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Snmmary. — Via the method of induced representations, all irre-
ducible unitary projective representations of ,the recently introduced
new relativistic dynamical group ®, are deduced and classified. An
explicit form of the transformation law is given. The properties of the
corresponding infinite-dimensional basis functions are studied. It is
shown that in the limiting case of [= oo (corresponding to &, — &)
the infinite spin-tower representations become reducible and decompose
into irreducible representations of the Poincaré group. The reduction
of the direct product of two irreducible unitary ray representations of &
is studied. The Clebsch-Gordan coefficients are computed. Finally, some
comments on the physical interpretation of the results are given.

1. — Introduction.

In a previous publication (*) we introduced a new symmetry group (denoted
by &;) for ralativistic dynamics. This group acts on the Cartesian product
space I, , X H,, where F,, is the Minkowski space with points #* and F, is a
one-dimensional manifold with points denoted by ». As was indicated in ref. (%)
and discussed in greater detail in a subsequent publication (%), the new kine-
matical variable # must be interpreted as the proper time. The defining trans-

s

(*y Work supported by the U.S. Air Force under Grant No. AFOSR-67-0385B.

(1 J. J. Acmassi, P. Romax and R. M. Saxrirri: Phys. Rev. D, 1, 2753 (1970).
() J. J. Agmassi, P. Romax and R. M. Sanrinni: Jowrn. Math. Phys., 11, 2297
(1970).
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formations (3) of &; are

I

(1.1) ) = A

r__
. wZy b, w=u-40.

Here A, is a restricted Lorentz matrix, @, a constant translation vector, ¢ a
constant scalar. The transformations associated with the constant vector b,
are analogous to the boost (velocity) transformations of the nonrelativistic
Galilei group. We call these the «zest» transformations. In obvious notation,
the structure of &; is as follows:

(1.2) ;5 = {TiXT7} 3 {T] 2 800}

where X and » denote direct and semi-direct products, respectively. Thus,
&; contains as a subgroup both the restricted Poincaré group and the non-
relativistic Galilei group. Moreover, &; is a group extension () of the restricted
Lorentz group 80y, From these comments. it follows that, on the one hand,
our &; is a natural generalization of the Poincaré group and, on the other.
hand, it is also a natural generalization of the nonrelativistic Galilei group.

In ref. () it was pointed outthat for the use in relativistic quanium mechan-
ics, the central extension (1) of the covering group of &; by 2 one-dimensional
Abzlian phase group Tf must bz used. This new relativistic quantum-meéchan-
ical dynamical group will be denoted by &, and its structure is

(1.3) Gy = (T3 I D {T D (SLye X T}

where SL,, appears as the covering of SOg;..

The generators of &, are denoted by o, wrr Puy @y 8 and they generate the
subgroup SL, ,, 1§, T3, 19, respectively. Since we shall not need them in this
paper, we do not write out here the Lie algebra (%) in full. But we recall the
most important relation, viz. (%)

(1‘4) ['Py) Qv] = ?/g,uv .

Here the real constant ! has the dimension of length and its appearance is
connected with the phase group T‘l’.

(®) In a recent private communication M. Noga (Purdue University) gave an alterna-
tive derivation of our group, emphasizing that it is actually the dynamical group of
the standard equation of motion in relativistic mechanics. See also ref. (7).

(*) See ref. (*), Appendix A.

(®) See ref. (}), eqgs. (3.7) through (3.12).

(®) We use the Minkowski metric gy=-—g¢,,.= 1. Note, incidentally, that the full
carrier space F,,x F, is not a metric space.
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The Casimir operators of &, are

(1.56&) 9 :IJ”I)# ~*_ 21—13 ,

(1.50) J =1 T, ™,
(1.5¢) A = i‘guwa e

where

(1.6) T,y =y — 1M,

with

(1.6a) M, = 1)#(%_1}” Q, -

Of course, in addition to &, #, o, the operator I1 is also an invariant of our

group. As is well known (see, for example, ref. ( )) this leads to a superselec-
tion rule.

In ref. (1) we showed that X, = —1, is a perfectly aceeptable relativistic
space-time position operator (¥) and . =-—21"*§ is a nontrivial relativistic

mass operator. S also plays the role of an evolution operator with respect to
proper time. Some other physical consequences of &, were also explored (+2),
and finally we showed (?) that &, is the contracted limit of the covering of
the connected component of the inhomogeneous de Sitter group I80;,.

The main purpose of the present paper is to study in detail and with suf-
ficient mathematical rigor the representations of @,. We find this study crucial,
because all further applications of @&, depend critically on the thorough under-
standing of the representations (*). Apart from this, the representation theory
of &, merits study from the purely mathematical point of view. The group
has a sufficiently interesting structure (cf. (1.3)) and the mathematics involved
is far from being trivial. It is true that there are some similarities with the
nonrelativistic Galilei group, but in the present case the little group (see
Subsect. 2°4) is noncompact; this makes the theory quite involved.

In Sect. 2 and 3 we systematically derive all irreducible unitary projective
representations of ®;, in an explicit form. In Sect. 4 we study separately the
l= oo limiting case, which corresponds (*°) to replacing &, by ®;. In Sect. 5
we give a discussion of the products of representations and their reduction.
This turns out to be a rather involved problem. In Sect. 6 we discuss additional
features of our group, pointing out also some problematic aspects.

(Y V. BareMaxn: Ann. Math., 59, 1 (1954).

(®) In this respeet, see also J. E. JouxsoN: Phys. Rev., 181, 1755 (1969); L. CAsTELL:
Nuovo Cimento, 49 A, 285 (1967).

() Among other things, we have in mind the establishing of wave equations for arbi-
trary spin.

(19 See ref. (1), Appendix C.
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The main mathematical tool used in this paper will be the method of induced

representations, developed by MACKEY (). Actually, some parts of our calcula-
’ y Y !

tions parallel rather closely the work of VoIsix (**), who used Mackey’s method
to study the ray representations of the nonrvelativistic Galilei group (1%).

2. — Some algebraic preliminaries.
2'1. Factor system. — Let us represent a generic element g of &; by
(2.1) g = (exp [0]; o, @, b, A) ,
where o, @, b, A stand for the parameters in (1.1) and 6 is the phase associated
with the Tf subgroup. As we already stated in ref. (), the composition law

of &; can be written as

(2.2) 9201 = (exp [i0,]; o, Gy, by, /12>(0Xp [i0:1; o1, ai, by, A,) =

== (w(gz, 91) exp [#(0, + 0.)]; oy -+ o1, Gy +Ayay 01by, by + /12b1, /12/11) .
Here
(2.3) (G2, 1) = exp [if(gs, g)]
18 a phase factor (f is real), called the factor system (%), which arises from the
scalar extension of &; to ;. TIts appearance in (2.2) has deep implications for

the representation theory of &;. Let us consider a homomorphism

(2.4) g U,

from ©; to a family of unitary operators. The multiplication law for these

(") A very readable account of this powerful tool can be found in G. W. Mackey:
Induced Representations of Groups and Quantum Mechanics (New York, 1968). A
shorter, but more rigorous summary is given in G. W. MAcCKETY Group representations
in Hilbert space, which is the Appendix in I. B. Swearn: Mathematical Problems in
Relativistic Physics (New York, 1963). The latter contains also a bibliography of original
publications.

(1) J. VorsiN: Jowrn. Math. Phys., 6, 1519, 1822 (1965).

(**) An alternative, somewhat more intuitive treatment of the ray representations
of the nonrelativistic Galilei group was given by J.-M. LEvy-LesroNDp: Journ. Math.
Phys., 4, 776 (1963). Some parts of our calculations are analogous to those of Lfvy-
LEBLOND.

(**) See Appendix A of ref. (3).
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operators corresponding to the composition law (2.2) is
(2.5) Uy Uy, = (G, 9y, -

As follows from the general theory of nontrivial central extension of groups (7),
the phase w in (2.5) is essential and cannot be eliminated by a redefinition
U,—7(9)U,, |t(g)] =1, of the operators #,.

The explicit determination of w is done by applying (2.5) onto the state
vector of the one-dimensional representation. This will be shown at the end
of the Appendix. The result of the calculation is that f (defined by (2.3)) is
given by

(2.6) f(g2y g1)=— I=1(bo Ay 0y + %19301) ’
where [ is the constant appearing in (1.4) and (1.Ba). Thus, f or o depends
only on the translation part of ¢, and on the «homogeneous » part of ¢,.

Finally, we note that the unit element of &, is (1;0,0,0,1) and hence
the inverse element g is given by

(2.7) g = (exp [— (0 + D)]; — 0, — A7 (@ —bo), — 471D, A7)

where
(2.74) F=1(g, g7) = —1""(—ba + $b%0) .

The unitary representations of @&, furnished by the homomorphism (2.4)
and the multiplication law (2.5) (with o given by (2.3) and (2.6)) are called
unitary projective (or ray) representations (7). It is these ray representations
(which cannot be reduced to the true representations of &;) that will be con-
structed in the following. The first step in this programis the decomposition of &,
into the semi-direct product of a suitably chosen invariant Ab alian subgroup N
and a remainder H. The coset space I'=@;/H will then be taken as the rep-
sentation space.

2'9. Imvariant Abelian subgrowp. — Consider the invariant Abelian subgroup
(2.8) N =TIxT;
of ®, and introduce the notation
(2.9) H = {T% (8L, ,x T} .
Then @, can be written as the semi-direct product

(2.10) Gs=N H.
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The semi-direct product structure is realized by the automorphisms s, of N,
(2.11) n—my(n) = b1, nekn, heH .

Indeed, the mapping

(2.12) h—m,, he H,

defines a homomorphism of H mto the group of all automorphisms of N.
Thus, every element ¢ of &, can be uniquely represented by a pair,

(2.13) g=(n; h), neklN, he H,
in terms of which the composition law of &, becomes
(2.14) 929 = (M2 ha) (a5 Ty) = (s (ma); hohy)

We now turn to the irreducible unitary representations of the Abelian
group N. They are, of course, one dimensional, and have the form U, =
= exp [i(ro + pa)]l. Here ¢ is a real scalar and P a real four-vector (35). For

convenience (and to emphasize the dual role of the parameters o, ¢ and rep-
resentation labels », p), we introduce the notation

(2.15) (0, alr, p) = exp [i(ro + pa)] .
The pair of labels [r, p] is called the character of the representation.

The set of all representations (0, alr, p) forms a group j\\f usually called
the character group of N. For each he H, the automorphism =z, defines a one-

to-one mapping of N into itself, because the transformed form of (2.15) induced
by 7, is again a unitary irreducible representation of N , s0 that it belongs to V.

2'3. Orbits. — Let n=(1;0,a,0,1)e N and let h = (exp [40]; 0,0,b, A)e H
The automorphism (2.11) is explicitly given by

(2.16) n—m(n) = (w(h, n); 0, Aa + bo, 0, 1),
where, according to (2.3) and (2.6),

(2.16a) w(h, n) = exp [—il-Y(bAda + Lb)] .

(*%) Since § and PP are the generators of 77 and Tj, respectively, the numbers » and Py
are obviously the corresponding elgenva,lues
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Because of the dualism between (o, ) and (r, p) in (2.15), eq. (2.16) implies
that the character [+; p] evaluated at m,(n) is equal to a transformed character
[r'; p'] evaluated at ». In other words,

(2.17a) W, alr, p) bt = w(h, n)(s, Ada + bolr, p) = (o, alr’, p') .

In a similar manner we get

(2.170) ko, alr, p) b = o(h, n)(0, A-'e — A balr, p) = (o, al’, p") .

Thus, h and A~! induce automorphic transformations of the characters. We
write, somewhat symbolically,

1 1
(2.18a) i pl =10, 9] = [r +ph— 7 b2, A7 (p ~37 b)} ,
s " 1 1
(2.18D) My, pl=r", p"] = [TMAPZ)_E b2, Ap + 7 b} .

/
| 2.
p2>0;p0>0 // / ‘\ \p)O ,PO<O
\
i
1y
F 1N
/ AN
i L
_ ] Ny
L
45°
VoY o
\ 45
| .
|
\ ~
/ ’ \ //
p2<0;p1<0 / / ‘
/
)/po l

Tig. 1. — The orbit surface p*- Alr=9 for =0, 1<<0. 'Two spatial directions
(p, and p,) arve suppressed. Cuts parallel to the (py, p,) plane give all Poincaré orbits.
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Itis easily verified that under these transformations the value of the invariant @
(cf. eq. (1.5@)) is left unchanged, i.e.

(2.19) P? 20l = p'2 201 = p"2 4 20 = P

Thus, the automorphisms s, of N define orbits in N. Each orbit is characterized
by some standard character [#, $],,. (The subscripts 2 and 1 were used to
emphasize that each orbit is fixed when the invariants 2 and [ are given. In

the following, however, we shall suppress these subscripts.) If [71, p.] and
[7:, =] belong to the same orbit then there exists an element he H such that

(220) [7’% p2] = h[rly pl] .
The orbit (2.19) is graphically represented in Fig. 1.

2'4. Stability group. — By definition (1), the stabilizer (stability group, or
litle group) H, of an orbit [, P] is a subgroup of H such that for every element
hye Hyc H, any given point of the orbit remains ﬁxe‘,d, i.0.

(2.21) h[F, P] = [F, P].

From (2.18a) and (2.21) we obtain the conditions

~ A ~ 1
(2.22a) F =7 Apb— 57 b2,

(2.22b) D= AP + —ll— b.

These are not independent, because using (2.220) in (2.22¢), we simply get

[(AP +T-1D)2—p2] =0 .

~ 1 A
2 e — —
(2.23) Apb+2lb 5

This tells us that, selecting an arbitrary 4, we only have to choose
(2.24) b=UP—4D),

whence both conditions become satisfied. Thus, an arbitrary element h,e H,
has the form

(2.25) ho(0; A) = (exp [i0]; 0, 0, UP — AP), A) .
We easily verify the combination law

(2.26) ho(0" 5 A" Bo(07; A7) = ho(6" + 073 A" A7)
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Thus, we see that the little group is isomorphic to the direct product of a phase
group with an 8L,, group (1):

(2.27) Hy~ T°x8L,, .

At this point we wish to make a remark. Instead of (2.8), we could have
chosen the maximal Abelian subgroup of @5, V12, fo T7xT;. Then, instead
of (2.9), we would have had T} ® 8L,,, but (2.10) would still have held.
If we had done so, the characters would have been exp [¢{f0 - ro -+ pa)] =
= (0, o, a|p, 7, a), and the parameter f would have explicitly occurred in
the transformations (2.18«), (2.180). The orbits would no longer have been
the invariants (2.19) of @5; instead we would have had p*+ 21-1f~» = const
as their equation (**). On the other hand, (2.25) would have been réplaced
by the simpler term hy(A) = (1; 0, 0, P —AD), 4), and the little group would
have been simply H, ~ SL,,. However, we feel that our treatment is more
satisfactory, because, as pointed out above, our orbits have a more direct
interpretation. The inconvenience of having a somewhat more complicated
little group is only trivial, since (2.27) is a direct product.

Returning to our main subject, we now wish to find a relation between
elements of our little group (2.27), and arbitrary elements of H. Let us consider
an orbit [#, §] and choose for a specific point [r, p] of this orbit an element &,
of H such that (*8)

(2.28) b o7, P] = [r, p] .

Let now h(0; b, A) = (exp [40]; 0, 0, b, A) be an arbitrary element of H and
write

(2.29) h=2(0; b, A)[r, p] = [r', 2],

where the r.h.s. is given by eq. (2.184). Combining the last two equations,
we get the identity

BZRNO; by, AYh, 7, B]=[F, D],

(1) From (2.25) it is clear that the 8L, , which appears in H, is not the 8L, ; subgroup
of ®;. We shall come back to this point later, in Sect. 3'5.

(*") In his work on the ray representations of the nonrelativistic Galilei group, VoIisin
actually proceeds in a manner as now sketched, and obtains the orbits B — p?/2Mg,=
=const (ef. eq. (14) of ref. (1?), first paper), instead of the more desirable
E— p?/2M == const paraboloids. At a later point, he then sets ¢,=1 which, even
though it seems to be an artificial choice, apparently does not lead to loss of generality.
(1) In view of (2.20), we are assured of the existence of such an element of H.
Actually, h, , is not even unique.
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which, because of (2.21), implies that the product of the three elements on
the 1.h.s. is an element of the little group H,. We denote this particular ele-
ment by A%, so that we have

(2.30) by = T, (05 by AY s e

Conversely, we have

(2.31) ‘ O; b, A) = b, hoh,

The meaning of this equation is that given an arbitrary element heH, it
can be expressed in terms of some element h, e H, associated with the orbit
[7, #]. The transformer h,, is defined by (2.28). The point [s/, p'] that labels
the transformer on the right is related to [r, p] by eq. (2.18a).

2'5. Representation space. — We choose for our representation space the
coset space
(2.32) I'=@8,)H .

In view of eq. (2.10), I" is isomorphic to the Abelian group N. Consequently,
there is a one-to-one correspondencs between the elements of I” and the charac-
ters [r, p] of the orbits [¥, ] in . Therefore, the elements of 1" can be labzled
by the character of an orbit [F, D], 4.¢. by all numbers #, p which obey the rela-
tion

P2 =P 20 =T,

The basis of our representation will be a set of functions w.(r, p), which
depend on the character [r, p] as specified above. The additional collective
label & stands to distinguish further the states within a given representation.
(Thus, in general, the functions y, are vector valued.) We introduce in I an
invariant measure by defining

(2.33) AdQ(r, p) = drd*p §(p? + 202y — D),
and require that the functions v, belong to the space Z*([, d2) of square-

integrable functions. Thus, our representation space is the Hilbert space (1)
with the inner product defined by

(2.34) <yl :fdrd"*p Mp? 4 201y — ) zpfs(?', P)Pelry p) .

Here summation over & is understood.
It %, is a unitary representation of N, the basis v, will transform under
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the action of this representation according to

(2.35) Unpe(ry p) = exp [i(ro + pa)] pg(r, p) -

Our problem is now to find the transformation law of the basis under the unitary
irreducible projective representations %, of &;.

3. — The unitary irreducible projective representations of ;.

In order to check the applicability of the subsequent mathematical con-
struction, let us summarize the relevant properties of our group &;:

i) &, is a separable locally compact group ('),

ii) it ean be written as the semi-direct product of the invariant Abelian
subgroup N’ = T{x T x TP=Nx Tf and the noninvariant subgroup H'=1T%
>§ SLZ.U?

iii) both factors ¥’ and H' are closed subgroups (3°).

As MACKEY has shown (1%), the fulfilment of these criteria ensures that the
method of induced representations will furnish all irreducible representations
of the group if the irreducible representations of the stabilizer are known.

3'1. Represeniations of H,. — We start with the study of the representa-
tions of the stability group H,. Because of its direct-product structure (exhib-
ited by (2.27)), all irreducible representations of H, will have the form

(3.1) Uy, = exp [if01D(Ry) -
Here, the first factor (with § arbitrary and real) is a representation of 77 and
the second factor stands for a representation of 8L, ,. In view of (2.27) and

(2.26), the group element T, in the argument of D denotes the element (2.25)
with 0 set equal to zero, i.e.

(3.14) Tho = ho(0; A) = (15 0, 0, UP —AD), ) .

(**) This is obvious from the parametrization of the group elements.

(20) Since N is Abelian, its closedness is obvious. To see that H is closed, we note
that the first factor in (2.9) is isomorphie to the covering of a Poincaré group which
is known to be closed, and the second factor is an Abelian phase group, likewise closed.
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The irreducible representations D of 81, , are well known (*!). They are
labeled by a pair of indices (22) k, ¢ and we shall write D*® to symbolize a specific
irreducible representation. There are the following cases:

a) k=0, ¢=1. This is the trivial one-dimensional (and obviously unitary)
representation.

b) k and ¢ simultaneously integral or half-integral (**) and |c] > |&|.
These representations are finite dimensional and monunitary.

¢) k=0,%,1,... and ¢ =1, with —oco< ¢ < + co. These representa-
tions are infinite dimensional and unitary. They are said to belong to the
principal series.

d) k=10, and ¢ is a real number such that 0<<¢<<1. These are also
infinite-dimensional unitary representations and arve said to belong to the
supplementary series.

We shall not be interested in the nonunitary representations of case b),
and will discuss the simple case of the representation «) separately in the
Appendix. For the unitary infinite-dimensional representations ¢) and d),
each state of a given representation is characterized by two numbers (24) s and s,.
For any given representation D*’, s can take on the infinite sequence of discrete
values

(3.2a) s=5k k4+1, k42, ....
For any specified s, the s, then can assume the 25 4+ 1 values
(3.20) Sg=—8, —8-+1,...,8—1,8.

‘We mention that the representations D* and D-#-¢ are equivalent. Finally,
we recall that the representation D¢ is conjugate to Dre.

3'2. Induced representations of &;. — We are now in a position to determine
the labels which are needed to specify a representation of &;. They are as

(*1) See, for example, I. M. GELFaND, R. A. Mixros and Z. Ya. Suariro: Represen-
tations of the Rotation and Loventz Group (New York, 1963), especially p. 200 and p. 188.
See also M. A. Nammark: Linear Representations of the Lorentz Group (New York, 1964).
(**) The numbers %k and ¢ are related to the Casimir operators of SI, ;; see eqs. (3.26)
and (3.27) below.

(2%) Case a) is a special case of Case b), but for obvious reasons has been treated
separately.

(**) These numbers are rvelated to the Casimir operators oceurring in the chain
8Ly, 58U,D80,.

.y
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follows:
i) an arbitrary real number [,
ii) an arbitrary real number 9,
iii) two numbers k and ¢ (as given above).

Here | and @ are necessary to specify an orbit, and k, ¢ ave neaded to specify
the representation of the little group associated with the orbit (). A represen-
tation of &; will be denoted by the symbol (1|2, &, ¢). Bach state of a given
representation is labeled (apart from r and p, selecting a point of the orbit)
by two supplementary labels (*) s and s,. For the relevant unitary irreducible
representations (Cases ¢) and d) above) the possible values of s and s, are given
by (¥) (3.2a), (3.2b). In view of these comments, the complete labeling of
the basis functions p,(r, p) (introduced in Subsect. 2'5) belonging to an irredue-
ible representation of @&, is given by the notation

)z@kc

Y= P, (1, D).

Let us now consider a representation %, == exp [4801 D% () of H,. The
transformation law of our basis under %, is

(3.3) U, 9171, p) = exp [IO1D* (ho) s,y WEE°(1, )
where summation over s’ and s; is understood.
Next we consider a homomorphism h—%, from the subgroup H to a set

of unitary operators. On account of eq. (2.31) we can write

(34:) 02/7:, == 02/7»,‘7,

Rl -

Since the functions w(r, p) carry the representation U,, we have (omitting
for a moment the super- and subseripts of ¥)

Uy, p) = P52, P1) = Py B3 Wby 1) = 9l B[Py B1) = iy, 9(F, D) -

(%) The additional real number f, that occurs in (3.1) and .which, in addition to k and ¢,
is needed to specify a representation of thelittle group, is immaterial because exp [¢f6]
will only be an arbitrary phase factor multiplier in the representation of &,, cf. eq. (3.6)
below.

(%) Thus, the additional « collective label » & which was introduced in Subsect. 2°5,
corresponds to the pair s, s,.

(2"} Thus, these labels run through a set of discrete, integer or half-integer numbers.
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In the next to the last step we used (2.28). Now, we have (38)

le huh;",:'z‘,: = % Ry %h

-1 .
T'p’
Hence, we can continue the previous equation as
Ui, P(1y D) = Un,Un, (Fy D) = Uy, p(Byopilrr, p1) =
=, (', p') = exp [i01 D () p(r', p') .

In the penultimate step we used again (2.28) and in the last step we utilized .
(3.3). Thus, in detail we have the transformation law

(3.5) U= (r, p) = exp [BOILD* (R, Vo0 ')

In view of (2.28) and (2.184), the arguments ¢ and p’ are explicitly
- 1 , 1

(3.50) = pb— 0, p=/1“(29~z‘b)‘

Finally, let us consider an arbitrary group element ge®,. Because of (2.10),
we have the unique decomposition (**) g=mnh. In the homomorphism g—%,
this means that (3¢} %, =%,%,. The action of U, is given by (3.5), and the
action of %, is shown in (2.35). Thus, putting these together, we obtain the
transformation law for the irreducible unitary projective representations of @,
as follows (31:32);

(3.6) %z,uéf’j’“(r, Pp) = exp [i(f0 + ro + PALD* ()], o, wiff;’“’“(r', Py,
We note that the unitarity of the representation is, of course, meant with

respect to the inner product in the Hilbert space s2(I") of 2T, 482) integrable
functions, as defined by (2.34). That is, for p, gL dQ),

2
B0 ldy = ardps v+ 71— 2) iz, ) 120, 1)

(*%) Bince the group elements heH have no translational part (a=o==0), no phase
factor will occur in the composition law of the representation operators %,,.

(**) Asis well known, this is a consequence of the representation (2.18) and composi-
tion law (2.14) of semi-direct-product groups.

(*) We do not have a phase factor, because the group element % has no translational
part.

(*1) Equation (3.6) has been already given, without proof and without detailed discus-
sion, in Appendix C of our first paper, ref. (1).

(3%) ‘We remark that, as the reader will easily verify, we would get eq. (3.6) in an
unchanged form if we had used the maximal Abelian subgroup fo T3 x T§ instead
of (2.8).
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(summation over s, s, understood). The unitarity follows trivially from that
of D¥, Furthermore, we emphasize that in consequence of Mackey’s theo-
rems (1), our construction (3.6) gives all unifary irreducible representations,
up to equivalence, because, as pointed out at the beginning of Sect. 3, all
necessary criteria are satisfied.

For clarity’s sake we summarize the notation in (3.6). £ and [ are inva-
riants of &,. The numbers %, ¢ are the labels of the unitary irreducible represen-
tations of the SL, , part of H,. The labels s, s, characterize the state within
each representation of @5, together with the labels #, p. The transformed ¢
and p’ are given by (3.5a¢). The element R, is given by h, with zero phase, where

(3.8) by =k h(0; b, Dby s
as follows from (2.31). Here, in turn, b, is defined by (2.28), [7, P] being
an arbitrary point on the orbit selected by 1 and 2.

Finally, we note that the constant § in (3.6) is completely arbitrary. Since
our representations are ray representations, the ﬂ may be taken to be one,
without any loss of generality.

It appears from (3.8) as though the dependence of the operator D’w(%o) on
the parameters of the group was rather complicated. However, we may take
advantage of the arbitrariness of [¥, $] and simplify this dependence consid-
erably. Let us choose, in particular, ¥ =1/29, p =0. (This is certainly a
point of the orbit defined by I and £.) Then eq. (2.38) reads

by o[1/22, 0] = [, p]

and one easily verifies that the simplest (*%) solution is

(3.94) hrp =(1;0,0,1p,1).
Similarly,
(3.90) By = (15 0,0,1p',1),

with p’ being given, of course, by (3.5a). Using (3.9a), (3.90) in (3.8), one
easily finds

(3.9¢) fip=(1;0,0,0,4).

Thus, &, can be taken to be a pure SL,, transformation of &,. We can re-

(3%) Cf. footnote (*8).
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write (3.6) in the final form
(3.10) X, yiZ(r, p) = exp [(B0 + 16 + PP (A))yy; o W20, 1)

where ¢/, p’ are given by (3.5a).

3'3. An equivalence theorem. — Asis well known (7), the concept of equivalence
for projective representations is somewhat different from that which applies
for true representations. Because of the appearance of w in the composition.
law (2.5), we must consider %; unitarily equivalent to %, if

(3.11) U, = alg) VU, V-,

g

where V ig a unitary operator and « is a complex function of modulus one.
Let us define now an operator V by setting

l A
(3.12) Vyiipln, 9) = yigh (v + 5 9, 1) = B ).
We have, using (3.7) and (3.12), and setting f=1r +1/292,

iy = [arasps (p+ 3 r—2) o, gt 1) =
2 ~ ,
=[arass (o2 47— 2) v, 2180, 1) = BI> = VoIV

Hence, V is a unitary operator, and provides an isomorphic mapping from the
Hilbert space (") to the Hilbert space #,(I"). The latter is the same set
of funetions but is equipped with the measure

(3.13) AQ = drdsp 6(p* + 21-17)

instead of (2.33). This implies that the wnitary represemtation (|9, k, ¢) is
uwitarily equivalent to the representation ()0, k, ¢). Actually, it is easily seen
from (3.12) and (3.10) that if %, is a representation in (1), then

l
(3.14) U, = exp [ ie o‘@] v, v

o

is a representation in (1), which, in view of (3.11), bears out our statement
in detail.
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Therefore, without loss of generality, we can restrict ourselves to represen-
tations with £ =10. The label & may be omitted (**).

3'4. Conjugate representations. — The complex conjugate of eq. (3.10) is
(3.18) %, PT*(r, p) = exp [i(— O —ro — pa)l[D* " (D)yy, o, Par 075 ) 5
where the bar means complex conjugation and where we took cognizance of
Dte = D¥=¢. On the other hand, let us consider the representation (—1|2, k, —¢)
of &;. Denoting the unitary operator which corresponds to a group element
g in this representation by @’/g, we have
(8.16) Wy ? 0 (r, p) = exp [iB0 + 10 + pa) I[P ()], o YO, B)
where now

(3.164) Fer bt 5 b ,ﬁzA—l(p+%b).

If we introduce the operator 4 defined by

l@l;c( ~19D e

(3.17) AyZre(y, p) = FL(—r, —p)= PZ*(r, p)

then, using (3.15) and (3.54), we easily find that

3.18) (U, p(r, D) = U, P(—r, — p) = exp [i(— B0 + ro + bp)[LD**(A)]H (", p')
with
1 , _ 1

Thus, comparing with (3.16) and (3.16a), we can write
(3.19) exp [20p01%, H(r, p) = U, P(r, P) -
Using (3.17), we find that

(3.20) U, = exp [— 2ip01 A%, A .

(3%) See, however, our subsequent discussion of the reduction of products of represen-
tations, Subsect. 5'2. Furthermore, the equivalence theorem obviously holds true
only as long as I is finite.

(%) Tor simplicity, we suppress in this caleculation all labels.



568 J. J. AGIHASSI, P, ROMAN and R. M. SANTILLI

Thus, according to (3.11), the representations %, and %, are equivalent (3%)
in the sense of ray represenfations. We write symbolically

(3.21) (N2, &, ¢) ~ (U2, k —e¢).

It also follows from the above discussion that the basis functions yf’g’ ° of
the (—19, k, — c¢) representation can be expressed in terms of the basis fune-
tions y)’@” of the (1|2, k, ¢) representation. We have

(3.22) YT, p) = APy, p) = Gy —p) .

Finally,
so that 4 is antilinear unitary.

> = (Agldyy,

3'5. Some properties of the basis functions. — For subsequent physical appli-
cations, it will be useful to summarize the effect of some operators of &, on
the basis functions. First, it is obvious that the v are eigenfunctions of P,
and of §, and we have (37)

(3.23) PyiZx(r, p) = pupiZ*(r, p)
(3.24) SplZr(r, p) = 1yl (r, p) .

Next we recall that the Casimir operators of @, are the operators 9, ¢4, A
as given by (1.54)-(1.5¢). Hence, we have (*), from (1.5a),

(3.25) (P, P* 42171 8) wi;j’““( Y, P) = 91/)’9”(1', ).

From (1.50) and (1.5¢) we obtain

(3.26) lfwg () = (6 + 02— 1)yl (r, p)
(3.27) Eungs T TP Y20, p) = 2ilkhe 2™ (r, p)

respectively. Here we used the facts that # and # are Casimir operators
of () 8L, , and that our basis carries a representation of SL,,. (The relation

(36) On the other hand, it must be emphasized that the conjugate representation

(l[@ L, ¢) is nmot equivalent to the original (1|2, k, ¢) representation unless ¢= 0.
(*") This follows from the fact that the representation space I’ is isomorphic to N.
It is also consistent, naturally, with the realizations P =140, §=1i0, in configura-
tion space, cf. ref. (1). This can be seen by taking the Fourier transforms of (3.23)
and (3.24).

(*) Equation (3.25) follows also from (3.23), (3.24) and (2. 19).

(*) In rvef. (*) we showed that the opelatms Ty, generate an SL, , algebra.



