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ABSTRACT

We study a model of the Cooper pair in superconductivity whose basic mechanism is
due to nonlinear-nonlocal and non-Hamiltonian interactions; we show the capability of
the model of representing available data while possessing intriguing predictive capacities,

and we propose its experimental verification.

—

1. Introduction

T here are few doubts that the currently avail-
able theory of electron pairing in supercon-
ductivity (Cooper pair) provides a satisfactory rep-
resentation of its structure, by achieving a repre-
sentation of the altractive interaction among the
two identical electrons of the pair via the media-
tion of cuprite ions in agreement with available
data (see, e.g., [1, 2]).

Despite this success, studies of alternative rep-
resentations of the Cooper pair are not expected to
halt, and, in fact, they have continued for various
reasons. The first is that the conventional model
has exhausted all predictive capacities. This sets
the challenge of identifying a new model which
also represents available data while permitting

novel predictions for possible basic advances in
the field.
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Also, the mechanism providing attraction in
the conventional model, that based on the
electron—phonon interaction [1, 2], has not been
fully established experimentally in other fields,
e.g., in particle physics, and additional tests are
warranted prior to a final assessment. Moreover,
despite ils effectiveness, the contemporary notion
of valence, or molecular bonding at large, is also
far from having reached a final stage. In fact, it
may well be that the same mechanism at the basis
of the Cooper pair in superconductivity is also
responsible for molecular bonding, evidently after
due adjustments due to different physical condi-
tions.

The mechanism responsible for Pauli’s exclu-
sion principle is also far from a complete under-
standing. In fact, quantum mechanics is simply
unable to represent interactions among two elec-
trons in the same orbit capable of excluding the
same quanium numbers. Again, it may well be
that the mechanism at the foundation of the Cooper
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pair is also responsible for Pauli’s exclusion princi-
ple. After all, the electron couple themselves in the
Cooper pairs in singlet states, precisely in agree-
ment with Pauli’s principle.

2. The New Model of Lhe
Coaper Palr

This article surveys and develops a new model
of electron pairing as a ~onceivable alternative to
the conventional model [1, 2]. The mechanism un-
derlying the new model was submitted by Santilli
[3] in attempting a new structure model of the =°
as a novel bound state of an elegtron ¢~ and a
positron e’ in the singlet state, (¢}, 7). Animalu
[4] showed that the same mechanism implies an
attraction also for equal charges and applied the
model for a representation of the Cooper pair
(e7, e7) (see also the most recent studies [5)).

The expectations are that the new model recov-
ers all available experimental data, while exhibit-
ing a more promising predictive capacity for lower
T, values, as well as possibilities of being applied
to similar systems, such as molecular bondings or
Pauli’s exclusion principle. Necdless to say, in this
article, we can study only some of these open
issues. The remaining open aspects have to be
studied in subsequent articles.

The conceptua! foundations of the Animalu-
Santilli model of the Cooper pair are the following:
Despite historical achievements, quantum mechan-
ics is not expected to be the final theory of the
microcosm because it is linear, local-differential,
and potential-Hamiltonian. A central issue of con-
temporary physics is the identification of a gener-
alization of quantum mechanics which is effective
for the study of interactions which are arbitrarity
nonlinear (in the wavefunctions i and their
derivatives dy), nonlocal-integral (admitting of es-
sential integral terms in the equations of motion),
and nonpotential-non-Hamiltonian (admitting of
effects which violate the necessary and sufficient
conditions for the existence of a potential, the
conditions of variational self-adjoininess [6]). Needless
to say, quantum mechanics can provide a good
approximation under nonlinear, nonlocal, and non-
Hamiltonian interactions by merely assuming that
they are null. The central issue is, however, their
quantitative study.

The above studies are directly relevant for su-
perconductivity because a more adequate theory

of the Cooper pair is expected to be precisely
nonlinear, nonlocal, and non-Hamiltonian. In fact,
the fundamental assumption of the Animalu-
Santilli model is the presence of internal nonlin-
ear—nonlocal-non-Hamiltonian effects due to
overlappings of the wavepackets of the electrons
among themselves and with those of the Cu**
ions. As such, the new model is conceptually,
mathematically, and physically beyond realistic
capabilities of exact treatment via conventional
quantum mechanics. As is well known, the latter
mechanics can represent only interactions medi-
ated by particle exchanges (i.e., of potential type)
among a finite number of isolated points (linear
and local character). By comparison, interactions
caused by wave-overlappings are of “contact” type
(i.e., having a ““zero range”) for which the notion
of potential and related particles exchange have no
mathematical or physical meaning. Moreover,
wave-overlappings require contributions necessar-
ily of the nonlocal-integral type because they can-
not be exactly reduced to a finite set of isolated
points. Finally, contact interactions, whether in
classical or in operator mechanics, are notoriously
nonlinear in the velocities, wave functions, and
their derivatives.

Again, we could ignore nonlinear-nonlocal-
non-Hamiltonian effects expected in the interior of
the Cooper pair, thus remaining within the context
of the current quantum mechanical model [1, 2].
The scope of this article is, however, the initiation
of their quantitative study in a way suitable for
experimental resolutions,

3. Hadronic Mechanics

A generalization of quantum mechanics under
the name of hadronic mechanics was proposed by
Santilli (3] when he was at Harvard University
under DOE support for the representation of linear
and nonlinear, local and nonlocal, and potential as
well as nonpotential interactions. The new me-
chanics was subsequently studied by a number of
mathemnaticians, theoreticiansg, and experimental-
ists and recently reached sufficient maturity for
applications and verifications (see monographs [7)
for a comprehensive presentation). A knowledge
of at least the rudiments of the new mechanics is
essential for an understanding of the model of the
Cooper pair studied in this note.
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Hadronic mechanics is constructed via the iso-
topies of the various aspects of quantum mechan-
ics, whose most salient characteristic is that of
being axiom-preserving. In particular, the isotopies
map any linear—local-canonical structure into
the most general possible nonlinear-nonlocal-
noncanonical forms in such a way to recover
linearity—locality—canonicity in certain generalized
spaces and fields. Unlike cther generalizations (see
below), the isotopies therefore assure a correct
axiomatic structure under generalized interactions
because they preserve established quantum ax-
ioms and only realize them in a more general
form,

The main postulate of the new mechanics is
the representation of conventional linear—local~
potential interactions via the familiar Hamilto-
nian H and the representation of the nonlinear-
nonlocal-nonpotential interactions via a general-
ization of the unil of quantum mechanics:

h=1—hf=aCc p, o, ap,...), (31)

where [ is a matrix having the same dimension
of the underlying (Euclidean, Minkowskian, or
Riemannian) space, being nonsingular, Hermitian,
and positive-definite, and admitting of the value I
as a particular case, in which case quantum me-
chanics is a particular case of hadronic mechanics.
The description of systems via hadronic mechanics
therefore requires the krowledge of twoe quanti-
ties, H and [. All quantum mechanical methods
are then subjected to a map, called isolopic lifting,
such to admit [ as the left and right units.

The fundamental quantities of hadronic me-
chanics are characterized by the lifting of the field
R of real numbers n,m,..., with conventional
multiplication nm and rr.ulhphcatwe unit I, In =
nl = N, ¥n € R, into the so-called isnﬁe!ds R {8]
whose elements are the isonumbers it = nf, it = mi,
with isomultiplication 7 X fit = AT, where T is a
fixed and invertible quantity (outside the original
set R). Under the assumption I— T, 7 is the
correct left and right units of R Ixi=axi=1I
vi € R, in which case {only) [ is called the isounit
and T is called the isofopic element. Note that
R = R by construction. This illustrates the isotopic
character of the lifting R — R. The lifting of the
complex field C — € is then consequential [7, 8].

The next basic method of hadronic mechanics is
the lifting of the conventional differential caleulus
into a form called isodifferential calcnuius [7] which is

based on the isotopes dx* — dx* = TF dx, 3
a/ax* — 6'* = It g; = Ik d/x' and on the corre-
sponding isotopic l:ftmg of the operations on them,
eg.,

A= ):a,?
=Y d=9T3 =1L

k k

mzakak-—iﬂ

é; d;,

b o 4

the latter being necessary to map a ring of function
over B with isounit [ into another _xing over

the same isofiled with the same isounit i (e.g., the
definition

dxk = d(TFx') = xTdT} + T} ax’

is incorrect because it would alter the basic unit of
the theory, thus preventing consistent measure-
ments). As the reader can predict, the isodifferen-
tial calculus implies a step-by-step generalization
of classical Hamiltonian mechanics, as well
as of quantization procedures which we cannot
possibly review here {7}. It is nevertheless im-
portant to know that the nonlinear-nonlocal-
non-Hamiltonian interactions studied in this
article for the Cooper pair have their primitive
origin at the Newtonian level.

The next important structure of the new me-
chanics is the lifting of the enveloping associative
algebra ¢ of quantum mechanical operators
A, B,... with the simplest possible associative .
product AB over R and unit I, JA=Al= A,
VA € &, into the enveloping isoassociative algebra £
with the same original operators A, B,... (be-
cause, mathematically, the basis of a vector space
is unchanged under isotopes [7, Vol. 1} and, physi-
cally, the operators A, B,... represent physical
quantities independent from their interactions [7,
Vol, TI]}, but now equipped with the isoassociative
prodiict A X B = ATB over the isofield R for which
[ =T is the correct left and right isounit,

A

EiAXB=ATB, IxA=AaAXxTl
vaef, I

A,
(3.2

The lifting &~ £ implies a step-by-step gener-
alization of all aspects of Lie’s theory into the

Lie-Santilli theory [9-12] with isoalgebra £ char-
acterized by the generalized product

[A}Bléi=A X B~BxA=ATB - BTA, (3.3)
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ISOTOPIC REPRESENTATION OF THE COOPER PAIR

Note in Eq. (3.72) that the isoeigenvalues are
generalized, E = E[ € R, but the measurable num-
bers of the theory are the conventional ones be-
cause of the cancellation E X cft = Ethf: = Eg@. Also,
all isceigenvalues of ischermitian operators are
real [7] as in the conventional case. However, the
same Hermitian operators have different eigenvalues in
quantum and hadronic mechanics, i.c., if Hyr = Ey
in quantum mechanics, H x :[7 = HTII; = E:f: in
hadronic mechanics with E # Eg. The alteration of
the numerical value of the eigenvalue for the same
Hermitian Hamiltonian, Ey, — E, is called isorenor-
malization and plays a crucial role in our model of
the Cooper pair.

Note also that the isoeigenvalue equation H X
o= HTj = ETr,a constitutes an expficit operator re-

alization of the theory of “hidden variables.” We can
therefore say that our model of the Cooper pair is
based on an explicit operator realization of the theory of
lidden variable and a corresponding *’completion” of
quantum mechanics much along the known
Einstein-Podolsky—Rosen arguent.

At the abstract level, all hadronic and quantum
structures coincide (for a positive-definite isounit),
I=f R= R, £= Z, .,?A‘E.&’;, etc. This assures the
axiomatic consistency of hadronic mechanics (see
[7, Vol. 11] for the explicit forms of the nonrelativis-
tic and relativistic axioms). Hadronic mechanics
is, therefore, a mere nonlinear-nonlocal-non-
Hamiltonian renfization of the abstract quantum
axioms. In fact, Planck’s quantum is recovered in
full under isoexpectation values [Eq. (3.9)].

Despite these abstract mathematical similarities,
quantum and hadronic mechanics are physically in-
equivalent. This is established by the fact that afi
aspects of hadronic mechanics can be constructed via a
nonunitary transformation of the corresponding quan-
e aspects s snggested since the original proposal (3],
Consider a nonunitary transform and put ULt =
Ul =7+#1 It is then easy to see that the quan-
tum unit is lifted into the hadronic isounit, [ =

" UIUY,; the associative product in £ is lifted into the
isoassociative form in f,

AB = UABU' = UAUNULY) ' uBU* = AT,

where T has the correct forzn needed for [ to be
the isounit, T = (UUH -1 = I71, and it is correctly
Hermitian, T1 = [(LUUt)-"]t = T; the Lie product
is lifted into the Lie-Santilli product, AB —~ BA —
ATB — BTA; conventional eigenvalue equations are

lifted into their isotopic form

Hy = Egg - UHy=URU QU ™ U= 1))
= UEy = UEUNUUN WY = EfTy = E;

the canonical commutation rules are lifted into
their fundamental isotopic form,

= pr=il > Ulrp — pr)Ut = FTp — 5TF = if:

linear-local-canonical models of quantum me-
chanics are lifted into nonlinear-nonlocal-non-
canonical forms which do verify linearity, locality,
and canonicity in isospaces over isofields; etc, (see
{7, Vol. 11] for all details). This illustrates the neces-
sity for hadronic mechanics of lifting the totality of
the mathematical methods of quantum mechanics.
In fact, the approaching of hadronic models via
old quantum mechanical thinking is particularly
insidious because it leads to a host of inconsisten-
cies which generally remain undetected by re-
searchers not familiar with the new mechanics
(e.g., the conventional magnitude of the total an-
gular momentum |2 = Zy Jy i violates linearity and
it is not conserved for hadronic techanics, [ % 1,1 # 0,
and must be replaced with the isotopic form [? =
Ly Ji X Ji, which does indeed verify isolinearity
and is indeed conserved, []% ],] = 0, k = 1,2,3).
Even though hadronic mechanics is not ex-
pected (or intended) to be unique, other currently
available generalizations of quantum mechanics
are afflicted by rather serious problems of pliysical
consistency [13, 14], For instance, the known q-
and k-deformations alter quantumn products, thus
implying a nonunitary time evolution, while pre-
serving the original unit, the original Hilbert
spaces, and the original fields. As shown by Lopez
[13], these theories are afflicted by the following
physical drawbacks: They do not allow measure-
ments because their basic unit is not preserved
under the time evolution of the theory, I' =
LHU' = [ + I; they do not have observables at all
times because operators which are originally
Hermitian on %, {{¢| H ) = (SIH{H D), do
not remain Hermitian on %' under a nonunitary
time evolution, {C¢| THT) 1) » (HLLAT] i),
HY = T-AT « £ (this property is now known as
Lopez’s lenna [13]); the 7- and k-special functions
are not applicable at all times (because the g- and
k-nimbers are transformed in operalors under
nonunitary time evolutions), thus preventing
meaningful data elaborations, such as partinl wave
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analysis of the scattering amplitude and other
drawbacks.

The above problematic aspects are all resolved
by hadronic mechanics. As a necessary condition
for a nontrivial departure from quantum mechan-
ics, the time evolution of hadronic mechanics is
indeed nonunitary, but of the isounitary type U =
EM = e O x Ut = Ut x I =1 under
which the basic isounit [ is invariant at all times
P=Uxixtt=Ff (also, [ isocommutes with all
possible operators

[[LAl=FTxA-Axf=A-Aa=o,

thus being conserved despite its nonlinear—
nonlocal~noncanonical functional dependence); the
isoassociative and isolie products are invariant,

U x (A XB—B xA) XUt=A"XB" - B’ X A’

the isoeigenvalues are preserved

ﬁxi{x&:ﬁxHxsj*xL?x./‘;=H'><.f;
=UxExy=FdxixUt
XL?X:,@EEJ!;

the T-isotopic special functions, distributions, and
transforms are applicable at all times becanse the
numerical value of T, let alone its operator structure, is
preserved at all times; etc, (see [7, Vol. 11} for com-
prehensive studies of these basic invariance prop-
erties). It should also be noted that a convention-
ally nonunitary operator Uf can always be identi-
cally decomposed in the form U = UT"2, with
isounitary reformulation WU = 1] x 13,
Conventional nonlinear extensions of quantum
mechanics (i.e., those based on the eigenvalue
equation H(t, r, p, y )y = E¢y) have additional
problematic aspects also of pliysical character. In
fact, they generally represent Open-nonconservi-
tive systems with consequential nonunitary time
evolutions. But they are defined on a conventional
Hilbert space. Thus, they are afflicted by the same
drawbacks of g- and k-deformations. Even when
H(t, r, p, ) is Hermitian, there is the loss of the
superposilion principle which prevents quantita-
tive studies of composite systems (such as the
Cooper pair) with the consistency on axiomatic
grounds necessary to warrant experimental verifi-
cations (see [7, Vol. II] for details). Hadronic me-
chanics resolved the latter problematic aspects,
too, by representing all nonlinear terms in the

isounijt with achievement of isolinearity. In partic-
ular, hadronic mechanics permits the identical iso-
topic reformulation of conventional nonlinear
models

H(t, r, p, )= Hy(t, v, pIT(p,.. )y
= Hyy = Eyr

with a consequential, simple, unique, and effective
form of the superposition principle (see {7, Vol. I1]
for details). This implies an axiomatically consist-
ent form for quantitative studies of composite
systems.

Numerous, additional problematic aspects of
other formulations have been studied in [14] and
are not reviewed here for brevity. These problem-.-
atic aspects illustrate the reason for the selection of
hadronic mechanics for this study.

4. Nonrelativistic Formulailon

Once the rudiments of hadronic mechanics are
known, the understanding of the Animalu-Santilli
model of the Cooper pair (e7, £7),; is straightfor-
ward [3, 4]. Consider an electron with charge —e,
spin up, and wave function ¥, in the field of
another electron with the same charge, spin down,
and wave function y considered as exfernal.
Its Schrddinger equation is given by the familiar
expression '

2

1 PR -
HC‘ou].'tb(r: r)= {'2_,”' pyp + ‘;’}lﬁ'r(f, r)

Eﬂ‘!’g (t; r)f
~iagp (4, 1), (4.1)

I

Pk'l’; (’: r)

where m is the electron rest mass. The above
equation and related wave function 4, (4, r) repre-
sent repulsion, as is well known, We are interested
in the physical reality in which there is attraction
represented by a new wave function, here denoted
i (Lor)

By recalling that quantum mechanical Coulomb
interactions are invariant under unitary trans-
forms, the map ¢, — §, is representable by a
transform ¢ = Uy which is necessarily nonunitary,
UUY = UNW =1+ 1, where T has to be doter-
mined (see below). This activates ab initio the
applicability of hadronic mechanics. The first step
of the proposed model is therefore that of trans-
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forming system (4.1 in . into a new system in
$, = Uy, where U is nonunitary:

UHe,, UTUUD Uy (¢t r)
= HCou].T'baT (¢, 1)
1 e* ) .
= {-i;;s,;rﬁ* * = r}mt(f, r)
= Ed,(t.7),
BT (6 1) = ~iff 0,5, (1, 1), (4.2)

However, system (4.2) is incomplete because it
misses the interaction with the Cu®* ion repre-
sented by the familiar term —ze%/r [1, 2]. The
latter are not transformed (i, they are conven-
tionally quantum mechanical) and’ therefore they
should be merely added to the transformed Egs.
(4.2). The formal equations of the proposed model
(e3, €7y are therefore given by

Py A i Wy )

2m PP T2 T (L

L et e .

=Ef (t,r)
BTy (4, r) = —ifl . (L), (4.3)

To achieve a form of the model confrontable
with experimenta} data, we need an explicit ex-
pression of the isounit [ Among various possibili-
ties, we select here the simplest possible isounit for
the problem at hand, first identified in [4] and
today called Animalu’s isounit {7), which we write
in this article in the form

F=e=d 100, /8, o 1 - (!;’;T i J’: >‘rl’¥/‘-’;1 e
T=ethildidsé, o1 4 by G Wy S +
(4.4)
under which Eqs. (4.3) can be written
L et .
mpk’rp Tl}'JT ~{z— ])'r— v,

2

2 S By 1B /8,)8, r)} - .
(4.5)

Now, it is well known from quantum mechanics
that the radial part of Y, in the ground state
{[L = 0) behaves as P.(r) = Ae”"/® where A is
(approximately) constant and R is the coherence
length of the pair. The radial solution for i, also
in the ground state is known from Egs. (5.1.21) [3,
p- 8371 to behave as Y (r) = B — e /Ry sy,
where B is also approximately a constant. The last
term in the Lh.s. of Eq. (4.5) therefore behaves like
a Hulten potential Vye "/R /(1 — g=7/F), V, =
e? (i, 1 4fr, ). After substituting the expression for
the isomomentum, the radial isoschridinger equa-
tion can be written

{-—I—rz—d—rz—d— “(z—l)fi
2@ dr o dr r
et/R . '
-V ]_:_‘e._,}"ﬁ}!}"y(f) =Ey.(r), (4.6)

where 7t is the isorenormalized mass (see next
section). The solution of the above equation is
known from [3, Sect. 5.1]. The Hulten potential
behaves at small distances like the Coulomb
potential,

VHul!en = Voe-r/R/(l - E—F/R) = VQR/?'.
At distances smaller than the coherent length of

the pair, Eq. (4.6} can therefore be effectively re-
duced to the form

{ 1 .d .4 e”’/R}

dr’ dr V1SR

I
X g, (r) = Ef, (), (4.7)
where V= VyR + (z - 1)e? with general solu-

tion, boundary condition, and related spectrum [3,
pp. 837-838]

ll;,(r) = FiRa+1+n,1-a,2a+ 1,e 7Ry

X w2 R(] — g=r /Ry gy, (4.8a)
a=(B*~n¥)/2n>0,
B* = MVRI/H2 > 2, (4.8b)
7 [ MVR? 1 ?
ST G
n=1,2,3,..., (4.80)

where we have reinstated # for clarity.
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Santilli [3] identified the numerical solution of
Egs. (4.8) for the hadronic model #° = (e, eDdum
(in which there is evidently no contribution from
the cuprite ions to the constant V), by introducing
the parameters k, = A,/2#Re, and k, = MVRY/4,
where ¢, is the speed of light in vacuum, for
which V = 2k k}#ic, /R and the total energy of the
state (e7,e}),y becomes in the ground state
(which occurs for n = 1 for the Hulten potential)

Ergr, e = 2k3[1 = (ky — 1 /4] ficy/R
= 2k, (1 — €*Yhe,/R. (4.9)

The use of the total energy of the 7° (135 MeV), its
charge radius (R = 107" cm), and its meanlife
(r = 107'%5), then yields the values 3, Egs. (5.1.33),
p. 840]

ky =034, e=427 X102,

ky =1+ 854 %1072 > 1, 4.10)

Animalu [4, 5] identified the solution of Eqs.
(4.8) for the Cooper pair by introducing the param-
eters k; = e R/fhcy and k, = KR/¢;, where € is
the iso-Fermi energy of the electron (that for
hadronic mechanics).

The total energy of the Cooper pair in the ground
state is then given by

Erul,Cooperpnir = Zkl[1 - (kz - 1)2/4] flCO/R
~ szC‘/,ﬂD" (4.11)

where 8, is the Debye temperature.

Several numerical examples were considered in
[5]. The use of experimental data for aluminum
(0 = 428 K, € = 11.6 eV, T, = 118 K) yields the
values

Ky =16X1070 <1, (4.12)

For the case of YBa,Cu,y0;.,, the model yields [5)
ky=1327"2x 107, k,=1.0z"2>1,
(4.13)

where the effective valence z = 2(7 — X1}/3 varies
from a minimum of z =466 for YBa,Cu,0, 44
(T, =91 K) to a maximum of z =433 for
YBa,Cu;0,5 (T, = 20 K). The general expression
predicted by hadronic mechanics for YBa,Cu,04

is given by [5, Eq. (5.15), p. 373)

T.=3673 Xz X ¢ 136/2, (4.19)

and it is in remarkable agreement with experimen-
tal data (see Figures 1-3),

A few comments are now in order: The above
model of the Cooper pair is indeed nonlinear,
nonlocql, and nonpotential. In fact, the nonlinear-
ity in ¢, is expressed by the presence of such a
quantity in Eqgs. (4.5). The nonlocality is expressed
by the term (i, | 431) representing the overlap-
ping of the wavepackets of the electrons, and the
nonpotentiality is expressed by the presence of
interactions, those characterized by the isounit
(4.4a), which are outside the representational capa-
bilities of the Hamiltonian H. This illustrates the
necessity of using hadronic mechanics or other sim-
ilar non-Hamiltonian theories (provided that they
are physically consistent), because of the strictly
linear-local—potential character of quantum me-
chanics. Note that whenever the wave-overlapping
is no longer appreciable, i.e., for (g, | ¥,)=0,
[=1,and quantum mechanics is recovered identi-

ldu2, au1)
ld-\l.ltll (de3, av01) tde2,e= )
vitfe tast, e |
\

400 400
x £
X U‘
“" 300 300t
Lt
« &
3 pov
- -
< <
x o
Y 200 200 ¥
= =
L) w
(= -

100 160

(v}

FIGURE 1. A reproduction of Figure 10 of [4] Mustrating
the remarkable agreement between the predicted
dependence of T_ from the effective valence z of ions
{continuous curve) and the experimental values on the

"jellium temperature” for various compounds {solid
dots),
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Table 1. YB:;Cu;_,Mn,O,

(Afier N.L. Saini &1 at,
x

¥y

z

. InL. 3. Mod. Phys. BE, 3515 (1992)

ISOTOPIC REPRESENTATION OF THE COOPER PAIR

T. (theory) T: (expl)
0.60 6.92 4.613 88.9 91
0.03 6.88 4.541 83.5 86.6
0.09 6.87 4.447 767 79.0
0.1s 6.91 4.387 12.6 75.0
0.21 6.92 4.312 67.6 720
0.30 6.95 4.212 61.3 67.0

Note: T, (theory) = 367. 3zexp(~13.6/2), where the effect of replacing Cug by
Cuy.;Mn, is obtalned by replacing 3 by {3~ x)+2x =3+ x, which lowers the
effective valence (2) on Cu™ fons 1o 2 =2y/3+ x).
Teble 2. GdBay(Cv)_;Ni, ,0p_5
(Aher, Chin Lin &1 al,, Phys. Rev. B42, 2554 (1920))

X

y=7-8

2

T (heory) T, (expl)
0.000 6.96 4.640 91.0 91
0.025 6.96 4,527 824 79
0.050 6.96 4449 4.8 71
0.075 6.96 4.3.16 §71.9 65
Note: T.(theory)= 367.32exp(~13.6/1), 1 = 2y/3(1 + x} a5 discussed in Table 1.

Tabte 3. GdBI](C\li_,ﬂ\, )301.5 -

(After, Chin Lin e al.. Phys. Rev. B42, 2554 {1990}

* ym=1-8 : I; Gheoly) T (expr)
0.000 6.96 4.640 91.0 o1
0.025 6.96 4.30% 67.4 54
0.050 6,96 4.00% 49.0 37
0.078 6.96 3.7317 36.1 35

FIGURE 2. A reproduction of the tables of {5, p. 379),
iflustrating the agreement between the predictions of the
model with experimental data from other profiles,

cally as a particular case, although without attrac-
tion.

The mechanism of the creation of the attraction
among the idenfical electrons of the pair via the
intermediate action of Cuprate ions is a general
law of hadronic mechanics according to which
nonlinear-nonlocal~non-Hamiltonian inferactions due
to wave-overlappings at short distances are ahways ai-
tractive in singlet couplings and such o absorb Conlomb
internctions, resulling in total attractive interactions
irrespective of whether the Coulomb contribution is
attractive (as in the modei of [3] for the =°) or
repulsive (as in the model of [4] for the Cooper pair).
As noted earlier, the Hulten potential is known to
behave as the Coulomb one at small distances and
therefore absorbs the latter within the coherent
length of the Cooper pair. But the Hulten interac-
tion is stronger than is the Coulomb one within the
same coherent length. This results in the overall
attraction. The similarities between the model for
the #° and that for the Cooper pair are remarkable,
The applicability of the same model for other as-
pects should then be expected, such as for a deeper
understanding of the valence, and will be studjed
elsewhere,

Another main feature of the model is character-
ized also by a general law of hadronic mechanics,

Expt, I
90 = » YBop CugyMng Oy -

8 6d Bay(Cuyy Nigdy 0y, 5

]

e GdBozlCu,  Zn, 13 07,4

Theory ___ ofx N

Te {*K)

0P

30
3

— 5

FIGURE 3. A reproduction of Fig. 5 of [5, p. 380],
showing the agreement between the predictions of Eq.
{4.14) for the doped 1:2:3 cuprates and the
experimental data,

that bound state of particles due to wave-overlappings
at short distances in singlet states stppress the atomic
spectriim of energy dotwn to only one possible level, The
Hulten potential is known to admit a Jfinite num-
ber of energy levels. Santilli’s [3] solution for the
7° shows the suppression of the energy spectrum
of the positronium down to only one energy level,
135 MeV of the =° for k; > 1. Animalu’s [4, 5]
solutions for the Cooper pair also reduce the same
finite spectrum down to only one admissible level,
that of the Cooper pair. Excited states are indeed
admitted, but they imply large distances R for
which nonlinear-nonlocal-non-Hamiltonian inter-
actions are ignorable, This implies that all excited
states are fully quantum mechanical, i.e., they do
not represent the #° (the Cooper pair), but the
ordinary positronium (repulsive Coulomb interac-
tions among the two identical electrons). Alterna-
tively, we can say that, in addition to the conven-
tional, quantum mechanical, Coulomb interactions
among two electrons, there is only one additional
system of hadronic type with only one energy
level per each couple of particles, one for «° =
(e1, ey and the other for the Cooper pair =
(e7, e7)pm.
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The case of possible triplet couplings also
follows a general law of hadronic mechanics.
While singlets and tr:plets are equally admitted
in quantum mechanics (read, coupling of particles
under their pointlike approximation), this is no
longer the case for hadronic mechanics (read, cou-
plings of particles when represented as being ex-
tended and at mutual distances smaller than their
wavepackets /wavelengths), In fact, alf triplet coy-
plings of particles under nonlinear~nonlocal-non-
Hamiltonian interactions are highly unstable, the only
stable states being the singlets, This law was first
derived in [3] via the “'gear model,” ie., the illus-
tration via gears which experience a known highly
repulsive force in triplet couplings, while they can
be coupled in a stable way in singlets. The possi-
bility of applying the model to a deeper under-
standing of Pauli’s exclusion principle is then con-
sequential and will be studied in a subsequent
article,

The connection between the proposed maodel
and the conventional theory of the Cooper pair [1,
2] is intriguing, as studied in [5]. The constant in
the Hulten potential can be written Vo = fw,
where w is precisely the (average) phonon fre-
quency. Expression (4.11) can then be rewritten

Eiot =26 — E = 2k ke, /R(eV/NY — 7y,

where NV is the (dimensionless) electron—phonon
coupling constant. The main results of our model
can therefore be reformulated in terms of the
electron-phonon interactions, as expected because
the latter too represents available data [1, 2]. The
resolution of which of the two models is preferable
is therefore deferred to specific tests (see next
section) as well as to the mode! with the more
effective predictive capacity,

3. Relalivistic Formulation and
Experimental Verification

The proposed model of the Cooper pair see its
true formulation at the relativistic level because it
provides a geometrization of the Cooper pair, better
possibilities for novel predictions, and the best
possible experimental tests. These profiles require
a technical knowledge of relativistic hadronic me-
chanics which we cannot possibly outline here (see
[7, Vol. 1. We must therefore limit ourselves to
an indication of the main lines. The first study of

the Cooper pair via relativistic hadronic mechanics
was conducted by Animalu [5).

The central mechanism of the Animalu-Santilli
model of the Cooper pair is a new type of renormal-
ization of the intrinsic characteristics of particles caused
by nonlinear-nonlocal-non-Hamiltonian interactions,
called isorenormalization. In essence, all interactions
are known to imply renormalizations of the char-
acteristics of particles. The renormalizations due to
particle exchanges are known to be insufficient
(when used alone without the cuprite action) to
achieve an interpretation of the Cooper pair. But
these interactions are strictly of potential-
Lagrangian type. The point here conveyed is that
the renormalization due to nonpotential interac-
tions (isorenormalizations) do indeed permit’ a
quantitative representation of the Cooper pair. '

The notion of isorenormalization requires a
knowledge of the generalization of the Minkowski
space which is applicable under nonlinear—
nonlocal-non-Hamiltonian interactions and a
knowledge of its universal symmetry.,

Let M(x, n, R) be the conventiona! Minkowski
space, where x =(r, x*), x'=cyt, and 5=
diag.(1,1,1, —1) is the Minkowski metric over the
real R. It is evident that M is inapplicable for a
relativistic treatment of the proposed model be-
cause of its strict local-differential character, while
the interactions here studied are nonlocal-integral.
Moreover, the Minkowski space can geometrize
only the homogeneity and isotropy of empty space,
while the interior region of the Cooper pair is.
manifestly inhomogeneous and anisotropic.

Many different deformations—generalizations of
the Minkowski space can be considered. That se-
lected by these authors is the so-called jso-
ntinkowskian space first introduced by Santilli in
[15] and then studied in detail in various articles
(see the most recent study [16] and the general
presentation in [7, Vol. 11, Chap. 8]) which can be
written for diagonal isounits:

Mx, a0, R):f=Ty, T=T, (510

= (x"T,x' + X2Ty X2 + x3Tyy x°
-2*TyxY) e R. (5.1p)

. The main reasons for the selection of isospace
M over other possibilities is its “isotopic” charac-
ter, ie., the capability of preserving the original
axioms of M. In fact, M is constructed by deform-
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ing the Minkowski metric % — # =Ty, while
jointly deforming the unit by the amount inverse
of the preceding deformation, | —» ['= 71, Geo-
metrically, this implies no axiomatic change and,
thus, M(x, %, R = M(x,n, R). In particular, this
implies the preservation of all axioms of the spe-
cial relativity at the abstract level, although real-
ized in a nonlinear and nonlocal way [15, 16]. By
comparison, other approaches deform the
Minkowski metric, but keep the old unit I, result-
ing in spaces which are no longer isomorphic
to M, thus implying the abandonment of the
Einsteinian axioms in favor of yet unknown ax-
ioms,
By using the realization

N ~ ~ ~ +
I'=1lyx 1, I, =diag(n}, n,nd, n?) (52)

and I representing the factorized nonlinear~

nonlocal terms, the ispseparation in M can be
written

2= (27 2xt + x2nptx?

+x*ndx 1l /nnf,.

We see in this way that nonlinear-nonlocal-non-
polential internctions treated via the isominkowskian
geomelry can represent a locally varying speed of light
€ =cy/ny due lo propagation within a physical
medium, where n; is the familiar index of refraction.
The space components n, emerge from the
Space—time symmetrization (or use of the applica-
ble symmetry, see below) and permit a direct
geometrization (i.e., a geometrization via the met-
ri¢ itself) of inhomogeneous and anisotropic media
inside the Cooper pair. As an example, the
Minkowski space provides a geometrization of
light propagating in empty space, while the
isominkowskian space provides a geometrization
of light propagating within inhomogeneous and
anisotropic media, such as our atmosphere,

The first, and perhaps most basic, isorenormal-
ization can now be seen. In fact, the lifing M - M
implies the corresponding lifting of the mass—
energy equivalence E, = mgf, into the isoprinciple
of mass—energy equivalence E, = mc? = mel/nd 17,
15, 16]. The total energy of the Cooper pair is then
predicted to be given by the expression

~

E=2mci/n® - E, (5.3)

where m is the conventional mass of the electron
and M = my/n} is the isorenornmlized mnss.

The n,’s are called the characteristic quantities of
the medium considered. They are locally varying
when one studies the behavior at one internal
point (e.g., the local speed of light at one point of
our atmosphere), When studying the system as a
whole, the characteristic quantities must be aver-
aged to constant (this is the case when studying
the average speed of light throughout our atmos-
phere which requires an average of the local index
of refraction). When considering the Cooper pair
from the outside, the characteristic quantities must
therefore be averaged to constants. This allows the
reduction of the isorenormalized mass M to a
constant,

Explicit calculations done by Animalu [5] for
the Cu*" ijon under a space-isotropy, n, = n, =
hy =1, but space-time anisotropy, n # n,, have
identified the following solution: ‘

n"t=1-K/4, n;2=1+3K/4,
K= (1)), (5.4)

which recover the conventional Minkowski space
for null wave-overlappings, K = 0,

This result permits the identification of the fol-
lowing consequences of the model: First, we have
the isonormalization of the rest energy of the electron of
the Cooper pnir E = mc} - E = me® = mc2(1 +
3K/4), namely, our model predicts that the rest
energy of the electron in the Cooper pair is bigger than
that predicted by relativistic quantum mechanics. The
isorenormalization of the charge will be indicated
below. The models considered in this note are
therefore written a° = (&%, 27),,,, [3] and Cooper
pair = (27, &), [4, 5], with the symbol 2% to
emphasize the fact that the “electrons” are in real-
ity “isoelectrons,” i.e., particles with physical
characteristics different from those of quantum
mechanics.

As a numerical example, for YBa,Cu,O,,,
Animalu [4, 5] found

n = 2,081, n, = 0.550, (5.5)

The isorenormalized rest energy of the electron is
then £, = 0511/42 = 1.824 MeV. Note that the
isorenormalization varies from case to case and
depends on the compound at hand (i.e., it depends
on the nonlinear—nonlocal-nonpotential interac-
tions which vary from case to case). As such,
hadronic mechanics does not appear to introduce
any new constant and actually turns quantum me-
chanical constants in vacuum into local variables
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in interior conditions, e.g., % = const — £ =
A(x, pf,...), ¢ = cost. = ¢ = co/n (x,...), etc.
The above relativistic treatment also permits the
identification of the applicable geometry. In fact, it
emerges that the interior region of the Cooper pair
can be geometrized via the isominkowskinn geometry
of Type 9 [7, Vol. 1], i.e., the most general possible
geometry in which n, <1 and n=(b, +n, +
n3)/3 > n, as in values (5.5). This is not a mere
formality because it possesses rather intriguing
predictive capacities to be studied elsewhere,
Note that the emerging geometry has the most
general possible isometric # with a nonlinear and
nonlocal dependence on the wavefunction, 3 =
Tn = ilx, x, ¢, 8, .. .). However, such geometry
is not curved because M = M, but isoflat, verifying
the axioms of flatness in isospace (for detailed

geometrical studies, see [7, Vols. 1 and H)). The

isominkowskian geometrization of the different
type 5 (with n < n,, n, > 1, see [7, Vol. I1, p. 386])
permits the representation of ordinary conductors.
This offers a geometric representation of the transi-
tion from conductors to superconductors. The open
issue studied elsewhere is the identification of the
predictions of the new geometry in superconduc-
tivity.

Finally, the isominkowskian geometrization
permits the identification of specific experiments
for the test of the proposed model. In fact, the
isominkowskian geometry of Type 9 predicts that light
exits the system " isoblueshifted,” i.e., with a frequency
bigger than that predicted by relativistic quantun me-
chanics due to the absorption of energy from the medium
itself. Explicitly, the conventional Doppler shift

is given by the familiar rule for null angle of
aberration

w= w1 -v/c,)/Q1 - v*/c} 2
=w){1 - B+ 382+ ), B=v/c, (5.6)

But ¢, is the speed of light in vacimt. As such, the
above law is inapplicable within physical media.

The issue is the identification of the generaliza-
tion which is appropriate for physical media. In
this respect, note that the replacement of ¢, with ¢
in Eq. (5.6) would be contradicted by experimental
evidence. In fact, light propagaling within homo-
geneous and isotropic media such as water experi-
ence a decrease of speed ¢ < ¢, but no frequency
shift, contrary to the prediction of redshift by re-
placing ¢, with ¢ < ¢, in Eq. (5.6).

The resoluticn of this and other inconsistencies
is provided by the isominkowskian geometry

which predicts (uniquely and unambiguously) the
following isodoppler law first identified by Santilli

[7, 14, 16], here also expressed for null angle of
aberration:

@ = wy(l —vn,/eyn) /(1 ~ v2nd/cin?)/?
wy(1 = Blny/n) + B2 (n?/n?) + ). (5.7)

For homogeneous and isotropic media such as
water, 1 = n, > 1, and the isominkowskian geom-
etry correctly represents the lack of frequency shift
in water. However, for n # n,, the isominkowskian
geometry predicts an isoredshift (i.e., loss of energy
to the medium) for # > n, and isoblueshift (i.e., the
acquisition of energy from the medium) for n < n,.
The isominkowskian medium for the Cooper pair
is of Type 9, thus implying an isoblueshift.

The Animalu-Santilli model can therefore be
tested by verifying whether or not light emitted
from the Cooper pair is indeed isoblueshifted. This
can be done in a variety of ways, eg., via the
scattering of positrons on a compound including
the pair, their annihilation with one of the elec-
trons of the pair, and the measure of the frequency
of the emitted gammas. Similar independent ex-
periments should be conceived and conducted to
test the electron-phonon interactions in a way
independent from superconductivity,

In closing, we would like to indicate that all
aspects of the model here submitted can be de-
rived from the universal symmetry of the
isominkowskian geometry, the isotopies P(3,1) of
the Poincaré symmetry P(3.1), also called iso-
poincaré symmelry, first proposed by Santilli in [15]
and then studied in various articles (see, the latest
study [16] or the comprehensive presentation {7,
Vol. IID). In essence, P(3.1) is the conventional
symmetry although constructed with respect to the
most general possible isounit I yielding the uni-
versal symmetry of isoseparation (5.2).

According to our model, the electrons &~ in the
Cooper pair are not conventional particles because
they are not characterized by the Poincaré symme-
try on M over R. Instead, they are isoparticles, i.e.,
particles characterized by the isopoincaré symme-
try P(3.1) on M over R. The reader not familiar
with isotopies should be aware that the transition
from particles to isoparticles is more general than
that from particles to quasi-particles [1, 2]. This
can be seen from the fact indicated earlier that the
lifting I — I necessarily requires nounitary trans-
forms. Particles and isoparticles are therefore re-
lated by nonunitary transforms.
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It is a truism to say that all aspects of the
nonlinear-nonlocal-nonpotential model of the
Cooper pair are derivable from the isopoincaré
symmetry P(3.1). We regret the inability to study
in detail this property at this time. We merely
indicate the isorenormalization of the charge et —
with the possible realization

em = = e (1= KGhy 140,072, /4,

=e (1= (dy L rem /Ry - e /R)). (5.8)
This turns the Coulomb interactions into the com-
bination of Coulomb and Hulten interactions,
e"e roEe /r :
=e e /r—= Ve R/ —e7/R), (5.9)

which results in attraction irrespective of the
Coulomb contribution. The reduction of the
proposed model of the Cooper pair to the primi-

tive universal symmetry P(3.1) of M is then
consequential.
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