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In this paper we first study the equivalence transformations of class %2, regular, ten-
sorial, quasi-linear systems of field equations which (a) preserve the continuity, reguiarity,
and guasi-linear structure of the systems; and (b) occur within a fixed system of Minkowski
coordinates and field components. We identify, among the transformations of this class, those
which either induce or preserve a self-adjoint structure of the field equations and we term
them genotopic and isotopic transformations, respectively. We then give the necessary
and sufficient conditions for an equivalence transformation of the above type to be either
genotopic or isotopic. By using this methodology, we then extend the theorem on the
necessary and sufficient condition for the existence of ordered direct analytic representa-
tions introduced in the preceding paper to the case of ordered indirect analytic representa-
tions in terms of the conventional Lagrange equations; we introduce a method for the con-
struction of a Lagrangian, when it exists, in this broader context; and we explore some im-
plications of the underlying methodology for the problem of the structure of the Lagrangian
capable of representing interactions within the framework of the indirect analytic re-
presentations. Some of the several aspects which demand an inspection prior to the use
of this analytic approach in actual models are pointed out. In particular, we indicate a
possible deep impact in the symmetries and conservation laws of the system generated
by the use of the concept of indirect analytic representation. As a preparatory step prior
to the analysis of these problems, we study some methodological aspects which underlie
the generalized Lagrange equations postulated in the first paper of this series for the case
when they are regular, namely, when they are simple equivalence transformations of the
conventional Lagrange equations. We first introduce a generalization of the action principle
capable of inducing the generalized as well as the conventional equations. In this way we
establish that the former equations are “‘bona fide” analytic equations. Finally, as our
most general analytic framework for the case of unconstrained field equations, we work
out the necessary and sufficient condition for the existence of ordered direct analytic re-
presentations of quasi-linear systems in terms of the generalized analytic equations and
study their relationship to the conventional representations.
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1. INTRODUCTION

In the preceding paper, II [1] we proved a theorem according to which a necessary
and sufficient condition for a class %2, regular, tensorial, quasi-linear system of field
equations to admit an ordered direct analytic representation in terms of the conven-
tional Lagrange equations is that the system be self-adjoint.

A problem which immediately surfaces is that such an analytic framework is
considerably restrictive because the class of field equations under consideration is
generally non-self-adjoint and, therefore, a Lagrangian for their ordered direct
analytic representation does not, in general, exist. This is the case, for instance, of
the simple equation for the real scalar field with nonlinear self-couplings

(0] -+ 72 @ + A¢® + (1/g) pgulusa = 0. (1.1)

The objective of this paper is to explore a broadening of the analytic framework
of paper 1T capable of allowing the analytic representation of a larger class of field
equations.

Let us recall from paper I that, according to our definition, an analytic represen-
tation occurs whenever the Lagrange equations coincide with the field equations up
to equivalence transformations. It is precisely such a concept of analytic represen-
tation which will allow us to achieve our objective.

By closely following, again, the analysis conducted by this author in the forthcoming
monographs on the Newtonian aspect of the problem [2], we shall first study, in
Section 2, the equivalence transformations of the systems of field equations considered
which

(@) preserve the continuity, regularity, and linearity of the field equations in
the field “accelerations’; and .
(b) occur within a fixed system of Minkowski coordinates and field components;

i.e., equivalence transformatjons of the type

(B0 s 8% BT IAL G s B %) P + Byl ¢ SO = 0,
abe=1,2,un wy,a=01273 (12)

We shall then term such transformations genotopic, when they induce a self-adjoint
structure, i.e., when the original system is non-self-adjoint but the equivalent system
is self-adjoint; isofopic, when they preserve a self-adjoint structure, i.e., when the
original system is self-adjoint and the equivalent system is also self-adjoint.

Finally, we shall give in Section 2 the necessary and sufficient conditions for a
transformation of type (1.2) to be either genotopic or isotopic.

The above concepts will then allow us in Section 3 to (a) extend the analytic frame-
work of paper 1T to the case of ordered indirect analytic representations in terms of
the conventional Lagrange equations

d = [ A%ST, + B RER =0, a=1,2..,m (1.3

0% g R
[ 2 = 55
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{(b) give a method for the construction of the Lagrangian from a given system of
field equations and of factor terms /f,°, when it exists; and {c) explore the significance
of this broader framework for the problem of the structure of the Lagrangian capable
of representing interactions.

The problem of “umiversality,” namely, whether a Lagrangian for the analytic
representations of type (1.3) always exists, is touched in Appendix A. In this appendix
we shall further broaden the concept of indirect analytic representations with the
inclusion of (class %2, invertible, single-valued) transformations of the Minkowski
coordinates and of the field componénts {3]

x— x = x'(x); d— ¢ = ¢'(x, $) (L.4)

according to the structure

By, 0’ dsa
e By B SO § 6 $ b B, ¢ NGRS =0
a=1,2,..,1n (1.5)

[d 8y & ]rgle

In essence, such further enlargement is advisable whenever the n® factor terms /1,*
of transformations (I.2) are insufficient to induce (or to preserve) a self-adjoint
siructure. And indeed, the inclusion of the transformations of type (1.4) into the
concept of indirect analytic representations adds further degrees of freedom which
may be useful in achieving the consistency of the underlying overdetermined system
of partial differential equations for the characterization of a Lagrangian.

The analytic representations of type (1.5) constitute, to the best knowledge of this
author, the broadest analytic framework which can be formulated in terms of the
conventional (unconstrained) Lagrange equations.

Despite that, the underlying methodology is still incomplete. This is due to the fact
that, while the methodology which underlies the use of transformations of type (1.4)
is well established, there exist several methodological aspects related to the use of
the factor terms A,° which have not previously been explored and which must be
explored prior to their use in actual models. It is sufficient to note in this respect that
equivalence transformations of type (1.2) may deeply affect the symmetries and con-
servation laws of the system because the factor terms A, have, in general, a dependence
in the field components ¢°, their partial derivatives $o, , and the Minkowski coordi-
nates x, [4]. :

As a preparatory step prior to our analysis of some of these problems (which will
be conducted in paper V) we shall explore in the remaining part of this paper some
methodological aspects related to the generalized Lagrange equations postulated in
in paper I, i.e. [5],

g2 L() = g (N, b5 B [ d, 83(&6:]6 ZS:, qsc-‘m) . &5"(,\’0‘é (;2::, b7 ] o

abc=1,2u,n po=01,273 (1.6)
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Let us recall from paper I that the above equations might be significant in field
theory because of the following properties.

(1) Equations (1.6) can be formulated in a way consistent with the customary
condition of Lorentz covariance for a suitable selection of the (#* + 1)-densities which
characterize such equations, namely, the Lagrangian & and the n® factor terms g,*.
We shall often refer to Egs. (1.6) with the symbol ( g% &)

2y Eq. "(1.6) contain the conventional Lagrange equations, trivially, at the
limit when the factor terms g, became the Kronecker 8,2, We shall often refer to the
conventional Lagrange equations with the symbol (8., &). The transition from the
generalized to the conventional Lagrange equations, or vice versa, can be then indi-
cated with the notation

(8., L)« (g4 £)- (L.7)

(3) When the matrix (g of the factor terms is regular in the region of defi-
nition of the Lagrange equations [6], Eqgs. (1.6) constitute simple equivalence trans-
formations of type (1.2), but now applied to the analytic equations rather than to the
field equations. Notice that, as was the case of transformations (1.2), we exclude a
dependence of the factor terms from the second-order derivatives ¢%qp . This guaran-
tees the preservation of the quasi-linear structure of the Lagrange equations. The
additional condition that the terms g2 must be of at least class %2 in the same region
of definition of the Lagrange equations then completes the equivalence between the
conventional and the generalized Lagrange equations and we shall symbolically write

[ TLADIER R = 0, (1.8)

Throughout this paper we shail only consider generalized Lagrange equations which
satisfy the above conditions.

(4) Equations (1.8) transparently exhibit the fact that the knowledge of only
one density, the Lagrangian density, is generally insufficient to characterize an analytic
representation because 722 additional densities, the factor terms g, in our formulation,
are needed. This property is somewhat hidden in the analytic representations (1.3)
with the conventional Lagrange equations. More explicitly, the concept of equivalence
transformation which is rooted in our definition of analytic representation can be
applied either to the field equations or to the analytic equations. As a consequence,
the generalized analytic equations (1.8) are implicit in our concept of analytic repre-
sentations. And indeed, in view of the assumed regularity of the matrix (h.), the
ordered indirect representations (1.3) in terms of the conventional Lagrange equations
can be trivially turned into the ordered direct analytic representations in terms of
the generalized Lagrange equations

(LD = Ui+ BT =0
g=1, 2., (g2 =" (1.9
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A simple example may be useful here to illustrate this concept. Consider the familiar
Lagrangian for the free complex scalar field

L = §,pr — Mo (1.10)
with underlying field equations

(4 mH)g=0
O+ m3) ¢=0

(1.11)

Then we can write either the ordered indirect analytic representation in terms of the
conventional Lagrange equations

Z, ( i
(%) = ((1) é)((gi:fﬂ; Q =0 (1.12)

or, equivalently, the ordered direct analytic representation in terms of the generalized
Lagrange equations

QUH-@Impe oo

where the equivalence of the representations (1.12) and (1.13) trivially follows from
the regularity of the factor matrix which, in this case, simply characterizes a permu-
tation. This simple example also illustrates the fact that the Lagrangian (1.10) alone
is insufficient to characterize an analytic representation even though the interactions
ave absent. And indeed, jointly with Lagrangian (1.10) the four elements of the factor
matrix are neeced in either representation ( 1.12) or (1.13).

(5) Equations (1.8) are generally non-self-adjoint [7] and they ean be written,
in general,

{ g LA PNER TGN = 0. (1.14)

This property is significant for the problem of the analytic representations of the
field equations. Indeed, it removes the restriction that (class %2, regular) Lagrange
equations must always be self-adjoint by therefore broadening the underlying
methodology. The significance of this property becomes transparent if we recall,
as pointed out eariier, that the class of field equations considered is generally non-
seif-adjoint. And indeed, while the conventional Lagrange equations generally
fail to produce a direct analytic representation because of their seif-adjointness,
this is not the case for Eqgs. (1.14) and representations (1.9) can be more specifically
written

(eI PIETELE = A%, + BJsE =0, a=1,2.,m (L13)

(6) Equations (1.14) can be “bona fide” analytic equations in precisely the same
measure as the conventional equations are if they can be derived by an action principle.
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(7) Equations (1.14) are sigaificant for the transformation theory of the
Lagrangian density. Tndeed, for a given Lagrangian, there may exist a nontrivial set
set of factor terms g,* for which they become self-adjoint, in which case we shall
write

(g LB = 0. (1.16)

But the factor terms preserve the quasi-linear structure of the equations by assump-
tion due to their independence from the derivatives ¢%.. Therefore, Egs. (1.16)
can be explicitly written

22 = [ 80 (g + T agr)] #w
s g g 4 . 5~ )
= AF$%,, + B, = 0. (1.17)

As a result, whenever structure (1.16) occurs, it can be interpreted as an ordinary self-
adjoint quasi-linear system; our main Theorem I1.2.1 holds; and a new Lagrangian
#* for the ordered direct analytic representation

[LHANIER = { g [ LU PR = 0 (1.18)

exists and can be computed from Corollary 11.2.1B. The two Lagrangians % and Z'*
represent, by construction, the same system and, as such, they are equivalent. But
such an equivalence transformation cannot be derived with any of the conventional
transformations (1.4) because it occurs by construction within a fixed system of
Minkowski coordinates and field components. Therefore the equivalence mapping

P s P* (1.19)

constructed with the above method characterizes a third identifiable layer of the
transformation theory of the Lagrangian density. Such mappings have been termed
in paper I isotopic ansformations. The existence of such equivalence transformations
does not, obviously, exclude the use of the transformations induced by the conven-
tional mappings (1.4). Therefore, if we denote with the symbols * and ' the equivalence
transformations induced by (class %2, regular, single-valued) transformations of the
Minkowski coordinates and of the field components, respectively, and with the symbol
* those induced by an isotopic transformation, a general equivalence mapping of the
Lagrangian can be written

L — (L)1 (1.20)

or in any permuted order of the three indicated types of transformations. It should
be stressed, to avoid possible misinterpretations, that the eventual invariance of the
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Lagrangian under transformations of type (1.4) is here ignored and only the equivalence
aspect is taken into consideration.

A detailed analysis of all the above indicated aspects refated to the generalized
analytic equations clearly goes beyond the objectives of this paper. Therefore, in the
Jast sections of this paper we shall restrict our analysis only to the representational
capability of such equations.

In Section 4, we shall first introduce a generalized action principle which induces
the generalized as well as the conventional Lagrange equations. This will establish
point (6) above, namely, that the former equations are “bona fide” analytic equations
in exactly the same measure as the latter equations are. Then in Section 5 we shall
generalize the analytic framework of paper 11 to the case of the generalized represen-
tations (1.15).

As a result of our analysis, it appears that at least three layers of analytic represen-
tations exist in field theory. They are

(A) the representations in terms of the conventiongl Lagrange equations
_ with a conventional structure of the Lagrangian density, i.e.,

2L 87

R

(1.21)
Lrop =Y, Lo + Bints

1

(B) the representations in terms of the conventional Lagrange equations with
a generalized structure of the Lagrangian density (Corollary 11.2.1.E),

8. 2%

g o

(1.22)
Gen _ v pla) op@
FLroy == Ea 1L rree T Hns11 5
1
(C) the representations in terms of the generalized Lagrange equations with
a generalized structure of the Lagrangian density, i.e.,

0.7 . 3:?) 0
b g TV
345 o aqS (1.23)

n
Gen __ ) cple)
g’l‘ot - Za gmt.]*"prree + ﬁnt.n .
1

g (du

We are now in 4 position to review our program from a perspective viewpoint.

Tn paper 1 we considered the conventional analytic framework (A) and analyzed
it from a variational approach to self-adjointness.

In paper 1I we introduced the generalized analytic framework (B) within the context
of the necessary and sufficient conditions for the existence of a Lagrangian.
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Restated from a somewhat different profile, the major objectives of Sections 4
and 5 are to indicate the existence of the generalized analytic framework of type (C)
and then to explore its relationship to the other frameworks.

Our findings are summarized in Table L

The study of other aspects, such as the problem of symmetries and conservation
laws and the canonical formulations of frameworks (B) and (C) or the extension of
our findings to spinorial fields, are contempleted as subsequent steps.

. TABLE I

A Schematic View of Our Approach to the Lagrangian Representations of Class w?
Reguiar Quasi-linear Tensorial Systems of Field Equations®

Actual path ¢°(X)€@2(Rx}

Field equations

by 2 . 2R
(Agy s+ Bo )i #=0 GT (A:::LVQS,?L*B:)&A =0
B,
DR & @ DR
Analytic equafions
GT
A(g)=0 gl g, (9)=0
BR & % DR
Variational principles
8 [ d*x £=0 |« il 8* fad*x £=0
e SA = self-adjoint; NSA = non-Self-Adjoint; DR = direct representation; IR = indirect

representation; GT = genotopic transformation.

2. IsoToPIC AND GENOTOPIC TRANSFORMATIONS OF THE FIELD EQUATIONS

Consider the set of fields qAS“(x), a = |, 2,..., n, which are the solutions of a class €2,
regular, quasi-linear system of tensorial field equations. It is a known fact that,
while the “actual path” ¢ is unique, the system capable of representing it is not.
And indeed, there exist infinite varieties of systems of partial differential equations

all admitting the same actual path ¢%(x) or an equivalent path ¢'#(x"). When the more
general latter case ocours, we shall say that the underlying transition [8]

Fu($) = (45", + BJOF =0 T, () = [A8 " + BER =0 (20)

is an equivalence fransformation of the field equations.
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From the viewpoint of self-adjointness, equivalence transformations (2.1) can be
classified into the following four classes, depending on whether the original or final
systems are self-adjoint or non-seif-adjoint.

[Fu($lsa = 0 —E [F/($)sa = O, (2.22)
[ d)lsa = 0 —2mr [F($)]wsa = O, (2.2b)
[PV Thsa = 0 —E s [/ (#)]nsa = O (2.20)
[F ) hsa = 0 —E [F/(#)sa = O (2.2)

Among all possible realizations of equivalence transformations (2.2) we now
restrict our analysis to those which are induced by a set of n® densities A,"(X. , é°, %)
whose matrix (#.) is of (at least) class % and regular in the same region of definition
of the field equations according to the mapping

. 2 T g e o Py
L%#@+Bf*:04%mﬂﬁ¢m+ﬂyﬂfﬂ

= A:ccuvd)c:uv + -Ba* =0, (233.)
AR = b Ay B = hd'Bys {2.3b)
hp e G R); AL (R) # 0. (2.3¢)

The transition, for instance, from Eqs. (1.11) to Eqgs. (1.12) can be interpreted as
an equivalence transformation of type (2.2a) and so is the inverse transition. Less
trivial examples will be given later on.

1t should be stressed here that the selected type of equivalence transformations
(2.3) satisfies, by construction, the conditions:

(a) it preserves the continuity and regularity of the original system;

(b) it does not alter the quasi-linear structure of the system in view, trivially>
of the assumed independence of the factor terms h,? from the second order derivatives
A

(c) it occurs within a fiexed coordinate system Xx — X' =X and “gauge”

b ¢ = ¢

As a result, the initial and final systems of equivalence transformations (2.3)
admit the same actual path $4(x) by construction.

The role of self-adjointness for the problem of the existence of a Lagrangian is
clearly indicated by Theorem 11.2.1. Among all possible transformations (2.3) we
shall therefore study at this time only those which are of either type (2.2a) or (2.2d).

For convenience, we shall term self-adjoint transformations all equivalence trans-
formations of type (2.3) which either preserve or induce a self-adjoint structure.
Such self-adjoint transformations are here classified into isotopic transformations 9]
when they preserve a self-adjoint structure, i.e., when they are of type (2.2a); genotopic
transformations [10] when they induce a self-adjoint structure [11], i.e., they are of
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type (2.2d). The factor densities /,” of mapping (2.3) will then be termed self-adjoint,
isotopic, or genotopic factors depending on whether the induced equivalence trans-
formation is either, in general, self-adjoint or isotopic or genotopic in particular.

Tt is a matter of simple use of Theorem 1.6.2 to prove the following

TueorReM 2.1{12]. Given a class €%, regular, tensorial, quasi-iinear system of field
equiiions

(A% 0, 1 6 ¢ + Baltar by )R =0, a=12..,n0 (24)

in a region Roy of points (x, , ¢, ¢'n), the necessary and sufficient condition for the
equivalence transformation

(A2 + Bl = 0 = [ (e, b0 F) (b + BT
= A%, + B =0 @.5)

fo be self-adjoint in Ry is that each of the following equations in the factors i,

f ARG = A = ARG (2.68)
(]
AFG A AR = AL, (2.6b)
e m~nr
AT = AT, (2.60)
| P | IR}
B* 4 4 BY = 28, + ¢7.(8/04)} AV, (2.6d)
B*a:b - B*bzﬁ = }’f{av + Sbn;v(a/aqsc)}(B*a;z i B*b;; 2 (263)
A% = 2AMn[ogT, s B, = 0BMagh  ete, (260
r
Aven = AN S A et (269)
A = hSds . B =SB, (2.6h)

a b, e, d=1,2,.,n; oo, Bp=10,1,2,3,

holds in every bounded domuain in the interior of Roy, .

Notice that the conditions of self-adjointness of Theorem 1.6.2, i.e., Eqgs. (1.6.14),
are conditions on the terms A%, and B, of the field equations. The conditions of self-
adjointness of Theorem 2.1, i.e., Eqs. (2.6), are on the contrary conditions on the
fuctors by (ie., they ate the necessary and sufficient conditions for the factors 2.*
to be self-adjoint in our terminology) while the terms A and B, are fixed.

It should be stressed here that if a set of factors /" is self-adjoint for a given system,
the same set is not necessarily self-adjoint for another system. To avoid confusion,
we shall say that, when Theorem 2.1 holds, the factor terms A,° are self-adjoint with
respect to the given system (2.4).
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Notice that conditions (2.6) are insensitive as to whether the original system is
self-adjoint or not. It is precisely this property which has allowed the formulation of
Theorem 2.1 for self-adjoint transformations in general rather than isotopic or geno-
topic transformations in particular..

We therefore trivially have

CoROLLARY 2.1A. When the condition of Theorem 2.1 holds, transformations (2.5)
are either isotopic or genotopic depending on whether the original system is self-adjoint
or non-self-adjoint, respectively.

Consider now the particular case when
= Adg &g (2.7)

Then the class of equivalence transformations under consideration includes the
transition from the conventional (semilinear) form of field equations

Clda — fulte s $% %) = 8°ba'w — Ja =0 2.9)

to the more general quasi-linear form (2.4). Indeed, for case (2.7) mapping (2.3)
becomes

habsbc & gqubc;uv - habfb = A*#:?SD:W + B$(L = 0. (29)

The inverse transition can be recovered, trivially, by using a set of factors A0

such that
(h—lnb) = (A*nc)_l = (hab)_l- (2]0)

A point which we would like to recall from paper I is that, when Eqgs. (2.8) are
nonlinear in the derivative couplings, they cannot be self-adjoint. In this case one can.
use a genotopic transformation of type (2.9), when it exists, to render it self-adjoint
because the conditions of self-adjointness (2.6) do allow nonlinear derivative couplings.

Another point which we would like to recall from paper T, is that the transition
from Egs. (2.8) to the form (2.9), while trivial within the context of the theory of
partial differential equations, it is nontrivial from the viewpoint of their Lagrangian
representation. Furthermore, such a transition implies the appearance of a third
class of couplings, namely, that of the “acceleration” couplings (due to the nonnull
values of the elements /%), in addition to the “ospordinate” and “velocity” couplings
already present in form (2.8).

3. A THEOREM ON ORDERED INDIRECT ANALYTIC REPRESENTATIONS IN TERMS OF THE
CONVENTIONAL LAGRANGE EQUATIONS

Consider a (class ©?, regular, Lorentz-covariant, tensorial) guasi-linear or semi-
linear system of field equations which is non-self-adjoint. Then, according to Theorem
13.2.1, its ordered direct analytic representation in terms of the conventional Lagrange
equations does not exist.
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In this case one can attempt to identify a Lagrangian by searching for a self-
adjointness inducing equivalence transformation of the field equations of type (2.5,
namely, a genotopic transformation in our terminology. And indeed, if such a trans-
formation exists, then Theorem I1.2.1 holds for the equivalent rather than the original
system by producing in this way what we have termed an ordered indirect analytic
representation.

Thus, the concept of genotopic transformations is sufficient to generalize the analytic
framework of paper II to the case of indirect representations of non-self-adjoint
systems. '

Consider mow a quasi-linear or semilinear system which is self-adjoint. Then,
according to Theorem II.2.1, a Lagrangian for its ordered direct analytic represen-
tation does exist. But, as pointed out In Section 2, the equivalence transformations
of type (2.5) are insensitive as to whether the original system is self-adjoint or not.
Therefore, one can still seek an equivalence transformation of the field equations
which is isotopic, i.e., of self-adjointness-preserving type. If such a transformation
exists, then a Lagrangian for its ordered indirect analytic representation exists.

Therefore, the concept of isotopic tsansformations is sufficient for the generalization
of the analytic framework of paper II to the case of indirect representations of self-
adjoint systems. :

The above two cases can be unified within the context of the self-adjoint equivalence
transformations because, as introduced in Section 2, they can be, as particular cases,
either of isotopic or of genotopic type.

The simple remark that the proof of Theorem 11.2.1 holds irrespective of whether
the represented system is in its original form or in one of its equivalent forms allows
us to formulate the above concepts in a more rigorous way according to

TaeoreM 3.1 [12). A necessary and sufficient condition for a Lorentz-covariant,
tensorial, quasi-linear system of ‘field equations

g;(xo: H ()bc: (#c;uz) qsb:uv + Ba(xm ¥ (}!)ca 5‘58;0:) = O}
abe=12..,8 v, =0,1,2,3, (3.1)

which is of (at least) class €* and regular in a region R of the variables (X, , #°, §%.)
to admit an ordered indirect analytic representation in lerms of the conventional
Lagrange equations

a,(‘,p 83 ; c [ Fd 3
G pgm. e B2 (xa s 8 b5 A" + Bl = 0

is that the factor terms h," induce a self-adjoint equivalence Iranéformatr'on
(A + BT IR = 0 3.3)

in a star-shaped region R* of points (X, e, ') with

P = 7¢°, P, =T, 0T
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We have again formulated the above theorem on a star-shaped rather than an
ordinary region as a precuationary measure, as we. did in Theorem 11.2.1. In essence,
when the self-adjoint equivalence transformation (3.3) exists in a star-shaped rather
than an ordimary region, this guarantees the applicability of the converse of the
Generalized Poincaré Lemma. The conditions of self-adjointness (2.6) then become
the integrability conditions for the existence of a Lagrangian. For more details see
paper IL

In practice, to seek for an ordered indirect analytic representation of a given system
(3.1), one must first seek for a solution of the system of partial differential equations
(2.6) in the unknowns h,b. Once such a solution is identified, to verify the “star-
shaped criterion” it is sufficient to verify that the equivalent system is well defined
for all the values 0 < ¢°, ¢% < L. If this is not the case, one can attempt to verify the
sestar-shaped criterion” through a redefinition of the fields which removes possible
divergencies in the above-indicated minimal set of values of the local variables.

Corollary 1L2.1A now becomes

CoROLLARY 3.1A. If the ordering of Theorem 3.1 is relaxed, then the condition
of the theorem is only sufficient for the existence of an indirect analytic representation.

Again, the significance of this corollary is to emphasize the importance of the
concept of ordering within the above analytic context. Let us recall from paper I
that such an ordering refers only to the external index “a” of representation (3.2)
and not to the sum with respect to the internal index “b.”” This implies that different
orderings of the original systems may lead to different factor terms ht to satisfy
Egs. (2.6). . :

For the reader’s comvenience, we TOW reformulate Corollary I1.2.1B on the
methodology of constructing a Lagrangian when Theorem 3.1 holds.

COROLLARY 3.1B. A Lagrangian density for the ordered indirect analytic represen-
tation of quasi-linear systems of field equations according to Theorem 3.1

0% 8L kw .
do e, — g = A T =0 (3.40)
AR s h VA B =By, (3.4b)

is given by
La s 5, D8 = Klxe, % %) + Do(xy, ) %, + Clxas $9, (33

where the (4n -+ 2)-densities F, D", and C are a solution of the linear, generally over-
determined system of partial differential equations

K+ K = A"85 (3.6a)
Dy — D = 3(BFah — B+ (K — ) = Z¥ (e s 9% (3.6b)
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iy = Dy — By Ky — Kt + U+ 3BT — BT 6%
W (X » 95 (3.6¢c)
K, = 8klod® K= oKfad™, ; ete. (3.6d)

l

given by
K= g, [ e (g [ dr 470G 8 7870 090

1 .
D= @ [ dr 2%, 78 3.7)
1]
i
C= ¢ [ dr Wo(xa, 74
0

The restriction that the self-adjomt equivalence transformation (3.3) be well defined
in a star-shaped region then guarantees the existence of the integrals of solutions
(3.7). When such integrals do not exist, this does not affect the existence of conditions
(2.6) and Egs. (3.6). Therefore, in this case one can attempt o solve Egs. (3.6) with
‘methods other than that of the Converse of the Poincaré Lemma and of its generali-
zation. See, again in this respect, paper II.

Finally, the interpretation of the above results from the viewpoint of the structure
of the Lagrangian capable of representing tensorial fields coupled according to the
most general method allowed by Theorem 3.1 leads, as for Corollary I11.2.1E, to the
following

CoROLLARY 3.1C. A general siructure of the total Lagrangian density for the
ordered indirect analytic represeniation of quasi-linear systems of tensorial field equations
according to Theorem 3.1

07 8P . .
du _éﬁ - a(i’a = A adﬁb 1y -+ B w = 0, (38&)
AR A BY = kB, (3.8b)

is characterized by (n -+ 1) inieraction terms: n-multiplicative and one additive ferm
to the Lagrangian for the free fields according to the structure

Lot Xas ¢ 7
== za gl(g)t.l(xm > 4)01 450:“) géal')ee(qéas ‘.l”m.x) '_i— "(flnt.ll(-xn' H ‘}{‘as qsc;a:): (3'9)
1

where the terms P& . L8, and Ly yy admit the decompositions

& 1(:{;)3@ = Mt P™u — ma) ¢ (no summation), (3.108)
W — K+ DN, + O, (3.10b)

Bngn= Ku + Du b, 4+ Cu, (3.10c)
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and they can be expressed in terms of the solutions (3.7) by means of the identifications

K = LK%, — IKOm (@) ded”

1Dt g%, + HOP b K (3.11a)
Dy = — (@) $u$*Di”% -+ Dui. (3.11b)
C = — im*a) qS“anCI(“) + Oy - (3.11c¢)

Let us recall from paper II that the interaction terms of structure (3.9) are non-
srivial when the Lagrange equations in s L, and those in FEEN gre not equiv-
alent. Indeed this guarantees a modification of the actual path due to nontrivial
couplings and therefore the existence of “bona fide” interactions. Let us also recall
that a Lagrangian, when it exists, is not unique and, similarly, structure (3.9) is not
unique.

On conceptual grounds Corollary 3.1C above Is equivalent to Corollary TL.2.1E.
In essence, the broadest method of coupling tensorial fields which is admissible within
a Lagrangian representation is any combination of

(a) generally nonlinear couplings in the field “coordinates” ¢°,
(o) generally nonlinear couplings in the.field “yelocities™” %,

(¢) linear couplings in the field “accelerations” ¢

which preserves the continuity, regularity, and self-adjointness of the field equations,
where the couplings of types (a) and (b) are represented by the dependence of the
A® and B, terms in the ¢¢ and ¢%, variables, while the couplings of type (c) are
expressed by the-generally nonnull value of the elements of the matrix {(4%). Again,
the presence of sgeceleration” couplings is vital for the analytic representation of
the above generalized way of coupling tensorial fields and, in turn, such couplings
reflect in the appearance of multiplicative interaction terms to the Lagrangian for the
free fields. Alternatively, the presence of multiplicative interaction terms is vital for
the analytic representation of the above generalized way of coupling tensorial fields.
And indeed, when all multiplicative interaction terms reduce to the unity, all couplings
are derivable from an additive interaction term, namely; they became conventional.
This is, in essence the result of our analysis of paper 11.

The point which we would now like to indicate is that, on methodological grounds,
Corollaries 3.1C and IL.2.1E are not equivalent. In essence, within the context of
the direct analytic representations of Corollary 11.2.1E the forms of coupling tensorial
fields are still restricted because of the lack of freedom in the modification of the field
equations. Such a restriction is now removed within the context of the indirect
analytic representations of Corollary 3.1C above. Tndeed, within such a broader
context, all possible self-adjoint equivalence transformations of the field equations
are now admissible.
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This added degree of freedom has a twofold significance:

‘When the field equations are non-self-adjoint, a genotopic transformation induces
a form of coupling which is admissible within a Lagrangian representation.

When the field equations are self-adjoint, an isotopic transformation allows the
study of the (analytically) equivalent ways of coupling tensorial fields.

This latter aspect will be studied within the context of paper IV.
A few examples are now useful for {llustrating our results. Consider again the one-
dimensional self-coupled semilinear system (L.1), ie,

(O + m3) @ + Ag® + (L) ¢¥Pulnsa = 0. (3.12)

Since the system is non-self-adjoint, a Lagrangian for its direct analytic [13] represen-
tation does not exist. Notice that the system is non-self-adjoint because it is of the
semnilinear type with a derivative coupling of nonlinear form and, as stressed in
paper I, the conditions of self-adjointness for the semilinear form prohitit the presence
of nonlinear coupling of this type.

In order to identify a Lagrangian, we must first seek a self-adjointness-inducing
equivalence transformation, i.e., a genotopic transformation of the type (3.3),

(D + m) @ + 2o® + (@) g Insalsa = O- (3.13)

This is achieved by using Theorem 2.1. Tn this case the conditions of self-adjointness
(2.6) reduce to

oh Ly o, 2h .
gty £ = i( gy g e¢, & )’
h L ah 8 (314
2— ¢ +"“_ = ;o:'_—-"_= 3au+ ;u."__'“; h:
5 Put 5 PP P g
and they admit the trivial solution
h = ¢* (3.15

This is due to the fact, also stressed in paper 1, that the conditions of self-adjointness
for the quasi-linear form do admit nonlinear derivative couplings while a genotopic
transformation for system (3.12) has precisely the net effect of transforming the system
from the semilinear to the quasi-linear form. Thus, Theorem 2.1 gives rise to the
equivalent form

X 4 m2) 9 + Ag® + o(@ulsa = 0, (3.16)

which is now self-adjoint. At this point 2 simple inspection indicates that the equivalent
system (3.16) is well defined in a star-shaped region. Thus, Theorem 3.1 holds and
the indirect analytic representation

d,(02]0g,) — (020g) = ¥ + m) g + 29" + P} =0 (.17
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exists. Corollary 3.1B then allows the identification of a Lagrangian by means of
solutions (3.7)

P = gt o — et — (Af6) ¢* (3.18)

and, finally, Corollary 3.1C allows the interpretation of such Lagrangians from the
viewpoint of the interaction which, in this case, reads

LI = Lot 1+ Frree T Lintun (3.19a)
ﬂwpﬁﬁwﬁﬁ_mwﬂ (3.19b)
Dea = o5 (3.19¢)
L = tmPet — {ob (3.19¢)

We reach in this way, not surprisingly, a Lagrangian structure of chiral type [14].
Notice that the presence of the multiplicative interaction term in structure (3.19) is
necessary for the representation of the system within a fixed “gauge” (i.e., without
considering field transformations ¢ — @ ().

in more than one dimension, one of the most significant examples of ordered

indirect analytic representations is constituted by the field equations for gauge
theories

_DAu + ie[(‘;a;u -+ ie-A.u-(nB) P — @(‘P;u - ieAu)]
Fid) = ( (O + m® — 24,45 @ — 2ied p’, ) =0, (3.20)
(01 + m? — e24,4) § + 2ied'§. NSA
which have been considered in detail in papers [ and II. Let us reinspect such a case
within the methodology of this paper. Equations (3.20) are non-self-adjoint
(Appendix C of paper 1) and of the semilinear type. Therefore a Lagrangian for their
ordered direct analytic representation does not exist. To identify a Lagrangian we
again apply Theorem 2.1 by seeking for the genotopic transformation

2 s ¢°, B IFAEAIERT = 0, (3.21)

A rather tedious but straightforward calculation then shows that a solution of
Egs. (2.6) is constituted by

100
mﬁ=@01} (3.22)
010

namely, the simple permutation of the equations in ¢ and @ constitutes an example
of genotopic transformations. And indeed, the equivalent system

10 Oy /—0d, + iel(@. + ied,@) ¢ — #(¢'n — ied ¢)]
(0 0 1)( (0] + m? — 24,4 ¢ — Zied*¢, ) =0 (3.23
010 (O -+ m?® — e24,4%) ¢ + 2ied" ', nsa lsa
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is self-adjoint (see also Appendix C of paper I and Section 2 of paper 10). Theorem 3.1
now holds and one recovers the well-known Lagrangian

D 3 A - gt — PP - EAMGP (P — Fup) A* (524)

by using Corollary 3.1B (see paper 11 for explicit calculations}.

Again, the ultimate structure of the analytic representations of gauge theories is
of the quasi-linear and not of the semilinear type. This is an indication that the type
of couplings admitted by such theories is considerably broad. And indeed, a simple
inspection indicates that a combination of couplings of type (a) and (b) is present,
although of the linear type, while the couplings of type (c) are absent in view of the
fact that the A% terms only represent a permutation of the equations in ¢ and ¢
(see paper I1).

The additional result which emerges from the analysis of this paper is that the
structure (3.22) is only one (trivial) solution of the conditions (2.6) for a genotopic
transformation and that additional solutions are possible. Clearly, the existence of
different solutions will inevitably imply the existence of Lagrangians which are equiv-
alent (by construction) but different than the familiar form (3.24). This is a typical
case of isotopic transformations.

For the sake of clarity let us indicate that what we are referring here to is the study”
of particular solutions of the overdetermined system of differential equations (2.6)
(i.e., the conditions of self-adjointness) in the genotopic functions ht applied to
system (2.21) where F(¢) represents the {fixed) system of field equations (3.20}.
Furthermore, the particular solutions in which we are interested are those other
than the trivial solution (3.22), if they exist.

Tt is now easy to anticipate that if such solutions exist by preserving the structure
of matrix (3.22) and by simply relaxing the constancy of its elements, 1.e.,, if such
solutions are of the type .

Iy (s D) 0 0
(h") = ( 0 0 hs($, ¢;:x)) {3.25)
0 ho¥(p, o) 0

then “acceleration”” couplings will still be absent. On the conirary, it there exist
solutions with more than three nonnull elements of matrix (3.25), then “accelaration”
couplings will inevitably appear. In turn, such “acceleration” couplings will induce
multiplicative interaction terms in the Lagrangian structure. The net effect is that,
if such solutions exist, the new emerging Lagrangians will be analytically equivalent
but structurally different than the familiar Lagrangian (3.24).

This potential change in the structure of the Lagrangian for gauge theories, if it
exists, is not only formal, And indeed, it might affect the symmetry of the system
(e.g., it might produce a gauge invariance breaking at the level of the Lagrangian
irrespective of that of the vacuum). This point may be scen from the fact that the
appearance of “acceleration” couplings with refated multiplicative interaction terms
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will inevitably transform the Lagrangian (3.24) into a new structure which is more of
the chiral rather than of the gauge type.

A basic aspect which must be stressed is that during this entire process the undet-
lying dynamics is unchanged in the sense that the solutions of the field equations
remain vnchanged by construction.

A preliminary analysis of these problems will be attempted in subsequent paper Iv
within the context of our study of the isotopic transformations of the Lagrangian
density postufated in paper 1.

A problem of considerable significance (as well as complexity) which remains open
is that of “universality,” namely, whether a Lagrangian for the representations of
Theorem 3.1 always exists. This problem is briefly discussed in Appendix A.

4. A GENERALIZED ACTION PRINCIPLE

Consider the action functional

-9320 +w
A(P) = j dix L, 4% 37 = | | dxﬂf Bx 2, (4.1a)
Q2 Lol -0
rP _ .
FeWR): | g | Ruo) # 0. (4.1b)

The conventional Lagrange equations are customarily derived from the conditions
that the first-order variation 5A4 of A, when computed along an actual path é2, is
identically null for all variations of the fields with fixed end points. More explicitly,
consider the variations [15]

Sge(x) = wit(x);  8¢Wu(x) =4 Sge(x) = wnw,;  weO. (4.2)

where the functions %%(x) satisfy the fixed-end-point conditions
7%(x,", X) = n*(x% x) = 0, a =1, 2., 1 (4.3)

Then the first-order variation SA(¢) can be written [16]

BA(P) = w Lz dix (%;(;i; 7% + "‘3%%: na:u)
4.9)
& F
- o ] e b = )

Under the assumed continuity and regularity conditions of the Lagrangian, the con-
dition [L7]

Bl = 3 )

= 0 (4.5)
e
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is then equivalent to the conventional Lagrange equations. This is the well known
action principle for continuous sytems.

Let us here indicate that principle (4.5), as a purely variational algorithm, holds
for an arbitrary structure and dimensionality of the Lagrangian density. Therefore,
principle (4.5) is equivalent to the conventional Lagrange equations not only when
the Lagrangian density has the conventional structure

zTot = zu gf(g{ae(‘}l’a: ¢a:n) + %nt(xrx ’ ¢': S’S:uc) {4.6)
1
but also when % has the generalized strocture
“Cfgggl = Ea, vg"p[(tax)f:.l(--"‘:o: ¥ ':,6: 9”(!) o(ff:t;)ee(¢a’ ‘?,’am) + "(Z]nt..ll(xa ] ‘?Ss ‘}Sm)- (47)
1

As a consequence, whenever a (class *, regular, tensorial) system of field equations
admits a (direct or indirect, ordered or unordered) analytic representation, such a
system can be equivalently represented with principle (4.5).

With reference to our remarks of Section 1, we can thus say that the representations
of classes T and II are “bona fide” analytic representations in the sense that the
underlying analytic equations can be derived by a variational principle.

The objective of this section is to show the existence of a generalization of principle
(4.5) capable of inducing the generalized analytic equations (1.5) as well as the
conventional equations. As a consequence, the representations of class TII are also
“bona fide” analytic representations. _

Let us begin by noting that the variations §¢*(x) of the fields ¢9(x), besides the
restriction of possessing the same continuity properties of the fields and of satisfying
the fixed-end-point conditions (4.3}, are arbitrary functions of the Minkowski
coordinates.

The form (4.2) of the variations, which is customarily used in physics, is termed
weak variation in the Calculus of Variations. In particular, we can say that form (4.2)
is a realization of the “abstract” variations 8¢%(x).

Without entering at this point into an analysis of more refined forms of variations,
it is sufficient for our purpose to point out the existence of infinite varieties of possible
realizations of the variations which are consistent with the above continuity assump-
tions and fixed-end-point conditions.

Among all such possible realizations we select the form

§Edt(x) = (x) — $Hx) = wn*(x) = wnl(x) 8 (Xa » b, ¢ = 3¢x) gb, (4.8a)
BEEE() = B0 — $09) = dHEFE) = w0, (4.80)
where

(1) the functions 7°(x) are of at least class @2 in Q and satisfy the fixed-end-
point conditions (4.3);
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(2) the functions g are of at least of class % in the same region of definition
Ry of the Lagrangian density and the matrix of their elements is everywhere regular
in every bounded domain in the interior of Rig ;

(3) the parameter w is again defined in the neighborhood of the value zero,
le.. weO,.

As a consequence, the above variations 8*¢(x) possess at least the same continuity
properties of the fields ¢b(x); they satisfy the fixed-end-point conditions (4.3); and
they are weak variations in exactly the same sense as the ordinary variations S (x).
Therefore, the generalized form {4.8) of the variations is equivalent to the ordinary
form within a variational context.

We reach in this way the following generalization of the conventional action
principle 118},

oy 8y .
S*A(PHamg = W L dix (-»——aqu ¥ 4 B, 'f}*"‘u)

d=d
A 2%
T } 3 e e [FR—
= —w [ | (d e — 3 ¢,,) =0 e
P e FR): g€ E (R, (4.95)
Pk = -
e - o b
‘ @qba;u 395&;? ’ (RLE) # 0; | &a ‘ (RLE) # 0, (49‘3)

which clearly induces the generalized analytic equations (1.5) rather than the con-
ventional ones.

Trivially, at the limit g — 8. principle (4.9) reduces to principle (4.5), which is
therefore recovered as a particular case. .

A few comments are now in order. Within the framework of our variational
approach to self-adjointness a first significant aspect principle (4.9) is to broaden
the somewhat restrictive character of principle (4.5) according to which the underlying
field equations are always self-adjoint (Theorem 1.7.1). And indeed, the field equations
of principie (4.9), i.e., Eqs. (1.6}, as indicated earlier, are in general non-self-adjoint.

A second significant aspect of principle (4.9) is that it implies a broadening of the
methodology for the representations of field equations in ferms of variational
principles as we shall see better in Section 5. As a result, the framework (C) of Section 1
is a “bona fide” analytic framework.

A third significant aspect of principle (4.9) is that it implies a broadening of the
transformation theory of the action functional.

Basically we can say that, in addition to the degrees of freedom of the coordinates,
e.g., the arena of the Poincaré transformations; and the degrees of freedom of the
fields within a fixed coordinate system, e.g., the arena of the gauge transformations;
we have, as a third identifiable fayer of the transformation theory, the degrees of
freedom of the variations within a fixed coordinate system and “gauge.”



248 RUGGERC MARIA SANTILLI

Within the context of our variational approach to self-adjointness, the above third
class of degrees of freedom induces a classification of the action principles for a given

system into self-adjoint and non-self-adjoint depending on whether the underlying

analytic equations are self-adjoint or not, respectively, according to scheme

S*A(Plsa = — jﬂ dix g (d. _a%% — %‘%—)SA]SA dée, (4.108)
s Aan = — | 4 [ 82 (e — AR S

In paper IV we shall show that the seif-adjoint case {4.102) induces what we have
termed isotopic transformations. Therefore, the concept of isotopic transformations
occurs within the arena of the degrees of freedom of the variations with a fixed
coordinate system and “gauge.” Al anticipation of the results of paper IV is useful
here to point out certain aspects.

When case (4.10a) occuTs, then a new Lagrangian * for the identifications

DL * a.g* — [gab ( 8F 8. )]SA -0

b ggm, T o ‘

“ogm, o @

exists from Theorem 3.1. The underlying action principle will then be termed iso-
topically mapped. In this case the property

§* j dix & =8 j dix Z* (4.12)
Q n

occurs, namely, the isotopically mapped action principle in 2 given Lagrangian
coincides with the conventional action principle in the isotopically mapped Lagrangian.
Other properties can be easily identified. For instance, suppose that several isotopic
mappings exist for one given Lagrangian. Then, property (4.12) can be generalized
according to the symbolic notations for the case of two subsequent mappings

(3%y*e jﬂ dix & = 8% jﬂ dix £

(4.13)
=8 j dix (FF)*
n

If, in particular, the two mappings are inverse of each other (namely the matrices
() and ( g% t) are inverse of each other) then we have the property

5[ ax g =8 [ ax g . (4.14)
@ 2

The above property is not ¢rivial because it indicates that one can directly transform
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the conventional principle (4.5) into the generalized principle (4.9) through an isotopic
transformation (when it exists). Explicitly, property (4.14) reads [19]

5[ ax 2= - s (d”%—%) 5o

= - [ (du% — gj:ﬁ) 5.0 5¢°

— 1, D0 _E’iﬁ_af{ 4 ¢
= L‘”g“ (dﬂaqsmu aqf,b)g”&?s

= — J;z d'x gé‘l)b ( .u_a%ié: - _%:;é_) S*qS“'

(4.15)

agen  pEH T
—_ — 4 e e & A
— lex(du 7, o5 ) 544

— 5*‘.[ iy PO
a

Needless to say, the results of this section must be considered as purely introductory
and several additional methodological aspects must be explored prior to any final
assessment of the possible significance of principle {4.9).

We are not only referring here to topics within the context of field theory (e.g.,
symmetries and conservation laws) but also to an analysis of the significance of the
variations (4.8) within the context of the calculus of variations at large (e.g., the study
of the extremal aspect with variations (4.8)).

5. ANALYTIC REPRESENTATIONS IN TerMS OF THE GENERALIZED LAGRANGE EQUATIONS

As indicated earlier, isotopic and genotopic transformations (or, in general, self-
adjoint equivalence) transformations of the field equations have several methodo-
ogical implications. For instance, they may affect the symmetries and conservation
laws in view of the functional dependence of the factor terms hot, In general, on all
the variables x, ¢°, and ¢

It is therefore significant to study in addition to the ordered indirect analytic
representations i 1erms of the conventional Lagrange equations explored in Section 3,
i.e.,

[ o 8"

oo~ Tl = T BY™ R =0 -1

the ordered direct analytic represen tations in terms of the generalized Lagrange equations

e (4 -;fl - %ﬁ)f% = [ + BT =0 (52)
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The methodological implications of the transition from analytic representations
(5.1) to those of Eqs. (5.2) and vice versa are not trivial. This is due to the fact that in
the former the impact of the factor terms h,t is incorporated in the Lagrangian while
in the latter such impact is incorporated in the analytic equations and not necessatily
in the related Lagrangian. As a result, the generalized variational framework iniro-
duced in Section 4 might be significant to the study of the problem of the symmetries
and conservation laws of equivalen! systems of field equations. This aspect will be
explored in paper 1V.

In this section we shall restrict our analysis to the study of the representational
capability of the generalized Lagrange equations (1.8).

On technical grounds the transition from representations (5.1) to (5.2) is trivial.
Indeed in view of the assumed regularity of the matrix of the vector terms /" and
g,? such a transition always exists and is characterized simply by

(ga) = (R ™ (5.3)

We then have the following

Lemma 5.1. A necessary and sufficient condition for the existence of an ordered
direct analytic representation in terms of the generalized Lagrange equations is that
an ordered indirect analytic representation in terms of the conventional Lagrange
equations exists and vice versd.

The “mechanics” of representations (5.2) is also quite simple. Suppose that the
assigned system is non-self-adjoint. Then the conventional Lagrange equations produce

an equivalent self-adjoint form of the field equations while the factor terms g,'

reproduce the original non-self-adjoint form in the given ordering according to the
scheme

b a oz i by g¥uy o3 | * i
[ga (du aqsb;u - W)SA]NSA == [ga (Abc ‘?S ar T B D)SA}NSA
= (A", + Bonsa = 0. (5.4)

It is precisely the latter property which, in the ultimate analysis, allows the direct
representation of non-self-adjoint systems. .

Generalized analytic representations (5.2) can also be studied per se, i.e., inde-
pendently from representations (5.1). In this respect, the following theorem is again
a direct consequence of Theorem I1L.2.1.

TueoreM 5.1 [12). A necessary and sufficient conditions for a Lorentz-covariant,
tensorial, quasi-linear system of field equations

A s 8% 70 P + Bolbes 875 7 =0,
abc="2un pyv,a=0123 (5.5)
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which is of (at least) class €% and regular in a region R of the variables (%, ¢ &%)
to admit an ordered direct analytic representation interms of the generalized Lagrange
equations
8. 2. o 1
o (du o .%T) o Ao, 4 B, =0, a=12u,m o (50
©

is that the inverse matrix (h,b) of the matrix of the factor terms (gl induces a self-
adjoint equivalence transformation of the field equations

[ (A5ed™ -t Byt RlEnt = 0; (h) = (g™ (5.7
in a star-shaped region R* of points (X, &'e, ') with e = T, P = TP,
0L r =L

The action principle which undetlies the above theorem is the generalized form (4.9)
introduced in Section 4, L.e.,

5 A(Ploms = L dhx \gﬂb (d. g, 34"’)\#& o (5.8)

li

— [ dix (A% — Bollews 36" 0.
o]

Alternatively, one can start with the ordinary action principle in an equivalent self-
adjoint form of the equations of motion and then transform such a framework into
the generalized principle (4.9) by means of rule (4.12), when it applies, according to

SAPlas = — | 38 (d S Z),
PRI
- jﬂ & l gt (da %{_ _ %}L:& S¢e (5.9)
= 8*A(PHo—s

= — [ dts (gt + Blens 397 =0

Theorem 5.1 with the underlying variational formulation (5.8) or (5.9) constitutes
the most general framework of our analytic approach to classe @2, regular, uncon-
strained, tensorial field equations. Indeed, such framework contains, as a particular
case, our main Theorem 11.2.1, trivially, when the factor terms g.° reduce to the
Kronecker 8. Tn this was the case of ordered direct analytic representations in terms
of the conventional Lagrange equations is recovered. Tn addition, the above framework

incorporate through Lemma 5.1 the case of the indirect analytic representations.
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Tt should also be stressed that Theorem 5.1 holds irrespective of whether the assigned
system (5.5) is self-adjoint or non-self-adjoint. More specifically, if the assigned
system is non-seif-adjoint, Theorem 5.1 provides the methodology for their direct
representations without recurring to equivalence transformations of the equations of
motion. If the asigned system is self-adjoint, Theorem 5.1 provides the methodology
for analytic representation both with trivial and nontrivial factor terms (6,7) and (4"},
ht # 8.0, respectively. As we shall see in paper 1V, this latter case is particularly
useful for the study of the isotopic transformations of the Lagrangian density and the
refated implications for symmetries and conservation laws.

Furthermore, since the Lagrangian of Theorem 5.1 is unrestricted in its structure,
such a theorem provides the necessary methodology for the representations of
Class (C) introduced in Section 1; the generalized variational principle (3.8) or (5.9)
then establishes that such representations are truly “analytic” in the same measure
as the representations of Class (A) and (B).

‘We are now in a position to comment on the relationship among the representations
of Classes (A), (B), and (C) of Section 1.

The analytic representations of Class (A) (i.e., those with the conventional Lagrange
equations and the conventional structure of the Lagrangian) contain the great
majority of field theoretical models considered until now. Furthermore, the method
of their quantization is fully established, although the problem of renormalization has
been successfully solved only m special cases, such as in quantum electrodynamics
or in the unified gauge theory of weak and electromagnetic interactions [20].

The analytic representations of Class (B) (i.e., those with the conventional Lagrange
equations and a generalized structure of the Lagrange) constitute, as pointed out in
paper I, a true generalization of those of Class (A) because they incorporate the
broadest collection of couplings which is admissible within a Lagrangian represen-
tation. The method of their quantization, however, is not established at this time and,
to the best knowledge of this author, the most significant case which has been con-
fronted in the existing literature is that with multiplicative interaction terms depending
only on the fields, i.e., the known chiral models [14].

The analytic representations of Class (C) (i.e., those with the gencralized Lagrange
equations and a generalized structure of the Lagrangian) are equivalent to those
Class (B), as clearly pointed out by Lemma 3.1, whenever the representations of the
latter class are indirect. And indeed, in this case any representation of Class (B) can
always be turned into one of Class (C) and vice versa. It is precisely such equivalence
which renders the representations of Class (C) attractive for practical applications.
For instance, as we shall see better in the subsequent paper IV, the representations
of Class (C) are particularly useful for the study of the transformation theory in
general and the isotopic transformations in particular.

The significance of the representations of Class {C), however, might go beyond
the framework of the transformation theory. It is rather tempting to express the hope
at this point that the representations of Class (C) can be useful for the problem of
guantization of arbitrary forms of couplings at least as an alternative to the quanti-
zation of the representations of Class (B).
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APPENDIX A. THE PROBLEM OF THE “JNIVERSALITY”
OF THE ANALYTIC REPRESENTATIONS

_ We cannot close this paper without touching on the question of the “yniversality”
of the analytic representations considered, namely, whether a Lagrangian for the
ordered indirect analytic representation of a class @2, regular, tensorial, non-self-
adjoint, quasi-linear system always exists.

The case of /inear systems of ficld equations has been investigated in detail by
Edelen [21] (with other methods) with the significant result that a Lagrangian for
the representation of a linear integrodifferential system of second-order partial
differential equations always exists.

The case in which we are interested here is the problem of the “universality” for
the case of quasi-linear systerms, namely, systems which are generally nonlinear in the
field components and their first-order derivatives, but linear in their second-order
derivatives and of (at feast) class €* and regular.

First, this problem can be investigated in terms of whether a class %%, regular,
tensorial, quasi-linear, non-self-adjoint system always admits a genotopic transfor-
mation, namely, a self-adjointness-inducing equivalence transformation within a {ixed
coordinate system and © gauge.” By inspecting conditions (2.6) for such an equivalence
transformation to be genotopic, the reader can casily conclude that the answer
to the “universality” of the genotopic transformations is likely to be negative. This
is due to the fact that sytem (2.6) is an overdetermined system of partial differential
equations in the unknown genotopic functions for an arbitrary but finite dimension.
And indeed, as is well known [22], such systems are not necessarily consistent. This
remark is useful here 10 alert the reader that Theorem 3.1, as formulated, is not
necessarily “universal” because the underlying genotopic transformation does not
necessarily exist.

The point which the interested reader should, however, keep in mind is that geno-
topic transformations, as defined in Section 2, do not exhaust all possible equivalence
transformations of the field equations.

1t is in this respect that the collection of all possible equivalence transformations
which are admissible by an action principle become significant.

Let us recall from the analysis of Section 2 that, at the least, the following three
different types of equivalence transformations can be identified within the framewotk
of an action principle:

{a) those induced by transformations of the Minkowsi coordinates;

(b) those induced by transformations of the field components within a fixed
coordinate system;

(c) those induced by a transformation of the field equations within a fixed
coordinate system and “gauge.”

As a consequence, the possible lack of “universality” of sel{-adjoint transformations -
of type (¢} does not necessarily imply the lack of “universality” of the Lagrangian
representation because in the search for a self—adjointness—inducing equivalence
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transformation one can use any collection of equivalence transformations (2), {b),
and ().

Therefore, the problem of the “untversality” of the analytic representations can be
formulated in terms of whether the conditions of self~adjointness can be satisfied
under a suitable collection of transformations of types (a), (b), and (¢).

This problem, which is evidently rather conspicuous, can in principle be attacked
with some of the most advanced techniques of the modern theory of partial differential
equations [22] and, along these lines, it clearly goes beyond the objectives of this
paper. .

A quite empirical approach to this problem is the following. As indicated earlier,
system (2.6) for the case of transformations only of type (¢) in the unknown 4,0 is
overdetermined (in the general case of an arbitrary but finite dimension). But each
additional type of equivalence transformations allowed by the action principle
introduces in system (2.6) an additional set of unknowns. An inspection of the
dimensionality of system (2.6), on one side, and the total number of unknowns
which result from the combined use of all admissible types of equivalence trans-
formations, on the other side, then indicates the possibifity that system (2.6) can be
turned into an underdeterniined system, namely, a system whose number of unknowns
exceeds the number of equations.

If this is the case, then a Lagrangian should not only always exist, but it should
always exist with a considerable degree of arbitrariness.

The abave empirical considerations are summarized with the following

Conjecture A.1. A Lagrangian for the ordered indirect analytic representation
of class €%, regular, tensorial, quasi linear systems of field equations a/ways exists,

It should be stressed here that the above statement is a mere conjecfure based on
quite empirical considerations and, as such, it is left open for the interesied reader
either to prove it or to disprove it.

To avoid possible misrepresentations, it should, however, be indicated that the term
“indirect” of the above conjecture now has a considerably broader meaning than
that of Theorem 3.1 beacuse it now originates not oniy by the possible presence of
the /" factor terms but also by the collection of alf other types of equivalence trans-
formations which are admitted by an action principle.
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- Notice that the transformations ¢ — ¢'(x, ¢) include, as pacticular cases, the gauge transformations
of first and second type, ie., § — e~ and ¢ — g~feblalg regpectively.

. The significance of the possible explicit dependence of the /4,° terms on the in the Minkowski
coordinates will be explored in paper IV. At this pointlet us simply remark that such a dependence
may be helpfut for equivalence transformations (1.2) to satisfy the conditions of self-adjointness.
Alternatively, since the conditions of self-adjointness in the A, terms (see Section 2) constitute
an overdetermined system of partial differential equations, the broadest possible dependence
of such terms may in practice be useful,

- Within a Newtonian context, equivalence transformations of the Lagrange equations have been
considered by several authors [2]). However, within both a Newtonian and a field-theoretical
framework, Egs. (1.5) are interpreted as “bona fide” analytic equations by this author, apparently,
for the first time.

. According to our definition of paper I, the system of differential equations F(x,, ¢¢, ¢y, ) =0
is termed regular (degenerate) in a region R of its variables when the functional determinant
(i.e,, the Hessian for the case of the Lagrange equations) d(R) = | 8F,/a b8 is everywhere
nonnull (muHl) in every bounded domain in the interior of R. For the case of the conventional
Lagrange equations the above condition of regularity is then expressible in terms of the Hessian
and reads

(R) 5 0.

_ b
R = |
43 v

For the case of generalized equations (1.5) the condition of regularity becames

2 o

_ e _
d(R) = | g W R)#0
and it can holds iff the separate conditions
- 2.9 —
1&g 1 (R #0; lW (R) # 0.

hold. For the case of degenerate generalized equations (1.5) we then have

2 o

R =0,

Bot e
o, B,

It this case Eqgs. (1.5) exhibit the intriguing property that they can be degenerate while the con-
ventional Lagrange equations are regular, iec.,

>

W (Ry 0.

g 1) =0 {

The other possible cases are
o
aqsl:;uaébiy

.| (B) # 0 Ry =0;

F*re

a¢c3u3¢hiv

Throughout this paper all the above degeneracy conditions are excluded and the analysis is
restricted to the regular case.

sl R =0 (R) = 0.
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7. This property can be seen in several ways. First of ali, one can verify with a direct inspection

10.

H.

. The known meaning of the term “isotopic™ is “ivdw’

that the conditions of self-adjointness 1.6.14 {see also Section 2 of this paper, Eqs. (2.6)) are
generaily violated for Egs. (1.14). An alternative and perhaps more significant approach is to
compute the equations of variations of Egs. (£.14) and explicitly verify that, in general, they
do not coincide with their adjoint system. This jeads to the generalized Jacobi eQuations

2 252
gcb (a,uTa""_ : ) = 01

B, - o
_Q p— 1 ( az—rf V. HE—.TH + 2 ('}"'ff a3l + a"-_q) (i ]
= 3 aqu;ua(ﬁb:y /T 3:;3“‘“3:;&” N 6(,6“85&“ i ) s
4’“ = ¢ﬂ(x’ W)E%Z(Rz ® Rw)s Ry = O,
- a¢“ G, = e LT R— _8950;“" \
K FIN P ® M  luo T ow  lw_o

gb = g%,

which originate from the property that the term of the total variation of Eqs. (1.14)

b 1] G G
(j&‘—— 7+ i&—nc‘u)(dpb—gi e )

3 FYC B, o
is identically null because the Lagrange equations are verified along an actual path. The argument
of paper II (that the oint use of the Lagrange and the related Tacobi equations might be significant
in Field Theory for questions other than the necessary and sufficient conditions for the existence
of the Lagrangian) can now be easily generalized to the framework of Bgs. (1.14). Indeed, the
above-ntroduced generalized Jacobi equations are always linear, irrespective of whether Egs.
(1.14) are linear or not. Therefore, the generalized Jacobi equations, in view of the assumed
continuity and regularity conditions, can g/ways be solved, at least formally, frrespective of
whether the underlying couplings are linear or nonlinear. To avoid possible misinterpretations,
let us point out that the above-generalized Jacobi equations are partial differential equations in
the variations of the fields and #sor in the field themselves, Therefore, the indicated lineatity of
such equations is the variations and not in the fields, When the solutions of the field equations
cannot be computed, the joint use of the Lagrange and the related Jacobi equations {(or their
generalization) at least provides precise information on the behavior of the variations of the fields.

. The dash symbol here indicates the possible presence of any collection of transformations of

type (1.2) and of those originating from mappings (1.4).

T lpros™ = “preserve configuration.”
We have selected this term in relation to its significance within the context of the theory of
abstract algebras where it denotes an “invertible axiom-preserving mapping of the product.”
For an elaboration of the Newtonian profile of this problem see the monographs of Ref. [2].
The extension of this analysis to Tield Theory demands the study of the canonical formutations
for generalized analytic equations which we contermpiate conducting at a later time.

The term “genotopic”™ has been suggested to me by Mrs. Carla Santilli from the meaning *‘yerraw’”
< omos’ = “produce” “configuration.” Within a Newtonian context, such a term is introduced
in view of the algebraic significance of the concept represented, which can be expressed as an
“{nyertible axiom-inducing mapping of the product” [2]. Again we contemplate elaborating this
concept within a field-theoretical context at some later time.

Transformations of types (2.2a) and (2.2d) should, more properly, be termed “seif-adjoint
isotopic™ and “‘self-adjoint genotopic™ transformations, respectivety. This is s0 because of the
existence of transformations (2.2c) and (2.2b), which then are “non-self-adjoint isotopic” and
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“non-self-adjoint genotopic™ transformations, respectively. For instance, the transition from the
conventional to the generalized Lagrange equations (1.14) is an example of a non-self-adjoint
genotopic transformation because it induces a non-self-adjoint structure. However, the analysis
of this paper is primarily based on the equivalence transformations (2.2} of seif-adjoint type and,
therefore, we have dropped the term “self-adjoint™ preceding the “isotopic” and ““genotopic”
transformations for simplicity,

This theorem is, apparently, introduced here for the first time.

Notice that for the one-dimensional case the concept of ordering is vacuous.

See, for instance, I. S. GerstEIN, R. Jackiw, B. W. LzE, aND S, WINBERG, Phys. Rev. D 3,
{1971), 2486; and W. 8. HELLMaN anp C. G. Hoob, Phys. Rev. D5 (1972), 1552,

Notice the use of the fozal rather than the partial derivatives for the variations of the terms ¢%,, .
It is precisely this point which renders erroncous the customary way of presenting the Lagrange
equations, i.e.,

o &
A

while the correct form is that with the total derivatives 4, as in principle (4.5) below. This point
as well as ifs implications, has been stressed since paper I. Qur elementary review of the variational
derivation of the Lagrange equations offers an opportunity to better identify the reason for the
use of the total versus the parfial derivatives in Egs. (4.2). In essence, within the framework
of the Calculus of Variations, the variations 8¢° of the fields ¢¢ can have an arbitrary dependence
on the coordinates x, with the exception of certain continuity conditions. In particular such a
dependence can be either explicit or implicit, i.¢., through other x-dependent functions. Now
if this [atter case occurs, the use of partial derivatives implies that 8¢, is identically null and then
the Lagrange equations reduce to the clearly inconsistent system 8.2/84¢ = 0. This possibility
of implicit dependence of the variations in the Minkowski coordinates will be better elaborated
later on,

We make the customary assumption here that the fields tend to zero at large spatial distances.
The subscript ¢ = Q; here simply denotes that the first-order variation of the action functional
is zero iff it is computed along an actual path. More explicitly, for a given Lagrangian .%, the
differential forms d,(8.2[84%,) — (8.2]84%) can be computed along an arbitrary path ¢. But in
this case they are not necessarily null uniess such path is the actual path.

. To the best knowledge of this author, this principle is introduced here for the first time. Notice

that this principle is, in the ultimate analysis, a consequence of the possibility that the variations
have both an explicit and an implicit dependence in the Minkowski coordinates [15].

. The generalized action principle (4.9) can also be recovered by using (class %2, invertible, single-

valued} transformations ¢ — ¢" = ¢'(x, ¢). Indeed, the Lagrange equations and the variations
84 transform covariantly under such transformations. Therefore, the factor terms g,? in the struct-
ure of such a principle can be recovered in a natural way as the terms which emerge after such
covariant transformation. This indicates the possible significance of principle (4.9) within the
context of the transformation theory (an aspect whichh will be investigated in paper FY).

20. See, for instance, the review articles by S. WEINBERG, Rep. Modern Phys. 46 (1974), 255; E. S.

ABERS AND B. W. Leg, Phys. Reporis 9 (1974), 1; and J. BERNSTEIN, Rev. Modern Phys. 46 (1974),
7.

. D. G. B. Epceen, “Non-Local Variations and Local Invariance of Fields,”” American Elsevier,

New York, 1966.
For overdetermined systems of partial differential equations see paper 1I, Ref. [2].



258 RUGGERQ MARIA SANTILLI

FRRATA-CORRIGENDA OF Papers § anp 11

Errata Corrigenda
Paper [
Eq. (6.14c)h
aBiitiv o AUBIHIY I aBipmiv — 4ot
Aun‘.ba Ahdav )Adhc Abdaa
— I L—

Eq. (6.14g):
—
Alﬂh(x =3 E Au-V;Dt + Au-x VI _»Al-ll' - — AHV 300 + AJ.LBI
ab ¢ ab ¢ ab ©
Eq. (6.14b):
s | Ao g A | = A = AT AT
|__l | I
Paper 11
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