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Abstract: Hyperstructure theory can overcome restrictions which ordinary algebraic structures have. A hyperproduct on 

non-square ordinary matrices can be defined by using the so called helix-hyperoperations. We define and study the 

helix-hyperstructures on the representations and we extend our study up to Lie-Santilli theory by using ordinary fields. Therefore 

the related theory can be faced by defining the hyperproduct on the extended set of non square matrices. The obtained 

hyperstructure is an Hv-algebra or an Hv-Lie-alebra. 
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1. Introduction 

We deal with the largest class of hyperstructures called 

Hv-structures introduced in 1990 [23],[26], which satisfy the 

weak axioms where the non-empty intersection replaces the 

equality. 

Basic definitions: 

Definitions 1.1 In a set H equipped with a hyperoperation, 

which we abbreviate it by hope ⋅:H×H→P(H), we abbreviate 

by WASS the weak associativity: (xy)z∩x(yz)≠∅, ∀x,y,z∈H 

and by COW the weak commutativity: xy∩yx≠∅, ∀x,y∈H. 

The hyperstructure (H,⋅) is called Hv-semigroup if it is 

WASS and is called Hv-group if it is reproductive 

Hv-semigroup: xH=Hx=H, ∀x∈H. (R,+,⋅) is called Hv-ring if 

(+) and (⋅) are WASS, the reproduction axiom is valid for (+) 

and (⋅) is weak distributive with respect to (+): 

x(y+z)∩(xy+xz)≠∅, (x+y)z∩(xz+yz)≠∅, ∀x,y,z∈R. 

For more definitions and applications on Hv-structures, see 

books [26],[2],[8] and the survey papers [6],[25],[30]. An 

extreme class is the following [26]: An Hv-structure is very 

thin iff all hopes are operations except one, with all 

hyperproducts singletons except only one, which is a subset of 

cardinality more than one. Therefore, in a very thin 

Hv-structure in a set H there exists a hope (⋅) and a pair 

(a,b)∈H
2
 for which ab=A, with cardA>1, and all the other 

products, with respect to any other hopes (so they are 

operations), are singletons. 

The fundamental relations β* and γ* are defined, in 

Hv-groups and Hv-rings, respectively, as the smallest 

equivalences so that the quotient would be group and ring, 

respectively [22],[23],[26],[27],[28],[35]. The way to find the 

fundamental classes is given by analogous theorems to the 

following: 

Theorem 1.2 Let (H,⋅) be an Hv-group and let us denote by 

U the set of all finite products of elements of H. We define the 

relation β in H as follows: xβy iff {x,y}⊂u where u∈U. Then 

the fundamental relation β* is the transitive closure of the 

relation β. 

The main point of the proof of this theorem is that β 

guaranties that the following is valid: Take two elements x,y 

such that {x,y}⊂u∈U and any hyperproduct where one of 

these elements is used. Then, if this element is replaced by the 

other, the new hyperproduct is inside the same fundamental 

class where the first hyperproduct is. Therefore, if the 

‘hyperproducts’of the above β-classes are ‘products’, then, 

they are fundamental classes. Analogously for the γ in 

Hv-rings. 

An element is single if its fundamental class is a singleton. 

Motivation for Hv-structures: 

We know that the quotient of a group with respect to an 

invariant subgroup is a group. 

Marty states that, the quotient of a group with respect to any 

subgroup is a hypergroup. 

Now, the quotient of a group with respect to any partition is 

an Hv-group. 

Definition 1.3 Let (H,⋅), (H,⊗) be Hv-semigroups defined on 
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the same set H. (⋅) is smaller than (⊗), and (⊗) greater than (⋅), 
iff there exists automorphism 

f∈Aut(H,⊗) such that xy⊂f(x⊗y), ∀x∈H. 

Then (H,⊗) contains (H,⋅) and write ⋅≤⊗. If (H,⋅) is structure, 

then it is basic and (H,⊗) is an Hb-structure. 

The Little Theorem [26]. Greater hopes of the ones which 

are WASS or COW, are also WASS and COW, respectively. 

The fundamental relations are used for general definitions 

of hyperstructures. Thus, to define the general Hv-field one 

uses the fundamental relation γ*: 

Definition 1.4 [23],[26],[27]. The Hv-ring (R,+,⋅) is called 

Hv-field if the quotient R/γ* is a field. 

Let ω* be the kernel of the canonical map from R to R/γ*; 

then we call reproductive Hv-field any Hv-field (R,+,⋅) if the 

following axiom is valid: 

x(R-ω*) = (R-ω*)x = R-ω*, ∀x∈R-ω*. 

From the above a new class is introduced [31],[38]: 

Definition 1.5 The Hv-semigroup (H,⋅) is called h/v-group if 

the H/β* is a group. 

Similarly the h/v-rings, h/v-fields, h/v-modulus, h/v-vector 

spaces etc, are defined. The h/v-group is a generalization of 

the Hv-group since the reproductivity is not necessarily valid. 

Sometimes a kind of reproductivity of classes is valid, i.e. if H 

is partitioned into equivalence classes σ(x), then the quotient 

is reproductive xσ(y)=σ(xy)=σ(x)y, ∀x∈H [31]. 

An Hv-group is cyclic [17],[26], if there is element, called 

generator, which the powers have union the underline set, the 

minimal power with this property is the period of the generator. 

If there exists an element and a special power, the minimum 

one, is the underline set, then the Hv-group is called 

single-power cyclic. 

To compare classes we can see on small sets. The problem 

of enumeration and classification of Hv-structures, or of 

classes of them, is complicate in Hv-structures because we 

have great numbers. The partial order in Hv-structures, 

introduced in [26], restrict the problem in finding the minimal 

Hv-structures, up to isomorphism. We have results recently by 

Bayon & Lygeros as the following [1],[13]: 

In sets with three elements: Up to isomorphism, there are 

6.494 minimal Hv-groups. The 137 are abelians; the 6.152 are 

cyclic. The number of Hv-groups with three elements, up to 

isomorphism, is 1.026.462. The 7.926 are abelians; 1.013.598 

are cyclic. 16 are very thin. Abelian Hv-groups with 4 

elements are, 8.028.299.905, the 7.995.884.377. 

Definitions 1.6 [25],[26],[38] Let (R,+,⋅) be Hv-ring, (M,+) 

be COW Hv-group and there exists an external hope:  

R×M→P(M): (a,x)→ax, 

such that, ∀a,b∈R and ∀x,y∈M we have 

a(x+y)∩(ax+ay)≠∅, (a+b)x∩(ax+bx)≠∅, (ab)x∩a(bx)≠∅ 

then M is called an Hv-module over R. In case of an Hv-field F 

instead of Hv-ring R, then the Hv-vector space is defined. 

The fundamental relation ε* is defined to be the smallest 

equivalence such that the quotient M/ε* is a module (resp., a 

vector space) over the fundamental ring R/γ* (resp. the 

fundamental field F/γ*). The analogous to Theorem 1.2, is: 

Theorem Let (M,+) be Hv-module on the Hv-ring R. Denote 

by U the set of all expressions consisting of finite hopes either 

on R and M or the external hope applied on finite sets of 

elements of R and M. Define relation ε in M as follows: xεy iff 

{x,y}⊂ u where u∈U. 

Then the relation ε* is the transitive closure of the relation 

ε. 

Definitions 1.7 [28],[29],[38]. Let (H,⋅) be hypergroupoid. 

We remove h∈H, if we consider the restriction of (⋅) in the 

H-{h}. We say that h∈H absorbs h∈H if we replace h by h and 

h does not appear in the structure. We say that h∈H merges 

with h∈H, if we take as product of any x∈H by h, the union of 

the results of x with both h, h, and consider h and h as one class, 

with representative h, therefore the element h does not 

appeared in the hyperstructure. 

Let (H,⋅) be an Hv-group, then, if an element h absorbs all 

elements of its own fundamental class then this element 

becomes a single in the new Hv-group. 

Definition 1.8 [35],[37] Let (L,+) be Hv-vector space over 

the field (F,+,⋅), φ:F→F/γ*, the canonical map and 

ωF={x∈F:φ(x)=0}, where 0 is the zero of the fundamental 

field F/γ*. Similarly, let ωL be the core of the canonical map φ′: 
L→L/ε* and denote by the same symbol 0 the zero of L/ε*. 

Consider the bracket (commutator) hope: 

[ , ] : L×L→P(L): (x,y)→[x,y] 

then L is an Hv-Lie algebra over F if the following axioms are 

satisfied: 

(L1) The bracket hope is bilinear, i.e. 

[λ1x1+λ2x2,y]∩(λ1[x1,y]+λ2[x2,y]) ≠ ∅ 

[x,λ1y1+λ2y]∩(λ1[x,y1]+λ2[x,y2]) ≠ ∅, 

∀x,x1,x2,y,y1,y2∈L and λ1,λ2∈F 

(L2) [x,x]∩ωL ≠ ∅, ∀x∈L 

(L3) ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])∩ωL ≠ ∅, ∀x,y∈L 

A well known and large class of hopes is given as follows 

[17],[21]: 

Definitions 1.9 Let (G,⋅) be a groupoid, then for every P⊂G, 

P≠∅, we define the following hopes, P-hopes: ∀x,y∈G 

P: xPy= (xP)y∪x(Py), 

Pr: xPry= (xy)P∪x(yP), Pl: xPly= (Px)y∪P(xy). 

The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures. 

For semigroup (G,⋅), we have xPy=(xP)y∪x(Py)=xPy and 

(G,P) is a semihypergroup but we do not know about (G,Pr) 

and (G,Pl). In some cases, depending on the choice of P, the 

(G,Pr) and (G,Pl) can be associative or WASS. 

A generalization of P-hopes is the following [9], [10]: 

Let (G,⋅) be abelian group and P a subset of G with more 
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than one elements. We define the hope ×P as follows: 

x×Py = x⋅P⋅y = {x⋅h⋅yh∈P} if x≠e and y≠e 

x⋅y if x=e or y=e 

we call this, Pe-hope. The (G,×P) is an abelian Hv-group. 

A general definition of hopes, is the following [32],[35], 

[36],[37]: 

Definitions 1.10 Let H be a set with n operations (or hopes) 

⊗1,⊗2,…,⊗n and one map (or multivalued map) f: H→H, then n 

hopes ∂1,∂2,…,∂n on H are defined, called ∂-hopes, by putting 

x∂iy = {f(x)⊗iy, x⊗if(y)}, ∀x,y∈H, i∈{1,2,…,n} 

or in case where ⊗i is hope or f is multivalued map we have 

x∂iy = (f(x)⊗iy)∪(x⊗if(y)), ∀x,y∈H, i∈{1,2,…,n} 

Let (G,⋅) groupoid and fi:G→G, i∈I, set of maps on G. Take 

the map f∪:G→P(G) such that f∪(x)={fi(x)i∈I}, call it the 

union of the fi(x). We call the union ∂-hope (∂), on G if we 

consider the map f∪(x). An important case for a map f, is to 

take the union of this with the identity id. Thus, we consider 

the map f≡f∪(id), so f(x)={x,f(x)},∀x∈G, which is called 

b-∂-hope, we denote it by (∂), so we have 

x∂y = {xy, f(x)⋅y, x⋅f(y)}, ∀x,y∈G. 

Remark. If ⊗i is associative then ∂i is WASS. If ∂ contains 

the operation (⋅), then it is b-operation. Moreover, if f:G→P(G) 

is multivalued then the b-∂-hopes is defined by using the 

f(x)={x}∪f(x), ∀x∈G. 

Motivation for the definition of ∂-hope is the derivative 

where only multiplication of functions is used. Therefore, for 

functions s(x), t(x), we have s∂t={s′t,st′}, (′) is the derivative. 

Example. Take all polynomials of first degree gi(x)=aix+bi. 

We have 

g1∂g2 = {a1a2x+a1b2, a1a2x+b1a2}, 

so it is a hope in the set of first degree polynomials. Moreover 

all polynomials x+c, where c be a constant, are units. 

In hyperstructures there is the uniting elements method. 

This is defined as follows [3],[26],[28]: Let G be a structure 

and d be a property, which is not valid, and d is described by a 

set of equations. Consider the partition in G for which it is put 

together, in the same class, every pair of elements that causes 

the non-validity of d. The quotient G/d is an Hv-structure. The 

quotient of G/d by β*, is a stricter structure (G/d)β* for which 

d is valid. 

2. Matrix Representations 

Hv-structures are used in Representation (abbr. by rep) 

Theory. Reps of Hv-groups can be considered either by 

generalized permutations or by Hv-matrices [18],[20],[24], 

[25],[26],[38]. The reps by generalized permutations can be 

achieved by using left or right translations. We present here 

the hypermatrix rep in Hv-structures and there exist the 

analogous theory for the h/v-structures. 

Definitions 2.1 [20],[26] Hv-matrix is called a matrix with 

entries elements of an Hv-ring or Hv-field. The hyperproduct 

of two Hv-matrices A=(aij) and B=(bij), of type m×n and n×r 

respectively, is defined, in the usual manner, 

A⋅B = (aij)⋅(bij) = { C= (cij)cij∈⊕Σaik⋅bkj }, 

and it is a set of m×r Hv-matrices. The sum of products of 

elements of the Hv-field is the union of the sets obtained with 

all possible parentheses put on them, called n-ary circle hope 

on the hyperaddition. 

The hyperproduct of Hv-matrices does not necessarily 

satisfy WASS. 

The problem of the Hv-matrix representations is the 

following: 

Definitions 2.2 Let (H,⋅) be an Hv-group. Find an Hv-ring or 

an Hv-field (F,+,⋅), a set MR={(aij)aij∈R} and a map 

T: H→MR: h→T(h) 

such that 

T(h1h2)∩T(h1)T(h2) ≠ ∅, ∀h1,h2∈H. 

T is an Hv-matrix rep. If the T(h1h2)⊂T(h1)T(h2), ∀h1,h2∈H 

is valid, then T is an inclusion rep. If T(h1h2)=T(h1)T(h2)= 

{T(h)h∈h1h2}, ∀h1,h2∈H, then T is a good rep and then an 

induced rep T* for the hypergroup algebra is obtained. If T is 

one to one and good then it is a faithful rep. 

The problem of reps is complicated because the cardinality 

of the product of Hv-matrices is very big. It can be simplified 

in special cases such as the following: The Hv-matrices are 

over Hv-fields with scalars 0 and 1. The Hv-matrices are over 

very thin Hv-fields. On 2×2 Hv-matrices, since the circle hope 

coincides with the hyperaddition. On Hv-fields which contain 

singles, then these act as absorbing. 

The main theorem of reps is the following [20],[25],[26]: 

Theorem 2.3 A necessary condition in order to have an 

inclusion rep T of an Hv-group (H,⋅) by n×n Hv-matrices over 

the Hv-rind or Hv-field (F,+,⋅) is the following: 

For all classes β*(x), x∈H there must exist elements aij∈H, 

i,j∈{1,...,n} such that 

T(β*(a)) ⊂ { A= (a′ij )a′ij∈γ*(aij), i,j∈{1,...,n} } 

So every inclusion rep T:H→MR:a→T(a)=(aij) induces a 

homomorphic rep T* of the group H/β* over the field F/γ* by 

putting T*(β*(a))=[γ*(aij)], ∀β*(a)∈H/β*, where the 

γ*(aij)∈R/γ* is the ij entry of the matrix T*(β*(a)). T* is called 

fundamental induced rep of T. 

Denote trφ(T(x))=γ*(T(xii)) the fundamental trace, then the 

mapping 

XT : H → R/γ*: x→XT (x) = trφ (T(x)) = trT*(x) 

is called fundamental character. There are several types of 

traces. 

Using several classes of Hv-structures one can face several 

reps [26],[29],[30],[38]: 
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Definition 2.4 Let M=Mm×n be a module of m×n matrices 

over a ring R and take sets 

S={sk:k∈K}⊆R, Q={Qi:j∈J}⊆M, P={Pi:i∈I}⊆M. 

Define three hopes as follows 

S: R×M→P(M): (r,A)→rSA= {(rsk)A: k∈K}⊆ M 

Q+: M×M→P(M): (A,B)→AQ+B= {A+Qj+B: j∈J}⊆ M 

P: M×M→P(M): (A,B)→APB= {AP
t
iB: i∈I}⊆ M 

Then (M,S,Q+,P) is a hyperalgebra over R called general 

matrix P-hyperalgebra. 

The hope P, which is a bilinear map, is a generalization of 

Rees’ operation where, instead of one sandwich matrix, a set 

of sandwich matrices is used. The hope P is strong associative 

and the inclusion distributivity with respect to addition of 

matrices 

AP(B+C) ⊆ APB+APC ∀A,B,C∈ M 

is valid. Thus, (M,+,P) defines a multiplicative hyperring on 

non-square matrices. 

In a similar way a generalization of this hyperalgebra can be 

defined considering an Hv-ring or an Hv-field instead of a ring 

and using Hv-matrices instead of matrices. 

Definition 2.5 Let A=(aij),B=(bij)∈Mm×n, we call (A,B) 

unitize pair of matrices if A
t
B=In, where In denotes the n×n 

unit matrix. 

The following theorem can be applied in the classical 

theory [37],[38]. 

Theorem 2.6 If m<n, then there is no unitize pair. 

Proof. Suppose that n>m and that 

AtB= (cij), cij=
1

m

ik kj

k

a b
=
∑ . 

Denote by Am the block of the matrix A such that Am= 

(aij)∈Mm×m, i.e. we take the matrix of the first m columns. 

Then we suppose that we have (Am)
t
Bm = Im, therefore we 

must have det(Am)≠0. Now, since n>m, we can consider the 

homogeneous system with respect to the ‘unknowns’ 

b1n,b2n,…, bmn: 

cin= ∑
=

m

k

knikba
1

 = 0 for i= 1,2,…,m. 

From which, we obtain that b1n=b2n=…=bmn= 0, since 

det(Am)≠0. Using this fact on the last equation, on the same 

unknowns, 

cnn= 
1

m

nk kn

k

a b
=
∑ =1 

we have 0=1, absurd. ■ 

We recall some definitions from [18],[20],[25]. 

Definition 2.7 Let (G,⋅) hypergroupoid, is called set of 

fundamental maps on G, a set of onto maps 

Q = { q: G×G→G: (x,y) →onto
zz∈xy }. 

Any subset Qs⊂Q defines a hope (◦s) on G as follows 

x◦sy = { zz= q(x,y) for some q∈Q } 

◦s ≤ ⋅, and Qs⊂Qos, where Qos is the set of fundamental maps 

with respect to (◦s). A Qa⊂Q for which every Qs⊂Qa has (◦s) 

associative (resp. WASS) is called associative (resp. WASS). 

A hypergroupoid (G,⋅) is q-WASS if there exists an element 

qo∈Q which defines an associative operation (◦) in G. Remark 

that for Hv-groups we have Q≠∅ . 

If G is finite, cardG=G=n, it is q-WASS with associative 

qo∈Q. In the set Κ[G] of all formal linear combinations of 

elements of G with coefficients from a field Κ, we define an 

operation (+): 

(f1+f2)(g)=f1(g)+f2(g),∀g∈G,f1,f2∈Κ[G] 

and a hope (∗), the convolution, 

f1∗f2 = { fq: fq(g) = f x f y
q x y g

1 2( ) ( )
( , )=
∑ , q∈Q }. 

(K[G],+,∗) is a multiplicative Hv-ring where the inclusion 

distributivity is valid, which is called hypergroupoid 

Hv-algebra. 

For all q∈Q, g∈G, we have 

Q≤ (| |)
( , )

xy
x y inGxG

∏ , 1 ≤ |q
-1

(g)| ≤ n
2
-n+1 

and 

ginG

∑ |q
-1

(g)| = n
2
. 

The zero map f(x)=0 is a scalar element in K[G]. 

In the representation theory several constructions are used, 

some of them are the following [26],[28],[ 29],[30]: 

Constructions 2.8 Let (H,⋅) be Hv-group, then for all (⊕) 

such that x⊕y⊃{x,y}, ∀x,y∈H, the (H,⊕,⋅) is an Hv-ring. 

These Hv-rings are called associated to (H,⋅) Hv-rings. 

In rep theory of hypergroups, in sense of Marty where the 

equality is valid, there are three associated hyperrings (H,⊕,⋅) 
to (H,⋅). The (⊕) is defined respectively, ∀x,y∈H, by: type a 

x⊕y={x,y}, type b x⊕y=β*(x)∪β*(y), type c x⊕y=H. 

In the above types the strong associativity and strong or 

inclusion distributivity, is valid. 

Let (H,⋅) be HV-semigroup and {v1,…,vn}∩H=∅, an 

ordered set, where if vi<vj, when i<j. Extend (⋅) in 

Hn=H∪{v1,v2,…,vn } as follows: 

x⋅vi=vi⋅x=vi, vi⋅vj=vj⋅vi=vj, ∀i<j and 

vi⋅vi=H∪{v1,…,vi-1}, ∀x∈H, i∈{1,2,…,n}. 

Then (Hn,⋅) is an HV-group (Attach Elements Construction). 

We have (Hn,⋅)/β*≅Z2 and vn is single. 

Some open problems arising on the topic of rep theory of 

hypergroups, are: 

Open Problems. 
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a. Find standard Hv-rings or Hv-fields to represent all 

Hv-groups by Hv-matrices. 

b. Find reps by Hv-matrices over standard finite Hv-rings 

analogous to Zn. 

c. Using matrices find a generalization of the ordinary 

multiplication of matrices which it could be used in Hv-rep 

theory (see the helix-hope [40]). 

d. Find the ‘minimal’ hypermatrices corresponding to the 

minimal hopes. 

e. Find reps of special classes of hypergroups and reduce 

these to minimal dimensions. 

3. Helix-Hopes and Applications 

Recall some definitions from [40],[16],[11]: 

Definition 3.1Let A=(aij)∈Mm×n be an m×n matrix and 

s,t∈N be natural numbers such that 1≤s≤m, 1≤t≤n. Then we 

define a characteristic-like map cst: Mm×n→Ms×t by 

corresponding to the matrix A, the matrix Acst=(aij) where 

1≤i≤s, 1≤j≤t. We call this map cut-projection of type st. In 

other words Acst is a matrix obtained from A by cutting the 

lines, with index greater than s, and columns, with index 

greater than t. 

We can use cut-projections on several types of matrices to 

define sums and products, however, in this case we have 

ordinary operations, not multivalued. 

In the same attitude we define hopes on any type of 

matrices: 

Definition 3.2 Let A=(aij)∈Mm×n be an m×n matrix and 

s,t∈N, such that 1≤s≤m, 1≤t≤n. We define the mod-like map st 

from Mm×n to Ms×t by corresponding to A the matrix Ast= (aij) 

which has as entries the sets 

aij = {ai+κs,j+λt1≤i≤s, 1≤j≤t. and κ,λ∈N, i+κs≤m, j+λt≤n}. 

Thus we have the map 

st: Mm×n→Ms×t: A→Ast = (aij). 

We call this multivalued map helix-projection of type st. 

Thus Ast is a set of s×t-matrices X=(xij) such that xij∈aij,∀i,j. 

Obviously Amn=A. We may define helix-projections on 

‘matrices’ of which their entries are sets. 

Let A=(aij)∈Mm×n be a matrix and s,t∈N such that 1≤s≤m, 

1≤t≤n. Then it is clear that we can apply the helix- projection 

first on the columns and then on the rows, the result is the 

same if we apply the helix-progection on both, rows and 

columns. Therefore we have 

(Asn)st = (Amt)st = Ast. 

Let A=(aij)∈Mm×n be matrix and s,t∈N such that 1≤s≤m, 

1≤t≤n. Then if Ast is not a set of matrices but one single matrix 

then we call A cut-helix matrix of type s×t. Thus the matrix A 

is a helix matrix of type s×t, if Acst= Ast. 

Definitions 3.3 (a) Let A=(aij)∈Mm×n and B=(bij)∈Mu×v be 

matrices and s=min(m,u), t=min(n,u). We define a hope, 

called helix-addition or helix-sum, as follows: 

⊕: Mm×n×Mu×v→P(Ms×t): 

(A,B)→A⊕B=Ast+Bst=(aij)+(bij)⊂ Ms×t, 

where 

(aij)+( bij)= {(cij)= (aij+bij) aij∈aij and bij∈bij}. 

(b) Let A=(aij)∈Mm×n and B=(bij)∈Mu×v be matrices and 

s=min(n,u). We define a hope, called helix-multiplication or 

helix-product, as follows: 

⊗: Mm×n×Mu×v→P(Mm×v): 

(A,B)→A⊗B=Ams⋅Bsv=(aij)⋅(bij)⊂ Mm×v, 

where 

(aij)⋅(bij)= {( cij)=(∑aitbtj) aij∈aij and bij∈bij}. 

The helix-addition is an external hope since it is defined on 

different sets and the result is also in different set. The 

commutativity is valid in the helix-addition. For the helix- 

multiplication we remark that we have A⊗B=Ams⋅Bsv so we 

have either Ams=A or Bsv=B, that means that the helix- 

projection was applied only in one matrix and only in the rows 

or in the columns. If the appropriate matrices in the helix-sum 

and in the helix-product are cut-helix, then the result is 

singleton. 

Remark. In Mm×n the addition of matrices is an ordinary 

operation, therefore we are interested only in the ‘product’. 

From the fact that the helix-product on non square matrices is 

defined, the definition of the Lie-bracket is immediate, 

therefore the helix-Lie Algebra is defined [36],[37], as well. 

This algebra is an Hv-Lie Algebra where the fundamental 

relation ε* gives, by a quotient, a Lie algebra, from which a 

classification is obtained. 

In the following we restrict ourselves on the matrices Mm×n 

where m<n. We have analogous results in the case where m>n 

and for m=n we have the classical theory. In order to simplify 

the notation, since we have results on modm, we will use the 

following notation: 

Notation. For given κ∈ℕ-{0}, we denote by κ the 

remainder resulting from its division by m if the remainder is 

non zero, and κ=m if the remainder is zero. Thus a matrix 

A=(aκλ)∈Mm×n, m<n is a cut-helix matrix if aκλ=aκλ, 

∀κ,λ∈ℕ-{0}. 

Moreover let us denote by Ic=(cκλ) the cut-helix unit matrix 

which the cut matrix is the unit matrix Im. Therefore, since 

Im=(δκλ), where δκλ is the Kronecker’s delta, we obtain that, 

∀κ,λ, we have cκλ=δκλ. 

Proposition 3.4 For m<n in (Mm×n,⊗) the cut-helix unit 

matrix Ic=(cκλ), where cκλ=δκλ, is a left scalar unit and a right 

unit. It is the only one left scalar unit. 

Proof. Let A,B∈Mm×n then in the helix-multiplication, since 

m<n, we take helix projection of the matrix A, therefore, the 

result A⊗B is singleton if the matrix A is a cut-helix matrix of 

type m×m. Moreover, in order to have A⊗B=Amm⋅B=B, the 

matrix Amm must be the unit matrix. Consequently, Ic=(cκλ), 

where cκλ=δκλ, ∀κ,λ∈ℕ-{0}, is necessarily the left scalar unit 
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element. 

Now we remark that it is not possible to have the same case 

for the right matrix B, therefore we have only to prove that 

cut-helix unit matrix Ic is a right unit but it is not a scalar, 

consequently it is not unique. 

Let A=(auv)∈Mm×n and consider the hyperproduct A⊗Ic. In 

the entry κλ of this hyperproduct there are sets, for all 1≤κ≤m, 

1≤λ≤n , of the form 

Σaκscsλ = Σaκsδsλ= aκλ∋ aκλ. 

Therefore A⊗Ic∋A, ∀A∈Mm×n. ■ 

In the following examples of the helix-hope, we denote Eij 

any type of matrices which have the ij-entry 1 and in all the 

other entries we have 0. 

Example 3.5 [38] Consider the 2×3 matrices of the 

following form, 

Aκ=E11+κE21+E22+E23, Bκ=κE21+E22+E23, ∀κ∈ℕ. 

Then we obtain Aκ⊗Aλ={Aκ+λ, Aλ+1,Βκ+λ,Βλ+1}. 

Similarly we have Βκ⊗Aλ={Βκ+λ,Βλ+1}, Aκ⊗Βλ=Βλ=Βκ⊗Βλ. 

Thus {Aκ,Βλκ,λ∈ℕ} becomes an Hv-semigroup, not COW 

because for κ≠λ we have Bκ⊗Βλ=Βλ≠Βκ=Βλ⊗Βκ, however 

(Aκ⊗Aλ)∩(Aλ⊗Aκ) = {Aκ+λ,Βκ+λ}≠∅, ∀κ,λ∈ℕ. 

All Βλ are right absorbing and Β1 is a left scalar, because 

B1⊗Aλ=Bλ+1 and B1⊗Bλ=Bλ. The A0 is a unit. 

Example 3.6 Consider the 2×3 matrices of the forms, 

Aκλ=E11+E13+κE21+E22+λE23, ∀κ,λ∈ℤ. 

Then we obtain Aκλ⊗Ast={Aκ+s,κ+t,Aκ+s,λ+t,Aλ+s,κ+t,Aλ+s,λ+t}. 

Moreover Ast⊗Aκλ={Aκ+s,λ+s,Aκ+s,λ+t,Aκ+t,λ+s,Aκ+t,λ+t}, so 

Aκλ⊗Ast∩Ast⊗Aκλ={Aκ+s,λ+t}, thus (⊗) is COW. 

The helix multiplication (⊗) is associative. 

Example 3.7 Consider all traceless matrices A=(aij)∈M2×3, 

in the sence that a11+ a22=0. In this case, the cardinality of the 

helix-product of any two matrices is 1, or 2
3
, or 2

6
. These 

correspond to the cases: a11=a13 and a21=a23, or only a11=a13 

either only a21=a23, or if there is no restriction, respectively. 

For the Lie-bracket of two traceless matrices the 

corresponding cardinalities are up to 1, or 2
6
, or 2

12
, 

respectively. We remark that, from the definition of the 

helix-projection, the initial 2×2, block guaranties that in the 

result there exists at least one traceless matrix. 

From this example it is obvious the following: 

Theorem 3.8 The Lie-bracket of any two traceless matrices 

A=(aij), B=(bij)∈Mm×n, m<n, contain at least one traceless 

matrix. 

Last years hyperstructures there is a variety of applications 

in mathematics and in other sciences. Hyperstructures theory 

can now be widely applicable in industry and production, too. 

In several books and papers [2],[4],[5],[7],[8],[10],[12], 

[19],[26],[33],[39] one can find numerous applications. 

The Lie-Santilli theory on isotopies was born in 1970’s to 

solve Hadronic Mechanics problems. The original theory is 

reconstructed such as to admit the new matrix as left and right 

unit. Isofields needed in this theory correspond into the 

hyperstructures were introduced by Santilli and Vougiouklis in 

1996 and they are called e-hyperfields [9],[14],[15],[33], [36]. 

The Hv-fields can give e-hyperfields which can be used in the 

isotopy theory for applications. 

Definitions 3.9 A hyperstructure (H,⋅) which contain a 

unique scalar unit e, is called e-hyperstructure, where we 

assume that ∀x, there exists an inverse x
-1

, so e∈x⋅x-1∩x
-1⋅x. A 

hyperstructure (F,+,⋅), where (+) is an operation and (⋅) is a 

hope, is called e-hyperfield if the following are valid: 

(F,+) is abelian group with the additive unit 0, (⋅) is WASS, 

(⋅) is weak distributive with respect to (+), 0 is absorbing: 

0⋅x=x⋅0=0, ∀x∈F, exist a scalar unit 1, i.e. 1⋅x=x⋅1=x, ∀x∈F, 

∀x∈F there exists unique inverse x
-1

, s.t. 1∈x⋅x-1∩x
-1⋅x. 

The elements of an e-hyperfield are called e-hypernumbers. 

In the case that the relation: 1=x⋅x-1
=x

-1⋅x, is valid, then we say 

that we have a strong e-hyperfield. 

A general construction based on the partial ordering of the 

Hv-structures: 

Construction 3.10 [6],[36], Main e-Construction. Given a 

group (G,⋅), where e is the unit, then we define in G, a large 

number of hopes (⊗) by extended (⋅), as follows: 

x⊗y = {xy, g1, g2,…}, ∀x,y∈G-{e}, and g1, g2,…∈G-{e} 

Then (G,⊗) becomes an Hv-group, in fact is Hb-group 

which contains the (G,⋅). The Hv-group (G,⊗) is an 

e-hypergroup. Moreover, if ∀x,y such that xy=e, so we have 

x⊗y=xy, then (G,⊗) becomes a strong e-hypergroup. 

An application combining hyperstructures and fuzzy theory, 

is to replace the scale of Likert in questionnaires by the bar of 

Vougiouklis & Vougiouklis [41]: 

Definition 3.11 In every question substitute the Likert scale 

with ‘the bar’ whose poles are defined with ‘0’ on the left end, 

and ‘1’ on the right end: 

0  1 

The subjects/participants are asked instead of deciding and 

checking a specific grade on the scale, to cut the bar at any 

point they feel expresses their answer to the question. 

The use of the bar of Vougiouklis & Vougiouklis instead of 

a scale of Likert has several advantages during both the 

filling-in and the research processing [41]. The suggested 

length of the bar, according to the Golden Ratio, is 6.2cm. 
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