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In this letter we indicate some of the first references on quantum deformations, we point
out their physical problematic aspects and outline their invariant formulation which
appears to be unknown in the rather vast literature in the field.

1. Origin of Quantum Deformations

The first deformations of the quantum mechanical (QM) product [4, B] = AB—BA

of type

(A,B) =pAB —qBA, 1)
(where p, g and p & g are non-null perameters; A, B are Hermitian operators; and
pA, AB, etc., are conventional associative products), was published by Santilli in

1967 (Eq. (8) of Ref. 1a) as part of his Ph.D. Thesis. The first known infinitesimal
and finite forms of the deformed time evolution

i%x(A,H)r—pAH—qHA, (2a)
A(t) = UA(O)UT = iHat A(0)e™PH | (2b)

was identified in the subsequent paper.*? The first known classical counterpart was
identified in Ref. 1c via the deformation of Hamilton’s equations (here expressed
for the simple case with m = 1 for which p = mv = v}

dx oH dv 8

&P & s ®)
The first known more general deformations of QM with product
(A,B)mAPB-—-BQA=(AMBMBMA)+(ANB+BNA), {4)
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where P=M +N, Q=M — N and P+ @ are nonsingular matrices or operators
admitting p and g parameters as particular cases, was published by Santilli in 1978
(Eq. (4.14.11) of Ref. 2a) jointly with the related infinitesimal and finite forms of
the deformed time evolution (Egs. (4.15.34) and (4.18.11) of Ref. 2a)

i‘;;f — (A, H) = APH — HOA, (52)
A(E) = etHO A(Q)e~itPH (5b)

The transition from Egs. (2) to (5) was rendered necessary by the fact that time
evolution (2) is evidently nonunitary, UUT # I, when formulated on a conventional
Hilbert space. The image of Eqs. (2} under their own action then yields Eqgs. (5)
with A" = UAU', H' = UHUY, P = p(UU)~! and Q = g(UUN) ™% as one can
easily verify.

"The first known classical counterpart of Egs. {5) was identified by Santilli®® also
in 1978 as consisting of the historical Hamilton’s equations, those with esternal
terms, :

der dH du 8H

a—z—%, E—~%+F(t,w,v,...), (6)
only rewritten in such a form to admit an algebra (i.e. their brackets verify the left
and right distributive and scalar laws),

dA 84 OH
E=(A,H)=@S’w5b_”’ bm(:n,v}, (73.)
SHY == (gB¥ | gl (") = diag. { 0, _£_ . (7b)
’ &\" 8H/50

where w”” is the canonical Lie tensor.

The first known (P, Q)-operator deformations of the SU(2) algebra, evidently
admitting the (p, ¢)-parameter deformations as particular cases, was presented by
Santilli at the conference Differential Geometric Methods in Theoretical Physirs.,
held at the University of Clausthal, Germany, in 1980, and published in 198].2

A comprehensive presentation of the above deformations was then done i
monographs, 33d,3f

As is well known, primary emphasis is given in QM in the identification of 1he-
algebra characterized by basic product of-the time evolution, the celebrated L
product {4, B} = AB — BA. Along similar lines, primary emphasis was givernr s
Refs. 1-3 for the identification of the algebra characterized by the new products
(A, B) = APB - BQA which, after laborious research in the specialized mathern
ical literature, resulted to be of Albert’s? Lie-admissible and Jordan-admissible 1ty
i.e. such that the antisymmetric and symmetric components of the product, (A B3
(A,B) ~ (B,A) = AMB — BMA and A, B = (A,B)+(B,A) = ANB+ DN 1.
M =(P+Q)/2, N = (P —Q)/2, are Lie and Jordan, respectively.l—3 ’
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Note the case with P = @ = T and product [4, B] = ATB — BT A preserving
the original Lie axioms, which was first introduced by Santilli in Refs. 2 and 3 under
the name of Lie-isotopic theory, including the isotopies of the basic unit, enveloping
associative algebras, Lie algebras, Lie groups, Lie symmetries, transformations and
representation theories (see Ref. 5 for independent studies).

The g-deformations subsequently introduced in 1989 by Biedenharn®® and, in-
dependently, by Macfarlane®®

(A,B) = AB — gBA, (8)

are an evident particuler case of deformations (BEq. (1)) for p = 1 or of deforma-
tions (Eq. (4)) for P = 1 and ¢ = parameter. The same is the case for vast
number of subsequent papers on g-deformations (see, e.g., Ref. 7 and references
therein}, k-deformations,® and other deformations, e.g., certain quantum groups,’®
here generically called “quantum deformations”.

The first motivation of this letter is that the origination of quantum deformations
in Refs. 1-3 is generally unknown in the literature.5-°® The communication of any
reference on product (Eq. (1)) prior to 1967 or on product (Eq. (4)) prior to 1978
would be appreciated.

2. Physical Shortcomings of Quantum Deformations

The quantum deformations of the preceding section, as well as other generalizations
of QM, have a rather interesting mathematical structure which deserves studies.
However, when formulated on conventional Hilbert spaces over conventional fields,
they have rather serious physical shortcomings which have been studied in detail by
Olkubo % Lopez,'%® Jannussis and Skaltzas,10° Jannussis, Mignani and Santilli,**
Schuch,1%¢ Santilli,* and others.

The second motivation of this letter is to indicate these physical shortcomings
because they too are generally unknown in the literature.5~1% This task can be
effectively done via the following theorem which is a broader version of the results
of Ref. 10:

Theorem 1. All deformations of quantum mechanics with a nonunitary time
evolution defined on conventional Hilbert spaces over conventional fields have the
following physical shortcomings:

(a) Lack of invariance of the basic units of space and time with consequential lack
of physically acceptable applications to actual measurements.

(b) Lack of preservation of the original hermiticity in time, with consequential lack
of physically acceptable observables.

(¢) General lack of unique and invariant numerical predictions.

(d) General violation of causality and probability laws; and

(e} General violation of the axioms of the special relativity.
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As one can see, the above problem of physical consistency are rather serious

indeed and, as such, they should be quoted in the literature in quantum deforma-
tions as well as addressed. The proof of the theorem is a direct consequence of the
nonunitery character of the time evolutions with consequential lack of invariance of
space and time units, hermiticity, etc. as the reader can verify. We should note that
Theorem 1 includes:

(a)
(b)

(d)

{f)
()
(h)
(i)

(P @) ¢-, (P, Q)- and k-deformations!=3:6-8,

dissipative models in nuclear physics see; e.g. Ref. 11 represented with an
“imaginary potential” H = Hy +4V # HT, and infinitesimal time evolution
characterized by the triple system

Alt) = UAO)UT = eM* A(0)e~tH " —i{AHT — HA) = —i(4, H, Hh, (é)

whose nonunitary character is self-evident;
theories in statistical mechanics with external terms (see Ref. 12 and references
therein) characterized by the dynamical equations for the density matrix

.dp

%Em(p,H)=pH-—Hp+C’, (10)
which have no finite time evolution, let alone a nonunitary one, and violate
the conditions for the product {p, H) to characterize an algebra (scalar and
distributive laws);
the so-called star medel'® with lifting of the associative product

A+ B = AT B = iso-associative, (11)

which is ezactly that of the Lie-isotopic theory®*% indicated in Sec. 1;
Weinberg’s'4® nonlinear theory with non-associative envelopes

A » B = non-associative Lie-admissible , (12)

which admits no unit at all, viclates Okubo’s no-go theorem on quantizationl®®
(implying lack of equivalence between Heisenberg-, and Schrédinger-type rep-
resentations under a non-associative envelope) and has other shortcomings (see
Ref. 10d for details), while the reformulation of Ref, 14b coincides with the
Lie-isotopic theory via the basic rule of Ref. 2a [A,B] = (4,B) — (B, A) =
ATB—-BTA, T = P+ @, which turns the non-associative envelope with
product (4, B) into the isc-associative envelope with product A+ B = ATB, T'
fixed;

the statistics by Prigogine et al’® which also has 2 nonunitary structure;

the Lie-admissible model of black holes by Ellis, Mavromatos and N anopoulos!®;
the so-called squeezed states theories';

noncanonical time theories!s;
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(j) supersymmetric theories'® because their product is an evident particular case
of the joint Lie-admissible and Jordan-admissible product (4) for M and N
constants with consequential nonunitary time evolution;

(k) Kac-Moody superalgebras®® because they are also a particular case of product
(Eq. (4)) with M a constant and N representing a matrix of phase factors (—1)7
(see the original notion of Lie-admissibility in Ref. 2b in which the P and Q
matrices depend on the generators), thus having a nonunitary time evolution;

and any other possible generalization of QM with a nonumnitary structure.

In regard to the so-called “quantum groups”® we should mention that, when
formulated in terms of the Hopf algebras, their enveloping algebra is generally iso-
morphic to the conventional quantum envelope. This generally implies unitary time
evolutions and the consequential lack of activation of Theorem 1. However, there are
quantum’ groups characterizing nontrivial deformations of the structure constants
of space—time symmetries which are also nonunitary, thus implying the activation
of Theorem 1.

We should indicate that a classical counterpart of Theorem 1 has also been for-
mulated in Ref. 10f. It essentially includes all noncanonical theories on conventional
spaces over conventional fields, including deformations of Euclidean or Minkowskian
geometries, as well as various generalizations of Hamiltonian mechanics®® which
have resulted not to leave invariant the basic units of space and time, thus lacking
clear applicability to measurements.

We should finally indicate that, by no means, the representation of open-
nonconservative systems necessarily requires nonunitary time evolutions. In fact, a
number (although not all} of open systems can indeed be represented via general-
ized, yet Hermitian Hamiltonians, in which case the time evolution is unitary and
Theorem 1 is then inapplicable although in the latter case other problems arise {for
details, and literature see for brevity Refs. 4e and 4f).

3. Lie-Admissible Invariant Formulation of Quantum Deformations

The third motivation for this letter is to indicate the on-going efforts for the resolu-
tion of the physical inconsistencies of Theorem 1, which are also generally unknown
in the literature on generalized theories.

A technical understanding of the topic requires the knowledge that our joint
Lie-admissible and Jordan-admissible (P, Q)-operator deformations on each bracket
(Eq. (4)) and time evolution (5) are “directly universal”, in the sense that they ad-
mit as particular cases all infinitely possible generalizations of quantum mechanics
with a consistent algebraic structure indicated in Sec. 2 (universality), and the rep-
resentation occurs in the fixed coordinates of the observer without the use of the
transformation theory {(direct universality).

The above occurrence is important because axiomatic problems can only be
studied for the unified representation (4), (5) of quantum deformations, rather than
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for a large variety of seemingly different cases, such as g-deformations, dissipative
nuclear models, supersymmetric models, Kac-Moody algebras, etc.

The physical inconsistencies of Theorem 1 oceur when quantum deformations are
formulated and elaborated via the conventional mathematics of QM. In fact, Santilli
has insisted through the years on the need for o new mathematics specifically con-
structed for the treatment of quantum deformations, which was originally proposed
under the name of genotopic mathematics or genomathematics for short23b:3d 51,4
has now reached sufficient maturity for physical applications. 29622 Santilli’s Lie-
admissible formulations are generally referred to in the literature (see, e.g., Ref. 5
and references therein) to deformations {(Eq. (4)) or (5) when entirely formulated
and elaborated with the new genomathematics. The Lie-isotopic formulations are
referred to theories entirely formulated with the sotopic subcase of genomathema-
tics called isomathematics [loc. cit.].

As a specific illustration, if one deforms the associative product AB — A4 =
B = gAB while defining it on conventional Spaces over conventional fields with
the conventional unit 7 (as done in Refs. 6-8, 13 and in most other papers in g-
deformations), it is evident that the old unit J of AB is no longer invariant under
a theory based on the new product A+ B, and no meaningful physical application
is possible, to our knowledge (shortcoming (a) of Theorem 1).

Ironically, by the time of the appearance of the g-deformations of Refs. § in
1989, Santilli had long abandoned their formulation on conventional spaces over
conventional fields because of the above inconsistencies. It is therefore unfortunate
that Refs. 1-3 had not propagated to Refs. 6 and to the subsequent literature in
the field.

The new genomathematics is based on the following fwo different generalizations
of the unit of QM, one on each ordered product,

“I=1/P, A<B=APB, <I<A=A<<I=4, (13a)
I?=1/Q, B>A=BQA, I">A4=A>p> =4, (13b)

which require two different reconstructions of conventional mathematics, one on
each ordered product and related unit. When all products are ordered to the right,
A > B (to the left, A < B), the theory is used for the representation of mo-
tion forward in time (motion backward in time). Deformations (5) are, therefore,
intrinsically irreversible, that is, they are irreversible even for reversible Hamil-
tonians. Moreover, they can only be used to characterize open-nonconservative
systems (as it is evidently the case also for g-deformations), because of the rule
idH/dt = H(P — Q)H # 0.

The representation of closed-isolated systems with an irreversible internal struc-
ture is instead possible for the Lie-isotopic formulations for which i dFf Jdt = HTH-
HTH = 0% in which case irreversibility can be represented via the operator
T(t) # T(—~t) under a fully reversible and conserved Hamiltonian H(t) = H(—t).
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The main lines of the resolution of the physical shortcomings of Theorem 1
are the following.’®%%2 First, two generalizations of conventional fields F (real R,
complex C' or quaternionic fields Q) are constructed, F> and <F, called genafields to
the right and to the left, with corresponding units I> and <7, elements n> = nl>
and “n = <In, called genonumbers, and ordered products n> > m> = (nm)I*
and “n < “m = <I{nm). Note that for real or complex numbers we have the
commutativity properties n >m=m>nandn <m=m < n. Nevertheless, the
two ordered products are different, n > m £ n < m. Note also that each genofield
preserves all axioms of ordinary fields.

Then, the entire original mathematics must be reconstructed over F> and, sep-
arately, over <F, in such a way to admit I> and, separately, <I as the left and
right units. This implies the construction of two genospaces, genodifferential calcu-
lus, genospecial functions, genogeometries, gendtopologies, etc. The emerging new
mathematics then assures the invariance of the units by conception and construc-
tion, thus resolving inconsistency (a) of Theorem 1.

After that, one must select one given ordered product, say, that to the right
A > B. The following forward genotopy of the Schrédinger’s representation is then
constructed

>0y =1iQ7 0) = H > |) = HQg|) = B> > |) = B]), (14)

where we have used the time and space decomposition Q = diag(Q:,Q,) for non-
relativistic settings, which is defined over the geno-Hilbert space H> with product

(IQsig e C>. (15)

It is easy to see that the forward hermiticity coincides with the conventional
hermiticity and, thus, all quantities which are Hermitian-observables on % over
C remain so on H> over C>. This yields the first hermiticity of a nonconserved
Hamiltonian known to this author. It is also easy to prove that the genoeigenvalues
of genohermitian operators are genoreal (i.e. B> = EI” where E is real), and that
the genohermiticity is conserved under the motion forward in time characterized by
Eq. (14). This resolves inconsistency (b) of Theorern 1.

Note the new invariance law whenever Qg is independent of the integration
variables, (|@s|)I3 = (|)I. Therefore, the Lie-admissible formulations are merely
characterized by a “hidden” degree of freedom of the conventional Hilbert spaces.
The emerging theory is then of the form “completion” of quantum mechanics much
along the historical argument by Einstein, Podolsky and Rosen.® These occur-
rences have remained undetected until recently because they required the prior
discovery of new numbers, those with ordered product to the right or to the left and
the corresponding arbitrary units.

"The preservation of a Hilbert structure then permits the resolution of inconsis-
tencies (c) and (d) of Theorem 1 (see Ref. 22b for details).

‘The theory is then automatically form-invariant, because nonunitary transforms
UUT = I” # T can be identically rewritten as genounitary transforms on M~
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over ¢, U = U>le/2, UUt = U> » U>t = U> > U> = I* under which
> =U>>I>>U>"=]>,U>>(A>B)>U> = A’ > B’, etc. Note not only
the invariance of the generalized unit, but also the preservation of its numericol
value. Note also the unigqueness of the above Lie-admissible formulations, in the
sense that any other invaerient formulations of open (closed) quantum deformations
is necessarily isomorphic to the Lie-admissible (Lie-isotopic) formulations (for detail,
see Ref. 10f).

The reconstruction of special relativity is under study on certain bimedule over
bifields in which all axioms of the special relativity can apparently be reconstructed
as being eract for open-nonconservative conditions.**®

Needless to say, the above studies are at their initiation and so much remains
to be done. Nevertheless, a conclusion which can be drawn following studies con-
ducted during the past three decades is that the majestic axiomatic consistency
and invariance of QM is lost whenever the mechanics is deformned, while preserving
the original mathematics, that is, the original numbers, fields, spaces, geometries,
topologies, etc. On the contrary, realistic possibilities for the preservation of the
original axiomatic consistency and invariance under open or closed quantum de-
formations exist via the use of new mathematics specifically constructed for that
purpose.
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