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PREFACE

These three volumes are the first books written on a generalization of quantum
mechanics under the name of hadronic mechanics which [ proposed back in
1978 when at Harvard University under support from the U. S. Department of
Energy and then studied by a number of mathematicians, theoreticians and
experimentalists,

The primary objective of the new mechanics is to reach a quantitative
treatment in a form suitable for experimental verifications of the old legacy that
the strong interactions in general, and the hadronic structure in particular, have a
nonlocal component due to the experimentally established mutual penetration
and overlapping of the wavepackets-wavelengths—charge distributions of
hadrons, as symbolically represented below

under the condition that the representation preserves all the essential physical
characteristics of quantum mechanics, such as observability, causality, etc.

[ have presented the mathematical foundations of hadronic mechanics
in Yolume I. The scope of this Yolume Il is the identification of the theoretical
foundations of the new mechanics, with particular reference to the basic physical
laws for an axiomatically correct treatment of the above physical conditions.
Applications and experimental verifications will be studied in Volume III.

The fundamental hypothesis of hadronic mechanics is the generalization
of the basic unit of the enveloping operator algebra of quantum mechanics into a
form with an arbitrary, integro-differential dependence
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[ =diag. (..} =  Ttrpp ¢ oY, .). (1}

The description of physical systems in hadronic mechanics then requires two
operators, the Hamiltonian H = K + V for the representation of all interactions
derivable from a potential V, and the generalized unit 1 for the representation of
all interactions and internal effects which are not derivable from a potential or a
Hamiltonian by conception.

A first simple example of generalized unit is given by the diagonal and
positive—definite form in three dimension 1 = Diag. (bl‘z. by 2, b3'2) which
permits a direct representation of nonspherical charge distributions of hadrons,
such as ellipsoids with semiaxes bkz, as well as all their infinitely possible
deformations. In turn, these capabilities of hadronic mechanics {which are
manifestly absent in quantum mechanics) permit the first exact-numerical
representation on record of the total magnetic moment of the deuteron, tritium
and of few-body nuclei.

An example illustrating the nonlocal-integral character of the theory is
Animalu’s generalized unit 1 = expNf dvds/(r)o(r)} Tor the electrons of the Cooper
pair in superconductivity with wavefunctions ¢ and ¢, which permits the first
representation on record of their attractive interactions in a way rerarkably in
agreement with experimental data. Numerous additional examples will be
identified during the course of our analysis, such as the generalized unit
permitting the first numerical representation on record of the experimental data
on the Bose-Einstein correlation as originating from nonlocal interactions in the
interior of the p-p fireballs.

As studied in Vol. [, the generalization of the unit requires, for evident
reason of compatibility, a consequential generalization of the entire mathematical
formalism of quantum mechanics into a new formalism admitting of T as the
correct left and right unit. This includes a generalization of: fields of real and
complex numbers; vector, metric and pseudo-metric spaces; Euclidean,
Minkowskian and Riemannian geometries; ordinary functions {e.g., trigonometric
functions), special functions {e.g,, spherical functions), transform (e.g., Fourier
transform), distributions (e.g., Dirac delta distribution} Banach and Hilbert spaces;
Lie algebras, Lie groups and Lie symmetries; transformations and representation
theories; classical Hamiltonian mechanics; etc.

Generatized units (1) are classified into Hermitean generalizations1 =11,
characterizing the Lie-isotopic branch of hadronic mechanics, and
nonhermitean generalizations # lt, characterizing the more general Lie~
admissible branch of hadronic mechanics.

The former methods are used for the treatment of closed—isolated
systems of particles with Hamiltonian and nonhamiltonian internal interactions
verifying conventional total conservation laws, including the reversibility of the
center-of-mass trajectory. The latter formulations are used for the
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characterization of open—nonconservative systems in irreversible conditions
under the most general known, external, nonlinear-nonlocal-nonharniitonian
interactions.

Each of the above two branches is then classified into Kadeisvili's five
different classes depending on the primary topological characteristics of the
generalized unit. This illustrates the rather diversified structure of hadronic
mechanics for the characterization of a hierarchy of physical systems with
increasing complexity and methodological needs. By comparison, quantum
mechanics has one single structure, as well known.

By using the above diversified structure, in this volume [ establish the
direct universality of hadronic mechanics, i.e., the capability of the theory of
representing all possible operator systems (universality) directly in the frame of
the experimenter (direct universality). As we shall see, this includes a
representation of gravitational singularities represented via the zeros of the
generalized units,

I should stress that the above direct universality refers to systems and
does not include various other methods for the treatment of the same systems.
As an example, hadronic mechanics represents all possible systems described by
the so—called q-deformations (and actually much more as we shall see), but
hadronic mechanics and q-deformations are structurally inequivalent, e.g.,
because defined on different fields, different Hilbert spaces, etc.

As we shall see, hadronic mechanics permits a variety of novel
interpretation of existing data, applications and predictions which are simply
beyond any hope of quantitative treatment with quanturmn mechanics. In
particular, the new mechanics permits novel structure models of nuclei, hadrons
and stars with a variety of new predictions all verifiable with current technology,
such as: a quantitative formulation of antigravity; the prediction of a space-
time machine based on the alteration of the units of space and time; an
apparent new form of subnuclear energy | called hadronic energy; a new
technology at distances smalier than 10~!3 cm I called hadronic technology; and
others. In this volume | present the theoretical foundations permitting these
predictions. Their treatment and experimental verification will be considered in
Yol. HL.

The algebraic origin of hadronic mechanics can be traced back to A. A.
Albert (Trans. Amer. Math. Soc. 64, 552 (1948) who introduced the notion of Lie-
admissible algebras as generally nonassociative algebras U with elements a, b, ..
and abstract product ab which are such that the attached algebras U™ with
product [a, bl = ab ~ ba are Lie. Albert introduced the above notion for the
primary purpose of studying the so-called noncommutative Jordan algebras
with realization of the product

(a,b) =xab-{(l-A)ba, 2)



where ab is associative and A is a scalar, which do not possess a well defined
content of Lie algebra (i.e, there is no finite value of A under which product (b} is
Lie). As such, their possible physical relevance is unknown at this time.

The notion of Lie-admissible algebras U used in these volume was
introduced by R. M. Santilli in his Ph. D. studies (Lett. Nuovo Cimento 51, 570
(1967)) according to the dual condition that U~ is Lie and that Lie algebras are
contained in the classification of U. This turns Lie-admissible algebras into
genuine coverings of Lie algebras. Santilli [loc. cit.] then introduced the realization

(a,b} = pab-gqgba, {3

where ab is associative and p, g are scalars.
Subsequently, Santilli (Hadronic J. 1, 223, 574 and 1279 {1978)) introduced
the so—called general realization of Lie-admissible algebras

(A,B) = ARB - BSA, (4)
where R, 5, RtS are nonsingular operators, whose attached antisymmetry product
[A,Bly = (A,B)-(B,A)=ATB-BTA, T=R+S, (5

does satisfy the Lie algebra axioms but it is not conventionally Lie and
characterizes instead Lie-isotopic algebras. In this way I reached in 1978 the
central dynamical equations of for closed-conservative and open-
nonconservative systems, respectively [loc. cit.]

idA/dt =[A,Hl; = ATH - HTaA, (6)
idA/dt = (A,H); = ARH - HSA, (7)

which are at the foundations of hadronic mechanics.

The ciassical analytic origin of hadronic mechanics can be traced back
to G. D. Birkhoff (Dynamical systems, AM.S., Providence, RI (1927)) who
identified the following generalization of Hamilton’s equations

" da¥ oH @
Q. fa) — = , 8
W@ daH

Quy = 4, R, - 3, R, detQ=0, a={Kp ) k=123 pv=12.,6

which preserves the abstract axioms of Hamiltonian mechanics, thus being an
isotopy of the latter, because the underlying two form © = quda“/\da“’ is an
exact, nowhere degenerate and therefore symplectic as the canonical two~form,
although of the most general possible exact type. Similarly, the brackets
characterized by the contravariant tensor Q4 = | (QQB)_II“’ do verify the Lie
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axiorns, although they characterize the more general Lie~isotopic algebras.

Some fifty six years following their appearance, I conducted systematic
studies of the largely forgotten Eq.s (8), which I called Birkhoff’s equations (R. M.
Santilli, Foundations of Theoretical" Mechanics, Vol. 11: Birkhoffian
Generalization of Harniltonian mechanics, Springer-Verlag, Heidelberg-New York
(1983)) and prove them to be directly universal for all possible local-differential
Newtonian systems verifying certain topological conditions.

However, the emerging step-by-step generalization of Hamiltonian
mechanics, which | called Birkhoffian mechanics, resisted all attempts for
Quantization into a form usable for practical applications. This forced me to
conduct a second laborious study of the classical foundations of hadronic
mechanics (R.M. Santilli, Hadronic J. Suppl. 4B, issue no. 1 (1988); Isotopic
Generalizations of Galilei’s and Einstein’s Relativities, Vol.s I and 11, Second
Edition, Ukraine Academy of Sciences, Kiev (1994)) which resulted in the
construction of: A) the more general Birkhoff—isotopic mechanics with basic
equations

da” oH
aakt '

Q) Tt a, 8, ) (9)

where T is a nowhere degenerate symmetric matrix; B} the symplectic isotopic
geometry with nowhere-degenerate exact two-isoforms € = Q ,T% da*Ada";
and C) the classical realization of the Lie-isotopic algebra characterized by the
contravariant tensor 1, Q% =| (Qla) iy od

The above studies permitted the identification of the classical origin of
the fundamental quantity of hadronic mechanics, the generalized unit 1. In turn,
this permitted the identification of unique and unambiguous generalized methods
for the mapping of classical into operator theories, and established the direct
universality of hadronic mechanics as originating at the classical level. In fact,
the Newtonian systems mapped into quantum mechanics must be restricted to
admit a meaningful Hamiltonian, while such restriction is un-necessary for
hadronic mechanics which provides the operator image of the most general
possible Newtonian systems which are arbitrarily nonlinear, nonlocal-integral and
nonhamiltonian.

The statistical origin of hadronic mechanics can be traced back to the
studies by 1. Prigogine and his Bruxelles School (see, e.g., CL George et al,
Hadroenic J. 1, 520 (1978) which are based on a nonunitary formulation of
conventional quantum statistics. Subsequently, J. Fronteau, Tellez-Arenas and R.
M. Santilli (Hadronic J. 3, 130 {1979) formulated a generalization of statistical
mechanics with a Lie-admissible structure. More recently, A. Jannussis and R.
Mignani (Physica A187, 575 (1992)) proved that the nonunitary irreversible
statistics of Prigogine’s school has an essential Lie-admissible structure.

The above results permitted hadronic mechanics to identify the origin
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of irreversibility in the ultimate level of the structure of matter, that of
elementary particles in open-nonconservative conditions, such as a proton in the
core of a star considered as external. This elementary origin of irreversibility is
studied in this volume at the nonrelativistic, relativistic and gravitational levels.
Macroscopic irreversibility is then a mere collection of elementary nonunitary-
irreversible systems.

These advances resolves recently identified inconsistencies of the
conventional conception of irreversibility, such as those treated by the so—called
No-Reduction Theorems which establish the impossibility of reducing a
macroscopic body in irreversible conditions with continuously decaying angular
momentum to an ideal collection of quantum mechanical particles in reversible
conditions and with conserved angular momentum {and viceversa). The only way
[ know of resolving these inconsistencies is by identifying the origin of
irreversibility in the ultimate elementary level of matter with a consequential,
necessary generalization of quanturn mechanics.

It is important in these introductory notes to indicate the reasons why
hadronic mechanics was constructed via the Lie-isotopic and Lie—admissible
methods rather than other generalized approaches existing in the literature.
Consider, for instance, the so~called g-deformations by L. C. Biedenharn (J.
Phys. A22, 1873 (1989)}, A. J. MacFarlane (J. Phys. A22, L4581 (1989) and many
others, with generic product

(a,b) =ab-qhba, {10)

which, on one side, generalize quantum mechanics while, on the other side, are
treated via conventional quantum mechanical methods {e.g., conventional fields,
metric spaces, Hilbert spaces, etc.).

Even though [ originated the q-deformations some twenty two years
before Biedenharn, MacFarlane and the others,i, I was forced to abandon them
by the late 1970's because of a considerable number of rather serious problematic
aspects of physical character, such as: lack of form~invariance under the time
evolution of the theory; loss of Hermiticity, and therefore of observability, under
the time evolution (see below why); loss of the measurement theory because of
the lack of invariance of the assuymed unit under the time evolution; lack of
uniqueness of generalized operations such as exponentiation, with consequential

LIt should be noted that Biedenharn and MacFarlane did not quote in their 1989 papers
on g-deformations the historical paper by Albert {Trans. Amer. Math. Soc. 64, 552 (1948))
on the essential Lie-admissible character of their deformations, or the preceding more
general {p, gl-number and (R, S}-operator-deformations by R.M. Santilli (Lett. Nuovo
Cimento 51, 570 {1967), Hadronic J. 1, 574 (1978)), or any of the related literature on
hadronic mechanics which, by 1989, was rather considerable. The quotation of the above
prior literature was then ignored in the subsequent vast literature in g-deformations as
the reader can verify.
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ambiguities in the related generalized physical laws (such as g-uncertainties); lack
of validily of the q—special functions at all times; and others.

In fact, the time evolution of gq-deformations (10) is evidently
noncanonical and therefore nonunitary. This implies: the lack of conservation in
time of the basic unit of the theory, the conventional form [ = diag. (1, 1, 1, ...),
because nonunitary transforms are such that, by definition, [ *= uty! = [; the lack
of form-invariance of the theory,

U{ab - gba)ul=a’Rb’ - b’Sa’, (11)
R=(uulr!, s=qR,a’=vaul, b’ =uput. (12)

The other problematic aspects then foliow.

Even though transforms (11) have the (R, S-operator-structure (7), they
are unacceptable for hadronic mechanics because again not form~invariant. In
fact, a second nonunitary transform wwl =171 = | establishes their lack of
form-invariance,

Wa'Rb'W - Wb'sa'wi=a*TR'Tb" - b”TS Ta”, (13

thus leaving all original problematic aspects essentially unchanged.

The only way [ know to achieve an axiomatic Lie-admissibie theory,
that is, a theory possessing the same axiomatic properties of quantym mechanics
{form-invariance, Hermiticity-observability at all times, invariance of the basic
unit, uniqueness of the various operations, validity of functional analysis at all
times, etc.) is by reformulating the theory according to the basic axioms of the
genotopic branch of hadronic mechanics studied in this volume (the most general
possible branch over genofields, genospaces, genohilbert spaces, etc.).

Another line of inquiry which [ had to abandoned for the construction
of hadronic mechanics is that of the so—called nonlinear theories. | am here
referring to theories studied by R. W. Hasse (J. Math, Phys. 16, 2005 (1975)}, N. Gisin
(J. Phys. A 14, 2259 (1981), .H.-D. Doebner and G. A. Goldin (Phys. Lett. A 162, 397
(1992)) and several others with a nonlinearity in the wavefunction represented
with the conventiona! Schrédinger's equation

i dlt, 1) = Ht, r,p, &, 41, .t 1), (14)

which also generalize quantum mechanics, yet are treated via conventional
quantum methods.

In fact, the above approach generally represents open-nonconservative
systems and, as such, it is expected to have nonhermitean Hamiltonians and
nonunitary time evolutions, in which case they have the same problematic
aspects of the g-deformations. Irrespective of whether the Hamiltonian is
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Hermitean or not, Eq. (14) have the additional problematic aspects caused by the
evident loss of the superposition principle.

The only way known to this author of resolving the above problematic
aspects is via the axioms of hadronic mechanics which imply the factorization of
all nonlinear contributions H(t, r, p, ¢, ¢, ..) = Ho{t, r, pIT(W, 1, ..), and then the
reconstruction of the entire formalism of quantum mechanics with respect to
the generalized unit 1 = T™L,

Yet another line of research which [ had to be abandoned for the
construction of hadronic mechanics is the theory with nonassociative Lie-
admissible envelope submitted by S. Weinberg (Ann. Phys. 194, 336 (1989))
according to the following basic equation

dA . . 9A 8H oH o6A
i—— =A%H ~ HXH = - ) (15)
dt by oyl b oy
where the product AXH characterizes a nonassociative Lie—admissible algebra.2
Note that the equations are also nonlinear in the wavefunctions as Eq.s (14).

The reasons why this latter approach had to be abandoned are known
since the early studies of general Lie-admissible theories. In fact, when used as
the enveloping algebra AXH of the time evolution idA/dt = AXH - HXAS
nonassociative Lie~admissible algebras admit no unit at all, thus preventing any
applicability of the measurement theory. Also they admit no known
exponentiation, thus preventing the achievement of a consistent generalized
symmetry as well as consistent generalized physical laws dependent on the
exponentiations (such as Gaussians, the uncertainties, etc.). Moreover, Weinberg's
theory violates the No-Quantization Theorem by S. Okubo (Hadronic J. 5, 1667
(1989)) according to which the Heisenberg's type and the Schrédinger-type
formulations are inequivalent for all theories with nonassociative envelopes.

By looking now in retrospective, the only known generalizations of
quantum mechanics which are axiomatic in the sense indicated earlier can be
essentially derived as follows. First, let us recall the axiomatic structure of
quantum mechanics as embedded, say, in its fundamental commutation rules

2s. Weinberg abstained from quoting in his 1989 paper the contributions by Albert of
1948, Santilli of 1967 and 1978 quoted earlier, or other contributions in hadronic
mechanics (which were rather numerous by 1989), in order to identif y the nonassociative
Lie-admissible character of the envelope of his his equations. All subsequent papers on
Egss (15) also did not quote the above essential literature, as the reader can verify.

3 Recall that in quantum mechanics the envelope is associative with conventional
product AH while the brackets of the time evolution are nonassociative, ie., idA/dt = AH
= HA = nonassociative-Lie. I therefore refer in the text to to the problematic aspects
suffered by nonassociative Lie-admissible envelopes with product AXH and not to
theories with Lie-admissible brackets idA/dt = (A, H) = ARH - HSA = nonassociative Lie—
admissible.



rp- pr=ihl, (16)

formulated on a conventional Hilbert space 3C over a complex field. As it is well
known, the enveloping operator algebra € with elements r, p and their polynomial
combinations is assocfative with conventional product rp and fundamental unit
I =diag. (1, 1,..), [A = Al = A,V A € E. The time evolution of the theory is unitary,
i.e,, represented by the operator U such that uu! = vy = 1. This implies: the
invariance of the basic unit at all times, [’ = UIUT = [, with consequential
applicability of the measurement theory at all times; the preservation of the
Hermiticity of the Hamiltonian H = UHUT at all times with consequential
observability at all times; the form-invariance of the theory,

Ulrp-podUt = r'p' - pr = invtul = inl, (7

and the remaining conventional axiomatic properties.

The Lie-isotopic generalization of quantum mechanics preserving all the
ahove axiomatic properties can be constructed as follows. First, recall from Vol. [
that the Lie-isotopic algebras are a nonunifary image of conventional Lie
algebras. One can therefore subject rule (16) to a nonunitary transformation uul =
1 # I, for which we have

Ulrp-pr)Ul = ¢'Tp’ = p'Tr’ = ihULU! = in1=in T, (18)

where one should note that 1 = UUT and T = (UUTY™! are Hermitean.

This first step renders necessary the following isotopic generalizations:
1) the enveloping algebra £ with product AB is lifted into the form & with
isoassociative product A*B = ATB, T fixed; 2) the Lie product [A, Bly = AB - BA is
lifted into the Lie-isotopic product [A, Blp = ATB — BTA; and 3) the fundamental
unit [ is lifted into the generalized quantity 1 of Eq. (1) which is indeed the correct
left and right unit of the theory, 1*A =T ITA= A=A, VA€t

However, the above formulation is still insufficient because under an
additional nonunitar%r time evolution WW"r = D # [, the generalized unit 1 is not
preserved, T' = WIW' # 1, and the Lie-isotopic product is not form-invariant.
Also, the envelope is now fsoassociative with Hermiticity condition on 3¢ H' =
THIT ! 1, T = (Ul !, and general loss of Hermiticity—observability according
to Lopez's Lemma 11.3.C.1 of p. 122 (D. F. Lopez, Hadronic J. 16, 429 {1993), etc.

The only solution | know resolving all these problematic aspects is
that along the axioms of the isotopic branch of hadronic mechanics. In this case,
nonunitary transforms ww! = I, can always be reformulated in the isounitary
form
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W=WTV2 Wwi=WTW=wsw=WTWw=wsxw=1=1=1T11 (19
yielding the fundamental isocommutation rule of hadronic mechanics
rTp-pTr=itT] (20)

first identified by Santilli (Hadronic J. Suppl..4B, 1 {1989)).

It is then easy to prove the form-invariance of: the generalized unit 1’ =
WWT = WTTITWT = 1; the isoassociative product WHA+BWW! = A*B"; the Lie
product; and, consequently the fundamental isocommutation rules

W*(f*p - p*r)*WT = r'*p' - p’*r’ = th*T*WT =lhT(21)

The preservation of all other axiomatic features of quantum mechanics,
including the Hermiticity—observability at all times, is then consequential, as we
shall see. As a matter of fact, hadronic and quantum mechanics emerge as
coinciding at the abstract, realization free level, as one can see from the abstract
identity of Eq.s (16) and (20).

[t should be noted that all structures which deviate from Eq. (20} violate
one of the other axiom of hadronic mechanics, therefore resulting in problematic
aspects for physical applications. For instance, structures with commutation
rules of the generalized Lie type

rp-pr=ihFg.) rTg.)p-pTg.)r=1ihFg.) F*T, (22

do not possess an axiomatic structure and, as such, are afflicted by the
problematic aspects indicated earlier. In fact, they are not form—invariant even
when expressed in isofields, isospaces and isohitbert spaces, thus suffering all the
shortcomings of the conventional q-deformations.

Note that this is the fate also for the so-called quantum groups because
they preserve the conventional quantum-Lie brackets but generalize their
eigenvalues, thus implying nonunitary transforms with all the problematic
aspects of g-deformations.

The achievement of an axiomatic structure for the more general Lie-
admissible formulations is evidently more complex. In this case the dynamical
equations describe irreversible systems and therefore require the selection of a
given direction in time. [n fact, Eq. (7} can be written idA/dt = ARH - HSA = A<H
= H>A, where > represents motion forward to future time, and < represents
motion forward from past times. The generalized unit is necessarily
nonhermitean, thus requiring two different units one for the isoproduct > and
the other for the conjugate product <.

The Lie—admissible theory which is axiomatic in the above sense to my
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best knowledge at this writing is characterized by the equations

ihP = ihs’!

idA/dt= ARH-HSA =A<H - H>A = or -1 {23)
ih<d =inR

R = s, (24)

formulated over a dual generalization of the entire quantum mechanical
formalism, one per each direction of time (the genofields, genospaces and
genohilbert spaces mentioned earlier), which were first identified by Santilli
{Hadronic J. 1, 574 (1978) and Hadronic J. Supp!. 4B, 1 (1989)).

I should stress that the above structures are the only axiomatically
consistent formulations which [ know at this writing. [n fact, structures of the
type

trRp - pSr =ihR P or =ins™! but R=8, (25)

TRlg,.)p - pSlg.Jr = ihTqg.), T=#R! andT=S"!, (26)

violate one of another axiom of hadronic mechanics therefore resulting in one or
another problemnatic aspect for physical applications.

The following additional comments are recommendable in these
introductory words. Hadronic mechanics studies physical conditions
fundamentally different then those of quantum mechanics. In fact, the latter
- studies the motion of point-like particles in the homogeneous and isotropic
vacuum, such as an electron of an atomic cloud {(exterior problem), while the
former studies the more general class of extended-nonspherical particles moving
within inhomogeneous and anisotropic physical media, such as a proton in the
core of a star (interior problem). In particular, hadronic mechanics has no impact
for the atomic structure because, by construction, it recovers quantum
mechanics identically for all mutual distances greater than 1 fm {10”!3 cm). The
differences in the mathematical structures between quantum and hadronic
mechanics should therefore be interpreted as a representation of said physical
differences.

A most insidious aspect in the study of hadronic mechanics is the rather
widespread tendency of appraising it via the mathematical methods of quantum
mechanics. This attitude leads to a host of misrepresentations and inconsistencies
which often remain undetected, such as assuming that the the magnitude of the
angular momentum is J2 = JJ with respect to the unit [ (rather than the correct
form J2 = JT(x, %, ¥, &ds..)J with respect to the unit T~!) which, for hadronic
mechanics, violates linearity and all basic axioms of the theory. The appraisal of
hadronic mechanics via the formalism of quantum mechanics is equivalent to
the appraisal of quantum mechanics via the formalism of Newtonian mechanics.

In particular, the transition from Newtonian to quantum mechanics did
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imply certain necessary mathematical generalizations, most notably the use of
infinite—dimensional Hilbert spaces, although fundamental mathematical notions
such as numbers, angles, vector spaces, trigonometry, special functions, integral
transforms, etc., remained common to both classical and quantum disciplines.

In the transition from quantum to hadronic mechanics the fotality of
its mathematical structure must be generalized in a simple yet effective way, as
indicated earlier. In view of this occurrence, I have attempted to render this
volume seif-sufficient for a first study of hadronic mechanics. However, its
technical knowledge can only be acquired following a study of the mathematical
foundations of Vol. 1.

The theoretical foundations of hadronic mechanics are the result of the
efforts of numerous scholars identified in the various chapters. Among the
mathernaticians | mention here the contributions to the Lie—isotopic theory by A.
U. Klimyk, D. S. Sourlas and G. F. Tsagas, and those to the Lie-admissible theory
by H. C. Myung. Among the physicists who participated in the earlier study of the
theory besides myself, [ mention the contributions by A. O. E. Animalu, A. K.
Aringazin, G. D. Brodimas, G. Eder, J. Fronteau, M. Gasperini, A. Kalnay, A.
Jannussis (and other associates), R. Mignani, M. Mijatovic, M. Nishioka, S. Okubo,
A. Tellez-Arenas, B. Veljanosky and others. The experimentalists who contributed
to hadronic mechanics will be identified in Volume III.

In closing allow me to indicate that a primary objective of hadronic
mechanics is the introduction of two, sequential, Lie-isotopic and Lie-admissible
generalizations of the Galilean, special and general relativities for nonlinear,
nonlocal-integral and nonhamiltonian systems in closed-reversible and open—
irreversible conditions, respectively. Readers with the personal conviction that
current relativities have a final character for all possible physical conditions
existing in the Universe are discouraged from inspecting these volumes. On the
contrary, readers with the "young minds of all ages” {mentioned in the preface of
Volume 1) may find the content of these volume stimulating.

All true scientists (in Einstein’s definition) are encouraged to participate
in the laborious scientific process of trial and error toward truly fundamental
advances, not in marginal talks in academic corridors, but in the only way
physical knowledge really advances, via publications.

Summer 1994 Ruggero Maria Santilli
The Institute for Basic Research
P.O.Box 1577, Palm Harbor, FL 34682 USA
Fax 1-813-934 9275
E-mail ibrrms @pinet.aip.org
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PREFACE TO THE SECOND EDITION

[n this second edition { have corrected a number of misprints and errors of the
first edition which were kindly brought to my attention by a number of readers.

I have also updated a number of references, particularly those on key
issues of hadronic mechanics, according to a number of papers recently appeared
in various Journais.

I have finally updated a number of important aspects, such as: the
prediction of the isodual theory that gravity is reversed for elementary
antiparticles, such as the positrons, but bound states of particles and antiparticles,
such as the positronium, are attracted in the field of Earth; the isominkowskian
geometry permits a symbiotic representation of both the Minkowskian and the
Riemannian geometries, which is at the foundation of the isotopic unification of
gravity and relativistic quantum mechanics presented in the preceding edition of
this volume; the indication (without treatment at this time) of different operator
expressions of hadronic mechanics with the use of the isodifferential calculus
with a nontrivial formulation of the isodifferentials dx = 1dx, where 1 is the
isounit; more adequate transformations of the Lie-admissible equations under
genounitary transforms; and other aspects.

Any additional comment by interested colleagues would be sincerely
appreciated.

Ruggero Maria Santilli
Palm Harbor, FL.
Fall 1995

Permanent address:

The Institute for Basic Research

P. O. Box 1577, Paim Harbor, FL 34682, U.S.A.
E-mail ibrrms@pinet.aip.org
Fax: 1-813-934 9275
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1: CLASSICAL FOUNDATIONS

1.1: STATEMENT OF THE PROBLEM

We begin the physical studies of this second volume by pointing out that:

1) Hadronic mechanics possesses a well defined classical image with unique
interconnecting maps in a way Tully parallel to the known classical foundations
of quantum mechanics;

2) The primary difference between the classical foundations of quantum
and hadronic mechanics is that the former are of potential-Hamiltonian type
while the latter admit potential-Hamiltonian as well as nonpotential-
nonharniltonian forces;

3) The classical foundations of quantum mechanics admit a limited class of
Newtonian systems, while those of hadronic mechanics are directly universal,
that is, admitting of all possible classical systems (universality) in the frame of
the experimenter (direct universality).

The above classical universality then sets the foundations of the
corresponding direct universality of hadronic mechanics for all possible operator
systems.

The classical foundations of quantum mechanics, the familiar
Hamiltonian mechanics! are well known (see ref.s [1] and quoted literature).
The classical Toundations of hadronic mechanics have been studied in:

* Monographs [2] on the integrability conditions for the existence of a
potential V, a Hamiltonian H or a Lagrangian L, the so—called conditions of
variational selfadjointness (SA) and ensuing Birkhoffian generalization of
Hamiltonian mechanics, or Birkhoffian mechanics for short;

* Monographs [3] on the Hamilton—isotopic mechanics and related covering
called Birkhoff-isotopic mechanics which possesses a Lie—isotopic structure (Ch.

L The term “"Hamiltonian mechanics” is misleading because referred to the so-called
truncated analytic equations which are not those originally conceived by Hamilton with
external terms (see Sect. 1.7.1). Nevertheless, the term is now of general use and will be
kept in this volume to denote the conventional canonical mechanics without external
terms.
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* Monographs 4] on the still more general Hamilton-admissible mechanics
and related covering called Birkhoff-admissible mechanics which possesses a
Lie-admissible structure {Ch. 1.7).

In this chapter we shall outline the main structural lines of these classical
studies with particular reference to those profiles which are at the classical
foundations of hadronic mechanics. Particular attention is due to the Hamilton-
isotopic mechanics because it is the classical image of the Lie—isotopic branch of
hadronic mechanics, and to the Hamilton-admissible mechanics because it is
the classical image of the Lie-admissible branch (Fig. 1.1.1).

It should be noted that we know today unique and unambiguous operator
maps of Hamilton-isotopic mechanics into the Lie-isotopic hadronic mechanics,
called isoquantization, and of Hamilton—admissible mechanics into the Lie—
admissible hadronic mechanics called genoquantization.? We also know the
operator image of the more general Birkhoff, Birkhoff—isotopic and Birkhoff-
admissible mechanics but this latter knowledge is merely formal at this writing.

CLASSICAL HADRONIC
MECHANICS | MECHANICS
HAMILTON- LIE—
ISOTOPIC lsaquantization ISOTOPIC
MECHANICS > BRANCH
HAMILTON- | LIE-
ADMISSIBLE genoquantization ADMISSIBLE
MECHANICS ! BRANCH

FIGURE 1.1.I: A schematic view of the classical foundations of hadronic
mechanics.

It is important to know from the outset the physical differences between
the classical foundations of quantum and hadronic mechanics. As well known,
guantum mechanics was conceived for systems (such as the atomic structure)

21t appears recornmendable for the reader to get accustomed from the beginning with
- the fact that the term “quantum” is conceptually misleading and technically inappropriate

"o

within the context of hadronic mechanics. Names such as “guantization”, “quantum of
energy”, “quantized particles”, etc, do have a correct meaning, conceptually and
technically, but only for quantum mechanics, that is, for point—particles in vacuum. In
the transition to the covering hadronic mechanics, as indicated from the Preface and
studied throughout this volume, the very notion of quantum of energy must be
generalized into the integral isounit, h = f = 41, representing exchanges of energy for
extended wavepackets totally immersed within hadronic media ie., media composed of

wavepackets of other particles with a density of the order of that of hadrons.



-3 =

which are isolated from the rest of the Universe, admit only conservative internal
forces and are characterized by only one operator, the Hamiltonian H or
Lagrangian L. These systems are called closed Hamiltonian (or variationally
selfadjoint) systems [2]. Classical Hamiltonian mechanics then provides the ideal
classical foundations of quanturm mechanics because it characterizes precisely
closed Hamiltonian systems of N particles in Euclidean space and related total
conserved quantities which we can write as

my e, = ALY, k=1236xy,2,a=12.,N,  (LLla

d evit,r,r)  avit,r 1)
At ) = — - (LL1b)

at ok, ark,
E=H=K+V, K= 2,p2/2m,, P = Xapx> (LLIO
My = 2, €kijTai Paj» Gy = 2a(my g = tpgy ) (LLLd)

On the contrary, hadronic mechanics was conceived for systems with
local-differential-potential as well as nonlocal-integral-nonpotential internal
forces; that is, with forces which, by central assumption, are not representable
with the single quantity H. As studied in detail in Vol. IT of ref. [2], the latter
systems can also be closed—isolated, thus verifying the same total conservation
laws (1.1.1.c) and {1.1.1d), in which case they are called closed nonhamiltonian {or
variationally nonselfadjoint} systems (2] and can be written jointly with the
closure conditions and ensuing total conserved quantities (see Appendix I1.1.B for
more details) as

mi, = FSAk(t, r, i)+ FNSAk(t, 1 o SO (1.1.2a)

Ea=l,..‘,N FISA, =, 2e=1,.NTa* FSA, =0, Z‘a=l,...,NraxFNSAa =0, (1120}
E=H=K+V,K=2,p2/2m,, P = 2P, (LLX)

Mk = Ea Ekij Fai paJ s Gk = Ea ( My gk — t pak) (L.1.2d)

Then conventional Hamiltonian mechanics loses any validity as the classical
counterpart of hadronic mechanics, in favor of the suitable generalized
mechanics.

In summary, a primary physical difference of the classical foundations of
quantum and hadronic mechanics is that the former are patterned along
contemporary analytic trends, those representing systems with only one quantity
H or L (variationally selfadjoint interactions, while the latter are patterned along
the original analytic conception by Lagrange and Hamilton (Sect. 1.7.1), according
to which the systems of our physical reality cannot be solely represented with
one quantity H or L, but require 3N additional external terms FNSA, (variationally



nonselfadjoint interactions.

In the language of these volumes we can say that:

1) the classical foundations of quantum mechanics are given by exterior
dynamical systems (Ch. 1.1} i.e, systems of particles which can be effectively
approxirated as being point-like when moving within the homogeneous and
isotropic vacuum; while

2) the classical foundations of hadronic mechanics are given by interior
dynamical systems (Ch. 1.1); i.e,, systems of particles which are extended and
therefore deformable, while moving within inhomogeneous and anisotropic
physical media.

An objective of this chapter is to illustrate that the hadronic representation
of systems with the two quantities, the Hamiltonian H= K + V (or Lagrangian L =
K ~V}and the isounit T (Ch.s 1.2, 1.4, 1.7) is patterned precisely along the original

* + conception by Lagrange and Hamilton to such an extent as to preserve even the

number {1 + 3N} of independent quantities. In fact, the independent elements of
the isounit 1 (e.g,, its diagonal terms) are precisely 3N.

The original analytic equations with external terms are rewritten in the
Hamilton-isotopic form for closed nonhamiltonian systems, or in the Hamilton—
admissible form for open nonhamiltonian systems, because the analytic brackets
with external terms violate the conditions for the existence of any algebra, let
alone Lie algebras (Sect. 1.7.1).

The additional knowledge recommendable from the outset pertains to the
reasons why only one mechanics is sufficient for the classical image of quantum
mechanics, while hadronic mechanics requires two different, yet complementary
mechanics.

Closed variationally selfadjoint systems are composed by collections of
particles each one in a stable orbit, as majestically illustrated by the Solar
systemns. Under these conditions, one mechanics only with totally antisymmetric
brackets is evidently sufficient to represent the stability of both the system as a
whole and each of its constituents [1].

The situation for the more general variationally nonselfadjoint systems
(1.1.2) is fundamentally different. In fact, when studied from the outside as a
whole the systemns are closed as the Hamiltonian ones, thus requiring a mechanics
with totally antisymmetric brackets as an evident necessary condition for the
conservation of the fotal energy The nonhamiltonian internal forces then
requires that such brackets are of the generalized Lie—isotopic type, thus yielding
in a unique way {up to isoequivalence) the Hamilton—isotopic mechanics [3].

However, global stability is achieved in systems (1.1.2) via a collection of
particles each of which is in unstable conditions. We merely have internal
exchanges of energy and other physical quantities but always such to satisfy total
conservation laws. While the emphasis in the exterior global treatment is in the
total conservation laws, the emphasis for the study of each individual constituent
is instead in the characterization of the most general possible time-rate—of-
variation of the energy, angular momentum and other physical quantities when



