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Summary. — We recall the variation of the speed of light with the local physical
conditions of the material media in which it propagabes, and identify a corresponding
class of generalized metrics, The underlying group of isometries is constructed via a
Tie-izotopie lifting of the envelope, algebra and group structure of Lorentz transforma-
fions. Tt is shown that the generalized transformations, called Lorents-isotopic, are
apparently capable of characterizing an isotopic lifting of the special relativity for
extended, and therefore deformable particles. The current experimental information
on the apparent approximate character of the conventional Lorents transformations
in particle physies are reviewed, and a number of direet tests suitable for the resolutbion
of the issne are indicated.

As is knowa, the constaney of the speed of light, .the underlying Lorents's invarisnt
in Minkowski space

{1} @t = ainw = et = Ptal -+ wts 4 ot — atefet, wl=1

and the special rolativity at large, were specifically conceived for motion in vacuum
(intended as empty space), as limpidly stated in the historical contributions by LORENTZ,
Pomvcart, Ernstein, and others (1).

Nevertheless, it is known that the speed of light is not an absolute constant through
the Universs, but possesses a rather complex fanctional dependence on the characteristics
of light itself {e.g., wave-length) and on the local quantilies of the physical medium in
which it propagates {e.g., time, co-ordinates, velocity, index of refraction, density, ete.).
Thus a more adequate invariant should express the loeal functional dependence of the
speed of light, ¢ = e(f, r, 7, ...), as well as the general inhomogenuity and unisotropy

(Y Supported by the U. 3. Department of Tnergy under contract number DE-ACO2-80BR10631
A0D2.
(*) An excellon$ aecount still remains $thot by W. PavuLl: Relalivildisthesrie (Lipsia, 1921},
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of material media, e.g., it should be of the type
(2) af = pigy = (2, 2, )2 == gl DEg @w?bigt 4 Gt h2ad — pilad

which preserves the fopologieal structure of (1), Further generalizations, e.g. via o
mefrie with a funetional dependence of the bYDe = frld)s ghe = fyle), should nok
be exeluded.

In regard to the motion of particles, the hystorical contributions (1) also stated, quite
limpidly, that the applicability of invariant {1) should be restrieted to pointlike particles
moving in emply space {). In fact, it was known that, whenever particles cannot be
effectively approximated as massive points, their motion does not generally occur in
empty space, bub rather in material media. Tven though not necessarily unique, a
measure of the extended character of particles moving in material media is therefore
given by a departure from the perfectly homogeneous and isotropie character of emply
space, i.e. is provided by generalized invariants (26 least) of type (2).

The validity of invariant (1) for electromagnetic interactions is now established by
a truly impressive amount of oxperimental evidence, However, authoritative doubts
on the validity of the same invariant for physical conditions of particles different than
those conceived by LoreNTZ, POINCARS, and Lmnsreiv, have been exprossed, since the
oarly paris of this eentury. For instance, in regard to the interior of strongly interacting
particles and ileir nuclear forces, Formi clearly expressed « doubts as to whether the
usual concopts of geometry hold for such small regions of space» (3),

A systematic study of Fermi’s legacy was suggested in ref, (*), and then eonducted
at the yearly Workshops on Lic-admissibla Lormulations (°). The approach is based on
the notion of closed, variationally nou-self-adjoint systems (5). These are systems which,
when seen from the outside, verity conventional, total conservation laws. Nevertheless,
their internal forces are genocrally {nonlocal and} non-Hamiltoniun due o contash
interactions among extended constituents for which the notion of potential energy has
no physical meaning. The admission of an imternal non-Hamiltontan interaction then
implies the lack of exact character of the analytic, geometric and algebraic foundations
of speeial relativity, in favour of suitable generalizations. In particular, the model
implies that, while the center-of-mass motion of a hadron in vacuum is fully conformed
to invariant (1), the motion of its constituents could be governed by the more general
invariant (2). Thus, under the approximation of an isetropie medium with by == by ==
= by= b, invariant (2) characterizes the maximal speed

(3) Ymax = G('ﬁ, L) ’:: )Ih‘/gb(t) r, ':: } % Cracunm = €

according to the hypothesis submitted in rof. "), with @, < ¢, suggested for nuclear

(*) The corly, well-written, treateses on speciol relativity stressed cxplicilly its vestricted applica.
bility to massive points {see, e.p., the title of Chept. VI of P. G, BERGMANN: Infroduelion to Special
Relativily (Englowood Cliffs, N.JY., 1042)). I is regretiable that this sound scientific caution hasg
generally disappeared in more recent treateses on the subject.

(*) I, FERMI: Nuclear Physics (Chicago, II., 1949}, p. 111.

(Y R. M. Santini: Hadronic J., 1, 574 (1978), .

(5)  Proceedings of the Second Worlkshop en Lic-admissilie Tormulelions, Parts A and B, Hadronic J.,
3, (I871); Proceedings of the Third Workshop on Lic-admissible Formulations, Parts A, B and O,
Hadronic J., 4 (1980); sce also the Proceedings of the First Imtornafional Conference on Nonpolen-
tial Inleractions and Their Lie-admissible treatment, Parts A, B, C and D, Hodronie J.o 5 (1982).
() R. M. SANTIELI: Foundalions of Theorelical Mechunies, Vol. T (Berlin, 1978),

() B, M. SANTIELI: fell. Nuove Cimento, 33, 145 (1982).
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costibuents, and v, > ¢, suggested for hadronie congtituents. Subsequent independent
studies (%) within the context of unified gauge theories in a curved space have produced
the first estimate for hadrenie constitments w,,, == 75e,.

Possible infernal deviations from invariant (1) in closed non-Hamilbonian systems,
even though not directly detectable from the oubside, can manifest themselves in o
number of indirect ways. For instanee, it has been suggested for a long time that POS-
sible nonloeal internal effects may imply deviations from standard predictions of the
mean life of unstable hadrons in flight (*). A systematic study of this possibility has
been conducted in ref, (*9) (and quoted ecarlier papers) for the weak decays of hadvons
within the context of unified gauge theories. The main idea is that a departure from
invarisnt (1) oceurs in the Higgs sector of spontaneons symmetry breaking according
to the fellowing particular case of (2):

@l = akgeat Gus = Nuy + Huvs
(4} Hga = @, Yen = e,
o0 = {—3.79 4 1.37)-10-% for =+, e = {061 4 O.17)-10-F  for K+

with weighted average & = (0.54 4 0.17)-10-3, Subsequent independent caleulations (11)
give the similar value « = (3.6 & 5.2} 10-%, as well as predict an upper limit for ex-
periments under way.

Deviations from invariant {1) ave also ab the foundaiion of a number of thooretical
studies, such as the superluminal Lorentz fransformations (12) or the Finsler treatment
of local anisotropy {13}, and may provide a unified interpretation of a number of experi-
mental aspects, such as: KK regeneration experiment {#}, anomalous hehaviour of
the magnetic moments (%), anomalous torques on electron spin (19), possible instability
of the proton (¥7), and deviations from the discrete symmetrics P (18y, (1, C{*)
and PCOT ().

At any rate, the possible deformation of the chavge distribution of hadrons, from the
perfectly spherical shape zw + yy + 22 == 1 into the ellipsoids wbfs + ybly + ablsy == 1,
has been theoretically predicted in ref. () (pp. 786-797) via o Lie-admissible generaliza-
tion of the enveloping algebra of T/, it has been quantitatively worked out in ref. (158},
and it has been apparently confirmed via neutron interferometry to be about 19, for

(*) V. Dr SaBBATA and M. GASPERINI: Lell. Nuove Ctmento, 34, 337 (108%),

(*) See, ey, D. Y, Krm: Hadronie J., 1, 1343 (1978), and quoted papers.

() H. B. Nipisex and I. Picee: Nuel, Phys, B, 2L1, 269 (1983).

() R. HUERPA-QUINTANILLA and F. L. Luoro: Fermilab preprint 83/18-THY (1983).

(**) E. Ruoadi and R. MieNANT: Lelf. Nusve Cimenio, 4, 144 {1972)., Tor an updated roview, sco
G. D. MaccaroNE and 0. REcaMI: preprint INFN/AE-82/12 (1982), University of Catania, Ialy.,
(%) G, Yu. BoGosSLovskyY: Nuovo Cimenio B, 40, 99, 116 {1977): 43, 377 (1978).

{14) 8. H. Aroxgonw, ¢. J, Boox, H. Y. CHENG and . FISHBACK: Phys. Rev. Lelt., 48, 1306 (1982},
(*} G. Boezr: Hadronic J., 4, 634, 2018 (1881); 5, 750 (1082),

(**) P. R. POILLips: Rev, Sei. Insir., 530, 1018 (16763,

*7) SBee, ep., A, ZEr: Phys. Ree. D, 25, 1864 {188%),

(") Bee, .., M. ForrE, B. R. HECKEL, N, F. RaMsEY, K. Gresn, G. L, GRERY, J. Brernn and
J. L. PENDLERURY: Phys. Rev. Leitl., 45, 2088 (1980),

{# R. F. SrosopriaN, C. Rioux, R. Roy, H. B. CoNzZBEET, P. voN RossiN and F. INTRRBERGER:
Plys. Rev. Letl,, 47, 1803 (1981); U. Rroux, R. Roy, R. J. SLoBopriaN and H. K. Congnrre: Nucl.
Phys, 4, 394 {1983); and R. A. HARDEKOPF, P. W. EBaton, P. W. Livowsgr and L. R. VESEER:
Phys., Rev. €, 25, 1090 (1982).

(3"} See, e.f, the B.C.D.M.S, CorLaBoraTioN: J.I.N.IX. Preprint BI-82-650 {1982}, Dubna, U.3.8.R.
(*1y See, e, 1. L. 1G1: Z. Phys. O, 12, 235 (1082).
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neutrons in the infense fields in the vieinity of Mu-metal nuclei (sce ref. (**) and quoted
earHer tests). It is evident that a deformaiion of the charge distribuiion of hadrons,
fhat is, a deformation of the space component of invarient (1} into that of (2) with
consequential, manifest, rotational asyinmetry, musé necessarily imply fthe transition
to the entire invariant (2). At a deeper study, it emerges that the deformation of the
charge distribution of extended particles can bhe considered as the ultimate physical
foundation of virtually all studies revicwed here. By recalling that pointiike particles
cannot be deformed and that their rotational symmetry cannot be broken {irrespective
of the interactions considered), the ultimate conceptual foundations of invariant {2)
in parficle physies can be seen in the extended character of hadrons, with a eor-
responding profile for classical settings.

In thisletter, we shall summarize our studies on o possible generalization of the speeial
relativity for extended partieles. A detailed presentation will appear clsewhere. The
hoype is that all the independent, theoretical and experimental contributions considered
here (a5 well as others nof indicated for brevity) may, onc day, result to be different
foundationg of one, gingle, underlying physieal theory (*).

The mathematical methods used in our analysis are those of the so-called Lie-
igotopic theory (%7}, The term «lifting » is often used as onc way to differentiafe the
emerging generalizations from ofher approaches, e.g., those characterized by maps.

The generalized relativity will be constructed along lines parallel to those of the iso-
topiclifting of Gralilel’s relativity submitted in ref. (*%). 'We are referring to a generalized
relativity characterized by a Lie symmetry whose abstract, co-cordinate-free form
coineides with that of the conventional relativity. The generalized relativity, therefore,
essentially consists of fhe most general possible realization of a known abstract sym-
melry (¥3-%7). The terms Galilei-isotopic relativily have been submitted in ref. (25) for
the nonrelativistic case, while the terms Lorents-isotopic relativity are submitted here,
for the relativistic one. The understanding is that other terms are cqually conceivable
such as « Poincaréd-isofipic » or « Binstein-isotopie ».

For the reader’s convenience, we recall $hat the Tide-isotopic theory is bused on tle
following main aspects:

a) isotopie liffing of the universal enveloping associative algebra & with conven-
tional associative produet AB and wnit I, T4 = Al = A, inio the form & eharacier-

(22) IL. Navcw: Hedronic J., 5, 729 (1982).

(**} A possible unification of the difficrent studies considered wilt inhevitably coll for vevisions aimed
at mutual compatibility. Tor instance, invariant (2} and related Lorentz-asymmetry is conceived
to be depondent on local physical conditions and, thus, i§ is expected to vary not only from the
wealk t0 fhe strong and to other intecractions, but also from reaction to reaction within cach type
of interaction. In fact, not only the wvalue, but even Ehe sign of the Lorenlz ssymmobry para-
metoer ¢ of e¢qs. (1) Is different for the =+ and K+ deenys. As o resulb, bto reach umification with
oller models along the snme lines, studieg aiming at o sort of ¢ universal Lorentz assymmobry =,
should bo revised as to admit o local dependence of the Lorentz-asymmetry, i.e o local dependoncs
of the speed of light.

(3%} The nodion of isobopy is rvather old in abstrect algebras, although rencrafly lgnored in contein-
porary literature. Apparvently, its firat application to Lie's theory (enveloping algebras, Lie algebras,
and Lie groups) was made by 1L, M, SANTILLL: Hadronie J,, 4, 223 {1078), np. 287-290 and 329-374,
as anr intermediary step toward the Lie-admissible gencralization of Lico’s theory. A revicw of the
stabe of the avt in 1982 is presented in ref, (*%), pp. 148-183, Specific npplications to the gencralization
of pgeudo-Buclidean spaces bave been presented in yef. (3%°%). Mathematical studies can be found
in ref. (*). '

(>} R, M. SANTILLI: Foundalions of T'heorvebical Meghanies, Vol. IT {Berlin, 1982).

(**) R. M. SavtiLLi: Lie-isolopic lflings of Lie's theory. - 1 (eneral considerations, LB.R. preprink
DRE-83-2 (1983), submitted for publication.

(*"y R. M. SANTILLI: Lie-igclopic liftings of Lie's theory. - [1: Lifting of rolations, I.D.R. prepring
DE-83-2 (1983), submitted for publication.
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ized by the product A= B = AF 7 and the new idendity f = %, Joe d == A § = 4,
where & is fixed and nonsingular;

b) isotopic lifting of the (continuous) Lie transformation group Gia'= go =
= exp [Xu]lgx, into the form G:iu' = fuw = exp [Xu]|3% x = exp [XFw)|pm, where X
and w are the generator and parameter, respectively, of the orviginal group; and

¢) isotopic lifting of the Lie algebra ¢:[X,, X} = X, X,— X; X, = CLX, into
the form [X,7 X)) = X4 X, — X% X, = D% x X, where D = Dl

with underiying methodology, sueh as the Lie-isobtopic extension of the Poincaré-
Birkhoff-Witt theorem (for the construetion of a basis of &); of the Baker-Camphell-
Hansdorf theorem {for the isotopic composition law); of Lie’s first, second and third
theorerns {for the isotopic commutbation rules); ete.

More particularly, we shall use the following property of the Lie-isotopic theory
worked oub in the recent paper (2%),

Theorem 1. Let G(m) be a m-parameter Lie symmebry group of the eomposition
2 dz = 76,27 of a w-dimensional Euelidean space H(n, 8, F) over the field F of real
numbers R, complex numbers €, or quaternions &. "Then, the isotopic lifting G(m)
of G{{m) characterized by a nongingular, Hermitian, and sufficiently smooth meirie ¢
in the local variables, leaves invariant the generalized composition Z'g,z’ of the
isotopic space f(n, g, F), F = EI.

The theorem essenfially states that, when the isotopie element 7 (eharacterizing
all associative products) is given by the new metric gii, 2, 2,...), the new unit is the
Casimir invariant of order zero, f = g-!. The form invariance of the new metrie is then
consequential, as the interested reader can verify without the analysis of vef. (*%).

In the subsequent paper (¥7), we have constructed the isotope O, of Oy, thai is, the
generalization of the conventional vetation group which leaves invariant all possible
deformations of the sphere, a1 bfa' + a*bfx® |- 030827 = 1. As expected, O, Gurned
oub to be loeally isomorphie to O, under the assumed mebrie (or to O, in other cases).

In this paper, we shall construct a generalization of the Lorentz’s transformations
verifying the following econditions.

A) The generalized transformations ach in the Minkowski-isotepic spaee, .c. in
the lifting (4, g, R) of (4,6, R) with poinis @ = (', o®, a®, 4 = ¢} characterized by
the metric g of composition {2), according to the transformation laws

(5) # = Awa = dgx, 2= gt4 dt=aigdt,
under the eondition that they leave invariant separation {2), i.c. verify the propertics
(6er) e = gtk Ate At n =atse = iz,

(80} At A =1, (det AY2= (detg-1)t,

B} The transformations so defined constitute a Lie-isotopic group, i.¢. they verify
the isotopic group laws

(7) A0y =1, Ay M) = A + ), dwywe dl—w) =1,
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) The generalized transformations characterize & covering of the conventional
Liorentz transformations, in the sense that they apply fo a broader physical arena
(extended particles moving in material media), while admitting the conventional theory
{for pointlike particles) as a parficular case.

Asg anticipated earlier, the transformations verifying conditions 4}, B), ¢), will be
called Lorentz-isofopic and their group, denoted with 0., will be called the Lovents-
isolopie group.

To simplify the construction, we use the factorizations 4 = 4Ffg0;; and
N = ! e?!, under which we ignore the lifting R of the field R (for which ¥ % & = Nw),
while conditions (606) assume the simpler form 4tgd == g, det 4 = 4 1. The assump-
tion of the metric g == diag (b, b3, b3, —¢®) then implies the preservation under lift.
ing of the conneetivity properties of Oy, resulting in the components 0%, and Ok;.
¥t is possible to prove that 013,1 forms & {Lie-isotopic) group, while the remaining com-
ponents, which are characterized by the isotopic inversions

I

= PxPaw =Ples=Plo=(—r,—1),

do not form a group unless combined with Cﬁ_t,,,l, as in the standard case.
The construction of the Loventz-isotopic group is, therefore, reduced to that of OI_M,
whose explicit form is given by

1} The isotopic lifting of the enveloping associative algebra & of Of,,
(9 & =g, X, XX, X X4X,.. i<§, t<j<bh,

where the basis X, consists of the ordered set of the conventional 44 generators
of 0,, say, J and M, as given, e.g., in ref. (*8), p. 42, under the redefinition

(10) { & = {jks Mic} B jl = b'_.:.lb?JIs jz = b“{lb;iJz,

Jy= 0N, Xt=—_X, B, = b M, k=1,2,3,

2) The isotopic lifting of the proper Lorentz grouwp characterized by the following
* expansions in &

A1) Ofs 4,00,w) = (TT*exp 70,3 ) % (T oxp (Hsls ) =
Jom Ekw}

_ (i[l oxp [jk.qek]) (ﬁ oxp [Il?fkguk])f »

Jem1

where the 0’s and «’s are the conventional parameters of 013,1, and the last exponentials
are the conventional ones.

(**) T. Romaw: Theory of Elemeniory Porficles (Amsterdam, 1964).
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2) The isotopic lifting of the Lie algebra of the Loveniz group

[Je3 i = —eundy
(12) Otan [, 0] = LTI

W 1) = — e
with related isctopic Casimir invariants

~

1 . 3 /. 1. .
OlzJ€M7M2=Z(Jng,;—~§ﬂfkng)=._3j*,
2 — 2
(13) 3 _ . =1
Coe=Ja: M =3 Jogbly == 0.

=L

It is evident that, by construction, the groups 0,, and 0y, coincide ai the
absiract, co-ordinate—free level, by therefore being locally isomorphic (for the metric
g = diag (b%, b2, b3, — ¢*)—seo below for other cases). In fact, the structure constants
of 011,1 coincide with those of OL,I for the case considered here {co-ordinates {r,1) and
metrie diag(+ 1, 4+ 1, + 1, —e¢p)) The extension of the local isomorphism o $he full
groups O,, and O,, is then trivial.

Despite that, the explicit form of the transformations of 01, and Oy, are sig-
nificantly different. For instance, a Torentz-isotopic transformation in tho plane
(3, 4) is given by

Y A W _ { cosh(uc) — (efby) sinh (ue)\ {7
(14 “= ( ) =dxw= \—(b,,[c) ginh (ue) cosh (ue) )(z) ’

by = bg{l, @, ) ¢ = ¢{l. 3 o}

and can be written

¥ = Pz —ol), cosh (e} = § == {1 —wbioje)~t,

(15) vhy

1 = 9(—vbiafe + 1), sinh (ue) = - 7.

Numerous obher examples of Torentz-isotopic transformations can be explicitly com-
puted with the methods presented here, e.g., via oxpansions {11), where the only un-
known is the assumed generalized metric. Explicit examples of isotopic yotations have
been computed in ref. (*7}.

[t is an instructive cxorcise for the interested reader Lo prove thad the Lorentz-
isotopic transformations verify all conditions A}, B), O, by therefore constituting o
covering of the conventionnl transformations. "Pheir most salient difference is that the
former are generally nonlinear, as evident from the dependence on the local co-ordinates
of tho metric g entering the cxpansions {11) and related explicit forms of type (15).
As o matter of fach, this intrinsie nonlinearity, expressed in formally linear theory
(at the isotopic level), renders the covering transformations particuiarly intrigning for
a namber of problems, such as the characterization of hadrons and their interactions
or decays.
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It shonld be indicated at this point that the J;; symmetry holds for all possible
metries ¢ under the restrictions that they are nonsingular, Hermitean (and. thus,
diagonalizable), and vorify sufficient consiruity propoerties, Thus, the O, symmetry
lolds for a e¢lasg of invaviants substantially broader than (2). However, in relaxing
condition ), we lose the covering nature of the generalized transformations, Alse,
in relaxing the positive definiie character of the element g, and — gy, the local iso-
morphism hebween 03'1 and O, is generally lost. The cceurrence will be investigated
in defail elsewhere,

Nots that O, eontaing ag o particular case the generalized Lovents lransformations
introduced in ref. (%) for the invariant

{16} 28 =5 wlg ey s 2R[(vE g pmhfatn. gul) I in,, ey |

where 7,y is the conventional Minkowskian metrie, »¥ is a vector along the direction of
anisotropy, and # is a scale parameter. The underlying fransformaiions are thoen given
by (11), 9., by (18) with wbiz == vz and § = [{1—ofe}/(} + vfe)]72(1 — v2{o?)~%, and
they exhibit an appreciable difference with the conventional ones only for speeds very
close to thaf oflight, However, the relationship with 0, , demands specific investigntions.

Similarly, isotopic transformations (11) can be enlarged to ineclude the ecase

't = — g%, by therefore permitbing o generalization of the superluminouny transforma-
tions of zef. (22) to the case of wuriable speeds of light, Other cases will be indicated
alsewhere.

We now touch the problem of the Lorentz-isofopic relativity, that is, the relativiby
sharacterized by transformations (11). Our remarks will be as clementary as possibie
and restricted to the plane (3, 4) with gy, = I® and g, = —¢%. The understanding
is that at least two space dimensions are needed for an effective charactevization of
extended particles.

1) Mamimal speed of massive, ordinary particles. The veader should keep in mind
that the Lorentz-isotopie relativity is speecifically conceived for the case when the speed
of light, not; only is different than thai in vacuum, buf possesses a dependence on loeal
quantities of the type (2). Geometrically, thie implies o deformation of the light-cone
according to fig. 1. The following particular eases are then relevant.

Crse 1A) vy = 6 ¢ << . This is the case, for instance, of the (eronlov light
in water which travels at the speed ¢ == ¢yfn < ¢,, while ordinary elecfrons ean travel
ab Vpay = € > ¢. The case is readily represented by the Lorentz-isotopie relativity
with b = 1fn and ¢ = gfn.

Case 1B) 0., < ¢, ¢< ¢, This case is predicted by the theory as o modifica-
tion of case 14) when parbicles cannot be considered as pointlike. Additional studies
are, however, needed to reach quantitative predictions for each given medium and each
given extended particle.

Oase 10) vy, < ¢y, ¢> ¢y, This is the ease snbmitted in ref. {?) for nuclear
constituents, where the speed ¢ is referred not necessarily to light itself, but to any
causal signal propagating within hadronic matter,

Case 1D) v, > ¢, ¢ > ¢,. Thisis the case submitted in ref. {7) for the hadronic
consbituents, where the interpretation of ¢ is the same as that of ecase 10).
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288z —eet e=0
C>CD

—_— 2 p=2
/212 tcnt-—{)

CO= c"n.lcn.t:uurn

zbtz—tclt=0
C<Cn

Fig. 1. - A schematbic view of the deformation of the come of light in vacuun predicied hy the
Tiorents-isotonic relativity submitted in this paper. The most dominant physical coneept resully
to be the extended character of the particles considered (such ns hadrons), with eonsequential pos-
sibility of the deformation of their spherical charge distribution into ellipsoids for suflieientiy intense,
short-range, cxternal forces. In turn, these deformations imply deviations, firss, from the rotational
symmetry, and then from the Lorentz symmetry. Deformations of the light-cone are then unovoid-
able under the conditions considered. In the final analysis, they merely represent the dependence
of tho speed of light on the local characteristios of the material medinm in wiich it propagates,
Only two cascs are considercd in the figure, The flrat with ¢ < ¢, depicts the Cerenkov light {which
ia fully rvepresented by the Torentz-iyotopic relativity); while the second with ¢ > co depiets the
Lypothesis submitted in vef. (7), according fto which cousal signals can propagate within hadronic
matter with speeds higher than that of light in vacnum owing to ecxpecled coniact forced anong
oxtonded parbicles which, besides not admitting o Hamiltonian, are instantancous by ecneeption.
The deformations of the lighl-cone here submitted appear to be confirmed by a numbor of experi-
mon$al data, alghough in a prefiminary way, such as: the measuvres ol rvofational-ssymmetry of
vof. {2*), the daba of Lorents agymimetry of ref. ('}, and others.

2} Isolopie composition of speeds. Tho use of successive transformasions (15)
readily vields the composition of speed according to the isotopic rule

Vyor = (0 + B) {1 + n DP0yfe?) .

The maximal possibie speed of particles is then compatible with (3). This is in fall
agreement with oxpsrimental evidence for the case of the Cerenkov light {case ¥4)),
and appears plausible for the remaining cases,

3) Isofopic proper time, dilation, and condfraction. The remaining aspects of the
Lorentz-isotopie relativity can be developed via suitable generalizations of the conven-
tional setting. For instance, the proper time of the theory is the O, -scalar

A? = di® — dod®dofed = di2g-2,

The time dilation is then given by At = Ay, while the Lorentz contraction is given
by AL = AlLp~t, ‘Thus, bthe Lovenéz-isolopie relativity implies deviations from the
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standard predictions for the case of extended particles moving within material media,
whether 4 macroscopic eharge moving within o liquid, or a hadron moving whitin
ladroniec matber. In the final analysis, this is precisely the case of the deviations from
tho moan life of unstable hadrons considered earlier (%19).

As concluding remarks, we ean say that, on elassical grounds, the Lorentz-isotopic
velativity reprosents in full the physical conditions of the (Jerenlov light (for which no
furthor test is needed) and extrapelates them to the case of extended particles (for
wlich additional theoretical studies are needed to achieve quantitative predictions
suitable for experiments).

In regard to particle physies, the Lorentz-isotopic relativity has been conceived bo
ropreseat extended parbicles, thab is particles that can be deformed under sufficiently
intense oxbernal fields, resulting first in the rotational asymmetry abia + ybiy +
+ zbz == 1, and then in Lorentz-asymmetric invariants of type (2). Deviations from
the standard mean life and other predictions of the special relativity are then
consequential,

The available direct experimental infomation reviewed earlier is encouragingly in
favour of the noed for a generalization of the special relativity, hopefuily of the unifying
type submitted here, although the information is far from = final form.

The needed fundamental bests are evidently those on the conlinucus part of the con-
ventional Lorents symmetry (besides those on the discrete part calling for a separatc
analysis), ¢.g.:

i) Iinalization of the apparent Lorentz-boost asymmeiry in the mean tife of
unstable hadrons (and not leptons) in flight, with particular reference o pions and
kaons, according to the experiments reviewed, e.g., in ref. (10). In order to be effective
for the selection of the suitable generalization of the law Al = Ady(1 —¢*fe?)-t and of
the underlying metrie, the experiments shounld finalize possible deviations per each
individual particle (becanse expected to be different for different particles), and at dif-
ferent energies (because important for the selection of the generalized metric whether,
e.g., with & Minkowskian or a Finslerian topology);

ii) Finalization of the apparent 1% deformation/rotational-asyminetry of low-
energy neutrops within the intense fields in the vicinity of nuclei, as reported in ref. (2
via interferometric measures on the periodicity of the neutron wave funciions for two
spin flips. The tests should then be repeated according to a number of suitable varia-
tions, e.g., for 2n spin fiips, » == 1,2, 3, ... (apparently, current technology in neutron
interferometry can permit up to 50 spin flips); or via linear increases of the width of
the material penetrated by the nenfron heam (whose nuelear fields are responsible for
the apparvent deformationjrotational asymmetry); ete.

iii) Finalization of possible, sufficiently small deviations from Pauli’s exclusion
prineiple in open nuclear reactions, as theoretically predieted in vef. (1), elaborated by
2 nurnber of suthors in ref. (%) and not excluded in the tests of noutron-tritium seatbering
of ref. (3*) and quoted reeent experiments. -

1t is evident that the ultimate Toots of tests i}, ii), i) (and several others that aro
coneeivable along the same lines) arve givon by the possible deformation of the charge
distribution of hadrons {and, possibly, of their constituents) under sufficiently infense,
short-range fields. In fact, such deformation {tests if)) implies a manifest, generally
small, rotational-asymmetry. In turn, the bransition from the space part of invar-
iant {1} to that of (2) implies the necessary gransifion o the enbire invaviant (2).
A doviation from the Lorentz boosts is then consequential (testsi)). On the other side,
a rotational asymmotry may well imply & corresponding, sufficiently small deviation
from the exact fermionic character of nucleons. A corresponding deviation from Pauli’s
exclusion principle is then also consequential (tests iii)}. {Apparently, the rotational
asymineiry seems siso to imply deviations from the diserebe symuetries because, while
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the genecrators B, T, ete. isotopically commute with 013_1 in the frame in which invari-
ant (%) is diagonal, such commutativity demands specific studies in arbitrary frames
for which the metrie is not diagonal.)

But, above all, the most pncouraging aspect is that all tests i), i), iii) and others,
are well within current technical capabilities (besides being of quite moderate cost
when compared to high-energy experiments). The physics community has, therefore,
renched in full the capability o resolve experimentally the apparent approximate
character of the conventional Lorentz transformations in particle physics.

On theoretical grounds the basic issue is 8o simple to appear trivial. The special
relativity was conceived for pointlike particles moving in empty space. When ex-
tended particles moving in material media are considered, deviations from the special
relativity are expeeted to be consequential. The selection of the appropriate general-
ization will of course be the result of a long seientific process of trial and error. But the
insufficiency for extended particles of the relativity of pointlike particles should he
out of question.
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