he physical angular momentum (E x mi ), etc., where the term "physical”
(while obviously inessential in conservative mechanics) is here introduced to stress the difference
with canonical quantities of type (2.12.]4) . In conclusion, the .generalization of Hamilton's
equations I shall be looking for is based on the preservation of all the algorithms of the Galilei
form-invariant subsystem of Egs. (2.14.|3). The Galilei breaking forces will then be represented
with a modification of the structure of the conventional Hamilton's equations. As we shall see in
Section 4, this appears to be at the very foundation of the possibility of identifying a group of
nonmanifest symmetries for the form-invariance of the Galilei-breaking system (2.14,13),
provided that the brackets of the generalized time evolution law characterize a Lie-admissible
algebra,

The reader should also keep in mind, from the content of Table 2.14. that the objective of
this paper is the study of broken Lie, space-time/ symmetries. As a result, the fundamental

constructive problem is that of attempting the identification of algebraic-group theoretic methods

+ for the treatment of broken symmetries which are fullyparallel, although generalized, to the

established methods for the treatment of exact symmetries.

To restate this situation in different terms, the mere identification of the breakings of the
Galilei relativity in Newtonian Mechanics is, "per sé", sterile.To achieve a physically productive
context, the central problem is that of the identification of effective methods for the treatment
of such broken context. It is precisely in this respet that Lie-admissibl e algebras appear to be
particularly intriguing. And indeed, on one side they guarantee the breaking of the Lie symmetry
algebra while, on the other side, constitute a covering algebraic framework for the treatment
of the broken Lie symmetry.

For conciseness, I shall again present the essential aspects of the analysis in sequential
tables. To avoid a prohibitive length of the manuscript, the proofs of all theorems and major
steps will be omitted. This section, however, is a summary of Volume II of ref.s In this
reference, therefore, the interested reader can inspect all proofs of the theorems of this
section. The assumptions which are tacitly implemented are the same as those of Section 2,

As a personal note, permit me to indicate that, without any doubt, the study of Lie-admissible
algebras along the three profiles outlined in this section (analytic, algebraic and geometrical
profiles) has been the most interesting, stimulating and rewarding research topic of my
academic life. I hope that this paper will suceed in communicating some of my enthusiasm to
receptive readers because this line of study is at the very beginning and so much remains to
be done. 1 would like also to take this opportunity to express my appreciation to C. N. KTORIDES

2
for calling in his papers Santilli algebras the Lie-admissible algebras.
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TABLE 3,1: THE NON-LIE ALGEBRA CHARACTER OF HAMILTON'S EQUATIONS
WITH EXTERNA L TERMS. The customary form of Hamilton's equations with external

terms ¢
cke _ M 3_”_ (t, k=tizeess, ™ (2 11)
& T OPka PK"‘ Ks Fi ‘"‘f‘) a=x4, z-, :
implies' the following generalization of the time evolution law (2. 8.7a)
i)
DA A M R [l (3.1.2)

étx"h)'(h‘“@(’, TR 0T D

Assume that, for fixed values of the external forces, this broader law characterizes generalized

" (4
brackets here denoted with the symbol ~ AxB . A simple inspection soon reveals that these

(3.1.3a)

brackets violate the Lie algebra identities, i.e.,

AxB -BxA # D,
(AxB)x C + (Bxc)xA +(CxB) xB #o . (3.1.25)

Thus, Hamilton’s equations with external terms are non-Lie in algebraic character.

As indicated in Section 1, this occurrence is not negative "per sé'". As a matter of fact, it
can be considered methodologically intriguing bef:ause of the possible existence of a broader
algebra underlying Eqs. (3.1.1).

However, for consistency, the brackets AxB must satisfy certain properties to characterize
an algebra as commonly understood. In particular, the brackets must satisfy the right and left
distributive laws and the scalar law5.2 A simple inspection also reveals that the brackets AxB

satisfy the left distributive law, but violate the right version of the same law, i.e.

(A+B)xcC = flxC +B=xC, (3-1.44)
ix(B+c) # AxB + AxC, (3-1.4b)

Also, brackets AxB satisfy a right version of the scalar law but violate the left version of

:QJX(HXB): ﬁx(o(x B) = CDZXQ)XB) o(:C,MCS?-,.l‘Sd)

(fx B)x<F Ax(Bx) £ (Axt)x B, (3.1.5b)

As a result, the brackets AxB of the time evolution law of Hamilton's equations with external

the same, i, e,

terms do not characterize an algebra , that is, Eqs. (3.1.1) are not only non-Lie but actually

non-algebraic in nature. This situation indicates that, despite their preservation for over one
century, Hamilton's equations with additive external terms must be modified to yield an acceptable

algebraic structure.
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TABLE 3.2: THE TENTATIVE GENEALOGICAL TREE OF THE LIE-ADMISSIBLE PROBLEM

By inspecting the occurrence of Table 3.1, one can see that the violation of the right distri-
butive and scalar rules by the brackets AxB of law (3. 1. 2) is due to the additive nature of the
external forces. This indicates that, if the forces not derivable from a potential are represented

with multiplicative‘ rather than additive) terms to the

with respect to the local variables, the brackets of the emerging time evolution law are expected

derivativesof the Hamiltonian

to characterize a fully acceptable (nonassociative) algebra,

For simplicity, let me consider the case of one space dimension, The modification of Egs.

,4~‘-.

(3.1.1) in which I have been initially interested can be written

%, = B - oz “"P)T (3.2.1a)

P /
F/ ) oM 3.2.1b
s =4+ ok, 2% to. C J
D
Where the last condition is assumed t,0 be always satisfied for the argument of this table, If it
is not, one can add and substract ficticious forces derivable from a potential.

Egs. (3.2.1) characterize the following generalized time evolution law

\ QA R o
ﬁ(@“'ﬁ):(ﬁ(br +fb|oSC t"

It is easy to see that the transition from Eqs. (3.1.1) to their equivalent form (3.2.1) permits the

—(ﬁ H).(29

characterization of a fully acceptable algebraic structure. And indeed, at a fixed value of the
s-term, law (3.2.2 ) can be interpreted as characterizing generalized brackets here denoted
with the symbol (A,B). Again, these brackets are non-Lie, i.e., they are such that for all
nonnull values of the external forces (and, thus, for all values s * -1) the brackets (A,B)

violate the Lie algebra identities

(,8)- (B.@) #O, (3.2-2)
(_(H‘B),c) ((B A, ﬁ) Qc G),B);é o.B.2.4)
However, this time they do characterize a (nonassocoative) algebra because they satisfy the
(A,c) + (B, ), G. 2.5@
(AB) + (A, (3.2.58)

left and rightdistributive laws

(A +B, )
(&,B+0)

the scalar rule
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2.6
\ Y= 0O o = const. (2:2.¢)
(a,) = (,A)=2,

as well as the left and right differential rules

(k®, c) = (A6 + AlB), (3.2.74)
(o,Bc) = (MB)C +B (8 0). (3.2.75)

This was the status of my first understanding of nnncannnical equations. After having
ensured the existence of an acceptable algebraic structure, my next problem was the identification
of the type of algebra characterized by brackets (A,B). On grounds similar to those of Table 2. 2,
the identification of the prior state of the art in the algebra characterized by brackets (A,B)
turned out to be another very time consuming part of the project of this paper.

An initial search (at the libraries of the University of Torino, Italy, in 1965) revealed that
the algebra of brackets (A,B)was simply not treated in available treateses in Abstract Algebra
@t is still the case as of today, to the best of my knowledge, as the interested reader is encouraged
to verify). I therefore init iated a second search in the specialized mathematical and physical
literatures. This search turned out to be fruitless because the brackets (A,B) essentially violate
most of the identities of the algebraic structures’of general interest among mathe maticians.

For instance, the brackets are neither symmetric nor antisymmetric (for an arbitrary F-force)
(a,B) +* (8,a), (3.2.8)

and, thus, this excludes both, the Lie algebras and the commutative Jordan algebras. Next,

the brackets violate the alternative laws

((p,m),8) # (@ (7,8)) (B, (8,)¢ ((B.r),8),(3-2.9)

and, thus, alternmative algebras are excluded. Next, they violate the flexibility and the Jordan

((0,8),0) + (# (B8], /3.2.10a)
(@, 0),8)8) £ ((0,8), (B.R))

and thus, noncommutative Jordan algebras are excluded. Next, they generally violate the

(3.2 108)

((ﬂ/ﬁ) ) ﬁ) :# (('}/ (Ql H)) ) (‘(G;ﬁ)i(ﬁ;a»’f—«(Q'G)lq)ﬁ)/

and, thus, power associative algebras are excluded too. And so on,

(3.2.11)
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However, it is well known that the types of algebras identified by mathematicians are quite
numerous indeed, Itherefore decided to enter into a detailed library search (which I conducted
at the University of Torino and at the International Centre for Theoretical Physics of Trieste,
Italy, in 1966-1967). My determination to pay tribute to previous contributioznsdwas finally
rewarded. And indeed, I finally identified a paper by A. A, ALBERT of 1948 in which he
introduced the definition of a Lie-admissible algebra, although without any detailed treatement.
The brackets (A,B) are indeed Lie-admissible because the algebra characterized by the
attached brackets[ A, B]* = (A,B) - (B,A) is Lie (see next table for more details), The only
additional papers specifically devoted to the study of Lie-admissible algebras which I succeeded
in identi fying were a paper by L. M. WEINER of 195726and a paper by P. J. LAUFER and M. L.
TOMBER of 1962 ¢ . My rudimentary first papers on this subjectqﬂ ) d‘were primarily devoted
to the understanding that Hamilton's equations with external terms, when properly written,
are Lie-admissible in algebraic character,

Since that time a number of contributions have appeared in both the mathematical and physical

literature. Within the former context, most notable is a series of studies on Lie-admissible 26d-8
algebras (of flexible type, see Table 3. 3) by H.C. MYUNG conducted from 1971 until recently.
See also the contributions by A, A,S AGLE (1971) e , D.R. SCRIBNER (1971) 51112(141-]a STRADE (1972).
Within the latter context, most notable is a paper by C. N. KTORIDES of 1975 in which the
generalization of the Poincare-Birkhoff-Witt Theorem t\()) Lie—admisiible algebra 2is apparently
studied for the first time, See also the studies by M, KOIV and ], LOHMUS (1972) on the covering
nature of Lie-admissibility over the deformation theory and that by P. P, SRIVASTAVA (1976) "
which is sufficient to indicate the covering natureof Lie-admissible algebras over that of graded
(supersymmetric) algebras.

These studies were sufficient to establish the following properties.

(A) The Lie-admissible algebras have a direct physical significance for systems with
forces not derivable from a potential, where the term "direct" is here referred to the
property of being applicable in ‘the space of the coordinates of the reference
frame of the experimental detection of the system and the physical momentum (the reader
shouid keep in mind from Section 2 that this direct applicability is precluded to Lie algebras).

(B) The Lie-admissible algebras constitute an algebraic covering of the Lie algebras in a

sense to be outlined in this section, which, in particular, has an analytic origin (the
time evolution law) fully parallel to that of Lie algebras, although of generalized nature.

(C) The Lie-admissible algebras constitute an algebraic covering also of other astructures

of current interest in theoretical physics, such as the deformation theory and the

graded algebras of supersymmetric models.
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These properties clearly render attractive the Lie-admissible algebras for the problem
of the relativity laws of Newtonian mechanics. They also rendered them attractive for the
study of the old idea that the strong interactions in general, and the strong hadronic forces
in particular are not derivable from a potential. These occurrences motivated my more recent

involvement in the study of Lie-admissible algebras according to the line of study of ref>.

My highly tentative genealogical reference tree on Lie-admissible algebras (or on the

Lie-admissible problem in my language) can therefore be presented as follows.

C. N. Ktorides
1978
H. C. Myung
1978
R. M. Santilli
1978
P. P, Srivastava
1976
C. N. Ktorides |
1975
* M. Koiv-J. Lohmus
1972
H. Strade
1972
D. R. Scribner
1971
A, A, Sagle
1971
H. C. Myung
1971
R. M. Santilli
1967
| P.J. -Laufer-M. L. Tomber
[ 1962
L.M. Weiner
1957
- - _ e Y By 5
B il A S A A
= © ¢ 7| AA.Albert i '
; 1948 /
/ ; s M 7 ; , ; )
i / RN ,'/ y
Let me confess, for clarity, that references 4,5,24 6

and2 represent all references of which

I am aware at this time directly devoted to (or mentioning the terms) "Lie-admissible algebras",
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TABLE 3.3: THE CONCEPT OF LIE-ADMISSIBLE ALGEBRAS.

Let us recall that an algebra U is a vector space with elements, say, a,b,c,... over a field
F of elements, say,d , P N 6’ s+ +.equipped with an(abstract) product, say, ab satisfying the right
and left distributive laws
a (b+c) :_Ab-)- ac, Ca+b)¢:o~c+bci <3.3.l)

and the scalar law

Ca(a) b s (t\d) b = oé(ab) s (_Ab) o{ = A(o(b) = a-(b'z). (_3-3-2)
Such algebra Uis generaily nonassociative, i.e,, it violates the associative law

(ab) ¢ = a (be). (3.3.3)

From here on with the term "algebra" we shall refer to a "nonassociati ve algebra", "When law
(3.3.3) is verified, we shall specifically refer to an "associative algebra".

The characteristic of the algebra U must also be specified to
avoid inconsistenc ies (for instance, the rather familiar statement that the Cartan classification
provides "all" simple Lie algebras is erroneous, unless U is assumed to be of characteristic
zero, because there ar;several simple Lie algebras of characleristic p +‘ 0 which are outside
Cartan's classification ). From here on, all algebras and fields will be tacitly assumed to be

of characteristic zero.

A Lie-admissible algebra U over a field F is a vector space with elements a, b,c,...

equipped with the product ab such that the attached algebra_ u , which is the same vector space
as U but equipped with the product

[ab], = ab -ba, » (3.3. %)

is a Lie algebra. This is essentially the notion introduced by A, A, ALBERT in ref.zéa.

Clearly, if the product ab is associative, product (3.3.4. ) characterizes a Lie algebra

in the conventional sense, say, of quantum mechanics. Thus, associative algebras are Lie-

admissible. As a matter of fact, as we shall see later on in Section 3.7 , the concept of Lie-
admissibility is at the very foundation of Lie's theory.

However, the product ab ‘can be nonassociative and still such that the attached product
(3.3.4) characterizes a Lie algebra. The trivial case is when ab is Lie. Then ab-ba = 2ab,

Thus the Lie algebras are Lie-admissible, However, they constitute a subclass

of the class of Lie-admissible algebras because of the anticornmutativity of their product,
And indeed, one of the central features of the Lie-admissible algebras is that their product

is, in general, neither totally symmetric nor totally antisymmetric. A nontrivial example is
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, 2¢a
provided by the noncommutative Jordan algebra, say, of the )\ -mutation type with product

A« abs xab +U-Mboa, NeF, (332.5)

where a-b is associative. And indeed, trivially, [a, bJU =(2x-1 )[a,b]A (A = Associative). Thus

the A mutation algebras are nonassociative Lie-admissible algebras whose product is neither

totally symmetric nor totally anisymmetric. These algebras, however, do not admit a straightfor-

ward limit into Lie algebras, that is, there is no (finite) value of the \-parameter under which
product (3.3. §) coincides with [a,b] K This latter deficiency is removed by the () M )-mutation
algebras , say of an associative algebra A, denoted with the symbol A()\, » ), which are characte-
rized by the product

ﬂ()\,k): ab = >\0*‘l°+}'\'°"’\: F[Alblﬂ+q{alb}a/ (3.3.6)
NZp+@, = GT-p,

and verify the properties

fom, Aupm) = A, (3.3.7)
A L, }A — - A
Thus, A(X, 1) constitute an example of nonassociative Lie-admissible algebras whose

product is neither totally symmetric nor totally antisymmetric , but which is capable of

reducing to the Lie product [a, b]A under limiting procedure (3.3, 7 ).

This is an indication of the property that, in general, Lie algebras L enter in a two-fold way
into the study of the Lie-admissible algebras. First of all they play the defining role for a Lie-
admissible algebra via the isomorphism L7 U-, and, secondly, they may appear in the
complementary role that the Lie-admissible algebra U can reduce to a Lie algebra , say, L',
under a limiting procedure. Notice that, when this is the case, the two Lie algebras L and L'
which can be associated to a Lie-admissible algebra U are generally nonisomorphic. This serves to
illustrate the nontriviality of this dual association,

c, 44
4;\'4‘)'4, (the Lie-admissible algebras can be classified

According to R, M, SANTILLI
according to the following three classes of decreasing complexity and methodological needs.

1. GENERAL LIE-ADMISSIBLE ALGEBRAS . These are all algebras U over a field F

satisfying the following law *
(@b) ¢ + (b)a + (ca)b + c(ba)+ b(ac) +a (cb) U’-Z'g)
= a(be) + b(a) +clab) + (cb)a +(ka)c + (ac) b,

for all a,b,c€&U, called general Lie-admissible law. It is simply obtained by imposing

the Jacobi law to product (3. 3.4 ), here tacitly assumed to verify the anticommutatve law.

* In a more concise notation, law (3. 3. 8) can be written
[a,b, cl+[b,c,al +[c,a,b] = [c,b,al+[b,a,c]+[a,c,b]
where [a, b,c] = (ab)c - a(bc) is called the associator , or, in a selfevident notation,
S(a,b,c) = S(c,b,a).
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II. FLEXIBLE LIE-ADMISSIBLE ALGEBRAS . These are all algebras U over a field F

satisfying the laws* o
(ab) e + (cb)a = a(bc)t clba), (2.2.9a)

(ab)c+ (bda + (ca)b = a (be) + bea)+ ¢ (ab), (32.9¢)

again,for all elements a,b,c €U. Eq. (3.3a) is the flexible law (in a linearized
forn9 and Eq. (3.3.9Yb) is the flexible Lie-admissible law, that is, law (3.3. 8 ) under

the flexibility condition.
III. LIE ALGEBRAS. Under the condition of the anticommutativity of the product all
Lie-admissible algebras reduce to the Lie algebras, i.e. verify the laws
abi+ba = O,

La\b)c +(ba)a +(ca)b = o .

(3.3.10a)

(3.3. lob)

Clearly, the general and flexible conditions of Lie-admissibility are coveringsof the
Lie identities in the sense that they are nontrivial generalizationscapable of recovering
the latter identities under the condition of anticommutativity. More specifically, the flexible
law is a gereralization of the anticommutativity law (all anticommutative algebras are flexible )
but flexible algebras are not necessarily anticommutative), while the general Lie-admissible
law is a covering of the flexible Lie-admissibility which, in turn, is a covering of the Jacobi
law. And indeed, Lie algebras satisfy Eq. (3.3. 3) but the algebras characterized by this
law are not necessarily Lie, Also, under the anticommutativity condition Eq. (3. 3. 8) reduces to
four timesthe Jacobi law,

For a review by a mathematician of the current status of the art on flexible Lie-
admissible algebras see the article by H. C. MYUNG in this issue.sg For a review by
a physicist see the first part of Volume II, ref.s

The general Lie-admissible algebras are at the foundations of our efforts to construct
a covering of the Galilei relativity for nonconservative Newtonian systems. The first step
which is needed to outline this program is the construction of a classical realization of the
product of a Lie-admissible algebra, In turn, this will play a crucial role for the identification
of the needed generalization of canonical formulations.

Let % be a space of functions A(t, b), B(t,b), C(t,b),..., of class C “ in a region of the varia-
bles {?: ’bi‘} ={t, rkﬂ,pkaﬁ »P=1,2, .., , 6N, equipped with the (bilinear) product

* In the more algebm ic notation of the footnote of page 307, laws (3. 8.9) can be written
[a,b,a] = 0, [a,b,c] +[b,c,al+[c,a,bl = 0. -
Eq. (3.3.9a) is then the linearized form of the flexibl@ 1law [a,b,a] =0,
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NoB = Rt M) DE ) (2.3.1)
2b* obY

where the S )‘ M tensor satisfies the following continuity and regularity condttions
MY 20 ‘ v . 3. 3 ) 2
S~ e C(R) det (527)00) 0, G3-12)

which will be tacitly assumed throughout this section. The space %{, equipped with product

(3.3.11 ) is an algebra because Eqgs. (3. 3.1) and (3.3. 2 ) are satisfied. Product (3.3. }] )
also verify the differential rules (3.2. 7 ).

The tensor S M v is, in general neither totally symmetric nor totally antisymmetric in the M v

indices. When exhibiting an explicit dependence in the b-variables, the tensor S MY and related
brackets (3. 3. 11 ) will be called nontrivial.

The first central step of our program is turning the algebraic laws of Lie-admissibility
into a system of quasilinear parti al differential equations. The analytic brackets of the
Lie-admissible formulations can then be characterized by the solutions of such a system,

b
This objective is realized by the following 5

THEOREM 3. 3.1: A necessary and sufficient condition for nontrivial brackets

(3.3.11) to satisfy the general Lie-admissibility condition (3.3.8) is that

all the following partial differential equations in the S/* vtensor
f(_)__ 5\/ ’Z’_ 67: v
(srp-ser) 20 ( )
+ <5V(’ =56 ) %‘g@ (51/‘ - 6/“5)
(@ ros7) 2 (-5 =,

are identically verified in the considered region of the local variables.

(3.3.13)

The existence of a nontrivial physical relevance of Lie-admissible algebras in Newtonian
Mechanics is constituted by the fact that system (3. 3.1%) is consistent, that is, it admits
solutions (other than constants) with a nontrivial degree of functional arbitraryness, as we shall
see in the next Table,

Theorem 3. 3.1 relates to general Lie-admissible algebras, For the second layer of flexible

Lie-admissible algebra we have the following sk
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THEOREM 3, 3, 2: A necessary and sufficient condition for nontrivial brackets

(3.3.11) to satisfy the flexible Lie-admissibility conditions (3.3. 3 ) is that

all the following partial differential equations in the S/"" tensor

orp 95T TPOS™ _0SK et DS TVAPA (33.04a)
OIS Obe Db b ! '
QT vp Jo5 TP cet S}N: o
(c)»()_ 5(:»/) e +. (‘:/9 -sf F—D-L—% + (5 -5 " /
(3.2.14b)

are identically verified in the considered region of the local variables.

’ v

It is an instructive exercise for the interested reader to prove that all solutions Sr of Egs,
(3.3.14) are also solutions of Eqs. (3.3.13 ). This is the equivalent notion in terms of partial
differential equations of the algebraic notion that all flexible Lie-admissible algebras are general

Lie-admissible algebras.

The third and last layer of Lie-admissibility recovers the conventional Lie properties and
416
is expressible with the

THEOREM 3,3,3: A necessary and sufficient condition for nontrivial brackets

(3.3.1}) to satisfy the Lie algebra identities (3. 3.10) is that all the following

conditions on the S#Y tensor

SaY L VR = O, (3.3.16a)
SPC(DSVQ avp @5?-/4+ SzP/DS/“"= D’/@_z.lsb)
»INe b Dbt

are identically verified in the considered region of the local variables.

As is well known, Egs. (3.3.15) ensure that brackets (3. 3.1 ) are the generalized Poisson
brackets (2.8 .12) and, thus, they are Lie. The conventional Poisson brackets
are then recovered as a particular case, 25k, 25'%
‘Physicists i nterested in commutative Jordan algebras’might be intrigued to know that, at

the abstract level, Lie-admissible algebras are often jointly Jordan-admissible, that is, they

possess a well defined content of both Lie and commutative Jordan algebras (this is the case
e.g.,of theLie-admissible algebras constructed via the fundamental representations of SU(n)).

However, , no classical realization of Lie-admissible algebras we shall be involved with is

also Jordan-admissible. This opensintriguing perspectives(on commutative Jordan algebras) for

quantization via Lie-admissible techniques whose classical limit is of the so-called bonded type,
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A classical (quantum mechanical) study of this issue is conducted in ref. Sb (r‘ef, Se ).
Before entering into the presentation of the application of Lie-admissible algebras in Newtonian
Mechanics, it might be of some interest to indicate the current status of the abstract study of these
structures,

26a-2
The first point of some relevance is that the studies of ref, a-26p

conducted by mathema-
ticians have been (properly so) devoted to the first fundamental step, the flexible Lie-admissible
algebras. This is not a deficiency, but simply an indication of the novelty of these studies. In
particular, I am aware of no study conducted by mathematicians on what I have called the general
Lie-admissible algebra (this term or, equivalently, any other term differentiating algebras
(3.3. @ ) from algebras (3.3.9 ), does not appear to exist in mathematical literaturesto the best
of my knowledge).

As we shall see, the flexible Lie-admissible algebras do have a physical significance , such

as for the construction of the Gell-Mann-Okubo mass formula4d’ 24a

, for a Lie-admissible -
quantization of forces not derivable from a potential Se or of couplings not derivable from a
potenti3124b. Thus’stuclles26a “26p have a direct physical significance.

Neverthless, the algebras which appear to have the major physical role are the general, rather
than the flexible, Lie-admissible algebras. As we shall see, this is the case for possible covering re-
lativities, The net effect is that while the study of flexible Lie-admissible algebras should be
continued, studies on general Lie-admissible algei)ra are urged.

The study of general Lie-admissible algebras of ref. Sb is essentially based by the use of as
many methodological tools offered by the theory of Abstract Algebras as possible, such as the use
of the associative multiplicative algebra, the Lie multiplicative algebra, the Pierce decomposition,
the Cartan decomposition for Lie algebras, Jordan algebras and nonassociative algebras in general,
the (solvable, nilpotent, associator nilpotent, f-soivable, f-nilpotent, Jacobson, Levitzki, McCoy,
Brown, Amitsur, Nagata, etc, ) radical approach, etc. But this is only a truly zudimentary
first step and the number of open aspects is too large to suggest an outline. Besides, this algebraic
approach will not be outlined in this paper to avoid an excessive length,

For the reader interested in these algebraic aspects I suggest, as a first reading,

25a-25f 25g-25v
textbooks a , as second reading, monographs &

and, as third reading, research
monographszsz_zs'g, Pape]:s28 appear to be particularly valuable for Lie-admissible algebras.
The reader, however, should be aware that all referem:es25 and 28 are devoted to the study of
algebras other than Lie algebras and that none of them treats or even defines a Lie-admissible
algebra, Neverthless, as indicated earlier, they provide methods which, under a number of
technical implementations, are often applicable to the Lie-admissible algebras.

In conclusion, we can state that there exists a hierarchy of three classes of Lie-admissible

algebras satisfying the following enclosure properties (and which can be interpreted as a corresponding

hierarchy of Newtonian forces according to the analysis of Table 3. 4):
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i Lie c g{ Flexible Lie-admissible? C General Lie-admissible.z Ca.a.lé)
a .

rebras S algebras_ / _algebras _

Within such a context, the Lie algebras emerge as being the simplect possible Lie-admissible
algebras, In the transition to the two subsequent layers of generalization, the Lie-admissible
character persists,Neverthless , the totally antisymmetric nature of the product is lost, In
such a transition, however, the Lie algebras are not "lost". Instead, they are preserved in a
doubled embedded form: (a) the attached form U_Q',L and (b) the limiting form. (under anticommu-
tativity of the Lie-admissible product) Ulim”\(' L', where, in general, L ¢ L

As we shall see later on, these features are such to offer some genuine hope of constructing

a Lie-admissible covering of Lie's theory,

TABLE 3. 4: HAMILTON-ADMISSIBLE COVERING OF HAMILTON'S EQUATIONS AS THE
ANALYTIC ORIGIN OF THE LIE -ADMISSIBLE ALGEBRAS.

Clearly, generalization (3. 2.1) of Hamilton's equations was purely indicative. The proper

generalization within the context of the Lie-admissible formulations must be constructed according
Sb,

to Theorem 3.3.1. A study of this problem (which is reported in details in ref. ) leads to

the following property which we shall refer to as the Theorem of Direct Universality of the

Lie-admissible Formulations ,

®
THEOREM 3. 4.1: Local, class C, regular, nonconservative, (essentially nonself-

.. € lc” R E cTR =1, N (<o)
Ty Zha - S CO ST PN F (,2,2)0=0, gox,y, 2
il_ Kk Tk K sa ko C81 5, 2) e’ BT )

can always be directly represented in the (neighborhood of a regular point of the)
ka

variables {b”‘}= (Lr ’pka

the reference frame of the experimental detection of the system and Pra represents

adjoint) Newtonian systems (2.14,13), i.e.,

{ where rka represents the Cartesian coordinates of

the linear momenta m, r, } in terms of the contravariant equations, here called

Hamilton-admissible equations, /D » fD H
N nv e _ | P ALY pti2e, 6,
b’ -5 (b,b)rw, ) RO (3.4 .24)

et (5"") = ’5’“”) = TD%V +0, (3.4.2b)
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or in terms of the equivalent covariant forms

LY _HK) _ Ry LV _2H o,
Sy 60) b~ U = W b7 -5
() = (

”DbV) (s7)7"- (@R«)_' (-+3Y

where the functions R are the solution of the system

2Ry L) TR L) - Fe(t, b)) = §u(b),

(3o 4.34)

EXNTS

2bf ¢
{f? i%*;;'“ S 2“3 % F (’} Fkg} {, )’} > U‘:(( .
The brackets of the time evolution law - fe-
D YN 4 H (3.4.5)
JOR bk 2 (#,H),
then characterize a general Lie-admissible algebra, i.e., violate the Lie

algebra identities‘ but satisfy the covering law of Lie-admissibility
(La‘, B),C) + (@5 ) ﬁ) + ((c A),B)+ (C,(B ﬂ)) +(8, (Q,C))+<9/(C;B))
= (/,8,0) +(8,(c,) +(c,(4,8) +((c,8),8) +((8, f),0)+((A,€),B).
.4.6)

A few comments are here in order. The "universality" of the approach originates from the fact

that Eqs. (3.4.4) constitute a system of 6N linear, inhomogeneous, first-order, partial differential
equations in 6N unknowns, the functions R)J (t,b). A solution, under the assumed conditions, is
then ensured by the existence theory of partial differential equations.

The crucial property of Lie-admissibility of brackets (3.4.5 ) can be proved in a number
of ways.

(A) Direct proof of Lie-admissibility. The brackets

0p)- 28 srvpE A 2B E 0B s, g
(AB)= 502 55T Ak ok 0O Ry Ok

characterize a

general Lie-admissible algebra because the attached brackets
(@,8) -(8)8) =

o pg*=C2R 2B DB DA (.4.8)
DRvob” 2Ry Db

satisfy the Lie algebra identities, while the original brackets (3. 4. 7) are (nonassociative and)non—Lie,

(B) Algebraic proof of Lie-admissibility, The tensor SH*Y =D b¥ /’DR‘, can be always

written in the form SPY = wor¥ D b"/@ i

, where the functions T"< are uniquely characterized
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by the functions R p . Brackets (3.4.5) characterize a general Lie-admissible algebra because
the tensor w""abv/ ";)’r"< satisfy Theorem 3.3.1, as the reader can verify by inspection.

(C) Geometrical proof of Lie-admissibility. The tensor S )n) is nondegenerate, from

condition (3.4.2 b), but it is not totally antisymmetric. As such, it does not, strictly speaking,
characterize a symplecfic geometry. Neverthless, the attached tensor
RS, Gy R 2
Py TR mT R T Q!

is precisely the nondegenerate, antisymmetric Birkhoff's tensor (2. 8. 3) which, as such, characteri-

(3.4.9)

zes a symplectic form (2.8,26). This is sufﬁclent to ensure the Lie-admissibility of brackets
(3.4. 5 ) because it ensures that the attached tensor JZ = S)Av - S‘))A

Notice that in conventional notatmns Egs. (3.4. 5 ) can be written

iﬁr} ={,R‘k*.(t"“‘ ) '?‘“}

is Lie.

(3.4. lOa)

DR xa -,'L _ 2K 5 (3.4.10b)
OEILA @1@, Fib ”bz" /
° ka W o C3~ 4- IDC)
)Z, — = .

- (—b F fo
Thus, the crucia?regularity condition (3. 4.2b) .can be equivalently written
D E,«.' o (D a'
Aet (5,,\;) = ‘6 ) ,'b) / Lo
\D’ ) k,)

fo0.
inggﬁ O?Hx%l‘/ (‘3 b ”)

Notice that this property can be satisfied even when all forces derivable from a potentlal are null,

) _ (D(lm)

The analytic counterpart of the concept of Lie-admissibility of Table 3. 3 is also two-fold.
First)the "analytic content" of Eqs. (3.4.3 ) is expressed by Birkhoff's (rather than Hamilton's)
equations in the sense of the attached form (3.4. 9 ). Secondly, Hamilton's equations are

recovered identically at the limit of null forces not derivable from a potential according to
Y
b (S B _%) ng < ( L Qur)
- W
F/>o0 /ol & (3 le.12)
LY i
= w)* vb - L»

This also illustrates the reason for the selected terms

"Hamilton-admissible equations"'.

In the following we give few indicative examples of representation of nonselfadjoint

Newtonian systems interms of our Hamilton-admissible equations,
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~

[.('?’ )sa~r &Iilf*’;o s met

2 - 3.4, 124)
LiRA:{(—F-%wJ,J;/ h=L bt p=t, (
Lee + K %)sq t+ d’z]mg , @:4 , e

R =Gkl b g (k) et
[Cé'+ K)?’)m*zf}i'.ﬁ(t)}w;:g o,
@y = [ (- p-pe) 2 W= S LpTr kTPl

. . z
}A,k ;j + a( 'ﬁ) = M {é }

Nsa
¢ % L. 13d)
(R4 -{(= b k- £530 (= b)) e, ©

(3-4.13¢)

z vz H:_'_}P?’)

M T + ATy Ty 2y =0, m»—

‘e L '3<jl"20 > 2‘ F:WE/
NV"ZLJ + zfj _x)‘f' Y x) NSfR pre

RS (5 -5 %), g~ o) &) )}

3
(3-4.13e)
d = /V"\[D.

C =z Ma
—_ P
The use of Egs, (3.4.3) is here tacitly assumed. The reformulation of the above representations
in terms of the equivalent form (3. 4. 2) is left to the interested reader. Notice how the Hamiltonian
is representative of the kinetic energy as well as of ali the forces derivable from a potential,

The reader should be aware that the forms (3. 4.2) and (3. 4. 3) of writing our Hamilton-admissible
equations are mt unique and several additional alternatives can be formulated, These additional
forms are significant on methodological grounds, depending on the aspect under consideratiion.

We therefore give below some of the most representative contravariant and covariant ways of

writing the Hamilton-admissible equations.
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P - DH(B)
LW ek, ) v .
2 Ao _Lf‘_/b,}”: v
- TR, oux. b (3.4.lka)

|
|
9
N

@,-P( 0\/‘—/D——\£ - w /DM b - -5
@L»w”k ST AT b

where the functionsZ,A , TM and UM are (uniquely) characterized by the functions Rﬂof Egs. (3. 4.4).

|

For instance, by using the contravariant form in theZ o functions, one can easily identify
the generalization of the conventional Lagrange's equations which is induced by the Lie-admissible

L (z »;)zT(/g)_\/(g), (3. 4.45)

formulations. Itis given by the equations

d oL OB =0, E . 5KQL _, ~EC3,%),
db (O xr ke D Ke .
oz ZKK:ZK‘\’Z’CEII"‘Z/%)/

which we shall call Lagrange-admissible equations because theyrecover the conventional Lagrange's

equations identically at the limit 2-'5—> -r ,i.e.,

2 o DL _DE \_ dRL _2L (5 +1)
z“;:_ek~<df‘ Qe (Qzke )™ dF Q. Coek



- 316 -

as it can be seen by writing the equations in the equivalent form
d oL L%t oL (2 T2t )z’b:o, @. &)
dt Dkt DZF Qb

Viceversa, starting from Egs, (3.4./7), the conventional Legendre transform induces the

Hamilton-admissible equations in the contravariant form in the Z ~functions, from which the other

equivalent formg can be constructed, Thus, the Lagrange-admissible equations  constitute the

generalization of Lagrange's equations (with and without external terms) which is consistent with

the Lie-admissible formulations.

A fundamental property of both the Lagrange-admissible and the Hamilton-admissible equations

is that they are, in general, essentxally nonselfad]omt and we shall write aa
. <R ‘
[Sub LY _RH TR 4 D _ o. (Bt1g)
2b* v db Dk ’Dz"' Nm

As a matter of fact, this is precisely the reason why these equations are capable of producing
a direct analytic representation of essentially nonselfadjoint systems which is prohibited for the
conventional Lagrange's andHamilton's equations,

Eqgs. (3.4.14) will also be called canonical-admissible equations because they offer a genuine

hope of constructing, in due time, a covering of the conventional canonical theory. In particular,

(a) the canonical-admissible equations are directly applicable to a broader physical context, that is ,
applicable without reformulations of the variables;

(b) they are non-trivially different than Hamilton's equations in the sense that they are non-Lie
in algebraic character;

(c) they embed the forces not derivable from a potential (Galilei relativity breaking forces) into
the Lie-admissible tensor S}'w (rather than into the Hamiltonian);

(d) they recover Hamilton's equations identically at the limit of null forces not derivable from

a potential; and, last but not least,

(e) their departure from Hamilton's equations is a measure of the latter forces, i.e.,
v JICLINE Ry N
(6 ~ k ’,SE\;—F /ZL" = D/Fka}'

Egs. (3.4.14) are at the foundatiorg of the Lie~admissible formulations, All my efforts (reported

(3-4.13)

in ref, s) are essentially devoted to attempt an initial understanding of the relativity and quantum
mechanical implications of the direct applicability to physical systems of general Lie-admissible
algebras, as established by Theorem 3,4.1. It should be stressed in this respect that the emerging
Lie-admissible algebras are of general, rather than flexible type. For a study of the (rather

restrictive) conditions under which the flexible Lie-admissible algebras occur, see ref. Sb.
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The reader should be aware that the variables rka and Pra of Bs. (3.4.)4) do not span
a phase space as commonly understood. Notice that this is the case even though Pra ‘7.) L/ﬁ) ka
The point is that the functions L and H represent only partially the system within the context
of the formulations under consideration. The space of the b-variables of Eqs, (3.4.)4) has

been called dynamical space in Yef.5b .

The transition from the analytic equations of the Inverse Problem to those of the Lie-admissible

It will be geometrically identified in Table3.8 .

Problem will play a crucial function for the subseq uent steps of this paper, - We here restrict
ourselves for brevity only to the case of nonessentially nonselfadjoint systems, Then, the
use of Eqs, (2.1}, 9 ) allows the direct identiiies g c>=p TR
{. ,b(9\<31-°f ol : ]
Fra dt Hrib QDb /sa NENSA ey C;.’(-,’/-O)
T8 QLS PD?’J“DLC 15) (Z)[_ ) ]
NENSA

dt QEF" GZRQpb T \PzF Db
c®R

[(""“t %‘n - -élu)ssn' - FF“ZNEHSH >

This indicates the reason for our insistence in the generalized form (2, \) .9 ) of Lagrange's
equations rather than the conventional form (2.1) - And indeed, it is the nonselfadjoint
nature of these equations which allows a direct link between Lagrange's and Lagrange-admissible
equations. Notice that in the former the forces not derivable from a potential are represeﬁted
with the generalized structure LS of the admissible Lagrangians (essentially chiral Lagrangians),
while in the latter the forces not derivable from a potential are represented with the 2 ‘functions
by allowing in this way the Lagrangians L‘ of rule (3.4.20) to have the conventional structure
L =T - V.

The transition from Hamilton's to Hamilton-admissible equations (again for nonessentially
nonselfadjoint systems) is, in essence, a particular type of mapping under which the Hamiltonian

does not transform as a scalar, We can write in this case
XLQ’N} _ i,cko\ Pl<a} 2_ lDP‘} (L)C
Pea = AL¥255 o P -(DL‘/O A
H% —  HC H‘S-@:b(bq})'—é“
For the transition of the equations in rka we trivially have(by construcnon)
ke _oH%  _ DHC
(D PK“ (D Fka\

For the transition of the equations in Pra notice that

},k , (3.4.210)
» (3.4.21b)

+T. (3.4.20)

(3 k. 22)



- 318 -

QLY | 2 (pt%e)=T(hx, ) (B
fkm = O % < Yyt
QL o_ (yithd) = Pute,x B G

‘DFa S gk - f?z'—““

o0
Then, under the assumed conditions, there always exists a (class C and regular) matrix

ib
( ) such that c
e ) DQH? ib /. “on 3.4.24)
F L — = L‘FA I"’ b T~ ib

Ko Qs 1 ‘ o a
We can thus.w;:ite in uniﬂedv nc:‘t;ti\:n% l/‘/&\ g - 6/* v ‘/D H < (3_ “.2 g“ )

a’ — wh 75,7 =W v - DY/’
cda
U"H) ('L ° wy - Db (’5-‘}*‘2’59
v] = - ) ¥
- o (W7 D207 12,0\, 255
Finally, let us recall that the Lie tensor w*Vof the conventional Poisson brackets has

a rather special physical significance, it represents the fundamental Poisson brackets

of the Invexrse Problem in the unified notation
(l:t(m/ ,L{\.ol) ([_%"’“ I )lo])
() - : .
U_?i« 'L)Lz> (i—?fa,’\);‘;z> - i M X3 N O"bH xDBDN
! -
(3.4.26)
4e 5P

) A
AN %3N 3N x3

For Lie-admissible formulations these brackets are lost. We have instead the expressions

(('U'A/ ,L,‘g)> ((t“\/ \".‘b)) Oz 31 /’L?m;\sh/

o b)) \(35) (22

3.4.27)

(o) =

which represent the fundamental dyriamical brackets of the Lie-admissible Problem,

A comparative analysis of this dual methodological context for the representation of the
same (nonessentially nonselfadjoint) system is instructive. In essence, within the context of
the Inverse Problem all conventional formulations (e.g., Hamilton's equations, Lie algebras,
etc.) are preserved, but the mathematical algorithms at hand (the symbols "P", "Hg", etc.)
lose their direct physical significance. Within the context of the Lie-admissible problem
exactly the opposite situation occurs in the sense that, by construction, all algorithms of the
approach (e. g., the symbols "p", "Hc", etc,) have a direct physical significance, but the

conventional formulations are lost. It is hoped that a judicious interplay between these two
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complementary formulations, rather than the individual use of any of them, can be effective
for the study of nonconservative mechanics /with particular reference to a most insidious aspect,
the physical meaning of the mathematical algorithms at hand. For a study on the implications
for, say, the physical electric current and conductivity tensor of a nonlinear, nonconservative
plasma see ref, . Notice again the insistence on the term "physical" which is customarily
absent incurrent literature. The reason is that the -quantities which are computed in conventiona}
studies are the "canonical® electric current and conductivity tensor, Our contention is that,
under the assumption of nonconservative forces (a not so rare occurrence in
in plasma physics), the canonical quantities do not represent physical quantities. These
occurrences can be best expressed by using the dynamical space of physical variables rk‘a and
Pra (rather than the phase space of mathematical quantities); by carefully formulating physical
quantities in such a space; by representing the nonconservative forces with our canonical;-b
admissible equations and consequential generalization ofl say, the Liouville's equations; a'.nd finally
by comparing the physical predictions of such Lie-admissible approach with the canonical
predicticnsof the conventional phase space approach.

Regrettably, we are forced to ignore a number of aspects for conciseness. For instance,
the conventional Legendre transform, as indicated earlier, does not induce canonical quantities
in the transition from Egs. (3.4.15) to (3.4.44). The net effect is that the Legendre transform,
while crucial for the Inverse Problem, is inessential for the Lie-admissible problem. In ref.sb

1 present a simple Lie-admissible covering of the Legendre transform, that is, a noncanonical

generalization of this transform of the type

2L (3.4.28)
T

i)
> Ka Ka -
H = )f)ka)b + bkmc" <’E"E~> - L / /tk“_ D e
which , when applied to Egs. (3.4.[5), yields a generalized version of Eqs. (3.4.14) of the type
M , ; 2
6*»@ “ ’—(_D_‘) (-D_l'_“” = w}“/?_}i. + F- ) C;-/ﬁzq)

T ’ 14 /’.Df—(fv(bw 26" ko
1S, T {F"}:{Fv/ F;«}r

which, however, is Lie-admissible in algebraic character. In essence, this is the Lie-admissible

b/“_ %“V?ﬁ_:o

covering of the Lie covering of the Legendre transform, that is, the noncanonical generalization
of the transform of Table 2.7 which induces Birkhoff's equations.

It is here appropriate to recall that one of the central hopes of this analysis is to be able
to study, in due time, strong interactions as not derivable from a potential. The reader is then
encouraged to consider transform (3.4.28), say, within the context of the problem of a possible

Lie-admissible covering of the canonical perturbation theory. The quantities Gm can also be, as
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a particular case, constants and infinitesimal, by therefore offering new possibilities of
expansions which are nonexistent in conventional canonical perturbation theory. In turn, this
is another indication of the conceptual departure from conventional conservative settings which is
needed to study forces not derivable from a potential: the generalized transform (3.4.28) is
potentially significant precisely because noncanonical.

On algebraic grounds, transform (3. 4.28) essentially provides the analytic origin of the
isotopic degrees of freedom of the, this time, Lie-admissible brackets, i.e., the class C,Q
invertible transformations of the Lie-admissible brackets within the same b-variables

QA VOB (3.4.300)

which preserve the Lie -admissibility law, and we shall write

+oB w
(%, E)Go :’a_b" oy T (R,B)y = ’D(ba*; ) (35 (’)5)"
v) _ M K pe Q" \’ / (/E,TZ?" >/, (3-+.30b)
(9= (3g) - @)\ (5% (5%)

This yields the notion of Lie-admissible isotopy as an algebraic covering of that of Lie isotopy,

that is, the transition from the conventional to the generalized Poisson brackets
_ OB Q8 PuvoB
[a,8] = 2% wr = =1, B] &

! (&) dar (DA Qav

In other words, Egs. (3.4.29) are a Lxe-admlssxble covering of Eqs. (3.4./4) in a way similar

(3. 4-31)

to that according to which Birkhoff's equations are a Lie covering of Hamilton's equations.

Finally, it might be of some significance to indicate that the Lie-admissible brackets of this

table are not Jordan-admissible, that is, the attached brackets A¢ B = (A,B) + (B, A) violate

the Jordan law (3.2, 10b) and, thus,no "Jordan content" occursét the given classical levelSb Sc)

TABLE 3.5: CANONICA L-ADMISSIBLE COVERING OF CANONICAL FORMULATIONS

One of the fundamental properties of Galilei's transformations is that they constitute
canonical transformations, that is, transformations which preserve the time evolution of the
systems considered, Clearly, in order to attempt the construction of a Lie-admissible covering
of the Galilei relativity one of the necessary prerequisites is the identification of the rudiments
of the expected covering of the transformation theory characterizable by our Hamilton-admissible
equations, The objective of this table is to outline  my studies on this problem for the finite
and infinitesimal case, as a preliminary step for the reinspection of the problem as a generalization
of Lie's theory (see Tables 3.6 and 3.7 ). The reader should be aware that the study of the
transformation theory within the broader Lie-admissible context brings into focus a number: of
aspects of the conventional canonical transformation theory which are nonessential for its custo-

mary presentation, It is therefore advisable to reinspect the known transformation theory first,
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and then enter into the problem of its Lie-admissible generalization, Again, I am here

interested in nonconservative systems. This means that the conventional canonical transforma-
tion theory I shall review below is referred specifically to these systems. In the final analysis
this is one of the methodological insights which is rendered applicable to nonconservative systems
by the Inverse Problem.

Permit me to begin with a redefinition of the conventional canonical transformations which
appears useful for their generalization for Hamilton-admissible equations. Under an arbitrary
(but of class C ® and invertibie) transformations af" — a'lt=a'l (a) the conventional
Poisson brackets are transformed into new brackets . ‘ ) (DB

_ e A QA'P w»ﬂa @Bf ApL T(: a

)_Q 1(3)-,\ (Dﬂ}‘ w)w('ba)’ (aa’r de,u ®INE®YN (Da f

() Qa - <ﬁ‘: B\) (_3’5‘1>
= (a)) |

which are generally non-Lie, that is, violate laws (3, 3./0). The first subset of the transformations
considered which is relevant for the canonical transformation theory is that of the Lie isotopic
transformations, that is, the transformations which preserve the Lie algebra identities, i.e.,
perform the transition from the conventional Poisson brackets in the a-variables to the generalized

Poisson brackets in the a'-variables

(3.5 2
[Q'B—JU\) -

a1 aim ¥
LH’B]Ca‘)

This means that the analytic equations of the former are Haminton's equations, while those of
the latter are Birkhoff's equations. .

Of course, the Iie isotopic transformations are not , in general, canonical transformations,
e, g., because they do not necessarily preserve the value of the fundamental Poisson brackets

(3.4.24) . However, we can define the conventional canonical transformations as the Lie identity

=)
isotopic transformations of the fundamental tensor w’,‘ that is,the transformations which

not only preserve the Lie algebra, but actually preserve the value of the brackets,

— w _Da” € Qar’ _ wr. (3.5.3)
(Daf’ D%

This, however, is only a first layer of the transformation theory, i.e., that for Hamilton's
equations, The existence of a Lie covering of Hamilton's equations, Birkhoff's equations, suggests
the existence of a Lie covering of the canonical transformation theory. Such covering is known

in the existing literature (see, for instance, ref.ié) under the name of generalized canonical

transformations, although they are rarely interpreted in the way essential for this paper, that is )
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as the transformation theory of Birkhoff's equati ons. In a way fully equivalent to Eqs. (3.5.3 ),

we can define the generalized canonical transformations as the Lie identity isotopic transformations

of the generalized tensor orY , i.e., the transformations which not only preserve the Lie

@a 86 fatw ))fb“ SUe).
(o &7y =
Rt —> ( 0a (3.5.4)

Clearly, the generalized canonical transformations contain the conventional canonical

algebra, but also are such that

transformations as a particular case., We can therefore focus our primary attention in the
5b

former, The following property proved by W. SARLET and F. CANTRIJN is relevant for

our analysis.

[- )
LEMMA 3.5, 1: A necessary and sufficient condition for a class C, invertible

transformation a —» a'(a) to be a Lie identity isotopic transformation of Birkhoff's

=4
tensor is that there exist a class C function G( o) ), called the generator of

DG (a) 3.5.5)
Riptan) = Rytah) + 555 ‘

But, under the necessary conditions, Birkhoff's equations are reducible to Hamilton's equations.

b
This implies the following diagram 15

the transformation, such that

Lie identity isotopic

1 B
Qe W) Sy, I Cay
1

Lie Lie
isotopic isotopic

v Lie identity i i v oy
LAJ’; H(a) tity isotopic 1w , H%a™)
(conventional canonical transformations)

(generalized canonical transformations)

which is closed and invertible. This confirms the methodological equivalence of the transformation

theory of Birkhoff's and Hamilton's equations. The following property is well known.

LEMMA 3.5.2: The set of all possible .generalized canonical transforrpatfiorf

forms a group, called generalized canonical group.

Notice that transformations a -»a'(a) which are canonical, are so with respect to all

Hamiltonians(of the admitted class) and, thus, all systems. This is no longer the case for the
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generalized canonical transformations in the sense that if a transformation a —a'(a) is of

this type for one tensor JZW(“), the same transformation is not necessarily a generalized
canonical for another tensor &2 ”V(A') . But Birkhoff's tensor has a dynamical role in the

sense that it is representative of the acting forces jointly with the Birkhoffian, We therefore
reach the conclusion that in the transition from the transformation theory of Hamilton's equations
to that of Birkhoff's equations the methodology apply to all tensors (Jzkvof the admitted class,
but the theory "per sé" becomes dependent on the tensor 2 v considered.

We are now equipped to consider the case of the transformation theory of our Hamilton-
admissible equations. At this point a rather profound‘ conceptual and methodological departure
from the conventional theory is needed to avoid inconsistendes of both physical and mathematical
nature. As recalled earlier in this table, the conventional transformation theory is centered on
the notion of preservation of the value of the Lie brackets, In the transition to Lie-admissible
formulations one would then predictably attempt the construction of the transformation theory
based on the preservation of the value of the Lie-admissible brackets, i.e., a transformation

theory of the type

) ! Qb)“ e(‘ N (D—io:—vzgfu/ ¥),
FY = sC0w) == )

Db (3.5.6)

Unpredictably, transformations of this type are inconsistent on both physical and mathematical
grounds. It is appropriate here to indicate that my early attempts at the construction of a
transformation theory far Lie-admissible equations were based precisely on this approach.
However, the inconsistencies I encountered in practical applications (e. g. , the physical (non-
conservative) spinning top under gravity) have been so severe to force me in 1973 into the
laborious study of the Inverse P roblem, as indicated in Section 1.

Predictably, the physical origin of the inconsistency rests on the physical nature of the

systems considered. Consider a conservative system with conservation laws

[Xc, Hj(baso. (3.5.7)

In order for any transformation theory to be physically consistent, it must be able to preserve
the conserved nature of the Xi quantitities, This is the idea which is intended to express with
the notion of "Lie identity isotopic transformation". Specifically, of utmost physical significanceis

that the value zero of brackets (3.5. 7 ) is preserved, i.e,,

' =[x ;0), Hool = x5 ><<l>)H<b')]—o.
Xiley = Dt ﬂmo = el ) (35.8)
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In the transition to nonconservative systems the physical profile is profoundly altered. And
indeed, if nonconservative forces are added to the System with properties (3.5.7 ), the net

effect is now turning them into nonconservation laws

X . (o) = (X¢, H)e? 2 (3.59

where, as typical of our Hamilton-admissible equations, the Hamiltonian, the base manifold
and the physical quantities are unchanged by construction in such a transition, and the forces
not derivable from a potential are embedded into the structure of the dynamical brackets.
The net effect is that the preservation of the value of brackets (3. 5. 3 ) by the transformation
theory would be, in general, physically inconsistent. The reason is that laws (3. 5.9 ) now
express the rate of variation of a physical Qquantity in time and such rate is not necessarily
constant under the transformation theory. A typical case is that of the nonconservation law
of the energy, that is, the necessary condition to ensure the existence of a nonconservative
system. In this case, particularly when applied forced are included, the energy

can arbitrarity vary in time. Thus, its rate of variation at one value of time is generally
different than the corresponding rate at another value of time,

On mathematical grounds the canonical and canonical admissible equations can represent
the same system, although in different coordinates. This means that there exists a transforma-
tion a—> b(a) mapping the former equations into the latter, i.e. , (Table 3.4)

av_QHt 9l (o _p r_@,“i) Hi 3 H%s.
»v Dok @a P Db /! ¢ (3 .5.10)

In turn, this means that it is possible to construct the transformation theory of the canonical-

w

b
admissible equations as an "image" of that of the canonical equationsf i.e.,

% ) o, & )% g~y
W v ot _fDU; L5),oe-'°’ ~(D._._H' ),H%:(’. Ra%,
“obf 3.5

» Qar o
The mathematical inconsistency we are here referring to is constituted by the fact that if
in the transition from Egs. (3. 5. [D) to their transformed form (3. 5. {1 ) (where we have ignored
the Jacobian of the transformation) one imposes property (3.5.& ) for the b —> b'(b) case,
the corresponding transformations a —>>a'(a) aregenerally noncanonical. Viceversa, if the
transformation a~> a'(a) is canonical, the image b —> b'(b) constructed with the above rule
does preserve the form of the canonical-admissible equations and, most importantly, its

Lie-admissible character, but rule (3.5.% ) is generally violated.

We shall therefore define the canonical-admissible transformations as the Lie-admissible
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isotopic transformations of the tensor shY = D b / ? e‘\l_ The preservation of

the algebraic character of the canonical-admissible equations is in this way ensured, but not

that of the value of the Lie-admissible brackets.

o0
DEFINITION 3.5.1: A class C and invertible

transformation b-» b'(b) is a canonical-admissible transformation when all

(3.5.19

the following equations %
o _R? QRS _ w»&**v + FH),
S, e b (F*] - (LO),:-W@)E,

are identically satisfied.

Notice that in Eqs. (3.5.12) the forces not derivable from a potential preserve their
functional form and are simply computed in the new system of coordinates. In different terms,
conditions (3.5. {2 ) ensure that the transformed canonical-admissible equations coincide
with the transformed equations of motion up to the Jacobian of the transformation. For explicit
examples see 1:ef.'s

In conclusion, the transformation theory of the canonical-admissible equations appears
to be considerably broader than that of the canonical equations. In particular, it is not an
identity isotopic theory, as it can now be seen from the inhomogeneous nature of system
(3.5.12 ) (compared to the homogeneous nature of the corresponding systems for canonical
equations), As a result, a canonical-admissible transformation is not, in ‘general, either
canonical or generalized canonical and viceversa.

The covering nature of the canonical-admissible over the conventional canonical
transformation is then indicated by the fact that, at the limit of null forces not derivable
from a potential the Lie-admissible tensor S reduced to the canonical tensor w?*! ,v
conditions (3.5. 12) reduce to a form equivalent to (3.5. 3 ) and the conventional transforma-
tion theory is recovered identically. This covering notion is further elaborated by the following

property s

LEMMA 3. 5.4: The set of all canonical-admissible transformations forms a group.

The practical construction of the canonical-admissible transformations can be conducted
by using that of the canonical transformations and then constructing their image of Lie-admissible
type via equations of type (3.5.10) and (3. 5.11 ). See ref. for details and examples. In the
final analysis, this is an illustration of the complementary nature of the Ixsu{,erse Problem

and of the Lie-admissible problem. Similarly, we refer the reader to ref. for the study of
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the integrability conditions for the existence of a new Hamiltonian as well as for other topics
(e. g., the canonical-admissible covering of the so-called canonical inversion formulae,
conjugate quantities, variational principles and Hamilton-Jacobi theory).

For completeness, permit me here to outline a step crucial for the subsequent analysis
of this paper, the Lie-admissible covering of the infinitesimal canonical transformations.

Recall that an infinitesimal transformation

a* — &M = o - 5‘9 G,

(2.5.13)

v
is canonical, that is, identity isotopic with respect to wh , When the following conditions

w)kffDGJ (DGﬁ wr\/ = O, ({3.5: ')l‘)

are verified, The study of this system within the context of the converse of the Poincare Lemma

GV = w)“/(b——% , gay: 5(9 Eafl G]l(?;.g.,)';)
QDa

as well as the integrability conditions which can be written
— TV [We "j + [G— [a* avjz,_.o‘ (3.5.1¢)
[‘*ﬂ, oY, G]] + La. , LG, a y s

This indicates the deep link of infinitesimal canonical transformations and Lie algebras in the

then yields a solution

sense that the algebraic laws enter into the integrability conditions for the transformations.
In the transition to generalized canonical transformations the situation is methodologically
equivalent in the sense that transformations (3. 5.13) are generalized canonical if they
are identity isotopic with respect to (D,Mv . Instead of Eqgs. (3. 5.{4) this yields
v v
» % M s
R1e VG D&M N e & _ o5, (3.5.17)
ac Qas Dal
with a solution
) T ¥ 5.0
GFo PG Sarn_SoTaraly (35 18)
oY !
and the integrability conditions

[A)*) e, erx] . ):ad, re G]*Y*; [G, L& ag*js’:/ (3.5:19)

of course now expressed in terms of the brackets of Birkhoff's equations. In this way we continue
to illustrate the equivalence of Birkhoff's and Hamilton's equations up to the point that conventional

transformations, such as translations in time, translations in space, rotations, etc., can be
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fully defined within the context of Birkhoff's equations at both the finite and infinitesimal levels,
In particular, the "Birkhoffian HB is indeed, the generator of translations in time, i.e.,

oA = ot Lw, HB]*! (2.5.20)

but now referred to the generalized Poisson brackets. Similarly, the y, component of the

variables of Birkhoff's equations is the generator of translations in the r direction, i.e.,

5(% Y T [9/ jk«]*('“’ Sum) {a’“}: IL'Z";«:]M.‘] ,
. (3.5.21)

and the Birkhoffian “"angular momentum" along @w axis of unit vectorn, M+n =(r x y).n ,
» A ua a o

is the component of rotations around n, i.e.,
- B b
§6 = 5A LA, MhaT (3521

This illustrates again the remarks of Section 2 (particularly Table 2.14) to the effect that
within the context of the Lie treatment of Newtonian systems, "physical transformations", that is,
transformations of direct physical significance (translations in time, translations in space,
rotations, etc.) can be characterized by "“nonphysical quantities" as generators, that is, quantities
without .the conventional direct physical significance (energy, linear momentum, angular
momentum, etc.). This situation does not occurs within the context of conventional treatments
of trivial (conservative) systems, but it does occur within the context of unconventional
treatients (e.g., Birkhoffian) of conservative systems or conventional treatments (thatis,
Hamiltonian) of nonconservative systems.

Equivalently, the Lie approach to the transformation theory of nonconservative systems
implies the loss of the conventional aspects of the generators of conservative mechanics: to induce
a physical transformation and to directly represent a physical quantity, This has a number of
quite delicate implications at a classical as well as quantum mechanical level.5c

One of the central objectives of the lie-admissible formulations is that of restoring this

symbiotic meaning of the generators for nonconservative mechanics too, that is, the generators

of physical transformations (translations in time, translations in space, rotations, etc.) are
physical quantities (the physical energy, linear momentum, angular momentum, etc.
respectively). It appears that this is an essential prerequisite to extract physical informations
in a form as direct as possible at both the classical and the quantum mechanical level.

In particular, the above objective implies that the covering relativity which will be conjectured
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in the next section is based on the preservation of the generators of the conventional Galilei
(symmetry) Lie algebra of conservative systems. The action of the noncons ervative forces
is represented by the transition from Lie to Lie-admissible algebras,

By keeping in mind these objectives, we shall say that the transformations
' ) > M g 5.2
b s M = BM L d8 G (b), (3.5.23)

are infinitesimal canonical-admissible transformations when they are Lie-admissible isotopic,

that is, the fundamental - dynamical brackets (3.4.25) are transformed into the new form

(b>, ) S1V(8), (3.5.24)

which is still Lie-admissible, i.e.,

(sre. s'tH) :aaw il (3.5.25)

D\ D (Y )
o) D 1zp VP S5 fd,
e (5-50) By (577 57+ (57017 Sk /
It is possible to show that a solution is of the type

GF o v G /S\of*:Ss(b’ja)&m,@.5.ze)

O’
with the integrability conditions

(), G)r (()6), )+ (6, bA),bV) + (c;, (v, b*))

(b =

L, 5,6 + (6, @ p) = (9 06,6)) + (B (1) (352

e (6, 04 0) + (&) w)+ (v ),6) + ((¥95), 8).

In this way, the Lie-admissibility condition again eéntexyinto the construction of the infinitesimal
transformations. This was, after all, expected, from the covering nature of the approach. And
indeed, integrability conditions (3.5./6) or (3.5./9) are Lie-admissible, but only
expressed in the case of an anticommutative algebra (Table 3, 3).

The first major new occurrence of this broader approach is the lack of uniqueness of the
Lie-admissible tensor S g v for all possible generators, contrary to the uniqueness of the

wh v tensor for all generators of canonical transformations. Rather than being a drawback,

this appears to be a necessary condition for consistency, as well as an illustration of the
capabilities of the approach.

A simple physical argument can be presented as follows. Nonconservative forces guarantee

the nonconservation of the energy, but not necessarily that of other physical quantities, e. g.,
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the angular momentum . This implies that the Galilei symmetry can only be partially broken
by nonconservative systems. The net result is that a full embedding of the Galilei algebra
into a covering Galilei-admissible algebra (see Tables 3. 6 and 3. 7) would in this case be
physically inconsistent because it automatically implies the nonconservation of all physical
quantities, contrary to assumption,

An intriguing aspect of the theory of Lie-admissible algebras is that these algebras
can be Lie as a particular case (see Theorems 4 and 7 of ref. ). At the level of classical
realizations (in the sense of Table 3, 3) this implies that the Lie-admissible tensor Sé“/ can
be the Lie tensor WM v for particular generators. Therefore, when a physical generator
(say, the angular momentul) is conserved, it is expected that Egs, (3.5.26) and (3.5.27)
coincide with Egs. (3.5.]%) and (3.5.19), respectively.

To restate this situation in different terms, in order for any possible covering of the
Galilei relativity to be physically consistent in nonconservative mechanics it must also be

able to characterize a partial breaking of the Galilei relativity.

TABLE 3, 6: LIE-ADMISSIBLE COVERING OF LIE'S THEORY.

Table 3.5 essentially indicates that the transformation theory of our canonical-
admissible equations is such to preserve a group structure for the case of finite transformations,
while exhibiting a Lie-admissible algebraic character for the case of infinitesimal transformations.
Without any doubt, this has been for me one of th= most intriguing features of the Lie-admissible
formulations/ because they clearly give hopes for the existence of a consistent Lie-admissible
generalization of Lie's theory. In turn, this problem results to be the true firsttechnical problem
for the construction of a possible covering of the Galilei (and EinsteinSb ) relativity.

My efforts in the identification and study of this problem are summarized below, with the
understanding that they are rudimentary as well as in need of inspection and implementation by
independent researchers, The reader should be aware that the terms "Lie's theory" nowadays
refer to a rather vast, articulated and sophysticated body of methodological tools encompassing
a number of diversified disciplines. I will have achieved my objective in its entirety if
I succeed in only indicating the existence of realistic hopes in achieving, in due time, a Lie-
admissible covering of Lie's theory,

Let mzeqbegin with the problem of a Lie-admissible covering of Lie's first, second and third

theoremﬁ, as an abstract version of the canonical-admissible theory of the preceding Table,
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For the sake of notational convenience, let me recall that an n-parameter connected Lie

transformation
a* (o) = £ (ase) - £7(a; 050, 0" ) s hi2iees, 60, (3.6.1)

can be written in the neighborhood of the identity
K
dar = UH e A (0)do,

Foay [ 0847
Wit - L ‘”D@"JQ:O’

(3_ 6‘24)

(2.6.20)

yielding Lie's first theorem.2 1 2’

THEOREM 3, 6. 1: If the transformations afrce) = fM(a;9) form an

n-dimensional connected Lie group, then
P (a) >‘K{. () (3.6.%)
PED € /

where the functions A’ (ov) are analytic,

Before entering into the problem of a Lie-admissible generalization of this theorem, it is
advisable to study its "Lie's covering" that is, the generalization related to the transformation
theory of Birkhoff's equations which, to the best of my knowledge, has not been studied in the
available Uterature. In turn, this is intimately linked to the problem of symmetries and first
integrals and, specifically, to the nonuniqueness of a Lie symmetry for the characterization
of the same first integral via Noether's theory (Table 2.12). I am here referring to the notion
of Lie algebra isotopy, e.g., Egs. (2.13. 4 ). Clearly, for this notion to be fully realized,
it needs the corresponding notion of Lie group isotopy. An example is soon given by using the
methods of Table 3.5 for case (2.13. 4 ). In correspondence to the isotopically related Lie
algebras SO (3) and SO(2.1) for the characterization of the angular momentum conservation laws,
one can construct the canonical and generalized canonical infinitesimal transformations,

respectively, and, after integration to a finite series, reach the structures

SO el = exp ot w ‘gﬁﬁgo\ jar (3.6.4a)
A

mm x’}&}v (.6.40)

Pv
where Jz, is the generalized Lie tensor (2.13.4c). We shall say that the realization of the

So@@.), a*¥ - exp {(9
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SO(2.1) group so constructed is an isotope of SO(3). Notice the central feature of the notion

of isotopy: it realizes a group in terms of the base manifold, generators and parameters of a
generally nonisomorphic group.
DEFINITION 3. 6.1; Consider an n-paremeter connected Lie group G of
transformations a' M = f}(a;9). A Lie isotopic image (or simply a Lie

isotope) of G is a connected, n-parameter Lie group G* of transformations

a*f =gk @, 8) £ (ase)= £*Fa;e) (3.6.5)

characterized by 36Nz factor functions g):(a; 9), called isotopic functions,
which is such to to admit a Lie algebra structure in the neighborhood of the

identity when expressed in terms of the base manifold (the a-variables),

generators ( say, the quantities Xi) and the parameters ( o ) of the original

Lie group G.

This immediately yields the following Lie covering of Lie's first theorem.

THEOREM 3. 6.2: If the transformations a*}" = f* *(a; &) = g (a; & )f\)(a; ©)

characterize an isotope G* of a connected n-dimensional Lie group G with

transformations a‘}* = f'(a; 9), then there exist isotopic functions %*K v (q.)

such that
QQ“W: %’?’@) W (a) >\”,<¢9) (3.6.¢)
Dok v ; !

where the functions 4 ’:A (a) and %t Y(a) are analytic.

n essence, in this case we have, instead of Egs. (3.6.2b)
n 0 v

Aoy ] 2= gk IV ]

K L7op~ 'y 9=0p °
The functions 8*,, !

of Egs. (3.6. 6).
Now, the ongmal iroup G can be subjected to the familiar .realization in the neighborhood

(3.6.7)

| therefore, are (uniquely) characteri zed by the factorization into

of the orlgm 3’ /
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v Ok Doyl = C.out N
ui(—);’b‘)‘ M)@avu i L) <) (3
[N, 2 (3.6.55)

/A )'() Dps o™
T IS
LXL’/X)'Z X X >< X = C“/ XK } (3.6.€¢)

(3.6.84)

which we shall refer to in this paper as the standard realization .
For the isotope G* we have a dual possibility. First, since G* is a connected Lie group,

it can be subjected to the standard realization and we write

u*Vv 0
b Qav ) QaY t
*x (< * K
t) 'f L/ Or-X Der
K %

- PN *
LX*"‘/X?](}:XV X)‘ "XjXTZ:C v ch/

- (3.6.9¢)
X*F - W S (3.¢.94)

(3.¢-9a)

(3-6.9%)

However, in order to realize G* as an isotope of G, we must express it in terms of the

generators of G. This essentially implies a redefinition of the associative product X*i)( *j

of Lie's fundamental rule (3. 6.9 ¢) according to
3.6.10)
X . X; C

ALK T XEXT — A% (x) iy
In other words, to realize G* as an isotope of G, we must change the standard basis of G* into
the standard basis of G and, jointly, modify the associative product of rule (3. 6.9¢) into a form
which, after exponentiation, yields a group isomorphic to G* and not to G. This is exactly the

occurrence of example (3. 6.4 ).
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We reach in this way a crucial point of our analysis. The notion of Lie group isotopy goes
at the very foundation of Lie's theory, the universal enveloping associative algebra induced by

Xj of rule (3.6.9¢) (see Table 3.7 ). A study of this problem indicates that the

product }(1
notim can be realized via an isotopy of such enveloping algebra, that is, an associativity

preserving mapping of the product Xin of the type
* 2 *< M (3.6, 11)
a (X) S Xt*X)‘: (}*é X’z. %i X ><’L‘ U (a)@ it

This enveloping aspect will be outlined in more details in Table 3.7 . At this point let us recall

. - . 2
for notational convenience Lie's second theorem . 1 %

)
THEOREM 3. 6. 3:If_)(i =_lA. . (‘)/ﬁ are the generatoxsof an n-dimensional

connected Lie group, they satisfy the closure relations

r 3
LXC,X;XH=XcX;—><}x(:Cl,ij, (3.6.12)

where the quantities C}i(j are constants (Lie's structure constants).

As indicated in Table2.13 , for the Lie algebra G * of G* to be an isotope of G, it must be
closed with the generators of G (and generahzed brackets). This implies that the necessary and

to be isotopic can be written

MR v D *e *k v D * €

9o WS 9 -9 uk 2= 9
Qav 9! J K Qav

"y £
% %*? 25 * C% 32 /

sufficient conditions for the functions %

(3.6.13)

under which the standard realization of G*, Egs. (3.6.9¢) is turned into the isotopic realization_gb
© }4 v D » ~ Kk
v, e _ _ M
W S5 ¥ n uY @av* U =cC Wk, G
6 K C % ?.
g - 32 (3.6.14b)

5b

This yields the following Lie covering of Lie's second theorem .

D
THEOREM 3.6.4: I X = u-ﬂ Ca) Mare the generators of an isotope G* of

an n-parameter connected Lie group G, they satisfy the closure relations

el K
i_X;,ijm_— Xz*X; - X/'*XL‘ — C[). (a) ><I</(3.s./5)

ses k
where thiequantities C (a) ,_here called Lie's structure functions, are

generally dependent on t_he local coordinates of the base manifold of G.
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29
As is well know, the use of the Lie algebra laws in rule (3. 6.9¢) yields Lie's third theorem

THEOREM 3. 6.5: The structure constants of the standard realization of

an n-dimensional connected Lie group G satisfy the identities

CK+C)~7:0;

(5
3 <3 S . (3 2
. R . . - 3.6.[6b
Cij Cpo +Ce Gy #Ce: ([ 20. (6 )

One of the crucial requirements of the notion of Lie isotopy is that of preserving the Lie

(3.6./6<.)

algebra structure in the neighborhood of the identity. The use of Egs. (3.2 . 10) for rule

(3. 6. 15) then yields the following Lie covering of Lie's third theorem, 5k

THEOREM 3, 6. 6: The structure functions of the isotopic realization of

an n-dimensional connected Lie group satisfy the identities
~ I& ~ F

~ o+ Ty = oo (. 6.174)
kx> 2 ~ K ~ R ~ K 2
2S5 Cre_tSie ke +Co; Cu (3.6 17b)
[oad D . ,\‘,t . _ -
* LC_‘) ,Xel;;#‘[C,‘e ,x«?ﬁ"‘*[Ce;;X}jﬂ*-a-

In essence, the constancy of the quantities C,l; of Lie's fundamental rule appeaxsto be

linked to the use of the standard realization. If an isotopic realization is instead assumed,

these quantities can indeed acquire an explicit dependen ce on the base manifold, but in such
a way to preserve the Lie algebra laws. This is the meaning of Theorems 3. 6.4 and 3, 6. 6.
For completeness we must now touch on the question of exponentiation to a finite transformation.
o
For the case of the standard realization we have the familiar exponential law_lq q
o X,
) )4 A )A ( 3 6. f &L )
a’” = e a’ -
(under the assumption of all necessary convergence conditions),lt is an instructive exercise
for the interested reader to see that such exponential mapping carries over to the isotopic
realization yielding the isotopically mapped exponential law 5b

Loty
o+ e@ 9% X, &N/ (3.6.19)

here again written under the assumption of all necessary convergence conditions, as well as

that the functions %’{-‘ satisfy conditions (3. 6.1% ).
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A final essential aspect to be inspected for the study of the consistency of the notion of
Lie isotopy is that of the composition law. For the standard realization we have
XP Xa( de C3_(o.20)
e e ' = e

where the new element is given by the Baker-Campbell-Hausdorff formula 29 ¥

For the isotope G* we have instead
*

Qx*p exx‘f S v

J X*: ?*X: (3-6.22)

where the new element is now given by the isotopically mapped Baker-Campbell -Hausdor£f

5b

formula
* ¥* X _L T
X'J’: ><0< +></5 - 92 LX"(/X/}](_)* @ézz)
' Lol - s
+ 5 L(XA'XP>ILK""XPYH*ZA;-N

Finally, we must touch on the question of the realization of the standard and isotopic canonical

realizations of Lie groups in New tonian mechanics. As is well known, the realization of
the former is given by the transformation theory of Hamilton's equations (that is, canonical

transformations), according to

~

u},.‘( (4) — w},\v %_ ) C’}G‘Z‘ra)
a

Xl — wrY G L (3.6 24b)

Dav e’
exp(o°X;] = exp (ofwr QG ) (e tke)

r’b&v \/Da)*
-~ _ N s
"% N7 s TG om0 av OGr (34244
— ('X)JA . L v CT)J([\).— (D&)* Q)d\/ 4 )

where the last identity must be intended up to neutral elements of the universal enveloping

associative algebra,
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It has been rewarding for me to see that the corresponding realization of the notion
of ,isotopically mapped Lie group is given by the transformation theory of Birkhoff's equations

(that is, the generalized canonical transformations) according to

: — ]

*/:_: %*Ft u)", — JZ/‘*‘/ ((k) iﬁkﬁl ’ (73.(0_1 o)
L daY

X' = gtuhs — AP (e D@y @ (;‘ﬂ, (3.6.25Y)

DaY

exy Cei Xxp) - Qx{,) ( JZ/‘A\’(%GK O /.;) (3 ¢.25¢)

[XeX;]  —> L G, C—] DG oGy (3.6.259)
Q* A

() - Dal Dav

with the same understanding for the last equation as that of Egs. (3. 6.1{»&).In conclusion, the
property that Birkhoff's equations characterize a Lie algebra isotopy of Hamilton's equations
carries over to the notion of groups via the transformation theory. As we shall see, this is

a crucial intermediate step for our attempted coyering relativity of Section 4.

We are now sufficiently equipped to outline the Lie-admissible covering of Lie's theorems.

It is at this point where a generalization of the notion of isotopy is useful, particularly on intui-
tional grounds. By returming for a moment to the language of Abstract Algebras of Table 3. 3,

let U be an algebra with elements a, b,c,..., and product ab over a field F. A genotopic mapping
of the product is any invertible mappingab —> a o bwhich violates the algebraic laws of abs b
(e.g, if ab is associative or Lie, a o b is nonassociative or non-Lie, respectively). The algebra
U which is the same vectqr space as U but equippgc%:> w ith the product aob and now satisfying
different algebraic laws is called a genotope of U, Thus, on a comparative ground, the algebraic
isotopy is based on the preservation of the laws of the original algebra, while the
algebraic genotopy is based on the violation of these original algebraic laws.

We reach in this way a  crucial notion for the attempted covering relativity of Section 4. And
indeed, our conjectured Galilei-admissible relativity is a genotope of the Galilei relativity. It is
therefore of some relevance to identify the various stages of realization of the notion of genotopy
for nonconservative mechanics.

First of all, the notion of genotopy, still at an abstract algebraic level, can be interpred as
a mapping which (a) preserves the original algebra U as vector space, (b) changes the product

in an invertible form, but in such a way to (c) induce a desired algebraic structure, according to
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the meaning
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We shall therefore use the notion of algebraic genotopy as an invertible algebra inducing mapping.
Of course, the mapping in which we are interested most is that inducing a Lie -admissible algebra
at a classical level. We reach in this way our first step, the realization in Newtonian

Mechanics of the Lie-admissible genotopic mapping of the Poisson brackets, that is, the mapping

of the Poisson brackets which violates the Lie algebra laws by assumption, but it is such to
induce a Lie-admissible algebra. This mapping can be realized in terms of functions
2_& on the bas;a ;nanifold and, from realization (3. 4, 2.) of the canonical-admissible equations,

can be written

Ta.87 4. WhOB @'B) :;%2—» SH (LK)D-* (3.6.26)
(b) @) b:"‘ D (\g (v) D b

Thus, the mapping from the Poisson to our dymanical brackets is an example of Lie-admissible

genotopy. This is clearly a natural extension of the notion of Lie isotopy as the mapping from

the conventional to the generalized Poisson brackets,

The second step is that of identifying the analytic origin of this Newtonian notion of Lie-
admissible genotopy. It is clearly given by the transition from Hamilton's to our Hamilton-admissi~-
ble equations. In tum , this provides a first algebraic characterization of nonconservation laws
for systems with forces not derivable from a potential. as

sb

the Lie-admissible genotopic mapping of conservation laws

K _ . 3.6.27
Kozl il oo —> o= (%o, H) o GO

where the forces responsible for the nonconservations are embedded into the Lie-admissible

product.

The mechanics of this mapping should be kept in mind. The starting ground is that of a
conservative system in the physical variables ib 5 SLr ’pka§ (in the sense of Theorem 3. 4. 1)
with Hamiltonian H® representing the physical energy, and the quantities X representing
physical conservation laws. This setting in then implemented with forces not derivable from a
potential. This does not affect the definition of physical quantities or, if you prefer, their
explicit functional form in the space of the b-variables, but only their character which now
is of nonconserved nature, This results in nonconservation laws, Our central objective is
to achieve an algebraic characterization of these nonconservation laws (a) without changing

the space of the physical variables bMand (b) without changing the explicit functional
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dependence of the physical quantities in the b-variables. Such an objective cannot be
realized within the context of Lie algebras and their isotopies. The notion of Lie-admissible
genotopy (3. 6.27),instead, does satisfy these requirements by emerging at the same time
rather natural.

In conclusion, the content of Tables 3.3 and 3.4 can be reinterpreted by saying that, first,
the Lie-admissible algebras emerge as a genotope of the Lie algebra (algebraic profile) ; secondly,
the Hamilton-admissible equations can be interpreted also as .a genotope of Hamilton's equati ons
(analyticprofile)and; thirdly, nonconservation laws can be equally interpred as a genotope of
the corresponding conservation laws at the limit of null nonconservative forces (dynamical
profile).

In order to achieve the rudiments of a notion of genotopic mappings in Newtonian Mechanics
which is sufficiently diversified to allow the conjecture of a covering relativity, several additional
aspects must be investigated. In this section we are interested to see whether the notion of
isotopy of .Lie's transformation theory indicated by Theorems 3, 6. 2, 3. 6.4 and 3. 6. 6 admits
a consistent generalization of genotopic nature. Of course, this implies, in particular, the study
of the notion in the neighborhood of the identity (infinitesimal genotopy) as well as for finite
transformations (finite genotopy). Predictably, th'ese two aspects turn out to be deeply interrelated.
As we shall outline later on, the hope is then that of achieving an algebraic-group theoretic

characterization of broken symmetries.
s5b
DEFINITION 3. 6.2: Consider an n - parameter connected Lie group G of

transformations b'M = f)'(b;@) A Lie-admissible genotopic image (or simply

a genotope) of G is an n-parameter, connected Lie group G of transformations

‘3’“ (b;e)§ Y (bse) = € F(bse), (3.6.28)

characterized by 36N2 factor functions g}‘ (b;_ Qh called genotopic functions,

which is such to admit a Lie-admissible algebra in the neighborhood of the

origin when expressed in terms of the base manifold (the b-variables), the

generators ( Xi ) and the parameters ( 9‘:) of the original Lie group G.

On more explicit terms, the objective of the above definition is to attempt the characteriza-

tion of transformations (3.6.28) which are such that (in canonical generators G rather than
standard abstract generators X
& ) (3. 6.29)

bf*xb+9(bé)
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where now, by central condition, the product (g‘ ,Gb) is non-Lie , although Lie-admissible,
This remark is sufficient to indicate that the theory we are looking for is based on a rather
profound departure from Lie's theory. The hopes for the existence of such generalized context
is provided by the infinitesimal canonial-admissible transformations of Table 3. 5 which are

precisely of type (3. 6.29).

The following property is useful to identify the nature of the transition from a Lie group

o ,19¢ ,5b
G to its isotope G* and to its genotope G g2 !

LEMMA 3, 6.1: Under the assumption that an n-parameter connected Lie group

A ~
G admits an isotope G* and a genotope G , the groups G, G* and G are generally

nonisomorphic amoung themselves, In particular, both the isotopic and the

g enotopic mappings do not, in general, preserve the compact or noncompact,

Abelian or non-Abelian and semisimple or nonsemisimple character of the

original group.

For instance, a three-dimensional, connected, Abelian Lie group can oe a genotope o 50(3) )
the group of rotations. Notice that each Lie group can admit, at least in principle, a family
of isotopes and genotopes.

A
The genotope G is a Lie group by assumption. Thus, it can be subjected to the standard

realization and we shall write SRS I
" N A , A 2 ¢cHM(bre) 2.6.30a
da - U\M () %K:dfalj U\),:Uo)f )Lfba ¢ Kgéo( )
I LR LA VAL " JeED
L(DL)V > - J\ .—;\/ l’)’ k /
AT TR (5.6300
t;'/A'/J Hocr T ot A’k
A A ~ A A A -~
<z . — — . 3.6.%0d
[ ‘ijw X‘X;’X)'(?L‘”L‘)Xk/ C )

Our problem is now that of turning this realization which is strictly Lie in algebraic character
into a new realization in terms of the generators Xi which is, instead, of Lie-admigsible nature.
A study of this problem indicates the need in this case of performing a genotopic mapping

of the universal enveloping associative algebra
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LX) X;OX)', (3.¢.31)

ALx):

that is a mapping which, unlike that of Eqs. (3.6.]0) now is such to violate the associativity
of the product, although such to preserve the Lie-admissibility. This aspect will be considered
in more details in Table 3,7. At this point we are interested in the generalization of the Lie
isotopy considered in the first part of this table.

N
Introduce the following realization of the WU ) : functions

[A80)+ p%®TUs, (0

subject to the subsxdlary conditions )
“?uz@—w(ﬁ Wiy o+ P uz%\,( e (3.6.33)
v
- % ZH(pT ) PSS S (4% Wh)eo

which ehmmates the free funct.ons in (3.6.32). Then rule (3 6.30b) becomes

(€% U% m,v(’ZS W&) f’) Uz@y <()’; HSU

/‘A
BES M S (Auk) - piuy S (P U]
= C L()A LO(:#-F:)M/MS ¢

This yields the product 2 M /O/
X, o><|—o¥ zw<"< s Db») F; ’Db”(p'uwvzzw)

which, as desired, is nonassociative and Lie-admissible. Rule (3. 6. ‘5901,) can now be written S b

LXe X3, = X0 X, >< >< *: X, (6%
C*v’? = e [a( (b) .,P/'sz(b)]/ (3.6.36b)

and represents, to the best of my lmowledge, the broadest possible generalization of the

(3.6.32)

(3.6-34)

fundamental Lie's rule (3. 6.8¢) capable of still characterizing a Lie algebra(in the sense that
if rule (3. 6.3¢ ) is realized with any algebra other than a Lie-admissible algebra, the Lie
content of the theory is lost),

To restate these findings in different terms, we can say that the notion of Lie-a dmissibility

is at the very foundation of Lie's theory, only expressed in its simplest possible form, the

associative algebra A with Lie content A", A central technical aspect of this study thus consists
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in attempting a generalization of this rule via the use of nonassociative but Lie-admissible algebras.
If such generalization exists, it is expected to yield the desired dual profile, a Lie-admissible
behaviour in the neighborhood of the identity while preserving the global structure of connected
finite transformations.

The Lie-admissible covering of Lie's first theorem is now trivial and can be formulated

as follows.5 b

THEOREM 3. 6. 7 If the transformations

[l g~ (bye) §Y(b;6) = £F(b0)

(3.6.37)

characterize a L ie-admissible genotopic image G of an n-dimensional connected

(3.6 ‘390«}

Lie group G of transformations b’ = M (b 9), then_

IEHOEIH OIS ON
9
S 2 () pT e (G W) Gaamy

—0('17_[4,1 ’Db‘/((g ul“) /Z U\;'KD V(J UJ)-

J
where the functions ol ’lb (b), [5 ‘:Ua) and (A f,;/ (b) are analytic.

The integrability conditions on the functions 4 ?’ and 2; to be "genotopic functions"
can be written v a/ K » v 0( ke \/ @ Pb
AT _O()' u, LY J%’ QALY (343
% 2 (/D bv ] ’ (3 - 7 )

A v Is
RGP NEE

+ 3 AQE[J
D av

- A
where the C's are the structure constants of the original group G and the C %15 are the structure

<

=
C* : _G( X ffzwj)cm ,

A
c;\onstants of the isotope G¥*of G as originating from rule (3.6.36 ). Notice that the genotope
A
G and the isotope G ¥ are not, in general, isomorphic, This indicates that the analysis
A
for G can be carried out by considering the product Xi° Xj alone, rather than the Lie product
[Xi’xj]U‘ By writing

2 s
x'ox.m(; ui%V(, WS ) + el U ’“3 o (3.6
S(E5 s g Xe) X = UK OX,

we then reach the followmg Lie-admissible covering of Lie's second theorem

5b
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%)

ut'ey = 5
THEOREM 3. 6. 8: The generators X, = W\ 2) 7 of a genotope G of a Lie
= gJ

Lie group G satisfy the relations
[3
XioX; = W (b, X) X

where the quantities Ui]; (b,X) (here called Lie-admissible structure quantities)

(2.6.41)

are generally dependent on the base manifold as well as the generators of the

original group,

The covering nature of the approach can be indicated with the following >

COROLLARY 3.6.8,A: The Lie-admissible structure quantities satisfy the

identities A
k % K 1.6 42
u),(lo,X)— MJL‘O),X) = C g)-<b>/ C -42)
where the (S'f(are the Lie structure functions of the isotope G*.

COROLLARY 3.6.8.B: Under the limit 11m1t

Liw3l Pl

the Lie-admissible nonassociative product Xio_XA becomes associative in

(3.6.42)

which case the genotopic mapping G —> 6 is the identity.

COROLLARY 3.6.8.C: Under the limlt .
i g (3.¢.L1)
L ] P

the Lie-admissible product X, °X] becomes Lie's product, in which case

the structure functions L}( reduce to the structure constants of the original

group in standard reahzatlon.

By using the general Lie-admissibility conditions (3.3. 8 ), we finally reach the following
Lie-admissible covering of Lie's third theorem.

THEOREM 3. 6. 9: The structure quantities of a genotope’G\ of a Lie group G
satisfy the properties

el -wi) x g, « (-
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kK z 2

(LL ) ,u“ )(uka uek) ( e ue/)(”m' - )

k. E 3 2
+(ue,"“d&>(uki'uik) (3.6-45)

X
ue; )/ X L]L(
Flus. -U%) X7, =°©
L e '-@)/ ) ] u

Again, the following properties indicate the covering nature of the approach,

COROLLARY 3.6.9. : Under limit (3. 6. 43) the Lie-admissible identities

(3.6.45) recover the Lie identities (3. 6.}{ ) identically. Under limit (3. 6.4 4)
identities (3. 6.4 5) become twice the Lie identities (3.6./6) .

The exponential mapping can also be reached (under all the necessary convergence

conditions) and we shall write it in t.he form

\D/u of Lol (o) +f3} ' ()] X (b) L (3.6.4:6)
/

5b J i
here called genotopically mapped exponential law, where the functions 0{ ¢ and fb .

satisfy subsidiary conditions (3. 6.38b) as well as the integrability conditions (3.6.39).

The composition law of the genotope can then be written
A

A A
R x
S e ¢

GXP 52 > B [9(1.(51)(/(3.{.!,7)

where
Xd,s Xo(+>((5 zxxle,}ﬂ*
+ :—i L(Axx.-r X’q)/ LXu«, X(‘Jﬂ*jﬁx,

B 5
4s, again, the isotopically mapped Baker, Campbell-Hausdorff formula (3.6.23).

(3.6.4%)

As a reinterpretation of Definition 3. 6. 2, we now introduce the following 5b

A
DEFINITION 3.6.3: A Lie-admissible group of transformations is the set Gof

n-parameter connected transformations

b a5 (e,

(3.6 19)

acting in the base manifold. of a generally nonisomorphic group G in the same

parameters wkich possesses:
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(a) a Lie-admissible algebra in the neighborhood of the identity when

realized in terms of the generators of G,according to rule (3.6.29);

(b) a genotopically mapped exponemtial law according to rule (3. 6.44); and

(c) an isotopically mapped composition law according to rule (3.6.48).

In essence, the above definition is meant to attempt the identification of a group theoretic
image of the algebraic notion of Lie-admissibility. A Lie-admissible group 6 is Lie by
assumption and it is simply realized in an"lmconventionalnway. Neverthless, such realization
is such to render the group 8 Lie-admissible in a double meaning, First}& admits a nonisomorphic
Lie group (A} * via the isotopy rule (3.6.36 ). Secondly, thelie-admissible group Gis capable
of recovering the Lie group G identically under limit (3.6.43 ) . These features are clearly
promising for the problem of a covering of the Galilei relativity .

By looking in retrospective the reader can now see the methodological function of the
the notion of Lie isotopy whose analytic origins lies withon the context of Birkhoff's equations.

And indeed, starting from a Lie algebra G with generators X the Lie content ’C:_ of the
Lie-admissible generalization G is l.‘:omorphlc to G* and not to G This point will be
somewhat refined in the next table.

It is easy to see that the theory of the canonical-admissible transformations provides a
classical realization of the Lie-admissible covering of Lie's theory indicated in this table,

“; = b Xiob}4 - Alo = [Rabw-y (X,_‘/ L"), (3.¢.500)

And indeed, we can write
=PV DG, (2.6.50b)
A

o ry DG O Soc
(< +F1u7—(bb*“ > 6(1) b DM ) Gé )

. , . . v 0
ex},{Bt(f{‘ufsi‘)X)-B — exd,%B‘ 6)15) (,D)G[ov ;D—;*}

) 2.4.50d)
X;OX; Rty (XQ)X)'),

CB 4Soe)
This confirms the existence of a realization of Lie-admissible character in the neighborhood

’1+P:11M/“ .._5.

of the identity, while preserving a global Lie structure of finite-connected transformations,
A
but of Lie-admissible type, In particular, the limit which reduces the Lie-admissible group G

to G is given by the null value of the external forces
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v
Lm0 = w (3. 6.5)

FM—») o J

The exponential law (3. 6.50d) can be recovered via the generalization of
conventional procedures, For instance, by writing Eqs. (3.5. 25 ) in the form

o _ 0;*, é;)’(ib), (3.6-52)

D

and by performing a Lie-admissible isotopic transformation We can write the expressions

A
fbb - (W, a)) (3.6-53)
— ) 1 C b
D81 )
which can be interpreted as a system of differential equations in the unknown functions b r
subject to the initial conditions 19 (_l9)) b}a . A formal power series solution can then
=0

be written
A

B v (9(9 b, i v
o 2 (6 - 28 (1 6) 6

yielding the exponential law of type (3. 6. 5od).

Almost needless to say, the known possibility of lack of verificationzq h of the integrability
conditions fgr the existence of a Lie group can have a corresponding occurrence at the Lie-
admissible level. The study of this aspect is left to the interested reader.

A rather peculiar property of thf Lie-admissible groups is that, once interpreted :s
topological transformation groups, their action on the group manifold is non-geodesic. In other
words, the Lie-admissible exlension (3. 6.50d) of Lie's exponential law (3. 6.24¢) (when it
exists) is generally nongeodesic in character. Rather than considering this occurrence as a
drawback, I consider it most attractive, particularly on relativity grounds. It is known that
the action of the Galilei group in its topological manifold is geodesic. The covering relativity
I am interested in is specifically intended to be nongeodesic in character. This attitude is
motivated by the need that, as indicated in Section 1, any covering relativity, to be
effective for nonconservative systems, must represent such nonconservative character in its
entirety, The indicated departure from conventional geodesic characterization is intended
precisely as one way of characterizing nonconservative systems, And indeed, such systems
are basically nongeodesic in nature, in the sense, for instance, that their trajectories in the
carrier space is never of geodesic nature even when all forces derivable from a potential

are null,
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A few simple examples are here in order. Eqgs. (3.6. 4-) provide an example of
SO(2.1) as an isotope of SO(3) in canonical realization (3.6.25 C ). For another example in
abtract formalism, consider the group of dllatlom in one dlmenslon D(1),

‘f(x,e) = e x ( (3.6.55)
The standard generator is
X:X«%U (3.4.56)

with exponentiall law

” ¢ 2 bl L G
e wx-U*Iﬂxm) Iy (X,M%-w x= ex. (3657)

The compositionl law is trivial and reads

) .5
o'-ore' x"-f(x) ) Fix;o40),(3:6:58)

5b
An isotope D*(1) of D(l) is given by

x*_o __ X = %(xo)gﬂa ), = £%(z0) (B
(3.¢.595)

6.5%)

1 - Px
R
- 4 -6Ox [/
and it is induced by the isotopic function x. To see it, the computation of law (3. 6. 1) yields

o
S a2 (3] - 8 (5 e D
' (3.4.60)
=£«+ax+aaf+~=zx: 7$5:,

The composition law now reads

* - 6. 61
x.ﬂ* g#(x*; 9') = f (X/ 91‘9') <3 a)
* % X
x* * x = _A-ex - (3. 6-6lb)
S ene ot A-(ere)x

Thus , we have a case of analytic isomorphy of the composition law, the case being of
trivial one-dimensionality (to have genuine nonisomorphisms G #*: G* more than one dimension
is needed).

For a Lie-admissible group/consider the canonical realization of SO(2)

g :,Zx%n_tj}kl (3.¢.624)
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ks 93 2 2
o Wi (3 6.625)
)

0" - e FuP b bH (5 | ¢

explicitly given by
("/'l’y\ Q“) Py ([/Z"/?z ‘ ﬁi (E-E)"-'ﬂ’jj Frea
; | = - | . T / -
\7"7/ Ty ! ey, 10 ok ),-['L/‘S]i-'(] (3.6.6 )

bncoss — 2y 50 )
o/ /
'Zx Gu e+ )Z\J cos @ J

)UL) b +49 (ka,:rj> o [IIp, WD), ..

Pu/) = T’h) by, 71 : [Che, 33,38

) FXCOSG‘ ‘Fb Sta S (3.¢.¢3 )
qug"“ 8 + hﬂ tos & .

Suppose that, as a result of nonconservative forces, the algebraic tensor of the representation

is mapped into the Lie-admissible form
N4, .
NH ER(F)

6),(\/ OZXZ
17 (3.6.64)

This is, essentlally am - algebraic representatlve of the nonconservation of J. The canomcal-.

§)‘A<t)4lxl OZK&

admissible exponential law (3.6.50C ) now yields the Lie- ad:mssmle covering group
A) (exy e [T\, L (cczx,JJ,:r)>f..,
('9“} ) (}l‘o) T (C’la 7)> 2!\, 1),3)
7y s (A o) = 2y s (NBE) (3.6.65)
2y sta (A(E)0) 4+ 7y cos (NH)e) )7
M e, & [ (b, 3) Y, 28 (P, 3))
fo ) (t’b/ Ll (k7)) T2 ((py,30,1)
pu cos (R(H)O) = Py stu (1et) Je)
T\ b sin (p099) o+ py (1099

/C{,Lu 50 CL) = 60(/2/) Cz 6.65¢)

N,

(3.6.65Y)
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which is a Lie-admissible group in our terminology beca/u\se constructed with the base manifoldl
generator and parameter of another Lie group. Also SO (2) is capable of recovering SO(2)
identically at the conservative limit M , M A

As another example of Lie-admissible grnups,consider first the <onventional canonical

realization of the one-dimensional group of translations in time, say, for the harmonic

bot, G -(}), G
TUD: v - o 2 S b (3. 6-66b)
RN (a2 oy (Do) E2 (L2, HD Ve

(\" OV ARTACTR AR U,p,ﬂ,m/
)zcosk+}>5f~t
_nsimt 4 b est

 oscillator T +r =zo (m=k=1)

(3.¢.6¢¢)

The addition of a constant force (for simplicity) to the equations of motion, T + r+F= o,

can be represented with the canonical-admissible equations in terms of the same Hamiltonian H

N el (eE) (46
2 #

S (] 7

and the Lie-admissible tehsoV
2R
w <

- S b
yielding the Lie-admissible covering group %l(t) of the Lie group T,(t)

A7 2\ oy (W) [ (amm
-B”"'; “ P 20\ (poh) P U}«:,H),H)
—F +(Q+F)Cos|.’-+FS|‘ML'

C&G-é?o\)

« s s

— (2+F) St + FC"SE

O ’?‘JH = T,(b),

F>0
_ DR _©°B E 08 0B 3. 5.6%
&’B)‘Qz op ~ S Ap = ( &

(3.6.651)
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TABLE 3. 7: THE NOTION OF LIE-ADMISSIBLE ALGEBRA AS ENVELOPING
NONASSOCIATIVE ALGEBRA,

Table 3. 6 essentially indicates the quite peculiar situation of L ie-admissible formulations
according to which a Lie algebra structure in the neighborhood of the identity is lost by central
requirement., but a Lie group structure persists| This situation clearly demands a more detailed
inspection to see whether it is actually consistent,

We reach in this way the part of this analysis which I consider the true, ultimate characteriza-
tion of the notion of Lie-admissibility, that via the enveloping algebra of a Lie algebra,

Permit be to recall that the notion of universal enveloping associative algebra A(G) of a Lie al-
gebra G is truly crucial in Lie's theory .on both physical and mathematical grounds. Itis
equally crucial for relativity considerations, For instance, if G is the Galilei Lie algebra,
the computation of quantities, such as, the square of the angular momentum, necessarily
demands the use of A(G) (trivially, because the square of all quantities are identically null
within the context of a Lie algebra, the product being anticommutative), On the contrary, at the
level of A(G) such quantities are fully definable because its product is associative. Similarly,
if G is the sU (3) Lie algebra, the computation of the Gell-Mann-Okubo mass formula js often done

with the use of the enveloping algebra A(G). It is therefore tempting to state that, without
the universal enveloping algebras, Lie's theory would have little, if any, physical relevance,
This aspect does not appear to be sufficiently emphasized in some of the existing physical literature.

On mathematical grounds, the algebras A(G) are equally crucial, First of all ‘they permit the

construction ¢ the exponential mapping, trivially, because from the second term on all elements

eX 2 (3‘71)
e = /1+9’)(+6X 7T =&

are outside of the Lie algebra G and only definable ir; A@Q. Also/the algebras A(G) play a fundamental

of the expansion

role for the construction of the representation theory of G, and so on. For a rigorous account
29e
on this profile (which is also often neglected in physical literature) see N. JACOBSON

Let me therefore state in simplistic terms that the universal enveloping associative algebras

of Lie algebras are the true representative of the dual algebraic -group theoretic aspects of Lie's

theory. And indeed, first of all they contain Lie algebras via the isomorphism[A(G)]-g G
and, besides, are constructed with the basis of G, Secondly, they express Lie groups via expansion
(3.7. L ). The net effect is that the algebras A(G) play a crucial methodological function for the

characterization of the Galilei (as well as Einstein special) relativity,
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The intended covering of the Galilei relativity of Section 4 now begins to take shape:
it is conceived as a Lie-admissible covering of the universal enveloping associative algebra
of the Galilei algebra. It is such an approach which allows the compli ance with numerous
requirements, For instance, itensures the capability of recovering the conventional Galilei re-
lativity identically at the limit of null relativity breaking forces. It ensures the representation
of the nonconservative character of the systems via the Lie~admissible behaviour in the
neighborhood of the identity, e. g.,, according to rule (3.6.%00), It allows the study of the preserva-
tion of a group for the replacement of the Galilei group as the invariance group of nonlinear,
essentially nonselfadjoint, and explicitly time dependent equations of motion, etc.

Let me begin by recalling, for notational advantages, the notion of universal enveloping

associative algebra,

29e
DEFINITION 3.7.1:  The universal enveloping associative algebra of alie algebra G

is the set (ﬁ T ), where LR is an associative algebra and ‘¥ a homomor-

phism of G into the attached algebra lR— of ()'L satisfying the following property

If R is another associative aloebra and 7' a homomorphism of G into tR there

exists a unique homomorphism ¥ of, JE into ﬁ ! such that T=7 T;

i. e., the following diagram is commutative,

[ﬁ]_”b [J%)I— (3.7.2)

!
T T

G dimensional).

(it should be here recalled that all algebras-and fields-have characteristic zero and G im
In essence, the definition stresses the uniqueness of the universal enveloping associative
algebra of a Lie algebra, up to local isomorphisms.
The construction of J% is usually conducted by first identifying the most general

associative tensor algebra which can be constructed with G, as vector space, i.e., 19a

TFOGOIRED G.7.32)
GRG : X ®Xp G hzhanm C730

where the product (X) is associative, the basis of Gis ordered, i.e., { 3
and the right hand sxde of Eqgs. (3.7.3b) is the product of G (¥ G
@ be the ideal of © { generated by the elements

X, !i €1 = ordered set}}
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= ‘ . /
ol - (e - 0%), B0
where )( X 3 is the product in G.

The umversal enveloping associative algebra (9, (@) of G is then given by (or can be
2%e

equivalently defined by) the quotient algebra
4 (3.7-5)
R(&) = R .

The basis of © | is given by the so-called standard monomijals

Mo Xi® K@ o Xg,,  (376)

™m . . <
4 ’ é v 2 g -~ 4‘/7" .
A number of technical steps then yield &. fundamental theorem of enveloping algebras, the
e

Poincare’-Birkhoff-Witt Theorem , Which can be formulated as follows,

THEOREM 3, 7.1: The cosets of 1 and the standard monomials form a basis
of the universal enveloping associative algebra S (G) of a Lie algebra G .

This algebra J‘E (G), being of tensorial type, is not used in practical applications (parti-
cularly in physics), where the ordinary associative al gebra A(G) with product X, X is used
instead. NeVerthless, it is possible to prove that there exists a (linear) mapping € of A (G) into
A(G) such that 62 Q= O, and £ cosets of 1 and standard monomials ofH(Gg‘—e s.l and
elements of A(G)} The net effect is that a basis of A(G) is provided by

i,X; X, X X, X X e (3.7.7)

‘2 y L3
while an arbitrary element of A(G) can be written as a linear combination of

L] KKy Ko
XX oo X, K ke Km,  (3.7.8)
L z il o4, ...
It is precisely this structure which rendersLie's theory useful for practical calculations (at both ,
classical and quantum mechanical leveb).And indeed, A(G) not only characterizes the basis
Xi’ but also the Casimir invariants and, more generally, any desired (associative) power of Xi'
Also, any representation of A(G) yields a representation of G via lie's rule (3. 6.8¢). Thus,
a number of theorems on the representation theory of Lie algebras (e. g., the existence of

faithful representations, Ado's theorem, etc.) demands their treatement at the level of A(G) ,
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Finally, the associative nature of A(G) allows the existence of both linear as well as nonlinear
Tepresentations,

Before passing to the Lie-admissible generalization of these ideas, it is recommendable to
outline first the intermediate step of Lie isotopy. Specifically, if generalized exponential mappings
of type (3. 6.25¢) exist - with a Lie behaviour in the neighborhood of the origin, this can only be

accounted for, to the best of my knowledge, via an isotope of A(G).
5b
DEFINITION 3, 7.2: The isotopically mapped universal enveloping associative algebra

p *
of a Lie algebra G is the set [(18 , T )(R*, 4 , T ]where

- SLR , T ) is the universal enveloping associative algebra according to Definition 3. 7.1;

- 4 is an isotopic mapping of G, -t'g =G¥*;

3

- LR is an associative algebra generally nonisomorphic to LR, ; and
7 =

- T is a homomorphism of G ¥ into [-Rfl,

*)
satisfying the following properties. If (R, is still another associative algebra

and T ¥ a homomorphism of c* into T_‘R*)l , there exists a unique homt;norphism
¥* %) K w!

X* of 19; into & s % é T,and a unique isotopy of J’c into (H .

f (R = lﬁa* , such that the following diagram is commutative.

[A*] S rar]"
4 ﬁ % a C3.7.‘7)

B S -

LA

—_—

The practical realization of this notion is ag follows. It is essentially induced by an

isotopic mapping of the ten sorial product ) , i.e., an invertible , associativity prgserving mapping
x| x 4
LR:XL-GDX;—%R-X;* 5

under which we have the isotopically mapped (associative)tensorial algebra l * 5 l:

od- ¥ (3.7.1)

:F@g@g%g—@..o,
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The isotopically mapped ideal & of |/ is then generated by elements of the type (the

(.7. 12)

product in G* is now denoted with [Xi,Xj]*)
— * ; .
NG xX; = X %X, ).
l_ XL ] X )1 - (X v ¢ ><) ‘

Then, the isotopically mapped universal enveloping associative algebra is given by (or,

(3.7.13)

equivalently, can be defined by) 5b
¥

¥
The generic elements of oi/ are now reducible to (linear) combinations of the isotopically mapped
standard monomials

M Xy Xgeo X (7
4:4_‘5"’2-"'" = A

A study of the problemsrewals that the other pertinent aspects of the conventional case extends
to the isotopically mapped case. We reach in this way the following Lie covering of the Poincare -
Birkhoff-Witt Theorem .

THEOREM 3. 7, 2: The cosets of 1 and the standard isotopically mapped monomials

form a basis of the isotopically mapped universal enveloping associative algebra

@’(C_fj _of a Lie algebra G.

The nontriviality of this theorem is represented by the fact that, starting from the isotopy
(3.7.10), we reach an envelop whose Lie content [ LR*CC_;')] _i_s_n_ot, in general, i somorphic
to G, even though the algebra SL"‘(Q) has been constructed in terms of the basis of G, i.e.,

G = [R¥(D] 2 G x TR, (3719

Again, the basis can be written
3.7.16
/i' X. XA"* Xl:z} XL;*X[Z*/\/[sllu/ é )

/ t J
and the general elements are of the type
k: k'L k’“«
><, ¥ XL' * -N*X[ Ky, K, on ,Ic/m/@j‘n/
A 2 m /
Jeeay

! zo0,41,2
(R 3
where now powers are in . The reduction to a nontensorial form is inessential for
Theorem 3. 7.2 because a case of associative isotopy is preci s<ly the mapping LQ (G) —=> A(G)

which is needed for practical applications . In order words, in the product isotopy
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one can already incorporate the provision for the product actually used in practical calculations,
Notice that the isotope A*(G) of A(G) is not unique, in the sense that there can exist

a family of nonisomorphic isotopes A*(G), A"*(G), A"*(Q), ....all realized in terms of the

basis of G, but via different mappings (3.7.4.0), which are such that the attached algebras
[A*(g)],-, [A‘*((_})]-, [A"*(Q)]- sy ++«., are onisomorphic among themselves. This is not in
contradiction with the uniqueness of the associative envelope (up to isomorphisms) because, say,
for the case of A*(G) we can construct its Lie content G* in the standard form with corresponding

conventional envelop A(G*), and, thus.

G¥=[(e)] ~ [ (e)]™ % ¢. (3.7.18)

S
We are no¥equipped to introduced the intended notion of Lie-admissibility (see ref.bfor details).

DEFINITION 3. 7. 3: A Lie-admissible genotopically mapped universal enveloping
associative algebra :f a Lie algeb;:a G is the set N
{[(9,,?,' ,LR y N, T ]ou.« ’K}where

-( B , ‘C ) is the universal enveloping associative algebra of Definition 3. 7.1,

]
-uh , T), &*, A , T 1lis the isotopically mapped associative algebra

according to Definition 3, 7.2,
- M is a Lie-admissible algebra,'
- "3 is a homomorphism of G* into y:- ,
- (g is an isomoxphism of L(R, ] into M
such that the following property holds. If u/ is another Lie-admissible algebra

and "6 a homomorphism of G’ into L'LL ] , there exists a homomorphism 25

of W™ into % , i.e., the following diagram is commutative,

LMI“A—L—»L’W B}

TN o/
Lﬂ*l e ﬁ””J (3.7.19

/‘ )

u ‘
i T ot 4’

[T
SN
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The idea which is attempted with the above definition is that the envelop of a Lie algebra

is not unique in the sense that algebras characterized by different laws can characterize the
same Lie algebra, provided that they are Lie-admissible. And indeed, the classification of
the different classes of Lie-admissible algebras of Table 3. 3 allows the following possibilities,
1) N is an associative algebra. In this case diagram (3. 7. 19 ) recovers (3.7. 9 )
identically.
(2) % is a Lie algebra. Then diagram (3.7.19 ) reduces to (3.7. 2 ) in the sense that
no nonassociative envelop is characterized by an anticommutative algebra,
3) U is a flexible Lie-admissible algebra, e.g, , the mutation al gebras (3.3.5 ). This
yields a first possibility of costructing a genuine nonassociative envelop.
(4) 4/{, is a general Lie-admissible algebra. This is clearly a second possibility for
a nontriviallnonassociative envelope .
In conclusion, there are three classes of Lie-admissible algebras which are significant
for the envelopgof a Lie algebra: the associative, the flexible Lie-admissible and the general
Lie-admissible. In principle the same Lie algebra G can be homomorphic to the attached algebra
of one algebra per each of these three classes and it is in this sense that the envelop of a Lie
algebra is tere intended to be nonunique. Of course, if one im poses that the envelop be associative,
that the uniquess of Definition 3, 7.1 is recovered.But the envelope‘ﬁ,(, , in general, is not "universal".
The first studies on the construction of a nonassociative, but glexible and Lie-admissible
envelopdof a Lie algebras have been conducted by C. N. KTORIDES, to the best of my knowledge.
In the following we shall closely follow the analysis by this author, with only the necessary
implementation into the case of the general Lie-admissible algebra, as requested by the fact that
these algebras actually emerge in Newtonian Mechanics (Table 3, 4).
The first step in the construction of a genotope of H is given by the Lie-admissible

(3.7. Qo)

genotopic mapping of the tensorial algebra
ﬂ: ><L®X) —_— OU,LX;OX)’

where Xio Xj can now be interpreted, say, as in Eqs. (3.6.%5). This yields the Lie-admissible_

genotope of the associative tensorial algebra

7\

- 2.7.21)
T i FEG®T oGO . ¢
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under the broviso that now the symbol ® represents the enclosure of all possible different

(3.7.22)

associations, e.g.,
X'-’QK)' 0)(#: { (Xl‘o X)')o XK 5 X‘- (2] ()() Ox;)‘g '

as requested by the nonassociative nature of the product,

For the ideal notice that one can select the isotope in such a way that

DX Xj = Xio X5 -XjoX e = XpHd - Xk X = [Xe, X [ g -
R > (%.7.23)
Thus’the genotope 62, of the ideal dla coincideywith the isotope Q , i.e., it is generated by
elements of the type

[Xe, %% = (X %X =X %X;). (3.7-2%)

The Lie-admissible genotopic mapping of a universal enveloping associative algebracan then

(3.7-25)

be written or(or, equivalently, be defined by)

The Lie algebra content of u is then given by

W~ G* %G . (3.17.26)

The study of the basis of q’t turn out to be more involved than that of LH* because

of the nonassociative nature of the product. Neverthless one can define the standard genotopically

mapped monomials  as the union of all independent standard monomials in e ; with different

associations, i.e.,

A
M 5 - X,C"@ Xiza"° @X[’m /

m

(3.7.27)

i & Ag Teee Fim,

It is easy to see that this set is not necessarily a basis for u because an arbitrary monomial
now cannot be necessarily reduced to an F -linear combination of monomials (3.7.27 ). The

study of this problem indicates the emergence in this reduction of the standard isotopically mapped
monomials. Thus, a basis of % is expected to be constituted by both,genotopically and isotopically
mapped monomials. After all, this feature is not surprising. And indeed, the need of the
isotopically mapped monomials can be seen already from the composition law of Lie-admissible

groups, Egs. (3.6.47)and (3.6.4%). Inturn, this is crucial for attempting the construction
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of a nonuniversal, generally nonassociative covering of the associative envelope ,Q(g) of G
Upon a number of technical steps, we have the following Lie-admissible covering of

the Poincare-Birkhoff-Witt theorem , which, owing to the contribution by C. N. KTORIDES,

we shall call the Poincaré-Birkhoff-Witt-Ktorides theorem h3,6b

THEOREM 3, 7. 3: The cosets of 1 and the union of the F*-linearly independent

standard genotopically mapped and standard isotopically mapped monomials form

a basis of a Lie-admissible nonassociative genotope W ofa universal enveloping

associative algebra «R of a Lie algebra G.

The terms"F*-linearly independent” are referred to the fact that combinations of the basis
of G generally occurs within o\/L with functions of the base manifolds as coefficients, For
details, see ref.5 b The above theorem is in essence a simple generalization to general Lie-
admissible algebras of Theorem 2.1 by C. N, KTORIDES on flexible Lie-admissible algehra:s.'u“a
The interested reader is here urged to inspect the example by this latter author with A(\ ,/4)
mutation algebras and their application to the construction of the Gell-Mann-Okubo mass formula
(see in this respect also Table 3, 9).

Theorem 3. 7.3 essentially identifies the basis as being of the type
ol 4. X X oX. g X, % X N
) 5 ) ] ) ¢ 2

(DXL'@X[@XK) ¢ X * X, %Xy oo

where the coefficients o , (J, s h’ y ... are, in general) functions of the variables of the

(3.7.25)

base manifold (the bM variables of Tables 3.4 , 3.5 and 3. 6). The actual construction of the
basis demands the explicit form of the Lie-admissible product which, as by now familiar,

may vary from generator to generator, Neverthless, structure (3.7.28) is sufficient

for the objectives of this paper. The studies of the general methods for the construction of the
basis of cu' is here left to the interested reader.

Cne of the most intriguing properties of the Lie-admissible algebras % is that their
only admissible representations are,in generallnonlinear J 24 ] owing to the nonassociative
nature of the product. As a result, recent studies on nonlinear representations of Lie's groups
might be significant, upon due technical implementations, for the study of the representatiors
of Lie-admissible algebras and groups. On physical grounds this is perhaps one of the potentially
most significant possibilities for a differentiation between the electromagnetic and the strong

interactions, as we  shall indicate in a subsequent paper.
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An example may be here useful to illustrate the objectives of the analysis of this table,
Consider a conservative New tonian system in a 2-dimensional Euclidean space possessing the
exact symmetry under the group of rotations SO(2) with canonical realization (3. 6. 62). The Lie
algebra &2_) is in this case one-dimensional with generator ], The basis of the universal enveloping

associative algebraR(SO(z)) is now given, from Eq. (3.7.7), by J@3= Aass.,

/
sow: 1,7 | T®3, I®I®I, ..., (3.7.21)

jz?xh"%f’z-

Let us recall that it is the existence of this basis which allows the exponentiation of the Lie algebra
S0(2) into the Lie group (3. 6. 63).

Suppose now that this SO(2) symmetry is broken by nonconservative forces (and thus, ] is non-

/

conserved). Suppose also that the broken S0(2) context admits a Lie-admissible characterization

in terms of the tensor (3. 6. 64) with corresponding Lie-admissible group (3. 6.65). Our problem

is that of identifying the algebraic enveloptwhich necessarily underlays the transition from the
Lie-admissible algebra in ] and the Lie-admissible group S/E](2), i.e., Eqs. (3.6. 65)/ under the
assumption of the preservation of the generator, paranfter and base manifold of SO(2). The reader
should be aware that this last assumption is simply uncompromisable for the objective of this
paper]because its relaxation would render virtually impossible the attempt of identifying a generali-
of the Galilei group capable of recovering this latter group identically at the limit of null ~ symme-
try breaking forces. The only possibility of achieving the objective considered under the assumption
considered known to me is by performing the Lie-admissible genotopic mapping of the basis (3.7.29)

A, Jo1= Houacs. 7,20
22 1,3 ,303, 333, ., 3:?.‘!’5"53}&6{’ )

where now the product o is nonassociative by central requirement, but Lie-admissible, i.e., it
constitutes the abstract characterization of the Lie-admissible product in expansion (3. 6. 65).
In turn, this necessarily implies, for the proper treatement, the stud’y of the isotopically
mapped basis I3 = flssoc. 1 (3.7. 24)
@*; 'L, 3, 3 -1‘3/ Ty Twed, oo, T= ?*}“\,—’23 »
because the Lie algebra content of u,(_S_O(Z)) does not coincide with E(Z). Instead, it coincides
with the isotope S0*(2) induced by ], but now in terms of the generalized Poisson brackets with
Lie tensor (52,“‘; sk, S")‘ attached to the tensor (3. 6. 64), This is equivalent to assume (3. 7. 23).
In conclusion, the indicaled Lie-admissible approach necessarily implies three layers. (A) The
conventional Lie approach which (according to our uncompromisable condition) is identically reco-
vered at the limit of nonconservative forces. (B) The covering Lie-admissible approach of this
section. And (C) the intermediate Lie covering of the conventional approach induced by the
algebraic isotopy. The emerging notion of Lie-admissible envelope is then nonintrinsic by
construction, although studies of -& possible intrinsic approach (i. e., that without the notion of

genotopic mapping) are strongly encouraged,
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TABLE 3.8: SYMPLECTIC-ADMISSIBLE COVERING OF THE SYMPLECTIC GEOMETRY .

Without doubt, the symplectic geometry 6is one of the most fascinating, mature and
rigorous disciplines for the reduction of physical laws to primitive geometrical notions. It
was, therefore, for me reason of considerable surprise the identification of a number of
difficulties in the classical and quantum mechanical use of the symplectic geometry for the
study of nonconservative systems. The doubt that this was only the result of my largely
insufficient knowledge of differential geometry persisted for a considerable period of time
(by delaying the presentation of my efforts) and still persists as of today. Neverthless, since
I have been unable to resolve this doubt and, as a matter of fact, the difficulties indicated
have increased in time, I think that an unpedagogical report of my studies of this profile
might be of some value for the receptive and open minded expert in differential geometry,
in the hope that they can be subjected to a scrutiny, assessement and technical finalizatior. .

The difficulties which I have encountered in the use of the symplectic geometry for the
study of essentially nonselfadjoint systems can be reduced to the following three aspects.

(A) Diffi culties for relativity considerations. Apparently, one of the central problems

for the relativity which is applicable to the systems considered is the identification of a non-
manifest, coxmected, Lie symmetry for the form-invariance of the equations of motion/capable
of satisfying our,by now familiar’ uncompromisable requirement, that is, the capability of
recovering the Galilei group identically at the limit of null relativity breaking forces. By re-
calling that the equations considered are nonconservative, nonlinear and explicitly dependent

on time, this is not an easy task. Despite my best efforts, I have been unable to even partially
confront this problem by using the symplectic geometry for a number of reasons X shall outline
below. The use instead, of the covering geometry which appears to be suggested by this line
of study, here tentatively called symplectic-admissible geometry, seems to offer

some genuine hope of attacking the problem and eventually solving it, as I shall indicate in
details in Section 4. It should be stressed that the solution, to have any pragmatic value for
physicists, must be able to produce rules for the explicit cnstruction of the desired nonmani-
fest symmetry for given forces not derivable from a potential. It should also be stressed that
by no means I intend to deny the possible existence of a geometrically equivalent solution
within the context of the symplectic geometry. However, to have any pragmatic value for
physical applications, that solution must hold for the coordinate systems actually used in
experiments which, as we shall see in a moment, appears to be the source of the difficulties.

(B) Difficulties of quantum mechanical nature. As is known, the problem of quantization of

forces not derivable from a potential is unsolved as of today, irrespective of whether
6¢
conventional or geometrical methods are used. My difficulties in attempting the quantization
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of nonconservative systems as globally Hamiltonian vector fields are not of forma} mathematical
treatment, but instead of consistency on physical grounds as far the physical interpretation
of the algorithms at hand are concernmed. For instance, the customary interpretation of the
expectation values of the operator "p" inder the indicated characterization (canonical momentum
for a nonconservative system in globally Hamiltonian form) as those of the physical linear
momentumn have met with virtually unsurmontable inconsistency problems. This aspect will
be treated in a subsequent paper. Again, it should be stressed that, by no means, T here
exclude a "symplectic quantization”, because the problem, as indicated earlier, is mainly
of physical, rather than mathematical nature.

(C) Difficulties of algebraic origin. These difficulties are independent of the preceding

ones (at least at a first inspection) and more closely related to the content of the preceding
partsof this paper. In few nontechnical terms, the symplectic geometry is known to be fully
compatible with the Lie algebras, to the point of achieving a symbiotic geometrical-algebraic
duality. In the transition to the covering Lie-admissible algebras I have encountered severe
problems of geometrical consistency if I insisted in the preservation of the symplectic geometry
as currently known. The reason is essentially due to the nature of the Lie-admissible product
which is neither symmetric nor antisymmetric. and the inability of the symplectic geometry of
producing a technical characterization of the symmetric part. Perhaps greater problems of
geometrical consistency I have found in the attempt of using the Riemannian geometry as
currently known, this time, because of the essential antisymmetric part of the Lie-admissible
product, As a matter of fact, these difficulties have been so great so force me into my
rudimentary attempts at constructing a covering geometry. But, again, it should be stressed
that perhaps these difficulties are due to my insufficient knowledge of these established
geometries, rather than the geometries themselves.

With an open mind on these issues, permit me to summarize my argument. For all
necessary details the interested reader is suggested to consult ref.Sb

First, to avoid misrepresentations of the speculative spirit of this table, I would like
to stress the conceptual, physical and geometrical consistency of the symplectic
geometry for conservative systems. In my unpedagogical terms, conservative systems can
be trivially represented with Hamilton's equations in the variables rka and Pra where rka
represents the Cartesian coordinates actually used in the experimental set up and P, Te"
presents the physical linear momentum, that is, mk;ka' This trivially provides a symplectic

characterization of the systeins (as recalled in Table 2.8) in the assumed coordina~-

tes. This restrictive character of the local coordinates is then entirely removed by the proper,

geometrical, coordinate-free treatment. The emerging context is not only mathematically
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and physically consistent, but constitutes one of the most effective ways of characterizing the
Galilei relativity in its own arena of "unequivocal applicability”, as we shall indicate in Sec.4.
According to our findings, the reason for this consistency apparently relies on the fact that

k
the family of all admissible local coordinates admits the coordinates r ? and Pra of direct

physical significance. For practical computations of physical significance, however, care must
be used at both the classical and quantum mechanical levels in relation to these degrees of
freedom of the local coordinates to avoid inconsistency. For instance, new admissible space
ka

coordinates r' (r,p), even though mathematically consistent, can be noninertial and non-
realizable in actual experiments (because of the nonlinear dependence on the p's). Similarly,

. . ka . .
new admissible conjugate momenta p may produce substantial consistency problems on
physical grounds.

It this in this latter respect that the reader is urged to work out specific examples, For

(3.2.1)

instance, the conventional harmonic oscillator
<o c ’
L,w\';-f-kn)sﬁ _—__—0/ (m:'(.'k:'t)

can be lifted to T'*M (rather than to T*M with local coordinates r and p = mr) as a global

Hamiltonian vector field in the Hamiltonian (see Section 2.40)

o _ —'_.)A(‘Q‘) =9, 4= ’L;ZJ {a‘}‘}: {t) F’-}/
P o O R 2 Sec 9 b
ThwRl,, 426l S

This is, geometrically, a fully admissible characterization of the harmonic oscillator. However,

(3 .2.20\)

(3.#.20)

the reader is urged to quantize system (3.8.2b) and "touch with hand"l so to say, the consistency
problems of such a quantum mechanical system with respect to the established quantum
mechanical oscillator. According to our findings, to be indicated in details in a subsequent
paper, the reason of the difficulties lies on the crucial property that the algorithm '"p' "

for system (3.8.2b ) by no means represents the physical linear momentum. However, for
conservative system this is not a deficiency of the symplectic geometry,because the representa-
tion of oscillator (3.8.1) as a globally Hamiltonian vector field in the variables r and p = mt

is fully admissible. The quantization in this system of coordinates of direct physical meaning
is then mathematically and physically consistent.

In the transition to nonconservative systems the situation appears to be fundamentally
different. First of all the reader should be aware that the Inverse Problem provides a distinction
of nonconservative systems versus their primitive association with nonautonomous systems in
the sense that Hamiltonianswithout an explicit dependence on time can be representative of

genuine nonconservative systems (to stress the point, we shall use below only this type of
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Hamiltonians).Secondly, one of the reasons which suggested my laborious involvement with
the Inverse Problem was to provide a proof understandable by a broader segment of our

community that nonconservative systems are indeed treatable with the symplectic geometry.

This is, in essence, the spirit of the Theorem of Indirect Universality of the Inverse Problem
(Section 2.9 ). However, the methodology of the Inverse Problem also provides a specific
basis for the study of possible physical limitations of such geometrical setting. And indeed,

it emerges that a necessary condition for the characterization of nonconservative (nonessentially

or essentially nonselfadjoint) Newtonian systems as globally Hamiltonian vector fields is that

k .
the family of all admissible local coordinates does not admit the coordinates r 2 and pkazmkrka

of direct physical significance.

Again, the reader is here urged to work out explicit examples and "touch with hand" the
underlying difficulties of physical consistency. There is no need of working out complicated

systems. Instead, the simplest possible nonconservative extension of the harmonic oscillator

(3.8.1), the damped oscillator C 3)
. 3.8.
(8 en)g TR,

is fully sufficient for the purpose. The methods of the Inverse Problem yield

/ = ,2'3*{1-'2 E 1(2'&7‘&'2) &(’t ,_J,,tz_,_za) (3.8.4)

27w Lz w wet- (Y,

which, in turn, provide the symplectic characterization of the damped oscillator as the
globally Hamiltonian vector field , (D[_. . (3‘8'5
QrM = 1—_')*(&) {&”l:{’z,f‘i, P = ‘ /(Da) a)
JaY / '
=Fa) = wry /rDQV, He ta o -6 [cos (weP)[- 52 fL 850)

This geometrical characterization of system (3.8. 3 ) is, of course, fully consistent on

the autonomeous solution

mathematical grounds. However, the reader is urged to work out, for instance, the quantization
of vector field (3.8. 5 ) and compare the results with those of the quantization of vector field

(3.8.2 ). He will then discover a number of problemsof :onsistencies of physical nature, such
as the computation and meaning of the expectation values of the quantum mechanical

algorfthm "p the inability to recover the conventional quantum mechanical oscillator

'
’
at the limit (‘9 0, etc. In full analogy with the case of the harmonic oscillator, the diffi-
culties appear to be linked to the fact that the (classical) symbol "p' ", by no means, is
directly representative of a physical quantity. But, unlike the conservative case, a globally

Hamiltonian characterization of the linearly damped oscillator in the variables r and p = mt

does not exists, as it can be proved via the methods of the Inverse Problem. This is, in
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essence, the difference between the conservative and nonconservative systems referred earlier,

\Y/'hen 1 became aware of this point I then entered into the study of Birkhoff's equations.
In essence, the above restriction occurs only for globally Hamiltonian vector field characteriza-
tion of nonconservative systems. If M Hamiltonian vector fieldsare instead admitted, the
local variables can indeed coincide. with what I refer to as the variables 1:ka and pka of direct
physical significance (as it is possible to prove by using theorems of symplectic geometry).
However, the pragmatic need of physicists is to compute time evolution laws, etc.Birkhoff's
equations then emerged as potentially crucial, because capable of preserving the methodological
significance of Hamilton's equations in full, while lifting the indicated restriction on the local
variables, and while providing a ge nuine characterization of locally Hamiltonian vector fields
(Section 2.8). However, my initial enthusiasm and hopes of preserving the symplectic geometry
for nonconservative systems soon met with severe technical difficulties. The representation of
the damped oscillator (3.8.3% ) via Birkhoff's equations (2 8. 4 ) demands the solution of the
equations JZ —2— V(b) = ’DR /DRV > 2, = ;\‘ /D H ° (3_3 60\)

v ) b” bk T lo’“ !
(3.£.65)

Yo (e, by, bome =g e
Unfortunately, these equations, even though consistent (as guaranteed by the existence theorems),
admit solutions of quite difficult computation in a closed form (admitting that such a form exists).
In conclusion, the explicit computation of locally Hamiltonian characterization of nonconservative
systems turned out to be extremely difficult’ even for one-dimensional systems such as (3.8, 3 ).

The reader is urged to verify that these difficulties are magnified when considering the
class of nonconservative systems of true interest for this paper, that of essentially nonselfadjoint
systems in arbitrary (finite) dimensions, under the for us uncompromisable condition that any
admissible geometrical treatment allows the use of the variables rkaaﬁd Pra identified earlier.
Owing to these difficulties, we put the Lie-admissible formulations at work. The first

objective, that of achieving a simple, direct, and immediate analytic representation of the

(3.€.7)

vector fields for the damped oscillator

BRI, pe e

without redefinition of the variables, is trivially made possible by our Hamilton-admissible

_;)} (3.8.8a)

equations for which

Bl V(D H 0 Bq
B b VD}W) ((—DQ\)

- L (%), (R (b i), =]

(3.8.8b)
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in which, according to the fundamental equations (3 4.4), the contraction of the tensor

with corresponding covariant form

Sw with the nonconservative vector field = produces the covariant conservative form — /.\
As by now familiar, equations (3.8. 8 ) and (3.8. ﬂ ) imply the abandonment of Lie
algebras as the underlying algebraic structure in favor of the Lie-admissible algebra. This
creates the problem of serching for the possible existence of a covering of the symplectic
geometry specifically conceived for Lie-admissible algebras, that is, for nonconservative
systems. I report below the central aspects of my rudifnentary studies in this truly intriguina
problem with an understanding they they are the efforts by a physicist with a grossly insufficient
knowledge of differential geometry. and thus, they are in need of a severe inspection by
experts. Permit me to also indicate that I perform this disclosure simply because forced into
it: to the best of my understanding it is extremely difficult, if not impossible, to arrive at a
first solution of the relativity laws of nonconservative systems by using the conventional
symplectic (or Riemannian ) geometry. Since I have been unable to identify any treatment of
the geometry which is applicable to the Lie-admissible algebra, I have been simply forced
into a study which, on strict grounds, is a job for pure mathematicians. 1 therefore hope
that the receptive and understanding reader takes into consideration the main ideas, rather

than technical details of pure mathematical nature which do not effect the study of Section 4.

A tentative statement of the problem can therefore be formulated as follows: it consists

of the identiﬂcatlon of a geometry which is capable of characterizing the Lie-admissible algebras
and the Hamilton-admissible equations in exactly the same way as symplectic geometry characte-
rizes Lie algebras and Hamilton's equations. In oarticular, as it will be selfevident in Section
4, a geometrical interpretation of Eqs. (3.8.9) appgs to be crucial for relativity considerations.
One of the basic difficulties in the problem under consid.eration rests with one of the basic
méthodological tools of symplectic geometry, the calculus of exterior forms. It appears to be
simply incompatible with Lie-admissible formulations on a number of counts. First ofall, the
calculus considered is based on the antisymmetry property dbfa db’ =- dbv A dbM which,
while crucial for Lie algebras(owing to the: antisymmetric nature of their product) ,1s inconsistent
with Lie-admissible algebras @ecause their product is neither totally symmetric not totally
antisymmetrié « In turn, this has a number of technical difficulties. But perhaps the most
direct way to indicate the incompatibility of the calculus considered with Lie-admissible formulations

is by noting that the computation of an exterior two-form with the Lie-admissible tensor S )n/
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produces the attached Lie tensor c? v ) because of the antisymmetric

(3.8.19

The net effect is that the calculus considered is capable of characterizing, via an exterior two-

2( =

- {5, Suu)dbad bY,

nature of the exterior product, i,e.

S, = 6N«1b A

form,only the antisymmetric part of the Lie-admissible tensor 5,,\, . This implies the loss of
the Lie-admissible formulations and their reduction to the . Lie content only.

It therefore appears that an implementation of the calculus of exterior forms

is needed for the proper. - characterization of Lie-admissible formulations. b
The calculus in which I have conducted my rudimentary studies is based on the product
~
dbMo d b = @{L}‘x dbY e(b)AAd LV, (_31./1,4.0\)
dbxdb’ = dbY Xelb® | dbiadb’ = -dbVAd b, (.8 U4

which I have called exterior-admissible product in the sense that its attached (that is, anti-
symmetric) part is exterior. Next,l have considered the exterior-admissible p-forms b

A, - c‘b) (>-€-122)
db"' (3.9 120)

A

q =
A, .aw:au _-(n,,ﬁav,t)atxam-( )au‘mh ele.

RQ (3? lZL)

(i.e., the product O can aJso be interpreted as the ordinary tensor product).
These forms are exterior-admissible in a double meaning fully parallel to that of Lie-admissible
algebras. First of all they admit the conventional exterior forms at the limit when the A-
tensors become totally antisymmetric in their indeces, and, secondly, they admit the

conventional exterior forms in the attached form, i.e.,
~ €. I3
A = Ay =R d nd b, (>-e. 12)

The exterior-admissible sum of forms (3. 8.12) is the conventional sum, while the exterior-admissible

product of forms (3.8.42) is done via rules of type (3.8. I1 ). Next, I introduce the (left) exterior

admissible derivative 5

¢3 .s’t /4-4)

° =©H°/‘0b»)dby\/ 2
i a{, = (Qﬂ& 6”3\)004 L'ul : (B.Q-l‘r")
A A Kbl’.}" . I#C)
d A, = Al J1Z,db™db, (3.8

DbE ‘

with an understanding that, in a way fully parallel to the corresponding occurrence for the
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for the conventional exterior derivative, we have v
A Ty 20 2 b
da, =08 diev,de o da, =2 dBedb (3 5 5
4 Y b7
The reader should be aware that the operation " 8 " is not a derivative as commonly understood

because, in general

4 (A, B‘,)#(dﬂ)B},fﬂ*,(dBP) (3.£.14)

But then, this is precisely the reason for its possible relevance for a direct geometrical
characterization of nonconservation laws (or nongeodesic trajectories)in a way admitting
the conventional geometrical characterization of conservationlaws as the limit for null values
of nonconservative forces. And indeed, as we shall see below, at this limit the tensors
characterizing the differential structure become totally antisymmetric, their experior-admissible
forms become ordinary exterior forms and, thus, the "derivative" G becomes the ordinary
derivative of exterior forms.
The significance of the exterior-admissible derivative is that it allows the formulation of
the notion of the (left) exact _exterior-admissible forms,5 i.e.,
A
da, Q= 20
) M 3% !
Ao-d A, a0
R, = v g 9 v

(3-8.17a)

(3.8.17L)

In turn, this will be crucial for the coveriélg of the notion of globally Hamiltonian vector field.

We call exterior-admissible calculus that of forms (3. 8.42) with the outlined operations.

One of its central features is the lack of the concept of closure. This can be seen from the fact

that, since g is not an ordinary (exterior) derivative, G( 3 An) 4: 0. Thus, the calculus

considered is such that it does not admit a direct, consistent generalization of both the Poincare”

Lemma (of the calculus of exterior forms) and its converse. The reader should be aware at this

point that the notion of closure is at the basis of the symplectic geometry, as recalled in Table 2.93.
Our next step is the representation of essentially nonselfadjoint Newtonian systems as

vector fields on manifolds. The idea (see ref.Sb for details) is to use the noncanonical method

of Table 2,7 for the construction of an equivalent system of 6N first-order ordinary differential

equations in the covariant general form

-V
T b (31?.14?)
LS)W () b - I.C )]Nm

here assumed to be of autonomous type.
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We then characterize the exterior-admissible two-form

%z’ = Ld b d b
3 (_5 +Sy )f’{b Xe“o + (S)w‘s\:/« )db)‘/se“ov

via the covariant tensor S, of Egs. (3.8.1%). Thxs yields a (Hausdorff, second countable,

(2.2.19)

t

I\

a2 -differentiable GN dxmensmnal) manifold M(b, S ) im local coordinate b/* equipped

with the differentiable structure S , where 'differentiability " can be interpreted in both,
ordinary meaning for manifolds and exterior-admissible meaning. The reader should be aware
that this implies a number of consequences, such as the crucial property that the tensor S)“,

is the tensor for the lowering of the indeces in M(b, S or for the mapping from TM to T*M,

))
etc. In general, all notions of the theory of manlfoldzs which hold for arbitrary (that is,
generally nonsymplectic) structures extend to manifolds whose structure is of exterior-admissible
type. Notice that, as by now familiar, the symbol " R_ "in Egs. (3.8.]g ) stands to represent
the nondegeneracy of the matrix (S,.»' ). Inturn, this can be technicallz Jimplemented into to
nondegeneracy of the exterior-admissible two-form (3. 8.{4) ( see ref.”” for details). This

implies the characterization of the (unique) contravariant tensor sSHVY , (8 my= (S v )_1,

and of the co-exterior—adm1551ble two-form (3. ?.20)
522 oY fbb)‘ %@’ (SIS 2
X 2 L L 5 5 ) " Db

(sH + =P) fab" ok o
To summarize, our starting point is the most general possmle form of a class C, regular,
unconstrained Newtonian system, the essentially nonselfadjoint form. The lifting to T*M is
done under the condition that the variables be the coordinates of the frame used for
the detection of the system and the physical (rather than canonical) linear momentum. Thus,

out starting point is not only local, but actually unique as far the coordinates are concerned,

This attitude is motivated by relativity considerations to be indicated in Section 4 (as well as
quantum mechanical consideration to be treated in a subsequent paper). Of course, the uniqueness
of the coordinate system will be removed, but after the geometry for the characterization of the
assumed systems in the assumed coordinates has been identified.

These two central features (essential nonselfadjointness of Newton's equations and physical
nature of the b/ variables) implies that the covariant general forms of the systems are
nonselfadjoint . In turn, this implies that the tensor S'}n, of forms (3. 8. (¢ ) is neither totally
symmetric not totally antisymmetric in its indeces. In turn, this implies the insufficiency

of the conventional calculus of exterior forms to characterize suclr tensor in its entirety.
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These occurrences lead in a rather natural way to what we have called the calculus 6f
exterior -admissible forms. in which a number of notions .of conventional canonical formulations
can be formulated, although in a generalized form (e. g., the notion of exactness) but, most
importantly, the notion of closure is not definable,

The geometrical problem under consideration can now be be better identified if one realizes
that the indicated representation of vector fields on manifolds is the most direct possible
Tepresentation of nonconservative systems and that, from Universality Theorem 3. 4.1, systems
(3.8.18 ) coincide with our canonical-admissible equations. Thus, the tensor S)Nchal"acterizes
a Lie-admissible algebra, The problem then consists in the identification of the geometry capable
of characterizing such framework. This geometry is expected to be a covering of the symplectic
geometry because, by construction, the exterior-admissible form (3. 8.]§) recovers a symplectic
form identically at the limit of null forces not derivable from a potential, while the crucial notion
of closure is not even definable at the full Lie-admissible level.

I have tentatively called this covering geometry the symplectic-admissible geometry because

as by now also familiar, the term "admissible" stands to indicate that the conventional symplectic
geometry can be recovered from its symplectic- admissible covering in a dual way (typical of
all Lie-admissible formulations): via a limit of precise physical meaning (null forces not derivable
from a potential) v &j“
A
. zw, = w44y, 3.2
'Q,/M = 2 ? /«V ( . )

Fxa 20O
and via the attached rule

& é—r: JZ | /‘)—,t /Dev)ella”/\d\a\,{(&ﬁu’
2 2 271 Loy opt
which emerges in this way as the geometrical counterpart of the algebraic rule of Lie-admissibility,
Eq. (3. 3.4). ‘This yields a rather crucial result for our analysis, namely, that the notion of
Lie-admissibility admits consistent realizations at all the three levels which are essential
for relativity considerations, the analytic, algebraic and geometrical levels.

The identification of a symplectic-admissible manifold can be done in several ways. Here,
let me indicate two approaches, the first which is more algebraic in inspiration, and the second

¢h
Approach 1, By generalizing the treatement of symplectic manifolds by R. JOST, we see

which is more geometrical in contemporary standards.

that the co-exterior-admissible two-form induces a bilingar composition law in a way quite

¥o
5@ (dp,dg)= fog = 5%7*5" =5

symilar to the conventional case

@,323)
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A
The manifold M(b, S 2) in the local coordinates b}, M =1,2,....,6N, equipped with the

nowhere degenerate two-form (3. 8.20) is called a co-symplectic-admissible manifold when

brackets (3. 8. 2 3 ) satisfy the conditions of Lie-admissibility, i e.,
J(5.9) = LE.&1, 13,817
5(3ab) = [[8.47u W]+ [T8 M0 , {1t [Lh) ﬂwﬂu :

3.8.2%4b)
U%-?\lu = 02 ’?»Of

43 F24e)
or, equivalently, when the attached brackets

D)
[f/‘mif/_tu ((DDX;)-\ JZ (g%;

are (nondegenerate) generalized Poisson brackets.

(3.8 .24a)

(3.5-25)

A ~ .
The nowhere degeneracy of S 2 allows the construction of a (unique) form S 0 Eq. (3.8.19)

fua,,@ &. 26)

which, in turn, can characterize the brackets

S, 1 “‘3) Sr
of o %
again, in full similarity with the symplectic treatment by R, JOST. The manifold M(b, §2)

in the loal coordinates b/” and now equipped with the nowhere degenerate two-form (3. 8. 19°)

is called a symplectic-admissible manifold when the brackets attached to (3. 8.2 &)

DV ) b
(og -1 - 2 B L, G

are (nondegenerate) generalized Lagrange brackets.

This approach is clearly algebraic in inspiration because it makes drect use of the
conditions of Lie-admissibility for the characterization of the (co) symplectic-admissible
manifolds.

Approach II. Let M(b,gz) be a (Hausdorff, second countable, & - differentiable, 6N-dimen-
sional) manifold in the local coordinates b /*  equipped with a nowhere degenerate ;éterior-

admissible two-form (3. 8.19 ). M(b,’S\2) is called a symplectic-admissible manifold when

the attached two-form
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>

A

R,= 2, %2, (3.8£.13)

=\

2

A AD
is symplectic (that is, nowhere degenerate and closed). The form 52 (S ) will then be called

sympleetic-admissible form (co-symplectic-admissible form). Its central properties can be

written g %z % 0/ (}8729 a)
(3.8.29 b)

d(3,-57)

Clearly, any symplectic manifold is simplectic-admissible. This is the geometrical .characte-

rization of the property that any Lie algebra is Lie-admissible, On similar grounds, we can

say that any closed symplectic-admissible form is symplectic, This is the geometrical characteri-

zation of the property that any anticommutative Lie-admissible product is Lie. However, a
symplectic-admissible manifold is not necessarily symplectic. In essence, when the tensor S I
is totally antisymmetric, the symmetric part of the structure (3. 8.9) is automatically eliminated
and one recovers the conventional symplectic setting.. But, when the tensor S)"" is neither

totally antisymmetric not totally symmetric the full exterior-admissible structure applies y

and a nontrivial generalization of the symplectic .geometry emerges,

id

Next, by using the classification of Lie-admissible algebras (ref. ) we can classify the
symplectic-admissible manifolds as follows,

- GENERAL SYMPLECTIC-ADMISSIBLE MANIFOLDS. They occur when the tensor S)Nsatisfies

the conditions of Theorem 3, 3. 1.

- FLEXIBLE SYMPLECTIC-ADMISSIBLE MANIFOLDS . They occur when the tensor S)"‘/ satisfies
Theorem 3.3.2,

- SYMPLECTIC- MANIFOLDS . T hey occurs when the tensor S » satisfies Theorem 3, 3. 3.

A nontrivial symplectic-admissible manifold is a symplectic-admissible manifold of either
general or of flexible type.

The reader should be again rem-tnded that the symplectic-admissible manifolds have been here
identified not only in local coordinates, but actually in terms of a unique system of coordinates,
This means that the tensor S)w has the specific structure of Eqs. (3.4.2. ). This is contrary
to the conventional coordinate-free treatement of geometry. The point is that the geometrical’
coordinate-free treatement of relativity problems appears to be physically consistent provided
that the the family of all admissible local coordinates admit the coordinatesactually used in
experiments..

Now that the notion of symplectic~admissible manifold has been identified within the coordinate
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system of our primary jnterest we can pass to the study of the coordinate-free generalization,
The point is that in this way we are sure that the family of admissible coordinates does indeed
contain that of direct physical significance, by restoring in this way a rather subtle property
of the conventional symplectic geometry for the characterization of conservative systems,

The coordinate-free formulation of the symplectic-admissible manifolds can be studied
in sequential steps and with different approaches (for details see ref. 5b ). The idea is that
of generalizing the existing theorems of symplectic geometry, that is Pauli's theoreméh (where
the emphasis is more in the transformation theory) and Darboux's theorem_éa (where the
emphasis is more on the geometrical treatement) to the symplectic-admissible context,
The conceptual attitude in the use of these generalization is however the opposite of the conventional
one, Typically in symplectic geometry one starts from an arbitrary symplectic form and then
uses these theorems for its reduction to the fundamental symplectic form (2. 8.2 &). In our
case the situation is the opposite. Our uncompromisable point has been the identification of

L'B.S’.’SW)

the form (3. 8. {4 ) which is related to actual experiments, i.e.,

3,29, dblodl,

(4= 025 kY b i, (i) = C_,»_ ga U (R, 2,

Db
(3.8.30b)

which we shall call fundamental symplectic-admissible form in the physical coordinates bM.

Then we use form (3. 8. 3p ) as a "germ" to construct the family of all admissible coordinates
and then, as a ultimate geometrical treatement, its coordinate free formulation, £b

The first step is provided by the following symplectic-admissible covering of Pauli's theorem

THEOREM 3.8.1: Given a fundamental symplectic-admissible form §2 on a manifold

M(b, §,,) with local coordinates b /" | M =,2,...,6N, then there exist an infinite

number of diffeomorphisms € :M(b, §2) —> M(b',§ '2) realizable through class Co,,

everywhere invertible transformations b — b'(b) under which the fundamental

A ~
form 82 transforms into an'arbitrary symplectic-admissible form S'z. Viceversa,

given an arbitrary symplectlc -admissible form S' in the local coordinates b’, there

always ex1stsa (class C ,everywhere invertible) transformation b' =~ b(b") which

reduces S'2 to the fundamental symplectic-admissible form §2 in b.

The reader should be aware that, since a symplectic manifold is symplectic-admissible,

the transformations of the above theorem imply , as a particular case, the mapping of a
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symplectic~admissible form into a conventional symplectic form. Thus, on analytic grounds,
the theorem is inclusive of the direct representation of nonconservative vector fields via our.cano-
nical-admissible equations and their indirect repfesentation via the conventional canomical
equations.
Intérpret now a conventional symplectic form &Q, o as the symplectic content of a
symplectic-admissible form S according to rule (3. 8. 25’ ) Then the proof of

Theorem 2. 8.1 applies to the form JZ = S - S;- and u}’sufﬁcnent to imply for 82 the following

2
symplectic-admissible covermg of Darboux -Weinstein theorem (see, again, ref S'bfor details).

THEOREM 3, 8, 2:Let M1 be a submanifold of a manifold M and 1et 82 and S be

= S |M1 Then there exnsts

two-symplectic-admissible forms such that S

2 |M
1
a neighborhood N(M,) of Ml and a diffeomorphism f.N(M,) —>> M such that

(a) f(m) =m for all m ¢ M, and
*I\ _Av
o5, =8,

We finally remain with a problem which, as we shall see in Section 4, appears to be crucial
for the construction of a group of transformations leaving form-invariant nonconservative,
nomrlinéar systems. We are here referring to the generalization of the notion of globally
Hamiltonian vector field (Table 2. 8) which is neéded in the symplectic-admissible geometry,

‘We here define the (left) inner-admissible product of a contravariant vector field

5b

—_'_:—_}A with a symplectic-admissible structure the quantity

AD A
Lo A 5, _ TYAR . T AW
4; = — 2 /A\/——'

(3.8.31)

Again, the above product is inner-admissible in a dual sense, ‘First, the ordinary inner product
is recovered identically at the limit
: A A “, (3.8-%2)
: - ST yw, = (382
€~*"‘ i [g - 6 2" - J 2 T —ay
pa
Fe. >0 .
and, secondly, we can recover it in the attached form (,Q
Ry | (= 2 ATY oo
" z"j_(.@ S,- Sp)—’—-'—~“”—g‘«~¢-
— = —_
talt cp (3.8.53)
ol Hamiltonian-admissible when the one-form

A vector field on M(b, §2) is called

=- 5,

- 1 is exact, i.e, ,at a point m & M(b,§ ) there exists a neighborhood N(m) and a

O 6“3’*

function H(b), the Hamiltonian, on N(m) such that
)* .
0¥ (3 8.34)

5 o Sy = 5(10)‘ di =

hd —_

—~q = /Ls\/—'
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This is the desired geometrical characterization of Eqs. (3.8.9) which, as we shall
see in Section 4, appearsto be crucial for relativity considerations. The reader should be
aware that we are essentially referring to the fundamental equations (3.4.4) of the Lie-admissi-
ble formulations.

We cannot close this table without few highly conjectural considerations related to
the geometrical characterization of nonconservation laws. This inevitably brings into focus
the problem of the possible existence of a covering of the notion of Lie derivative for Lie-admis-
sible formulations. Let us recall that (Section 2.8) two layers of characterization of the

Lie derivative can be identified within the context of the symplectic geometry, i.e.,

L F o b FeGylt) - Fo Gylo) _ (wr"fb“ b"‘) [F, HJ, (3£.354)

t+o t b bv ™
fm FeGLW) —F.GYC) _ (prvOH® F = [F HB7%
,Zp—-.xF ko (= (JZ 2 b (Db}‘) [ M 3033;&)

where Gb(t) is a one-parameter connected Lie group and G*b(t) one of its isotopes (Table 3.7).
Eq. (3.8.35a) is the conventional form and Eq. (3.8.35b ) is the generalization we have
attempted for Birkhoff's equations.
The third layer of the notion considered is here called Lie-admissible derlvatlvesax‘;,d it is
. F o Gylt) ~FeG o _ 6M(DH i )F
F= L oY
(3.8.34)

a one-dimensional, connected,Lie-admissible

given by

t->o0

A
where now G b(t) is a genotope of Gb(t), i, e,
group according to Definition 3. 7.3, Again, the above operation is not a "derivative" in the

conventional sense, But this is precisely its advantage because,if applied to the generators Xi of a

(Lie or) Lie~admissible algebra, yields the following symplectic-admissible characterization
of nonconservation laws.
L2 X; (% P 2

(NOVQB}A = <)<:.‘, H)TJ: O (_3837)

Notice that in the transition from laws(3. 8.35) to their covering (3. 8.3 () we have not

changed, by central requirement, the base manifold, the Hamiltonian and

the parameter of the tima evolution group. The action of the nonconsernative forces is then
represented by the departure of the generalized formilations from the conventional ones, which
is at the basis of the Lie-admissible formulations. Notice that these nonconservative forces

are present at several levels, such as the structure of the genotopically mapped Lie group eb(t)/

A
the symplectic-admissible structure §, the Lie-admissible derivative, etc.. Notice also
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that the notion of Lie-admissible derivative is ensured by the property that a Lie-admissible
group is a Lie group, only written in an unconventional form. And indeed, limit (3.8. 36)
can be first establtshed in terms of the standard realization of eb(t), This yields the conventional
Lie derivative (3.8.35a), but now expressed in terms of another generator. Form (3.8.36)
is then-established by reformulating the realization of the group eb(t) in terms of the generator
of Gb(t).

For completeness let me indicate that the analysis autlined until now for Qutonomous
systems and symplectic-admissible geometry appears to carry over to the nonautonomous

systems, yielding what we have called in ref, contact-admissible manifolds, that is,

~ -
6N+1 dimensional manifolds M(b, §2 ) in the local coordinates b , 1=0,1,2,...,6N equipped

ook (%.8.3¢)

with an exterior-admissible two-form of maximal rank
2 o J 3
- B.. dbodb
5 L= ) @{
which is such that its attached form -— d N
2 L )
~ A AET_&. dbnd, (3.839)
—_ - = Ly
L= 22 2 j
2 sb
is a contact form. For brevity, we here refer the interested reader to ref. for more details.
This concludes our review of methodological ‘tools which will be used in Section 4 to attempt
the construction of a covering of the Galilei relativity for nonconservative systems,

By looking in retrospective , it is rather tempting to conclude that

(A) The conventional canonical, Lie and symplectic formulations appear to admit consistent

covering formulations of canonical-admissible, Lie-admissible and symplectic-admissible

type, respectively,

(B) 'I:he deep interrelation, complementary and compatibility of the analytic, algebraic and

geometrical aspects of the conventional formulations appear to carry over to their

coveringsin their entirety, and

(C) The covering formulations are conceptually, technically and methodologically different

that the conventional formulations. Neverthless, they are capable of recovering the

latter in their entirety at the limit of null nonconservative forces as well as via the

attached rule of Lie-admissibility.

It is again appropriate here to stress that what we have attempted in this section is the indication
of the existence of the indicated covering with properties (A), (B) and (C). Their actual construction
in all the necessary technical details will predictably demand the contributions from a significant

number of independent researchers.
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TABLE 3.9: SOME POSSIBLE APPLICATIONS OF LIE-ADMISSIBLE FORMULATIONS IN PHYSICS ,

The possible application for which the Lie-admissible formulations have been conceived
is the study of the breaking of the fundamental space-time symmetries in-Newtonian mechanics
and the hope that their non-Newtonian (relativistic and quantum mechanical) extensions can,
in due time, be identified and result to be physically significant for the problem of the hadronic
structure under the assumption that the strong hadronic forces are structurally more general
than the atomic and the nuclear forces (essentially nonselfadjoint strong hadronic forces).

As by now familiar, this paper is solely devoted to the relativity aspect of Newtonian
Mechanics, Neverthless, it appears advisable to outline the intended use of Lie-admissible
formulations for the study of broken Lie symmetries in general, as well as for other aspects
of current relevance in theoretical physics.

In essence, the Lie-admissible formulations appear to provide an algebraic-group theoretic
characterization of broken symmetries and nonconservation laws as a covering of exact Lie
symmetries and conservation laws. In the following we would like to outline the mechanics of
the use of these broader formulations as well as their dual nature of ensuring, on one side,
that the conventional Lie context is indeed brooken and of providing, on the other side, methods
for the treatement of the broken context. It appears that there is the need of both these profiles.

For example, consider the familiar case of the Gell-Mann-Okubo mass formula and the SU(3)
symmetry, In order to avoid equal mass multiplets, the SU(3) symmetry must be broken, On
the other side, as stressed in Table 3. 7, the Gell-Mann-Okubo mass formula is undefinable
within the context of a Lie algebra and necessarily demands the use of an enveloping algebra
to properly characterize powers of SU(3) generators. The conventional derivation of the formula
is conducted, as well known, within the context of the universal enveloping associative algebra
of SU(3) , the algebra A(SU3)). But then a possible fundamental inconsistency arises. As also
stressed in Table 3.7, the algebra A(SU(3)) is the true representative of the exact SU(3) symmetry,
both algebraically and group theoretically. The net effect is that, even though the SU(3) symmetry
can be semiempirically broken at the level of semiphenomenological models, it is still exact
at the algebraic level. In other words, the use of the algebra A(SU(3)) by no means guarantees
that the SU(3) symmetry is broken, Instead, it constitute the most rigorous way to technically
characterize the exact SU(3) symmetry.

These remarks are here introduced to illustrate the first aspect of broken symmetries
which is relevant for Ty objective, When studying any broken symmetry, the first problem

is to ascertain that the used toolsdo indeed, algebraically characterize a broken Lie symmetry.
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If this crucial requirement is not ensured, there is the possibility of working with incompatible
tools (e. g., a semiphenonenological Lagrangian breaking of SU(3) and an exact associative
envelope A(SU(3)) of SU(3)). The depth of the physical insight of the approach is then in question,

The use of the Lie-admissible formulations for the characterization of broken symmetries
clearly removes any shadow of doubt in respect to this issue: not only the original Lie symmetry
algebra is broken, but actually it is undefinable jointly with the related universal associative
algebra because, e.g., the analytic equations are non-Lie in algebraic character.

But, to ensure thata Lie symmetry is indeed brokenlis "per sé" purely formal, particularly
on physical grounds. This naturally brings into focus the second aspect of the issue, the need
of methods for the treatement of the broken context. I am here of course referring to the
identification of methods capable of producing specific physical predictionsvia a mathematical
process, It is in this second respect that my hopes for the Lie-admissible formulations rest,
because they constitute a covering of the L ie formulations. This means that the broken context
is not left algebraically and group theoretically undefined. Instead it is treated with methods
fully equivalent, although genéralized, than those of the exact symmetry.

This is not the place to recall the physical relevance of the Gell-Mann-Okubo formula. The
above remarks were, therefore, solely devoted to the derivation of this formula as currently
conducted. If the broken SU(3) symmetry is truly realized on algebraic grounds this means
the nonapplicability of the envelop A(§LJ(3);. ﬁut then the questi on which iinmediately arises
is : how we construct the Gell-Mann-Okubo mass formula if the associative envelop cannot be
used? It is at this point that the potential physical relevance of Lie-admissible algebras as
universal enveloping nonassociative algebra of a Lie algebra emerges in full . And indeed, if
A(8U(3)) is replaced by the genotope U(SU(3)) (Theorem 3. 7. 3) the following picture emerges.
Fir st of all, the generators, the parameters and the base manifolds are preserved according
to the construction of U(SU(3)). Secondly, the Lie algebra SU(3) emerges as broken because
the algebra acting in the neighborhoof of the identity is non-Lie, although Li¢-admissible. Thirdly
the breaking of SU(3) is truly ensured by the fact that the attached algebra [U(SU(S)]_ is non-
isomorphic to SU(3). Fourthly, The SU(3) algebra is recoverable in full at the limit when
the nonassociative envelop recovers the conventional associative envelop. Fifthly, the approach
enjoys an analytic and geometrical backing by therefore removing any inconsistency between
different methodological approaches to the same broken context. Sixtly, The covering envelop
U(SU(3)) is fully capable of producing the Gell-Mann-Okubo mass formula identically, that is,a5
currently known, under a suitable selection of U,  And last, but not least, the departure of
the Lie-admissible over the Lie formulations is representative of the symmetry breaking forces

by therefore opening the possibility of obtaining some informations on the dynamical origin of the
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parameters of the Gell-Mann-Okubo mass formula, that is, their link to the symmetry breaking
forces (these parameters are null for exact symmetry). In turn, this last aspect appears to have
some quite intriguing possibilities for a truly central problem in hadron physics: the nature of
the strong hadronic forces.

I worked out the rudiments 6f this Lie-admissible approach for the construction of the Gell-
Mann-Okubo mass formula during my stay at the University of Miami in Coral Gables, Fla, in ad
1967-1968 and then presented j:he approach at the Indiana Conference of21938 (see the proceedings ).
Subsequently, the approach was reinspected by C. N KTORIDES in 1975  in great details. More
recently, the approach can benefit of various progresses in Lie-admissible formulations. For
an outline of the current status of the art on this issue see ref,

After these introductory remarks, let me outline the mechanics of the intended use of
the Lie admissible formulations. for the casE of broken space-time symmetries (the extension to
non-space-time symmetries being trivial). Other possibilities will be indicated at the end of the table,

(I) EXACT LIE SYMMETRIES AND CONSERVATION LAWS. The starting ground is, of course,

the established ground. Consider a conservative (essentially selfadjoint) Newtonian system
represented with a Hamiltonian H and suppese that the system exhibits an exact, manifest,
n-dimensional, connected, space-time Lie symmetry G. We then write in canonical formulations
the exact szmmetry (ES) as follows
N1 ey (3.9.1)
Db’ sq

with underlying conservation laws_ 3

R (0= XL o M T = 0, (-0
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This is the well known reduction of physical laws to primitive Lie notions. It is however

appropriate to stress that the direct physical effectiveness of the Lie formulations for the characte-
rization of physical laws ‘is crucially dependent on the fact that the mathematical algorithms

"r", "p" and "H" of Eqs. (34.] ) and (3.9.2 ) are not abstruse quantities such as Egs. @.10.5e)
or (2.12. 144 ). Instead, they represent the Cartesian coordinates of the experimental detection

of the system, the physical linear momentum (which in this case coincide with the canonical
momentum) and the physical Hamiltonian (which in this case coincide with the canonical
Hamiltonian),

(II) BROKEN SYMMETRIES AND NONCONSERVATION LAWS . Suppose now that, according to

experimental evidence, the G symmetry of the system is in actuality proken as a result of

additive forces. This is the case of the systems of our everydays life, For instance, the
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following case L
. 3.9.2)
T (6) : Q*“a) 3(“] :
4 NIA
represents an example of the breaking of the exact symmetry of a free particle under translations

in time due to drag forces produced by the medium in which the motion occurs. The other case
T ..\E3 .\ 138
S 02 ch) _ 99] o (3.9.4)
provides an example of the breaking of the exact symmetry under rotation of the conservative
abstraction of the spinning top under gravity (here assumed for simplicity with only one degree
of rotational freedom). Perhaps more significative on methodological grounds is the case of

charged particles under nonconservative forces also produced by the medium in which the

motion occurs

3s
GG [k - £ ] - F £)\ze. (49

which constitutes an example of the breaking of the full Galilei symmetry.

Customarily, symmetries are broken in classical mechanics by additing a symmetry breaking
term to the Lagranglan or Hamiltonian, This breaking, which we have called selfadjoint breaking
(Table 2.14),is highly insufficient for our objectives. We therefore assume that the forces
responsible for the G-symmetry breaking are the most general, local, class Cc,oregular,

Newtonian forces, i.e., we assume an essentially nonselfadjoint breaking of the G-symmetry

which is inclusive of the subclasses of canonical breaking and semicanonical breaking.

This broader broken symmetry (BS) context will be written

CiA L GHOHTES gy (3.9-¢)
ILU‘” DL’ 1sn P )}NSG

with consequentlal nonconservation laws
M 3.9.7)
[ X H i + 5 b/“ F .# 0. (

A point of crucial physical and methodological significance is that in the transition from
the exact symmetry (3.9. [ ) to the broken symmetry (3.9. 6 ) the physical quantities remain
unaffected. Typically, when one adds a damping velocity dependent term to the harmonic
oscillator equation, this leaves the expression of the energy unchanged. The problem is then simply
shifted to the computation of the variation of this energy in tine, i.e., nonconservation law
(3.9.7 ). Similarly, the physical angular momentum of a system is M = A{‘% P = ik X m.fk'

This quantity holds irrespective of whether there are forces not derivable from a potential or
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not, e.g., for the nonconservative Coulomb system (3.9. 5 ).

This physical property is at the very foundations of the Lie-admissible formaulations. And
indeed, all efforts are focused in preserving the algorithms "r", "p'" and "H" of direct physical
significance an d changing instead the formulations for their treatement,

(III) CANONICAL-ADMISSIBLE CHARACTERIZATION OF BROKEN SYMMETRIES AND

NONCONSERVATION LAWS . Hamilton's equations with external terms, Egs. (3.9. 6 )'do

not appear to be promising(on grounds of my current mathematical knowledge) for the objective
at hand because they do not characterize an algebra via the brackets of the time evolution law

(Table 3.1). Jointly, formulations which are Lie in algebraic character are strictly excluded

from our approach to ensure the maximal possible breaking of the Lie symmetries according

to the remarks at the beginning of this table. This leads to the canonical-admissible characteri-

zation of broken symmetries

[ b o™, b)/b u

Bs
-0, (%.9.8)

NS

and the canonical-admissible characterization of the nonconservation laws

‘ _OX o) U X, 1) 40,699
X = S5 o (i)

in which the departure of the analytic equations from the conventional Hamiltonian form is a

(3.9.10)

representative of the symmetry breaking forces, e.g.,

(- wr) S = Pl

At the risk of being pedantic, the difference of this approach with current trends in classical
symmetry breaking must be reemphasized. The virtual totality of established physical models
are based on the conventional structure of a Hamiltonian, Htot =H free + H‘mt' A symmetry of
this Hamiltonian is customarily broken by addinga further term, which this time is responsible
of the symmetry breakmg and one writes H = (H + Hmt)ES + HBS . A part from the

fact that this breaking is highly restrictive and precludes several addmonal classes of more
physically significant breakings (Table 2. 14), there is one aspect which, unless properly treated
can lead to inconsistencies. The virtual totality of established physical models sees its analytic

origin on what we have called in Section 1 the "truncated" Hamilton's equations or Lagrange'’s
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equations, that is, those without external terms. In the transition to the case of broken symmetry
the Hamiltonian is modified, but the analytic equati ons are left unchanged. This implies that in

the conventional classical treatement of broken Lie symmetries the Hamiltonian breaks the

symmetry while the underlying analytic equations remain stricty  Lie in algebraic character.

The net effect is the situation recalled earlier in this table according to which the analytic
level is representative of SU(3) breaking, but the exact A(SU(3)) algebra is used for calculations.
The attitude implemented in the Lie-admissible formulations is exactly the opposite of the above,

In the Lie-admissible treatement of broken Lie symmetries the Hamiltonian remains fully

invariant, while the underlying analytic equations are strictly non-Lie in algebraic character.

It is this point which ensures the nonapplicability of Lie algebras "ab initio" as a methodological
tool for the broken context,

Once the broken symmetry equations are represented with the canonical-admissible equations )
the remaining tools of the analytic covering are applicable, if needed. I am here referring to the
canonical-admissible transformations (Table 43. 4) or to other tools (such as variational
principles , Hamilton-Jacobi theory, canonical-admissible perturbation theory, etc.) which
we have not indicated in this paper for brevity, but which appear to exist.

In conclusion, there is hope that the canonical-admissible equations characterizing the broken
symmetry context can indeed be equipped, in due'time, with a covering of the conventional
canonical formulations of canonical-admissible type. This is crucial for the objective of providing
the broken context with as many as possible methodological tools (for the study of any specific topic
of interest)up to a possible future point of full methodologncal equivalence with the case of the
exact symmetry.

(IV) LIE-ADMISSIBLE CHARA CTERIZATION OF BROKEN SYMMETRIES AND NONCONSERVA=

TION LAWS . The non-Lie algebra character of the analytic equations, has a number of rather

deep methodological implications. It essentially implies that the universal enveloping associative

algebra of the original exact symmetry algebra G, that is, A(G is replaced by the Lie-admissible

] <5,?-u)

envelop of the broken Lie algebra G ,Le, (Table 3. 7) A

e)— U -T g

In turn, this implies a Lie-admissible "algebra in the neighborhood of the identity, i.e.

PR v a0t (W 6y, (5.9.12)

as well as a Lie-admissible group of finite connected transformations, i.e.,
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For the sake of clarity, perm;jt me to stress that it is not the original algebra G which is
embedded into U(G), but insted A(G). In other words, the Lie-admissible profile brings into
full focus the elemental nature of the enveloping algebras for the Lie characterization of
exact symmetry. This elemental nature simply persists in the Lie-admissible covering. Thus,
the algebra was infinite-dimensional to begin with already at the level of the exact symmetry
and remains infinite-dimensional at the covering level. Of course we are here referring to the
infinite number of elements (3.7. 7 ) for the Lie case, and (3.7.28) for the Lis-admissible
covering, all induced by the same basis, the generators Xi of G.
Of course in this paper we have focused our attention on only the central aspects
(3.9.11 ), (3.9. {2 ) and (3.9.1% ). It is hoped, however, that the *Lie-admissible theory"
can be, in due time, brought up to the level of the "Lie's theory" at least in sufficien;:ly effective
way. When this is accomplished, then the algebraic-group theoretic tools for tﬂe characteri -
zation of broken Lie symmetries would be equivalent to those for the exact Lie symmetry as
currently established. This is what we referred to as the methodological characterization of broken
symmetry. Notice that, if this program is truly realized in due time, each aspect of the
exact symnetry is replaced by a covering aspect, For instance,the" broken symmetry Lie algebra”
is not left as an algebraically undefined entity, Instead, it is replaced by a broader, but
fully defined Lie-admissible algebra. Most intriguing (particularly for relativity considerations,
see next section) is the fact that "the broken symmetry Lie group" is not left also undefined, but
instead it is replaced by a broader group structure which we have called Lie-admissible group.
The point is that, again the broken and as such, unusable associative envelop A(G) is replaced
by an acting, and thus usable, Lie-admissible covering U(G), and similarly, the broken and thus
unusable group G is replaced by an acting lie-admissible covering 6
(V) SYMPLECTIC-ADMISSIBLE CHARA CTERIZATION OF BROKEN SYMMETRIES AND
NONCONSERVATION LAWS.

The methodological characterization of broken symmetries would be highly deficient, particu-

larly for relativity considerations, without the inclusion of geometrical methods. The canonical-
admissible and Lie-admissible formulations, however, are incompatible with the symplectic
or contact geometry. This necessarily demands the identification of a covering geometry which

I have tentatively called symplectic-admissible or contact-admissible. One of the primary functions
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of this broader approach (according to the best of my knowledge at this time) is to reconstruct

the covariant vector field of the exact symmetry case via the inner-admissible product with

A
the two-form Sy, le., the Hamiltonian-admissible characterization of broken symmetries

TYVALA = T bl dH, (3.9.04)
2 1

- -5 -
- 2 Y ?
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with symplectic-admissible characterization of the nonconservation laws
e 19
PR

The reason for the interest in structure (3. 9. }4 ) is that it gives hopes for the identification

(3.9.15)

of a nonmanifest symmetry group which leaves form-invariant the broken symmetry equations.
And indeed, the Hamiltonian of the approach is fully invariant under the original symmetry, while
generators, base manifold and parameters of the original symmetry are left unchanged in the
construction of the Lie-admissible group (3.9. 3 ) by construction. Contraction (3.9. J4 )

then indicate’a possible form-invariance of the equations of motion under the covering group
(3.9.13).

Apgain, it is hoped that, in due time, this unconventlonal geometrlcal approach (based
on a calculus which does not admit conventional notions such as deri vative and closure) may
be sufficiently developed to the point of being effective for practical problems. If this will be
the case, then the geometrical methods for the treatement of broken symmetries would be
equivalent to the methods currently available for exact Lie symmetries.

This concludes our review of the intended use of Lie-admissible formulations. Notice that
this use, again, is primarily intended for the breaking of space-time symmetries.cherthless

their applicability to other symmetry breakings should not be overlooked. As a matter of

fact, the method appears to be applicable also to the current approach to symmetry breaking,
| Es b BS L ne (3.9.16)
ot tob 7

via the reinterpretation
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that is,
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In other words, the symmetry breaking forces FM™ usedin steps (II) through (V) are, by no

mans’restricted to be nonderivable from a potential and the methods are fully applicable even
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when they are indeed derivable from a potential. Our emphasis on foxces not derivable from

a potential is inspired by relativity arguments and it is also intended to express the fact that

the methods at hand do indeed apply for arbitrary (but local and of class C % ) Newtonian forces.
This latter aspect is important because it indicates that Lie-admissible formulations can be

applied to the breaking of internal symmetries without affecting the physical framework

of the conventional space-time symmetries. To be specific )  Symmetry breaking (3.9.17)

may be referred to only an internal symmetry group G, while the full Hamiltonian

may remain invariant, say, under the Poincaré gfoup. In this case approach (3.9. |7 ) yields
the breaking of only the internal symmetry G because the Poincare'symmetry is recoverable
in full via the conventional Hamiltonian formulations in Htis; . Other aspects of this intriguing
situation will be considered in a subsequent paper.

In conclusion, the Lie-admissible formulations appear to be promising for the characteriza-
Zion of broken symmetries. The characterization is of dual nature in the sense that it is a

- LIE-ADMISSIBLE BREAKING OF LIE SYMMETRIES, because, for instance, the attached

algebra of U(G) is not isomorphic to G, i.e.,
[W(&)] 4 &, (-9.18)
as wellas a

- LIE-ADMISSIBLE COVERING OF LIE SYMMETRIES, in the sense that the formulations

are nontrivially different, but capable of recovering the conventional exact symmetry context
identically at the limit of null symmetry breaking forces, e.g.,
S wh

(G) A(g)
ALY G (3.9.19)

G
g

2 LIE-
ey AbMISSI1BLE o&ﬂz LIE

*

@( MO IO,

We shall therefore refer td the formulations considered as the Lie-admissible covering-breaking

of Lie symmetries,
The question which we would like to touch in closing this section is whether Lie-admissible

formulations may be significant beyond the case of broken Lie symmetries. b
5a by
ﬂ Presentation of my current knowledge on this aspect is provided in ref. .H ere,

let me recall three aspects as poten tially promising,
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(A) Lie-admissible covering of the deformation theory . As is well known, the deformation

theory is based on a modification of the product of the type

[ X o, X ;3("5) = [Xi R ot e F (X, %)+ elFZ.(XC/ Xi)f'“ (.9.20)

which, however, remains strictly Lie in algebraic character. This theory can be subjected

to the Lie-admissible covering, that is’an expansion of the type (3.9. 20 ) which now satisfies
the Lie-admissibility laws, rather than the Lie laws. This approach has been proposed by

N. K61V and J. LaHMUSu’tho have also worked out the Lie-admissible deformation theory

of the spin ]/2 Pauli algebra. Their results are essentially equivalent to the embedding

of the spin 1/2 Pauli algebra into the A()\,Iu) mutation algebra proposed by R. M. SANTILLI ,
as it is shown inref” Neverthless, they are significant to indicate that deformation-type
methodsazlre consistent‘, as well as particularly useful for Lie-admissible farmulations,

In my opinion, this line of study deserves a close scrutiny by independent researchers
because it touches on a number of fundamental physical problems which will be presented in a
proper light in subsequent papers.

To have an indication, consider the case of a first-order Lie-admissible deformation of the

spin ]/2 case. This literally means that the spin SU(2) Lie symmetry is broken, although in this

case in an infinitesimal way., This has bound to have statistical implications (Lie-admissible

algebras, being neither totally symmetric not totally antisymmetric are incompatible

with Bose-Einstein arid Fermi-Dirac statistics). In turn, this has direct bearing with
) 5c
Pauli exclusion principle, In essence, upon a number of technical  steps (see r:efa,3 3 )

a first order Lie-admissible deformation of the SU(2)-sp in algebra implies the nonapplicability
of Pauli’ s principle’ although in an infinitesimal measure depending on the structure of the
selected deformation,

The aspect which is physically relevant is whether such nonapplicability of Pauli principle
has any ground of plausibility.

Clearly, at the atomic level such inapplicability of Pauli principle is conceptually and
physically inconsistent. The validity of Pauli principle in an exact form is here established by a
rather large amount of incontrovertible experimental evidence (Pauli principle is crucial for
the interpretation of several central features of the Mendéleyév table, such as the existence of
the long periods containing the iron, platinum and palladium groups, and even those of the 14
rare earths),

In the transition to the nuclear level considerable scientific caution must be exercised to

avoid prejudices. What we can safely state is that the use of Pauli principle in nuclear physics
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produces an excellent agreement with the experimental data. Neverthless, on grounds of our
current experimental and theoretical knowledge we cannot state that Pauli principle is exactly
valid in nuclear physics or that it is valid in the same m=asure as that of atomic physics,
And indeed, the question which was submitted by R. M. SANTILLI , is whether our current

knowledge on the validity of Pauli exclusion principle for the nuclear structure is quantitatively

comparable to the current knowledge of the PCT symmetry in particle physics or it is at a stage

prior to the discovery of parity violation,

In the same paper33 4 the experimental resolution of the issue was then advocated. At the
theoretical level it appears to be rather difficult to b beyond the level of personal viewpoints,
or opinions’or conjectures which, in any case, remain far from a scientific truth, As a matter of
fact/ we here have a situation in which opposite viewpointscould be equally plausible because of
different reasons, The argument in favor of an exact validity of Pauli principle in nuclear physics
in known, See, for instance, ref.3 2. An opposite viewpoint, in which, of cour.se, an infinitesimal
deviation is advocated/ is presented in ref.ga"l'i; epistemological argument is quite simple, The
atomic structure exhibits dimensions which are substantially greater than the charge diameter
of the constituents. Within such a setting, it is fully plausible on conceptual grounds that the
constituents preserve the value of their spin (and thus, their statistical character, and thus,
the applicability of Pauli principle) during the life of the system. In the transition to the nuclear
structure the situation is different. Here, according to experimental evide nce, the charge
volume of the nucleus is (approximately) proportional to the number of nucleons. This means
that, at a primitive view, nucleons are very close to each other" . But then the idea that a
nucleon preserves exactly unchanged its spin ( and s tatistical character, and verification of
Pauli principle ) during the entire life of the system becomes rather unappealing on conceptual
grounds. And indeed mutual interferences originated by the extremely close distances might
well render (at some deeper future treatment) unrealizable such "perennian value of the spin".
The plausibility of an infinitesimal deviation then creeps in in a ratter natural way.

In the transition to the hadronic level the situation is drastically different and, in this case,

extreme scientific caution must be exercised in the traditional spirit of unsolved physical problems.

This problem is the subject of study of refss. The epistemological argument is, again, quite
simple. Consider a massive, charged and spijping particle under electromagnet ic interactions
moving in vacuum, The conventional quantization « the spin, the preservation of its value
during the life of the particle and the complyance with Pauli principle are again unequivocal for
much of the same reasonsas applying for the atomic structure, Suppose now that this particle

penetrates a hadronic structure and, by doing so, preserves its identity for a sufficiently long



- 386 -

period of time (at the hadronic time scale). In this case, quite candidly, it is for me extremely
difficult to accept the idea that the particle preservesthe value of its spin unchanged during
its life within the hadronic structure. It would be the same as asking that an electron produced
in the core of, say, a neutramstar undergoing phase transition to the hadronic constituents has
exactly the same value of the spin (and thus obeys exactly the same laws)f the same particle
but belonging to the atomic structure) despite the extreme dersity of the hadronic medium.

The net effect is that now an infi;gtfsimal departure from Pauli principle becomes unplausible,
but in favor of a full finite departure. In different terms, an infinitesimal, first-order, Lie-admissi-
ble deformation of the spin 1/2 SU(2) Lie algebra could be relevant for the nuclear structure,
but in the transition to the hadronic structure a full Lie-admissible embedding of A(SU(2))-spin
into U(SU(2)) might be concetivable.

Again, we are facing a case in which opposite viewpoint could be equally plausible for different
reasons, The argument in favor of the validity of Pauli exclusion principle within the hadronic
structure is well known and treated within the context of the recent color unitary models of
hadronic structure. An opposite argument is presented in ref, 5 . Clearly, the issue demands
an experimental resolution, as proposed by R, M. SANTILLI 5‘.'%3 2

In conclusion, Lie-admissible algebras appligd to one of the central methodological tools
of contemporary theoretical physics, the SU(2)'iEi_n group, in either a first-order deformation
form or for a full breakinglmight be of some relevance for the study of the validity or
invalidity of Pauli principle under strong interactions.

(B) Lie-admissible covering of supersymmetries. As stressed in this section, the

Lie -admissible algebras admit products which are neither totally symmetric nor totally anti-
symmetric. As a result, these productbcan be resolved into a mixture of conmutator and anti-

commutators, e.g. o(t ) 2

Jo oy
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It is then trivial to see that the Lie admis Vsible algebras admit as a particular case the graded

Lie algebra of supersymmetric models
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This is tantamount to saying that the Lie-admissible algebra are a covering not only of Lie-
algebras and their deformation theory, but also of the graded Lie algebra.5 b

This point is not of marginal significance, particularly on methodological grounds. And indeed
as a result of recent studies on supersymmetric models/ several quite valuable methodological
insights have bgb%n gained for graded algebras. As it was the case for the studies on nonlinear
representations indicated in Table 3. 7, these insights appear to be particularly valuable for
Lie-admissible formulations because conceivably extendable to the broader context considered.
And indeed, the graded structures (3.9.22 ) are clearly representative of an intermediate
layer between the strictly Lie structure and the Lie-admissible structure.

Equally intriguing, Lie-admissible form‘tsllftions appear to provide a covering-breaking
characterization of supersymmetries. In other words, I am here referring to the
property that Lie-admissible formulations can appare ntly characterize not only broken L je sym-
metries as indicated earlier in this table, but also their sypersymmetric extensions, according
to precisely the same lines (I)-(V) given above,

One aspect, however, deserves particular care. We here reach the essence of this table.

The breaking of Lie symmetries produced by Lie-admissible algebras is so effective,

that may inevitably imply the breaking of space-time symmetries, unless adequately treated.

In relation to supersymmetries it is here appropriate to recall that the conventional statistical
(or parastatistical) character is preserved by graded algebras (3.9.22. ), basically in view of the
"decoupled" nature of the - supersymmetric product, In the transition to a Lie-admissible
characterization of their breaking )2 number of technical aspect should be considered if one
intends to preserve the indicated statistical character ( notice that these precautions are mostly
abstent in the conventional Lie case oving to the lack of presence of the symmetric part of

the product). Restated in different terms, the graded Lie algebras are more genuinely Lie-admis -
‘sible than the Lie algebras, to the point that the explicit form of their product assumes different
structures for different generatorsl as typical of the Lie-admissible algebras ( Tables 3.4 and
3.7). The natural embedding-breaking of these algebras into Lie-admissible structure is that

of Eqs. (3.9.2| ). But then the indicated statistical character is generally lost, unless the
problem is adequately treated.

(C) Lie-admissible approach to the hadronic structure. This is, again, the line of study

of ref, 5 . Permit me here to outline the epistemological argument.
One of the most intriguing experimental data on hadrons is that, unlike the corresponding

case of nuclex their charge radius does not sensibly increase with the mass and it is of

i
the same order of magnitude of any other experimentally known massive, charged ’particle (V1F ).
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If the hadronic constituents are assumed to be physical (that is, non-point-like),massive,
charged’particles, then a picture of the hadronic structure which is substantially different
than the atomic and the nuclear structure emerges, Each constutuent is bounded to move
within the charge radius of the other. In other words, starting from the very large distances
(as compared to the charge radius of the constituents) of the atomic structure, and passing
through the intermediate nuclear structure of extremely small distances between the charge
valumey of the constituents, we reach a hadronic state of penetration of the chayge volume

of -each constituent with that of the others. We do not know at this time whether such a
picture is plausible. But if it is, it will inevitably demand profound methodological departures
from available techniques for its proper treatement. In particular, the acting forces are
likely to be nonlocal. Neverthless, it is known that local forces not derivable from a potential
constitute a rather good approximation of nonlocal forces. This yields the idea of strong

hadronic couplings as not derivable from a potential, that is, a  clags of models. which, at

the primitive Newtonian level, is exactly given by models (3. 9. 6) « The potential significance

of the Lie-admissible formulations is then self-evident.
In my opinion, however, none of these applications will reach a physical depth of any
significance unless the problem of the applicable relativity for forces not derivable from a

potential is first solved.
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*) Secret passage to bi,
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SECTION 4: THE CONJECTURE OF A LIE-ADMISSIBLE COVERING OF THE GALILEI
RELATIVITY IN NEWTONIAN MECHANICS.

As a result of the laborious journey outlined in Sections 2 and 3, I have finally been in a

position to confront the problem of

the relativity laws of Newtonian Mechanics.

My efforts can be summarized as follows.

0
CONJECTURE 4.1: Consider a local, class C_, regular, unconstrained, conservative

(selfadjoint- SA), Newtonian system o N particles in the physical space

(B) = %R, £ 2 W

s
a=*N%y
of the Cartesian coordinates of the reference frame of its experimental detection

and linear momenta Wwith equations of motion in the (unique) contravariant normal

e [ LF_Z eyl to, (424)
Q:}A) = ?«« ) J fka: —?D:Km ! Q‘”lb)

and physical, conserved quantities

(k. 32)

/
k o
P tot = = Pe = :z M Zy =A% X, %Y, (k.38
° k=1 as =t
by ' — 4 X5, Xy X (&.3¢)
= =) Xe X (4.3
JUa = f ’w\('ﬁp—&ﬁt‘al— {A?’ 9, Xt:ll )

Then the applicable relativity, the GALILEI RELATIVITY, is characterizable in

terms of the following formulations.
(A) ANALYTIC FORMULATIONS, essentially consisting of the representation of

the equations of motion with the conventional Hamilton's equations

bP- Tz B - wl k) | (4
rv - [Pz /iZHxZ--N(Db
(™) = (b.leb)

- /L'H‘Ix}H O}Hx}n’ /
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the canonical characterization of the physical conservation laws
PRI MR LT
L, ° P I v 4 -
g ae ) PE b S ot

and related canonical formulations (canonical transformations, etc,).

(B) ALGEBRAIC FORMULATIONS, essentially condsting of the universal enveloping
associative algebra JUG(3. 1)) of the Lie algebra G(3.1) of the Galilei group G(3.1)

Aeevy - T/ @, (+.¢)

oﬁ/ =feG®G ®G® -, (X = Assoc., (&.6b)

@ : ZXL‘,X)-Y - (Xz@)(,“xf ‘S’X{); (4.6¢)

the Galilei Lie algebra G(3.1) in the neighborhood of the identity transformations
© - K
g(&i)x‘f}zég‘(},l))] : [X ¢, X)’j: C‘:), Xk , (4—. 7)

thelie group of connected, finite, canonical realization of the Galilei transformations
) w P Xy 2 o
G b o e D16 2b pr, (48

(o) { bz s aprsxy, (4FY

and the use of the Lie's theory (representation theory, etc,).

(C) GEOMETRICAL FORMULATIONS, essentially consisting of the characterization

of the equations of motion as a globally Hamiltonian vector field (for autonomous cases)
T w, =y, T b s o] =K bk
— ” tob 2
&%)

with respect to the fundamental symplectic structure
v P

for the autonomous case (with a contact extension for the nonautonomous case), the
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characterization of the physical conserva tion laws in terms of the Lie derivative

(for autonomous generators)
QZ >< = O ( 4‘, /l)
- Lt !

and the use of the symplectic (or contact) geometry.

Consider now a nonconservative (nonselfadjoint-NSA) extension of the system due to

Qo
local, class C ~ , regular, additive, Newtonian forces not derivable from a potential

with equatxons of motion .

[BF-Zre, ;,)] I =] *’ﬁm

Cie-12)

where
(=) (=) - (1 (B

, ou L
kﬁ\ = = fb;axu 7 ka (Dz}x +d—£: fat'ka\'

in which the original system (4.2a) is the maximal associated selfadjoint system.

Then the relativity which is conjectured as applicable in the physical space of the

Cartesian coordinates x:ka of the experimental verification of the system and the linear
_momenta Pra = mkrka’ here called GALILEI-ADMISSIBLE RELATIVITY, is characte-
rizable in terms of the following covering formulations.

(A') COVERING ANALYTIC FORMULATIONS, essentially consisting of the representa-

tion of the equations of motion with the Hamilton-admissible equations

A An _ 1M oR(Es ’DHEIUJ)} (+-ka)
oS rem e b ) S

eypv OHp

i

w/uvrb_ﬁ_"i T“}‘ ﬁ(el‘ (5’“’)-‘#0'
Db

RY. (4. 145)
o) 1
v (Db)-\ AN k3 3N % 3N
(6» )”— (/DTVJ = ‘D?_i—a> @P“\) (¢ 14e)
DTk

the canonical-admissible characterization of the physical nonconservation laws

. ¢ KD__>_<L_ P‘/DH:,F ()Xl o,
X, <><L,leo> 2 - St SE ”Df(j;)

and the canonical-admissible formulations (canonical-admissible transformation

theory, etc,) .
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(B") COVERING ALGEBRAIC FORMULATIONS, essentially consisting of the general ,

Lie-admissible genotopic mapping of the universal enveloping associative algebras

of the Galilei Lie algebras induced by the nonconservative forces

(& (3)) = ”%\’/G’i , (4.1éa)

(k. 16b)

"N
olé = F@Q@Cj@g@..,/ @:Namﬂs:oc./

R D, ], - (e -XoX)

the Lie admissible genotope of the Galilei Lie algebra in the neighborhood of the
identit
i R DXy

l

G (3.1) ° (Xt/X) = @ op (4.47)
/_T
-, "l ><))<K ,

with attache d isotope

(4-, lte)

COXi pmv DXz

W Gy iy

G %O [Ulao I LXL,X]M Spk C6) W gam)
= CEWXe QS-S0 Gr Bt GG,

the Lie-admissible covering group of the canonical realization of the Galilei group

~ A [ 5 @ (DXI.
G (3.4) s LMo e ¢i) Gb)/bbp@bo( b/“ 64"/?'1)
/

{07 - {b 2. =, B, Xo), (4198

with attached isotope

(9502 ( b) DX O
G¥a.: b= e D58 Db WNCED

G*¥(3.n 2 G (3.) ﬁé(zi)

and the Lie-admissible formulations (representation theory, etc.).
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(C') COVERING GEOMETRICAL FORMULATIONS, essentially consisting of the

characterization of the nonconservative vector fields as globally Hamiltonian-admissi-

ble

A L AT b dH = gt
;852=51_ of b “—f*@”j A fbb”(4:;))

with respect to the general, fundamental, symplectic-admissible structure for the

autonomous case (or contact-admissible structure for the nonautonomous case)

(4.22)

A ) /1
6?_ =E(.6)W+‘5v/«)e“o xﬂuov
| M v

+ 7 Spv - Sup ) b adbY,

the characterization of the physical nonconse rvation laws via the Lie-admissible

derivative (for autonomous generators)
A ><
# O
ozﬁ — "N f

and the use of the symplectic-admissible (or contact-admissible) geometry.

(4.23)

A few comments are here in order. L et me recall that one of the first meanings of the terms
"relaEivity" is that of referring to a form-invariant description of physical reality. And indeed,
one of the crucial properties of the Galilei relativity within its"arena of unequivocal applicability "

is that of the form-invariance of the equations of motion under the Galilei transformations,
_ . Q 7R .. £ R
- g2 — ! .
GO [MeF - T (D)0 — [l %] - £ ox )}S:o (4-24)
SA A

As by now familiar, this property of the Galilei relativity fails to apply for the considered

class of broader systems which now are form-noninvariant under the Galilei transformations
R SR
- .o f F - ! T .s) ‘G (’Z‘
Gy [ f G Bl £z = e S8 -
sé @ (425"

This is, in essence, one of the arguments for the need o’f reinspecting the problem of the

<

relativity laws in Newtonian Mechanics.
Neverthless, the need of a form-invariant description of physical reality persists for

any possible relativity. But the symplectic-admissible contration of the contravariant noncon=

20 R SR
! Vo
- F 0030500
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servative vector field yields the covariant conservative form of the original system, Eq.

(4.21). This suggests the following

SUBCONJECTURE; 4.1. A: The Galilei-admissible transformations (4. )9 ) leave

form-invariant,%‘oncnnservative, nonlinear, explicitly time dependent equations

of motion 7{?4;7
R o R &R ik
G (03 | [ € o)) G i}b,ﬁ,z)2(=o - Lw.:’ci.-&.&')_\[ - F ol g)r=o,
. A s N
(&.26)

It is here essential to assess the plausibility of this subconjecture with explicit examples.
In turn, these examples will be useful for the subsequent considerations of this section.
In order not to obfuscate the primitive concepts with unnecessarily complex algorithms,
I shall consider some of the simplest possible examples.

Consider the case of the free, one dimensional motion (in vacuum). Its contravariant normal

(&-27)

form (4. 2 ) is given by

(b " ) — )_‘> _ z _ P ) m=-"1.
The canonical formulations of the group of translations in time, the T 1(t) subgroup of group

(4. & ), explicitly reads

- 2 . ,
dn b b Lo SEfOAT e e e
P b bepetze £ fTpot ilree s 2

yielding the canonical version of the translations in time

po= P (4.2956)
where now r and p are (costant) initial values, The derivative with respect to (the new)
time to then establishes the form-invariance of Eqs. (4.27 ) under transformations (4.29)

because, trivially in this case,
.y . )
2’ =Pp=Fp
P' ) = o.

(&.30)
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We now break the Tl(t) symmetry of Eqs. (4.27) via the motion in a physical medium which
results in dissipative forces and no force derivable from a potential(under the assumption that
Egs. (4.2 ) are the maximal associated selfadjoint subsystem of the more general nonconservative
system), This latter point is mainly due to the advantage of avoiding the redefinition of the
Hamiltonian and can be easily disposed of.

A significant point is the nature of the breaking of the Tl(t) symmetry. As indicated in
Table 2,14, the essentially nonselfadjoint breaking is in this case unrealizable owing to the
insufficient dimensionality. We then remain with the canonical and semicanonical breakings.

We clearly select the canonical breaking because it implies an explicit dependence of the dissipative

force in time, The selected nonselfadjoint extension of Eqs. (4.27) reads

. . L ¢
@) (3600 40- (1)-(0)- (2,)-(Eabus
=/ ¥ 0 TEp X’ + Zf P
4. -
with a manifest breaking of the Galilei subsymmetry under translations in time,
Now we put the Lie-admissible formulations at work. First, we must construct a representa-

tion of Eqs. (4.3]) in terms of the Hamilton-admissible equations via Theorem 3. 4,1, This

is easily accomplished by solving Eqs. (3.4. 4 ). The desired representation can be written
L) I 2—
VR LY 2M o IR = i(—%—'ﬂﬂ,z} , H=g P (4320)
DY 1%
Q _yt -4 (4.32b)
) (D \o" < 1 o

Although not essential, it is instructive to verify that the inner-admissible product (4.2 | )
does indeed reproduce the covariant form of the original conservative system. And indeed,

we simply have in this case
AV - }g F - p @ )
Spv = ) = < =)= 5
oo\ | b
(4.332)
This gives hape of identifying covering transformations via a Lie-admissible embedding of

the @ alilei transformation (the Hamiltonian H of Eqs. (4.32.) remains fully invariant under

Galilei transformations).
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It is here simple to see whether this is indeed the case. The Galilei-admissible covering

of transformations (4. 2ﬂ ), from Egs. (4.9 ), are given by

('k H) + _b.i_ ((’5,“) };‘)f--” A-/
P :}3“:"! (b H) ((}QH) [T PO

where now, of course, the expansion is in terms of the Lie-admissible product
(8,B) = chvdB 08 8 TQADB _H?@(DB (4.35)
”Db" ol Tdr Op P PP
Simple calculations then yield the finite, connected, one-parameter transformations
T £ =z CQ Ytre_ 4y, (k.36a)
4 E F e_.&‘tb-? (4-365)

which constitute an example of a Lie-admissible group (Definition 3.6 . 3) because they are

7=t o (4-3ha)

(4.24b)

constructed in terms of the same base manifold (b/* ), the same generator (H) and the same
parameter (t ) of the Galilei subgroup T (t)

By performing the derivative with respect to time in exactly the same way as per Eqgs. (4.30),
we have = }f FEo A

Pe =T
—rbbe T g (+-375)

A
Thus, the Galilei-admissible covering T ,(1) of the Galilei group of translations in time Tl(t)

(4— 37a)

B> N»

leaves form-invariant the explicitly time-dependent equations of motion (4.3/).

The connectivity of transformations (4.36 ) is selfevident. We then remain with the un-
compromisable consistency requirement that the covering transformations (4.36 ) must
recover the Galilei transformations (4. 2" ) identically at the limit of null symmetry breaking

forces. This is easily established by the property
. - = .38
'ew‘““ TL(L') ’l Zz + to ‘93 T (t‘) ' (_lf )
=0 P

As a result, the Galilei-admissible transformations (4.36 ) do constitute a consistent

covering of the Galilei transformations (4.2‘] ) for the form-invariance of the system considered,
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Egs. (4. 34) also provide a canonical breaking of the symmetry under the Galilei boosts.
It is therefore instructive to study this case too. First, to avoid possible misrepresentations, We
must reinspect the case of the exact symmetry, that is, Eqs. (4.27). This is symply done
by computing Eqs. (4.8 ) for the generator G = -tp (m =1)
.
2 = 2+ %o{. [2,Gl+ {-"/- [Tz, G, Gl+ - 1 (4_,2‘7)
i Ao E 8 - aae
F :\}’*LEF’,GZ*“ ° [LP/G] GZ* /
FRs 2! /
ylelding the one-parameter group of Galilel boosts ‘
)
G ) 2'= 2 - pot o= Vo . (4. 4o)
. ) )
+ k“' = *’ - F 2y
The derivative in time (r now varies) yields
- — L)
B (e
- ) °
= = O
p'= P /

by therefore establishing the f orm-invariance of Eqs. (4.2 7 ) under the group Gl(v).

i}

In the transition to the nonconservative extefision (4. 31 ) this symmetry is manifestly broken.

We therefore again put the Lie-admissible formulations at work. An additional technical
point however must now be taken into account, It is constitutedb by the fact that the Lie-admissi~

ble tensor § generally varies with the generators. Since the generator is now (r-tp),a new

mv
(i)
Lie-admissible tensor must be computed . With an understanding that the techniques for this

computation are highly rudimentary at this point, a solution is given by IR ¥ tz_
- a

t
v > o
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=P - oL = e, (4. 42¢)
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This example is indicative because it presents a transcendental function, from Eqs. (4. 42a),
in the transformation law. This indicates that the Galilei-admissible transformations can be
rather involved even for simple systems. This was, after all, expected, because it is a feature
common to all nonmanifest symmetries, while the covering Galilei transformations
which- are needed for the form-invariance of the systems considered must be nonmanifest
by central requirement.

Eqgs. (4.3]) also provide a semicanonical breaking of the group of translations in space.

The equations of motion are form-invariant under these transformations, but this symmetry,
by no means, is in this case representative of the conservation of the linear momentum. The
study of this case is left to the interested reader. We hope to treat in a separate study the
case of the Lie-admissible covering of the group of rotations.

For subsequent needs,the reader should keep in mind that all our efforts have been centered
in attempting the construction of covering transformations, that is, transformations which
apply to a broader physical context (form -invariance of nonconservative systems) while are
capable of recovering the conventional Galilei transformations identically at the limit of
null Galilei relativity breaking forces (this is the aspect which we have referred to in Section
3 as our uncompromisable condition of compatibility). Thus, the Galilei relativity is mot
"destroyed"” but simply embedded in a broader context. As a matter of fact, the Galilei-admissible
relativity, as presented in Conjecture 4.1, cannot even be constructed without the use of
the conventional Galilei relativity as a foundation,

Despite this compatibility of the Galilei relativity with its conjectured Lie-admissible
covering, the latter relativity appears to produce a rather profound conceptual departure
from the former relativity, as we indicate below.

As is well known, one of the conceptual foundations of the Galilei (as well as Einstein)
relativity is the lack of existence of a previledged frame of reference. But this relativity
refers to the motion of particles in vacuum with action-at-a-distance forces derivable from
a potential. The physical context we are here considering is profoundly different than that.

In particular, one of the conceptual foundations of the theory of nonconservative systems is
the existence of a medium which is responsible for the energy dissipation. Thus, in the transi -

tion from the Galilei relativity to the conjectured Galilei-admissible covering, the conceptual

profile is shifted from motion-in-vacuum with action-at-a-distance forces to motion-in-a-

physical medium with action-at-a-distance and contact forces.

Cur problem is to see whether the lack of existence of a privil edged frame can be preserved

within such a broader setting. It is at this point where the joint study of the Newtonian framework
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under consideration and its possible relativistic extension is effective because difficulties of the
former can be magnified in such a relativistic transition. The results of my efforts in this

issue can be presented with the following

SUBCONJECTURE 4. 1. B: The Galilei-admissible relativity characterizes one class of refe-

rence frames, those at rest with respect to the medium in which the motion occurs,

as priviledged with respect to any other frame,

Consider the motion of a particle in a medium, say, our earthly atmosphere. The "natural”
reference frame which is customarily used in practical measurements is that which is at rest
with respect to the medium. The term "priviledged" in Subconjecture 4.1.B is intended to express
the fact that (a) the equations of motion are not form-invariant under ordinary Galilei transforma-
tions to other admissible frames, (b) the frames induced by Galilei-admissible transformations
are not expected to be practically realizable with experimental set ups (see below), and, thus,
(c) the reference framesat rest with respect to the medium possesses a unique character for direct
experimental measurements,

Admittedly, the indicated conjecture appears not entirely justified at a Newtonian level, owing
to extended practice of yse of velocity transformatjons. It is therefore of some possible

significance to indicate the correspondirg occurrence at a field theoretical level. The field

ER
. TR 5
{[_(D + mt)er - Jr(e, (aQ/o,:‘)Ia_ I)‘(x"ile,o“’/rax-l) =0,

equations are now of the type (for the second-order case)

Nsa
(b3

s Ot 2,3
and are subjected to the following interpretation: (I) Eqs. (4.43) are assumed as constituting an
approximation of the motion of a particle (the field (2 ) within a hadronic medium (a hadron
or a neutron star); (II) the variables xvl of Eqs. (4.43) are the coordinates of a Minkowski frame
whose space components are at rest with the hadronic medium, and (III) strong dirMeractions are giventy
couplings derivable as well as not derivable from a Lagrangian density, the latter being
representative of the the motion of a finite, nonull, charge volume within the medium eonsidered
(see also the remarks at the end of Table 3.9). These aspects are discussed in details in ref. 33c'
At this point I would like simply to indicate that, on grounds of my current knowledge, I am
unable to compute Egs. (4.4%) in any other frame related to x by the conventional
Poincare transformations x' =/ x + a, because the field € does not @ecessar.ily)transform
covariantly under the Poincare’group, as indicated in ref. with a linearization process.

As we shall see in more details in ref. 33c, the m jor technical difficulties appear to be related
to the Lorentz boosts which are precisely the relativistic extensions of theGalilean velocity

transformations,
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Another crucial aspect of the problem of the relativity laws of nonconservative mechanics is
that related to inertial characterizations. The Galilei relativity, within its own arena of applicability,
does indeed provide an inertial characterization of physical reality in the sense that it is
applicable to the r eference frame used in experiments and conventionally assumed as inertial, while all
other frames induced by the family of Galilei transformations preserve such inertial character.
As a matter of fact, the lack of existence of a priviledged reference frame is a consequence of
these properties and of the form-invariance of the equations of motion.

In the transition to nonconservative systems the situation appears to be considerably different.
First of all, the medium in which the motion occurs is not, in general, in inertial conditions. This
is typically the case for the earthly attnosphere (or a hadronic medium). Also, the transformed
reference frame under the broader relativity group wh{ch leaves form-invariant the nonconservative
equations of motion is expected to be generally noninertial irrespective of whether the original
frame was inertial or not. This is due, for instance, to the functional dependaice of the variables
b}A in Eqs. (4.]9) on the old variables b}; the generally nonlinear nature of the representations of
the nonassociative envelope GZ,L(Q(S. 1)); the generally nongeodesic character of the motion, etc.

This sitvation (which appears to be, again, better focused when studying motion of hadronic
constituents under the assumption that they are physical particles-that is, non-point -likes’ s3c )

suggests the following

SUBCONJECTURE 4. 1.C: The Galilei-admissible relativity provides a generally noninertial

characterization of nonconservative and Galilei form non-invariant systems.

Here the term "noninertial” is referred to the character of both, the original and the transformed
systems under the Galilei-admissible transformations.

In essence, the inertial frames of the Galilei (and Einstein) relativity are a conceptual abstraction
because no experiment in an inertial frame has been actually conducted to date and it will not be
conducted until a sophisticated interplanetary (or interstellar) technology is available, Thus, by
looking in retrospective, my efforts were aimed at the construction of a possible relativity which
is noninertial by central conception and, thus,usable in actual Earthly experiments, while admitting
the conventional inertial formulation at the limit of null dissipative medium.

Almost needless to say, the number of problems I am here leaving open is too large to suggest
an outline. In any case, they will not escape to the attentif reader. Some of the open problems deserve
a special mention,

(A) Scalar extensions. Undoutedly, a more rigorous treatment of any applicable relativity for

nonconservative systems will mecessarily demand the use of the scalar extension of the Galilei grpup.

(B) Integrability conditions . The conditions under which exponentials (4.19) exist demand a specific
study.
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(C) Desired "relativity ', There exists an epistemological aspect which also deserves attention.
Owing to the unexplored and unresolved nature of the topic, different researchers may have basically
different objectives which, in turn, could imply basically different meanings of the word "relativity".
Some researcher may demand so stringent conditions that no "relativity" is admitted for nonconserva-
tive systems. Other may demand so few conditions that the emerging "'relativity" has no physical effe-
ctiveness comparable to that of the Galilei relativity. Yet other researchers may reject any final s
future '‘relativity" because excessively different than that characterized by decades of familiar use,
the conventional "Galilei relativity", This is not a mere question of semantic. Instead, it is additional
indication of the fact that the problem of the relativity laws of Newtonian mechanics is still unresolved
as of today. The problem of the identification of the applicable relativity for physical systems more
general than the conservative and Calilei form-invariant ones, however, persists. The mental attitude
which is recommended is that, in any case, the researcher should expect a prodound departure from
conventional relativity ideas because of the profound physical departure from conservative settings
represented by nonconservative mechanics. The epistemological attitude which is suggested to avoid an
unecessary controversy is the identification of the used term "relativity"” in a way as precise as
possible, The technical attitude which is advocated is to put primary emphasis on the methodological
tools for the study of forces (or currents) not derivable from a potential. The emerging relativity is
then conceivably sequential.

Within the context of this paper the term "relativity" is referred to a "form-invariant, noninertial
characterization of local, class Cm, regular, unconstrained Newtonian systems with arbitrary forces
via a Lie-admissible covering of the Galilei relativity, within the reference framesat rest with respect
to the medium in which the motion occurs." This is equivalent to saying the the term ‘relativity" of
this section is defined by Conjecture 4,1 and its subconjectures.

In closing, permit me to emphasize the use of the terms CONJECT URE and SUBCONJECTURES in

the presentation of my relativity efforts. With this, Iintend to stress the fact that the verification

of the validity, invalidity or need of implementations of my studies is entirely left to interested ,

independent researchers.

Let me also indicate that, when the relativity which is applicable to systems (4.12) is finally

identified (irrespective of whether it will be of Lie-admissible type or not), by no means should

this broader relativity be considered as the "terminal relativity" of Newtonian Mechanics. For

instance, my studies exclude the case of nonlocal forces (even though these forces possess some
degree of implementation in Lie-admissible formulations via solution of the crucial Equations(3.4. 4)
of integrodifferential nature). This is a first illustration of my belief indicated in Section 1 according

to which Theoretical Physics will never admit terminal disciplines.
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5: CONCLUDING REMARKS ON THE CURRENT STATUS OF RELATIVITY IDEAS.

It might be of some significance to biefly touch on the potential implications in non-Newtonian
frameworks of possible relativity imple mentations at the Newtonian level. This problem is
opened by the truly elemental nature of Newtonian Mechanics far theoretical physics.

Let me first indicate one "arena of unequivocal validity" of the Galilei relativity, the
Einstein special relativity and the general theory of gravitation andthen pass to the speculative part
of the issue.

The validity of the Galilei relativity (as currently known) for the motion in vacuum of particles
under forces derivable from a potential and form-invariant under the Galilei transformations is
simply unequivocal. Thus, the Galilei relativity , within such anarena, can indeed be qualified
as constituting a scientific truth.

Neverthless the limitations of the Galilei relativity for other arenas of physical systems was
known since the earlier stages of the electromagnetic theory. These limitations motivated the
conception of a covering relativity for the electromagnetic interactions. The validity of the
Einstein special relativity for the relativistic motion of charged particles in vacuum under ut
most electromagnetic interactions is also unequivocal. Thus, the Einstein relativity too, within
its own arena, can be qualified as constituting a scientific truth.

In turn, the special theory of relativity was known to possess limitations at the very time
of its inception., These limitations motivated the conception of a still broader relativity for
the inclusion of the gravitational phenomenology. The validity of the Einstein general theory
of relativity for the exterior problem appears to be also established on rather solid experimental
grounds. Thus, the relativity indicatedlin its own arena, can also be qualified as constituting a
scientific trath.

Intriguingly, the indicated.three arenas of applicability of the respective chain of coverings
appear to admit a unified characterizati on within the context of the Inverse Problem in Euclidean
space, Minkonski space and Riemannian space, respectively. In essence, all admitted models
are derivable from a variational principle in the respective carrier space. This implies that
the models are variationally selfadjoint. A closer inspection then indicates that the admitted
forces are variationally selfadjoint. This is typical the case of the electromagnetic force in
Newtonian mechanics, special and general theory of relativity.

Pending independent verification by interested researchers, in the diagram below I attempt
the characterization of one arena of unequivocal applicability of the relativities considered
via the variational selfadjointness of the admitted forces in the underlying carrier space.

The diagram is intended as a complement of the diagram of Section 1.
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Galilei relativity
Forces: SA
Einstein special theorv of relativity Einstein theory of gravitation for the exterior problem
Forces:SA Forces:SA

But this implies that all admitted forces have the primitive Newtonian form

£ DU d 2u (5)
w TT Am Tdros
A s
It is known that these forces, by no means, exhaust the forces of physical reality. This creates
the problem of the applicable relativities for broader, or better, the broadest ‘conceivable forces.
Before presenting few conjectural remarks in this respect, let me recall that theoretical
physics is a science with an absolute standard of value: the physical reality. Until theoretical ideas
lave been experimentally proved in unequivocal terms ,they constitute conjectures, not
scientific truths, This is . not intended to diminish the value of conjectures for the nowadays
established scientific process (presentation of ideas, critical inspections by independent
researchers, and experimental verification). I\feverthless, too often in the history of physics
the behaviour of originators of new insights has been genuinely scientific because critical of
experimentally unverified knowledge, while the behaviour of their followers has been strictly
antiscientific because inspired by an unlimited belief of unlimited applications. This is not the
place to recall the historical inapplicability of previously established knowledge for the problem
of the atomic structure or the more recent, but equally historical, discovery of parity violation.
With an open mind on these issues and with a firm betlief of the limitations of our Jaowledge '

as compared to the complexities of the physical universe, let me pass to the speculative comments.
The central objective of this paper was to indicate that the problem of the relativity laws

of the nonrelativistic motion of particles is still open as of today on theoretical grounds Q This

is so irrespective of my personal, conjectural efforts. Notice that the experimental aspect has
been excluded in the above statement because established by centuries of knowledge on Newtonian
forces.

In the transition to the case of the relativistic motion, the situation becomes considerably
more nebulous, delicate and insidious. The unequivocal validity of the Einstein special relativity
for the motion of hadrons under electromagnetic interactions is, by no means, evidence of the
validity of the same relativity for the hadronic constituents, It is true that the virtual totality

of our theoretical knowledge of hadron physics is based on the Einstein special relativity. But this’
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besides indicating undeniable plausibility and scientific values, strictly speaking ,

does not constitute evidence of the validity of the sbecial theory of relativity for the
hadronic structure, Again, Einstein® special relativity can be claimed as constituting a scientific
truth within a hadron only when experimentally proved in unequivocal terms. Lacking this
veriﬁcationl the relativi‘;); Eonsidered in the arena considered is only a conjecture,

In the recent paper , R.M.SANTILLI has proposed the experimental verification of
the validity or invalidity of Einstein' special relativity for the hadronic constituents. The episte-
mological argument is essentially the following, If the strong hadronic forces are analytically
equivalent to the electromagnetic forces, that is, derivable from a potential (in the sense, e.g.,
of refs.a 3 ), then Einstein 's relativity is'expected” to apply. However, if the strong hadronic
forces are structurally nonequivalent to the electromagnetic forces, that is, not derivable
from a potential (in the sense of ref>s. ), then Einstein' special relativity is "expected" to be
invalid. It should be stressed that the term "expected" has exactly the same implications in both
occurrences, In the former the relativity could, in the final analysis, be violated for reasons
unrelated to the structure of the acting forces and unknown at this time. In the latter the relativity
could, instead, apply irrespective of the nature of the acting forces,The net effect is that the
issue considered does not appear to be resolvable at the theoretical level only. Intriguingly,
the problem of the relativity laws for the hadronic constituents appears to be linked to that of
the nature of the strong hadronic forcesigl 22b

As an incidental remark, forces not derivable from a potential can be extended to a relativistic
context in more than one way. This opens two possibilities of studies which are opposite in
conceptual attitude: the compatibility and the incompatibility of Einstein'special relativity for forces
not derivable from a potential. Clearly, both possibilities must be studied and subjected to a
comparative confrontation with physical reality, As it was the case for the Galilei relativity, the
studies of .a possible compatibility of the relativity considered for the forces consi-~
dered will be left to the interested researchers. In the forthcoming paper% CI present few
conjectural arguments related to the opposite line of studies. In any case, the truly fundamental
aspect appears to be of Newtonian, rather than relativistic nature. And indeed, if a covering of
the Galilei relativity will result to be needed at the Newtonian level, this will conceivably imply
a subsequent, necessary modification of Einstein special relativity (e. g. , the reader is urged to
verify that Einstein' special relativity is incompatible with a possible Galilei-admissible rela-
tivity because the first of strict Lie algebraic character while the second of strict non-Lie alge-
braic character).

In conclusion, what we can state at this moment on grounds of necessary scientific caution

is that the problem of the relativity laws of the hadronic constituents is open on both theoretical
54

and experimental grounds. For a more detailed study of this occurrence (as well as of the

33c

spirit of an open, scientifically productive debate for which it is intended) see also ref,
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The last issue, the problem of the Einstein general theory of relativity for the interior
problem, is even more delicate and more likely subjectable to opposite personal viewpoints.
On experimental grounds one could attempt a semplistic Ttesolution of the issue by saying
that all available experimental verifications of the general theory of relativity are for the
exterior problem because no clear experimental test exists for, say, the interior of a star.
The net effect is that the validity of the theory for the exterior problem, by no means, should
be considered as evidence of the validity of the corresponding theory for the interior problem.

Here a subtle but potentially significant parallelism with the hadronic case occurs. By

ignoring gravitational considerations, the validity of the special theory of relativity for the "exterior
behaviour’ of hadrons under (ut most) electromagnetic interactions is established on solid experimen-~
tal grounds, while the validity of the same relativity for the "interior problem" of the hadrons,
that is, the structure problem, is not established and, as a matter of fact, questionable. With
the inclusion of gravitational consideratiors the situation becomes considerably more involved on
technical grounds, but conceptually equivalent. The geodesic behaviour of test particles in the
Riemannian characterization of the exterior problem of, say, a start, appears to be established
on solid grounds. In the transition to the interior problem the situation is different and opposite
attitudes ¢an k&, again, implemented. The first attitude is that of attempting the compatibility
of Einstein' relativity ideas for the interior probl'em with possible generalized forces which are
conceivable for the hadronic structure. This line of study is, of course,valuable and recommendable.
An opposite line of study is instead attempted in refs. . In essence, the forces not derivable from
a potential, upon implementation into a gravitational context, do not appear to be necessarily
compatible with Einstein' general t heory for the interior problem(on]y) on numerous technical
and conceptual grounds, such as, the emerging equations of motion for the interior problem
are nonderivable from a variational principle by central assumption, there is the M_ of
curvature as geodesic deviation, there is the lack of conservation laws, etc. To account for
the availaH e experimental evidence, the gravitational model which is attempted is that based
on Einstein's equations for the exterior problem, but interpreted as subsidiary constraints to
a more general, nongeodesic, non-Riemannian model for the interior problem.

In conclusion, what we can state at this moment on grounde, again, of scientific caution,

is that the intertor problem of the theory of gravitation is open on both theoretical and experimental

Eounds .5 a

My personal belief is that the problem of the structure of the hadrons is of a complexity

beyond our most vivid imagination, the latter being that materializable in terms of our knowledge

- 407 -

on the relatively simpler atomic and nuclear structures. In turn, the interior problem of
the theory of gravitation is of relatively much greater complexity because clearly inclusive
of the problem of the hadronic structure with additional gravitational considerations. Once
mass terms in gravitational equations are recognized as technical expedients to overcome
our ignorance on the structure problem, the complexity of the interior problem appears in
the proper light In the language of ref.sit is the problem cf the "origin" of the gravitational
field.

Therefore, our current knowledge on the relativity laws of the physical universe, rather

than baving reached a terminal stage, appears to be potentially open to new, intriguing horizons.
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INDEX

ADJOINT SYSTEM, 244

ALGEBRA, 305

ADMISSIBLE PATH, 246

ADMISSIBLE VARIATIONS, 244

ANALYTIC REPRESENTATION,
first called, 338; defined 243
Lagrangian, ordered direct, 244, 250
Lagrangian, ordered indirect, 244, 252
Hamiltonian, ordered direct, 257
Hamiltonian, ordered indirect, 269

ASSOCIATIVE ALGEBRA, 305

AUTONOMOUS SYSTEMS, 258

BAKER-CAMPBELL-HAUSDORFF FORMULA,
Standard realization, 335
Isotopically mapped realization 335,343
BIRKHOFF 'S EQUATIONS,
Defined, 259
Time evolution law, 260
Derivation from variational principle, 261
Geometrical treatment, 263
Transformation theory, 322, 326,
BIRKHOFFIAN VECTOR FIELDS, 266
BROKEN SYMMETRIES,
Internal 233,
Discrete, 233,
Space-time, 234,375-383
BREAKINGS OF THE GALILEI RELATIVITY
See: Galilei relativity
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CANONICAL TRANSFORMATIONS
As Lie identity isotopic transformations, 321
Generalized, 321
Infinitesimal, 326
Generalized infinitesimal, 326
CANONICAL-ADMISSIBLE EQUATIONS, 316
CANONICAL-ADMISSIBLE GROUP, 325
CANONICAL-ADMISSIBLE TRANSFORMATIONS
First called, 323,
Defined as Lie-admi ssible isotopic, 325
Realization as Lie-admissible covering
of Lie's transformation theory, 344
CANO NICAL FORM, 264
CANONICAL GROUP, 322

‘CHIRAL LAGRANGIANS

Essentially chiral, 276
Nonessentially chiral, 275
CLOSURE CONDITIONS, 263
COMMUTATIVE JORDAN ALGEBRA, 302
CONDITIONS OF SELFADJOINTNESS
See: selfadjointness
CONSERVATION LAWS
First called 234
Defined, 282 (Ist integr.), 266 (Lie derivative)
Broken, 234, 377-383.
CONTACT
(Manifold), 267
Form , (Structure), 268
Chart, 269
CONTACT -ADMISSIBLE
(Manifold), 374

GeOmetry

Geometry
Form, 374

COVARIANT (and CONTRAVARIANT)

Forms of the Hamilton-Admissible Eqs, 315
COVERING

Concept of, 228

DARBOUX -WEINSTEIN THEOREM

Quoted, 266

Symplectic-admissible covering, 372
DIRECT PROBLEM

of classical mechanics, 238
DIFFERENTIABLE STRUCTURE 263
DYNAMICAL SPACE, 317

Fundamental brackets 318

ESSENTIALLY NONSELFADJOINT SYSTEMS, 270
ESSENTIALLY SELFADJOINT SYSTEMS, 271
EXPONENTIAL LAW
Defined (standard realiz,), 334
Isotopically mapped, 334
Genotopically mapped, 343
EXPERIOR ~-ADMISSIBLE
Product, 365
Form, 366, 366
Sum, 365
Derivative, 365
Calculus, 364
FIRST INTEGRAL, 281
FLEXIBLE LAW, 307
FLEXIBLE LIE-ADMISSIBLE
Algebra, 307
Law, 307
FLEXIBLE SYMPLECTIC-ADMISSIBLE
Manifold, 366
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FOULING TRANSFORMATIONS, 275
See also Isotopic transformations
FUNDAMENTAL
Lie-admissible (dynamical)brackets, 318
Poisson Brackets, 318
Symplectic structure (or form), 264,

Symple.cﬁc -admissible structure (form), 367

GALILEI RELATIVITY
First called, 226
Defined, 390
élassificatjon of breakings
~Essentially nonselfadjoint breaking, 296
-Canonical breaking , 295
-Semicanonical breaking, 293
-selfadjoint breaking, 292-
-isotopic breaking, 291
GALILEI-ADMISSIBLE RELATIVITY
First called, 235,
Defined, 392
GAUGE TRANSFORMATIONS
In Newtonian Mechanics, 270, 274
GLOBAL HAMILTONIAN VECTOR FIELDS, 265
GENERAL LIE-ADMISSIB LE LAW, 306
GENERAL SYMPLECTIC-ADMISSIBLE
Manifold  (Geometry), 369
GENOTOPE, 376
GENOTOPIC FUNCTIONS, 338, 341
GENOTOPIC MAPPING
First called, 275
Of algebraic prcducts, 326
of Poisson Brackets, 337
Infinitesimal, 328

Finite, 338



of Poincaré-Birkhoff=Witt Theorem, 339
of conservation laws, 337

of Lie-admissible type, 332

of Lie groups, 338

of the universal enveloping associative

algebra of a Lie algebra, 339

HAMILTON'S PRINCIPLE
See: Variational Principles
HAMILTON'S EQUATIONS
Without external terms,
- First Called, 230
- Defined, 256
- Selfadjointness of, 256
- Lie algebraic character, 263
- Transformation theory, 321
- Geometrical treatment, 265
With external terms
- First calleg, 231
- Non-Lie algebraic character, 300
HAMILTON-ADMISSIBLE EQUATIONS
Defined, 311
Nonselfadjointness of, 316
Lie-admissible algebraic character 312
Transformation theory, 323
Geometrical treatment, 372
HAMILTON-ADMISSIBLE VECTOR FIELDS, 372
HESSIAN MATRIX (DETERMINANT), 239, 248

INNER PRODUCT, 265
INNER -ADMISSIBLE PRODUCT, 372
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INTEGRABILITY CONDITIONS

for the existence of a Lagrangian or a Hamiltonian,

see: Inverse Problem

INVERSE PROBL.EM OF CLASSICAL. MECHANICS

First called, 231

Defined, 238

Characterized via
-Differential Geometry, 239, 265
-Cohomology Theory, 239, 243
-Functional Analysis, 239, 243
-Calculus of Variations, 238
-Variational selfadjointness, section 2

Integrability conditions, 245,246, 249, 250

Genealogical tree, 241

ISOTOPIC FUNCTIONS, 331, 333
ISOTOPIC MAPPING of

Abstract algebras 287

Lie algebras, 289, 321

Hamilton's equations, 290

Lie derivative, 373

Symplectic st ructure,290

Contact structure, 290
Variational Principles, 278

Lie groups, 330

Galilei algebra, 291
Lie-admissible algebras, 320, 330
Lie's theorems, 330-336
Universal enveloping associat. alg, , 352-354
standard monomials,353

of S0(3), 289, 330

JACOBI'S EQUA TIONS, 248
JACOBI'S LAW, 307
JORDAN'S LAW, 302

LAGRANGE's EQUATIONS
without external terms
~first called,230
-defined, 238
-Selfadjointness of, 242, 248
with external terms
- first called 231
- generalized, 315
LAGRANGE IDENTITY, 244
LAGRANGIAN,
First-order, 243
Second order, 243
Regular, 249
Degenerate, 248
Totally degenerate, 280
Generalized structure 280
LAGRANGE BRACKETS
Conventional, 262
Generalized, 262

Geometrical treatment, 263

LAGRANGE-ADMISSIBLE EQUATIONS,

First called, 298
Defined, 315
LEGENDRE TRANSFORM
Conventional, first called 258
Lie covering of, 261
Lie-admissible covering of, 319
LIE ALGEBRA IDENTITIES,
First called, 260
Violation, first called, 232
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LIE'S THEORY
First called, 260
Outlined, 329-335
First theorem, 330
Second Theorem, 333
Third theorem, 334
LIE DERIVATIVE,
Conventional, 26
Lie covering of, 373
Lie-admissible covering of, 373
LIE'S COVERING OF
Hamilton's equations, 261
Legendre transform, 261
Transformation theory, 322
Lie'sfirst theorem, 331
Lie's second theorem, 333
Lie's third theorem, 334
Poincaré-Birkhoff-Witt theorem, 353

Universal enveloping associative algebra, 353

LIE~-ADMISSIBLE GROUP, 342
LIE-ADMISSIBLE ALGEBRAS,

First called, 232

First defined, 305

First classified, 306

Fundamental notion, introduced, 354
Analytic origin of, 308 and 311
Algebraic treatment, in finitesimal transf., 328
Geometrical treatment, 366G
Galilei-admissible algebra, 393
SU(2)-Spin-admissible algebra, 384
SO(2) -admissible algebra, 347

Tl (t) - admissible algebra, 348



LIE-ADMISSIBLE PROBLEM
Of Classical Mechanics
First called, 233
Defised, 298
Outlined, section 3
LOCALLY-HAMILTONIAN VECTOR
FIELDS, 266

MANIFOLD, 263
MUTATION ALGEBRA, 306

NEWTONIAN FORCES, 245,246
NEWTONIAN SYSTEMS,
First called, 226
Defined, 238
General second-order form, 246
Kinematical second-oxder form, 245
General first-order form, 255
Normal first-order form, 257
Regular, 249
Degenerate, 249
Selfadjoint, 245, 255
Nonselfadjoint, 246, 255
Essemtially selfadjoint, 270
Nonessentially nonselfadjoint, 271
Essentially nonselfadjoint, 271
NONAUTONOMOUS SYSTEMS, 267

NONSELFAD]JOINT VARIATIONAL PRINCIPLES

See : Variational Principles
NONASSOCIATIVE ALGEBRA, 305

NONCOMMUTATIVE JORDAN ALGEBRAS

Defined, 302, 306
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ORDERING, 244, 247, 350
PAULI'S THEOREM, 367
Symplectic-admissible covering of, 357
POINCARE/-BIRKHOFF -WITT THEOREM, 351
POINCARE{-BIRKHOFF -WITT-KTORIDES
THEOREM, 357
POISSON BRACKETS
Conventional, 260
Generalized, 260
POWER ASSOCIATIVE ALGEBRA, 302

REGION, 245
REGULARITY

See: Lagrange's equations or Newton's Egs.

SARLET-CANTRIJN FORM
of Birkhoff's equations, 267

SELFADJOINTNESS,

Variational Approach to, for
General 2nd order fOIl:nS, 246
Kinematical 2nd order forms, 246
General first order form, 255
Normal first order forms, 256
Newtonian forces, 246 ‘

Analytic significance of, 259

Algebraic significance of, 262

Geometrical siga ificance of, 263

STANDARD MONOMIALS,

Called, 351

Isotopically mapped, 353

Genotopically mapped, 356

STANDARD REALIZATION
of Lie algebras, 332
STAR-SHAPED REGION, 249
SYMMETRY
Manifest and nonmanifest, 281
Finite and infinitesimal, 281
Discrete and continuous, 281
Contemporaneous and noncontemporaneous, 281
Exact and broken, 281, 375-382
Connected, Lie, 281
Of first or higher order, 28t

SYMPLECTIC GEOMETRY

(manifold), 263

SYMPLECTIC FORM

Fundamental' called, 246
Defined, 264

Generalized, 265

SYMPLECTIC-ADMISSIBLE GEOMETRY

(manifold), 368
Classified, 370
Connection with Lie-admissible. alg., 370

Connection with Hamilton-adm. Egs., 372

SYMPLECTIC-ADMISSIBLE STRUCTURE,

Fundamental, 367

Generalized, 367

UNIVERSAL ENVELOPING ASSOCIATIVE

ALGEBRA, 333, 350, 351

VARIATIONAL APPROACH TO

SELFADJOINTNESS,

See: Selfadjointness
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VARIATIONAL FORMS, 244
VARIATIONAL PRINCIPLES
Selfadjoint, 277
Nonselfadjoint, 279
For Hamilton's equations, 261
For Birkhoff's equations, 261
With a symplectic structure, 261

WEAK VARIATIONS, 278



	20241216025854186
	HJ Volume 1, Pages 223-423, 1978



