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Nourelutivistic Galilean quantum mechanics and the standard transition to relativistic Poincaré quantum
mechanics is anulyzed in terms of group theory. Special emphasis is given Lo Lhe discussion of the relation
between cdynamics and geometry, Certain unsatisfactory features are pointed out and a new relativistic
group §s is suggested as the symmetry greup of dynamics. Gs contains both the nonrelutivistic Galilei group
and the Poincaré group as subgroups, and it is & group extension of the restricted Lorventz group. For use
in relutivistic quantum mechanics, the central extension of G; by a phase group must be employed. The
Lie algebra of this relativistic quantum-mechanical Galilel group §; contains an acceptable covariant
spuce-time position operator and a montrivial relativistic mass operator. The latter also serves to describe
dynamical development. The irreducible unitary projective representations of G5 correspond to infinite

towers of states with increasing spin,

I. GROUP-THEORETICAL ANALYSIS OF
NONRELATIVISTIC QUANTUM
MECHANICS

E NDOUBTEDLY, the most remarkable fcature of

relativistic dynamics is that the invariance group
of the dynamical law coincides with the group of rigid
motions (essentially the group of isomeirics) of the
underlying geometrical manifold. In fact, the under-
lying geometrical manifold is the Minkowski space
Fz 1 where the identity component of the group of
isometries is the connected Poincaré group containing
the identity, i.e., the inhomogeneous Lorentz group!
ISOu(3, Ly=Ty®@&.. At the same lime, the laws of
motion are required to be invariant under 7504(3, 1).
The situation is very different in nonrelativistic phys-

*Work supported by the U.S. Air Force under Grant No.
ATOSR-67-0385B.

! For couvenience, in this paper we shall use the symbol

SOul3, D) Jor the restricted Lorentz group £,1, even though Lhis
iotation is not guite standard,

ics. The underlying geometrical manifold is, to start
with, the Euclidean space 5, where the identity com-
ponent of the group of isometries is the connected
Luclidean group, i.e., the mhomogencous rotation
group 150(3)=T@50(3). This space does not per-
mit even the formulation of any dynamics. One there-
fore introduces the time as an additional kinematical
variable and thereby changes the underlying manifold
from E; to X . Note that no metric 1s introduced
into this Cartesian product space. Next one demands
that the laws of motion be invariant under the con-
nected component of the Galilei group. This group
we shall denote in what follows by the symbol G.
The carrier space of Gy is H3X &y and the group is
obtained by adjoining to the transformations of 750(3)
the additional two sets of transformations

Xyt v, (t.1a}

(=l {1.1b)
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with #, and 7 being parameters. Thus, the structure
of Gy ig

9‘.={T3”><T1f}®{T3“®SO(3)}. (1.2)

Here T3 is the translation group sm—uxta, 17 the
time translation group (1.1b), T the velocity trans-
formation (boost) group (1.1a). The symhol X stands
for direct product and ® for semidirect product. We
emphasize that, since ZzX 1% is not endowed with
metric, Gi has no geometrical significance. On the
other hand, g does contain as a subgroup the 7S0(3)
group of the basic geometry.

As was pointed out by Ingni and Wigner,® for the
sormulation of nonrelalivistic guenlum mechanics, the
group G has to be further extended. Speaking some-
what loosely, the mathematical reason for this neces-
sity is that the representation of the group operations
in the Hilbert space of a quantized system is a Tay
representation, Le., up to a phase factor, and for the
Galilei group the classes of ray representations” are
not equivalent to the true representations. Now, be-
cause of the-nontrivial phase factor, the generators
are determined only up to an additive real multipie
of the identity operator. By means of simple redefini-
tions and the use of the Jacobi identity, all such
additive multiples can be eliminated, except for one.
This will appear in the commutator of the Py (the
generators of T#) with the Gy (the generators of the
hoost T3), and we have's

[Py, Gi)=—idub. {1.3)

Since the geometrical transformations sy and
=g evidently commiute, it is clear that in
quantum mechanics we are dealing not with G but
with a larger group. A more delailed analysis™® re-
veals that the group in question is the cenlral ex-
tension'® of the covering group of G4 by a phase group.
This quantum-mechanical nonrelativistic Galilei group
we shalt denote in the following by G Its structure
is given by™

o= (T (TeX T @ Te@SU(2)}. (14)

Here Ty is the one-dimensional (Abelian} phase group
responsible for the emergence of M. The SU(2) in
Eq. (1.4) appears as the covering group of SO(3).
For the reader's convenience, the complete algebra of

~

G, and some other simple related topics are sum-
marized in Appendix B.

= There are Len other isomorphic [orms, but (1.2) is best suited
for Lhe study of representations.

3 . Inoni and . P. Wigner, Nuove Cimento 9, 705 {1952),

+ A simple discussion of this topic can be found in T, F. Jordan,
Linear Operators for Quantiimn M echanics (Wiley, New York,
1969), Chap. VIL

§ Throughout this paper we use natural units fi=c=1.

YV, Bargmann, Ann. Math. 59, 1 {1954).

7 M. Hamermesh, Ann. Phys. (N.Y.)) 9, 518 (1960).

8 |, -M. Lévy-Lebiond, I. Math. Phys. 4, 776 (1963).

57, Voisin, J. Math. Phys. 6, 1519 {1965).

W For the definition of group extension, see Appendix A,

1 Again, there are ten other isomorphic forms, See Ref. 2.
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We now summarize the “gain in physics” that is
achieved when going from 1S0(3) to Ga. The under-
lying geometrical manifold f permits the definition
of linear and angular momentum (£ and J i) only.
These are suitable for the specification of a given
state of motion. When we make the extension to Gs,
we are permitted to introduce the energy H [[generator
of {1.1b)], which is an obviously dynamical variable.
Furthermore, by setting

X=M"'G, (1.5)

we obtain a dynamical definition of the posilion oper=
alor which is consistent with the Heisenberg rules of
quantization [as seen {rom (1.3)] as well as with
other requirements)’ Further, a velocily operalor

V};E’fl:ff, _YJ;] (16)

can be defined. Evaluating the commutator with Eq.
(B3f), we get Vi=MP, This relation then permits
us to interpret M as mass and we see that

VkﬁXk. (17)

Comparing (1.7) and (1.6), we then conclude that
development with respect to the kinematical time
variable is expressed by commutation with H. Thus,
the latter assumes the role of a Hamillonian. Instead
of being constrained [as we were in the IS0(3)
framework ] to talk about a fixed state, we now can
consider a family of states whose members differ from
each other by the eigenvatues of H. The relation be-
tween the dynamical notion of energy and the kinematical
notion of momentuwm is horne out by noting that

G=P/2M -1

is a Casimir operator of G. Thus, selecting the rep-
resentation of Gy characterized by &' =0, we have

P22 — H=0. (1.8)

In fact, this relation between the energy and the
momentum of an elementary particle is true for any
representation with ®'s£0, because H occurs only
inside the commutators of the Gy algebra, so that we
may redefine H to be H+®". (A more rigorous justi-
feation follows from the circumstance that the rep-
resentations with different & eigenvalues are equivalent;
cf. Ref. 8.)

At this point we can cleatly summarize, in terms
of group invariants, the above-emphasized transition
from the sole consideration of a single, fixed state to
the consideration of a family of states. The Casimir
operator of IS0O(3) which corresponds to ® of Gs is
of course just @=P%. Hence, in the “‘predynamical”
stage we have, instead of (1.8), the equation {in the

proper reference frame)
Pr=(), {1.9)

Denoting the eigenvalues of P, and H by e and E,
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respeclively, we thus have in the J S0{3) Iramework

pr=0, {1.10a)
and in the G; framework!™
v/ 2M —E=0. (1.10b)

Equation (1.10a) characterizes a single possible state,
viz., a particle at rest, whereas Eq. (1.10b) charac-
terizes n family of states, with arbitrary energy {the
spectrum of E is continvous) and with a correspond-
ing state of motion (p* being delermined by E).

Actually, we have 2 further enrichment in physics.
The second Casimir operator of Gy [cf. Eq. (BS)]
turns out to he related to intrinsic spin, which has
no place in the ISO(3) background.® Thus, the
“family” of states is differentiated by spin, too.
Finally, since M commutes with all generators, we
also have a superselection rule for states with dif-
ferent mass.t4 '

In order to extract detailed statements from the
ahove-sketched G: characterization of quantum dy-
namics, it is best fo construct a representation of
the G, algebra in the Hilbert space (X ) built
upon the carrier space HyXZEr of Gi. The realization
of the operators in this JC(ZX K1) is given in Eq.
(B6). Then the Schrodinger equation is nothing but
the realization of {1.8), i.e., the relation

®&y(x;1)=0. (1.11a)
In detail,

{%-MulAJr-iaAt)gb (x;1)=0. {1.11h)

At this peint we note that (1.11b) has separable
solutions. Setting

P (x; ) =p(x(t), (1.12}
we oblain

v()=exp(—{El) {1.13)
and

TMAE)pix) =0. (L1

Here 14 appears as a separalion constant. Equation
(1.14) is now an eigenfunction problem in e Hilber!
space 5C(Es) budll wpon the *predynamical” underlying
geomelrical manifold By (and not upon the dynamical
carrier space FaX Ei). Actually, by separating variebles
we lost Gy nvariance: Equation (1.14) is invariant not
under G, but only under 1S0(3). [In fact, — A~P?
is the Casimir operator of 7S0(3), so that (1.14)
tells us to pick a representation of this group.] The

2Tt is amusing to observe that, as was shown hy Hamermesh
(Ref. 7), the first Casimir invariant of the original Gi group iz not
Pr/oM — H but rather just P2, the same as the one for 150(3).
Thus, even for the present purpose of physical interpretation of E,
the use of Gy (rather than G) is crucial.

2 Nor in the § background. The second Casimir operator of
@, is P-J, rather than ¥* given by (B5).

uThe systematic construction and detailed study of the ir-
reducible unitary projective representations of §; was first given
by Lévy-Leblond, Ref. 8. on the basis of the Bargmann paper,
Ret. 5. See also Ref. .

loss of ¢, invariance is compensated for by having
now a statement to the effect that, instead of the
@=P*=0 “predynamical” representation of 150(3),
we must choose the @=2P!=2MFE represeniation.
Thus, naturally, we did not lose physical information
by separating the variables in (1.11a), On the other
hand, if one started with an /SO(3) equation @=
IME [of which (1.14) is a realization in ge{fy)],
the energy £ would appear sel as a dynamical vari-
able Ti.e., not as the eigenvalue of an operator in the
Lie algebra of I.S0(3)] but rather as a label of a
representation’s or, equivalently, as the eigenvalue of
an operator in the enveloping algebra of S0(3). The
necessity of a dynamical eigenvalue problem for B
would not even arise: Amny representation label & is
as good as any other. The state of affairs is even
more transparent if one considers not a free particle
but one under the influence of an interaction. Then
the Schrédinger equation is (in the spinless case)

[LM-A—V(x)+ia Qe (x; 8)=0.  (1L.15)

Here x must be interpreted as a relative coordinate
(the c.m. motion has been separated off), M is the
reduced mass, and ¥V depends on r=/(x%) only, so
that Eq. (1.15) is still G, invariant.’® After-separation
we get

GM-A—V (x)+EJe(x) =0.

Naturally, &, invariance is again lost, but now (1.16)
cannot he interpreted at all as an equation in the
150(3) enveloping algebra, selecting a representation.
This is in spite of the fact that, obviously, (1.16) is
7850(3) invariant. The dynamical origin of Ii is now
well emphasized, as opposed to its previous role of
simply labeling an ISO(3) representation.

(1.16)

1. STANDARD TRANSITION TO RELATIVISTIC
QUANTUM MECHANICS AND CRITIQUE

In the previous, somewhat lengthy, section we
elaborated on generally quite familiar topics {although,
perhaps, in an unusual presentation and with partic-
wlar emphasis on certain poiats). The purpose of this
analysis was to prepare the ground. The present sec-
tion serves the same purpose: We shall analyze, from
our particular point of view, the standard transition
from nonrelativistic to relativistic quantum mechanics.

As is well known, the first step in this trapsition
is to define the underlying geometrical manifold to be

% Actually, the label is 23 E, and there is no possibility of
eiving a separate meaning to # and Z.

& Equation {1.16) arises from the siudy of the decomposition
of the temsor product of two one-particle representations
(| 0%, 51) and (m?| @, s%); cf. Ref. §, especially Lgs. (VI-5)
and (VI-6). Incidentally, the same analvsis shows that even
though (as stated above) G may be taken equal Lo zero for the
one-particle representation, yet it cannot be altered simml-
taneously to zero in all the (i |®, s) representations which:
occur in the decomposition of the tensor product. It is in this
context that @b assumes the nontrivial role of “internal energy”
of the compound systems,
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the Minkowski spuce ki This means that in the
carrier space FpX I3 of €y one introduces the pseudo-
Euclidean metric

{u7r).
(2.1)

The group of isometries in this space is the Poincaré
group. The next step is crucial: One declares, by flal,
the identity component of the very same group [ie.,
the 750y(3, 1) group'] to he the invariance group of
dynamics. This means that one has {as before, in
the Gy dynamics”) ten hasic dynamical observables
(P, and J.) but wilh a very different algebra. The
relation of this 7.504(3, 1) algebra to the G, algebra
(and hence the relation of the relativistic dynamical
ovservables to the corresponding nonrelativistic ones)
is revealed, as is well known,® by the procedure of
contraciion, performing the Hmit ¢—ce. In this con-
text we only point out that the nonrelativistic mass
M is defined as the contracted limit of Pgfe, and
thus one obtains {1.3). This implies that it is indeed
Gy (rather than G,) which arises from £.S00(3, 1) upon
contraction.

Since 7.50p(3, 1) has been declared to be the dy-
namical invariance group, the equation of motion is
obtained by selecting a representation correspending
to an arbitrary value of the Casimir operator =2, P*,
Thus, the dynamical equation is

Py Pr=m?,

ds*= guadords?, with go=—gu=1; gu=0

(2.2

and the relativistic mass makes its appearance simply
as a representation lobel. In other words, the mass
operator is nol an observabie contained in the Lie
algebra. Unlike the case of G, dynamics, the equa-
tion of motion now coincides with the selection of an
arbitrary representation of the kinematical {purely
geometric) group. Equation (2.2) describes one single
kind of state, that of a particle with fixed mass: In
any irreducible unitary representation of the Poincaré
group the mass is a fixed constant.

When constructing a representation of the 750(3, 1)
algebra in the Hilbert space 3C(Ex,) buiit upon the
geometrical background manifold, the familiar realiza-
tion of (2.2} hecomes the Klein-Gordon equation

(Or-m* b (x)=0. (2.3)

Obviously, Lhis is wel an eigenvalue equation for m®
Let us once again point out that we have no operator
for the relativistic mass in the Lie algebra. Formally,
this is related to the circumstance that in the Poincaré
algebra there is no analog of (1.3}, i.e., no multiple
of the identity operator appears in any of the com-
mutators, {This is so because, as is weil known,S alt

1 The nonrelativistic mass operator A7 is not counted in this
context.

® T, Inudii and . P, Wigner, Proc. Natl, Acad, 5. US
39, 510 (1953). See also K. J. Saletan, J. Math. Phys. 2, { (1961).
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ray representalions of the Poincaré group are equiva-
lent. to the faithful representations of its covering
group.) For the very same reason, we have no analog
of the position operator (1.5} in the Lie algehra.

AL this point, we are prepared to raise the follow-
ing rather unconventional question: fs ihe signdard
transilion from the nonrclalivistic to lhe relalivistic quan-
tum dynamics (as outlined above) lie best possible one?
It is not difficult to conceive of reasons why the
answer could lie in the negative.

Tirst, it would be desirable to posses a dynamical
relativistic mass operator in the Lie algebra of the
dynamical group. As we pointed out above, this is
not the case. Hence, mass is an “unquantized” pa-
rameter. Even if we combined the dynamical Poincaré
group with some internal semisimple Lie group, the
celebrated (VRaifeartaigh theorem! still prevents the
emergence of a nontrivial (discrete) mass spectrum.
From another viewpoint, the failure in obtaining a
mass spectrum can be traced to the Tlato-Sternheimer
theorem,® according to which every extension of the
Poincaré algebra by a semisimple Lie algebra is trivial
(i.e., it is the direct sum of the two algebras), im-
plying commutativity of the “mass operator” F.P¥
with all generators of the internal symmetry group.

The second reason why we may be disconlent with
the standard transition from nonrelativistic to rela-
tivistic quantum dynamics is the following. We would
like to have in the dynamical Lie algebra a relativ-
istic posilion operator X,. Again, as indicated above,
this is not the case. Tt is true, of course, that several
attempts have been made® Lo define, in o somewhat
artificial manner, some kind of such operators. How-
ever, for several reasons, even these comsiracis are not
entirely satisfactory objects. On the other hand, it is
possible to define satisfactory operators for the spalial
position only.22 However, the existence of such objects
is not what we are looking for in the presenl context.

Summarizing our misgivings in somewhat different
formulation, we may say that the convenlional tran-
sition from the nonrelativistic to the relativistic guan-
twm dynamics is disappointing because {a) no new
quantity becomes gquantized and (b) actually we seem
1o lose somelhing in the process, such as the Heisen-
berg relation [P, Xy]=—idy in the dynamical Lie
algebra.

Apart from these physical considerations, one might
also view with suspicion the mathematical procedure
itself. The Poincaré group does nol contain the G
group as a suhgroup, as one would expect if it were

19T, O'Raifeartaigh, Phys. Rev, 139, B1052 (1965). See also
P. Roman and C. J. Koh, Nuovo Cimento 39, 1015 (1965},

2 M, Flato and D. Sternheimer, J. Math. Phys, 7, 1932 (1966).

M See, for example, T. Q. Philips, Ph.D. thesis, Princeton
University, 1963 (unpublished}, Further developments are given
hv H. Bacry, Phys. Letters 5, 37 {1963); A, Sankaranaravanan
and R. H. Guod, Phys. Rev, 140, B509 (1965).

27, D, Newton and 5. P. Wigner, Rev. Mod. Phys. 21, 300
(1949). For a review of further developments, see A, 5. Wighlman,
ihid. 34, 845 (1962},
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a straightforward enlargement of the dynamical frame-
work. Instead, it is the nonrelativistic kinenalical
(geomelric) 1SO(3) group which is a subgroup of the
supposedly dynamical relativistic group_ [ S00(3, 1).
Of course it is true that 7SO(3, 1) and Gy are related
by contraction.®® However, this can be interpreted
only by saying that nonrelativistic dynamics is a lim-
iting case of the relativistic dynamics. The converse
notion of extension fails, since the “expansion” of G
is nol wnigue®

These last remarks give us a hint of a possible
procedure that might lead to a nonconventional pas-
sage from nonrelativistic to relativistic quantum
mechanics. As we shall see, our proposed structure
may be viewed either as a direct generalization of the
nonrelativistic Galilei quantum mechanics to a rela-
tivistic enlargement, or, alternatively, as an extension
of the Poincaré quantum mechanics {in the same
sensc as lhe 8s dynamics is the enlargement of the
IS0(3) kinematical framework]. In the development
of our proposed structure we shall stress the second
point of view.

1. NEW DYNAMICAL GROUP

Tn this section we shall construct an enlarged
framework for relativistic quantum mechanics. Our
procedure will closely parallel the transition from
IS0(3) to Gy which was discussed in Sec. I. The
reader is asked to pay special attention to the anal-
ogies, even when they are not explicitly pointed out.

Our Arst step in passing from nonrelativistic to
relativistic physics is the same as in the standard
procedure: We change the manifold FaX into the
geometrical manifold /s by introducing the usual
Minkowski metric (2.1). The group of isometries is
the Poincaré group, with the Lorentz transformations

{(AnAP=p), (3.1)

at—r A
and the translations

at—sak gk (3.2)

However, we do not consider this group (or rather,
its connected component) to be the full dynamical
invariance group. Instead, following closely the pat-
tern which leads from nonrelativistic kinematics to
nonrelativistic dynamics, we introduce now an ad-
ditional kinemalical variable, to be denoted by .
The nature and physical meaning of # is left un-
specified at this point.* We thus change the undes-
lying manifold from Fy. to the product space Ea X F
No melric is introduced inte this manifold, but we
consider it as the carrier space of a new group. The
transformations of this group consist of the Poincaré

% [y expangion” we mean the procedure inverse to contraction.
See, for example, §. Rosen, Nuovo Cimento 35, 1234 {1965).

®f Phis is also true in nonrelativistic kinematics when ¢ is
introcuced. The only function played by ¢ is that of a parameter
labeling the dynamical sequence of states.
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transiormations {3.1) and (3.2) as well as the ad-
ditional transformations

H— b (3.3)
and
g (3.4)

Here we remark that for fulure convenience, we fake
u to have the dimension of length (like all 4#), so
that the four (real, unrestricted) parameters b* in
(3.3) are dimensionless. The transformations (3.3)
are the generalization of the nonrelativistic boost
transformations (1.1a). To avoid confusion, we shall
call (3.3) the “relativistic Galilean boost” {R.G-hoost)
transformations. In Eq. (3.4), the parameter o is an
unrestricted real number with the dimension of length.
The Abelian set (3.4) is the analog of the Galilean
time transiation {1.11).

It is easy to verify that the transformations (3.1)-
(3.4) indeed form a 1S-parameter group over Lhe car-
rier space /51X £y, The composition law, as well as
the Lie algebra, is given in Appendix C. Our group
contains the original {geometvical) Peoincaré grouf as
a subgrowp. Furthermore, it is a natural and straight-
forward generalization of the nonvelativistic Galilel
group. We shall denote the connected componeni® of
our group by G Evidently, G4 is @ subgroup of Gs.
(One obtains §; from Gs if one vestricts the param-
cters by setting AS=Af=a®=0"=0 and [ormally
identifies® 2 with £.)

The structure of our Gs can be represented as™*

Go={TeX Tri® | T4®500(3, 1)]. (3.5)

Here Ty is the space-time translation group (3.2),
Ty is the w-translation group {(3.4), T is the RG-
boost group (3.3), and SOu(3, 1) is the restricted
Lorenlz group.

The Lie algebra (C5) tells us that T X T T
is an invariant subgroup. Equation (3.5) then reveals
that we have the isomoerphism

50u(3, 1)mGe/ T X Ty X TP, (3.6)

Hence, the group Gs is an extension® of the restricled
Lorentz growp?® This statement is, of course, more
powerful than our previous observation that GO
1504(3, 1), and it will have important consequences
rezarding the representation theory. However, it must
be emphasized that Qs is wef an extension of the
Poincaré group 7S0y(3, 1). On the other hand, we
wish to point out here that the Poincaré group
IS0y(3, 1) is itself an extension of the restricted

% Obtained by restricting the Lorentz subgroup (3.1) to the
transformalions with det A=+1, A= 1

% This phservalion provides a partial interpretation of the
physical role played by u; in the nonrelativistic mit it assumes
the role of ordinary time,

7 1t is instructive to compare (3.5) with (1.2).

@ There are len other isomorphic forms, but (3.5) is hest
suited [or the study of representations.

® The situation Is analogous Lo the ease of the nonrelativistic
Galilei group, where Gy is o group extension of S0{3),
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Lorentz group SOo(3, 1), because we have the iso-
morphism

SOu(3, 1)zl 50a(3, 1)/ T4,

with Ty being an invariant subgroup. Now, as-we
just said above, our Gs is also an extension of SOu(3, 1).
Hence, hoth the customary relativistic dynamical
group 1S0(3, 1) and our new proposed relativistic
dynamical group G ‘‘grow out” as extensions from
S0(3, 1), which, in turn, can be looked upon as the
group that determines the metric of Minkowski space.
We find this observation interesting, because it sheds
light on the rather natural emergence of Gs as a rea-
sonable generalization of / SOu(3, 1).

Tor the reasons elucidated above, we make it our
dynamical posiulaie that the laws of dynamics Should
be invarioni under the Gs group. Naturaily, this auto-
matically implies Poincaré invariance, but the latter
is considered as only a kinematical symmetry (as,
similarly, 1.50(3) is only a kinematical nonretativistic
symmetry). As we shall see later, the true dynamical
development of the sysiem will be associated with
the progress according to the new variable .

For use in guanbum mechanics, however, we must
make a further extension. The reason is the same as
in the case of the nonrelativistic Galilei group: The
up-to-a-phase representations in Hilbert space deter-
mine the generators only up to an additive multiple
of the identity operator. When writing down the
algebra (C5), we ignored all such additive terms.
If one, however, keeps them, it turns out that by
simple redefinitions and by the use of the Jacobi
identity all but one of these multiples of the identity
can be eliminated. Denoting the Lorentz generators
of (3.1) by Jy, the translation generators of (3.2)
by Py, the RG-boost generators of (3.3) by Qu, and the
w-translation generator of (3.4) by S, we actually
find the following algebra:

[, ]pw]='£(grpjﬂc—gun]*f—gm]pv'%'gm]nu): (3.7)
[Py, Jpﬂ:l:i(guppc""gwpp): (3.8)
[P, P.]=[0n Q3=Lwn S1=[Pi $1=0, (3.9)

I:P.ﬂ-! QV]: —fig,uvlmX, (310)
{ T v QP]ﬂi(gvan_gprv): (3-11)
LS, Qu]=%Pp (3.12)

The departure from (C5) is the relation (3.10). Here
‘he constant [ has the dimension of length.

A closer inspection tells us that we are dealing
with the central extension™ of the covering group of
@; by a phase group. We shall denote this group in
what follows by G Its structure is given by®

8= {TOX (TX T} @ (TR SL(2, C)}- (3.13)
Here T4 is the one-dimensional { Abelian)} phase group

@ There are ten olher isomorphic forms. See Ref. 28.
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connected with the appearance of i~ The SL(2, C)
in Eq. {(3.13) appears as§ the covering group of
S500(3, 1). It is readily seen that G can be looked
upon™ as a group exiension of SL(2, C)

The invariants of §5, as well as a brief discussion
of its representations, are given in Appendix C.

IV. SOME IMMEDIATE CONSEQUENCES

We now try to extricate the hasic physical con-
sequences of our Gy invariance group.

To start with, Eq. (3.10) has an important implica-
tion. It permits us to introduce, in a completely
natural way, the relalivistic space-lime position oper-
alors

Xy=—10, (4.1}

This identification is substantiated not only by the
Heisenberg relations (3.10), but also by {3.9) (i.e.,
[X, X.]=0), and by (3.11), which tells us that
X, behaves as a four-vector under Lorentz trans-
formations. We shall come back to some properties
of X, later. .

The appearance of 7 in (3.10) has yet another
welcome consequence. It allows, in fact it forces on
us, the introduction of a universal lenglh, in a com-
pletely natural and covariant way. Since I1 commutes
with everything, we have a superselection rule: Sys-
tems with different fundamental length are incoherent
and do not communicate®

The next question that arises is to find the physical
meaning of the generator S. This is achieved by
observing that

Tmz P P25 (4.2a)

is a Casimir operator of Gs. [It is the analog of &,
the Casimir operator of G cf. Eq. (B4).] Thus,
selecting a representation of Gy characterized by the
eigenvalue ©' =0, we have

P, Prt2tS =0, (4.2b)

This shows that

pp= 28 (4.3)

can be defined as the relalivistic mass-squared operalor.
Note that 912 lies i the Lie algebra of G5 The defi-
nition (4.3) is consistent with the commutation rela-
tions (3.9): The mass so defined is a translation-
invariant Lorentz scalar, as it should be.

This interpretation of S remains valid also if one
chooses a representation with o0, This is so be-
cause S OCCUIS only inside the commutators of the
Os algebra, so that we may redefine S to be S—I".
A more precise justification of this statement is that,

2 Gimilarly as G can he looked upon as an extension of ST (2).

1 1ot us note here thal the particular choice ™1 =0 would change
(3.10) to [P, 2.]=0, so that it would lring us back to the
originat G5 algebra; ie., for 1-1=0 our central extension becomes
21 1L‘ri\{r}ial extension, a simple direct product. We shall always take
=1 ot
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as mentioned at the end of Appendix C, all unitary
irreducible (one-particle) representations of Gs which
differ only in the value of © are equivalent.

Next we observe that, apart from being the mass-
squared operator, S has also & second, different role™
From Eq. (3.12) and the identification (4.1}, we
obtain

iLS, X,]=1Py, (4.4)

so that we can define the four-velosily o perator Uy by
setting
U= (i/m)[S, X, {4.5)

[The evaluation of the right-hand side by means of
(4.4) gives P./m. Here m is the mass eigenvalue. ]
Since, on the other haad, the four-velocity is the
derjvative of position with respect to proper time,
Eq. (4.5) tells us that FunlS is the evolution operalor
with respect to proper lime. In view of the fact that
S is the generator of the translations {3.4), we
now see that the new parameter # SErves the role
of labeling the sequence of intrinsic dynamical de-
velopment, as we already suggested in Sec. IIL

Since, by (3.9), P, and S commute, we have, as
a generalization of {4.5),

49 du=1[.S, Q] (4.6)

for every operator Q that is a function (polynomial)
in X, and P,. The integrated form of (4.6} 1is

Q(n) =exp(iSu) Q(0) exp(—iSu). (4.7)

This displays the dutrinsic development of © from its
tipitial value”? Q(0) to an arbitrary “u instance.”
In particular, if an observable is a dynamical consiant
of motion, it must obey the relation™

LS, 2]=0. (4.8)

We emphasize that, owing to (3.9), Ju and Py are
constants of motion, as it should be. Furthermore,
since S is a translation-invariant scalar, (4.8) is a
Poincaré-invariant relation. Finally, in view of (4.3)
and (4.8), 9N is trivially a dynamical constant of
motion, as expected.

Some further insight into the structure of our
theory is obtained if we note that the second and
third Casimir operators of §s are constructed (see
Appendix C) from the tensor

Twi=d =My, (4.9a)

where
M,=PQy— P (4.9h)

# This dual role of S is analogous to the dual roic of H in Gy,
which, on the one hand, is the nonrelativistic energy operator
and, on the other hand, is the evolution eperator {Hamiltonian)
with respect to nonrelativistic time.

31 Note that in the standard Poincaré-invariant theery there is
1o intrinsic dynamical development operator. In particular,
[Po, =0 is not a sufficient condition for & Lo he a constant of
motion, nor is it a covariant relation. The intrinsic dynamical
development in the standard theory is described covariantly by
taking the derivative with respect to & spacelike surface, and the
condition for £ to be a constant of motion is 8Q/éc (&) =0.
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The operator

' I(pbs_tﬁ/fpyﬁpf‘}:y”_.?px}‘ (410)

is interesting inasmuch as it can be looked upon as
an “internal” counterpart of J.. The commutators
of Ky with Juw, Puy Qe and § ave the same as the
corresponding ones for Jy, itself, and also the [Kuw, Kl
commutator has the same structure as [Jur St In
particular,

K= P X— X (4.11)

must be interpreted as inlernal spin. This is con-
sistent with the identification of X, as position
operator.™

Additional insight can be gained by specifying an
explicit realization of the & algebra in the Hifbert
space JC(Hs1X Er) defined over the carrier space
Eax X Ey. This is given in Appendix C, Egs. (Ci2a)-
(C12d). With this realization the position operator
(4.1) can be written in the rather remarkable form

X,;=:t};—luP,,. (4’.12)

When #=0 [Le., at the beginning of the dynamical
development, cf. {4.7)], the position operator coindi-
des with the geometrical coordinate %. The dynamical
development renders the position “‘nonlocal.”” The po-
sition is “washed out” over a region characterized
by the fundamental length . Thus, the discrepancy
between x, and X, is clearly a microscopic, quantal
effect.

Tt may be also worthwhile to write down the ex-
plicit realization of the “total angular momentum’
T [defined by (4.9a) and (4.95)7). In the realization
(C12), we get

T,-k = 'i(x,;ak— x;,é);) +’izi}4+1. (a Fr e EJ;;;\:,-) =4XL. (4 13)

Not unexpectedly, in our “one-particle realization”
T reduces to its imirinsic spin part. Some further
comments on the spin content of our theory will be
given in Appendix C.

V. MASS SPECTRUM

In order to perform explicit calculations, it is best
to write down the realization of the equation of
motien, Eq. (4.2b), in tevms of the differential oper-
ators as given by (C12). We obtain

with []=8,9 This is the analog of the nonrelativistic
Schridinger equation (1.11b). Equation (5.1} is in-
variant® under Gs.

% We relegate the discussion of the spin, as well as that of the
other quantuin numhers associated with the representations of
&5, to Appendix C. ’

% "This follows from the way the equation was oblained, but it
can be alse directly verified by explicit calculation, in u way
analogous to the explicit proof of the Galilean invariance of the
ordinary Schrédinger equation; cf, Ref. 8,
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We now separate coordinates, putting

Yo u)=pla)x{u), (5.2)
and obtain® ‘
x{w) =esp(i lmPn) (5.3}
and
(O4+m)elx)=0. {5.4)

Thus, we obtain the Klein-Gordon (KG) equation.
C; invariance is lost; we have only Poincaré invariance.
The constant »* in (5.4) made its appearance as a
seperalion constani. Flence, {5.4) has now a different
interpretation than in the usual theory: It is an eigen-
walue equation for w?. Ii s the relativistic analog of
(1.14). Equation (5.4) is an eigenvalue problem in
the Hilbert space 3¢(4%,41), built upon the underlying
geomelrical {(not dynamical) mainfold ;. In the
customary interpretation, as we pointed out following
Eq. (2.2}, the KG equation describes a single state.
In centrast, in our framework (5.4) describes a faomily
of states, with all possible permitted eigenvalues ns,
i.e., with all possible masses. The situation is similar
to the one which occurs when we pass from the kine-
matical 750(3) group to the dynamical Gy group;
cf. our discussion in the latter part of Sec. I.

Of course, the solution of the eigenvalue problem
(5.4) is trivial. The admissible (i.e., “square inte-
grable” over the Fj,; space) solutions (with positive
energy) are the plane waves

P{a) = (20.)7* exp[i(wrmo—k-x) ],
with
wp= (KH-m*)V2,

and thus m can be any real positive number.
However, suppose we wish to study not a free but
rather an interacting Gs-invariant system. The inter-
action ought to be described by a phenomenological
potential which represents the interaction between
the two particles. Tt depends® on x only through
at= g x% Here x must be interpreted as a relative
coordinate, the relativistic center-cf-mass motion of
the particles having heen already separated off. The
Gy-invariant equation that replaces (5.1) thus becomes

(O V (o) — 20748, 3 (35 ) =0, {5.5)

[This is the analog of (1.15).] Separating (5.2) now
leads to

[+ V ()0 Jo(2) =0.

Once again, Oy invariance is lost and reduced to

18506(3, 1) invariance. Equation (5.6) is a nontrivial

eigenvalue problem for #% We now discuss the sclu-
tions of this problem.

(5.6)

37 Since — 2~1id, is the realization of the operator M= — 2[5,
ihe separation constant is correctly denoted by w2,

% We «lo not consider «u-dependent potentials, since they woull
not allow for states that are stationary with respect to # develop-
mehl,
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Tt is best to introduce a biharmoenic coordinate
system
x' =5 sinhe,

xl=s cosha sind cose,

a%=3 coshe sind sing, (5.7a)
x¥ =5 cosho cost,
where
0<s< o, —w L,
<8<, 0<é<2r. {5.7b)

The coordinate system is so chosen that 1t corresponds
to spacelike points. This is necessary because in our
problem «x stands for the relative coordinate of the
two particles which form a composite system. Thus,
corresponding pairs % and 2® along the world lines
of the two particles always belong to a spacelike
surface.®

For further reference we note that in terms of
{57) the invariani inner product of two functions
f and g becomes

(fyg)=J (s, 0, 8, dYa(s, e, 8, ¢)s* cosh’ex
Xsing dgp df da ds.  (5.8)
in terms of the new coordinates,. (5.6) becomes
[ —523,8%0, 452 cosh™2a {3, cosh?e d,—dy—cotf dy
—sin™) 3,2 3V {s)+mtle(s, o, 8, 0)=0. (59)

This equation can be separated by pufting

e=A{s)}B{a)C(0)D($), {5.10)
and we get
(324-x)D() =0, (5.11a)
(8¢ cotf dg— i2/sin?@-+0 (- 1)1C(6) =0, (5.11b)
[cosh™¢ d, cosh?e dat-A (A 1)/ cosh’e
—p(p+2)1B(a)=0, (S.1lc)

[—s%,5%0,+p(u+2) /52 V (s3] d (5)=0. (5.11d)

We are locking for regular, square-integrable solu-
tions. Hence, {5.11a) yields

D(d)=exp(isp}, (5.12)
Therefore, the regular solution of {(5.11h) becomes
COy=P*(cosd), A=0,1,2, -+, and | x| <\

(5.13)

Proceeding, the solution of (5.11c) is found fo he?
B(a)=cosha Pyt (tanhe). (5.14)

lx|=0,1,2,-

@ Putting it in another way, we may say that when agfV =3,
we have s2=— (xV—x®)2=—x2 go that in this svsiem we
clearly have a?<C0. Lorentz covariance then leads to <0 in
general. -

0 This can be seen hy setting B= {1 — 0" V2B (5}, with s=(anha.
which leads 10 the standard Legendre equalion lor B{z).
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Polynomial behavior of Py requires that A—p—1
be a non-negative integer. Since we already know
that » is @ non-negalive integer, this implies that  is
an 7aieger, and we have the relation

A=p1+4n, ip=0,1,2, -+~

Turthermore, we have the constraint g- 1A, so that,
for given X, the new quantum number p has the range

p=—1,0,1, -+, A=2, A= 1, (5.16)
Tt can now he checked that our [unction
Rau($, 8, 2)=D{(¢)C(8)B(a)

is square integrable on the unif hyperboloid s*=—1,
with respect to the measure da=coshx sing de¢ 48 de
[as impiied by (5.8)7. Actually, with a normalization
factor supplied, we have the orthonormality relation

(5.17)

Thus, when we now turn to BEq. {5.11d), we only

(RKM‘J RK')JJJ" ) = BNK'B?\?\'B#;L'-

have to guarantee the square integrability of A(s)

with respect to the measure db=sls. :

To solve (5.11d), we set
A{sy=5"32p(s), {5.18)
which transforms it to

[o2—u (W +1)/9—V (s)~m?Tg(s) =0, (5.19)
where .
w=pt3i (5.19b)

Equation (5.19a) has exaclly the same structure as
the familiar radial equation in nonrelalivistic quantum
mechanics. We are looking for regular solutions with
2>, Unfortunately, there are only a few types of

“notential” ¥(s) which are known to permit an
exact solution. We consider first
V{s)=—uv/s, 7> const. {5.20)
The square-integrable solution is
A(s)y=semlgmel o0 2 (Dms), (5.21a)
with
pel, 2,05, -0l (5.21b)
The corresponding eigenvalues are
a2 =2/ 4 (5N {5.2ic)
Another example is afforded by
V(s)y=0 for 0555
=w for s>s5. (5.22)

A square-integrable solution exists only if u><—1, and
it is given by
A(sy=s a(ms)  for

0<s<s (5.23a)

and .1(s)=0 for s>s5. Hence, the mass spectrum is
viven by the (nonzero) roots of the equation

(5.23b)

Jﬂ+] (??E,. ,HSIJ) == {):
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wilh v=1, 2, 3, --- labeling the successive zeros, Un-
lite in the previous example, the spectrum is not
hounded from above, and the higher mass values
tend to be equally spaced and te be closer to each
other than the lower mass levels are. These are quite
agreeable features. Naturally, neither example gives
a truly acceptable hadron mass spectrum.

Of course, the generation of a mass specirum by
some guessed ‘‘polential” should not be taken se-
riously and serves only an illustration of having a
nontrivial spectrum. A more realistic approach to the
mass-spectrum  problem would be to combine our
space-time group G5 with some internal symmetry
group [like S&7(3)] and investigate the ensuing struc-
ture in relation to the mass operator 5. We shall
atlempt to carry out this program at a later time.
Here we only note that, since 05 is g0l an exlension
of the Poincaré group, the Tlato-Sternheimer theo-
rem™ will not apply when Qf. is further extended by
internal symmetries, so that there is no reason why
this extension should be trivial. Hence, the investi-
galion of the emergence of a nontrivial mass spectrum
appears appealing.

VI. CONCLUDING REMARKS

In this paper we have proposed a new relativistic
space-time group which seems eminently suitable for
the quantum-mechanical description of elementary
paiticles. From the heuvistic point of view, we find
it intriguing that our group arises from the wmetrie-
specifying Lorenlz group in the same way as the
nonrelativistic Galilel group arises from the corre-
sponding metric-specifying rotation group; of. our
discussion following Eq. (3.6). Once we accept the
geoup Gs, we are inunediately in possession of a natu-
ral space-time position operator X, and a mass-
squared operator —2-L5, both being members of the
Lie algebra. We also have o way to specify covari-
antly internal dynamical development, with the help
of the § operator itself. Finally, as will he briefly
discussed in Appendix C, our symmetiry group leads
directly to the emergence of towers of states with
increasing spin. We find these features very inter-
esting.

In conclusion, we wish to briefly touch upon the
fellowing problem: Is it possible to obtain our dy-
namical group Gs by the process of contrastion from
some geometrical group of isometries, in a manner
a,mloﬂous to the construction of the nonrelativistic
dyn'umcml group Gu from the covering of the con-
nected Poincaré group? The answer lies in the af-
frmative. [t is not difficult to see that Gy is the
contracted limit of the covering of the connected
component of 750(3, 2), the inhomogeneous de Sitter
group, which is the group of isometries in Z3» The
contraction parameter is gu, defined by Jo* = gadatda?
(g, b=0, 4, 1, 2, 3). The relationship between G5 and
I501(3, 2) will be investigated elsewhere. [[Cf. ], Math.
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Phys. (to be published}.] We only mention that this
study will shed additional light on the properties of the
RG-boost operator @, and of the mass operator St
may also give rise to a cosmological interpretation.

The relationships between the Euclidean, nonrela-
tivistic Galilean, Poincaré, relativistic Galilean, and
inhomogeneous de Sitter groups can he well visualized
by the following diagram:

ISO(3)CIS0(3, 1) CISO(3,2)
N S N
& C G

(The symbols stand for the respective Lie algebras.
The arrows indicate contraction, and C means in-
clusion.) These relations are quite instructive. For
example, we see that nonrelativistic kinematics can
be obtained from Gs either by going first to the non-
relativistic dynamics Gy and then to the corvesponding
Fuclidean kinematics, or by going first to the Poincaré
¢ramework and then to the Euclidean system. This
jltustrates our point that the Poincaré frameworlk
should be considered more of a kinematical {rather
than dynamical) symmetry.

Note added in proof. While this paper was in print,
1. Castell kindly called our attention to his work in
Nuovo Cinmento 49, 285 (1967), in which he constructed
Lie algebras that contain a relativistic position operator.
One of his algebras is isomorphic to the Lie algebra of
our group G;. We also note that the recent paper by
J. E. Johnson, Phys. Rev. 181, 1755 (1969), contains
an interesting discussion of position operators and
proper time.

APPENDIX A: GROUP EXTENSIONS

Tn order to make certain subtle mathematical points
(that were referred to In the text) more acessible to
a wider set of readers, we give here some concepts
concerning group exlensions.

Let ¢ and ¥ be two groups and let T be an in-
variant subgroup of G. If we have the isomorphism

g/ T, (A1)

then we say that § is an extension of %. It then fol-
lows that there is a one-to-one correspondence Bil—c
between the elements % of 3¢ and the elements ¢ of
the coset space G/T. Thus, an element ¢€ g/1* can be
written as ¢=Ak(%), and the composition law is

]I(f_ﬁ)k(kg) =w(k1, kg)k(kfkg). (AZ)

Here o (F, k)€ T and is called a factor sysiem. Further-
more, any element g of ¢ can be uniquely decom-
posed as

g=vh(k) with €T and R{k)EG/T. (A3)
The composition law of G is then given by
ggz=m1- kil ver D (et ) 7o, Jen) Dfacke).  (Ad)

ROMAN,

AN SANTILLI 1

We note that if T is a one-dimensional (Abelian)
group T, then w(ky, ko) 1s just a phase factor. We
then speak of a scalar exiension.

Suppose now that there exists for any R(E)cg/T
(hence, for any €XK) a certain element vs&£ T such
that

B(R) oy [h(R) ] =vkey o™ (AS)

We then call the group G a central exiension of X.
In particular, if T is a one-dimensional (Abelian)
group Ty which belongs to the center of G, then we
have, obviously,

(kY- Ch(k) T =,
i.e., (AS) is fulfilled, and so we have a central ex-

tension G of & by the phase group 71" Equation (Ad)
then reveals that

for all y&T.

=Ty K. (AG)

If, in particular, the factor system w{h, ke) is not
only a phase, but actually w(k, ka)=-1 for every
J, ks, then the central extension becomes trivial and
we have the direct product

g=TY¥ XK. (AT)
APPENDIX B: NONRELATIVISTIC QUANTUM-
MECHANICAL GALILEI GROUP

For convenience and easy reference, we list here
some basic facts about the nonrelativistic Galilei group.

The carrier space is JiyX Ey, with x= (&1, 2, %63)€ B
and 1€ Fy. The transformations are written, in a con-
densed form, as

r—' = Ratl+a,

—i' =1+, {B1)
where R is a rotation matrix of SO(3), ¢ is a trans-
lation in Eg, r is a translation in £, and v is the
boost in E;X Fy. Here r is a scalar and ¢ and 2 are
three-vectors under SO(3). The group so defined is
denoted by Ga.

We shall be interested only in the central extension
of the covering group of G4 by a phase group. The
structure of this quantum-mechanical Galilet group
Gy is then

8= (TeX (TeX IO @ (Te@ SU(2)), (B2)

as was discussed in Sec. 1. Denoting the generators

of SU(Z)’ T3u" T'u'\ur. and Tl1~ by Jk, Pk, Gk, and H,
respectively, we have the Lie algebra

[]t') fk]:{fﬁ:b]l, (Bs&l)

[P, Jil= —ieaal’s (B3b)

[Py, Pi=[Gs, Gi]=1/i, H]=[Ps, H]=0, (B3c)

[P, Gi]= —ibuld, {B3d)
I:JTIH Gi:] = T-ekhqu N (BSe)
[H, Gil=—iPs (B3H)
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The Casimir operators are

R=tM'P—H (B4)
and
M=F2 (B5a)
where i
Fr=Tt- Mo Pz (B5b)
Setting Xp=M"z,, we may rewrite (B3b) as
F=J+PxX, {B5c)

which reveals that F is the spin angular momenturm.

As suggested by (B4) and (BS5), the irreducible
unitary projective representations® of G, are labeled
by (a) an arbitrary real number 3, (b} an arbitrary
real number @&, and (c} an integer or half-integer
number 5. [The latter is the index of the familiar
finite-dimensional unitary representation D® of SU{2).
Alternatively, the eigenvalue of 9T could be used
to0.] A representation is denoted by the symbol
(M | @, 5).

A realization of the G algebra in the Hilbert space
over EyX I is given by

Jom= —iemid;—iZs, (B6a)
Pu=—ith, (B6b)
Gr= —ilop+ My, (Boe)
H=id,. (Bed)

Here 2 denotes the familiar finite-dimensional repre-
sentation matrices of the SU(2) generators.

In the realization (B6), the angular momentum
operator Py becomes simply Fp= —1iZ;, Le., the spin.
Hence, we can identify the representation label s
with the particle spin. The label M is identified with
the mass, and the label & with internal energy. How-
ever,® the representations with different values of ®
are eguivalent in the sense that

ruM.(B.s(g) FCXP(iTQ)A_I‘llM.u,s (g)A: (BT)

where Uarg,:(g) is the operator corresponding o an
arbitrary group element g€G, in the representation
(M|®, 5), and A is an isometric operator. Hence,
in the free-particle realization, ® has no signiﬁcance,
and can be taken to be zero. (See, however, Ref. 16.)

APPENDIX C: RELATIVISTIC GALILEI GROUP

In this appendix we summarize the mathematical
properties of our proposed new relafivistic Geliled group.
For completeness, we shall repeat a few items and
formulas that were already presented in the main text.

The carrier space is £3,1X E1, with x= (20, 21, 4%, #*) €
F31 and #€ Ey.. The transformations are written, in
a condensed form, as

x—a’ = AxtHdute, (Cn)

where A is a Lorentz matrix of the connected com-

w—nt’ =u-o,
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ponent S0u(3, 1) of the Lorentz group,' ¢ is a trans-
lation in Esi, o Is a translation in F;, and b is the
RG-boost in £;,X . Here ¢ is a scalar and ¢ and &
are four-vectors under SQ¢(3, 1). The group so de-
fined is denoted by Gs. An arbitrary element will by
symbolized by g= (e, e, &, A). The unit element is
{0,0,0,1). The composition law is

{2, az, by, Aa) (a1, @y, by, A1)

= (goto1, @a+Aetstoibs, botAsly, Asirs). (C2)
The inverse element is
=(—v, —A"a—0vb), —A~D, A7), (C3)
The group structure is®
Go={TeXTr}@{TP®S0:(3, 1)}.  (C4)

Even though our interest lies in the conesponding
quantum-mechanical group Gs, we first give here some
details about the algebra of Gy itself.

Denoting the generators of SOy(3, 1), T, T, and
Ty by Ju, Py, OQu and S, respectively, we find

[ wrs Too]=(gonT wo—Bupd vo G vt ool o) (C5a)
L2 Toe ) =i(gupPo—gusPs), (C3b)
[Py P 1=[0w Q1=[Tus, =[Py, §1=0, (CSc)
EPy, O0u]=10, (C5d)
L ws Qo] =200 800015 (C3e)
[S; Qu]=1P.. (C5f)
The Casimir operators are

Ly=P. P, {C6a)
Ly=W W=, (C6b)

Here we used the following notation:
W= eupanf PP, (C7)

It is interesting to note that I, and [, are precisely
the familiar invariants of the Poincaré group.

As was explained, {rom the physical point of view,
in Sec. III, the next step is to go to the covering
group of Gs [by replacing SOu(3, 1) with SL(2, C}]
and then to perform a central extension by a phase
group TY. We thus obtain the gquantum-mechanical
relativistic Galilei group, which has the structure®

G = TOX (TeX T @ {TIQSL(2, C)}. (C8)

We shall symbolize an element g€3s by g= (exp(i8);
o, a, b, A). For the factor system (cf. Appendix A)
we conveniently use the form#

w{gl, gg)EeXp{'ﬂ_lf(d'z, a1, b1, 1\1; o, s, bg, Az)} . ’ (C9)

# The function j has the explicit form f= {fzAom -+ 30%), hut
alternativeforms are possible. The constant /™ with the dimension
of inverse length appears in the exponent of w because f has the
dimension of lenl,th
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The composition law of G; can then he written as
(exp(id): oz, G2y by, Az)(exp(ith); ov, @1, by, Ar)
= (expi (Bs+-0,--17Y ) 5 outor, e+ AsinF-o1ds,
boet-Asbr, Ashy).  (C10)

The unit element is (1;0, 0,0, 1). The inverse element
of g becomes

gl= (expi{—0—~1); —g, —A " (a—ob}, —A™'D, A7),

where f is the function in (C9) which corresponds
to w(g, g™ 5

The Lie algebra of Gs is now easily found. One
obtains the same relations (C5) as were found for Gs
itself, with the exception of Eq. (C5d), which is re-
Placed by®

LPu Qul=—il""gu {C11)

Furthermore, the meaning of the operators./,, changes:
They are to be looked upon as the generators of
SL(2, C) rather than of 30,(3, 1). We note that if
Il is sel equal to zero, by {C9), the factor system e
reduces to the constant value 1, so that the central
extension becomes trivial, a direct product of T and
the covering of G

Anexpiicit realization of the Lie algebra (3.7)-
(3.12) of G in the Hilbert space 3C(Fy > E1) built
upon the carrer space HziX Ey is easily constructed
and has the following form®:

J,.V:'i(xuc'?y—at,{a,.)—i—-'iz,m {C12a)
P,=ig,, (C12b)

0, =128, — 3, (C12¢)
S=idh. (C12d)

In (C12a) the matrix 42, is what the physicist
usually calls “the intrinsic spin part” of /.. One
may, of course, choose these operators to he the
familiar finite-dimensional representatives of the
SL(2, C) group. [Thus, for example, for “spin 3"
one has Z,=L(vsv.—7svu), With v, being the Dirac
magrices.] When so doing, Eq. (4.13) tells us that
the realization (C12) describes a particle with unique
spin, whose value is determined by the cigenvalues
of 1%, However, as will be discussed below, the use
of finite-dimensional representations for %, would
imply that the realization of the algehra of G by
(C12) is not Hermitian. Conversely, in order that
(C12) represent a Hermitian realization, it is neces-
sary to interpret the Z,. as the infinite-dimensional
matrices associated with the irreducible unitary rep-
resentations of SL{2, C).

12T save space, we do not write down here the full Lie algebra

of G;. In sy case, it has been written down hefore; see Tigs. (3.7)~
(3.12).

# Tt may be worth while to point cut that the corresponding
realization of the Lie algebra (C3) of Gy is of the same foxm as
{C12) except for (C12c), which is replaced by Qr=1ud,.
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We now turn to the discussion of the Casimir
operators of Gz They are found fo bhe't

=P, Pe2S, (Ci3a)
Ge=3T,Twr, (C13h)
Ro=deppa T0 T (C13c)
Here we used the abbreviation
T}AVEJ_up“Im/[;g;r, (Cl‘éﬂ.)
with
M=P.0,~P.0.. {C14h)

We ohserve that the operalors § and 1 are lhe
Casimir operators of an SL(2, C) algebra. 1t is well
known® that in the unitary irreducible representa-
tions, the eigenvalues of these operators are

I =atai—1, X =Ziag, (C15)

where

ap=0,%, 1,3 ++o, ay=arbitrary pure imaginary

{C16a)
in the representations belonging to the “principal
series,” and

ap=0, m=arbitrary real, 0<m<l (Clﬁlﬂ)

in the representations belonging to the “supplemen-
tary series.”

Equations (C13a)-(C13c) thus suggest that the irre-
ducible unitary projectiive representations of our Gy are
labeled by (a) an arbitrary real number I, (b) an
arbitrary real number ®, and (¢} two gquantum num-
bers ap and @y, as specified by (Cl6a) or {C16b).
Such a representation will be denoted by the symbol
(1D, ag, a1).

In order to justify this result fully, as well as to
explore the physical interpretation of the quantum
numbers, it is necessary to comstruct explicitly the
irreducible unitary projective representations of G
The details of this procedure will he given elsewhere;
here we only sketch the calculation.

The representations in question will be induced by
the subgroup

{TEX T X TP @01, {CiT}

where @ is the stabilizer of the orbits in T¢#XTY.
Denoting the eigenvalues of P, by p, and those of
S by ¢, a poirt of an orbit is represented by (pu, #)

# Using the fact that, as stated in Sec, VI, 9-5 arises as the
contraction of 7.5(h(3, 2), one can check that there are no more
invariants than the three listed below,

# Tt is interesting to compare these invariants of G with those
of the original Gs; cf, Eq. (C6).

1 See, for example, LM, Gelland, R. A, Minlos, and Z. Ya.
Shapiro, Represenlobions of e Roiation and  Lorents Group
(Pergamon, New York, 1963}, p. 200,

#In view of Iiq. (4£.3), the eigenvalues r of .5 are related lo
the mass-squared eigenvalues w2 by r== 32,
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and the orbits are given by the eguation
P2 r =5, (C18)

Tt is then found that the stabilizer ® in (C17) is
precisely the group SL(2, C).
We now choose o set of basis functions
l Jl)P} ”5 ‘EJ 7?))

where £, » serve to label the components of the rep-
resentation space of SL(2, C). As is well known,™
in the unitary irreducible representations of SL{2, C)
{discussed above), the labels ¢ and 5 take on the
discrete values

Ew=ay, ayt1, a2, 0,

n= '_‘"5-: _E—!—i: Tty E"’“‘l, E-

(C19)
Eventuzily, with a suitable invariant measure being
defined, the irreducible unitary projective representa.-
tions of Gs are found o have the following form®:
U(C\P(fe); oy &, b} A) } lbm ¥y E: 7;')
=exp[é(ra+puar+60)]
X (D2 (G) Tersg | 215 75 &5 00
Here the RG-hoosted ¢,/ and # are given by
p=A"Yp—I), P =rdpb—gE (C20b)
The Dsea(G} is an infinite-dimensional matrix belong-
ing to some unitary irreducible representation of

SL(2, C). (see above), representing the group ele-
ment G. The latter is given by

G = Vj'JJ:.T—lQ V;,."r s

(C20a)

(C21a)

where @ is a particular element of the factor group
Ti®SL(2, C), viz,

0=(1;0,0,0, M), (C21b)
and V, . is that element of the same factor group

4 See, for example, p. 188 of Ref. 46.
¥ The constant 8 is arhitrary.
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which transforms an (arbitrary) fixed point (Du 7)
of the orbit (C18) into the given point (f, ). Finally,
in (C20) summation over § and 4" [with the ranges
as given in (C19)7 is understood.

Now we briefly discuss the physical interpretation
of the quantum numbers associated with the above
representation (I |D, ae, @1). We have already pointed
out at the beginning of Sec. TV that I can be looked
upon as a universal length. Concerning D, then, we
have the following comment to make. From (C20a),
it can be shown that representations differing only
in the value of $ are equivalent projective represen-
tations, in the sense that

Wt gy.an. (8) =€xp( —FiloD) A U000, (g) 4, (C22)

where we used a notation analogous Lo the one em-
ployed in {B7). Thus, in the free-particle realiza-
don, ® is of no significance and can be taken to
be zere.™

Finally, we consider the iwo remaining guantum
numbers. From (4.13) and {C12a) it is evident that
we wish to interpret the label ag of the representa-
tion as spin. Equation (C20) together with {C19)
and {Cl6a) tells us that this indeed is possible.
However, and this is a very interesting feature of
our framework, (C19) shows that our representations
describe ot a single spin value bui rather, for eacl
representation (1D, a, a1), an infinile lower of spin
stales, starting with the lowest value s=ado, and going
up in integral steps. [To each value s=ayru we,
of course, have a {25+1)-fold degencracy, differing
in spin component.]

The additional quantum number @, related to the
cigenvalues of the noncompact part g of the “spin
operator” Z,,, does not lend itself to such a simple
interpretation. At the present stage, we can only
say that dolk ao and ey are needed to select a definite
“tower.”

@ For the interacting case, this is no longer true; but we may
still renormalize the “internal” part of the mass squared of the

composite svstem by the amount D402, The reduction of
products of representations will be discussed elsewhere.



