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Abstract

In this second paper we study the axiom-preserving, nonlinear, nonlocal
and noncanonical isotopies of the Fourier transforms, here called Fourier-
Santilli isotransforms, which were introduced by R. M. Santilli in a little
known physical publication of 1989, as part of his isotopies of
contemporary mathematical structures recently outlined in this Journal. The
mathematical relevance of the isotransforms is pointed out by showing that
they are based on the new branch of functional analysis, called fincrional
isoanalysis, as presented in the preceding paper, including its
classification into ten mathematically and physically distinct classes.
The Fourier-Santilli isotransforms are studied in only four of these
classes for brevity. The physical relevance is shown by proving that, when
applied to a Gauss distribution, the isotransforms imply a generalization of
Heisenberg’s uncertainties for particles in vacuum Ax Ak # 1, into the
isotopic form proposed by Santilli for particles within physical media Ax
Ak ~ 1, where the isounit 1 geometrizes the inhomogenuity and
anisotropy of physical media. We finally show that the functional
isoanalysis of the preceding paper and the Fourier-Santilli
isotransforms of this paper confirm the isotopic completion of quantum
mechanics essentially along the historical argument by Einstein, Podolsky,
Rosen and others.
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Introduction. The theoretical physicist R. M. Santilli, when at the
Department of Mathematics of Harvard University, discovered [1.2]
certain isotopies of contemporary mathematical structures, including
units, fields, vector spaces, transformation theory, algebras, groups,
geometries, etc., recently outlined for this Journal in memoirs [3,4].

In the preceding paper [5] (hereinafter tacitly assumed as an
integral part of this paper and referred to as I}, the author pointed out
that these isotopic structures imply a genuinely new branch of
functional analysis, submitted under the name of suwctional isoanz/vsis
and classified into ten mathematically and physically significant classes.

In this paper we continue the study of functional isoanalysis, with
particular reference to the isotopies of the Dirac deita function, the
Fourier series and the Fourier transforms, which were introduced in the
little known physical memoir [6] and were not reviewed in ref.s [3,4].

As we shall see, the same isotopic techniques are applicable for the
generalization of other special functions (such as gamma, beta, Legendre
and other functions), as well as of other transforms (such as Laplace,
Hankel, Mellin and other transforms), which are not studied in this paper
for brevity. This indicates that the covering functional isoanalysis
includes isotopic generalizations not only of its main structural
foundations, as outlined in Sect. 1.3, but also of all conventional special
functions and transforms, as emerging from the studies of this paper.

Our primary interest is to identify the structure of the isotopic delta
functions, isotopic Fourier series and isotopic Fourier transforms, and
point out their novel mathematical and physical significance. Full
technical languages and treatments in the necessary details are
deferred to interested mathematicians.

The primary result of this paper is that the application of the
isotopic Fourier transforms to Gauss distribution provides an
independent confirmation of the generalization of Heisenberg's
uncertainties for particles of the exterior problem Ax Ak = 1, into the
isotopic form identified by Santilli [7] for particles of the interior problem
AX Ak = 1, where the isounit 1 geometrizes the inhomogenuity and
anisotropy of the physical medium considered.

Moreover, the isouncertainties approach asymptotically the
classical determinism at the limit of gravitational collapse into a
singularity [10]. Thus, functional isoanalysis at large, and isotopic
uncertainties in particular, confirm the existence of the isotopic
completion of quantum mechanics [6-11] much along the historical
argument of Einstein, Podolsky, Rosen [12] and others.
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2: Dirac-Santilli isodelta functions. As well known (see, e.g,
ref. [13] and quoted bibliography), the conventional Jirac deliz JTunction
is not a function, but a distribution representing a rather delicate limit
procedure in a conventional functional space, such as the Hilbert space
3¢, with a mathematically well defined meaning only when it appears
under an integral.

When the singularity is at the point X = 0, the §-function can be
defined in terms of a well behaved function f{x) on a one-dimensional
space S(,®) over the reals # by [loc. cit]

[ 0 860 ax = 10), [ swox =1 1)

-0

This essentially means that §{x) = 0 everywhere except at X = 0 where it
is singular. Nevertheless, what is mathematically and physically
significant is the behaviour near that point, which permits explicit
realization, such as the familiar integral form

860 = (1 / 2m) f_o:w ey, 2.2)

If the singularity is at a point X # 0, then we can write [loc. cit]

fx) = _f _c: oc'r(x') st - %) dx° . {2.3)

Finally, the §-function verifies the basic properties

+ 00

s = sx) L sx-x) = [ dzsk-7s-x). (2.4)

The delta function is evidently inapplicable when dealing with
functional isospaces, such as the isohilbert spaces # (Sect. 1.3). In
particular, exponentials of the type appearing in the integrand of Eq.
{2.2) are no longer defined in isospaces, and must be replaced by the
isoexponentials of type {1.2.29).

These occurrences, known to Santilli since the late 70's, rendered
mandatory the studied of the isotopies of the delta function. The origin
of these isotopies can therefore be traced back to the isotopies of the
Poincaré-Birkhoff-Witt theorem of ref. [1] of 1978 (see Theorem 2.1, p. 295
of paper I) which play a fundamental role in their very definition; they
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were studied in a number of contributions quoted in paper I; they
received a first formal treatment in ref. [14] of 1982; they were subjected
to a systematic study intef. [6] of 1989; and then used for a number of
physical applications in the recent ref.s [8,9].

In particular, six mathematically and physically distinguishable
isotopies of the Dirac delta function were identified in ref. [6], and are
now called Dirac-Santilli isodelta runctions (see, e.g., ref. [11]). Their
outline is recommendable as an application of functional isoanalysis, and
as a pre-requisite for the isotopies of the Fourier transforms studied in
the subsequent sections.

ansider a one-dimensional isospace of Class IA {Sect. 1.2C), denoted
8§14} with (conventional) real coordinates x over the isofield of real
numbers #{n,+% with conventional elements n and sum +, but isotopic
multiplication ngny:= nyTny, where T is the isotopic element and 1 =
T L s the multiplicative isounit of Class I

Let f(x} be an ordinary function defined on 8;,x#} which verifies
the conditions of strong isocontinuity of Sect. 1.3 in all possible
subintervals of [-oo+c0]. Recall that the isotopic element T of Class | is a
strongly isocontinuous, bounded, real valued, and positive-definite
function of the coordinate X as well as its derivatives with respect to an

independent variable of arbitrary order and any other needed quantity,
T =T %, %,..).

Then, the rac-Santilli isodefta runction or the rirst kind , denoted
8¢, can be defined in terms of the expression

[t = 0 ox = 10) (2.5)

from which we obtain for f =1

[ mens ) o0 ax = 1. 2.6)

The isotopic image of {2.3) is then given by

(= T« s - %) ox @7

o<}

namely, it is not possible any longer to map the dependence on X to the



-323 ~

dependence at X/, but rather the dependence on Tx to Tx'. This confirms
the very peculiar nonlocality of the topology underlying Santilli's
isotopies discussed in paper 1 i

In fact, the isotopic element T can have an integral dependence on
the interval x € [a, b] centered at x. In this case the singularity of the
Dirac § at x can be spread over the interval {a, b} by the Dirac-Santilli
8-function for a suitable selection of T.

In several cases of physical interest, T can be assumed as having an
explicit dependence only on the variables %, X, ., T = T, %, ..), with
consequential identity Tdx = ¢(Tx). In this case, the projection of the &1
function into the original functional space S(x®) implies the equivalence

It is easy to see that, under the above assumption of T being
independent from x, the §;-function admits the integral representation

tel

e 4y (29)

[>~]

s =/emf__ T egixy gy =(/s2m [ _

{where we have used the fundamental Theorem L2.1 on
iscexponentiation), and verifies the properties

500 = 80 . Sfx-x) = J__ dzsfx-2d=8z-x). (210

For the case of an isospace of Class IB, Sjp(x.#), with

isofunctions t{x} = f(x} 1, a different isotopic expression emerged in ref.
I6], here called Dirzc-Santili isodelta function of the second kind, and
denoted 8, , which is characterized by the property

| I =" =10 = 01 @12
e W= 8K ax = ) f(x) 84%) dx = 10} = {0} 1,
In this case the 8y-function must necessarily be an isofunction, ie,
admitting a structure of the type 84x) = §4%) 1tx, %, %, ..). Then, forf =1,
we have
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J..7 sfdax = [ 7 s0lex.dox =1 (2.13)

e

and the isotopic image of {2.3) is given by

i) = j'_mm?(x') = 8% - X} 4. (2.14)

One can see that the projection of the 8y-function in the original

functional space S(x,R) implies the equivalence (again for isounits
independent of the integration variable)

8x) = 80k %, ). {2.15)

It is easy to see that, under the same assumptions, the §y-function
admits the integral representation [6]

+ oo 5 + oo i -
s =t/omf__ T e§lxy ay =1/enf__ e " atrd  (219)

3

and verifies the properties

i) = 8% L sk-x) = [z sfx-desfe-x). @m)

It is an intriguing exercise for the reader interested in learning the
isotopic techniques to prove that zze first and second kind Isodeltz
runctions can be Interconnected by the reciprocity transrormation T —
1 (Sect. 1.2¢).

To present the Lirac-Santilli Yunction of the third kind , let us
recall that the separation on a generic, n-dimensional isospace Sx.g.8),

g = Tg, = a1 1=T" (see Sect. 1.2.C for details), can be formally
written as that of a fictitious conventional space in the same dimension
S{X.g.R), according to the simple rule [6,9]

x2 ts

=xlgx =% =%2, %=7Tx. (2.18)

This implies that a number of problems in isospaces can be worked out
in this fictitious conventional space in the X-variables, and the results
then re~expressed in the x-variables.
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The Dirac-Santilli 83-function emerged precisely from reduction of
this type. It can be defined via the conditions [6]

I _mmf(fc) 84%) a% =j"°:°° f(rtx) s4TH) d(t %) = 1), TH= T, %, ..)

{2.19)
from which we obtain for f =1
+00
| 84T%) a(T%) = 1 . (2.20)
- 0o
with realization in terms of the conventional §-function
s4x) = ) = s(Txn). (2.21)

It should be stressed that, while the isodelta functions of the f%rst
and second kind are bona-fide isotopies of the conventxonal_expressmn,
this is not the case for 83 which is merely a pragmatic tool for

simplifying calculations, rather than a rigorous structure.

The above expressions have been presented for the'case. of -ox}e—
dimensional coordinates x. The extension to three-dimensions is trivial,
and given by isotopic products of the type

81(1‘) = 81()() #* Sl(y) * SI(Z) . (2.22)

da .
Consider now the isodual image of Class IIA, Su Ad(x ,SR‘? of isospace
§;46c%) which is defined over the isodual isoreals #9 with isotopic

element TS= - T and isounit 1= - 1. Santilli [6] also studied the isodelta
functions on isodual isospaces, by reaching the following

PROPOSITION 2 1- The isodual isodelta functions of the 1irst El].d second
kind are isoselfdual in their structure, and only change thelr overall

sign under Isodvality .

= 4= .
In fact, by recalling that x%= —x, yd— -y, i%= - i, we have the
Jsodual isodelta runction of the 1irst kind

o0
+00 +

T‘ie.€d ickdydcxyd = -wom |

8%(x9 = /2m) _fﬂ w

oo

TeEixy dy»

—326 -~

(2.23)

with a similar expression for the second kind.
However, 83 has no isoselfdual structure, evidently because under

isoduality T — T% = i T thus altering the structure of the original
function. This confirms that §; has a mere pragmatic value for practical
calculations without an isotopic structure.

The properties of the Dirac-Santilli delta functions for all the
remaining Classes 11I, 1V and V is unexplored at this writing. Additional
generalizations of the delta functions are expected from the extension
of the isofield to include the isotopies of the addition [15).

Comment 2.1: While the Dirac delta function is unique, there exist
infinitely possible Dirac-Santilli isodelta functions for each of the above
six kinds, evidently because of the infinitely possible isounits or isotopic
elements. The mathematician has certainly noted the intriguing
character of the general case of isodelta functions {2.5) and {2.12) for T =
T{x,...), which are hoped to receive an attention in the literature much
needed for physical advances.

Comment 2.2: As well known, the locality of quantum mechanics is
ultimately expressible via the Dirac delta function. The nonlocality of
the isotopies of quantum mechanics {8] is then expressed by the Dirac-
Santilli isodelta functions. In turn, such nonlocality is necessary for a
quantitative treatment of the extended character of hadrons with
consequential nonlocal components in the strong interactions due to
mutual overlapping of the wavepackets and charge distributions of the
particles.

Comment 2.3: While the Dirac delta is a fowa fide distribution, the
Dirac-Santilli isodelta functions are not necessarily so because the
original singularity at x can be spread over an interval of which x is the
center. Nevertheless, in specific cases, such as when T = cost., the
isotopic 8-functions are distributions similar to 8{x).

Comment 2.4: Owing to the property of spreading out the §-
singularity over a finite region of space, the isodelta functions have
important physical applications. In fact, they permit the isotopic
completion of quantum mechanics, that is, its reformulation in terms of
functional isoanalysis which is much along the historical argument by
Einstein, Rosen and Podolsky [10] {see ref. [10,11] for brevity).

Comment 2.5: The topology of the isodelta functions is unknown at



