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We review the available conceptual, theoretical and experimental ev-
idence according to which physical media in general, with particular
reference to the hyperdense media in the interior of hadrons, alter the
Minkowskian spacetime with local speeds of light which are generally
subluminal for media of low density (such as planetary atmospheres),
and superluminal for media of high density (such as hadrons). We
show that the isominkowskian geometry can provide the only known
geometrization of the spacetime of physical media which is: (1) uni-
versal, in the sense of applying for all possible signature-preserving
spacetimes; (2) direct, in the sense of holding within the given iner-
tial frame of the observer for all possible spacetimes; {3) invariani, in
a way equivalent to that of the conventional spacetime; (4) aziom-
preserving, thus permitting the preservation of the axioms of the
special relativity and their extension to arbitrary speeds; and (5)
in agreement with the available preliminary ezperimental daia. Spe-
cific experiments are discussed in detail for the resolution of the still
open problems of the spacetime and related basic laws holding in the
interior of the hyperdense hadrons.
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1. EVIDENCE ON LOCAL CHARACTER OF THE SPEED
OF LIGHT

Strictly speaking, the speed of electromagnetic (elm) waves is not a
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“Jmiversal constant,” but rather a quantity ¢ = ¢ /n depending on
local physical conditions representable via the index of refraction n,
where ¢, is the speed in vacuum. Therefore, when experimentally
established, deviations from ¢, are rather forceful evidence of devi-
ations from the conventional Minkowskian spacetime of the vacuum
[ia], and vice versa.

Speeds ¢ = ¢,/n < ¢, are known in our Newtonian environ-
ment. Lesser known is the fact that one of the first invariance studies
of speeds ¢ < ¢, was done by Lorentz [1b] (see the related mention
in Pauli’s book [1c]).

Speeds ¢ = ¢,/n > ¢, have been apparently measured by
A. Fnders and ¢. Nimtz [1d] in the tunneling of photons between
certain guides gsee review |le| for additional references and details).
Apparent speeds ¢ = ¢,/n > o have also been identified in certain
astrophysical events [1f-1h] (see also the recent data [1i]}. - A com-
prehensive review of all superluminal speeds can be found in Ref.

[1]].

] Note that the hopes of regaining the exact Minkowskian space-
time by reducing light to photons scattering among molecules, even
though valid as a first approximation, is no longer viable because: (1)
The reduction to second quantization is questionable for elm waves in
our atmosphere, say, with one meter wavelength; (2) The reduction
does not permit quantitative studies of superluminal speeds; and (3)
The reduction eliminates the representation of the inhomogeneity
and anisotropy of physical media, which have apparent, experimen-
tally measurable effects (see below).

Recall that hadrons are not ideal spheres with isolated points
in them, but rather some of the densest media measured in labo-
ratory until now. If spacetime anomalies are established for me-
dia of relatively low density, the hypothesis that the Minkowskian
spacetime can be eract within hadrons in its conventional realiza-
tion has little scientific credibility (see below for the exact character
of an axiom-preserving covering spacetime). Also, deviations are
expected from the complete mutual penetration of the wavepackets
of the constituents, thus resulting in the historical open legacy of
the existence of nonlinear, nonlocal and nonpotential effects in the
interior of hadronic.

One of the first quantitative studies of the above legacy was
done by D. L. Blokhintsev [2a] n 1964, followed by L. B. Redei
[2b], D. Y. Kim [2¢] and others. Note that the exact validity of the
Minkowskian geometry for the center-of-mass behavior of a hadron
in a particle accelerator is beyond scientific doubts. The authors of
Refs. [2a-2¢] then argued that a possibility for internal anomalies due
to nonlocal and other effects to manifest themselves in the outside
is vie deviations from the conventional Minkowskian behavior of the
mean lives of unstable hadrons with the speed v (or energy E).
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Note that the Minkowski metric can be written 7 = diag(1,
1,1, —c2). Therefore, any deviation B from n necessarily implies o
deviation from c,, as OnE Cal 56 by altering any component of the
metric and then using Lorentz transforms.

Along these lines, R. M. Santilli [2d] submitted in 1982 the
hypothesis that contact-nonpotential interactions (thus including the
strong interactions as per the above legacy) can accelerate ordinary
(vositive) masses at speed bigger than the speed of light in vacuun
much along the subsequent astrophysical measures [1f-1h]. The above
hypothesis implies that photons can travel inside the hyperdense
hadrons at speeds bigger than that in vacuum. V. de Sabbata and
M. Gasperini [2e] conducted the first phenomenological verification
within the context of the conventional gauge theories supporting the
hypothesis of Ref. 2d], and actually reaching limit speeds up to 79¢,
for superheavy hadrons.

The hypothesis of Ref. [22d] is also supported by the phe-
nomenological calculations conducted by H. B. Nielsen and L Picek
[2f] via the spontaneous symmetry breaking in the Higgs sector of

conventional gauge theories, which have resulted in the anomalous

Minkowskian metrics (here written in the notation above)

70 7 = diagl(1 +12 x 107%), (1 + 1.2 x 107%),

(1+1.2 x 107%), —4(1 —3.79 % 1073, (1)
K : 7 = diagl(1 — 2.0 x 107%),(1 - 2.0 x 107%),
(1 - 2.0 x 107*), —c5(1 + 6.00 x 107%)]. (2)

As one can see, calculations [2f] confirm speeds of photons
¢ = ¢o/n > ¢, for the interior of kaons, as conjectured in Ref. [2dl.
Recall that: spacetime anomalies are expected to increase with the
density; all hadrons have approximately the same size; and hadrons
have densities increasing with mass. Therefore, results similar to
(2) are expected for all hadrons heavier than kaons, as supported by
phenomenological studies [2¢].

The first direct experimental measurements on the behavior
of the meanlife of K& with energy, 7(E), were done by S. H. Aron-
son et al. [3a] at Fermilab and they suggested deviations from the
Minkowskian spacetime in the energy range of 30 to 100 GeV. Subse-
quent direct measurements also for K were done by S. H. Aronson
et al. [3b] also at Fermilab, suggesting instead no deviations of T(E)
from the Minkowskian form in the different energy range of 100 to
400 GeV.

More recently, a test of the decay law at short decay times was
made by the OPAL group at LEP [3¢]. In the latter experiment the
ratio of number of events Z° — r+r— with deviations of 7 from the
conventional law to number of "normal” events was (1.141.4£3.5)%.
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2. ISOMINKOWSKIAN GEOMETRIZATION OF
PHYSICAL MEDIA

A geometrization of the deviations from the Minkowskian spacetime
was submitted by Santilli [4a] in 1983 under the name of isominkotw-
skian geometry (see Ref.s [4b,4f] for the latest accounts) and resulted
to ber (1) “directly universal,” in the sense of admitting all infinitely
possible, well behaved, signature-preserving and symmetric modifica-
tions of the Minkowski metric (universality), directly in the inertial
frame of the observer (direct universality); (2) “invariant,” in the
sense of admitting a symmetry isomorphic to the Poincaré symme-
try, the Poincaré-Santilli isosymmetry [4a-4d,4e]; and (3) “axiom-
preserving”, in the sense that the isominkowskian geometry and
related symmetries are isomorphic to the conventional versions, a
property denoted with the prefix “iso.” )

Moreover, the isominkowskian geometry has permitted the
ezact reconstruction of the special relativity under arbitrary local
speeds of light [loc. cit.]. Refs. [4] have therefore established that,
contrary to a popular belief (see, e.g., the “Lorentz asymmetry” of
Ref. {2f]), the Minkowskian axioms, the Lorentz and Poincaré sym-
metry and the special relativity remain ezaci under all the above
spacetime anomalies, of course, when properly formulated.

The isominkowskian geometry is essentially characterized by

the lifting of the Minkowskian metric n — % =T x5, where T(z, v,
£, pu,7,w,...) is a positive-definite 4 x 4 matrix with an arbitrary lo-
cal dependence on coordinates x, speeds v (or energies E), densities
i, temperatures 7, frequencies w, and any other needed variables,
Jointly, the basic unit of the Minkowsls space, I = Diag. (1, 1, 1,
1), is hfted by an amount which is the inverse of the deformation
of the metric, I — 7 = 1/T. The dual lifting g — % =7 x 5 and
I — I =1/T then implies the preservation of all original spacetime
axioms. The lifting of the basic unit then requires, for consistency,
the reconstruction of the entire mathematical apparatus of the con-
ventional geometry into a form admitting I as the new; left and
right unit. A necessary condition for invariance is therefore that
the isominkowskian geometry be formulated via the womathematics
which consists of isonumbers and iso fields, isofunctions and isotrans-
forms, isodifferential calculus, etc. (see Ref. [41-4k], for mathemati-
cal studies and [4b,41] for physical profiles). .
Contrary to such apparent mathematical complexity, the iso-
minkowskian geometry and related formalism can be entirely, uniquely
and unambiguously constructed via a noncanonical transform at the
classical level, U x U = [ and a nonunitery transform at the op-
erator level, U x Ut = | . For instance, the latter map yields: the
isounit I — U x I x Ut = I, isonumbers n — UxnxUt=nxl=n;
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1socoordinates z# — U x z# x U1 = zF x (U x U') = ##,; isoproduct
AxB = Ux(AxB)xUT = AxT'xB = A%XB, K =UxK xUt, K =
A,B,T = (U xUHY-t = 1. isoseparation z2 — U x z2 x Ut =
(UxahtxUN)x (Ut xnu x U™ x (U x 2% x U = g# X B X £7;
etc.
Once constructed via the above noncanoniéal /nonunitary trans-

forms, the isominkowskain geometry is then invariant under addj-
tional transforms of the same class, provided that they are writ-

ten in terms of isomathematics, e.g., U = U x T2 x Ut =
U0t = Otxvu = I, for which the isounit I is numericelly in-
variant, IS Uxisgt =71 , the isoproduct is numerically invariant,
AXB - Ux(4 xBYxUt = A% B (i-e., T is numerically preserved);
etc.(see Refs. [4b,4f,41] for details).

The above properties illustrate that: (1) Any mixing of con-
ventional and isomathematics (e.g., deformation of the metric 7 —

T x n referred to the conventional unit I and fields, as done in de-
formations) implies the loss of invariance with consequential lack of
physical content; (2) Any change of the speed of light requires a non-
canonical/nonunitary transform of the conventional Minkowskian
setting with consequential loss of invariance (in fact, the Poincaré
symmetry can only provide the invariance in vacuum); and (3) The
only known invariant formulation of arbitrary speeds of light is that
permitted by Santilli’s isomathematics, isominkowskian geometry
and isopoincaré symmetry.

The isominkowskian geometry provides a direct geometriza-
tion of physical media at both the classical and operator levels [41].

Since T is positive-definite, 7} can always be diagonalized in the form
7 = Diag. (1/n},1/n3,1/n}, —c%/n?), thus providing a geometriza-
tion of: the local inhomogeneity (e.g., via a dependence of the n’s
from the density); the local anisotropy Se.g., via a differentiation be-
tween the space and time n's); as well as arbitrary local speeds of
elm waves (via the expression ez, pw,...) = co/n4(z, pyw,...) first
proposed in [4al]).

The isotopic behavior of the meanlife with speed (or energy)
for isotropic space with ny = np = ny = ns(, g, w,...) (yet with
general spacetime anisotropy 7, # n4) is given by [4a-4c

=7, 4= (1-8"2 f=(v/n.)/(cofra) (3)

and includes all existing or otherwise possible laws (2] via different
power series expansions in terms of different parameters with differ-
ent truncations {4e]. This eliminates the ambiguity of individually
testing the several different laws of Refs. [2].

Note that, when a hadron is studied from the outside, one
evidently can only use the average of the n-quantities to constants,
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called “characteristic constants” of the medium considered. Note
also that a possible anysotropy of the medium implies a deviation
from the conventional Doppler shift studied by Mignani [5a] and
others which will be studied elsewhere as a possible complement
to measurements [2,3]. Note finally that the latter anomalies are
eliminated by the reduction of light to photons MoVIngG I VACUUM
and scattering among molecules.

Isotopic law {3) was applied by F. Cardone, R. Mignani, and
R. M. Santilli [5b] to the experimental data of Refs. [3a,3b] resulting
in the single it of both experiments,

1/n? = 1/n2 = 1/n} = 0.909080(£0.004),1/n} = 1.003(&0.002)(. )
. 4

Therefore, even under the assumption of the correct charac-
ter of measurements {3b], they do not establish the validity of the
Minkowskian geometry inside hadrons because of the above isomin-
kowskian fit. Note also that fit (421 confirms the superluminal charac-
ter of the propagation of light within the hyperdense hadronic media,
a property that appears to be confirmed by other studies (see the
outline in [4b]). We should also mention that nonlinear and non-
local effects at short distances have been recently studied in Refs.
[5d,5e,41].

Note that the so-called “deformations” of the Minkowskian
geometry (e.g., the k-deformed Minkowski space of Refs. {6]) is not
equivalent to the isominkowskian space for numerous reasons, such
as: the former is defined via conventional numbers and fields while
the latter is defined via isonumbers and isofields; the former implies
the loss of the fundamental Poincaré symmetry, while the latter pre-
serves it and only realizes it in a more general way; and, last but not
least, the former implies the necessary abandonment of the special
relativity in favor of a yet unknon relativity, while the latter pre-
serves the axioms of the special relativity by central requirement.
Irrespective of that, it does not appear to be sufficiently known that
all classical and quantum deformations are afflicted by rather serious
problems of physical consistency (such as the lack of invariant units of
space, time, energy, etc., as inherent in all noncanonical /nonunitary
transforms, with consequential lack of applicability to real measure-
ments; loss of Hermiticity in time, as easily proved under nonunitary
transforms on conventional Hilbert spaces, with consequential lack of
real observables; etc.), which inconsistencies prevent any physically
meaningful application (see Refs. [7] for all details).

3. THE UNRESOLVED CHARACTER OF TESTS [3a,3b]

In sumnary, all available conceptual, theoretical, phenoomenological
and experimental evidence suggest eviations from the Minkowskian



Character of Hadronic Structure 489

Feg]metry inside hadrons with the sole exception of the Fermilab tests
3b).

In this note we therfore re-examine tests [3b] by focusing the
attention on the range-energy selection rule which can be applied to
re-elaborate the initial data on Ks decays. By talung into account
the results as they were done, we performed Monte Carlo simulations
of the main features of experiment [3b] and made our own fits for
KZ. Our conclusions and recommendations are the following:

(1) We agree that the parameters in the full formula dV/dt for
the proper time evolution are strongly correlated. This may cause
a generally non-relevant regular dependence of the parameters on
entities which are not present in the formula, such as number of runs,
energy, etc., apart from the systematic uncertainties. Therefore, the
above dependence may shadow the weak energy dependence we are
interested in, as can be seen from the large values of the correlation
elements.

(2) The authors of [7] solved the problem of non-correlated fit
by selecting the K& momenta greater than 100 GeV/c. By means
of that energy cut, they obtained the data sample in which the CP
violating terms contribute up to 1.6%. However, it seems unrealistic
to look for the deviations from the Minkowskian decay law of the
order of some percent. More realistic is to test the decay law on the
level of 1073, as suggested by studies [2]. In fact, the assumption of
1.6 contribution from PC violation in the data elaboration of Ref.
[3b] implies looking for the energy dependence of 7, at the level & x
10~2, thus rendering meaningless to look for more realistic deviations
of the order of 10~% and smaller.

(3) We propose to suppress the CP violating terms signifi-
cantly using selection rule for the ratic R/E, where R and E are
K2 range and energy. In the experiment, R/E ranges from 2.3 to
36.1 cm/GeV. The R/E interval should be selected to make the con-
tribution of the CP violating terms less than a desirable value, say
k x 1073, An effective (R, E) plot can then be calculated via Monte
Carlo methods applied to the real decay volume.

The price we pay for more accurate data handling due to the
range-energy selection rule will be lower statistics. In fact, under
the above new assumptions, 60-70% events will be rejected, i.e., only
63K - 84K events of the total 220K will be useful. Apart from the
loss of a major part of the data, 1/3 of the decay volume in the
experiment turns out to be also useless. The large inefliciency of
the experiment occurred because it had not been optimized for the
problem. Basicly, the experimental design and data selection rules
followed that of conventional Kg, K studies. '

We illustrate the above arguments with two fits shown in
Fig. 1. 220 000 Kg decays ‘at six energy values (from 125 to 375
GeV) were generated in the decay volume with the ranges from 9.3
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Fig. 1. Comparison of the various fitting functions
(curves 1, 2, and 3) applied to the simulated lifetime
7(E) dependence of Ref. [3b] under the energy-
range selection rule identified in the text.

m to 25.3 m. The energy dependence of the lifetime was assumed in
the form 7(E) = 75(1 + ¢E) with 75 = 0.8927, the world average of
the mean lifetime, and € = 4.10~5. After applying the range-energy
selection rule, a sample of 64K events was chosen for which the con-
tribution of the CP violating terms was less then 0.008. N amely we
deal with the following distribution for the proper lifetime:

% = N[exp(—z') + CPV]a (5)

where N is a normalization constant, ¢ = t/7(E)} and CP violating
terms are equal to

CPV =] ny— [? exp(—azy)

+ 2D |y | cos(Am t— by Joxp(—o(l+)/z),

where y stands for 75(E)/7y.
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The values of other parameters are taken as the world average
values from Ref. [4]. These are | ny— | = 2.284-1073, the magni-
tude of the CP-nonconservation parameter in K? — # 7~ decay,

$i = 43.7°, and Am = 0.5333 - 10"%hsec™! is the mass differ-
ence of K§ — —K2. The dilution factor D is defined as the rafio

(N - N)/(N + N) where N () is the number of K° (K¢} produced
by the proton beam on the target. We accepted the value D=0.75.

In Fig. 1 the sequence of the mean proper lifetimes is plot-
ted versus F, K& laboratory energies. The dependence was ob-
tained by simulations of K% decays in the experimental volume un-
der the conditions described above. The figure presents also two
one-parameter fits: (a) the energy-dependent formula of the type
7(E) = 0.8927(1 + p, E) with the obtained value p; = (4 £ 5)-107°
and x?/ndf = 0.38/5 (solid line); (b) fit by a constant funciion
T(E} = ¢, with ¢=0.904-0.01 and x*/ndf = 0.7/5 (dashed line).

For comparison, we performed also the two-parameter fit to
the formula of Ref.[3b], 7(E) = p2(1 + p1£). In this case, the
value of the crucial parameter p; is equal to (4 &+ 23)-107° with
x%/ndf = 0.38/4.

There is a difference in interpretation of parameters in the
two fitting formulae with the energy dependence. The parameter p;
in the fit from the cited paper was interpreted as the zero-energy
mean value of the proper Iifetime. We think that it is difficult to ex-
trapolate the fitting formulae from the energy interval 100-400 GeV
to zero. Instead, we try to find the energy dependence in the limited
energy interval by fit starting from a definite point. This difference in
interpretation is important because, in general, various approaches
in fitting procedures may lead to crucially different numerical results.

Thus, in the selected amount of the events, both fits dig up
well the mean value of the hidden parameter ¢ determining the en-
ergy dependence in the simulated K2 decays, however the error bars
differ strongly. Though both results for fitting values of py are still
insignificant statistically even in the selected sample of events, the
100% error bar in our fit being rather promising. It opens the door for
new manipulations with the selection procedure aiming to improve
the result. So we encourage the re-elaboration of the original data
of [7] under the modified selection rules to obtain possible hopeful
estimations of 7(F) instead of previous hopeless ones.

We finally note that no firm spacetime anomalies can be es-
tablished via the above re-elaboration for PC violating contributions
smaller than 1.6% because said anomalies are visually within the er-
rorbars (Fig. 1) due to insufficient statistuics and other reasons. Cor-
responding deviations cannot be considered for PC violating contri-
bution larger than 1.6% because the latter aré experimentally known
to be excluded for the energy range of measures [3b].
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Despite that, the analysis of this note establishes the insuffi-
ciencies of tests [3a,3b] and the need for final, more accurate mea-
surements as the only way to resolve the now vexing fundamental -
problem of the spacetime geometry and physical laws holding in the
interior of the hyperdense hadrons. After all, as indicatd earlier,
the isominkowskian fit [5b] of experiments [3a,3b] establishes the
existence of spacetime anomalies with superluminal speeds in the in-
terior of hadrons even in the event that measurements [3b] result to
be correct.
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