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1. Statement of the Problem

A fundamental, still unresolved problem of nuclear physics is the old hypothesis that protons and
neutrons experience an alteration of their inwrinsic magnetic inoments when they are members of a
nuclear structure (see, e.g., {1], p.31). The hypothesis emerged rather naturally from experimental data
on total nuclear magnetic moments, with particular reference to the few-body case which are known not
to be interpretable via conventional quantum mechanical (QM) magnetic moments,

The physical basis of the hypothesis is so simiple to appear trivial. Protons and neutrons are not
point-like particles, but have an extended charge distribution with a radius of =~ 1 fin. Since perfectly
rigid bodies do not exist in the physical reality, we have to expect the possibility that these charge
distributions can be deformed under sufficiently intense external forces (and/or collisions). In wra, since
nucleons are spinning particles, ordinary Maxwell’s electrodynamics implies that a possible defonmation
of their charge distribution necessarily implies an alteration of their intrinsic magnetic moments.

The hypothesis here considered is therefore reducible to the possible deformation of the charge
distributions of nucleons due to the notoriously intense fields of the nuclear structure.

This effect is well established in classical, atomic and nuclear physics. However, at the deeper
level of the individual nucleons, or hadrons at large, the effect has been only preliminasily confinmed by
H.Rauch and his collaborators (see reviews [2] and quoted references) in a series of interferomelric

experiments on the 4x symmelry of ncutrons. The best available measure for the angle of two spin-flips
is given by

0=T71587"1£3.8", Opp =719:677, 8, =712.07°, (L1

which does not contain the value 720° needed for the perfect rigidity of the neutron. Nevertheless, the

deviation, which is of the order of 1%, is smalier than the error and, therefore, measure must be re-run
to acquire a final character (Sect.3),

Despite that, measures (1.1) are indeed plausible {3—S5]. In fuct, the experimenters filled up the
electromagnetic gap with Mu-metal sheets to avoid stray fields., As a result, the neutron bean is under
the action not only of the long range magnetic field causing the spin-flips, but also of short range,
intense nuclear fields. Studies [3—5] therefore show that the intense electric and magnetic fields of the
Mu-inetal nuclei can cause an (average) 1% deformation of the charge distribution of the neutrons, with
consequential small alteration of their intrinsic magnetic moment which, in turn, implies an angle of
spin-flip different than the value 720" predicted by conveantional theories.
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Within the context of (relativistic) hwdronic mechanics (1IM), originally submitted in 16} (see
{7—9)), in this note we shall introduce the isotopics of Dirac's cyuation called isodirac equation,
construct its isotopic SL(2.C)xT(3.1)-invariance, and prove its local isomorphism to the conventional
symmetry,

We shall then show that the isodirac’s equation permits the dircct representation of: 1) nonsphe-
rical shapes of charge distributions: 2) their infinitely possible deformations; and 3) the conseguential
alteration of intrinsic magnetic moments.

The theory is applied, first, to a quantitative representation of Rauch’s measurcs (1.1) and, second,
to a resolution of the magnetic moments of the deuteron and of few-body nuclei.

The reader should be aware that the above isolopic ncthods provide an axiomatization of the
so-called g-deformation for the more general case of Q operators [10].

It should be finally stressed that our study of the Maxwellian deformation of shapefalteration of
the magnetic momeat is of exterior-geometric claracter, i.e., independent of the constituents. It is
evident that such a study must be complemented with corresponding studies of interior-structural char-
acter, which are already under way via the polarizability of quark orbits and other techniques.

2. Isutopies of Dirac’s Equation

HM has been constructed as a step-by-siep generalization of QM via new mathematical methods
called isotopies. They essentially permit the achievememt of nonlinear-nonlocal-noncanonical gene-
ralizations of any given linear-local-canonical structure, but in such a way to preserve the original
axioms. In this sense, the isotopies are axiom-preserving maps. It then follows that HM and QM
coincide, by construction, at the abstract, realization-frec level.

The fundamental isotopy is that of Planck's constant & =1 which is mapped into the most general
possible nonlinear integro-differential operator I(t,x,x, X, ¥, 0y, 00y, ...) under the condition of
preserving the original axioms of 4, i.e., boundedness, smoothness, nondegeneracy, Henmmiticity and
positive definiteness. A :

The isotopy of the unit of QM, 1 =/, then imply that of the conventional associative product of
operators AB = A*B, where the new product A*B must preserve the criginal axiom of associativity, i.e.,
(AB)c = A(Bc) = (A*B)*C = A*(B*C). Also, recall that 1 is the unit of the enveloping operaigr algebra
Eof QM, ie, IA=Al=AVAecE, A, second necessary condition for the isotopy §:AB =§: A*B is
that the new product A*B must admit / as the lefi and right unit.

The latter condition is verificd by the realization A*B =AQB, where Q is a fixed invertible ope-
rator such that ?: Q'l, in which case ?*A = Q"QJ{\ =A*? = AQQ"'EA VAe E Under these properties,
the operator @ is called the isofopic element and I the isounit,

The characterization of system in HM therelore requites swo operators, the conventional Hamil-
tonian H =&+ V (or Lagrangian) which represent all action-at-a-distance, potential interactions, and the
isotopic operator @ which represents all contact nonlinear effects (e.g., nonlinear in the derivatives
x, dw, ...), nonlocal interactions (e.g., duec to mutual wave penetration) and other events (e.z., the
deformation of nonspherical charge distributions) which, as such, an beyond the representational
capabilities of the Hamilgonian.

The isotopies I =/ and AB = A*B then imply corresponding isotopies of all structures of QM
into those of HM. For notational conveunience, we here recall:

A\
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1) The isotopies of [u_lnls Fa, b, %) o the fsafields F (u +, *) (mm.dl R or mu.mnplc\c C for this
notg) WIQI' isonimber u—m‘ conventional st +; m:lnpu, product l*m —an-(um)l isononn
7 1= Inlf; and a generalization of afl operations ot conventional numbers {7—9],

2) The isotopic lifting of the conventionat Minkowski space M(v, !1 ) with familiar netric

N =diag.(1, 1, 1, ~1) over the reuls R, into the isominkowskiun spaces M(x, T] R} originally submitted in
(11].

A A A 1 A A -1
M, Ry x=(0, )=, cfh n=an, I1=0, (2.1a)
Q =diag (b}, b3. b3, b b =b 55 55§, .0 >0, (2.1b)
'2\ [ N TR oo A A oM v AA
A== ISR AR oy, Iy, e R, T (2.1¢)

where % is the speed of light in vacunm and the b's ae called he characteristic functions of the
medium considered.

The arbitrary functional dependence (2.1} is uscful for the focal-interior description, e.g., the
motion of an extended particle at a point witliin the fadronic medium |6} in the interior of hadrons. For

the case under study in this paper, which is the globul-exterior description of a hadron, the c,h.imctensuo
functions can be effectively averaged into constants b |[7—9].

In the latter case, the quantity b;" is a numcn(.a.l characteristic of the hadron considered, which

generally varies from hadron to hadron (because of the variation of their density with mass), and
geometrizes the medium considered essentially along an isotopy of the conventional index of refraction

. . . . . . . 2, .
(when the medium considered is water, b4' = I/n*, where n* is the index of refraction and 12=x n

(12)).
The space components b," permit the desived direct representation of the generally nonspherical

shapes of hadrons, as well as of their deformations. For applications of the isominkowskian geometry
(2.1) and its verification with available experimental data, one may consult: refs, [7] on the nonlocal-
isotopic treattnent of the Bose-Einsicin correlation and its verification [13] via the UA1 experiment; refs.
[14] on the isominkowskian represcatation of available (anomalous and nonanemalous) experimental
data on the behavior of the meanlife of unstable hadrons with speed; and others [9].

The isotopic character {as well as novully) of the Lcncraiization is esmblishcd by the fact that,

under the ;amt hftmg of the metric 1 = n + On and of the field R =:R I Q , all infinitely possible
isospaces M(.r. n. R) are locally lsomorph;c to the original space M(x, 11, R) under the sole condition of
positive-definiteness of the isounit l [11}. Such a local isomorphisin then sets the foundation for the
expected isomorphism of the corresponding symmetries. Note that separation (2.1c) is the most general
possible nonlinear, nonlocal and noncanouical generalization of the original scparation Xy under the
condition of preserving the original topology, i.e., sig. 1 = sig. ﬁ =+ -+~

3), The preceding isotopies then imply those of Hilbert spaces (b Ye C into the isohilbert
spaces .'JL(Q with isoinner product and isenormalization

W=l (2.2)
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under which operators that are originally Hermitean (vbservable) for QM remain Hermitean {observable)
for HM |7—9].

4) The liftings of the Hilbert space llu.n require LL)IIL‘-[)OII([III!._. lsoloplu of all conventional ope-
ra ‘

rauons [7——9] We here mention  isounitarity U*U U *U I the isocigenvalue equations
H*I\p) HQll{J) E*Iq;) EW), E#E"; ele.

5) The lifting of the unit, base field and carricr space then require, for mathematical consistency,
the lifting of the entire stucture of Lie’s theory, that is, the isotopies of enveloping associative algebras
E, Lie algebras L, Lie groups G yTepresentation theory, etc. [7—9]. Here we mention 1hc isoassociative
enveloping operator algebras E_,Q A*B = AQB, 3 = fixed; the Lie-isotopic algebras L with basic

product

Ly: A 8] =14 "By = At - BA = AQB — BOA: 2.3)
"
_ . o . ) A AN
the {connected) Lie-isotopic yroups G 0 ol isolinear isounitary transforms on M Q(.\'. 1, k)

A A A e
& = Uyt = UQx = UQ(, 3 5.y, 40, (2.40)

Do) = c:;:‘” - {e::Q“’ N (2.4b)

We are now eyuipped to study the desired isotopies of the Dirac equation. ‘They were first sub-
mitted in [6], Sect. 4.20, via the addition of variationally nonsetfadjoint (nonlagrangian) interactions to
represent deep mutual overlapping of wavepackets/charge distributions of hadrons which, as such, are
expected to be dependent on the velocitics, Nonlagrangian couplings then imply an alteration of the
gamma-matrices whicl, in tum, provides the desired alteration of the magnetic moment called mutation.
Subsequent isotopies of Dirac equation have been studied in [15], although with conventional ganmma
matrices.

Via the isolinearization of the second-order isoinvariant [9], in this note we submit the following
isodirac equation for the case 9b/0x =0 (or for b (x, X, %, 4, 9, 90w, ...} averaged to constants b,")

A A
(?u* pE+ i x Pl = HHE QP+ i) QY =0, m=mleR, 2.5)

. . N .
where the isogamma mutrices ¥  are characterized by

B8 =509, +5,08 =28 1 T=17" 2.6
AR I 0 \a

A k A . 5

=g o b B=a]y [ (2.6b)

I, =diag. (1,1) and Yy O are the conventional fonus.
Eq. (2.5) is based on the covariance wider the isopoincare synunetry (see below) plus the wo-

. . A JAT A ., =2 A . u A .
mentum isoguantization rule Pty = —nfNL (@/dx ) y=—ib A (a/a.ru) y=—i(d/dx ")y, as established by
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I
the fundamental isotopy i = I, the isotopics of the classical Hamilton — Jacobi equations |12} and of
conventional quantization methods [7].
It should be stressed that Ey. (2.5} is one of the simplest possible realizations of the isodirac

cquation and that more complex realizations exist, including an intriguing cases with nondiagonal
isotopic elements [9].

The reader not fumiliar with isotopic technigues should be aware that electromagnelic interactions
can be represented via their embedding in the generalized Lie-tensor (the b-functions) and the use of the
kinetic energy only for Lagrangian or Mamiltonian [12}. Thus, rather than a free particle, Eq. (2.5)
represents a spinor under the most general known combination of linear and nounlinear, local and
nonlocal, as well as Lagrangian and nonlagrangian interactions.

Note also that Eq. (2.5) is nol unitarily equivalent to the conventional equation. In fact, there exist
no unitary transform UUT = UTU =/ such that U?}lUT= pryH?UT= Yy B = 1, 2,3, 4.

From the viewpoint of symumeirics, the lifting of the Dirac info the, isodirac equation implies the
isotopies of the spinorial covering of the Poincare group #(3.1) =SLQ(2.C)><T(3.1) into the isopoincare

Fa A A I A
group 'PQ(3.1)=SLQ(2.C)XTQ(3.I) constructed with respect to the isounit / ==Q_'. Despile the loss of

A
unitary equivalence of the equations, we shall now show thut ¢ (3.1) and TQ(B. 1) are locally isomorphice,

A
In fact, the generators of the isotopic SU(2) symmetry

A | Aoa 1 A

Sk=5£kij '.*yj=5 {a“jb,. bj‘l’,-“fjl I, (2.72)
As 1, -1 A 1, -1h A -1, -1
S, =0,0,°S,, .S‘2=bl 1)3 Sz- S3=bl b, S5, (2.7b)

verify isocomnnutation rules with the conventional structure constants of SU(2),
Al A A A A A g
(5, Sj] = SiQ.Sj - Sijl. = IE‘.ij " (2.8)
. . Fal N
The generators for the isotopic SLQ(Z.C) symmetry

A .

A A A la A |1 A A
T = U Ll Ly =5 5+ % =5 (b, v, L L =L 2.9)
plus the lincar momentum vefiry the isocommutators
gL P = 800 = T T = My g+ T S 10,
Vo Pl ) = i P = 1, PO,
VaP ey =0, 1v=1,234, (2.10)

At A A
which coincide with the isocommutation rules of the isopuicaré symmetry P(3.1) = O(3.1)xT(3.1),
Eqs.(7.42) of [7], and prove the isomorphism at the spinorial level, £(3.1) = slb(ll).

The basic isocasimirs are given by [7]

>

N
V=1, cW=p’=pr=ps*p

v'

(2.11a)
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AN A A A
e T T S 2.11b)
& v u e ip
The isopoincaré group can then be written
A A, igl! t LRAWN
s:q;={nkc|§u]w= e 2 NG (2.12a)
AT L L A i "%“'*hkb_,‘fl'ﬂ A
L:{ ={llkc|:* .]w= I, c {0, (2.12b)
[7 3 T A B T T 4 ﬁi“’
7(1 1): LL’ =¢ =g . (2.12¢)

We now restrict our astention o the plobal-exterior treatment  with  constant b=
= woA AT oA AT . — . R .
= Aver. lbu(x. XX, L, 0y, L)L s easy Lo see that realization (2.7b) imiplics the preservation

. Lo
of the conventional spin E cipenvalues,

S (- X, §;Q§;1 w = (a1« § = @) §,
NN L
Sye§=259 (2.13)

Despite that, the shape of the particle is not the perfect sphere with semiaxes (1, 1, 1), but the
ellipsoids with semiaxes (bl‘z' bz'z. b3'2). Via a simple isotopy of conventional derivation (here omitted

for brevity), the isodirac equation then implies the desired mutation of the intrinsic magnetic moment
which, when printed along the third axis, is given by
b, b’
A A
il =b—3; B, m= b—szm. (2.14)
4 4 :
as first empirically introduced in [6], Eys. (4.20, 16), p.803. This coucludes our study of the isodirac
equation (see (9] for details).
The advances presented in this section are the following. First, we have constructed the most
general known, nonlinear, nonlocal and noncanonical realizglion of the spinorial covering of the
Poincare symmetry, and shown the local isomorphism #(3.1) = Q(3 I) {only realizations of P(3.1) were

previously known [7]).
Second, we have generalized the conventional notion of Dirac spinor under local-differential-

Lagrangian interactions into a particular  class of isospinors with nonlocal-integral-nonlagrangian
interactions isoinvariant under :P (3 1).

Third, among the infinite possible isospinors, we have selected in this note those permitting a
direct representation of nonspherical shapes, their possible deformutions, and the consequential mutation of

the inrinsic magnetic moment, under the condition of preserving conventional value of spin 7
Moreover, all these results are derived in a form directly applicable to g-deformations in @-ope-
rator realization {10].
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These results are important for applications because they conlivom that the mutation of the intrinsic
magnetic moment can be represented as a puiely geometric-exterior event which, in its simplest possible
form, does indeed preserve Pauli’s cxclusion principle [16] and other nuclear laws 9.

3. Applications to Nuclear Physics

In this section we shall show that isodirac equation (2.5) permits novel applications in nuclear
physics, such as a numerical representation of Rauch's interferometric measures (1.1) and a quantitative
resolution of the total magnetic moment of few-body nuclear structures.

3.A. Application to Rauclh’s Measures. Let us recall that experiments [2] essentially test the
familiar transformations

, i5.0.r2 ivyyen
W =R(O])\{;_—_c ¥ y=¢ (B2

3.9
However, measures (I.1) indicate an apparent 1% deviation from law (3.1). In [12], Val. 11, Sect. V1.2,
we provided a nonrelativistic treatment of the problem. In this section we present, apparently for the first
time, a relativistic operator treatment of measures (1.1} via Eq. (2.5).

The basic physical event studied in this note is the deformation of shape of the charge distribution
of nucleons under sufficiently intensc external fields, and the consequential ahteration (called mutation)
of their intrinsic magnetic moments.

We are here evidently referring to an average deformation for all members of the neutron beam
while passing through the electromagnet gap, and definitely not 1o a constant deformation. It is also
evident that, as it occurs in similar events at the classical, atomic and nuctear levels, the original shape
is regained after removal of the intense ficlds. Thus, the neutrons reacquire their original shape and
conventional intrinsic magnetic moment, soon after passing through the electromagnet.

The above deformation of shapemutation of magnetic moments is represented in Eq.(2.5) via the
transition from the perfect sphere /=diag. (I, 1, 1) to the infinitcly-possible ellipsoids
? =0l= diag. (bl'_z, bz'—z. b3"2) with semiaxes bk'-z. This lifting essentially expresses the transition
from the trivial unit I of O(3) to the isounit ? of its isotopic covering 30(3) = O3)[12).

Since the deviation of the mean angle 716° from 720° is small, it is reasonable to assume that it
. A . A . . . .
is proportional to the mutation [ of the magnetic moment of the neutron W, in the intensc fields of the

Mu-metal nuclei
716°7720" =4l 1y . (3.2)

A
Eq.(2.5) characterized the isotopies SU(2) =>SUQ(2), £¢s5.(2.7), with covering isorotations from

Eus.(2.12a)

ib by Y, 802
17
.

P =RE*H=c 2 (3.3)

Moreover, the isorotational symmetry predicts the following connection between the measured
angle and the angle of the exact synuucuy

. .
6,=b"0,8, =720 (3.4)

2 319]=71$'
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namely, the isotopic methods reconstruct the exact rotational symmetry via a mechanism based in the
deformation of the carrier space in such a way to reproduce the angle 720° of the exact synunetry. This
is a rather general occurrence for the isorotational symmetry and it is not reviewed here for brevity (see,
e.g., [12] or {9}, Vol.Il, Chapter i11).

Since the neutron is a spinning particle, it is rather natural to assume that it possesses a cylindrical
symmelry, ic., b"=0,"#b." The shape will then be a prelate (oblate) spheroidal ellipsoid if

-2 =2y 2y =2 2_ a2
b b =b," (by" " <0, =D,

By using as median value 0, =716", Eq.(3.4) yiclds b," =b," = 1.0028. To compute the mutated
magnetic moment from (2.14), we need an independent value of bd'. Its best available value is given by
b4' = 1.653 numerically predicted in ref. [7] for the Bose-Einstein correlation and confirmed in ref. [13]
via the UA1L data from CERN. This valuc can effectively be assumed for the neutron because the terns
b , 15 a geometrization of the density of the particle considered, while the density of the neutron is of
the same order of magnitude as that of the fireball of the p=p annihilation.

Thus, the isodirac equation (2.5) provides a direct interpretation of measures (1.1) via the follo-
wing numerical values of the characieristic b *-quantitics

b= IJZ' = 1.0028, by =1.662, b, =1.653. (3.5)

with mutated magntic moments (ulong the third axis)
|J'n =-193 = ﬁn = uan"b“. =-1.902. (36)

Note the oblate character of the deformed neutrons with semiaxes (0.9944, 0.9944, 0.362) which
represents a decrease of its magnetic moment. In turn, such a decrease is nccessary to represent the
angle slow-down ¢ffect 5], that is, the fact that all average angles have been systematically lower than
720" for ali measures conducted in experiments [2).

‘ Values (3.5) can also be understood from the fact that all unperturbed, spinning charge distri-
butions, thus including the neutron, are not expected to be perfectly spherical, but be precisely of oblate
spheroidal type, as confinned by preliminary studics [17] via HM.

In symmary, the isodirac equation pennits a direct representation of: 1) nonspherical charge dist-
ributions of hadrons via the basic isounit ?: diag. (bl"z. bz"'z. bs'_z. b4‘—2). where bk‘_z represents the

semiaxes and b4'-2 geometrizes the density of the particie; 2) all possible deformations of these shapes

via a dependence of the isounit, e.z., on the intensity £ of the external fields b * = b(E); and 3) the
«angle slow-down effect» because predicting a decrease of the intrinsic magnetic moment for the
physical conditions considered. -

From the viewpoint of the isominkowskian geometry (2.1) a most fundamental aspect is the con-
firmation of the property that data (3.7) churacterize a physical medium in the interior of the neutron of
the highest possible Type 9 [7], p.104, which has been consistently obtained for all hadrons with a
density equal or bigger than that of the kaons [5,7.9].

Needless to say, there is a possibility that the value b 4 = 1.653 needs adjustments for the neutron,

c.g., because of the possible difference in densities with the p-p fireball. These, and other impro-
vements, must be deferred to some fulure time.
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3B. Applications (o Total Nuckear Magnetic Moments. As well known (see, e (HD. total
nuclear magnetic moments are conpred via the familiar expressions
§

WD =g etam ) S gt =5.585, f == 3816, eiizm ¢, =1,

W= gL, fP=1, gP =0, 3.7
In this note we have provided a guantitative treatment of the old hiypothesis (Sect.1) that the
intrinsic magnetic moments of nuclcons are altered (mutated) when these particles are members of a
nuclear structure.
In principle, we have to expect diflferent deformations of the charge distributions of nucleons for
different nuclei, different positions in the same nur.lcus. cu. Our model therefore implics that the total

Lsommkowskmn space is the tensarinl product M kMk.k= 1,2,..., A, with individual isounits

o - B P, - .
! —'Qk =diag, (b, 2, bia 2 b5 b, 77) where the  densities of poand n, and by’ can be
approximately the same for all nucicons.

An isotopy of the conventional QM treatinent (here omitted for brevity, sce 9] for details), then
leads to the following M model of total nuclear magnetic moments here submitted apparently for the
first time

HM A(L) I\(S)
=L (8 Ligt & Sig)
87 =0.605 b ¢ L“. 8 = 060506, b, =1653. (3.8)

It is easy to see that the above model provides a quantitative resolution of the old problem of total
magnetic moments, particularly for few-body nuclear structures. As an illustration, consider the case of
the deutcron, which is a p~n bound state in triplet S-state (L = 0), with a very small mixture from D-
states (L =2), the states with L =1 being unallowed by parity [1]. By ignoring very small corrections,
we have the theoretical and experimental vajues

Thus g,+8,=0.879, T = 0.857 W, =1). (3.9)

Numerous studies of relutivistic, orbital and olher types have bccn conducted, but none of them
. . . - E
has achieved a numerical representation of the deviation Apu=u uu""_oozz in a final form, to
our best knowledge.
The resolution of the above problem is an ideal application of HM, in general, and of the isodirac
equation, in particular. Assume in first (he approximation that the deformations of shape of the proton
and neutron are the same. Application of (3.8) then yields the representation

HM Exp

Hp =0.605b(g,+¢,)=p," =0.857, b, =1611, (3.10)

where the value 4;" is considerably in line with that of data (3.5).

Needless to say, calculations (3.10) have been presented to the capability of the isotopic methods.
More accurate and computerized calculations are forthcoming,
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